
POLITECNICO DI TORINO

Master Degree in Biomedical Engineering

Master Degree Thesis

Artifacts removal and application
of cross-frequency coupling to

EEG signals of epileptic patients

Supervisor

Prof. Luca Mesin
Candidate

Giulia MACAUDA

December 2020





Alla mia famiglia che
ha sempre creduto in
me



Abstract

Epilepsy is a neurological condition characterized by recurrent episodes, called con-
vulsive seizures, consisting of sudden and repeated muscle movements, often associ-
ated with temporary suspension of the state of consciousness. Seizures are generally
of very short duration, although they can sometimes last for a long time, and are the
result of an abnormal and prolonged synchronization of the activity of neurons in
the cerebral cortex or brainstem. Through the use of an innovative approach, such
as the association of EEG and functional magnetic resonance imaging, EEG-fMRI,
it is possible to map the specific functional activation of certain brain areas.

In particular, this thesis focuses on the study of the interaction between oscil-
lations at different frequency bands. This is called cross-frequency coupling, CFC.
The CFC analyses the mechanisms that regulate neuronal processing distributed
between the various brain frequencies. This integration of the processing between
frequencies could be obtained through the CFC, specifically the phase-amplitude
coupling, PAC.

Before studying CFC in our data, it was essential to proceed with the cleaning
of signals from artifacts. Indeed artifacts, such as eye movements, blinking, heart
signals, muscle noise, and power line interference present serious problems for the
EEG interpretation and analysis. To remove artifacts from EEG recordings, espe-
cially those resulting from eye movements and blinking, many methods have been
developed. In particular, in this thesis, the analysis of independent components for
the removal of artifacts has been analysed and applied.

Once the data has been cleaned, cross-frequency coupling was investigated be-
fore and after eye closing in patients with eyelids myoclonia with absences, a rare
epilepsy syndrome with seizures evocated by eye closure plus seizures that appear
spontaneously. Typically, seizures occur within 3 seconds after eye closure. The
data were also collected in a rest condition, i.e. the situation where a subject does
not perform any specific task.
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Chapter 1

Introduction

1.1 Thesis Motivation

The aim of this thesis is the study of cross-frequency coupling in epileptic patients.
The study of CFC, cross-frequency coupling, has been linked to many brain func-
tions and dysfunctions, including epilepsy. Epilepsy is a neurological condition
characterised by recurrent seizures, defined as a sudden paroxysmal synchronous
abnormal discharge of neuronal activity. In particular, eyelid myoclonia with ab-
sences, EMA, is an epileptic syndrome characterised by EEG paroxysms and pho-
tosensitivity induced by eye closure. In this thesis, we studied CFC from the EEG
data of 15 EMA patients.

Before beginning with the study of CFC, it was essential to cleanse the signals
from artifact. Indeed, artifacts such as eye movements, blinking, heart signals, mus-
cle noise and power line interference present serious problems for the interpretation
and analysis of EEG. Many methods have been developed in the literature to re-
move artifacts from EEG recordings, especially those resulting from eye movements
and blinking. In particular, in this thesis, the analysis of independent components
for the removal of these artifacts has been analysed and applied.

Once the data were cleaned, cross-frequency coupling was studied. For the study,
6-second epochs centred at the exact moment of eye closure were considered. There
was a comparison between cases where the patient had or had not had an epileptic
seizure following closure of the eye. In particular for the calculation of CFC it is
possible to calculate different couplings, but the one elaborated in this thesis is the
PAC, i.e. the phase-width coupling. Two different bands characterising the EEG
signal, the low frequency phase of the alpha oscillation and the high frequency
amplitude in the gamma band, were considered for the study.

1



1.2. THESIS STRUCTURE

1.2 Thesis Structure

After a careful study of the literature to better understand the physiology and de-
terminant characteristics of the EEG signal, in the initial part of my thesis work
I focused on the application and study of independent component analysis, ICA.
This is a particular technique used extensively for the removal of artifacts, both
physiological and extra-physiological. In particular, this thesis was aimed at remov-
ing the eye blink. Through studies of various works in the literature, ICA allows
a large number of parameters to be set in order to obtain the desired results. To
do this, several packages and toolboxes were tested before deciding which was the
best for our specific data. Once the most effective method was selected for us, all
EEG signals were cleared of artifacts.
Subsequently, the thesis work continued with the study of cross-frequency coupling.
In fact, it emerged that the oscillations at the different frequencies that make up
the brain rhythms are not isolated and independent. Instead, they work in a unified
way and interact with each other. A correct interaction between the different oscil-
lations is synonymous of a correct functioning of the brain activity, on the contrary
an incorrect coupling can be synonymous of different pathologies.
The thesis is developed in the following chapters:

• In the second chapter the EEG signal is introduced, with an in-depth descrip-
tion of its physiological nature and how it is acquired. There is an introduction
part with its main features and the waveforms that characterise this signal il-
lustrated and described. A mention is also made of epilepsy, being the studied
dataset of epileptic patients. Epilepsy is a disease of the central nervous system
in which the activity of nerve cells in the brain is interrupted causing convul-
sions, periods of unusual behaviour and sometimes loss of consciousness.

