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ABSTRACT 

In this work, I discuss the implementation and optimization of an Artificial Neural 

Network based on the analysis of the back-EMF coefficient capable of making 

ElectroMechanical Actuator (EMA) prognostics. 

Aircraft manufacturers are increasingly focusing on the use of electromechanical 

actuators as they have numerous advantages in terms of weight and compactness 

respect to the technologies adopted at this time. However, they are early technology 

and for this reason, engineers are still studying the failure modes that characterize 

this component. The objective of this thesis is to study a methodology for the 

recognition of faults within the system. 

To solve the problem my supervisors have thought of implementing a logic, based 

on artificial intelligence, particularly on artificial neural networks, which allows to 

estimate the remaining useful life of the system components starting from a training 

dataset. The neural network learns autonomously the relationships that link the 

quantities given as input with those in output. 

However, during learning, the creators need to set the value of the hyperparameters. 

My job is to show how these values influence learning and how it is possible to 

optimize the network to make it more performing in terms of computational cost 

and complexity, so that the variation of hyperparameters improves supervised 

learning. The future of aviation is certainly based on the "more electric" philosophy. 

Electricity is the only indispensable energy source for an aircraft. Nowadays, the 

remote hypothesis of "full electric aircraft" is still under study and yet there are 

several queries to be clarified. 

The results are very satisfactory considering the small number of examples present 

in the available dataset. In the future, I think that we can build a neural network 

having datasets with a greater number of examples and deeper even though this, as 

you can read in this/my thesis, does not always turn out to be an advantage. For this 

reason, optimizing the work is important. 
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1. Introduction 

1.1. Prognostics: Why and What it is 
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2. Electromechanical Actuator (EMA)  

A servo actuator is a device used to control the position or velocity of a mechanical 

element by converting power from different sources (hydraulic, electrical, or 

pneumatic) into a controlled motion. [1] 

An electromechanical actuator (EMA) converts electrical energy into mechanical 

energy necessary for the movement of the aircraft's control surfaces. 

Generally, for the primary controls, hydraulic powering is used with linear cylinder-

piston or, very rarely, rotary motors; the secondary controls can be realized by 

means of hydraulic or electric rotary motors. However, EMAs are now being 

studied to be implemented for primary flight controls. 

An EMA consists of: 

 

Figure 1: ElectroMechanical Actuator scheme 

• ACE (Advanced Control Electronics): this control logic allows to calculate 

and output the error deriving from the difference of two signals, i.e. the 

FBW signal given by the pilot as a command and the position feedback 

signal read by the sensors. 
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• PDE (Power Drive Electronics): this module is powered by DC current and 

transforms the error deriving from the ACE into a modulated 3-phase AC 

current that will drive the electric motor. 

• BLDC Motor: BrushLess Direct Current motor, converts electrical power 

into mechanical power. 

• Gear: mechanical transmission that transforms low torque and high angular 

speed into high torque and low angular speed to move the actuator. 

• Screw Jack: a device used to convert rotational motion into linear motion. 

• RVDT: Rotary Variable Differential Transducer is an angular position 

acquisition sensor that allows the closure of the feedback loop. 

The most important parameter of this device is the gear ratio τ: 

𝝉 =
𝜽�̇�

𝜽�̇�
=
𝑻𝒎
𝜼 𝑻𝒖

 

Equation 2.1: Gear ratio 

where θ�̇� and T𝑚 are respectively the velocity and the torque of the motor, θ�̇� and 

T𝑢 are the velocity and the torque of the user; finally, η is the transmission 

efficiency. 

2.1. Model Description 

A model on MATLAB-Simulink was used to test the prognostic algorithms and see 

the real-life response. The latter has several advantages. In this way it, is possible 

to reduce costs, develop the algorithm without having the physical system at hand 

and speed up its development. It is possible to simulate multiple malfunctions such 

as partial coil circuits. 
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Figure 2: Simulink Model 

On the left side we can see the Com block, which is the subsystem used to model 

the commanded position to be achieved by the system. 

In the trapezoidal EMA block the whole electromechanical servomechanism is 

modeled, it receives the COM signal and the loads acting on the aircraft flight 

control surface as inputs and it gives as output δ𝑒, which is the deflection of the 

elevetor (assuming that the servomechanism is mounted on the aircraft's elevator). 

Finally, in the F16 longitudinal dynamics block is modeled the dynamic response 

of an F16 aircraft passing through a model described in the state space form. 

We now proceed with the accurate description of each block. [2] 
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2.2. Com subsystem 

 

Figure 3: Com block scheme 

This block allows the generation of different signals and simulates the FBW 

command given by the pilot that the control system must follow. 

We have several commands available: a step command, a ramp command, a 

sinusoidal command, a chirp command that is sinusoidal with variable frequency 

and a command defined by the user. We can select the function we prefer by 

modifying some parameters. 
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2.3.  Trapezoidal EMA subsystem 

 

Figure 4: Trapezoidal EMA subsystem 
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In this subsystem, there are other subsystems which will now be analyzed.  

The command generated by the COM block enters the PID subsystem, from which 

a reference current flow. The latter enters an inverter model in which the three-

phase current that powers the BLDC motor is generated. 

The motor torque comes out of the BLDC model, which enters the dynamic model 

of the transmission and the currents, that are read by an acquisition system, returns 

in feedback in the inverter model. 

The dynamic model of the transmission outputs the position of the user, the speed 

and angular position of the engine. The first two are used in the PID controller for 

the determination of the reference current while the last two are used for the 

accomplishment of the BLDC electromagnetic motor’s model. Finally, the position 

of the motor is read by the hall sensors. A low pass filter is used to read signals. 

2.3.1. Control Electronics (PID) subsystem 

 

Figure 5: Control Electronics subsystem 

Control Electronics subsystem is used to create the reference current that goes into 

the inverter model. 

Starting from the command and the feedback signal of the user's position and speed, 

an error signal is generated which is given as input to a PID-type controller. A 

Proportional-Integral-Derivative controller is a control loop mechanism employing 

feedback signal. The controller attempts to minimize the error over time by 

adjustment of a control variable 𝑢(𝑡). 
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• P – The proportional term acts on the rise time and it reduces slightly the 

steady state error, however a high value leads to instability. 

• I - The integrative term erases the steady state error but worsening the 

transistory response. 

• D – The derivative term decreases the overshoot improving the transitory 

term. [3] 

 

Figure 6: PID scheme 

To have an optimal response it is necessary to fine-tune the coefficients 𝐾𝑃, 𝐾𝐼 , 𝐾𝐷. 

Here are some effects to consider when choosing coefficients. 

 

Figure 7: PID tuning 

In the model there are two saturations to safeguard the integrity of the motor’s 

assembly, or rather to limit the currents and angular speeds. Background noise is 

added to recreate a realistic effect to the final signal. 

