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Abstract

The present thesis is dedicated to the study of turbulent flows inside an aero-
nautical engine turbine by means of Large-Eddy Simulation (LES). For many
decades, the turbomachinery flow has been one of the main focuses of research in
Computational Fluid Dynamics (CFD). The significant developments achieved in
aero-engine performances are strictly connected to different complex geometries and
flow configurations being employed. Thus, there is a greater need for high fidelity
simulations to be performed in order to reach an acceptable level of accuracy and
quality in the design and optimization processes of such flows, since the use of large
scale test facilities can be very expensive and disadvantageous.

Due to the reduced computational cost with reference to Direct Numerical
Simulation (DNS) and the much higher accuracy if compared to Reynolds-Averaged
Navier-Stokes (RANS) models, the LES approach has become a very powerful
analysis tool in many engineering fields nowadays. Even though many issues have
not been addressed yet, the LES approach has proven its effectiveness in complex
geometries and flow configurations such as low pressure turbine or gas turbine
combustor flows.

In the current work, a first introduction to different types of simulations for
turbulent flows is provided. Afterwards, emphasis is placed on the LES approach
formalism and Sub-Grid Scale (SGS) closure models. An existing code based on
a Discontinuous-Galerkin finite element method is used to conduct a LES on the
T106A rotor passage blade cascade of a low pressure turbine. The impact of the
adopted physical model and discretization scheme on some of the variables of
interest is therefore analyzed. Finally, the achieved numerical results are compared
to experimental data and other numerical work present in literature. One of the
main goals of this work is to retrieve high accuracy data of the flow field in the
whole computational domain, in order that such data could eventually be used
in future work to improve existing RANS models by means of Machine Learning
techniques.

Keywords: turbomachinery flow, Large-Eddy Simulation (LES), Sub-Grid Scale
(SGS) modeling, Discontinuous-Galerkin finite element method, T106A.
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Sommario

La presente attività di tesi è indirizzata allo studio dei flussi turbolenti all’interno
di una turbina aeronautica mediante una simulazione di tipo Large-Eddy Simulation
(LES). Negli ultimi decenni, il flusso nelle turbomacchine è stato uno degli argomenti
principali della ricerca nel campo della Fluidodinamica Computazionale (CFD). Il
notevole sviluppo ottenuto nelle prestazioni dei motori per aeromobili è strettamente
legato all’impiego di geometrie e configurazioni di flusso complesse. Pertanto, sono
necessarie simulazioni di elevata affidabilità al fine di ottenere un livello accettabile
di accuratezza e di qualità dei processi di progettazione e di ottimizzazione delle
turbomacchine impiegate nel campo aeronautico, in quanto l’utilizzo di grandi
strutture di prova risulta essere molto costoso e svantaggioso.

In virtù del ridotto costo computazionale rispetto alle simulazioni di tipo Direct
Numerical Simulation (DNS) e della maggiore accuratezza nei confronti dei modelli
di tipo Reynolds-Averaged Navier-Stokes (RANS), l’approccio LES è diventato uno
strumento di analisi altamente efficace in diversi campi ingegneristici. Sebbene
molte problematiche riguardanti le LES non sono ancora state affrontate, tale
approccio ha dimostrato la sua efficienza in diverse geometrie e configurazioni di
flusso complesse, come i flussi all’interno delle turbine di bassa pressione e dei
combustori delle turbine a gas.

Nel presente lavoro, vengono inizialmente introdotte alcune delle tipologie
principali di simulazioni per i flussi turbolenti. In seguito, l’enfasi è posta sulla
teoria dell’approccio LES e sui modelli di chiusura dei termini Sub-Grid Scale
(SGS). Un codice esistente basato sul metodo Galerkin-Discontinuo agli elementi
finiti viene utilizzato per effettuare una LES sulla schiera di pale rotoriche T106A
di una turbina di bassa pressione. Viene quindi analizzata l’influenza del modello
fisico e del metodo di discretizzazione adottati su alcune grandezze di interesse.
Infine, i risultati numerici ottenuti mediante il codice vengono confrontati con
i dati sperimentali e con altri risultati numerici disponibili in letteratura. Uno
degli obiettivi principali del lavoro di tesi è quello di ottenere dei risultati molto
accurati del campo di flusso nell’intero dominio computazionale, in modo da poter
eventualmente utilizzare questi dati in studi futuri per migliorare dei modelli RANS
esistenti mediante tecniche di Machine Learning.

Parole chiave: turbomacchine, Large-Eddy Simulation (LES), modelli Sub-Grid
Scale (SGS), metodo Galerkin-Discontinuo agli elementi finiti, T106A.
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Chapter 1

Introduction

Turbomachinery flow represents one of the most challenging fields in Computa-
tional Fluid Dynamics (CFD). If one considered turbomachines employed in aircraft
propulsion, the internal flow is characterized by a stochastic and a deterministic
nature, with the former being driven by the turbulence and the latter by the
stator-rotor interaction (Richard D Sandberg and Michelassi, 2019). The very
complex geometry, unsteadiness, secondary flows, boundary layers, transition and
relaminarization regions are only some of the many other aspects to be taken into
account in a gas turbine design process, making the use of large scale test facilities
overly expensive and disadvantageous. Therefore, the use of CFD is compulsory
in order to provide a reduction in costs, though due to the aforementioned flow
complexities in turbomachines it is not always possible to obtain the required
accuracy of the flow physics.

Figure 1.1: Use of CFD in turbomachinery flows (Gerretsen and Kurz, 2009).

The current work concentrates on the turbulent aspect of the turbomachinery
flow. Generally, turbulent motion is what characterizes a large variety of flow
types, from the naturally occurring ones to the practical engineering flows. The
very three-dimensional, time-dependent and random nature of turbulence makes
its modeling one of the most difficult problems in classical physics. Its chaotic
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Chapter 1. Introduction

nature comprises a wide range of scales of motion which increases with the Reynolds
number and further difficulties arise from the continuous non-linear interaction
between the different scales, energetically speaking. Hence, particular attention
of research in CFD has been focused on turbulent flows, with its primary reliance
being the nowadays constantly growing computing power.

Over the past decades, many types of simulation and models for turbulent flows
have been proposed, with the most complete and accurate approach being the Direct
Numerical Simulation (DNS). The DNS simulation consists in resolving directly the
Navier-Stokes equations without introducing any turbulence model. The problem
must be resolved down to the smallest scales of turbulent motion, denominated as
Kolmogorov scales (Pope, 2001). Since the size of Kolmogorov scales with respect
to the size of the largest ones varies as Re−3/4, it is obvious that the grid resolution
must increase with increasing Reynolds number in order to capture even the smallest
scales, with a consequent strong elevation in computational cost. This makes the
application of DNS prohibitive for typical Reynolds numbers of turbomachinery
flow (105 − 107).

Nevertheless, with the current computing performances, many researchers have
been able to perform DNS on a large variety of Low Pressure Turbines (LPT),
where typical Reynolds numbers are relatively moderate. Garai et al., 2015 recently
validated their code based on a Discontinuous-Galerkin spectral element approach
on the LPT rotor passage blade cascade T106A. Their data, using simulations
up to the 8th order, perfectly matched experimental results. From different flow
visualizations, it can be easily noticed how even the smallest scales are captured by
the DNS, as shown in Fig. 1.2.

Figure 1.2: Three-dimensional view of the aft region of the suction surface of the blade,
showing isosurfaces of instantaneous spanwise vorticity (Garai et al., 2015).
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Chapter 1. Introduction

As far as flow inside a LPT is concerned, Babajee, 2013 focused his research
activity on the investigation of the separation-induced transition phenomenon
occurring in the latter. The main goal of his work was to reduce the losses inside
the LPT by increasing its efficiency, which is strongly affected by the separation
and transition phenomena. Fig. 1.3 shows how a LPT for a typical commercial
aircraft covers a wide range of operating points, going from Re = 200000 at cruise
to Re = 400000 at take-off. Nowadays, the Reynolds numbers at cruise conditions
could even go below 100000.

Figure 1.3: Commercial aircraft engine flight envelope and the associated LPT operating
range Reynolds number (Hourmouziadis, 1989).

Within this wide range of operating Reynolds numbers, the changing flow
conditions lead to different types of separation and transition occurring, as described
in Fig. 1.4. First of all, case (a) is not really encountered in nowadays LPT. At high
Reynolds numbers for case (b), the flow remains attached to the wall and follows
the exit direction imposed by the blade at the trailing edge. For lower Reynolds
numbers in case (c), a short separation bubble appears, that is a zone where the
flow separates from the wall and reattaches further aft. It is characterized by a
dead air region followed by a recirculation area. However, this type of bubble has
no considerable effect on the blade losses. Case (d) illustrates the bursting of the
bubble as a long separation bubble. Finally, case (e) leads to an open separation
in which the flow exits the cascade according to a much smaller angle than the
one imposed by the blade, therefore this action is detrimental in terms of losses.
Thus, what one hopes to achieve while designing a LPT is to decrease the Reynolds
number at bursting defined by case (d), by also choosing the best trade-off between
high Reynolds number regime (take-off) and low Reynolds number regime (cruise).
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Chapter 1. Introduction

Figure 1.4: Turbine cascade performances with different flow typologies (Hourmouziadis,
1989).

Considering the wide range of operating Reynolds numbers to be simulated,
a DNS would be computationally not affordable for this kind of investigation.
Furthermore, since in most practical engineering problems the major interest resides
in the mean flow quantities, such as mean lift and drag coefficients, the Reynolds-
Averaged Navier-Stokes (RANS) approach is widely used. This approach is based on
time-averaging (for steady problems) or ensemble-averaging (for unsteady problems)
the Navier-Stokes equations and solving the averaged equations system for the mean
flow properties. Residual terms arise from the averaging process, as the widely
known in literature Reynolds stresses. Thus, in order to close the problem these
terms need modeling. Many turbulence closure methods have been proposed, with
the most diffused ones being the turbulent-viscosity model and the Reynolds Stress
Model (RSM) (Pope, 2001). The RANS approach still constitutes the main design
tool for many application fields due to its simplicity and very low computational
cost compared to other available approaches such as DNS or LES. Nevertheless,
RANS modeling fails to accurately predict regions where separation, transition
or relaminarization might occur. The method’s limitations reside in its strong
dependence on the turbulence model choice and empirical correlations used in
transitional regions which lack of universality.

Despite these drawbacks, in order to investigate the separation and transition
effects on the LPT performances, Babajee, 2013 used a RANS approach based on the
innovative γ −çReθt transition model. From the comparisons with the experiments,
the methodology used gave predictions that were in good agreement with what
was measured, therefore concluding that the method was reliable in predicting
transitional flows on high lift LPT blades with mild diffusion rate. However, it
turned out that for high lift LPT blades with high diffusion rate, the predictions
were underestimated.