• In the third chapter of the thesis there is an overview of the various artifacts
that corrupt EEG signals. In fact, the EEG signal is largely corrupted by
artifacts of different kinds, both physiological and extra-physiological. In the
first part of the chapter there is a description of these and a graphic example
for each of them. There is also a brief hint on how to try to eliminate them
directly during the sampling of the signal. Next there is a description of the
independent analysis of the components, a technique that will be used for the
removal of artifacts. In my thesis, I focused particularly on the removal of the
eye blink. An artifact that manifests itself during the closing of the eye. In the
description of this technique there is a particular attention to the parameters
required by the algorithm and an overview of its advantages and limitations.

• In the fourth chapter there is a description of cross-frequency coupling, CFC, a
technique through which to study the interaction between the different bands
of the EEG signal. In fact, several studies have noted how there is a relation-
ship between the different frequency rhythms. CFC can be studied through

2



1.2. THESIS STRUCTURE

different couplings, but the most used one is PAC, i.e. phase-width coupling,
which is believed to be responsible for the integration of neuron populations.
In this chapter there is an overview of the steps to be taken to obtain the
CAP, including the extraction of bands and phase and amplitude. Finally, the
main methods of coupling analysis documented in the literature are presented
critically.

• The fifth chapter summarises the results of the work. At the beginning there
is the description of the dataset used, which, as already mentioned, is about
15 epileptic patients. In particular they are EMA subjects, i.e. with eyelid
myoclonia with absences. In the second section of the chapter there are the
results related to the removal of the artifacts. The analysis of the independent
components was then applied to the recorded signals, obtaining clean signals
that could be used for the next work. The signals I worked on are EEG
signals recorded inside the fMRI, so they are not easy to clean because they
are corrupted by multiple external noises. In the last part of the chapter
there are the results of the application of the PAC to the cleaned signals. In
particular, in this case I studied the coupling between alpha and gamma band
frequencies, as several studies have shown their close interaction in different
pathologies.

• Finally, in the last chapter there is a quick look at possible future work. That
is, after studying how the different frequency bands interact between the var-
ious channels within the EEG, one can go and study functional connectivity.
This technique instead studies the interaction between different parts of the
cerebral cortex.

3



Chapter 2

Electroencephalographic signal

and Epilepsy

Electroencephalography, EEG, is an electrophysiological screw-up procedure to
record the electrical activity of the brain. This technique is non-invasive, and
electrodes are placed along the scalp.

At the end of the nineteenth century the English physiologist Richard Canton
and the polish Adolf Abraham Beck were the first to discover the electrical activity
of the brain. Canton was the first to record a negative variation in brain potential
on rabbits and monkeys, in this case he used an optical stimulus through a flame.
The physiologist finally observed that this signal was recorded in the hemisphere
opposite the illuminated eye. [1]
The first real recording of human brain activity occurred in 1927 by a German
neurologist Hans Berger who placed the electrode son an intact and flawless human
scalp. The term electroencephalogram in reference to the electrical signal of the
brain appears for the first time on an article in 1929 also by Berger himself.

Early EEG studies showed that the recorded activity changed depending on the
functional state of the brain such as sleep, oxygen deficiency or certain pathological
conditions such as epilepsy.[2] In recent years EEG traces have assumed a primary
and clinical role in areas such as neurology, neurosurgery and psychiatry. The
potentials recorded are an expression of the electrical activity of excitable brain
cells called neurons. An example of excitable cells are some nerve and muscle cells.
They are defined excitable because they are able to generate rapid electrochemical
pulses at membrane level, used to transmit signals at membrane level. In fact,
starting from the resting potential, under certain conditions, they can be excited
producing an action potential.



2.1. NERVOUS SYSTEM

2.1 Nervous System

The nervous system, so called because it is composed of organs formed by ner-
vous tissue, is responsible for the reception of external and internal stimuli and the
elaboration of coordinated effective reactions of voluntary and involuntary type.
Complex psychic functions such as memory, learning and emotions are also associ-
ated with it.
The nervous system can be divided into central nervous system, CNS, consisting
of the brain, enclosed in the cranial box, and by the spinal cord, contained in the
vertebral canal, while the peripheral nervous system, PNS, formed by the nerves.

The CNS has many purposes, in fact, it is responsible for human perceptions and
feelings, voluntary decision-making and thinking. Furthermore, its main function
is to mantain homeostasis, that is the tendency to resist change in order to keep
a stable internal environment; by doing so, the CNS coordinates the activity of all
human organs. It is very vulnerable to physical trauma and it is protected and
supported by glial cells, cerebrospinal fluid, CSF, connective tissue, and bones. [1]

The PNS provides the connection between the CNS and the organs and the limbs.
Not being protected by any barrier, it is much more exposed to possible injuries.
The PNS is divided into the somatic, the sensory and the automatic nervous system.
The autonomic nervous system is the part of the PNS responsible for controlling
the functions of internal organs and some muscles. The somatic nervous system,
on the contrary, has primarily a function of transporting information related to
voluntary movement and sensory information.

2.2 Central Nervous System

As previously mentioned, the central nervous system plays many key roles within
our system but is very vulnerable to physical trauma. In addition, the most ex-
ternal structures that provide physical support to the CNS are the cranium, which
connects the brain, and the vertebral column, which surrounds the spinal cord.
However, these two structures can represent a mechanical risk for the CNS, in fact,
in case of impact, their rigidity could damage the extremely delicate nervous tissue.
Because of this problem, the CNS receives additional protection from the meninges
and cerebrospinal fluid.

The meninges are three layers of connective tissue surrounding the brain and
spinal cord. The outermost membrane is the dura mater, made of tough fibrous
tissue, the middle layer is the arachnoid mater, because of its shape, and the in-
nermost membrane is the pia mater, characterized by softer tissue. Between the
arachnoid and the pia mater is the subarachnoid space, a cavity that is filled with
cerebrospinal fluid. This body fluid is also found in other cavities of the brain and
surrounds the neurons and glial cells.

