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Abstract

Stokes equations allow to describe various problems of engineering interest, such as
problems of lubrication and sedimentation.

A method to solve these types of problem, which allows to obtain a divergence-
free solution for the velocity field consistent with the pressure field, is the Virtual
Elements Method (VEM).

First, the theory of VEM and its application to the Stokes problem were in-
vestigated. Subsequently, a tool was developed for the implementation of VEM
to second order differential problems on polygonal meshes, which can deal with
geometrically complex polygons, such as non-convex or high aspect ratio elements.
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Introduction

The Finite Element Method is a numerical method that reduces partial differential
equations to a system of algebraic equations, providing an approximate solution to
many physical phenomena.

The main feature of the finite element method is the discretization of the domain
through the creation of a mesh generated by the repetition of a shape (triangles and
quadrilaterals for 2D domains or tetrahedra and hexahedra for 3D domains). On
each element characterized by this elementary form, the solution of the problem is
assumed to be expressed by a polynomial function. The basis functions generating
this polynomial space are named shape functions.

The Virtual Element Method, which has been developed for a large range of
mathematical and engineering problems with successfully results, is an extension
of the Finite Element Method to general polygonal or polyhedral elements. The
interest for polygonal and polyhedral meshes is growing, and their use in commercial
codes is increasing. VEM further improve this aspect allowing combination of
element with different shape or number of edges in the same mesh.

There are a lot of different approaches to the approximate solution of PDE
problems and most of these methods use different trial and test functions. VEM
uses trial and test function that are solutions of PDEs inside each element.

The key features of VEM of order k are:
• the trial and test functions contain all polynomials of degree ≤ k and a non-

polynomial part;

• if one of the two entries of the bilinear form is polynomial the local stiffness
matrix is computable in the exact form for the VEM problem since the non-
polynomial part is taken as a degree of freedom;

• if both entries are non-polynomials it is only required that the result has the
right order of magnitude and some stability properties.

In this thesis we propose a solution to the Stokes Problem in a two-dimensional
domain by means of the VEM of order k = 2 and k = 1.

This approach gives a discretized solution of the pointwise divergence-free ve-
locity vector and of the pressure, which is assumed to be of order k − 1 in each
element.
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This thesis has the following layout: the first chapter describes the Stokes prob-
lem, focusing on the variational formulation and the conditions to obtain a stable
solution. The second chapter shows, from a theoretical point of view, the Virtual
Elements Method for the Stokes problem, giving a definition of the Virtual spaces
and the degrees of freedom. The third chapter shows the implementation of the
Virtual Elements Method in Matlab, focusing on the evaluation of the projection
operators. Chapter four deals with the definition of a reduced formulation of the
Stokes problem. Chapter five shows the meshes and the numerical results, along
with the computation of the error convergence rate. Finally, chapter six presents
some final remarks and possible future work.
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Chapter 1

Stokes Problem

1.1 Stokes flow
The Stokes problem models the slow flow of a viscous fluid, the so called creeping
flow. It is a flow in which inertia is negligible compared to viscous and pressure
forces, momentum is transported only by viscous diffusion and not by convection.
The formal requirement is to the Reynolds number to be small: Re ¹ 1.

A highly viscous flow may result in a low Reynolds number. Thus, the Stokes
problem describes an object that move within a syrupy fluid or a syrupy fluid that
is pumped through a conduit. The forces that are generated by the motion are
frictional forces.

A common application of low Reynolds number flow is the study of small sus-
pended particles. The flow around the particles produces local velocity gradients
and local energy dissipation. This is the case, for example, of a dusty gas whose
particles are very small - whose size range is approximately 10 − 100 µm. By solv-
ing the problem it is possible to determine an effective viscous stress due to the
presence of particles.

The Stokes problem is also considered when studying low Reynolds number
hydrodynamics, particularly when studying flow in micro-scale devices. Another
application, which has to do with both high viscosity and small channels, is hydro-
dynamic lubrication. Flow through the gaps between bearings and races is governed
by a balance between pressure gradient and viscous friction. Pressures in bearing
spaces are often extremely high because the oil can prevent surfaces from coming
into contact with each other.

1.2 Stokes equations
The equation describing the Stokes flow can be derived from the conservation form
of the momentum Navier-Stokes equation.
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Stokes Problem

Considering that the momentum per unit of volume is ρu, its variation depends
on the sum of the momentum flux and of the field forces per unit of volume and
per unit of surface area.

d

dt

Ú
Ω
ρu dΩ = −

j
σ
ρu(u · n) dσ +

j
σ

Π · n dσ +
Ú

Ω
ρf dΩ (1.1)

where u is the velocity field of the fluid and ρ the fluid density, Π is the sum of
viscous and pressure stresses, and f is an applied body force. Ω represents a volume,
σ is its outer surface and n is the normal to the surface σ.

Exploiting the divergence theorem, Equation 1.1 can be wrote as:Ú
Ω

∂

∂t
(ρu) dΩ = −

Ú
Ω
div (ρuu) dΩ +

Ú
Ω
div (Π) dΩ +

Ú
Ω
ρf dΩ

To obtain the differential form of the momentum equation:

∂

∂t
(ρu) + div (ρuu) = div Π + ρf (1.2)

Assuming that the fluid is incompressible and that the Reynolds number is
very low, the term on the left vanishes and the following represents the momentum
equation for the Stokes flow:

div Π + f = 0 (1.3)
The divergence of the stress tensor can be expressed as:

div Π(u, p) = −∇p+ 2µ div ε(u) (1.4)

where p is the pressure field and µ is the dynamic viscosity. Regarding the operators,
∇ the gradient for scalar functions and div the divergence.

This thesis focuses on the Stokes Problem on a polygonal domain Ω ⊆ R2 with
homogeneous Dirichlet boundary conditions:

find (u,p) such that
−2µ div ε(u) + ∇p = f in Ω
div u = 0 in Ω
u = 0 on Γ = ∂Ω

(1.5)

ε(u) is the linearized strain tensor or the symmetric part of the gradient of u:

ε(u) = ∇u + ∇uT

2 (1.6)

The mass conservation equation can be written as:
∂ρ

∂t
+ div (ρu) = 0 (1.7)
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1.3 – Variational formulation

For an incompressible flow, Equation 1.7 become:

div u = 0

u is called divergence-free or solenoidal.

1.2.1 Boundary conditions
The last condition in Equation 1.5 represents the no-slip condition for the problem.

Physically, the condition un = 0 models an impermeable wall. In particular,
referring to the principle of conservation of mass, no mass is lost or gained across
this boundary.

The conditions on the tangential velocity model the fact that the velocity at
the wall is zero because of viscosity.

1.3 Variational formulation
In order to simplify the subsequent discussion, it is customary to replace the strain
tensor by the gradient. 

find (u,p) such that
−µ∆u + ∇p = f in Ω
div u = 0 in Ω
u = 0 on Γ = ∂Ω

(1.8)

where ∆ denotes the vector Laplacian.
Assuming u and v are respectively the trial and test function, the weak form

of Equation 1.8 is:

find (u,p) such thatÚ
Ω
µ∇u : ∇v dΩ −

Ú
Ω
p div v dΩ =

Ú
Ω
f · v dΩ in ΩÚ

Ω
q div u = 0 in Ω

u = 0 on Γ = ∂Ω

(1.9)

It is easy to prove that the pressure p is determined by the Stokes equations
only up to a constant.