To overcome the DNS and RANS limitations an intermediate approach has been
proposed, which consists in resolving explicitly the largest scales of the turbulent
motion while modeling the smallest ones, hence the name Large-Eddy Simulation
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Chapter 1. Introduction

(LES). This scale separation considerably reduces the computational cost of a LES
compared to DNS since a more moderate grid resolution is required. Moreover,
the three-dimensional, unsteady nature of the largest eddies being captured by the
LES approach makes this method viable to study aero-acoustics, fluid-structure
coupling or other phenomena in which large-scale unsteadiness is important and
RANS models would fail to predict an accurate solution (Fröhlich and Rodi, 2002).
Also, considering the smallest scales are more universal than the largest ones, their
modeling shall be easier and have a lighter impact on the flow field solution accuracy,
rather than modeling all scales within one method as done with RANS.

Therefore, the LES approach has been widely used for the investigation of the
aforementioned transitional separated flows on LPT, generally providing satisfactory
results. Not recently, de Wiart and Hillewaert, 2012 used a high order Discontinuous-
Galerkin method to perform a LES on the transitional flow past the SD7003 airfoil.
The very interesting dispersion and dissipation properties of the Discontinuous-
Galerkin method allow for the numerical error of the method’s itself to implicitly
provide the necessary dissipation that accounts for the presence of the smallest
unrepresented scales while resolving the flow. This kind of approach is known
in literature as Implicit LES (ILES). Also, the local and discontinuous nature of
the method allows it to efficiently deal with complex geometries such as LPT.
The performed studies demonstrated that the numerical results obtained for the
considered test case are in good agreement with the reference experimental data
and the DNS simulations conducted using the same discretization scheme. It can
be noticed in Fig. 1.5 how the velocity field is somehow filtered by the LES solution
with reference to the DNS, with the largest scales however having been captured
accurately.

Figure 1.5: Instantaneous velocity magnitude for: DNS (top) and LES (bottom) (de
Wiart and Hillewaert, 2012).

However though, the LES approach can be 10 to 100 times more costly than a
simple RANS model. Moreover, in wall-bounded flows, the grid resolution must
increase considerably while getting nearer to the solid boundaries, since in these
regions even the most dominating turbulent scales become very small in size. Thus, a
new approach has been proposed which relies on the idea of coupling LES and RANS
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Chapter 1. Introduction 1.1. A general overview on LES

models (Jochen Fröhlich and Von Terzi, 2008). This hybrid LES/RANS approach
takes advantage of the ease of implementation of RANS models and the high
precision achieved by the LES approach, giving birth to computationally affordable
and reliable models such as Detached-Eddy Simulation (DES) or Scale-Adaptive
Simulation (SAS).

In DES for instance, near wall regions and regions where the dominant scales
cannot be represented by the computational grid are assigned to the RANS mode
of solution. As scales size increases, the regions are solved using the LES mode.
Thus, the grid resolution is not as demanding as pure LES, thereby considerably
reducing the computational cost, while maintaining an elevated level of accuracy.
An interesting study using this hybrid kind of approach was performed by Piomelli
and Balaras, 2002. Fig. 1.6 provides a comparison between the different simulation
approaches for turbulent flows described in the current section, based on their
computational cost and turbulence modeling influence.

Figure 1.6: Comparison between different types of simulation approaches for turbulent
flows (Deck et al., 2014).

1.1 A general overview on LES
The present work concentrates exclusively on the LES approach, therefore a

general overview might be important before getting more into detail. The Large-
Eddy Simulation approach was first introduced by Smagorinsky, 1963 to simulate
atmospheric air current, and was first applied to engineering by Deardorff et al.,
1970. But it was only after the 1990s that LES applications started to increase
due to the significant improvements in computing performances and since it had
already become clear that the RANS approach couldn’t offer the required accuracy
to capture many flow physics such as separation, transition or secondary flows.

Nowadays, with the employment of high performance computing and the consid-
erable developments made in the LES field in the past few decades, this approach
finds application in many complex engineering flows and geometries such as transi-
tional flows over turbine blades or gas turbine combustors. The ability to perform
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Chapter 1. Introduction 1.1. A general overview on LES

high fidelity simulations where the RANS approach fails and the DNS is inapplica-
ble for its bloated computational cost has made LES a very powerful tool in the
engineering field. Nevertheless, the LES approach still presents many issues and
challenges to be addressed before being able to completely replace RANS models
and become the main analysis tool in such field of application (Zhiyin, 2015).

One of the issues that still characterizes the LES approach is that, despite the
high performances of the computing resources at present, its computational cost
still is significantly high for LES to become a routine basis tool for engineering flow
simulations. Also, the turbulence closure modeling for LES, alias Sub-Grid Scale
(SGS) modeling, used to approximate the effects of the smallest scales of turbulent
motion on the largest ones, presents another issue albeit of minor importance if
compared to other challenges, such as inflow boundary conditions and wall layer
modeling (Fig. 1.7). Another important aspect of the LES simulations are the
compressibility effects. Up to date, most of the available models for the SGS
stress tensor, inflow boundary layer or wall layer modeling have been developed
for incompressible flows and have usually been directly applied to compressible
fluids. Moreover, one can anticipate that the incompressible case problem consists
of one continuity equation and three momentum equations, with the SGS stress
tensor being the only residual term present. On the other hand, in the compressible
case, the energy equation is added to the governing equations system introducing
additional SGS terms. Therefore, the case of compressible flows problem is much
more complex since more terms need modeling (Garnier et al., 2009).

Figure 1.7: LES hierarchy indicating the importance of each element (Tyacke and
Tucker, 2015).

However, with the enormous efforts into improving the current LES performances
and the ever increasing computing power, in the years to come, LES will become
always a more powerful analysis tool, though many challenges still have to be
overcome before LES totally replaces RANS in the engineering field.
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1.2 Current work
As anticipated in the previous section, the current study focuses on the LES

approach applied to turbomachinery flow. To this purpose, a research code based
on a Discontinuous-Galerkin finite element method, developed in the Department
of Mechanical and Aerospace Engineering (DIMEAS) by Ferrero, 2015, is used to
perform a LES on the T106A rotor passage cascade blade of a LPT. The document’s
structure is organized as follows:

Chapter 2: A first insight in the LES formalism for compressible flows is provided.
The filtering operation is introduced along with the filtered governing equa-
tions, followed by a brief description of the current state-of-the-art of SGS
modeling.

Chapter 3: The Discontinuous-Galerkin finite element method is described briefly,
along with the T106A test case configuration and numerical setup.

Chapter 4: Numerical results are reported and compared to the experimental
data and other numerical work present in literature.

Chapter 5: Conclusions on the achieved results are presented.

8



Chapter 2

Theoretical background

As stated in the previous chapter, the nature of the turbulent motion is three-
dimensional, unsteady and random and it comprises a wide range of scales which
exchange energy between them. For fully turbulent flows at high Reynolds number,
the energetic interaction between the different turbulent scales can be described
by the theory of the energy cascade proposed by Richardson, 1922, which was
later completed by the Kolmogorov’s hypotheses (Kolmogorov, 1941). Large-Eddy
Simulation is based on the idea that the energy containing largest scales or eddies,
which are anisotropic and strongly dependent on the boundary conditions of the
flow, are explicitly resolved, while the smallest eddies, which have an isotropic and
a more universal character, can be modeled. A mathematical representation of this
scale separation operation can be provided by the convolution filtering approach
proposed by Leonard, 1975. Thus, the governing equations are filtered and later
resolved for the filtered flow field quantities. Different terms arise from the filtering
process (in analogy to the Reynolds stresses in the RANS approach) known as
Sub-Grid Scale (SGS) terms, which represent the effect of the smallest scales on
the motion of the largest eddies. In order to close the problem such terms need
modeling. Different models for the SGS stress tensor have been proposed, from the
explicit functional and structural approaches, to the implicit modeling or Implicit
LES (ILES). Some of the SGS models used for compressible flows are presented
in Garnier et al., 2009. Each section of the current chapter describes one of the
aforementioned arguments.

2.1 Energy cascade and Kolmogorov hypotheses
According to the theory of Richardson, 1922, the motion of the largest eddies

in a fully turbulent flow at high Reynolds number is unstable and this results in
these eddies splitting into smaller ones. During the splitting, energy is transferred
from the former to the latter and this process repeats itself down to smaller and
smaller scales, until the Reynolds number is sufficiently low that the molecular
viscosity irreversibly dissipates the available kinetic energy into internal energy and
the motion of the eddies becomes stable. Thus, a certain mechanism is attributed
to each scale of turbulent motion: energy production to the largest eddies, energy
transfer to the intermediate eddies and energy dissipation to the smallest ones.

9
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Kolmogorov, 1941 completed the theory introducing three fundamental hypoth-
esis:

• Hypothesis zero of local isotropy: At sufficiently high Reynolds number,
the small scales of turbulent motion are statistically isotropic.

• First similarity hypothesis: At sufficiently high Reynolds number, the
statistics of the small scales of turbulent motion have a universal form that is
uniquely determined by the energy dissipation Ô and the kinematic viscosity
ν.

• Second similarity hypothesis: At sufficiently high Reynolds number, the
statistics of the intermediate scales of turbulent motion have a universal form
that is uniquely determined by Ô and is independent of ν.

According to Kolmogorov, the largest eddies are strongly anisotropic and de-
pendent on the boundary conditions of the flow. Also, the bulk of the energy is
contained in these eddies. But, during the cascade-like formation process of the
smaller eddies, the directional and geometry information of the large ones fades
away. This results in the small scales of the turbulent motion having an isotropic
and a more universal nature. Since the mechanisms attributed to these scales are
the energy transfer and viscous dissipation, the parameters that characterize them
are the rate at which smaller eddies receive energy from the larger ones TE and
the kinematic viscosity ν. It can be demonstrated that TE ≈ Ô with Ô being the
energy dissipation, that is the rate at which energy is transferred from the large
eddies to the smaller ones equals the rate at which the energy is dissipated by the
smallest eddies. Moreover, the timescales of the smaller eddies are relatively too
small compared to the timescales of the large ones, therefore the former can adapt
quickly to the transfer of energy received from the latter. As a result of the previous
affirmations, the turbulent motion scales range is split into an energy containing
range for the large scales and a universal equilibrium range for the small ones.