5



2.2. CENTRAL NERVOUS SYSTEM

2.2.1 Cells of CNS

The Central Nervous System, CNS, is composed by two principal classes of cells:
neurons and glial cells. All these structure will be described in details in the
following paragraphs.

Neurons

The neurons represent the anatomic-functional unit which can perform excitability
and electrical-pulse transmitted communication in a network.
They have ion channels embedded in the membrane which are selective to specific
ions such as Na+, K+, Cl- and Ca++. If the voltage changes by a large enough
amount, an ”all-or-none” electrochemical pulse, called action potential, develops.

The neuron, thanks to its chemical and physiological properties, is the cell re-
sponsible for the generation, processing and transmission of nerve impulses.
Neurons form a dense communication network through which information is ex-
changed from the nervous system to other organs and conversely.

Figure 2.1. Structure of neurons

6



2.2. CENTRAL NERVOUS SYSTEM

From the anatomical viewpoint, neurons consist of three components (see Figure
2.1):

• a compact cell body, or soma, containing the nucleus and intracellular organs

• dendrites that branch off the nucleus and receive information from other neu-
rons thanks at the synaptic junctions

• a single axon another neural fiber extruding from the soma that is in charge of
sending information to multiple neurons. The axon terminal contains synapses,
specialized structures where neurotransmitter chemicals are released to com-
municate with target postsynaptic neurons. [2]

From the functional point of view it is possible to classify neurons in three cate-
gories: afferent or sensory neuron, efferent or motor neuron and intraneurons. The
first ones are the neurons that transmit signals from the sensory organs to the CNS.
The efferent neurons transmit motor signals to the peripheral organs.
Finally, the interneurons are present exclusively in the CNS and integrate the in-
formation between afferent and efferent neurons.

Glial cells

Glial cells, or neuroglia, represents the 70-90% of the total number of cells of the
CNS. This cells have a lot of mansion but their principle role is to provide mechan-
ical support to neurons (see Figure 2.2).

There are different types of neuroglia, among which the most important are as-
trocytes and microglia.
Microglia are phagocytes responsible of protecting the CNS from bacteria and cel-
lular debris; they also protect neurons from oxidative stress. They comprise ap-
proximately the 15% of the total cells of the CNS.
Astrocytes are a particular star-shaped cells that are very differentiated and thus
are able to perform several tasks in the CNS. They play an important role in the
maintaince of the extracellular environment balance by removing excess ions, in
particular potassium. Moreover, they provide physical and nutritional support for
neurons, and regulate the development and regeneration of synapses and axons and
provide biochemical support of endothelial cells forming the blood-brain barrier.

7



2.2. CENTRAL NERVOUS SYSTEM

Figure 2.2. CNS cells: interaction between neurons and neuroglia

Neural arrangement is really clearly definite in the CNS. Cellular bodies, den-
drites and axon terminals form clusters that appear grey to the eye, and axons
form white agglomerates. grey substance takes about 40% of CNS and is the place
where integration of knowledge occurs. white matter occupies the remaining 60%
and is responsible for quick transmission of data. The brain is covered by a layer of
gray matter, called cerebral cortex; white matter is found below and features small
clusters of grey substance underneath, called subcortical nuclei.

2.2.2 Synapse

The passage of information between successive neurons occurs at the synaptic space
level. A synapse can be considered as a particular cell junction. Through synaptic
transmission the nerve impulse propagates from one neuron to another or from one
neuron to another type of excitable tissue.

Different structures of the neuron can be coupled in the synapses and, depending
on the structures involved, it is possible to distinguish axon-dendritic synapses,
where there is communication between the axon of one neuron and the dendritic
axis of another neuron, axon-axon synapses, where there is communication between
two axons and axon-somatic synapses, where there is communication between the
axon and the soma of the two neurons.

8



2.2. CENTRAL NERVOUS SYSTEM

Two different categories of synapses are distinguished:

• Chemical synapses composed of three elements: presynaptic terminal, synap-
tic space and postsynaptic terminal (see on the left of Figure 2.3). They are
characterized by the presence of neurotransmitters. In order to be functional,
the neurotransmitters, released from the presynaptic terminal, must cross the
synaptic space and connect to the receptors of the postsynaptic terminal and
this determines the so-called synaptic delay. Another characteristic of this
type of synapse is the unidirectionality of the information passage.
In this synapse the neurotransmitter is inserted into structures called synap-
tic vesicles. When the membrane of the presynaptic neuron depolarizes, the
voltage-dependent calcium channels present in it will open, causing calcium
ions to flow inside the terminal, this ion flow triggers the process of opening
the vesicles and the neurotransmitter is released into the synaptic fissure.

• Electrical synapses in which the cytoplasm of the presynaptic cell and that of
the postsynaptic cell are in close contact, thanks to the presence of specialized
ionic channels, called gap junction (see on the right of Figure 2.3).
The gap junctions allow the direct passage of electrical currents, eliminating
the synaptic delay present in chemical synapses. Moreover, they generally
allow conduction in both directions.