2.3.2. Hall Sensors subsystem 



9 
 

 

Figure 8: Hall Sensors subsystem 

The block receives the angular position of the motor θ𝑚 as input and returns three 

signals: 𝐻1,𝐻2 𝑎𝑛𝑑 𝐻3. 

These last ones can take the value of 0 or 1 according to a table of the mounted 

sensor in which the electrical angle is evaluated through the following relationship: 

𝜽𝒆 = 𝟐𝝅 [
𝒑𝜽𝒎
𝟐𝝅

− 𝒇𝒍𝒐𝒐𝒓 (
𝒑𝜽𝒎
𝟐𝝅

)] 

Equation 2.2: Relationship between electrical angle 𝜽𝒆, motor’s angular position 𝜽𝒎 and number of 
motor pole pairs 𝒑 

2.3.3. Inverter Model subsystem 
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Figure 9: Inverter Model subsystem 

This block is the most important of the whole model. It receives in input: 

- the current I_ref, that is a pure control signal which has the task of controller to 

allow feedback control. 

- H1, H2 and H3 or the signals that come directly from the modeling of the Hall 

sensors. 

- I_A, I_B and I_C which are the values of the currents of each phase. 

 

Figure 10: Evaluation of active system scheme 

 

Figure 11: Hysteresis PWM scheme 

Three reference currents useful for the switching logic are determined within the 

Evolution of active phase subsystem. They are calculated by adding and subtracting 
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the signals from the Hall sensors and multiplying these by the reference current. 

While in the Hysteresis PWM subsystem each reference current passes through a 

hysteresis block which returns the same value in inputs if the latter is not higher 

than +ℎ𝑏 or lower than −ℎ𝑏. If these hypotheses are satisfied it returns 1 or 0 

respectively. 

 

Figure 12: H-Bridge subsystem 

Modeling of the H-bridge is done through the Simulink library through the 

"Universal bridge" block. To work, the block must be powered by a DC power and 

the PWM signals must enter inside according to a precise logic. For controlling the 

rotation direction of the motor, the direction of the current can be inverted and the 

most common method of doing that is by using an H-Bridge.  
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Figure 13:Combination of three separate H-Bridges for BLDC motors [4] 

If we connect the phase A to the positive DC voltage, with some kind of switch like 

a MOSFET, and on the other side, connect the phase B to ground, then the current 

will flow from V+, through phase A, the neutral point and phase B, to ground. So, 

we generated the four different magnetic poles which cause the rotor to move. With 

this configuration we have a star connection of the motor phases, where the neutral 

point is internally connected. To allow a rotor rotation of 360 degrees it is necessary 

to activate the two correct MOSFETs in each of the 6 intervals. [4] 

If we combine the methods of PWM with H-Bridge a BLDC motor can be fully 

controlled.  

The output of the subsystem are the voltages 𝐴, 𝐵 𝑎𝑛𝑑 𝐶. 

2.3.4. BLDC electromagnetic subsystem 
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Figure 14: BLDC electromagnetic subsystem overview 

This subsystem consists of three main blocks: 

1. Computation of back-EMF coefficients block: it calculates the back-EMF 

coefficient as a function of angular position of the motor. 

 

 

Figure 15: Computation of back-EMF coefficient block 

𝑘𝑏𝑒𝑚𝑓
𝑖 = 𝑘𝑒

𝑖 (𝜃𝑚) (1 + 𝜁 cos (𝜃𝑚 +
2(𝑖 − 1)

3
𝜋)) 

Equation 2.3: Back-EMFcoefficient as a function of the angular position of the motor 
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where 𝜁 = 𝑥0

𝑔0
 (see 3.6) and 𝑘𝑒𝑖  is the trapezoidal wave-shaped normalized 

back-EMF relative to the 𝑖𝑡ℎ phase of the non-damaged model. 

 

2. Three-phase RL model block: it receives in input the commanded voltages 

and the normalized coefficients calculated from the output of the previous 

block. 

The normalized back-EMF coefficient is the ratio between back-EMF and 

the angular speed of the motor 𝜔𝑛. 

𝑘𝑏𝑒𝑚𝑓 =
𝐵𝐸𝑀𝐹

𝜔𝑚
= 𝐵𝐸𝑀𝐹𝑛𝑜𝑟𝑚 

Equation 2.4: Back-EMFcoefficient 

 

Figure 16: Three-phase RL model block 

The block contains some components of the Simscape library that must be 

converted before use in Simulink. 
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The block outputs are the voltage drops across the phases and each phase 

current. 

3. Computation of motor torque block: it calculates the motor torque starting 

from the outputs of the two previous blocks because it exploits the back-

EMF coefficients of the first block and the currents of each phase of the 

second block. 

These parameters are multiplied respectively for each phase, added together 

and finally passed through a torque saturation block. 

 

 

Figure 17: Computation of motor torque block 

2.3.5. Motor-transmission dynamical subsystem 

 

Figure 18: Motor-transmission dynamical subsystem 
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In this block, the mechanical transmission has been modeled which allows passing 

from low torque and high angular speed (fast shaft) to high torque and low angular 

speed (slow shaft). 

The gear ratio is the most important parameter of the subsystem. The Borello model 

is used for friction modeling. For a correct representation of the phenomenon, the 

saturation port is used, which allows avoiding the limit cycles. In addition, end-

stops are considered through the saturation blocks present on Simulink. 

The system evolves with a dynamic of the first order as the feedback loop is made 

on the speed and not on the position of the motor. 

The block outputs the angular position of the user, which is the one we want to 

control through the PID controller, the motor speed and the angular position of the 

motor. The latter is read by the Hall sensors and used to calculate the back-

electromotive force and the switching logic of the phases. 

2.4. F-16 Longitudinal dynamics subsystem 

 

Figure 19: F16 Longitudinal dynamics subsystem 

This block receives the deflection of the elevator as input and using the state-space 

model of the aircraft calculate the vector of states and more. 
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This model simulates the response of the entire aircraft only in the longitudinal 

plane, so the command vector is formed only by the variable δ𝑒. 

𝐹16. 𝑥0(5) represents the initian condition of elevator’s deflection. 

The subsystem outputs the velocity of the aircraft 𝑉, angle of attack α, angle of 

pitch θ (Euler's angle), pitch rate 𝑞, elevator's deflection δ𝑒 and hinge moment 𝐻. 

All the matrices that populate the model are the same as those mentioned in the 

book "Aircraft Control and Simulation". [5] 
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3. Fault Modes 

EMAs are mainly used for the control of secondary flight surfaces (trim-tab, 

spoilers, speedbrakes) in civil aircraft and military aircraft. However, engineers are 

studying these devices to adopt them also for primary flight controls and, since 

EMAs are a recent technology when compared to electrohydraulics and 

hydromechanics, it is very important to be aware of the fault modes of these 

actuators [6]. Most of this chapter is based on [2]. 