The two parameters Ô and ν can be used to define three unique scales for length,
velocity and time defined as:

η = (ν
3

Ô
)1/4 (2.1)

uη = (Ôν)1/4 (2.2)

τη = (ν
Ô

)1/2 (2.3)

The fact that the Reynolds number for these scales is unity: Re = uηη
ν

= 1, and
that combining (2.1) and (2.2) gives: Ô = ν(uη

η
)2, demonstrates that these scales

represent the smallest eddies at the bottom of the cascade, since there the kinetic
energy is irreversibly dissipated into internal energy due to the fact that molecular
viscosity becomes preponderant and the splitting into smaller eddies stops. These
scales are known in literature as the Kolmogorov’s scales.
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Considering that TE ≈ Ô, this results in Ô ∼ u03

l0
, where l0, u0 and τ0 are

respectively the characteristic length, velocity and time of the largest eddies, which
are comparable to the characteristic scales of the flow: L,U , T . Therefore, the
Reynolds number of the largest eddies is of the same order as the Reynolds number
of the flow: Re0 ∼ Re. From these last assertions and the definitions (2.1)-(2.3),
one can easily determine the ratios between the Kolmogorov’s scales and the largest
scales as:

η

l0
∼ Re−3/4 (2.4)

uη
u0

∼ Re−1/4 (2.5)

τη
τ0

∼ Re−1/2 (2.6)

Thus, it is evident as all scales characterizing the smallest eddies decrease with
increasing Reynolds number of the flow.

Moreover, within the universal equilibrium range, eddies of size l exist such
that η ¹ l ¹ l0, for which the Reynolds number is still too high compared to
the Kolmogorov’s scales. So, little does molecular viscosity effect these eddies,
whose character is thus defined only by the energy dissipation Ô. This further
separation within the small eddies splits the universal equilibrium range into an
inertial subrange where the molecular viscosity is negligible with reference to inertial
effects, and a dissipation range where the molecular viscosity becomes effective.
A direct consequence of the Kolmogorov’s hypotheses is that the characteristic
velocity and timescale decrease with eddies size in the inertial subrange. It can also
be demonstrated that the energy transfer rate T (l) in this subrange is independent
of l: T (l) = T = TE = Ô. A schematic representation of the energy cascade in a
fully turbulent flow at high Reynolds number is given in Fig. 2.1.

Figure 2.1: Schematic representation of the energy cascade in a fully turbulent flow at
high Reynolds number (Pope, 2001).

Finally, in order to determine how the kinetic energy is distributed among the
different scales of turbulent motion, the energy spectrum in the wavenumber space
can be defined in the case of homogeneous turbulence (Fig. 2.2). In the spectral
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space the wavenumber is defined as: k = 2π
l
. Kolmogorov proposed the following

law, based on the second hypothesis of similarity, to describe the energy cascade
in the inertial subrange: E(k) = CÔ2/3k−5/3, with C being a universal constant.
In the energy containing range the slope of the spectrum varies between k and k4

(Garnier et al., 2009).

Figure 2.2: Energy spectrum for homogeneous turbulence (Kalmár-Nagy and Bak,
2019).

However, as far as turbomachinery flows are concerned, the turbulent motion
inside an aeronautical engine is strongly anisotropic and inhomogeneous, therefore
this kind of simplified theory fails to accurately predict the interaction and energy
distribution between different turbulent scales. Moreover, energy can also be trans-
ferred from the smaller eddies to the larger ones. This kind of inverse energy transfer
is defined as backscatter and generally is much smaller in intensity if compared to
the outscatter. Nevertheless, simplified theories as Kolmogorov’s are used to make
important considerations which can be useful for a better understanding of some of
the aspects of turbulence nature, while recurring to numerical methods in order to
obtain an accurate and realistic representation of turbulent flows.
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2.2 The Large-Eddy Simulation approach
In order to obtain the full solution for the whole range of scales of turbulent

motion, a Direct Numerical Simulation must be performed. According to the DNS
approach, the governing equations must be solved directly without introducing
any turbulence model. Therefore, the computational grid must be fine enough in
order to capture even the smallest Kolmogorov scales. For typical engineering flows
though, this would require a grid resolution that exceeds the current computing
capacities.

In an attempt to reduce the simulation’s computational cost, a coarser grid can
be considered. This way, only scales larger than the grid size would be represented,
whereas the smaller scales would be discarded. If the governing equations were still
to be solved directly, without any turbulence model, the solution obtained would
generally be inaccurate from a physical point of view due to the continuous non-
linear energetic interaction between all scales of turbulent motion. Thus, in order
to maintain the reduced grid resolution, the effect of the smallest unrepresented
scales on the motion of the largest represented eddies must be modeled and this
constitutes the basic idea of the Large-Eddy Simulation approach.

Such scale separation in the range of scales of turbulent motion is consistent
with the Kolmogorov’s theory described in the previous chapter. According to
such theory, the largest eddies of the turbulent motion contain most of the kinetic
energy and are strongly anisotropic and fluid dependent, whereas the smaller scales
are of isotropic and universal nature. So, the LES approach relies on the idea
that an approximate solution can be obtained by resolving the motion of only the
largest eddies in the range of turbulent scales, where the vast part of the energy
is concentrated, while modeling the effects of the smallest ones. Since the latter
present a more universal character, their modeling is expected to be easier and
have a relatively minor impact on the solution accuracy, as compared to RANS
turbulence closure modeling, where all scales of turbulent motion are modeled within
the method (Fig. 2.3). Moreover, the LES solution conserves the three-dimensional,
unsteady nature of turbulent motion, making this method viable to study flows
where the large-scale unsteadiness is important and the RANS approach would fail
to predict an accurate solution.

Finally, after a turbulence model is introduced, the governing equations for
LES simulations are then discretized by means of some numerical method. Such
numerical method presents a scale dependent truncation error in time and space,
which especially effects the smallest represented scales. Therefore, the discretization
method used introduces a further separation between well-resolved represented
scales and non-resolved represented scales, where the latter are also known in
literature as resolved sub-filter scales.

The main problem in LES is to define a mathematical model that describes
and accounts for all the physical aspects of the turbulent flow motion and to
model all the previously mentioned scale subranges. The mathematical model and
the discretization method are strongly connected to each other and usually their
definition is carried out simultaneously. Therefore, the definition of a relaxation
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between the strong link that lies between these two very important aspects of the
LES approach is not trivial.

Figure 2.3: Comparison between different simulation approaches for turbulent flows
according to the scales of eddies resolved within the model (Pope, 2001).

2.2.1 Governing equations
As for any turbulence problem, the Navier-Stokes equations are usually used in

the LES approach to define its mathematical model. These equations represent the
conservation of mass, momentum and energy, with the last one not being unique.
Indeed, many formulations of this equation have been proposed in the field of LES
for compressible flows in terms of temperature, pressure, enthalpy, entropy or total
energy, with the last one being the only one in the conservative form (Garnier et al.,
2009). Considering the formulation in terms of total energy, the Navier-Stokes
equations take the following form:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 (2.7)

∂ρui
∂t

+ ∂ρuiuj
∂xj

+ ∂p

∂xi
= ∂σij
∂xj

(2.8)

∂ρE

∂t
+ ∂(ρE + p)uj

∂xj
= ∂σijui

∂xj
− ∂qj
∂xj

(2.9)

The set of equations is complemented with the perfect gas equation of state:

p = ρRT (2.10)

The Einstein notation has been adopted. t and xi represent the independent
variables of time and space respectively with i = {1, 2, 3} denoting the three direc-
tions of the Cartesian coordinate system. ui, p, ρ, T are the velocity components,
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pressure, density and temperature. The gas constant is defined as: R = Cp − Cv,
where Cp and Cv are respectively the specific heats at constant pressure and constant
volume, connected together by the relation: γ = Cp

Cv
, with γ being the isentropic

expansion factor.
Considering a Newtonian fluid and assuming the Stokes’ hypothesis for the bulk

viscosity, the shear-stress tensor can be expressed as:

σij = 2µ(T )Sij − 2
3µ(T )δijSkk (2.11)

where µ(T ) is the dynamic viscosity, δij is the function delta Dirac and Sij represents
the rate-of-strain tensor defined as:

Sij = 1
2

A
∂ui
∂xj

+ ∂uj
∂xi

B
(2.12)

The total energy per mass unit is defined as:

ρE = p

γ − 1 + 1
2ρuiui (2.13)

Finally, the heat flux can be expressed according to the Fourier’s law as:

qj = −λ(T ) ∂T
∂xj

(2.14)

where λ = µCp
Pr

is the thermal conductivity and Pr is the Prandtl number.
In order to obtain an approximate solution, this set of equations must be solved

for the motion of only the large eddies of the turbulent motion, while modeling
the effects of the smallest ones. In practical LES simulations, this scale separation
operation is implicitly carried out by the finite-size computational grid itself,
since scales smaller than the grid size cannot be represented. Once a turbulence
closure model that accounts for the presence of the smallest unrepresented scales
is introduced, the governing equations are then discretized by means of a certain
numerical method. Both turbulence and numerical methods are characterized by
intrinsic physical and numerical errors respectively. These errors have a strong
impact especially on the smallest represented scales. Thus, a further separation
between well-resolved scales and sub-filter scales is presented. The final solution can
then be interpreted as an approximation obtained by applying an overall filtering
operation to the real exact solution of the governing equations system, focalizing the
full picture only on the largest eddies, while lowering its resolution by eliminating
the presence of the smallest ones.

Such filtering operation could be represented mathematically by the convolution
filtering approach proposed by Leonard, 1975. However, the actual filter applied
to the exact solution comprises all the different kinds of filters implicitly carried
out by the grid and numerical method and eventual filters explicitly introduced
by the turbulence model, as will be described in the following sections. Therefore,
it is no trivial task finding the shape of the effective filter applied by the LES
approach. Actually, it is important to point out that the filtering approach is
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a purely mathematical analysis tool which helps to comprehend the physics of
the problem, while trying to imitate what is actually done in real practical LES.
Generally though, no explicit filtering operation is actually applied to the flow field
variables that appear in the governing equations, except for trivial cases where the
turbulence models require so.

2.2.2 Convolution filtering operation
The convolution filtering approach proposed by Leonard, 1975 consists in

applying a high-pass filter in physical space (or a low-pass filter in wavenumber
space) to the Navier-Stokes equations (2.7)-(2.9) and to all of the flow field quantities
that appear in these equations.