Figure 2.3. Functional anatomy of a chemical synapse (on the left) and an
electrical synapse (on the right)

9



2.3. THE HUMAN BRAIN

2.3 The human brain

The brain is composed of the forebrain, the cerebellum and the brainstem; the
forebrain includes the brain and the diencephalon. The brain, or cerebellum, is a C-
shaped organ divided into two parts, called hemispheres, by the longitudinal fissure
(Figure 2.4). The cerebral hemispheres are made of white matter and surrounded
by a thick layer of gray matter, the cerebral cortex. White matter occupies about
60% of the central nervous system and is responsible for the rapid transmission of
information. The integration of information occurs in the gray matter, of which the
basal ganglia are also made. As for the spinal cord, the arrangement is different:
the white matter lies outside and is supported by the gray matter.

Figure 2.4. The encephalon. A) Lateral view of the encephalon, brainstem and
cerebellum are shown. B) Anterior view of the encephalon: it is possible to observe
the two emispheres and the longitudinal fissure

Diencephalon

Diencephalon is placed just below the brain and consists of two medial structures:
the thalamus and iphotalamus. The thalamus is positioned above the hypothala-
mus and below the cerebellum. It is an aggregation of subcortical nuclei and it
plays a significant role in sensory processing and motor control. In fact, senso-
rial information in order to reach the cerebral cortex passes through the thalamus,
where it is filtered and modified. The ipothalamus is found below the thalamus;
it is responsible for homeostasis and ensures communication between the nervous
and endocrine systems. It is mostly subjected to the control of the autonomic ner-
vous system, for this reason, it releases hormones from the anterior and posterior
hypophysis in response to electrical or chemical signals.
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Brain stem and cerebellum

The brainstem and cerebellum are found in the posterior area of the skull. The
brainstem is a small structure located in the hindbrain; this last one accounts
for around 10% the total volume of the brain but contains about 50% of the total
number of brain’s neurons. It consists of the mesencephalon, the medulla oblongata
and the pons. The brainstem plays a fundamental role in the regulation of sleep-
wake rhytms and consciousness. The cerebellum, instead, is a bilateral symmetric
structure; it is responsible of balance, motor coordination and motor control.

In the next section there will be the treatment of the cerebral cortex with par-
ticular attention to functional areas.

2.3.1 Cerebral cortex and functional areas

The most superficial layer of the brain is the cerebral cortex, which is about 2-4
mm thick and consists of the cellular bodies of neurons, glia and myelin-free nerve
fibers. The cerebral cortex is the outer layer of grey matter in the cerebrum.
It is responsible for the integration of sensory impulses, directing motor activity,
and controlling higher intellectual functions.

There are two major furrows: the central sulcus and the lateral sulcus and they
divide the cortex into four areas: the occipital, temporal, parietal and frontal lobes
(see the Figure 2.5).
In the following there is a description of this areas.

Frontal

Located in the front of the head, just below the frontal bones of the skull and near
the forehead, it forms the dominant part of our brain. The frontal lobe is the section
responsible for personality, language and motor control. It consists of the primary
motor cortex, which is involved in the generation of volitional movements and the
execution of tasks requiring attention, the prefrontal cortex, the pre-motor cortex
and the additional motor area. Among the different functions it can perform, we
find the production of language and speech, thanks to Broca’s area and the area
that deals with understanding and reacting to the feelings of others, empathy then.

Temporal

The temporal lobe is found in both emispheres, it is located beneath frontal and
parietal lobes, and it is separated from the former by the lateral sulcus. It is also
responsible for a large number of cognitive processes. They participate in many
sensory and intellectual functions, such as auditory perception, olfactory percep-
tion, learning and declarative memory, so they can be considered the actual seat
of intelligence. Going to analyze specifically, in the superficial lateral part, there is
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Figure 2.5. Lobes of the cerebrum. This lateral view of the left cerebrum shows
its four distinct lobes: frontal, parietal, occipital, and temporal

the auditory cortical area and the nerve centers responsible for the understanding
of spoken language. In the deep part there are other areas and structures involved
in mnemonic and emotional processes. The anterior and basal areas of the lobes,
together with the rest of the limbic system, are responsible for the transmission
and processing of olfactory stimuli, and are involved in emotional and affective pro-
cesses. One of the main functions of the temporal lobes is the recognition of sound
and visual stimuli, such as spoken language, music and images.

Parietal

The parietal lobe is located above the temporal lobe and behind the frontal lobe.
This area is called somatosensory cortex. Its functions are multiple, but what de-
fines this cerebral area is mainly its role in sensory and spatial perception, body
movement and sense of orientation. In this lobe, information about most of our
sensory organs is also captured. Here, pain as well as physical exertion and body
temperature are processed and modulated. On the left side, the predominant hemi-
sphere, the lower parietal area is responsible for mathematical functions and is
closely related to language recognition and word memory. In the non-dominant
hemisphere, the right part, is in charge of visuospatial activities, i.e. non-verbal
activities.
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Occipital

The occipital lobe is located in the back of the brain and its main activity is to
process vision, in fact it is also referred to as the visual cortex. Inside it there
are many neurons specialized in the recognition and processing of the details of an
image. Among the 4 brain lobes, the occipital one is the smallest, but also the
most interesting. It is located near the nape of the neck and has no real function.
Rather, it is almost like the way of connection and organization of most mental
processes. In detail it has a key function for the sense of sight, helps to distinguish
colors and participates in the processing of emotions and thoughts.

Through imaging it has been seen that each lobe in turn is divided into several
regions, each of which has a specific function such as the primary motor cortex,
the associative sensory cortex and the associative visual cortex. Many different
areas are connected to each other so that they can also perform associative func-
tions. Summarizing, many cortical areas are dedicated to the processing of sensory
information or the generation of motor commands, instead, other areas play a cen-
tral role in complex cognitive mental mechanisms or functions such as thought,
awareness, memory, attention and language.