For any divergence-free function u, the following relation holds:Ú
Ω
div u dx =

Ú
∂Ω

u · n ds = 0

13



Stokes Problem

The only term the Equation 1.9 which determines the pressure is:Ú
Ω
p div v dx = −

Ú
Ω
v∇p dx+

Ú
∂Ω

v · n p ds = −
Ú

Ω
v∇p dx (1.10)

If p0 is a constant value pressure, its gradient is zero. According to Equation 1.10, it
is possible to add any constant p0 to the solution of p without changing the integral
above. Thus, p is determined up to a constant.

1.3.1 Bilinear forms
The trial and test functions u, v ∈ V and the scalar function q ∈ Q. The spaces
V and Q are defined as follows:

V := [H1
0 (Ω)]2 (1.11)

Q := L2
0(Ω) =

;
q ∈ L2(Ω) s.t.

Ú
Ω
q dΩ = 0

<
(1.12)

It is possible to write a variational formulation of the Problem 1.8 using the
bilinear forms a(·, ·) and b(·, ·).
The bilinear form a(·, ·) : V × V → R and b(·, ·) : V ×Q → R are defined by:

a(u,v) :=
Ú

Ω
µ∇u : ∇v dΩ, for all u,v ∈ V (1.13)

b(v, q) :=
Ú

Ω
div v q dΩ for all v ∈ V, q ∈ Q (1.14)

(f,v) :=
Ú

Ω
f · v dΩ (1.15)

A variational formulation of the Problem (1.8) is:
find (u, p) ∈ V ×Q such that
a(u,v) + b(v, p) = (f,v) for all v ∈ V,
b(u, q) = 0 for all q ∈ Q.

(1.16)

1.4 Discrete problem
The discrete version of the Problem 1.16 is the following:

find (uh, ph) ∈ Vh ×Qh such that
a(uh,vh) + b(vh, ph) = (fh,vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh.

(1.17)

{Vh ∈ V} and {Qh ∈ Q} represent two families of finite dimensional subspaces
dependent on the discretization parameter h.

The Problem 1.17 admits a unique solution if the following conditions are veri-
fied [9, pp. 308–309]:
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1.4 – Discrete problem

1. The bilinear form a(·, ·) is coercive:

∃α > 0 such that a(vh,vh) ≥ αëvhë2
V ∀vh ∈ Zh

where Zh := { vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh }
(1.18)

2. The bilinear form a(·, ·) is continue:

∃γ > 0 such that |a(vh,uh)| ≤ γëvhëV ëuhëV ∀vh,uh ∈ Vh (1.19)

3. The bilinear form b(·, ·) is continue:

∃δ > 0 such that |b(vh, qh)| ≤ δëvhëV ëqhëQ ∀vh ∈ Vh, qh ∈ Qh (1.20)

4. Exist β > 0 such that:

∀qh ∈ Qh,∃vh ∈ Vh : b(vh, qh) ≥ βëvhëH1(Ω)ëqhëL2(Ω) (1.21)

Equation 1.21 can be written as follows:

inf
qh∈Qh,qh /=0

sup
vh∈Vh,vh /=0

b(vh, qh)
ëvhëH1(Ω)ëqhëL2(Ω)

≥ β (1.22)

Condition 1.22 is known as the inf-sup condition. There are two strategies generally
followed to obtain stable elements, called compatible elements:

• to choose the spaces Vh and Qh so that the inf-sup condition is verified;

• to stabilize the problem, eliminating spurious modes.

Only methods that satisfy the inf-sup condition have been considered in this dis-
cussion.

In the next chapters, the Virtual Elements Method will be investigated and a
solution of the Stokes problem will be proposed. In particular, it will be provided
a definition of the virtual element spaces Vh and Qh which allows to verify the
inf-sup condition.
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Chapter 2

Virtual Element Method

The Virtual Element Method is an extension of the Finite Element Method to
general polygonal or polyhedral meshes. The virtual elements spaces are such as
the usual spaces of the finite elements with the addition of suitable non-polynomial
functions. The spaces and degrees of freedom are chosen in such a way that the
elementary stiffness matrix can be calculated without actually having to calculate
these non-polynomial functions, but using only the degrees of freedom.

In this way it is possible to manage without difficulty complicated element
geometries, higher order continuity conditions (such as C1, C2, . . . ) or mixed prob-
lems. This method is very general and could be applied to a large number of
different problems.

2.1 Decomposition of the domain

Th is a decomposition of a domain Ω into a finite number of simple polygons E.
hE is the diameter of each element E and h denote the maximum diameter of the
elements of Th.

hE := diameter(E), h := sup
E∈Th

hE

Each element E in Th has to fulfil some assumptions:

A1.1 ∀h ∃γ > 0 such that E is star-shaped with respect to a ball of radius ≥ γhE

A1.2 ∀h ∃γ > 0 such that the distance between any two vertexes of E is ≥ γhE or
that the lenght of all edges is comparable with its diameter hE.

17



Virtual Element Method

2.2 Finite dimensional subspaces
The VEM approximation of the Problem 1.17 is:

find (uh, ph) ∈ Vh ×Qh such that
ah(uh,vh) + b(vh, ph) = (fh,vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh.

(2.1)

where Vh ⊂ V is the space of discrete velocities, Qh ⊂ Q is the space of discrete
pressures, ah(uh,vh) and (fh,vh) are the approximation of the following integrals:

ah(uh,vh) Ä ν
Ú

Ω
∇uh : ∇vh ∀vh,wh ∈ Vh

(fh,vh) Ä
Ú

Ω
f · vh ∀vh ∈ Vh.

The continuous solution has to verify div u = 0 (Equation 1.16):

u ∈ Z = { v ∈ V s. t. div v = 0 } .

Similarly, the discrete solution satisfies the second row of the discrete Problem 2.1:Ú
Ω
qh div uh = 0 ∀qh ∈ Qh

therefore

uh ∈ Zh =
;
vh ∈ Vh s. t.

Ú
Ω
qh div vh = 0 ∀qh ∈ Qh

<
.

Even assuming that the original space Vh has good approximation properties, it is
not guaranteed that Zh is sufficiently rich to approximate the solution u ∈ Z.

For any finite element formulation, if it exists β > 0, uniform with respect to h,
such that the inf-sup condition is verified (Equation 1.22), it can be showed that
the spaces Zh and the spaces Vh approximates u at the same convergence rate.