 

Figure 20: Flight Control Surfaces of Jet Passenger Carrier [7] 

3.1. Definition 

First, we need to explain the difference between fault and failure: 

• Fault: state of an item characterized by inability to perform as required. 

• Failure: the event resulting in an item being no longer able to perform its 

required function. [8] 

Basically, the failure is the event while the fault is the state. In aeronautics it is very 

common to talk about Fault Tree Analysis [FTA] and Failure Modes Effects (and 
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Criticality) Analysis [FMEA/FMECA]. These methods all have the objective of 

identifying risk factors, the possible causes of all undesirable events that can 

influence mission reliability. The FTA can understand and identify the causes of a 

certain undesirable event, evaluate human errors and quantify the probability of 

failure. Furthermore, it allows for understanding the interactions between the 

different faults.  

There are standards for system security, grouped in MIL-STD-882. Based on the 

severity of the consequences, the legislation performs a classification of faults. 

 

Table 1: Failure severity classification (MIL-STD-882) 

Severity is usually linked to the probability of an event occurring. The result is a 

risk assessment matrix. 
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Table 2: Risk Assessment Matrix (MIL-STD-882E) 

In a system, it is good practice to arrange multiple elements so that it has greater 

resistance to a fault. Redundancies must be designed to avoid common failure 

modes. 

3.2. EMAs Fault Modes 

An EMA can be affected by 4 types of fault modes: 

Motor Faults: The BLDC motor that is used in the EMA presents the problem 

of not having any type of active cooling and for this reason, heat 

management is a problem to be addressed. If the temperature 

inside the motor is very high, the insulation between the stator 

coils can degrade causing a short circuit that can irremediably 

damage the device. 
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Furthermore, if the Curie temperature is exceeded, a 

ferromagnetic material loses its magnetic characteristics (for 

example the rotor can become demagnetized). 

Additionally, it operates at very high rotation speeds and for this 

reason vibrations are induced on the rotor bearings and high 

inertial loads. 

Electrical and 

electronic 

faults: 

These are faults affecting the electrical power system and the 

control system: short circuits, overheating, degradation of the 

welds, degradation of the wires, degradation of the connectors, 

degradation of the insulation, overvoltages and overcurrents. 

Mechanical 

faults: 

Due to the application of excessive aerodynamic loads, the 

transmission or the moving surface can deform and therefore 

induce a malfunction of the system. Even improper 

maintenance of the system, poor lubrication (with a consequent 

increase in heat due to friction and the onset of electrical and 

motor faults); the propagation of a crack can lead to the total 

breakage of a component. Often even the environment in which 

the device is found to operate can be decisive: just think of 

phenomena such as galvanic corrosion. 

Sensor faults: The loss of the signal coming from the Hall sensors can mean 

the loss of the actuator because it is no longer able to manage 

the switching logic for the excitation of the phases. There can 

be three types of faults: bias, drift and scaling. 

 

3.3. Friction fault 

Friction is the force resisting the relative movement of two bodies sliding against 

each other. On the surfaces of all objects, there are tiny bumps and ridges. Those 
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microscopic peaks and valleys catch on one another when two objects are moving 

past each other.  

The Stribeck curve is an overall view of friction variation forthe entire transition of 

lubrication modes, from the boundary and mixed lubrication up to the full-film 

hydrodynamic of static friction. 

 

Figure 21: Stribeck curve (Hersey number is the relative velocity between the contact surfaces) [9] 

In the boundary layer region, the friction force is high, approximately constant and 

is not affected by external load and speed.  

In the mixed lubrication regime, i.e. when the speed begins to increase, the friction 

force drops sharply as lubricating fluid (air) is pushed between the contact surfaces. 

As the speed increases, we enter the full-film lubrication regime, the friction force 

begins to increase again as the shear strain rate increases. 

3.3.1. Model 

The problem of dynamic modeling (obtained by numerical simulation) of the dry 

friction is that the calculation procedure does not notice the speed passing through 

zero and, therefore, does not carry out any checks regarding the possible stopping 

of the mechanical organ. If this happens, by integrating the acceleration between 

the start and end of the step, two-speed values of opposite sign are obtained. This 
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check must instead be conducted because, in stationary conditions, the friction force 

(or torque) may be greater than the active one. 

 

Figure 22: Borello friction model implementation in Simulink 

The Borello model [10] is an evolution of the Coulomb model which has several 

advantages: 

• It distinguishes the sign of the frictional torque as a function of the direction 

of the speed. 

• It distinguishes the adhesion conditions from the dynamic ones (in fact, two 

distinct values can be assigned for the torque - friction, 𝐹𝑆𝐽 in static or grip 

conditions and 𝐹𝐷𝐽 in dynamic conditions). 

• It evaluates the possible stop of the mechanical element initially in motion. 

• It keeps the mechanical element correctly stationary (or in motion) in 

adherence conditions (or motion). 

• It evaluates the possible restart of the initially stopped mechanical element. 

• It considers, in a single model, the presence of end-stop. 

• It does not need a dimensionless ϵ parameter which is very difficult to 

determine, unlike friction models such as Karnopp’s model and Quinn’s 

model. 

The mathematical model is the following: 
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𝑇𝐹 = {

𝑇𝑎𝑐𝑡 ,                           𝑖𝑓 𝑣 = 0 ∧ |𝐹𝑎𝑐𝑡| ≤ 𝑇𝑆𝐽
𝑠𝑔𝑛(𝑇𝑎𝑐𝑡) ∙ 𝑇𝑆𝐽,         𝑖𝑓 𝑣 = 0 ∧ |𝐹𝑎𝑐𝑡| > 𝑇𝑆𝐽
𝑠𝑔𝑛(𝑣) ∙ 𝑇𝐷𝐽,             𝑖𝑓 𝑣 ≠ 0

 

Equation 3.1: Borello mathematical model for torque friction 

where,  𝑇𝑎𝑐𝑡 is the torque acting on the system, 𝑇𝑆𝐽 is the static friction force, 𝑇𝐷𝐽 is 

the dynamic friction force and 𝑣 is the relative speed between the two surfaces. 

In the model, there is a zero-crossing detection block. This block outputs one when 

it detects the speed signal passing through zero (from less to greater than zero or 

vice versa). When this happens, the speed is set to zero and the static friction force 

is set. 

Algebric loops are avoided by using the state port. 

3.4. Noise fault 

 

Figure 23: Noise signal [11] 
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Noise can be defined as an unwanted signal that interferes with the communication 

or measurement of another signal. A noise is a signal that carries information about 

the sources of the noise itself and the environment in which it propagates. [12] 

The sources of noise include:  

• Electronic noise:  

o Thermal noise generated by the random movements of thermally 

energised particles in a conductor. 

o Shot noise i.e. fluctuations of electrons. 

o Burst noise caused by step transitions of as high as several hundred 

millivolts, at random times and durations. 