2.4 EEG

Electroencephalography, as previously mentioned, is an electrophysiological tech-
nique used to monitor the electrical activity of the brain. Although EEG is a
technique that lacks a good spatial resolution, at the same time it offers an excep-
tional temporal resolution, around ms, and therefore is widely used in diagnosis.
For example, it is used to investigate epilepsy, sleep disorders, coma and brain
death. The standard EEG method is based on a non-invasive approach; several
electrodes are applied directly to the scalp and record for a certain period of time
the spontaneous electrical activity from the brain.

EEG is used to record the synchronized activity of large populations of neurons;
the different waveforms that are obtained, specifically, are given by the overlapping
field potentials produced by each single neuron belonging to a certain brain volume.
The EEG can be used to have an evaluation of the functional state of the brain
in particular conditions of activation to which the subject under examination is
subjected, both during wakefulness and during sleep.
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2.4.1 Feature

The electrical activity of the EEG signal, in the practical treatment, is studied as
a random signal because it is generated by a very high number of neurons that are
rarely operating synchronously in the same instant.
There are some parameters to consider in the analysis phase and they are:

• Amplitude: variable between a few µV to a few hundred µV. It can be divided
into 3 bands: low <30µV, medium 30 - 70 µV and high > 70 µV

• Frequency: included in a band ranging from a few Hz, about 0.5 HZ up to 80
Hz. Despite this, much of the useful information of the EEG signal is contained
in a narrower band, 40 Hz

• Symmetry: relative to the presence of the signal in both hemispheres. If the
signal is present in only one hemisphere, then asymmetry will be discussed

• Synchronicity: relative to the moment of appearance of a certain electroen-
cephalographic event. If the events occur simultaneously in the two hemi-
spheres, they are synchronous, otherwise asynchronous

• Topography: defined as a function of the brain areas in which the potential is
manifested

• Morphology: can be polymorphous or monomorphous. A polymorphic signal
is a signal characterized by the succession of potentials belonging to the same
frequency band, but with irregular frequency and amplitude often different
from one component to another. A monomorphic signal, instead, is a signal
characterised by the regular succession of potentials at the same frequency and
amplitude

2.4.2 Frequency bands

EEG recordings show that brain electrical activity has a continuous and oscillatory
character. The waveforms and their amplitudes are functions of the overall exci-
tation of the brain, in fact the amplitude of brain waves depends on the degree of
synchronization with which the cortical neurons interact with each other.
As shown in the Table 2.1, in the EEG the values assumed by the wave frequen-
cies fluctuate between 0.5 and 100 Hz, progressively increasing as cortical activity
increases, but in general most of the information content is within 40 Hz.

The harmonic composition of EEG signals is generally complex, in particular,
five types of rhythms can be distinguished: alpha waves (α), beta waves (β), theta
waves (θ), delta waves (δ) and gamma waves (γ).
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Band Hz
Delta 0-4
Theta 4-7
Alpha 8-13
Beta 13-30
Gamma 30-100

Table 2.1. EEG signal rhythms

Next we will describe the rhythms and show the characteristics of each of them.
A typical example of a pattern will be shown for everyone. [2]

Delta

Delta waves have a frequency between 0.5 - 4 Hz and an average amplitude of 75
µV. In adults, δ waves are associated with deep sleep states, while great δ band
activity in the waking state is considered a pathological state. In children, the δ
wave amplitude decreases with increasing age.

Figure 2.6. Example of Delta wave

Theta

Theta waves have a frequency between 4 - 7 Hz and an average amplitude of 150µV.
These theta waves are also more present in children, while in adults they are asso-
ciated with states of sleep or meditation. In particular, in adult subjects appears in
the presence of many brain diseases and in states of emotional tension and hypnosis.

Figure 2.7. Example of Theta wave
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Alpha

Alpha rhythms have oscillations at frequencies between 8 - 13 Hz and voltage
amplitude between 20 - 200 µV.
The α wave is the most commonly analyzed signal and is well visible in patients
with quiet and resting brain. It was analyzed that if you are in the presence of
visual or sensory stimuli the rhythm is greatly attenuated in amplitude and are no
longer present in sleep, except for the REM stage.

The alpha rhythm usually presents a regular and continuous pattern, but in

Figure 2.8. Example of Alpha wave

some individuals it can be very irregular and not always present, in fact it often
disappears or occurs only occasionally. It is generated with greater intensity in the
occipital area, which is the same area where the signals coming from the retina
are received and processed, and it is for this reason that the alpha signal is greatly
attenuated in the presence of a visual stimulus.
This characteristic is easily observable by making the subject close-and-open his
eyes; in fact, when an individual, psychically and physically at rest, opens his eyes,
the voltage of the alpha rhythm is lowered, even to disappear completely. Normally,
if the eyes remain open, it does not return regularly but appears occasionally for
some time, and if the subject also undertakes a mental activity, the rhythm is
greatly reduced until it disappears completely. [3]

Beta

The beta rhythm has a frequency between 13 - 30 Hz and an amplitude of about
5-10 µV. They are generated with greater intensity in the parietal and frontal lobe
regions. Within the frequency range of the beta rhythm it is possible to distinguish
between two sub-bands: the slow-β with frequencies between 13 and 18 Hz and the
fast-β with frequencies between 18 and 30 Hz. Specifically, the slow-β is influenced
by mental activity, while the fastβ is characteristic of situations of stress and intense
CNS activity. In general, β rhythm is associated with levels of consciousness such
as attention and concentration.
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Figure 2.9. Example of Beta wave

Gamma

This rhythm has a frequency between 30 - 100 Hz, with low voltage amplitudes and
is related to the highest cognitive processes. In many studies it has been seen that
gamma rhythm plays a fundamental role in memory formation.