For the virtual element formulation, the virtual spaces are defined as follow:

Qh =
î
q ∈ L2

0(Ω) : q|E ∈ QE
h ∀E ∈ Th

ï
(2.2)

Vh =
î
v ∈ [H1

0 (Ω)]2 : v|E ∈ VE
h ∀E ∈ Th

ï
(2.3)

The spaces Vh and Qh will be defined element-wise by introducing the local spaces
VE
h and QE

H and the associated local degree of freedom.
As regards the local space for velocities, it is defined as follows:

VE
h :=

v ∈ [H1(E)]2 s.t. v|∂E ∈ [Bk(∂E)]2,
−ν∆v − ∇s ∈ Gk−2(E)⊥,
div v ∈ Pk−1(E),

for some s ∈ L2(E)
 (2.4)
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2.3 – Degree of freedom

VEM functions restricted to the edge ∂E are defined on the space Bk(∂E), which is
the space of the continuous functions that are polynomials on each edge and k ∈ N
is the highest degree of the set of polynomials:

Bk(∂E) :=
î
v ∈ C0(∂E) s.t. v|E ∈ Pk(e) ∀ edge e ⊂ ∂E

ï
The space Gk(E)⊥ includes all the vector polynomials ⊆ [Pk(E)]2 that cannot be
written as gradients of a vector polynomial of degree k + 1:

Gk(E) := ∇ (Pk+1(E)) ⊆ [Pk(E)]2

and Pk(E) is the union of two spaces:

Pk(E) = Gk(E) ⊕ Gk(E)⊥

Inside each polygon E, functions of VE
h are solutions to the momentum equation

with polynomial data and, in particular, the divergence of a function in VE
h is a

polynomial of degree k − 1.

dim(VE
h ) = 2nEk + (k − 1)(k − 2)

2 + (k + 1)k
2 − 1 = 2nEk + k(k − 1) (2.5)

For the local space QE
h it holds:

QE
h := Pk−1(E) (2.6)

and its dimension is:

dim(QE
h ) = dim(Pk−1(E)) = (k + 1)k

2 (2.7)

2.3 Degree of freedom
A suitable set of degrees of freedom for the local velocity v ∈ VE

h can be introduced:

DV 1 : vertex values of v

DV 2 : k − 1 pointwise values of v for every edge e ∈ ∂E

DV 3 : the moments: Ú
K
v · g⊥k−2 dE ∀g⊥k−2 ∈ Gk−2(E)⊥

DV 4 : the "divergence" moments:Ú
E

(div v)qk−1 dE ∀qk−1 ∈ Pk−1(E)/R

19



Virtual Element Method

(a) k = 2 (b) k = 3

Figure 2.1: Degrees of freedom for the local approximation velocity field

In Figure 2.1 there is an idealized depiction of the degrees of freedom DV 1-DV 4.
DV 1 and DV 2 are the 2knE black dots, which are the pointwise degrees of freedom
located on the boundary; on the other hand DV 4 are the blue dots and DV 3 are
the red dots, which are non-local and are instead defined as a surface integral.

For the local pressure q ∈ QE
h :

DQ : the moments of q: Ú
E
qpk−1 dE ∀pk−1 ∈ Pk−1(E)

2.4 Discrete bilinear forms and projection oper-
ator

It is now possible to define the discrete bilinear forms of the Problem 2.1. As
regards the first bilinear form aE(v,w), it can be proved that it is not computable
for (v,w) ∈ VE

h × VE
h . As usually in VEM, it is introduced a computable discrete

approximation of the continuous bilinear form aE(·, ·):

aEh (·, ·) : VE
h × VE

h → R (2.8)

with the following properties:

A2.1 k-consistency: for all q ∈ [Pk(E)]2 and vh ∈ VE
h

aEh (q,vh) = aE(q,vh);

20



2.4 – Discrete bilinear forms and projection operator

A2.2 stability: there exist two positive constants α∗ and α∗, independent of h and
E, such that, for all vh ∈ VK

h , it holds:

α∗a
E(vh,vh) ≤ aEh (vh,vh) ≤ α∗aE(vh,vh).

In order to write a computable form for aEh (·, ·), it is introduced a projection
operator Π∇,Ek : VE

h → [Pk(E)]2, for all E ∈ Th, defined by:
aE(qk,vh − Π∇,Ek vh) = 0 for all qk ∈ [Pk(K)]2,
P 0,E(vh − Π∇,Kk vh) = 0

(2.9)

where P 0,E, defined on E, is the L2-projection operator onto the constant functions.
The projector operator Π∇,Ek is computable because the bilinear form aE(qk,vh)

is computable from the degrees of freedom.
It holds:

Π∇,Ek qk = qk for all qh ∈ Pk(E) (2.10)

Then, writing aEh (u,v) = aE
1
Π∇,Ek uh,Π∇,Ek vh

2
will ensure property A2.1.

Summing a stabilizing term, both A2.1 and A2.2 will be verified.
SE(·, ·) is chosen between the symmetric positive definite bilinear form so that

SE(v,v) scales as aE(v,v) and it is defined as follows:

∃ c0, c1, for all E and hE, s.t.
c0a

E(v,v) ≤ SE(v,v) ≤ c1a
E(v,v) ∀v ∈ VE with Π∇,Ek v = 0

Then:

aEh (uh,vh) := aE
1
Π∇,Ek uh,Π∇,Ek vh

2
+ SE

1
(I − Π∇,Ek )uh, (I − Π∇,Ek )vh

2
(2.11)

The global approximated bilinear form ah(·, ·) : Vh × Vh → R :

ah(uh,vh) :=
Ø
E∈Th

aEh (uh,vh) for all uh,vh ∈ Vh. (2.12)

Regarding b(·, ·), it does not require an approximation because it is computable.

b(vh, qh) =
Ø
E∈Th

bE(vh, qh) =
Ø
E∈Th

Ú
E
div vh qh dE for all vh ∈ Vh, qh ∈ Qh

(2.13)
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2.5 Construction of the right-hand side
Considering the case k = 2, fh is defined on each element E as the L2(E)-projection
of f onto the space Pk:

Π0,E
k := [L2(E)]2 → [Pk(E)]2]

fh := Π0,E
k f (2.14)

Thus, the associated righ-hand side is:

(fh,vh) =
Ø
E∈Th

Ú
E
fh · vh dE =

Ø
E∈Th

Ú
E

Π0,E
k f · vh dE =

Ø
E∈Th

Ú
E
f · Π0,E

k vh dE (2.15)

22



Chapter 3

Implementation in Matlab

A solution for the Stokes problem has been implemented in Matlab. This Matlab
script provides a solution starting from the mesh and from the definition of the
reference velocity and pressure fields. The code structure has a main file that calls
all the necessary functions. Inside the main file there are the necessary pressure
and velocity initializations as symbolic functions, from which the forcing function is
easily obtained on the whole reference domain, then the mesh is imported and two
structures are created: in the first structure there are all the values related to the
degrees of freedom and the number of contributions necessary for the construction
of the stiffness matrix, while in the second structure there are all the auxiliary
values to the VEM formulation.

After the initializations, there is a for loop which evaluates for each element the
local stiffness matrix and the local right-hand side vector.

At the end of the for loop the overall stiffness matrix is built, the system solved
and the errors evaluated. The Stokes problem has been solved for three different
cases: k = 1, k = 2 and k = 2 with a reduced number of degrees of freedom, as
shown in Chapter 4.

3.1 VEM basis
This section describes how the problem is set up to be solved with the VEM,
what choices have been made and what kind of functions has been chosen for the
discretization. First of all, it is necessary to choose some tools useful to deal with
the VEM. One of them is given by the so called scaled-monomial mα.