• Acoustic noise: revolving machines, computer fans, moving vehicles, 

people talking in the background, wind and rain produce vibrations. 

• Electromagnetic noise: electromagnetic induction and conduction due to 

atmosphere. 

• Electrostatic noise: presence of voltage with or without current flow i.e. 

fluorescent lighting. 

• Processing noise: lost data packets in digital communication systems. 

• CO-Channel noise: crosstalk from two different radio transmitters on the 

same frequency channel. 

Depending on its frequency spectrum or time characteristics, a noise process can be 

further classified into one of several categories. When we speak of white noise, for 

example, we refer to purely random noise that has an impulse autocorrelation 

function and a flat power spectrum. It contains equal power at all frequencies. 

The autocorrelation function 𝑟𝑛𝑛 of a continuous-time zero-mean white noise 

process, 𝑛(𝑡), is given by: 

𝑟𝑛𝑛(𝜏) = 𝐸[𝑛(𝑡)𝑛(𝑡 + 𝜏)] = 𝜎𝑛
2 𝛿(𝜏) 

Equation 3.2: Autocorrelation function of pure white noise 

where σn2 variance is a particular delta function. 
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Figure 24: Autocorrelation function of pure white noise 

Using the Fourier transform of the autocorrelation function, the power spectrum 

of white noise is obtained: 

𝑃𝑛𝑛(𝑓) = ∫ 𝑟𝑛𝑛(𝑡)𝑒
−𝑗2𝜋𝑓𝑡

∞

−∞

𝑑𝑡 = σ𝑛
2  

Equation 3.3: Power spectrum of pure white noise 

 

Figure 25: Power spectrum of pure white noise 

Since a pure white noise need to have infinite power to cover an infinite range of 

frequencies, it is a theoretical concept. A more practical concept is band-limited 

white noise, defined as a noise with a flat spectrum in a limited bandwidth 𝐵: 
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Figure 26: Power spectrum of band-limited white noise 

𝑃𝑁𝑁 = {
σ2     𝑖𝑓 |𝑓| ≤ 𝐵 

0       𝑖𝑓 |𝑓| > 𝐵
      

Equation 3.4: Power spectrum of band-limited white noise 

The autocorrelation function of a band-limited white noise, in case of discrete-time, 

has the shape of a sinc function: 

 

Figure 27: Autocorrelation function of band-limited white noise 

𝑟𝑛𝑛(𝑇𝑠𝑘) = 2𝐵𝜎𝑛
2
𝑠𝑖𝑛(2𝜋𝐵𝑇𝑠𝑘)

2𝜋𝐵𝑇𝑠𝑘
 

Equation 3.5: Autocorrelation function of band-limited white noise 

where 𝑇𝑠, is the sampling period. 



28 
 

When 𝑇𝑠 =
1

2𝐵
, i.e. when the sampling rate is equal to the Nyquist rate, the equations 

becomes: 

𝑟𝑁𝑁(𝑇𝑠𝑘) = 2𝐵𝜎𝑛
2
𝑠𝑖𝑛(𝜋𝑘)

𝜋𝑘
= 2𝐵𝜎𝑛

2𝛿(𝑘) 

Equation 3.6: Autocorrelation function of band-limited white noise when 𝑻𝑺 = 𝟏/𝟐𝑩 

3.4.1. Model 

 

Figure 28: Band-limited white noise in Control Electronics (PID) subsystem 

A band-limited white noise model is implemented in the Control Electronics (PID) 

subsystem superimposing it on the current reference signal. The highest noise 

frequency is set at less than half of the sampling rate. 

3.5. Short circuit fault 

When the motor operates at a very high temperature, the insulation covering the 

wires that make up the stator coils degrades and allows the formation of short 

circuits. 

The formation of a short circuit can take place: 

• between two wires of the same phase (coil-coil): the resistance and 

inductance of the motor decrease; consequently, the current increases and 
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the motor is brought to overheating. This condition is the first that is 

observed. 

• between two wires of different phases (phase-phase): generally, this 

condition occurs after the coil-coil and leads to a fault condition. 

• between a wire and the stator iron core (phase-ground): generally, this 

condition occurs after the coil-coil and leads to a fault condition. 

3.5.1. Model 

As just mentioned, a short circuit between two wires leads to a decrease in 

resistance and inductance proportional to the number of shorted wires. 

Consequently, one effect is the reduction of the back-electromotive force which can 

be expressed in the following way: 

𝒌𝒃𝒆𝒎𝒇 = 𝑮𝑴 =
𝝏𝝓

𝝏𝜽𝒎
= 𝒏𝑨

𝝏

𝝏𝜽𝒎
(∫ 𝑩 ∙ 𝒏 𝒅𝑺

𝑨

) 

Equation 3.7: BEMF reduction due to short circuit 

where A is the total winding area, B the magnetic flux density of the rotor and n is 

the number of windigs making up the coil. 

Defining 𝑁𝑖 as the normalized value of shorted coil windings in respect to n, we can 

express: 

𝑅𝑖 = 𝑁𝑖𝑅 

𝐿𝑖 = 𝑁𝑖
2𝐿 

𝐾𝑒
𝑖 = 𝑁𝑖𝑘𝑒 

where 𝑅𝑖, 𝐿𝑖 and 𝑘𝑒𝑖  are respectively resistance, inductance and normalized BEMF 

coefficient of the 𝑖𝑡ℎ phase while 𝑅, 𝐿 and 𝑘𝑒 are the nominal values, referring to a 

zero-fault condition. 
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3.6. Rotor eccentricity fault 

It is possible to distinguish two types of rotor eccentricity: 

Type Definition Effects 

Static eccentricity 

The misalignment error 

between the rotor 

rotation axis and the 

symmetry axis 

Irregularities in the air 

gap surrounding the 

rotor (different for each 

phases) 

Dinamic eccentricity 

The misalignment error 

between the rotor 

rotation axis and its 

rotational inertia axis 

Vibrations, bearing 

wear, non-constant 

torque 

Table 3: Static and Dinamic rotor eccentricity fault differences 

The effects of static eccentricity are now analyzed, i.e. the irregularities in the air 

gap surrounding the rotor. The rotor is assumed to be a rigid body without 

deformations. 