Figure 2.10. Example of Gamma wave

2.5 The International 10-20 System of Electrode
Placement

When recording the EEG signal, an electrode application standard is used.
In particular, the most used is the International 10-20 System of Electrode Place-
ment which is an internationally applied model. It was established to have stan-
dardized measurements and methods in the scientific community and to ensure the
reproducibility of the results of clinical and research studies.

This system is a symmetrical matrix of electrodes placed on the scalp at a
distance of 10% or 20% of a reference distance (Figure 2.11). The reference distance
is often taken as the distance between two cranial points: inion and nasion, where
the nasion is the depressed area below the forehead between the eyes, the inion is
the occipital protuberance located in the lower area of the human skull.
Each group of electrodes carries a label that indicates the area of the brain from
which the biopotential is recorded, the principal are: FP - prefrontal, F - frontal,
T - temporal, C - central, P - parietal, O - occipital. A number must be added to
the letter, so that odd numbers refer to the left half of the skull and even numbers
to the right half while Z sites correspond to electrodes positioned along the midline
of the sagittal plane of the brain.
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The measuring electrodes are applied to the scalp with the aid of double-sided
adhesive tape, plasters or by using a special cap on which the electrodes can be
alloyed. They must be applied in a stable manner so that they are as immune as
possible to external interference.

Figure 2.11. Electrode placement system according to the international standard

The conventional EEG, so the one that uses 21 electrodes, as can be seen in
the figure 2.11, suffers from spatial resolution problems because it uses electrodes
that have a spatial resolution of about 1-2 cm, so it also detects the activity of
the area adjacent to the one below. Since the recorded signal is given by the sum
of the detected electric fields, this does not allow to trace the exact origin of the
cortical potential. There is the possibility to use a system with 256 electrodes, and
in this way it is possible to have a better spatial localization, while maintaining
good temporal resolution. These new EEG sampling techniques are defined at high
spatial resolution and allow to obtain a high spatial sampling.

To obtain the electroencephalographic signal, the signals from the electrodes are
sent to a differential amplifier, and the connection between electrode pairs and the
inputs of these amplifiers is the assembly.
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From the figure 2.12, it can be observed that there are two types of recording
[4]:

Figure 2.12. Example of monopolar (left) and bipolar (right) derivation

• monopolar recording: one electrode is placed in an active site, while the other,
called the reference electrode, is placed in an electrically neutral site, which
can be for example the tip of the nose, the ear lobe, the chin. With a unipo-
lar reading, the potential of each electrode is measured against the neutral
electrode or the average of all electrodes. This type of recording therefore
highlights the absolute level of electrical activity below the active site.

• bipolar recording: in this case both electrodes are placed on active sites in
the area of interest and the signal detected corresponds to the difference that
emerges between the activities of the two sites. [5]

2.6 Functional Magnetic Resonance - fMRI

In 1992 the technique of functional magnetic resonance imaging was applied for the
first time to humans. It is a method used to investigate the operation of the central
nervous system, in a complementary way to morphological investigations.
The instrument of fMRI is of crucial importance in the neurological field and makes
it possible to locate brain activity with good temporal accuracy, but above all with
millimetric spatial resolution. [6]

The fMRI measures the variation of blood oxygenation over time through the
reconstruction of the BOLD signal, an acronym for Blood Oxygenation Level De-
pendent, i.e. it is a measurement of the level of blood oxygenation, which varies
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according to the metabolic demand of active neurons. The marker used to study
the activation of brain areas is hemoglobin. In fact, it behaves differently if it is in
an oxygen-related or oxygen-free configuration:

• oxygenated hemoglobin, Hb has diamagnetic characteristics, i.e. it has no odd
electrons and has zero magnetic momentum

• while deoxygenated hemoglobin dHb is paramagnetic and therefore has odd
electrons and magnetic momentum different from zero.

Completely deoxygenated blood is characterised by a magnetic susceptibility, i.e.
the intensity of the magnetization of the material, which is 20% greater than that
of completely oxygenated blood. The fMRI exploits this magnetic property of
hemoglobin, which is therefore used as an endogenous contrast medium.

A first hypothesis is that an increase in neural activity leads to a higher con-
sumption of oxygen and a consequent increase in dHb, which, in turn, would lead
to a decrease in the BOLD signal, however, experimental observations show that
these relationships are much more complex. In fact, during an increase in nerve
activity, not only is there no decrease in the acquired signal, but there is also an
increase in the MR signal, Magnetic Resonance, and this indicates that activation
causes an increase in blood oxygenation.