{mE
α} is an orthonormal basis in L2(E) of Pk(E) defined as follows:

mE
α :=

3
x− xE
hE

4α1 3y − yE
hE

4α2

(3.1)

where (xE, yE) are the coordinates of the centroid of E and hE its diameter.

23



Implementation in Matlab

As regards α, there are the following terms:

α := (α1, α2) |α| = α1 + α2

and:
|α| = 0, ..., k

It is necessary to vectorize these basis and consider the multi-index α for the two
monomials, in such a way as to decouple the equations necessary for the evaluation
of the x and y component of the velocity. All the α pairs have been saved and they
are summarized in this table:

Table 3.1: Monomial exponent for k = 2

i 1 2 3 4 5 6
α (0,0) (1,0) (0,1) (2,0) (1,1) (0,2)
k 0 1 2

Table 3.2: Monomial exponent for k = 1

i 1 2 3
α (0,0) (1,0) (0,1)
k 0 1

Basis functions can be represented with the following notation, the first half of
the basis is constructed with the second term null and the second half with the first
term null:

I A
mi

0

B J (k+1)(k+2)
2

i=1
,

I A
0
mi

B J (k+1)(k+2)
2

i=1

3.1.1 Vandermonde matrices
From the Table 3.1 and 3.2 it is possible to evaluate, for each element, the Vander-
monde matrix of order k which has the purpose of containing all the values of the
monomial basis in the quadrature points. For this purpose, internal and boundary
quadrature points are defined.

To obtain an exact evaluation of the integral it is important that internal quadra-
ture points are in an adequate number with respect to the order of the monomial
basis, while on the edge it has been chosen to make the quadrature nodes coin-
cide with the degrees of freedom on the boundary of E in order to guarantee the
accuracy of the integral.
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It is easy to verify that the first two sets of degrees of freedom (DV 1 and DV 2)
allow to obtain the value of the function in the k + 1 Gauss-Lobatto quadrature
nodes, allowing to exactly integrate polynomials on the edges up to order 2k − 1.

Therefore, for each element, the quadrature points are written as Q(E) and the
respective weights W(E). The Vandermonde matrix of order k is the following [4]:

(VE
k )ij = mj(xEi ), i ∈ {1, . . . , NE

Q , j ∈ {1, . . . , Nk} (3.2)
And the diagonal quadrature weights matrix is defined as:

(WE)ij = (wE)iδij ∀i, j ∈ {1, . . . , NE
Q} (3.3)

Where NE
Q represents the number of internal quadrature points for the element E

and Nk is the number of monomial basis to represents function in a polynomial
functions space of order k.

The Vandermonde matrices for the Gauss-Lobatto quadrature points on the
edges are indicated in the same way, with the difference that, in this case, the
number of points is equal to the number of degrees of freedom on the element edges
N∂E
Q = 2knE.

(V∂E
k )ij = mj(xEi ), i ∈ {1, . . . , N∂E

Q , j ∈ {1, . . . , Nk} (3.4)
(W∂E)ij = (w∂E)iδij ∀i, j ∈ {1, . . . , N∂E

Q } (3.5)
It is useful for the discussion to consider also the Vandermonde matrices of the

derivatives. To do this, the derivative of each monomial base has been evaluated and
written as a function of some coefficients for other monomials. All the coefficients
are collected in two matrices (Dk,x and Dk,y) and these should be multiplied by the
Vandermonde matrix.

VE
k,x = VE

kDE
k,x (3.6)

VE
k,y = VE

kDE
k,y (3.7)

∂mj

∂x
= α

(i)
1
hE

mi =
NkØ
i=1

(DE
k,x)mi

∂mj

∂y
= α

(i)
2
hE

mi =
NkØ
i=1

(DE
k,y)mi

α
(i)
1 and α(i)

2 are respectively the coefficients α1 and α2 that correspond to the index
i, as shown in Tables 3.1 and 3.2. Thus, since Dk,x = 1

hE
DE
k,x and Dk,y = 1

hE
DE
k,y,

the coefficient matrices are evaluated as follows:

(Dk,x)ij =
α1 if i = j − α1 − α2 and α1 > 0,

0 otherwise
and

(Dk,y)ij =
α2 if i = j − α1 − α2 − 1 and α2 > 0,

0 otherwise
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3.1.2 Divergence matrix
Another important tool useful to deal with VEM implementation is the divergence
matrix BE [6]. The local pressure degrees of freedom are represented with respect
to the re-scaled basis Mk−1(E):

q =
πk−1Ø
i=1

ci
hE
|E|

mi. (3.8)

where {ci}πk−1
i=1 are the unknown coefficients of q for each element. πk−1 is the

dimension of the space Pk−1.
From the definition of the divergence momentsDV 4, using the previous relation:Ú

E
(div vh)mj dE = |E|

hE
DV 4(vh) for j = 2, 3Ú

E
(div vh) dE =

Ú
∂E

vh · n dE =
Ø
e∈∂E

Ú
e
vh · ne dE for j = 1

(3.9)

This allows us to exactly evaluate the bilinear form b(v, q) of the Stokes problem
in the local matrix BE ⊆ Rdim(QE

h )×dim(VE
h ).

BE =
C
b1 . . . b2knE

0 . . . 0
0 I

D
(3.10)

where
bi = hE

|E|

Ú
∂E
ϕi · n de for i = 1, . . . , 2knE.

3.2 Projector Π∇

To compute the discrete VEM bilinear form 3.11 it is necessary to compute the
polynomial projection of the basis functions Π∇k : VE

h → [Pk(E)]2.

a∇,Eh (ϕi,ϕj) :=
Ú
E

∇(Π∇k ϕi) : ∇(Π∇k ϕj) dE + S∇
1
(I − Π∇k )ϕi, (I − Π∇k )ϕj

2
(3.11)

The equation describing the projection operator is as follows [6]:
Ú
E

∇(vh − Π∇k vh) : ∇mj dE = 0 ∀mj ∈ [Mk(E)]2 \ [M0(E)]2Ú
∂E

(vh − Π∇k vh) · mj de = 0 ∀mj ∈ [M0(E)]2
(3.12)

which can be rewrote as:
2πkØ
i=1

ξi

Ú
E

∇mi : ∇mj dE =
Ú
E

∇vh : ∇mj dE. (3.13)
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From this formulation, it is possible to identify two matrices from the right-
hand side term and from the left-hand side term and then evaluate the unknown
coefficients ξi that represent the projection matrix from VE

h to [Pk(E)]2.