 

 

Figure 29: Air gap surrounding the rotor 
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From the figure we extrapolate the following relationships: 

Cartesian Coordinates Polar Coordinates 

𝑥2 + 𝑦2 = 𝑅𝑟
2 

(𝑥 − 𝑥0)
2 + 𝑦2 = 𝑅𝑠

2 

ρ = 𝑅𝑟 

ρ2 − 2ρ 𝑐𝑜𝑠𝜃 + 𝑥0
2 = 𝑅𝑠

2 

Table 4: Stator and Rotor equation with static eccentricity 

where 𝑥0 is the distance between the two axes, 𝑅𝑟 is the rotor radius and 𝑅𝑠 is the 

stator radius. 

Now we define the air gap 𝑔: 

𝑔 = 𝑥0 𝑐𝑜𝑠θ + 𝑅𝑠√1 − (
𝑥0
𝑅𝑠
)
2

𝑠𝑖𝑛2𝜃 − 𝑅𝑟  ≈ 

≈ 𝑥0 𝑐𝑜𝑠θ + 𝑅𝑠 (1 −
1

2
(
𝑥0
𝑅𝑠
)
2

𝑠𝑖𝑛2𝜃) − 𝑅𝑟 ≈ 

≈ 𝑥0 𝑐𝑜𝑠θ + 𝑔0 

Equation 3.8 

where 𝑔0 = 𝑅𝑠 − 𝑅𝑟 is the air gap considered during nominal condition. 

A new parameter, called eccentricity parameter ξ, can now be entered: 

ξ =
𝑥0
𝑔0

 

Equation 3.9: Eccentricity Parameter 

𝑔 ≈ 𝑔0(1 + ξ 𝑐𝑜𝑠θ) 

Equation 3.10: Air gap approximation 
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The magnetic flux Φ calculated solving the circuit between two consecutive rotor 

poles is: 

 

Figure 30: Air gap approximation 

Φ =
𝐹𝑚

g(θ1)
μ0S

+
g (θ1 +

π
P
)

μ0S

=
𝐹𝑚μ0S

g(θ1)g (
π
P
)
=

2Φ0g0

g(θ1)g (
π
P
)
 

Equation 3.11: Magnetic flux 

where 𝐹𝑚 is the rotor magneto-motive force, 𝑃 is the number of poles, 𝑆 is the 

surface crossed by magnetic flux and Φ0 is the nominal flux. 

 The change in magnetic flux over time is the back-ElectroMotive Force. 

3.6.1. Model 

As shown in [13] the rotor eccentricity fault can be described through a block 

diagram without involving the FEM analysis. 

We can express the back-ElectroMotive Force through the following relationship: 
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𝑘𝑏𝑒𝑚𝑓
𝑖 = 𝑘𝑒

𝑖 (θ𝑚) ∙ (1 + ξ 𝑐𝑜𝑠 (θ𝑚 +
2(𝑖 − 1)

3
π)) 

Equation 3.12: Back-electromotive force coefficient 

where 𝑘𝑒𝑖 (θ𝑚) is the non-faulty condition traperzoidal-shaped coefficient. 
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4. Artificial Neural Network 

The neural network is one of the most interesting programming tools in this 

historical period. Mankind is trying to make machines have their own intelligence 

and for this reason, neural networks play a fundamental role. In a neural network, 

the programmer does not tell the computer how to solve problems. It, by contrast, 

learns itself from a dataset the relationship between input and output. These 

techniques are used extensively in computer vision and speech recognition. They 

are also studied at a company level by Google and Facebook. Our goal is to 

implement them within an electromechanical servomechanism. 

4.1. Concepts 

Before talking about the architecture of a neural network, it is important to clarify 

the concept of perceptron, neuron, activation function, weights, and bias. 

 

Figure 31: Perceptron 

A perceptron takes several binary inputs and produces a single binary output. The 

scientist Frank Rosenblatt introduced weights to compute the output. These 

elements are real numbers, and they express the value of their input to the output. 

Instead the output is calculated based on the value of the sum ∑ 𝜃 𝑗  𝑥 𝑗 𝑗 . 
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If the latter is greater than a threshold value, the output is 1 and vice-versa. 

Formally: 

𝐨𝐮𝐭𝐩𝐮𝐭 =

{
 
 

 
 𝟎     𝒊𝒇 ∑𝜽 𝒋 𝒙 𝒋

 𝒋

≤  𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝟏     𝒊𝒇 ∑𝜽 𝒋 𝒙 𝒋
 𝒋

>  𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅
 

Equation 4.1 

If 𝑏 ≡  −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, we can rewrite the relationship as it follows: 

𝒐𝒖𝒕𝒑𝒖𝒕 =

{
 
 

 
 𝟎     𝒊𝒇 ∑𝜽 𝒋 𝒙 𝒋

 𝒋

+ 𝒃 ≤ 𝟎

𝟏      𝒊𝒇 ∑𝜽 𝒋 𝒙 𝒋
 𝒋

+ 𝒃 >  𝟎
 

Equation 4.2 

“The perceptron’s bias (𝑏) is a measure of how easy it is to get the perceptron to 

output 1”. [14] 

Another type of neuron is the sigmoidal neuron that instead of responding with an 

output of only 0 and 1 can return a value within the range. 

The letter σ indicates the sigmoid function, which is very similar to the step function 

but smoother: 

𝛔(𝒛)  =  
𝟏

𝟏 + 𝒆−𝒛
 

Equation 4.3: The sigmoid function 
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Figure 32: Comparison between sigmoid function and step function 

4.2. The architeture of neural networks 

 

Figure 33: The architeture of neural network 

Simple neural networks are basically composed of three layers. Each column of 

neurons represents a layer while each arrow represents a weight. The leftmost layer 

is called the input layer and the rightmost is called output layer. The middle layer 

is called hidden layer, since the neurons in this layer are neither inputs nor outputs. 
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Generally, there are multiple hidden layers in a network and when this happens, we 

are talking about of a deep neural network (for example, in the figure above the net 

has two hidden layers). The output of a previous layer is the input of the next layer 

and this is the main feature of the feedforward network.  

4.3. The Activation Function 

Inside the neuron, the inputs are multiplied by their respective weights and then 

added together by adding the bias value. The obtained value represents the 

activation input 𝑧 = 𝑓(𝑥, 𝜃, 𝑏 ). The latter must go through an activation function 

which is responsible for establishing whether the activation input is intense enough 

to be able to be propagated to the next neuron and then activate it. [15] 

 

𝑧 = 𝑥1𝜃1 + 𝑥2𝜃2 + 𝑥3𝜃3 + 𝑏 

ℎ𝜃(𝑥) = 𝜙(𝑧) 

Figure 34: The Activation Funtion 
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Step 

 

𝜙(𝑧)  =  {
0     𝑖𝑓 𝑧 ≤ 0
1     𝑖𝑓 𝑧 > 0

 

Sigmoid 

 

𝜙(𝑧)  =  
1

1 + 𝑒−𝑧
 

Tanh 

 

𝜙(𝑧)  =  
1 − 𝑒−2𝑧

1 + 𝑒−2𝑧
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Rectified Linear Unit (ReLU) 

 

𝜙(𝑧)  =  {
0     𝑖𝑓 𝑧 ≤ 0
𝑧     𝑖𝑓 𝑧 > 0

 

Leacky ReLU 

 

𝜙(𝑧) =  {
0.01𝑧     𝑖𝑓 𝑧 ≤ 0
𝑧             𝑖𝑓 𝑧 > 0

 

 

Using the step function, the quantitative information related to the activation input 

is lost: an activation input of 0.5 will return 1 as well as an activation input of 1000. 