Limiting the case study to homogeneous and isotropic filtering for sake of
simplicity, the three-dimensional convolution filtering in space applied to a scalar
quantity φ(x, t) is defined as followed:

φ̄(x, t) =
Ú ∞

−∞
G(x − ξ)φ(ξ, t)d3ξ (2.15)

where G is a compactly supported or at least rapidly decaying filter function in
space, with a filter width ∆. Symbolically, the previous equation can be expressed
as:

φ̄ = G ∗ φ (2.16)

The relation (2.15) can also be expressed in the wavenumber space where the
cutoff wavenumber associated to the filter width is defined as kc = π

∆ . This can
be helpful since the Fourier transform of a convolution between two functions
φ(x, t) and G(x) in physical space is nothing else but the product of the Fourier
transforms of the two functions, denoted as φ̂(k, ω) and Ĝ(k), where k and ω are
the wavenumber and frequency respectively:

¯̂
φ(k, ω) = Ĝ(k)φ̂(k, ω) (2.17)

or:

¯̂
φ = Ĝφ̂ (2.18)

Furthemore, the unfiltered part of the scalar quantity φ(x, t) can be defined as:

φÍ(x, t) = φ(x, t) − φ̄(x, t) (2.19)

φÍ = (1 −G) ∗ φ (2.20)

Not every kind of filter can be considered while defining a mathematical model
of the LES approach, for specific requirements must be met in order to adequately
manipulate the Navier-Stokes equations. The fundamental properties that a LES
filter function must satisfy are:

16



Chapter 2. Theoretical background 2.2. The Large-Eddy Simulation approach

• Consistency:
Ú ∞

−∞
G(ξ)d3ξ = 1 (2.21)

• Linearity:

φ+ ψ = φ+ ψ (2.22)

• Commutation with differentiation:

∂φ

∂s
= ∂φ

∂s
, s = x, t (2.23)

It is also important to highlight the differences between the convolution filtering
operator and the Reynolds averaging operator. The latter satisfies the following
properties:

éaφê = aéφê (2.24)

éφ+ ψê = éφê + éψê (2.25)

é∂φ
∂s

ê = ∂éφê
∂s

, s = x, t (2.26)

ééφêê = éφê (2.27)

éφÍê = 0 (2.28)

What clearly distinguishes the filtering in LES from the Reynolds averaging
operator is that the convolution filtering operator does not satisfy the properties
expressed in (2.27)-(2.28), except in trivial cases, that is:

¯̄φ = G ∗G ∗ φ Ó= φ̄ (2.29)

φ̄Í = G ∗ (1 −G) ∗ φ Ó= 0 (2.30)

The most diffused filters used to make considerations in the LES approach
are: the Gaussian filter, the sharp cutoff filter and the box or top-hat filter. A
representation of their filter functions in both physical and wavenumber space is
provided in Fig. 2.4 for the same filter width (cutoff wavenumber).
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(a) (b)

Figure 2.4: Gaussian, cutoff and box filters plotted for the same filter width (cutoff
wavenumber): (a) in physical space and (b) in wavenumber space (Stoll,
2014).

In order to interpret the filtering operation in physical space, a one-dimensional
case and the velocity component u(x, t) are considered. Spatially filtering the
instantaneous velocity u(x, t), say with a box filter, will smoothen the velocity
function just as shown in Fig. 2.5, by removing the presence of the smallest scales
from the solution. According to (2.15), the function u is a continuous function and
it represents an approximation to what is actually obtained when a discretization
method is applied to solve the governing equations system on a discrete grid.

Figure 2.5: Box filter applied to the velocity component in physical space in a one-
dimensional case (Fröhlich and Rodi, 2002).

In the same figure, the double filtered velocity is also represented, thus making
it clear how the filtering process would keep smoothening the velocity function if
reapplied, in contrary to the RANS averaging operation where the double averaged
quantity equals the averaged quantity itself. The cutoff filter is a trivial case in
which the property (2.27) is satisfied, that is in this case: ¯̄u = ū.

On the other hand, the concept of filtering in wavenumber space can be inter-
preted by considering the energy spectrum in the case of homogeneous and isotropic
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turbulence. Referring to a DNS-resolved field (no filter case), different filters at
the same cutoff wavenumber are applied to the flow field solution and the filtered
shapes of the energy spectrum are represented in Fig. 2.6.

The cutoff filter is the only filter that yields a neat cut through the energy
spectrum. This way the filtered energy spectrum presents, at the cutoff, the same
slope as the unfiltered one, with the same energy transfer rate as the dissipation of
the smallest scales. Contrarily, other filters present different slopes with different
rates of energy transfer and it is clear how the top hat filter for instance fails in
attenuating the energy of the sub-grid scales.

Figure 2.6: Comparison between different filters applied to the energy spectrum in case
of homogeneous and isotropic turbulence (Laval, 2020).

2.2.3 Favre filtering
Before proceeding with the definition of the filtered Navier-Stokes equations,

another important "filtering" process needs to be introduced. That is the Favre
filtering, according to which a change of variable is defined where the filtered
variables are weighted by the density:

φ̃ = ρφ

ρ
(2.31)

An evident analogy exists between Favre filtering and Favre averaging used in
the field of compressible RANS.

The introduction of the Favre filtered variables in the Navier-Stokes equations
is important due to terms of the form ρφ and ρφψ being present in the system of
equations. Introducing the Favre change of variables, such terms can be expressed
as:

ρφ = ρφ̃ (2.32)
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ρφψ = ρçφψ (2.33)
This way, one can avoid the introduction of some residual terms in the filtered

Navier-Stokes equations, which would appear due to the non-commutative nature
of the convolution filtering operator with the multiplication operator.

2.2.4 Filtered governing equations
Applying the convolution filtering operator to the Navier-Stokes equations (2.7)-

(2.9), by simultaneously introducing the Favre change of variables and resolving the
non-linear equations system only for computable flow field quantities, the following
system of equations is obtained:

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= 0 (2.34)

∂ρ̄ũi
∂t

+ ∂ρ̄ũiũj
∂xj

+ ∂p̄

∂xi
− ∂σ̌ij
∂xj

= −∂τij
∂xj

+ ∂(σ̄ij − σ̌ij)
∂xj

(2.35)

∂ρ̄Ẽ

∂t
+ ∂(ρ̄Ẽ + p̄)ũj

∂xj
− ∂σ̌ijũi

∂xj
+ ∂q̌j
∂xj

= − ∂

∂xj
[CpQj + Jj − Dj + (q̄j − q̌j)] (2.36)

The terms on the left hand side represent the computable terms of the equations
system and they are structurally identical to the original unfiltered governing
equations, except for the fact that they contain filtered variables. Diversely, the
right hand side regroups the residual terms that appear due to the non-linearities
present in the Navier-Stokes equations, such as the convective term. The residual
terms are widely known in literature as Sub-Grid Scale terms and physically they
represent the effect that the smallest turbulent scales have on the motion of the
largest eddies.

The filtered equation of state becomes:

p = ρRT̃ (2.37)
The Favre filtering can be applied to the temperature, but not to the pressure

and density fields. ũi, p, ρ, T̃ represent the computable velocity components,
pressure, density and temperature respectively.

The computable shear-stress tensor is defined as:

σ̌ij = 2µ(T̃ )S̃ij − 2
3µ(T̃ )δijS̃kk (2.38)

where S̃ij is the computable rate-of-strain tensor:

S̃ij = 1
2

A
∂ũi
∂xj

+ ∂ũj
∂xi

B
(2.39)

The computable total energy per mass unit is defined according to the following
formulation:
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ρẼ = p

γ − 1 + 1
2ρũiũi + τii

2 (2.40)

The computable heat flux is expressed as:

q̌j = −k(T̃ ) ∂T̃
∂xj

(2.41)

Considering now the SGS terms, these are:

• SGS stress tensor:

τij = ρçuiuj − ρũiũj (2.42)

• SGS shear-stress tensor error:

σij − σ̌ij = 2µ(T )Sij − 2
3µ(T )δijSkk − σ̌ij (2.43)

• SGS temperature flux:

Qj = ρçujT − ρũjT̃ (2.44)

• SGS turbulent diffusion:

Jj = 1
2(ρûjuiui − ρũjũiũi − ũjτii) (2.45)

• SGS viscous diffusion:

Dj = σijui − σ̌ijũi (2.46)

• SGS heat flux error:

qj − q̌j = −k(T ) ∂T
∂xj

− q̌j (2.47)

The filtered governing equations system described in the current section has
been defined by expressing the filtered total energy as in equation (2.40). It is
important to mention that this formulation is not unique, for other formulations
have been proposed in literature which consist in a change of variables on the
filtered pressure or temperature, or both (Garnier et al., 2009). Subsequently, the
Navier-Stokes equations are filtered according to the definitions adopted for the
filtered thermodynamic variables and different SGS terms appear in each of the
formulations. Furthermore, as mentioned in section 2.2.1, the energy equation can
also be expressed in terms of temperature, pressure, enthalpy or entropy. Different
studies in literature show that, depending on the formulation adopted, the different
SGS terms that appear have different amplitudes. However, these studies were
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performed only for certain cases of flow simulations, therefore no universal reliability
of the results is guaranteed.

With reference to the incompressible LES problem where the SGS stress tensor
is the only residual term present, in the current definition of the filtered governing
equations five more SGS terms appear. These terms represent the effect of the
smallest unresolved scales on the motion of the largest resolved eddies. Therefore, in
order to close the problem and obtain a physically accurate solution while resolving
the governing equations, these terms need to be modeled. Turbulence closure
models for LES are widely known in literature as SGS models.

2.2.5 SGS modeling
The SGS modeling consists in approximating the residual terms that appear in

the filtered governing equations system. These terms represent the error committed
by considering filtered computable variables in the system of equations, rather
then the filtered fields of non-linear terms present in the original Navier-Stokes
equations. From a physical point of view these terms arise on account of smallest
scales of turbulent motion not being represented by the computational grid. Their
presence cannot be neglected though, due to the continuous non-linear energetic
interaction between all scales of turbulent motion. The SGS modeling idea relies
on approximating these scales, or at least their effect on the motion of the largest
resolved eddies, on the basis of information contained or assumptions made on the
latter.

A vast part of the available SGS models are defined in the framework of
homogeneous and isotropic turbulence, thus making use of Kolmogorov’s theory
that describes the non-linear energy distribution between the different turbulent
scales of the energy cascade. The separation between represented and unrepresented
scales on the computational grid can be interpreted as a cutoff filter applied to the
energy spectrum in the wavenumber space. The cutoff wavenumber associated to
the grid size is usually supposed to be located within the inertial subrange of the
energy cascade.