3.2.1 Matrix G
Gij =

Ú
E

∇mi : ∇mj dE =
Ø

a∈ninternal

Wa

1
∇mi(x̂a) : ∇mj(x̂a)

2
(3.14)

Where x̂a represents the internal Gauss-Lobatto quadrature points.
mi basis are defined as follows for k = 2:I A

mi

0

B J6

i=1
,

I A
0
mi

B J6

i=1

And the gradient can be evaluated:

∇mi =


∂mx,i

∂x

∂mx,i

∂y
∂my,i

∂x

∂my,i

∂y



Table 3.3: mi basis, gradient and laplacian of mi for k = 1

i mi ∇mi ∆mi

1
A

1
0

B 0 0
0 0

 A
0
0

B

2 x− xE
hE

A
1
0

B
1
hE

1 0
0 0

 A
0
0

B

3 y − yE
hE

A
1
0

B
1
hE

0 1
0 0

 A
0
0

B

4
A

0
1

B 0 0
0 0

 A
0
0

B

5 x− xE
hE

A
0
1

B
1
hE

0 0
1 0

 A
0
0

B

6 y − yE
hE

A
0
1

B
1
hE

0 0
0 1

 A
0
0

B
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Table 3.4: mi basis, gradient and laplacian of mi for k = 2

i mi ∇mi ∆mi

1
A

1
0

B 0 0
0 0

 A
0
0

B

2 x− xE
hE

A
1
0

B
1
hE

1 0
0 0

 A
0
0

B

3 y − yE
hE

A
1
0

B
1
hE

0 1
0 0

 A
0
0

B

4 (x− xE)2

h2
E

A
1
0

B
2(x− xE)

h2
E

1 0
0 0

 2
h2
E

A
1
0

B

5 (x− xE)(y − yE)
h2
E

A
1
0

B
1
h2
E

(y − yE) (x− xE)
0 0

 A
0
0

B

6 (y − yE)2

h2
E

A
1
0

B
2(y − yE)

h2
E

0 1
0 0

 2
h2
E

A
1
0

B

7
A

0
1

B 0 0
0 0

 A
0
0

B

8 x− xE
hE

A
0
1

B
1
hE

0 0
1 0

 A
0
0

B

9 y − yE
hE

A
0
1

B
1
hE

0 0
0 1

 A
0
0

B

10 (x− xE)2

h2
E

A
0
1

B
2(x− xE)

h2
E

0 0
1 0

 2
h2
E

A
0
1

B

11 (x− xE)(y − yE)
h2
E

A
0
1

B
1
h2
E

 0 0
(y − yE) (x− xE)

 A
0
0

B

12 (y − yE)2

h2
E

A
0
1

B
2(y − yE)

h2
E

0 0
0 1

 2
h2
E

A
0
1

B
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Thus, the matrix G has two null rows and columns, which pair with the basis
functions m1 and m7. The last line of Equation 3.12 introduces a new condition to
remove null rows. It can be written as:

2πkØ
i=1

ξi

Ú
∂E

mi · mj de =
Ú
∂E

vh · mj de (3.15)

where πk = (k + 1)(k + 2)
2 .

The left-hand side of 3.15:Ú
∂E

mi · mj de =
Ø

a∈nboundary

Wa

1
mi(x̂a) · mj(x̂a)

2

It must be taken into account that mj ∈ [M0(E)]2, thus j = 1,7 for k = 2. These
are the new contributes to the matrix G:G1:6,1 = q

aWami(x̂a)
G7:12,7 = q

aWami(x̂a)

Matrix G for k = 2 has the following structure:

G =



• • • • • •
• • •

• • •
• • •
• • • • •

• • •
• • • • • •

• • •
• • •

• • •
• • • • •

• • •



(3.16)

3.2.2 Matrix B
Matrix B represents the right-hand side term in Eq. 3.13:Ú

E
∇vh : ∇mj dE = −

Ú
E
vh · ∆mj dE +

Ø
e∈∂E

Ú
e
vh · (∇mjne) dE (3.17)

The boundary summation is easily computable because VEM function in quadra-
ture nodes is

1
1
0

2
or
1

0
1

2
.
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Ø
e∈∂E

Ú
e
vh · (∇mjne) dE =

Ø
e∈∂E

Ø
a∈nboundary

Wavi(x̂a) · (∇mj(x̂a)ne).

The following matrix represents the value of the VEM function in all nodes
corresponding to the degrees of freedom.

vi(x̂a) = diag


A

1
0

B
ü ûú ý
node 1

,

A
1
0

B
ü ûú ý
node 2

, . . . ,

A
1
0

B
ü ûú ý

node 2ne

,

A
1
0

B
ü ûú ý

internal
node

,

A
0
1

B
ü ûú ý
node 1

,

A
0
1

B
ü ûú ý
node 2

. . . ,

A
0
1

B
ü ûú ý

node 2ne

,

A
0
1

B
ü ûú ý

internal
node


(3.18)

the first term of Equation 3.17 can be easily evaluated by rewriting the Laplacian
of the basis as a function of another basis, as previously done with the derivative
matrix. As shown in Table 3.4, ∆mj is:

∆m4,∆m6 = ∆m(4,∅),∆m(6,∅) = 2
h2
E

m(1,∅)

and:

∆m10,∆m12 = ∆m(∅,4),∆m(∅,6) = 2
h2
E

m(∅,1).

Thus, it becomes:

Ú
E
vh · ∆m4 dE = 2

h2
E

Ú
E
vh · m(1,∅) dE = 2

hE

Ú
E
vh · ∇m2 dE

Ú
E
vh · ∇m2 dE = −

Ú
E

(divvh)m2 dE +
Ø
e∈∂E

Ú
e
(vh · ne)m2 de (3.19)

The same steps are used for j = 6,10,12.
To evaluate the first integral of Equation 3.19 it is necessary to exploit the basis
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decomposition in Table 3.5 and the local matrix BE (Subsection 3.1.2):







,

kNE+1ú ýü û

2|E|
h2
E

2|E|
h2
E



,





,

2(kNE+1)ú ýü û
2|E|
h2
E

2|E|
h2
E





(3.20)

Solving the summation (3.19), we obtain:

− 2
hE





nexW1m2(x̂1) . . . nexWkNE
m2(x̂kNE

)

nexW1m2(x̂1) . . . nexWkNE
m2(x̂kNE

)



,





,

neyW1m3(x̂1) . . . neyWkNE
m3(x̂kNE

)

neyW1m3(x̂1) . . . neyWkNE
m3(x̂kNE

)



,






(3.21)

The right-hand side term of Equation 3.15 is:

Ú
∂E

vh · mj de =
Ø

a∈nbordo

Wavi(x̂a) · mj(x̂a)

where j = 1,7 for k = 2.
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Matrix B is the sum of these four contributions and takes this form:

B =





• • • . . . • • •
• • • . . . • • •
• • • . . . • • •
• • • . . . • • •
• • • . . . • • •
• • • . . . • • •



,



•

•



,



• • • . . . • • •
• • • . . . • • •
• • • . . . • • •
• • • . . . • • •
• • • . . . • • •
• • • . . . • • •