For this reason, the step function is never used. Generally, the activation functions 

used in the hidden layers are the ReLU and the tanh. In the last layer, the sigmoid 

function or the linear function are used depending on whether it is a classification 

or regression problem. 

4.4. Learning 

To train the neural network, we need to give it the inputs from our dataset and 

compare its hypothesis outputs ℎθ(𝑥) with the outputs 𝑦 from the dataset.  
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 Features 1  Features N Output 1  Output N 

Example 1 𝑥11 … 𝑥1𝑁 𝑦11 … 𝑦1𝑁 

Example 2 𝑥21 … 𝑥2𝑁 𝑦21 … 𝑦2𝑁 

… … … … … … … 

Example M 𝑥𝑀1 … 𝑥𝑀𝑁 𝑦𝑀1 … 𝑦𝑀𝑁 

Table 5: Input and Output of a neural network 

From this, we understand that it is important to have a large dataset and a large 

amount of computational power. Since the neural network is still untrained, its 

hypothesis outputs will be wrong. In the next paragraphs we define a cost function 

that shows us how much the neural network’s outputs are wrong from the real 

outputs and how to train them. 

4.5. Multivariate Linear Regression 

A multivariate linear regression is a linear regression with multiple variables. For 

simplicity, only one output is considered. 

Let us imagine we have a dataset structured as follows: 

 
Features 1 

𝒙𝟏 

Features 2 

𝒙𝟐 
 

Features n 

𝒙𝒏 

Output 

𝒚  

Example 1  

𝒙𝟏 
𝑥1
1 𝑥2

1 … 𝑥𝑛
1 𝑦1 

Example 2 

𝒙𝟐 
𝑥1
2 𝑥2

2 … 𝑥𝑛
2 𝑦2 
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… … … … … … 

Example m 

𝒙𝒎 
𝑥1
𝑚 𝑥2

𝑚 … 𝑥𝑛
𝑚 𝑦𝑚 

 

Notation: 

• n: number of features. 

• m: number of training examples. 

• 𝑥(𝑖): input (features) of 𝑖𝑡ℎ training example. 

• 𝑥𝑗
(𝑖): value of feature 𝑗 in 𝑖𝑡ℎ training example. 

The hypothesis function that links each features of an example to the output is the 

following: 

𝒉𝜽(𝒙) = 𝜽𝟎 + 𝜽𝟏𝒙𝟏 + 𝜽𝟐𝒙𝟐 +⋯+ 𝜽𝒏𝒙𝒏 

Equation 4.4: The hypothesis function 

For convenience reasons we assume 𝑥0
(𝑖) = 1 for 𝑖 ∈ [1,𝑚]. 

𝒙 = [

𝒙𝟎
𝒙𝟏
. . .
𝒙𝒏

] 𝝐ℝ𝒏+𝟏          𝜽 = [

𝜽𝟎
𝜽𝟏
. . .
𝜽𝒏

] 𝝐ℝ𝒏+𝟏  

Equation 4.5: Input vector and weight vector 

𝒉𝜽(𝒙) = [𝜽𝟎     𝜽𝟏    …     𝜽𝒏] [

𝒙𝟎
𝒙𝟏
. . .
𝒙𝒏

] = 𝜽𝑻𝒙 

Equation 4.6: The hypothesis function vector shape 
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4.6. Cost Function (mse) 

The cost function expresses the accuracy of our hypothesis function with respect to 

the real value of the output. In fact, for a linear regression it can be expressed as: 

𝑱(𝜽) =
𝟏

𝟐𝒎
 ∑  (𝒉𝜽(𝒙𝒊) − 𝒚𝒊)

𝟐

𝒎

𝒊=𝟏

 

Equation 4.7: Cost Function (mse) 

Where ℎθ(𝑥𝑖) is the predicted value (hypothesis function), 𝑦𝑖 is the actual value and 

m is the number of examples. This function is also called "mean squared error" 

(mse) because the difference between them represents an error, which is squared 

and finally all the errors of each single example are added together and divided by 

the number of examples (mean). 

4.6.1. Gradient Descent 

Since the value of ℎθ(𝑥𝑖) is a function of the weights θ and of the biases b we want 

to find those values that best approximate the predicted function to the real function, 

i.e. we want the cost function to be as small as possible. 

We are helped by the gradient descent because its task is precisely this, that is to 

update the value of weights and bias in such a way as to minimize the cost function. 

The gradient descent algorithm repeats the following rule until convergence: 

𝜽𝒋 ≔ 𝜽𝒋 − 𝜶
𝝏

𝝏𝜽𝒋
𝑱(𝜽) 

Equation 4.8: Gradient descent algorithm 

Where θ𝑗 represents the 𝑗𝑡ℎ weight (the same is true for biases). 
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The hyperparameter α is known as the learning rate. It allows us to vary the size of 

each single step: the higher this parameter, the larger the step. The direction in 

which the step is taken is determined by the partial derivative of 𝐽(𝜃) the minus 

sign has the task of inverting the trend of the gradient. 

Substituting the expression of ℎ𝜃 in the case of linear regression for a single 

example we obtain: 

𝜕

𝜕𝜃𝑗
𝐽(𝜃) =

𝜕

𝜕𝜃𝑗
 (
1

2
(ℎ𝜃(𝑥) − 𝑦)

2) = 2 ∙
1

2
(ℎ𝜃(𝑥) − 𝑦) ∙

𝜕

𝜕𝜃𝑗
(ℎ𝜃(𝑥) − 𝑦)

= (ℎ𝜃(𝑥) − 𝑦) ∙
𝜕

𝜕𝜃𝑗
(∑𝜃𝑖𝑥𝑖 − 𝑦

𝑛

𝑖=0

) = (ℎ𝜃(𝑥) − 𝑦)𝑥𝑗 

Equation 4.9: Partial derivative of 𝑱(𝜽) in the case of linear regression for a single 

In the case of multiple variables, the gradient descent algorithm takes the following 

form: 

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
1

𝑚
 ∑(ℎ𝜃(𝑥

𝑖) − 𝑦𝑖)

𝑚

𝑖=1

∙ 𝑥𝑗
𝑖      𝑓𝑜𝑟 𝑗 ≔  0… . 𝑛 

Equation 4.10: Gradient descent algorithm in the case of multiple variables 

The choice of the learning rate 𝛼 is very important because: 

• A very small value leads to slow convergence. 