There are two main experimental approaches used for the acquisition of the
BOLD signal: Block Design and Event Related. [7]

In the Block Design, periods in which stimuli are absent, called rest time, are
alternated with periods in which the patient is exposed to stimuli. The latter can
be of different nature: cognitive, motor or sensory and are administered repeatedly
for a predetermined period of time, followed by a period of absence of stimulus.
The advantages of this experimental design are simplicity of execution and SNR
improvement.
In the Event Related design several individual stimuli are administered, each of
them separated by a stimulus interval that can change from 2 to 20 seconds, or vary
from stimulus to stimulus. Representing the response to each individual task, the
acquired BOLD signal is considerably weaker than that of a block of stimuli. This
experimental design effectively estimates the temporal trend of the hemodynamic
response, thanks to the stimulus intervals in which the signal returns to basal
condition. Event Related is advantageous in that stimuli can be randomised to
prevent subsequent events from being predictable by the patient.
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2.6.1 EEG-fMRI

Until now, the EEG and fMRI have been sed separately and shown to be of consider-
able importance for non-invasive studies in both clinical and cognitive neuroscience.
The high degree of complementarity between the two techniques has led to the idea
of using a multimodal approach in order to exploit one technique to compensate for
the deficiencies of the other and vice versa, so as to achieve a greater understanding
of the dynamics and structure of brain activity.[8]
As shown in the Figure 2.13 [9] it is possible to notice the importance of the inte-

Figure 2.13. Integration of EEG and fMRI technique

gration of the two above mentioned techniques. In the image above it can be seen
how, using only one technique, part of the brain information is lost. In the picture
below there is an extended understanding of brain function and structure.

Recording EEG potential during fMRI imaging identifies brain activity and in-
formation on the relative locations of signal generators. The combination of the
two signals therefore allows the high spatial resolution of the fMRI to be combined
with the high temporal resolution of the EEG.
Generally the coupling of the two techniques is used for the localization of EEG
signal sources and the identification of spontaneous EEG activity, used in studies
of resting and sleeping activity.

The EEG-fMRI combination is not free from artifacts, in fact they are caused
by the interaction of the two instruments, compromising both the quality of the
EEG signals and the quality of the resonance images.
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2.7 Epilepsy

Epilepsy is the most common chronic neurological disease after migraine; an esti-
mated 50 million people worldwide suffer from it. The incidence varies from 40 to
70 per 100,000 inhabitants per year in industrialised countries and from 100 to 190
per 100,000 inhabitants per year in developing countries.
Epilepsy is a clinical condition characterised by the sudden onset of neurological
symptoms due to a sudden, hypersynchronous and simultaneous discharge of a more
or less large population of neurons. These discharges always originate from neu-
rons in the cerebral cortex. The neurological symptoms resulting from an epileptic
seizure are extremely diversified according to the cerebral area involved and may
consist of alterations in the state of consciousness, behavioural alterations and al-
terations in motor and sensory functions.
The mortality rate in patients with epilepsy is 2-3 times higher than in the general
population. Death can be related to epilepsy, i.e. due to tumors, ischemic heart
disease, suicide or accidentally occurring during a seizure, asphyxia, accidental in-
jury or drowning.
People affected by epilepsy can be divided into four different prognostic groups [10]:

• Excellent prognosis: includes 20 - 30 % of people who develop epileptic seizures.
Usually in these cases there is spontaneous remission.

• Good prognosis: includes 30 - 40 % of people with epilepsy. Remission ob-
tained after pharmacological treatment, which normally remains after therapy.

• Drug dependent prognosis: includes 10 - 20 % of people with epilepsy. This
group shows the possibility of remission through pharmacological treatment,
the need to maintain the therapy and frequent relapse after its suspension.

• Bad prognosis: includes 20 - 30 % of epileptics. Subjects in this group show
drug resistance. They do not cease more careful observation and in some cases
surgical treatment is required.

2.7.1 Classification

The classification of the various types of epilepsy has many purposes, in fact, can
provide a structure to understand the type of seizures that are present, what other
types of seizures could occur in the same subject, the possible triggering factors of
the seizures and often their prognosis. In the classification process, the clinician
begins by classifying the type of seizure. Later on, the type of epilepsy and, in
many cases, the specific epileptic syndrome can be classified.
The following classification of epilepsy refers to the classification of the International
League Against Epilepsy, ILAE. [11]
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Kind of seizure

The starting point of the classification structure is the type of seizure. On the basis
of the initial characteristics, they are classified into focal, generalised and unknown
onset. In some situations, in the absence of EEG, video and image studies, the
classification based on the type of seizures is the highest possible level for diagnosis.
In other cases, the information may not be sufficient for a higher level diagnosis,
such as when a patient has had a single crisis.

Kind of epilepsy

The second level of diagnosis is the type of epilepsy. There are mainly four cate-
gories: Generalized and Focal Epilepsy, Combined Generalized and Focal Epilepsy
and Unknown Type Epilepsy.
In the case of a diagnosis of Generalized Epilepsy, the patient’s EEG typically shows
generalized spike-wave abnormalities. People with generalised epilepsy may have
various types of seizures, including absences, myoclonic seizures, atonic seizures,
and tonic-clonic seizures. The diagnosis of generalised epilepsy is based on clinical
features, supported by the presence of typical EEG intercritical discharges.

Focal Epilepsies include focal or multifocal crises, as well as crises affecting
a hemisphere. Various types of focal seizures can be recognised, including focal
seizures with or without contact impairment, motor and non-motor focal seizures,
and focal seizures that evolve into bilateral tonic-clonic seizures. The intercritical
EEG typically shows focal epileptiform abnormalities, but the diagnosis must be
based on clinical criteria and supported by the results of the EEG.

Classification into Generalised and Focal Combined Epilepsy means that some
patients have both generalised and focal seizures. Again, the diagnosis is based
on clinical features, supported by EEG findings. EEG documentation of seizures
is useful but not essential. Intercritical EEG can show both focal and generalised
epileptiform abnormalities, however, epileptiform activity is not essential to make
the diagnosis.