,

•

•





(3.22)
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Table 3.5: bs and βs coefficients

mααα,∅ = h

|ααα| + 1∇m(α1+1,α2) + α2

|ααα| + 1m
⊥m(α1,α2−1)

m∅,βββ = h

|βββ| + 1∇m(β1,β2+1) − β1

|βββ| + 1m
⊥m(β1−1,β2)

m1,∅ = h∇m(1,0) = h∇m2

m2,∅ = h

2∇m(2,0) = h

2∇m4

m3,∅ = h

2∇m(1,1) + 1
2m

⊥m(0,0) = h

2∇m5 + 1
2m

⊥m1

m4,∅ = h

3∇m(3,0) = h

3∇m7

m5,∅ = h

3∇m(2,1) + 1
3m

⊥m(1,0) = h

3∇m8 + 1
3m

⊥m2

m6,∅ = h

3∇m(1,2) + 2
3m

⊥m(0,1) = h

3∇m9 + 2
3m

⊥m3

m∅,1 = h∇m(0,1) = h∇m3

m∅,2 = h

2∇m(1,1) − 1
2m

⊥m(0,0) = h

2∇m5 + 1
2m

⊥m1

m∅,3 = h

2∇m(0,2) = h

2∇m6

m∅,4 = h

3∇m(2,1) − 2
3m

⊥m(1,0) = h

3∇m8 − 2
3m

⊥m2

m∅,5 = h

3∇m(1,2) − 1
3m

⊥m(0,1) = h

3∇m9 − 1
3m

⊥m3

m∅,6 = h

3∇m(0,3) = h

2∇m10
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3.3 Projector Π0

In order to obtain the local system of the Stokes problem with the VEM it is
necessary to follow another step. To calculate an approximation of the right-hand
side term in Equation 2.1 we have to introduce the projector Π0

k which provides a
L2-projection from VE

h to [Pk(E)]2. This projector allows us to evaluate the forcing
vector in the degrees of freedom and therefore to be able to construct the rhs in
the local system. For this purpose, the procedure described in Section 2.5 has been
followed. The Π0

k projector is defined as follows:Ú
E

(vh − Π0
kvh) · mj dE = 0 ∀mj ∈ [Mk(E)]2 (3.23)

By separating the two products it is possible to rewrite it in this way:

2πkØ
i=1

ζi

Ú
E
mi · mj dE =

Ú
E
vh · mj dE (3.24)

We separate the two contributions on the right and on the left which are eval-
uated through the construction of the matrices C and H.

3.3.1 Matrix C

The evaluation of the matrix C is simple and follows the same steps used for
the matrix G, with the difference that to evaluate the matrix G it is necessary to
integrate the Vandermonde matrices of the derivatives of the monomial basis, while
for the matrix C the Vandermonde matrix of the basis is used.

The integral is solved by the Gauss quadrature method:Ú
E
mi · mj dE =

Ø
a∈ninternal

Wa (mi(x̂a) · mj(x̂a))

The matrix C is the following:

C =
Ø

a∈ninternal

Wa (mi(x̂a) · mj(x̂a)) for i, j = 1, . . . , 2πk (3.25)

3.3.2 Matrix H

The rhs of the Equation 3.24 is equal to:Ú
E
vh · mj dE = b1

Ú
E
vh · ∇mβ1 dEü ûú ý

(A)

+b2

Ú
E
vh · m⊥mβ2 dEü ûú ý

(B)

(3.26)

34



3.4 – Local system

The integral (A) can be written as:Ú
E
vh · ∇mβ1 dE = −

Ú
E

(div vh)mβ1 dE +
Ø
e∈∂E

Ú
e
(vh · ne)mβ1 de (3.27)

While the summation is easily computable because the VEM functions are known
at the boundary,Ø

e∈∂E

Ú
e
(vh · ne)mβ1 dE =

Ø
e∈∂E

Ø
a∈nboundary

Wa(vi(x̂a) · ne)mβ1 (3.28)

the moment of the divergence has a more complicated calculation. The Section
3.1.2 can be used to evaluate this integral, for which it is necessary to exploit
an order of integration greater than that used for the other integrals because the
coefficient β1, which follows Table 3.5, reaches πk+1.

The integral (B), if k − 2 ≤ |β2| ≤ k − 1, can be written as:
Ú
E
vh · m⊥mβ2 dE =

Ú
E

Π∇k vh · m⊥mβ2 dE =
2πkØ
i=1

ζi

Ú
E
mi · m⊥mβ2 dE (3.29)

In which the enhancing condition is exploited to evaluate an approximate solution
of the integral. The coefficients β2 come from Table 3.5, which corresponds to:

Ø
a=ninternal



0 0 . . . 0
0 0 . . . 0

(Π∇k )3,1m3m1(x̂a) (Π∇k )3,2m3m1(x̂a) . . . (Π∇k )3,Ndofm3m1(x̂a)
0 0 . . . 0

(Π∇k )5,1m5m2(x̂a) (Π∇k )5,2m5m2(x̂a) . . . (Π∇k )5,Ndofm5m2(x̂a)
0 0 . . . 0
... ... ...
0 0 . . . 0

(Π∇k )11,1m11m3(x̂a) (Π∇k )11,2m11m3(x̂a) . . . (Π∇k )11,Ndofm11m3(x̂a)
0 0 . . . 0



·m⊥(x̂a)

(3.30)
where

m⊥ :=
A
m(0,1)

−m(1,0)

B
=
A
m3

−m2

B
.

3.4 Local system
The local stiffness matrix can be evaluated following [2]. Assuming that:

vh =
NdofØ
i=1

dofi(vh)ϕi ∀vh ∈ VE
h
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where ϕi represent the basis functions of the space VE
h and

dofi(ϕi) = δij i, j = 1, . . . , Ndof,

the local stiffness matrix KE can be computed as:

(KE)ij = (∇ϕi,∇ϕj)0,E i, j = 1, . . . , Ndof (3.31)

To evaluate this integral no quadrature formulas are used which would require
approximate forms of the basis functions. The VEM approach requires using the
associated bilinear form which is exact if one of the two entries is a polynomial of
degree k.

For this reason it is not necessary to write an explicit form of the base function
ϕi.

Using the projector Π∇ it is possible to write:

(KE)ij = (∇ Π∇ϕi,∇ Π∇ϕj)0,E +
1
∇ (I − Π∇)ϕi,∇ (I − Π∇)ϕj

2
0,E

(3.32)

The first term assure conditionA2.1 which takes consistency while the second term
assures condition A2.2 which takes stability.

The following equation is the matrix expression of the local stiffness matrix:

Kh
E = (Π∇∗ )T G̃(Π∇∗ ) + (I − Π∇)T (I − Π∇) (3.33)

where G̃ coincides with G except for the rows depending on the monomial base m1
which is set to zero. For k = 2 the rows set to zero are the first and the seventh
because: m1 =

1
m1
0

2
and m7 =

1
0
m1

2
.

Then:
Π∇∗ = G−1B

and
Π∇ = DΠ∇∗ .

The matrix D represents the value of the degrees of freedom calculated in the
monomial basis:

D =


dof1(m1) dof1(m2) . . . dof1(m2πk

)
dof2(m1) dof1(m2) . . . dof1(m2πk

)
... ... . . . ...

dofNdof(m1) dofNdof(m2) . . . dofNdof(m2πk
)

 (3.34)

For k = 2 the matrix D has two diagonal blocks that include the boundary
Vandermonde matrix and two rows that correspond to the DV 4 degrees of freedom
that represent the integral of the divergence of the basis multiplied by the column
2 or 3 respectively of the Vandermonde matrix.