Moreover, the smallest represented scales near the cutoff are afflicted by an energy
attenuation due to the truncation errors introduced by the numerical scheme used
to discretize the differential operators. Therefore, a further separation between well-
resolved and unresolved scales is introduced within the presented scales subrange,
where the latter are also referred to as resolved subfilter scales (Fig. 2.7). According
to Pope, 2001, a well-resolved LES must be able to solve at least 80% of the kinetic
energy of the turbulent motion. Another indicator on LES reliability is the absence
of any eventual energy accumulation at scales near the cutoff.

The different SGS models proposed up to date are classified under two main
categories: functional and structural modeling approaches. The functional approach
consists in modeling the impact that the unresolved eddies have on the resolved
ones, without attempting to reconstruct the former. This way, a part of the
information contained in the structure of the smallest eddies is lost. On the other
hand, according to the structural approach, an approximation of the unfiltered field
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can be obtained from considerations made based on the filtered solution. Therefore,
no knowledge on the nature of interaction between scales is required.

Up to date, various models of the SGS stress tensor have been proposed. Most
of them are defined in the incompressible case and have usually been extended to
compressible problems by adopting the incompressibility hypothesis of the smallest
universal scales of turbulent motion (Garnier et al., 2009).

Figure 2.7: Representation of different scale subranges in LES for homogeneous and
isotropic turbulence (Maulik and San, 2018).

Functional modeling

The functional modeling is based on the idea that the interaction between
sub-grid and resolved scales is of energetic nature. Therefore, the sole balance
of the energy transfer between the two scale subranges is sufficient to describe
the impact that the former have on the latter. In practice, this kind of modeling
consists in introducing additional terms in the governing equations, which reproduce
the desired dissipation (or energy production in the case of backscatter) that
emulates the aforementioned energetic interaction. This can either be done explicitly
by introducing additional terms to the equations, or implicitly by adjusting the
discretization scheme in such a way that the numerical error introduced produces
the desired dissipation. Simulations based on the second approach are referred to
as Implicit LES (ILES).

A very popular framework of explicit functional models for the SGS stress tensor
consists of the eddy-viscosity models. This approach makes use of the Boussinesq
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hypothesis which affirms that: The energy transfer mechanism from resolved to
subgrid scales is analogous to molecular mechanisms represented by the diffusion
term, in which the molecular viscosity appears. According to this assumption
(Boussinesq, 1877), the deviatoric part of the SGS stress tensor can be expressed in
a similar way to the molecular diffusion term:

τ dij = τij − 1
3δijτkk = −2ρ̄νsgs

3
S̃ij − 1

3δijS̃kk
4

(2.48)

where τkk is the isotropic part of the SGS stress tensor and νsgs is the eddy-viscosity
introduced by the Boussinesq hypothesis.

One of the most famous and most diffused eddy-viscosity models is the one
proposed by Smagorinsky, 1963, according to whom the eddy-viscosity can be
computed from characteristic lengthscales and the resolved rate-of-strain tensor
magnitude as:

νsgs = C2
s∆2|S̃| (2.49)

where |S̃| is the rate-of-strain tensor characteristic:

|S̃| = (2S̃ijS̃ij)1/2 (2.50)

while Cs is the Smagorinsky constant and ∆ represents the grid size.
Different studies have demonstrated that the Smagorinsky constant is not single-

valued, but depends on the type of the flow. Other than being fluid dependent, the
Smagorinsky model is overly dissipative and is inapplicable in near-wall regions
and transitional flows. In spite of the aforementioned drawbacks, it sill is one of
the simplest SGS stress tensor models and its ease of implementation makes it
preferable over other approaches.

In order to improve the Smagorinsky model, Germano et al., 1991 proposed
a dynamic approach that allows a self adaptive estimation of the Smagorinsky
constant from the simulation itself, by explicitly applying a test filter with ∆t > ∆
to the SGS stress tensor. His model was further improved by Lilly, 1992, who
proposed to calculate Cs by a least-mean square method. This procedure is very
general with reference to the simple Smagorinsky model and the time and space
dependent nature of the Cs coefficient, defined according to the dynamic formulation,
allows for a higher accuracy to be achieved.

Structural modeling

While the functional approach consists in modeling the effects of the unresolved
scales on the resolved ones, the structural approach on the other hand relies on the
idea that the unfiltered field can be reconstructed from the filtered one. One of
the most diffused structural models is the so called Approximate Deconvolution
Method (ADM). According to this approach, an approximation of the unfiltered
field is obtained by means of truncated series expansion of the inverse filter operator
applied to the filtered flow field quantities. In this case, a well defined filter is
considered.
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Furthermore, in order to improve the stability of the method, a regularization
technique can be used along with the ADM. Different regularization techniques
include explicit filtering or eddy-viscosity regularization. According to the former
approach a secondary filter, with a filter width greater than the grid size, is applied
at the end of each iteration in order to eliminate wavenumbers higher than the
cutoff wavenumber in the approximated solution provided by the ADM. This way,
the problem of accumulated kinetic energy at the cutoff is overcome. However,
the explicit filtering approach reduces the effective resolution of the simulation
compared to the dynamic range supported by the mesh, since the filter width is
greater than the grid size (Lund, 2003), and this results in a considerable increase
in computational cost.

Implicit modeling

As all practical simulations, LES approach consists in resolving the governing
equations system on a discrete grid by means of some numerical method. The
finite spatial resolution of the grid implicitly induces a scale separation within the
range of scales of turbulent motion, since eddies smaller than the grid size cannot
be represented. Moreover, the numerical scheme used to discretize the differential
operators introduces a scale dependent truncation error in time and space. The
main idea of ILES models is that the truncation error of the numerical scheme could
be modeled in such a way that it would provide the necessary amount of dissipation
that emulates the energetic interaction between represented and unrepresented
scales on the computational grid. Therefore, there is no need to explicitly introduce
a SGS model, since the numerical scheme discretization error itself behaves as a
SGS term.

Many different approaches have been proposed in the field of ILES modeling,
from the very first Volume Balance Procedure, to much more sophisticated theories
such as Adaptive Local Deconvolution Method. Even though their application in
the field of LES has given reliable results and promising performances, an important
drawback consists in the lack of possibility of a direct control on the numerical
error and the strong coupling that now exists between the physical model and the
discretization scheme.

2.3 Concluding remarks
It is important to highlight that the convolution filtering approach was introduced

in order to analytically address some of the aspects of the LES theory, such as
the SGS closure modeling. However, in most practical LES simulations no explicit
filtering is performed on the flow field variables, except for in trivial cases where
the filtering process is required in any of the SGS models adopted, such as in
the explicit filtering regularization method or the Germano’s dynamic model test
filter. In any case, whether the filtering process is explicit or not, the terminology
"explicit modeling" refers to all those methods where the SGS effects are modeled
by explicitly introducing additional terms in the governing equations.
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In this kind of approach, the choice of a turbulence model and a discretization
scheme must be handled with care, since errors introduced by both models interact
with each other: the errors induced by the discretization scheme can overwhelm the
effect of the adopted SGS model for instance. Therefore, the definitions of closure
models and numerical schemes are usually carried out simultaneously.

Diversely, in implicit models, not only no filtering operation is performed, but
neither an explicit SGS closure model is provided. Instead, the error introduced
by the numerical method is modeled in such a way that its dissipation emulates
the effect of a SGS term. In this case, the closure model is implicitly introduced
by the numerical scheme, considerably reducing the computational cost of the
simulation since an explicit computation of the SGS terms becomes unnecessary.
This approach is particularly convenient in flow regimes for which the derivation
or the accurate computation of explicit SGS models is cumbersome. Many studies
performed emphasize the potential of ILES for accurately simulating physically
complex geometries and flow configurations.
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Chapter 3

Methodology

The present thesis activity aims to perform accurate and efficient LES simulations
of turbomachinery flow using a research code developed in the Department of
Mechanical and Aerospace Engineering (DIMEAS) at the Polytechnic University
of Turin by Ferrero, 2015. The code is based on a Discontinuous-Galerkin finite
element method implemented in a computationally efficient manner on a modern
high performance computing architecture, and it is used to perform a LES of the
flow past the T106A rotor passage blade cascade of a LPT. The main features of the
method are described in the current chapter, along with the test case configuration
and numerical setup.

3.1 Discontinuous-Galerkin finite element
method

The Discontinuous-Galerkin finite element method was introduced for the first
time by Reed and Hill, 1973 and has successfully been implemented recently for
the discretization of the Navier-Stokes equations. It combines features of both
finite element and finite volume methods. What brings this approach close to the
former is the mapping procedure that transfers elements in the physical space to a
reference element where the integrals are calculated, while the convective fluxes can
be computed with any of the numerical approaches developed in the framework
of the finite volume methods. High order reconstructions can be obtained by
introducing various degrees of freedom inside the element, thus simplifying the
Discontinuous-Galerkin approach with reference to finite volume methods, since all
the information required for the integration operation is already inside the element.
This aspect considerably alleviates the implementation of the method and renders
it highly suitable for efficient parallel computations.

The physical model implemented in the code consists of the Navier-Stokes
equations as described by (2.7)-(2.9). To alleviate the problem, these equations are
first adimensionalized with respect to the following reference quantities:

• Length Lref

• Pressure pref
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• Temperature Tref

• Density ρref = pref
RTref

• Velocity qref =
ñ
RTref

• Time tref = Lref
qref

• Energy per mass unit Eref = q2
ref

• Entropy sref = cv

• Reynolds number Reref = ρref qrefLref
µref

and the adimensionalized form is expressed as follows:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 (3.1)

∂ρui
∂t

+ ∂ρuiuj
∂xj

+ ∂p

∂xi
= 1
Reref

∂σij
∂xj

(3.2)

∂ρE

∂t
+ ∂(ρE + p)uj

∂xj
= 1
Reref

∂σijui
∂xj

− 1
Reref

∂qj
∂xj

(3.3)

complemented by the non-dimensional perfect gas equation of state:

p = ρT (3.4)
Apart from the non-dimensional heat flux that is expressed as:

qj = − γ

γ − 1
µ

Pr

∂T

∂xj
(3.5)

all the other variables that appear in (3.1)-(3.4) are defined as described in section
2.2.1, except for the fact that they represent non-dimensional quantities.