• A very large value can lead to divergence (bounce from one side of the curve 

to the other without ever reaching the minimum). 

Since two features can have very different ranges of values, the speed of the 

grandient descent can differ and oscillate inefficiently when the variables are 

irregular. 
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For this reason, the feature scaling technique is carried out, i.e. all the features are 

brought into the same range, for example (0,1) thanks to the following conversion 

formula: 

𝑥𝑖 ≔
𝑥𝑖 −  𝑚𝑖𝑛(𝑥𝑖)

max(𝑥𝑖) − min (𝑥𝑖)
 

Equation 4.11: Feature scaling 

A very similar method is mean normalization, in which the average value is taken 

as a reference: 

𝑥𝑖 ≔
𝑥𝑖 −  𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥𝑖)

max(𝑥𝑖) − min (𝑥𝑖)
 

Equation 4.12: Mean normalization 

4.6.2. Backpropagation 

The backpropagation is the algorithm that allows minimizing the cost function in 

an artificial neural network, the same task performed by the gradient descent in 

linear regression. This process occurs through the determination of the derivative 

of the cost function. 

Let us imagine we have a dataset and one training example (𝑥, 𝑦). [16] 

Forward propagation consists in the calculation of: 
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Figure 35: Forward propagation 

where 𝑎(𝑖) is the activation values of 𝑖𝑡ℎ layer i.e the value of 𝑧 to which the 

activation function 𝑔 is applied. 𝑎(4) is the last activation value and coincides with 

the hypothesis value ℎΘ(𝑥). 

Remembering that 𝑎𝑗
(𝑙) represents the activation values of the node 𝑗 in layer 𝑙, the 

intuition of the backpropagation algorithm is the calculation of error values of node 

𝑗 in layer 𝑙 called 𝛿𝑗
(𝑙).  

The delta term captures the error in the activation of that node, for example: 

𝛿𝑗
(𝐿) = 𝑎𝑗

(𝐿)
− 𝑦𝑗 

Equation 4.13: Delta last layer error values 

where L is the total number of layes. In vector form: 

𝛿(𝐿) = 𝑎(𝐿) − 𝑦 = ℎΘ(𝑥) − 𝑦 

Equation 4.14: Delta last layer error vectorial form 

Now let us proceed with the calculation of 𝛿(𝐿−1) back to 𝛿(2), hence the name 

backpropagation (𝛿(1) = 0, since 𝑎(1) corresponds to the features). 

𝛿(𝑙) = ((Θ(𝑙))
𝑇
𝛿(𝑙+1)) .∗  𝑔′(𝑧(𝑙)) 

Equation 4.15: Delta error in previous layers 

where 𝑔′(𝑧(𝑙)) ≅ 𝑎(𝑙) .∗ (1 − 𝑎(𝑙)) is the derivative of the activation function g 

evaluated with the input values given by activation input 𝑧(𝑙) , Θ(𝑙) is the matrix of 

weights of l layer and the symbol .∗ identifies the element-wise multiplication. 
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Now we can determine and update the Δ matrix values at each iteration: 

Δ𝑖𝑗
(𝑙)
≔ Δ𝑖𝑗

(𝑙) + 𝑎𝑗
(𝑙)𝛿𝑖

(𝑙+1) 

Equation 4.16: Delta matrix values 

Finally, the last matrix D is calculated, which coincides with the derivative of the 

cost function 𝜕

𝜕Θ
𝑖𝑗
(𝑙) 𝐽(Θ) = 𝐷𝑖𝑗

(𝑙) as a function of each weight: 

𝐷𝑖𝑗
(𝑙) ≔ {

1

𝑚
(Δ𝑖𝑗

(𝑙) + 𝜆Θij
(𝑙))     𝑖𝑓 𝑗 ≠ 0

1

𝑚
Δ𝑖𝑗
(𝑙)                        𝑖𝑓 𝑗 = 0

 

where 𝑗 = 0 coincides with the case of bias. 

4.6.3. Underfitting and Overfitting 

The training error tends to decrease as the degree d of the polynomial of the function 

ℎθ(𝑥) increases as we are trying to adopt a more complex model. [16] 

Similarly, the cross-validation error tends to decrease as d increases, however at a 

certain point the trend assumes an opposite behavior, forming a convex curve. 

 

Figure 36: Underfitting vs Overfitting 
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So we talk about underfitting when 𝐽𝑡𝑟𝑎𝑖𝑛(θ) and 𝐽𝑐𝑣(θ) are high, while we talk 

about overfitting when 𝐽𝑡𝑟𝑎𝑖𝑛(θ) is low and 𝐽𝑐𝑣(θ) is quite higher than 𝐽𝑡𝑟𝑎𝑖𝑛(θ). 

 

 Figure 37:Underfitting and overfitting example [17]  

The terms overfitting and underfitting therefore describe how much the model 

learns and generalizes the new data. A good machine learning model must be 

capable of generalizing new data well. 

With the term underfitting we refer to a model that has a high cost function, i.e. 

with poor performance. 

With the term overfitting we refer to when the model a network is too tied to the 

training data and does not generalize about new data, so the resulting test cost 

function is higher. 

 

Figure 38: Logical scheme to understand if the neural network is affected by overfitting or underfitting 
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5. Creation And Optimization of the ANN 

In this chapter we also talk about the optimization of the artificial neural network 

through the variation of its hyperparameters. The back-electromotive force 

coefficient signal 𝑘𝑏𝑒𝑚𝑓 was obtained. About three thousand signals were analyzed 

and parameters representative of the health of the system were obtained. In the 

nominal operating condition (in which faults are not present) the value is unitary. 

 

Figure 39: Back-EMF in nominal and faulty condition [18] 

The signal has been appropriately sampled and each curve is represented by a 

certain number of points that characterize the features of the artificial neural 

network. 

The latter must predict five output values:  

[𝑁𝑎, 𝑁𝑏 , 𝑁𝑐 , ξ, ϕ] 

1. 𝑁𝑎, 𝑁𝑏 , 𝑁𝑐 which represent the percentage coil short for each phase (the 

values are within the range [0,1] where 0 represents no damage and 1 total 

phase short). 

2. ξ = 𝑥0

𝑔0
 which represents the static eccentricity, i.e. the relationship between 

the axis offset from center 𝑥0 and the nominal air gap 𝑔0. 
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3. ϕ which represents the angular phase of the static eccentricity. 

For this reason, a single example of the training set is characterized by eighteen 

features and five outputs. [18] 

 

Figure 40: Sampling of five examples of back-EMF signals 

At this point the network is trained using the Deep Learning Toolbox present in 

MATLAB from 𝑀𝑎𝑡ℎ𝑊𝑜𝑟𝑘𝑠®. 