For k = 1 there are no DV 4 degrees of freedom.
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3.5 Global system
Once the local system has been evaluated, the contributions are saved within a
vector which, when suitably indexed, allows the construction of the global stiffness
matrix. The local stiffness matrix of each element is a diagonal block matrix com-
posed of two blocks, where the first block refers to the degrees of freedom of ux
and the second to uy. By exploiting the decoupling of the system, it is possible to
separately assemble the global matrix by two blocks that refers to the ux and uy
degrees of freedom.

The global system also requires some coupling terms between velocity and pres-
sure, which correspond to the exact solution of the bilinear form b(vh, q), that we
have already calculated in Section 3.1.2 within the matrix BE, built starting from
DV 4.

We have introduced a new set of global basis functions ϕijj in order to write an
algebraic formulation of the Stoke Problem in the cases or our interest. j represents
the number of the set of degrees of freedom.

• ϕi11 , corresponding to DV 1, i1 = 1, . . . , 2nV

• ϕi22 , corresponding to DV 2, i1 = 1, . . . , 2(k − 1)nE

• ϕi33 , corresponding to DV 3, i1 = 1, . . . , nP (k−1)(k−2)
2

• ϕi44 , corresponding to DV 4, i1 = 1, . . . , nP ( (k+1)k
2 − 1)

Here, the set
î
ϕi11 , ϕ

i2
2 , ϕ

i3
3 , ϕ

i4
4

--- i1, i2, i3, i4 ï is a basis for Vh.
The global stiffness matrix S is defined as the evaluation of the bilinear form

ah(ϕijj , ϕill ):

(S)ij ,il := (Sj,k)ij ,il = ah(ϕijj , ϕill ) for j, l = 1, ..., 4 (3.35)

and the matrix B as the evaluation of the exact bilinear form b(ϕijj ,mα):

(B)α,ij := b(ϕijj ,mα) for |ααα| = 0, ..., k and j = 1, ..., 4 (3.36)

The matrix form for the Stokes problem is the following:

S11 S12 S13 S14 BT
1 0

ST12 S22 S23 S24 BT
2 0

ST13 ST23 S33 S34 0 0
ST14 ST24 ST34 S44 0 I
B1 B2 0 0 0 0
0 0 0 I 0 0





u1
u2
u3
u4
p0
p⊥


=



fh,1
fh,2
fh,3
fh,4
0
0


(3.37)
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Subsequently, the stiffness matrix has been ordered to distinguish two non-zero
blocks on the diagonal, as follows:



S11,x S12,x S14,x 0 0 0 BT
1,x 0

ST12,x S22,x S24,x 0 0 0 BT
2,x 0

ST14,x ST24,x S44,x 0 0 0 0 I

0 0 0 S11,y S12,y S14,y BT
1,y 0

0 0 0 ST12,y S22,y S24,y BT
2,y 0

0 0 0 ST14,y ST24,y S44,y 0 I

B1,x B2,x 0 B1,y B2,y 0 0 0
0 0 I 0 0 I 0 0





u1,x
u2,x
u4,x
u1,y
u2,y
u4,y
p0
p⊥


=



fh,1,x
fh,2,x
fh,4,x
fh,1,y
fh,2,y
fh,4,y

0
0


(3.38)

where ui,x and ui,y represent respectively the x-components and the y-components
of the vector ui.

To evaluate the system for k = 1 it is necessary to take into account that the
only degrees of freedom of the problem are those DV 1 and DQ. The global system
looks like this:  S11,x 0 BT

1,x
0 S11,y BT

1,y
B1,x B1,y 0


 u1,x
u1,y
p0

 =

 fh,1,x
fh,1,y

0

 (3.39)
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Chapter 4

The Reduced Problem

This method has an important advantage that makes it very efficient in terms of
number of degrees of freedom. By selecting the degrees of freedom as done in 2.3,
an orthogonality condition is verified among many pressure degrees of freedom and
the associated degrees of freedom for the velocities.

Therefore, several degrees of freedom can be eliminated from the system to
obtain a new reduced problem with fewer degrees of freedom.

The reduced virtual element discretization of the Stokes Problem (1.16) is:
find ûh ∈ V̂h and p̂h ∈ Q̂h, such that
ah(ûh, v̂h) + b(v̂h, p̂h) = (fh, v̂h) for all v̂h ∈ V̂h,

b(ûh, q̂h) = 0 for all q̂h ∈ Q̂h.

(4.1)

where V̂h ⊆ Vh with all the divergence moment degrees of freedom DV 4 set to
zero and Q̂h ⊆ Qh is the space of constant functions for each elements.

V̂h :=
;
v ∈ [H1

0 (Ω)]2 s.t. v|K ∈ V̂
K

h for all K ∈ Th
<

(4.2)

Q̂h :=
î
q ∈ L2

0(Ω) s.t. q|K ∈ Q̂K
h for all K ∈ Th

ï
(4.3)

And their dimensions are:

dim(V̂h) = nP
(k − 1)(k − 2)

2 + 2(nV + (k − 1)nE)

dim(Q̂h) = nP − 1
If uh ∈ Vh and ph ∈ Qh are the solution of (1.16) and if ûh ∈ V̂h and p̂h ∈ Q̂h

are the solution of (4.1), for all E ∈ Th it is easily proved that:

ûh = uh (4.4)
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and
p̂h|E = Π0,E

0 ph (4.5)

To implement the Reduced Problem we have used the coefficients matrix of the
complete problem to which the extra degrees of freedom have been removed, then
the rows and columns of the corresponding degrees of freedom have been simply
deleted. By doing so, solving the reduced problem becomes easier because it is not
necessary to evaluate new projectors and a smaller global matrix has been obtained.

The reduced problem lessens the number of degrees of freedom, both for pressure
and velocity.

As for the pressure, which previously belonged to the space of polynomials of
degree k − 1, in this problem is considered as a constant, with a saving in the
number of degrees of freedom equal to:

nP (dim(Pk−1) − dim(P0)) = nP

A
k(k + 1)

2 − 1
B

The pressure, represented by the polynomial basis described above (Equation 3.1),
was considered up to the order k − 1. In this problem the pressure is a constant,
defined in the space M̂0:

M̂0 := {mE
0 for E ∈ Th}

that is a basis for Q̂h.
Regarding velocity, the degrees of freedom DV 4 are removed and this is the

number of the dropped velocity global degrees of freedom:

nP (dim(Pk−1) − 1) = nP

A
k(k + 1)

2 − 1
B

The total saving is:
nP (k(k + 1) − 2)

Table 4.1: Percentage of saving in degrees of freedom for the reduced problem with
respect to the original problem

Voronoi tessellations, Fig. 5.3
% velocity DoFs 17%
% pressure DoFs 67%
% total DoFs 27%
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The following line represents the matrix form of the Reduced Problem. It has
been evaluated stating from the System 3.37.