The Discontinuous-Galerkin finite element method is defined by the variational
approach applied to the Navier-Stokes equations system defined in (3.1)-(3.3), which
can be expressed in its compact conservative form as:

∂U

∂t
+∇ · F(U) = 0 (3.6)

where U = (ρ, ρu, ρv, ρw, ρE)T represents the vector of the conservative quantities
and F is the flux vector field. The latter can be expressed as the difference between
the convective and diffusive fluxes: F = G − H, where:

Gi =


ρui

ρuui + δ1ip
ρvui + δ2ip
ρwui + δ3ip
(ρE + p)ui

 , H i = 1
Reref


0
σ1i
σ2i
σ3i

σijuj − qi

 , i = 1, 2, 3 (3.7)
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First of all, the computational domain Ω is partitioned into Ne non-overlapping
elements Ωe and the discrete functional space Vh is defined as:

Vh = {v ∈ L3(Ω) : v|Ωe ∈ P p(Ωe),∀Ωe ∈ Th} (3.8)

where v is a test function, P p is the space of polynomials of degree up to p defined
within each element Ωe and Th is the ensemble where all the elements Ωe are
contained. It is worth noticing that no continuity constraint is applied to the test
function, hence the discontinuous nature of the method.

The approximated solution of the conservative quantities U can be represented
by a function Uh, with Uh ∈ Vh. If a basis Φ is defined in the functional space
containing Ne basis functions Φi, the approximated solution can be represented as
followed:

Uh = Ũ · Φ =
NeØ
i=1

ŨiΦi (3.9)

where Ũ is the vector containing all the discrete values Ũi of the approximated
solution defined at each degree of freedom.

If the exact solution U in (3.6) is substituted by its approximation Uh, a residual
term that expresses the error of this substitution would appear. According to the
Galerkin approach, the projection of the residual on the functional space Vh equals
zero: Ú

Ωe

∂Uh
∂t

vdΩ +
Ú

Ωe
∇ · FhvdΩ = 0, ∀v ∈ Vh (3.10)

and integrating by parts yields:

Ú
Ωe

∂Uh
∂t

vdΩ +
Ú
∂Ωe

F∗
h · n̂vdΣ −

Ú
Ωe

Fh · ∇vdΩ = 0, ∀v ∈ Vh (3.11)

which is the weak formulation of the method, where the numerical fluxes at the
interfaces between adjacent elements F∗

h appear. n̂ represents the outward-pointing
unity vector defined at the boundary of the element ∂Ωe.

The condition that equation (3.11) must be satisfied for every test function
defined in the functional space is equivalent to setting v = Φj and imposing that
(3.11) is satisfied for all the basis functions. By substituting equation (3.9) in (3.11)
and imposing the aforementioned assumption yields:

Ú
Ωe

NeØ
i=1

∂Ũi
∂t

ΦiΦjdΩ +
Ú
∂Ωe

F∗
h · n̂ΦjdΣ −

Ú
Ωe

Fh · ∇ΦjdΩ = 0, 1 ≤ j ≤ Ne (3.12)

Equation (3.12) can be written in the compact form as:

[M]∂Ũ
∂t

= −R(Ũ) (3.13)
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where [M] is the element mass matrix and R(Ũ) is the term regrouping all the flux
terms, respectively:

[M]ij =
Ú

Ωe
ΦiΦjdΩ (3.14)

R(Ũ) =
Ú
∂Ωe

F∗
h · n̂ΦdΣ −

Ú
Ωe

Fh · ∇ΦdΩ (3.15)

The choice of the basis function strongly affects the solution accuracy, therefore
its definition is not a trivial task. In the present code, an orthonormal element
basis is defined according to the modified Gram-Schmidt procedure and following
the approach proposed by Bassi et al., 2012.

Different numerical fluxes have been implemented in the code for both convective
and diffusive fluxes. The flux solvers used during the thesis activity are the
Osher model proposed by Osher and Solomon, 1982 and Pandolfi, 1984 for the
convective fluxes, and the Enhanced Stability Recovery (ESR) approach proposed
by Ferrero, 2015 for the diffusive ones. Then, the various integrals in (3.14)-(3.15)
are approximated through Gauss quadrature formulas defined on the reference
element.

An explicit second order two stage Total Variation Diminishing Runge-Kutta
(TVD RK) method has been implemented in order to carry out the integration of
equation (3.13) through time. A global time stepping strategy is employed according
to which the convection and diffusion stability limits are evaluated separately at
each iteration and the minimum between the two is chosen as a global time step.

Finally, considering that the aim of the study is to perform a LES simulation
on the chosen test case using the Discontinuous-Galerkin method described above,
a SGS closure model must also be defined. As described in chapter 2, a closure
model is necessary in LES simulations in order to account for the presence of the
smallest scales of turbulent motion not represented within the computational grid.
This can either be done explicitly by introducing additional terms to the governing
equations which produce the necessary dissipation that emulates the effects of the
unresolved scales on the resolved ones, or implicitly by adequately adjusting the
discretization error produced by the numerical scheme so that it mimics the said
dissipation. In the current work an implicit kind of approach was used.

Actually, aside from the superior resolving capabilities and geometric flexibility,
Discontinuous-Galerkin methods present some very interesting dispersion and
dissipation properties. In a recent work, Gassner and Kopriva, 2011 examined the
dispersion and dissipation properties of the Discontinuous-Galerkin spectral element
methods for linear wave propagation problems using both Gauss and Gauss–Lobatto
quadrature approaches. They stated that the Gauss method was typically more
accurate than the Gauss–Lobatto variant. They also showed that the onset of
dissipation errors in the former approach moves towards higher wavenumbers with
increasing polynomial order as shown in Fig. 3.1. That means that while the
polynomial order increases, a wider range of resolved scales are characterized by
very small errors, while most of the dissipation occurs at the marginally represented
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wavenumbers. Thus, the numerical error of the Discontinuous-Galerkin methods
itself behaves as a SGS term.

Figure 3.1: Dissipation relation of Discontinuous-Galerkin spectral element methods
with Gauss nodes, from N = 1 to N = 10. K∗ = K

N+1 is the normalized
wavenumber and Ω∗ is the corresponding modified normalized wavenumber
(Gassner and Kopriva, 2011).

These reasons have motivated many researchers to employ Discontinuous-
Galerkin methods in order to perform ILES simulations in various study cases.
de Wiart and Hillewaert, 2012 and Beck et al., 2014 used this approach to study the
transitional flow past the SD7003 airfoil at a moderate Reynolds number, obtaining
satisfactory results which accurately matched experimental data and reference DNS
numerical results. However, one should point out that the dissipation provided by
the Discontinuous-Galerkin discretization scheme error would become insufficient
when relatively low resolution computational grids are used and high Reynolds
numbers are considered. Thus, explicit SGS modeling becomes necessary.

Taking advantage of the aforementioned characteristics of the Discontinuous-
Galerkin approach, in the present study no explicit, nor implicit SGS modeling was
performed. Instead, the standard finite element method was used, assuming that
the numerical error introduced by the discretization dissipates as a SGS term.

3.2 T106A test case description
The test case used for the validation of the available code is the T106A blade

profile, which represents the mid section of the Pratt and Whitney PW2037 low
pressure turbine rotor passage blade. Many studies have been performed on the
said geometry to study boundary layer and other phenomena, such as separation
and transition, that characterize typical engine regions with high pressure gradients
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and moderate Mach and Reynolds numbers. Many other studies have also been
performed in order to explore the effects of wake passing and freestream turbulence
on the blade performances.

Stadtmüller et al., 2000 performed various experiments on the T106 blade
profile in the High-Speed Cascade Wind Tunnel of the Universität der Bundeswehr
München, to investigate wake-induced transition and effects of wake-passing on the
boundary layer, also aiming to provide reliable data for the validation of future
numerical simulations.

Different configurations of the blade were considered during the experiments,
where the acronym T106A stands for design conditions of the blade. While studying
the benefits that can be obtained from wake-passing, the pitch-to-chord ratio was
increased in order to increase the blade loading. Thus, two more configurations
were used, the T106C and T106D, where the pitch-to-chord ratio was set equal
to 0.95 and 1.05 respectively, with reference to the design conditions where the
pitch-to-chord ratio is set at the value of 0.799.

Experiments were performed with and without wake generators, with very low
free-stream turbulence, for different exit isentropic Reynolds and Mach numbers.
The upstream stator passage wakes were simulated by a uniformly-spaced bar type
wake generator situated in front of the cascade inlet. This setup was denoted as
T106A-EIZ, where EIZ indicates the unsteady inflow conditions due to the presence
of the bars.

A schematic representation of the apparatus used during the experiments is
provided in Fig. 3.2. A seven blade cascade was used and time-resolved and
ensemble-averaged hot film data of the blade performances were acquired by mea-
surements performed on the spanwise midsection of the middle blade. This way, it
can be assumed that the effects, due to the presence of the cascade tips, on the
measurements are negligible. Wake losses were also measured at a distance 40% of
the chord length downstream the cascade exit plane, using a fast-response wake
rake paired with conventional Pitot probes.

Figure 3.2: High-Speed Cascade Wind Tunnel of the Universität der Bundeswehr
München (Stadtmüller et al., 2000).
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The blade aspect ratio h/C used during the experiments is 1.76. This value
allows to assume the flow field to be statistically two-dimensional in the spanwise
midsection, that is the spanwise direction can be treated as a statistically homoge-
neous direction. Uncertainties regarding the correct value of the geometric inlet
angle β1 have risen due to the flow leakage through small gaps positioned at the
top and the bottom ends of the wind tunnel. These gaps were present in order to
enable the periodic movements of the wake generator belt inside the experiment
chamber.

With the available experimental data provided by Stadtmüller et al., 2000,
various numerical studies on the T106A turbine blade were performed by many
researchers. One of the first studies was the incompressible DNS performed by
Wissink, 2003 to study the effects of wake-passing. More recently, R. Sandberg
et al., 2012 and Michelassi et al., 2015 used compressible DNS to investigate the
effects of inflow disturbances on the transition and wake regions of the blade. Garai
et al., 2015 used the T106A configuration with "clean" and steady inflow conditions,
thus with no freestream turbulence and no wake generator, to validate their code
based on an entropy-stable Discontinuous-Galerkin spectral element method.

In the current work, a LES is conducted on the T106A configuration without
freestream turbulence (FSTI = 0%) and with steady inflow boundary conditions,
for the reference operating point with Re2,is = 60000 andM2,is = 0.4. Both numbers
refer to the exit isentropic velocity q2,is and the airfoil chord C. The geometry of
the blade airfoil is represented in Fig. 3.3. The pitch-to-chord ratio is set to its
design conditions: t/C = 0.799. The stagger angle γ and geometric inlet angle β1
are 30.72o and 37.7o respectively. All angles are defined with respect to the axial
direction.

Figure 3.3: T106A blade airfoil geometry (Michelassi et al., 2015).
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To overcome the uncertainties characterizing the geometric inlet angle β1, Stadt-
müller et al., 2000 performed RANS simulations at different geometric inflow angles
in order to evaluate the best numerical match with the experimental data. This
was obtained for β1 = 45.5o, whereas R. Sandberg et al., 2012 DNS simulations
suggest a slightly different value: β1 = 46.1o, for which their DNS perfectly matched
with the experimental data. In the present study, the second value of 46.1o was
considered.