Let us start now with a configuration suggested by [18].  

 

Figure 41: Architecture of the reference network 

The network is made up of 3 layers: 

• an input layer with 18 features representing the sampled signal. 

• a hidden layer with 10 neurons. 

• an output layer with 5 neurons representing [𝑁𝑎, 𝑁𝑏 , 𝑁𝑐, 𝜉, 𝜙]. 
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The training function used is ‘trainlm’. This function updates weight and bias 

values according to Levenberg-Marquardt optimization rule: 

𝒙𝒌+𝟏 = 𝒙𝒌 − [𝑱
𝑻𝑱 + 𝛍𝑰]−𝟏𝑱𝑻𝒆 

Equation 5.1: Levenberg-Marquardt Algorithm update rule 

where μ is a scalar value like the inverse of learning rate: a high μ value results in 

a gradient descent with a small step size and viceversa. The algorithm can manage 

this parameter automatically. 

The Levenberg-Marquardt algorithm is designed to approach second-order training 

speed without having to compute the Hessian matrix. In fact, the latter is 

approximated as:  

𝑯 = 𝑱𝑻𝑱 

Equation 5.2: Hessian matrix approximation 

while the gradient is calculated as: 

𝒈 = 𝑱𝑻𝒆 

Equation 5.3: Gradient’s calculation 

The ‘satlins’ is used as an activation function between one layer and another. 

 

Figure 42: Satlins activation function 
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𝝓(𝒛) = {

𝟏                             𝒊𝒇 𝒛 > 𝟏
𝒛                𝒊𝒇 − 𝟏 < 𝒛 < 𝟏
−𝟏                      𝒊𝒇 𝒛 < −𝟏

 

 Equation 5.4: Satlins activation function  

The results obtained are now presented: 

❖ Simulation time: 2 s 
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Figure 43: MSE performance of reference network 

 

Figure 44: Results for reference network 
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Figure 45: Linear regression plot for each output [𝑵𝒂, 𝑵𝒃, 𝑵𝒄, 𝝃, 𝝓] 
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From the figures, we can conclude that the lowest value of the mean squared error 

(mse) for the validation cost function is reached at epoch 49 and is equal to 

0.00054838. 

The gradient never drops below the value of 10−5 and the simulation is stopped 

when 10 validation failures occur, i.e. the network does not improve or remains the 

same for 10 epochs. 

Finally, from the graphs of the linear regressions we can see that the parameter that 

presents a greater error is the angular phase of the static eccentricity ϕ. 

5.1. Variation of hyperparameters 

Some hyperparameters of the network are now changed. In particular, the 

architecture is changed by varying the number of neurons and the number of layers. 

Since we want to try to improve the model from the point of view of bias 

(underfitting), more complexity is added to the network. We then proceed with the 

variation of the activation function between one layer and another and finally with 

the introduction in the model of the regularization and the increase in the number 

of features. An increase in the complexity of the system leads to a rise in the 

computational time for training the network. 

5.1.1. Neurons 

 

Figure 46: Increase in the number of neurons in the hidden layer 

❖ Simulation time: 165 s 
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Figure 47: MSE performance for the network with with twenty-four neurons in the hidden layer 

 

Figure 48: Results for the network with twenty-four neurons in the hidden layer 
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We can see improvements in network performance at the expense of more 

computational time. 

5.1.2. Hidden Layers 

 

Figure 49: Increase in the number of hidden layers 

❖ Simulation time: 3 s 

 

Figure 50: MSE performance for the network with two hidden layers 
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Figure 51: Results for the network with two hidden layers 

5.1.3. Activation Function 

 

Figure 52: Tansig activation function 

𝛟(𝒛) = 𝒕𝒂𝒏𝒉(𝒛) =
𝒔𝒊𝒏𝒉(𝒙)

𝒄𝒐𝒔𝒉(𝒙)
=

𝒆𝒙

𝒆−𝒙 + 𝒆𝒙
−

𝒆−𝒙

𝒆−𝒙 + 𝒆𝒙
 

Equation 5.5: Tansig activation function 

In MATLAB we can use the 'tansig' function which corresponds to the tanh function 

as an activation function. 

❖ Simulation time: 1 s 
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Figure 53: MSE performance for the network with tansig activation function 

 

Figure 54: Results for the network with tansig activation function 
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5.1.4. Regularization 

If the overfitting problem is caused by a neural network with many features, we can 

use regularization to solve this problem. 

Regularization penalizes weights that become too high during training by means of 

coefficients. There are two types of regularizations: L1 and L2. 

𝑱(𝜽) =
𝟏

𝟐𝒎
 ∑(𝒉𝜽(𝒙

(𝒊)) − 𝒚(𝒊))
𝟐

𝒎

𝒊=𝟏

+
𝝀

𝟐𝒎
 ∑𝜽𝒋

𝟐

𝒎

𝒋=𝟏

 

Equation 5.6: Cost Function with regularization L2 term 

𝑱(𝜽) =
𝟏

𝟐𝒎
 ∑(𝒉𝜽(𝒙

(𝒊)) − 𝒚(𝒊))
𝟐

𝒎

𝒊=𝟏

+
𝝀

𝟐𝒎
 ∑|𝜽𝒋|

𝒎

𝒋=𝟏

 

Equation 5.7: Cost Function with regularization L1 term 

Usually the L2 regularization is more effective than the other and if we want, we 

can combine the two types of regularization. 

The regularization L2 hyperparameter 𝜆 has been set to the value of 1 ∙ 10−5. 

❖ Simulation time: 1 s 
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Figure 55: MSE performance for the network with regularization term 

 

Figure 56: Results for the network with regularization term 

In this case the simulation was interrupted by a μ value equal to 105. 
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5.1.5. Features 

 

Figure 57: Back-EMF signal interpolation 

From the reference signal of the back-EMF represented by eighteen features, thanks 

to the spline function, further points of the curve are obtained to have a greater 

number of features to train the neural network. We now have eighty-six features 

available. 

❖ Simulation time: 27 s 

 

Figure 58: MSE performance for the network with new features 
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Figure 59: Results for the network with new features 

5.2. Best Cases 

Having seen how each individual hyperparameter affects the neural network, the 

best hyperparameter trade-offs are now presented. 

5.2.1. Case 1 

 

Figure 60: Network architecture for best case 

❖ Simulation time: 11 s 

net.layers{:}.transferFcn = 'tansig'; 
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Figure 61: MSE performance for the best network 

 

Figure 62: Results for the best network 

5.2.2. Case 2 
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Figure 63: BEMF with 40 features 

❖ Simulation time: 86 s 

net.performParam.regularization = 5e-5; 

net.layers{:}.transferFcn = 'tansig'; 
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