S11 S12 S13 BT
1

ST12 S22 S23 BT
2

ST13 ST23 S33 0
B1 B2 0 0



û1
û2
û3
p̂0

 =


fh,1
fh,2
fh,3
0

 (4.6)

Following what has been done in Equation 3.38 it is possible to write:
S11,x S12,x 0 0 BT

1,x
ST12,x S22,x 0 0 BT

2,x
0 0 S11,y S12,y BT

1,y
0 0 ST12,y S22,y BT

2,y
B1,x B2,x B1,y B2,y 0




û1,x
û2,x
û1,y
û2,y
p̂0

 =


fh,1,x
fh,2,x
fh,1,y
fh,2,y

0

 (4.7)

Subsequently, the System 4.7 has been solved and a solution equal to that of the
original problem has been obtained. For this reason, in the next chapter, in which
numerical examples will be presented, the solution for the complete and the reduced
system will be indistinctly called solutions of the system of order k = 2.
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Chapter 5

Numerical results

To perform the numerical tests, a simple square domain Ω : [0,1] × [0,1] has been
chosen. The proposed method has been tested on different meshes to prove its
goodness to find a solution also in the case of very various elements, with different
number of edges and area or with a very high aspect ratio.

Here are some of the meshes tested (Figures 5.1, 5.2):

0 0.2 0.4 0.6 0.8 1
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0.2

0.3

0.4
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0.7

0.8

0.9

1

Figure 5.1: Mole mesh

To verify the convergence of the method it was decided to construct a Voronoi
tessellation with the PolyMesher software [8], to which an increasing number of
elements was set (Figure 5.3).

The load term f has been chosen in such a way that the exact solution is:

u(x, y) =
A 1

2 sin(2πx) sin(2πx) sin(2πy) cos(2πy)
−1

2 sin(2πy) sin(2πy) sin(2πx) cos(2πx)

B
(5.1)
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Figure 5.2: Rectangles 10 × 100 mesh

and
p(x, y) = sin(2πx) cos(2πy). (5.2)

The graphs below (Fig. 5.4-5.9) show the results obtained from applying the
method to the meshes that have been shown so far. The pressure field has been
represented as a color scale corresponding to the pressure value at the centroid of
each cell. After, the velocity field is represented through the velocity vector corre-
sponding to each vertex. The exact speed vector, in orange, and the approximate
one, in blue, have been superimposed.

The results are shown only for the case k = 2, because graphs with the results
for k = 1 are not appreciably different.

44



Numerical results

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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(b) 600 elements
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(c) 300 elements
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(d) 150 Elements
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(e) 75 Elements

Figure 5.3: Voronoi tessellations
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Figure 5.4: Mole pressure field
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Figure 5.5: Rectangles pressure field
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Figure 5.6: Mole velocity field
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Figure 5.7: Rectangles velocity field
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Figure 5.8: Voronoi meshes pressure field
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(b) 600 elements
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Figure 5.9: Voronoi meshes velocity field
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In addition to a simple domain such as the square, it was decided to test a
case with a slightly more complex domain. Therefore, the following mesh has been
created using PolyMesher within a domain with a rounded shape and two holes.
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Figure 5.10: Wrench mesh

The boundary conditions have been set as follows:

• Dirichlet homogeneous condition at the outer edge of the domain

• Neumann homogeneous condition in the degrees of freedom at the holes.

A unitary force along the x-axis direction has been applied to some degrees of
freedom. Having defined the problem in this way, we expect that a direct flow will
be generated from one the left hole to the right one.
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Figure 5.11: Wrench pressure field

0 0.5 1 1.5 2 2.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.12: Wrench velocity field
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5.0.1 Error evaluation
The expected rate of convergence for the errors, according to [6], is:

ëu − uhëL2(Ω) ≤ hk+1|u|k+1 + hk+3|f|k+1 (5.3)

ëp− phëL2(Ω) ≤ hk|u|k+1 + hk|p|k + hk+2|f|k+1 (5.4)
where (uh, ph) represent the discrete solution of the Problem 2.1 and (u, p)

represent the continuous solution (5.1) and (5.2).

error(u, L2) := 1
ëuëL2(Ω)

ó Ø
E∈Ωh

ëu − Π0
kuhë2

L2(E) (5.5)

error(p, L2) := 1
ëpëL2(Ω)

ëp− phëL2(Ω) (5.6)

To evaluate the L2 norm, the following integrals must be solved:

ëuëL2(Ω) =
óÚ

Ω
|u|2 dΩ =

öõõôØ
E∈Th

Ú
E

|ux|2 + |uy|2 dE (5.7)

ëu − Π0
kuhë2

L2(E) =
Ú
E

|ux − Π0
kuh,x|2 + |uy − Π0

kuh,y|2 dE (5.8)

ëpëL2(Ω) =
óÚ

Ω
|p|2 dΩ =

öõõôØ
E∈Th

Ú
E

|p|2 dE (5.9)

ëp− phëL2(Ω) =
óÚ

Ω
|p− ph|2 dΩ =

öõõôØ
E∈Th

Ú
E

|p− ph|2 dE (5.10)

We have chosen to use Gauss quadrature formulas to integrate the squared func-
tion element by element. As for the function uh, this is defined only in the degrees
of freedom, and it is necessary to compare the exact solution with a polynomial
projection of the discrete solution. Then, the Π∇k projection has been used to obtain
a polynomial function. By doing so, both the exact and the approximate functions
have been evaluated in the Gauss quadrature nodes.

The pressure ph is already defined as a polynomial inside each element and it
is sufficient to multiply the Vandermonde matrix by the solution ph to obtain the
values of ph in the quadrature nodes.

As shown in these figures, the order of convergence follows the theoretical trend.
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Figure 5.13: L2 error pressure, k=1
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Figure 5.14: L2 error velocity, k=1
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Chapter 6

Conclusions and future
developments

In this thesis the Stokes problem has been analysed through the employment of the
virtual element method. The variational formulation of this problem was derived,
along with the structure of the virtual elements needed to solve this kind of partial
differential equation. The main challenges were posed by the fact that the Stokes
equation solves two coupled fields: the velocity one (which is a vector) and the
pressure one. This increases both the formulation difficulty and the computational
complexity with respect to simpler problems, such as the deformation of an elastic
plate.

Matlab was used to implement the virtual element method of order one and
two; also, a reduced formulation was analysed, which allowed to lessen the number
of degrees of freedom, and thus the computational complexity, while maintaining
unchanged the results. For each case, the functional spaces and the associated
degrees of freedom were analysed and the L2 and H1 projectors were implemented.
To do this, it was necessary to choose suitable polynomial basis for each space
considered.

The Stokes problem was solved on different meshes of a simple two-dimensional
square domain; the main advantage of VEM is the much greater flexibility in the
choice of mesh elements with respect to traditional finite element methods. Namely,
elements with very large aspect ratios and varying shapes can be used in VEMs.

Furthermore, this VEM approach to the solution of the Stokes problem gen-
erates a discrete velocity field which is pointwise divergence-free, while the finite
elements method do not allow to obtain a truly vanishing divergence. Therefore,
the proposed method is worthy of attention even for the solution of the Stokes
problem on triangular or square meshes.

In all cases, the VEM formulation produced results which were in very good
agreement with the exact solution, which is known for this particular problem. The
error convergence rate was also calculated exploiting a series of regular meshes, one
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more refined than the other. In the first order formulations both the pressure and
the velocity converged at the expected rate, which is, respectively, 1 and 2.

Future developments of the presented work may include:

• The definition of an automated procedure to define elements of any order.

• A rewriting of the main routines of the numerical code, with a focus on
computational performance.

• The application of the virtual element method to different problems and more
complex geometries.
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