The experimental data provided by Stadtmüller et al., 2000, for the same
configuration and operating point, were used in order to validate the results provided
by the code with reference to time-averaged wake losses profile. A further comparison
with numerical data from Garai et al., 2015 DNS simulation is made. The total
pressure losses in the wake are evaluated on a control station surface along the
pitchwise direction, situated at a distance 40% of the chord length from cascade
exit plane: dm/C = 0.4. The parameters used during the study defining the test
case configuration are summarized in Tab. 3.1.

Table 3.1: Parameters defining the T106A test case configuration .

Parameter Value

Stagger angle γ 30.72o

Geometric inlet angle β1 46.1o

Pitch-to-chord ratio t/C 0.799
Measurement plane dm/C 0.4
Exit isentropic Reynolds number Re2,is 60000
Exit isentropic Mach number M2,is 0.4
Static pressure at the outlet p2/pt1 0.8956

3.3 Mesh generation
As mentioned in the previous chapter, the blade aspect ratio is sufficiently high

so that any eventual disturbances, arising from the presence of the cascade casing,
do not reach the blade midspan section. This allows to consider the flow to be
statistically two-dimensional at the midspan section. Even though phenomena such
as tip clearance, or boundary layers at the cascade’s casing are of important nature,
they will not be treated in the current work. Thus, their presence will not be taken
into account in the computational domain and consequently the spanwise direction
can be treated as a statistically homogeneous direction, equivalent to considering
an infinite aspect ratio.

For this reason, the unstructured mesh, generated on Gmsh, is created by firstly
constructing a 2D mesh on the blade’s airfoil plane x − y (Fig. 3.4) and then
extruding it along the spanwise direction z (Fig. 3.5). The spanwise extension of
the grid is set to: hg

Cax
= 0.2, where hg is the extrusion parameter and Cax is the
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axial chord, and 20 layers of elements are used for the extrusion. Reference studies
show that this value of the mesh spanwise extent is deemed to be sufficient in order
to capture the largest vortices along the third direction.

The Cartesian reference system is centered at the leading edge, even though
it is translated in Fig. 3.4 and Fig. 3.5 in order to have a clearer representation.
The three axis x, y and z represent the three directions streamwsie, pitchwise and
spanwise respectively. The coordinates of the blade profile are generated in such a
way that Cax = 1.

Figure 3.4: 2D mesh generated with Gmsh.

Moreover, the inflow and outflow boundaries of the computational domain are
located at a distance of one axial chord length Cax from the Leading Edge (LE) and
the Trailing Edge (TE) respectively. These distances are deemed to be sufficient so
that the inflow conditions do not interfere with the blade inlet plane and in order
to be able to capture the most energetic part of the wake. The pitch-to-chord ratio
is set to: t/C = 0.799 and the control station surface, where the wake losses are
measured, is located at 40%C distance downstream from the cascade exit plane:
dm/C = 0.4.

It should be highlighted that near solid wall regions, even the most dominant
scales are too small in size. Therefore, in order to accurately solve these regions,
mesh resolution must increase while getting nearer to the wall. To do so, a structured
O-type mesh is generated around the blade profile, whereas the grid is unstructured
elsewhere. This also enables an adequate mesh resolution at the LE and TE
which is very important, since highly deformed elements in these two zones would
compromise the stability of the numerical method.
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Figure 3.5: 3D mesh generated with Gmsh.

For the implementation of the previously mentioned aspect, a boundary layer
field is defined around the blade’s solid wall. The thickness of the field is set to
0.08Cax measured on the wall normal direction, while the element size growth rate
along this direction is set to 1.2.

In order to adequately refine the mesh, attractor and threshold fields are defined.
The idea between attractors and thresholds is that the former return the distance to
a given entity and the latter use the return value of the attractor in order to define
a simple change in element size around the given entity. Attractor and threshold
fields are defined at the blade wall boundary, at the LE and TE, at the control
station and at the outflow plane. Then, the minimum value of all fields is used as a
background field for the whole domain. In order to save in computational costs, no
attractor is applied at the inlet, since no freestream turbulence is considered and
thereby no particularly high resolution is required.

It is also important that after the meshing process, the control surface results
in a plane surface. This is done by defining two separate volume entities while
building the geometry, so that they interface exactly at the control station plane.

Finally, the code is implemented in such a way that it can only deal with
hexahedral 3D elements. Since the grid generation consists in extruding the 2D
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mesh along the spanwise direction, then the 2D elements define the type of the
generated 3D elements. Thus, a fully quadrilateral 2D mesh is required and this
can be obtained with a Frontal-Delaunay algorithm for the 2D mesh generation,
and a Blossom algorithm for the 2D recombination of triangular elements into
quadrilateral ones. After the meshing process, Ne = 511060 3D hexahedral elements
are generated.

3.4 Flow and boundary conditions
The boundary conditions must be defined in order to obtain a well posed

problem. The implemented boundary conditions are represented in Fig. 3.6. A
no-slip adiabatic condition is imposed at the solid wall and periodic conditions in
the pitchwise direction. This is somehow reasonable considering the blade is part of
a cascade, where other blades are replicated uniformly. Many studies have imposed
periodic boundary conditions along the spanwise direction too, justifying their
choice by the statistically homogeneous character of the latter. The current version
of the code, however, can only deal with one direction of periodicity, therefore
tangency conditions are imposed at the spanwise boundaries.

Figure 3.6: Imposed boundary conditions for numerical computation.

Moreover, three parameters are assigned at the inflow boundary: total tem-
perature Tt1 = 1, total pressure pt1 = 1, and the inlet geometric angle β1 = 46.1o.
The values of the first two parameters are non-dimensional and since they are
unity, this means that total temperature and total pressure at the inlet are used to

37



Chapter 3. Methodology 3.5. Parallel work

adimensionalize the Navier-Stokes equations. Static pressure is the only parameter
assigned at the outflow boundary, which is equivalent at imposing the exit isentropic
Mach number M2,is, considering that:

p2

pt1
= 11

1 + γ−1
2 M2

2,is

2 γ
γ−1

(3.16)

Since M2,is = 0.4, then the ratio p2
pt1

= 0.8956.
In order to conclude, the considered test case configuration is characterized

by a moderate exit isentropic Reynolds number: Re2,is = ρ2,isq2,isC
µ

= 60000. The
isentropic expansion factor γ, the Prandtl number Pr and the dynamic viscosity
µ are considered to be constant. Following its definition: λ = µCp

Pr
, the thermal

conductivity is also constant. For air: γ = 1.4, Pr = 0.72 and the non-dimensional
value of the dynamic viscosity is set to µ = 1, while the reference value used for
adimensionalization is: µref = 9.3 · 10−6Pa · s.

3.5 Parallel work
The local nature of the Discontinuous-Galerkin approach makes this method

a viable candidate for parallel implementation. The code used during the present
thesis activity is written in FORTRAN and is parallelized by means of standard
Message Passing Interface (MPI) libraries.

The Portable, Extensible Toolkit for Scientific Computation (PETSc) software
is used to carry out the parallelization of the computational grid. The mesh
partitioning is performed using the DMPlex module of the PETSc libraries. The
mesh is subdivided into many subdomains, one for each processor used during the
parallel computation. A layer of ghost cells at the interfaces of each subdomain
is created and by means of MPI, different processors communicate between them.
Data is exchanged and saved inside the ghost layers. No interactive action with the
user is required, since the parallelization is completely carried out autonomously by
PETSc and its modules, while the communication between different processors is
made possible using MPI libraries.

Finally, the simulations were carried out using computational resources pro-
vided by HPC@POLITO, which is a project of Academic Computing within the
Department of Control and Computer Engineering at the Polytechnic University of
Turin. Computations were performed on the Legion cluster, which comprises of 2x
Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores per node.

38



Chapter 4

Numerical results

The main goal of the present thesis is to validate the code described in the
previous chapter on the turbulent transitional flow past the T106A blade cascade.
To this purpose, two LES simulations were performed using a second order ap-
proximation in time and second and third order approximations in space. Both
simulations were carried out in parallel on the Legion cluster using 8 nodes with 32
cores per node, thereby resulting in a total of 256 processes.

Instantaneous data is provided for both simulations in terms of Mach and
spanwise vorticity fields at the midspan section and the solution resolution obtained
is compared to reference DNS numerical data provided by Garai et al., 2015.
Instantaneous isosurfaces of entropy and second invariant of the velocity gradient
tensor (Q-criterion) are used instead for the visualization of the vortical structures
that form in the wake. Aside to instantaneous results, time- and spanwise-averaged
data in terms of total pressure losses in the wake are also provided for a further
comparison with experimental data presented by Stadtmüller et al., 2000.

Results show that better solution resolution is obtained with increasing order.
However, both second and third order simulations fail to accurately predict wake
losses profile.

4.1 Simulations setup
It is common in literature to refer to convective time units. A convective time

is here defined as the ratio between the non-dimensional chord length and exit
isentropic velocity, which are expressed as follows:

C = Cax
cos γ ≈ 1.1632 (4.1)

q2,is = M2,is

ó
γ

1 + γ−1
2 M2

2,is
≈ 0.4659 (4.2)

therefore, one convective time is:

tc = C

q2,is
≈ 2.5 (4.3)
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Chapter 4. Numerical results 4.1. Simulations setup

At first, a second order simulation was initialized by using Lax-Friedrichs solver
for the convective fluxes, which is a very dissipative method with reference to the
Osher solver, especially for low approximation orders. Indeed, in this case the
vortices were strongly two-dimensional and they didn’t "break" along the spanwise
direction. After several convective times, the Osher flux solver was activated and
two separate simulations, of second and third order, were let to evolve from here.

In order to evaluate whether the two solutions had statistically converged, the
evolution of force coefficients of the blade over time was studied. Since by definition a
LES simulation is inherently unsteady, we cannot expect for instantaneous solutions
to converge. However, considering time is a statistically homogeneous direction, one
expects that mean values of flow field quantities would converge to a statistically
asymptotic solution.

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Force coefficients evolution over time for second order simulation: Instanta-
neous values on the left and mean values on the right. The red line denotes
the separation between discarded convective times and those used for the
averaging process of the data.
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Fig. 4.1 represents the evolution in time of the instantaneous values of blade
force coefficients on the left side, and the evolution in time of the mean values of the
coefficients on the right side for the second order simulation. It can be noticed how
instantaneous values are continuously oscillating, while the mean values converge
towards an asymptotic solution after a few convective times. The initial instant
represents the moment in which the flux solvers were switched. One can also notice
how the mean force coefficients along the streamwise and pitchwise directions tend
to approximately 0.118 and 0.21 respectively, while the force coefficient along the
spanwise direction is clearly negligible since the oscillations are of the order of 10−7.

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Force coefficients evolution over time for third order simulation: Instanta-
neous values on the left and mean values on the right. The red line denotes
the separation between discarded convective times and those used for the
averaging process of the data.

Analogous considerations can be made for the third order simulation. Similarly
to the second order, Fig. 4.2 provides the evolution over time of instantaneous and
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mean values of the force coefficients for the third order. One can notice that both
CFx and CFy statistically converge towards the same values as in the second order,
while CFz is still negligible.

The condition in which the solution can be retained as statistically converged
is important especially when time-averaged data are to be calculated. In both
simulations, the red line denotes the moment in which both solutions can be
considered as statistically stationary. This happens at approximately 22 convective
times. So, the time-averaging process for wake losses profile was started after 22
convective times and was performed over an interval of approximately 40 convective
times for the second order simulation and 28 for the third order.

The intention was to perform the time-averaging process of the data over the
same length of time interval for both simulations, but there is a 10 day time-limit
for every job performed in the HPC@POLITO clusters and since the third order
simulation was considerably slower than the second order, it reached the time-limit
without covering all 40 convective times.

4.2 Flow visualization
In Fig. 4.3, instantaneous Mach fields at the blade midspan section are shown for

second and third order simulations along with the instantaneous velocity magnitude
field for the reference DNS simulation. It can be noticed how the resolution of the
flow field increases with increasing approximation order. Both methods seem to
accurately capture the main aspects of the flow. There is a stagnation point at the
vicinity of the LE and the flow remains laminar in the pressure side and in the fore
region of the suction side. On the aft region of the latter, separation and transition
occur and afterwards the flow becomes fully turbulent downstream.

Uncertainties on the experimental data provided by Stadtmüller et al., 2000
occur on whether an open or closed separation bubble is formed. In order to predict
the accurate position of the separation and the transition position and length,
time-averaged data of blade performances are needed, that is blade loading and skin
friction coefficient. However, the current version of the code was able to provide
only instantaneous data for the said quantities, thereby not allowing a possible
comparison with the experimental data.

Moreover, the resolution difference between the two different approximation
orders can especially be noticed in the spanwise vorticity field visualizations at
the midspan section (Fig. 4.4). The second order simulation is able to represent
only a limited range of scales of the turbulent motion, whereas due to the higher
resolution capabilities of the third order scheme, smaller scales can be captured by
the method.
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Chapter 4. Numerical results 4.2. Flow visualization

(a) Second order simulation

(b) Third order simulation

(c) Reference DNS

Figure 4.3: Instantaneous Mach field visualizations at the midspan section for: (a)
second order simulation and (b) third order simulation. Instantaneous
velocity magnitude field at the midspan section for (c) reference DNS (Garai
et al., 2015).
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(a) Second order simulation

(b) Third order simulation

(c) Reference DNS

Figure 4.4: Instantaneous spanwise vorticity fields at the midspan section for: (a) second
order simulation, (b) third order simulation and (c) reference DNS (Garai
et al., 2015).
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For a better visualization of the vortex shedding that occurs in the aft region
of the suction surface, the second invariant of the velocity gradient tensor, or
Q-criterion, can be considered. It has been proven to be effective in highlighting
coherent vortical structures (Dubief and Delcayre, 2000).

(a) Second order simulation

(b) Third order simulation

Figure 4.5: Isosurfaces of instantaneous second invariant of the velocity gradient tensor
(Q-criterion) for: (a) second order simulation and (b) third order simulation.

In Fig. 4.5 isosurfaces of the Q-criterion for N = 900 levels are represented
for both simulations. It can be noticed how the flow remains laminar along most
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of the length of the suction surface. The dead air area that is created in the aft
region of the suction surface due to the separation, pushes the separated laminar
boundary layer away from the blade surface. The separated shear layer then rolls
up and breaks down into complex three-dimensional structures further downstream.
Once again, a better visualization is obtained with a higher order, which is able to
capture much smaller eddies with respect to the second order scheme.

(a) Second order simulation

(b) Third order simulation

Figure 4.6: Isosurfaces of instantaneous entropy field for: (a) second order simulation
and (b) third order simulation.
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An alternative way of visualizing the turbulence structures in the wake is by
plotting isosurfaces of the entropy field as represented in Fig. 4.6 for N = 100
levels. It gives a very clear representation of the fully turbulent structure of the
wake, even though the vortical structures are strongly coupled with each other, in
contrary to the visualization provided by the Q-criterion tensor characterized by a
clearer separation of the three-dimensional structures of the vortices.

4.3 Wake losses profile
A further validation of the code is provided by the time-averaged losses profile

in the wake. In the experimental work performed by Stadtmüller et al., 2000, the
total pressure losses in the wake are measured in a control surface situated at a
distance of 40%C downstream of the cascade exit plane (Fig. 4.7). The losses are
expressed in terms of the wake deficit coefficient and they are plotted along the
pitchwise direction normalized by the blade’s pitch, starting from the suction side
towards the pressure side. However, there is no precise indication on the exact
measurement position along the control surface.

In the present work, the time-averaging process was started 22 convective times
after the flux solver switch and was performed over an interval of 40 convective times
for the second order scheme and 28 for the third order one. Moreover, considering
the spanwise direction is statistically homogeneous, the time-averaged data can
further be averaged along the spanwise direction. As far as the measurement
position along the control surface is concerned, the origin of the reference system is
placed at the intersection between the streamwise axis direction and the control
surface. This is justified by the fact that this approach was adopted by Stadtmüller
in further experiments performed on the T106C blade cascade.

Figure 4.7: Wake measurement plane.
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The wake deficit coefficient is then defined:

ξ(y∗) = pt1 − pt(y∗)
pt1 − p2

=
1 − pt(y∗)

pt1

1 − p2
pt1

(4.4)

and the normalized pitchwise direction is expressed as:

y∗ = −y

t
(4.5)

The numerical results provided by the code for the second and third order
simulations are presented in Fig. 4.8 and compared to the experimental data of
Stadtmüller et al., 2000 and DNS numerical results of Garai et al., 2015. Both
simulations fail to accurately predict the wake profile losses, by underestimating
the peak total pressure drop in the wake. The reference system adopted along the
pitchwise direction seems to be suitable for the third order simulation and the latter
moderately approximates the wake width. The second order simulation solution,
on the other hand, is shifted towards the suction side.

Figure 4.8: Wake loss coefficient profile for second and third order simulations, compared
to experimental data (Stadtmüller et al., 2000) and reference DNS (Garai
et al., 2015). The values refer to time- and spanwise-averaged total pressure
losses in the wake, measured on a plane 40%C downstream from the cascade
exit.

These errors might be traced to insufficient resolution for both methods. Even
though the third order simulation is able to capture in a more accurate way some of
the physical aspects of the flow field with reference to the second order scheme, still
the errors represented by the method do not accurately represent the SGS effects.
Therefore, higher order must be considered in order to reach higher resolutions in
the solution and better agreements with the experimental data
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Conclusions

In the current work, investigation of turbulent transitional flow past the T106A
blade cascade of a LPT is performed, using a LES simulation by means of a code
based a Discontinuous-Galerkin finite element method. The code is implemented
in a computationally efficient manner on a modern high performance computing
center.

At first, a general overview on the most diffused simulation methods for turbulent
flows is provided, with a highlight on the LES approach. The superior resolution
capabilities of LES over RANS models, along with the lower computational cost
with respect to DNS, make this method a viable candidate for studying complex
geometries and flow configurations. However, many important issues that the
method presents have to be overcome in order for the LES approach to become a
routine basis analysis tool in the engineering field and completely substitute RANS
models.

A second part of the thesis addresses the theoretical aspect of the LES approach,
with emphasis on the derivation of a mathematical model and turbulence closure
methods. Firstly, the Kolmogorov’s theory of the energy cascade for homogeneous
and isotropic turbulence is introduced, in order to point out the lack of generality of
these simplified theories and their incapability to predict complex flows, thus iden-
tifying the great need for accurate high-fidelity numerical approaches. Afterwards,
the convolution filtering approach is introduced and the filtered governing equations
are derived, concluding with a brief description of the current state-of-the-art for
SGS modeling.

Furthermore, an insight on the Discontinuous-Galerkin finite element method
is provided, along with the description of the validation test case considered and
its numerical setup. The very interesting dispersion and dissipative properties of
the Discontinuous-Galerkin approach allow for the employment of this method to
conduct implicit LES simulations. By avoiding the implementation and computation
of a SGS model, the computational cost is reduced. However, for low resolution
grids and for high Reynolds numbers, the numerical dissipation of these methods is
deemed to be insufficient in order to accurately represent a SGS term. Therefore, in
these cases an explicit turbulence model is required. However, this method presents
very low numerical errors and its local nature allows for an efficient parallelization,
with a consequent reduction in computational time. These properties also allow for
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the Discontinuous-Galerkin approach to be employed in very complex geometries
and flow configurations.

Finally, the code based on the Discontinuous-Galerkin finite element method
is used to conduct a LES on the T106A blade cascade. Two simulations were
carried out, with second order approximation in time and second and third order
approximations in space. The numerical results for both simulations are reported
and confronted with the available experimental data and other reference numerical
results. The method is able to capture the main physical aspects of the flow.
However, time-averaged data of blade performances are required, in order to predict
and confront the exact position of separation and transition position and length
with the reference data. Moreover, both simulations fail to predict the correct
time-averaged wake losses profile, by underestimating the peak pressure loss in
the wake. The third order simulation seems to accurately capture the wake width,
while second order method is shifted towards the suction side. In order to increase
the solution resolution, higher order simulations must be conducted.
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List of Abbreviations

ADM Approximate Deconvolution Method

CFD Computational Fluid Dynamics

DES Detached-Eddy Simulation

DIMEAS Department of Mechanical and Aerospace Engineering

DNS Direct Numerical Simulation

ESR Enhanced Stability Recovery

FSTI Free-Stream Turbulence Intensity

ILES Implicit Large-Eddy Simulation

LE Leading Edge

LES Large-Eddy Simulation

LPT Low Pressure Turbine

RANS Reynolds-Averaged Navier-Stokes

RSM Reynolds Stress Model

SAS Scale-Adaptive Simulation

SGS Sub-Grid Scale

TE Trailing Edge
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