The term Unknown Type Epilepsy is used to describe patients who have epilepsy
but the clinician is unable to define whether the type of epilepsy is focal or gener-
alised due to lack of sufficient information. This may be due to different reasons:
EEG not available or EEG not informative.

Epileptic syndromes

The third stage is the detection of Epileptic Syndrome. An epileptic syndrome
is defined by the association of specific characteristics including types of seizures
and EEG and neuroimaging evidence. Syndromes often have age-dependent char-
acteristics: age of onset, seizure triggers, circadian variations and prognosis. The
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definition of a syndrome may also have etiological, prognostic and treatment im-
plications. It is important to note that there is not necessarily a unambiguous
correlation between an epileptic syndrome and a diagnosis, and that the definition
of an epileptic syndrome may be useful to improve patient management at different
levels. There are many well recognised syndromes, such as Epilepsy with Absences
of Childhood, West syndrome and Dravet syndrome.

2.7.2 Therapy

As regards pharmacological therapy, most cases of epilepsy are treated by the use
of anti-epileptic drugs, AEDs. The choice of drug to be used is based on the
type of epilepsy the subject presents, normally the therapy is started with only
one FAE preferably among the classic ones with gradually increasing dosage. The
effectiveness is evaluated over weeks or months depending on the frequency of the
attacks and in case of therapeutic failure, AEDs can be replaced or combined with
a second drug. In cases of drug-resistant generalised epilepsy, barbiturates and
benzodiazepines are used. The therapy, once started and in the absence of seizures,
regardless of the type of epilepsy and the age of the subject, should be continued
for at least 2 to 5 years. Suspension of the therapy should be slow and gradual
and should not be scaled up further in the event of a reappearance of epileptic
abnormalities in the EEG. [10]
As for surgical therapy, this is evaluated for patients with drug-resistant partial
seizure epilepsy, where the anotomo-electroclinic analysis has shown a stable and
unique origin whose removal does not create new neurological or neuropsychological
deficits. There are two types of surgical treatment, resective surgery, which consists
of resection of the epileptogenic area, and palliative surgery, which targets patients
who cannot undergo resective surgery and aims to reduce the frequency and severity
of seizures. For this last palliative approach, the most widely used is the stimulation
of the vagus nerve.
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Chapter 3

Independent Component Analysis

to remove EEG’s artifacts

3.1 Artifacts

Although the electroencephalograph is designed to record brain activity, one of the
main problems is that it also records other activities that have sources outside the
brain. These activities, which can be extra-cerebral or physiological, are called arti-
facts. Artifacts are disturbances, or noises, that contaminate the signal of interest,
making it difficult to determine and extract relevant information of brain origin.
In the EEG signal, the most common artifacts appear during acquisition due to a
combination of several causes, such as incorrect electrode position, uncleaned skin,
electrode impedance, etc. There is also continuous detection of physiological arti-
facts, i.e. bioelectric signals from other parts of the body such as eye blink, eye
movement, heart and muscle activity, that are recorded in the EEG. [2]

The improvement in technology can decrease artifacts of extracellular origin,
such as line noise, but biological signals must be removed after the recoding process.
Through the use of appropriate techniques, artifacts present in the signal can be
reduced or eliminated, so that a clean signal can be obtained that allows the useful
information to be recognized more clearly and more accurately.

3.1.1 Types of artifacts

Figure 3.1 shows the waveforms of some of the most common EEG artifacts, which
will be briefly discussed below along with the predefined methods used to eliminate
their effects.
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Figure 3.1. Waveform of some of the most common artifacts in EEG’s signal

Ocular Artifacts

Eye artifacts cause the majority of artifacts in the EEG signal recording. The
ocular bulb is a dipole, oriented with the positive pole at the front, corresponding
to the cornea. When the eye rotates on its axis, it produces a current field that
can be detected by any electrode located near the eye, producing a symmetrically
opposite deflection in these electrodes. Therefore, if the electrooculogram (EOG)
is available, you may notice that the artifact of the eye is present in the EEG as
polarization of the opposite sign to the EOG.

The origin of ocular artifacts is eye movement and eye blink that can spread
across the scalp and be recorded by EEG activity. More specifically, eye movement
artifacts are produced by changes in the orientation of the retina and dipole of
the cornea, and blink artifacts are caused by ocular conduction due to alternating
contact of the cornea with the eyelid. [12]

The blink of the eye is characterized by a high amplitude signal that may be
greater than the EEG signals of interest (see Figure 3.1.b). This artifact is one
of the factors that most degrades the quality of the EEG signal, especially in the
frontal channel, but because of its amplitude, a blink can corrupt the data on all
electrodes, including those at the back of the head. [13] Eye artifacts are often more
directly measured in the electrooculargram (EOG), pairs of electrodes positioned
above and around the eyes. Although the exact model of EOG taken through
the scalp may be available, it is not possible to simply subtract it from the EEG
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signal. Concerning eye movement artifacts (see Figure 3.1.c), its diffusion through
the scalp is stronger than that of the eye blink artifact. [14]

The subject is asked to keep their eyes fixed during the recording when possible,
however it is not always available for sick subjects or children. The standard method
to remove this artifact is to eliminate the signal segment where it appears.

Line Noise

Some sources of artifacts that come from the outside have a negative effect on
the EEG measurement. For example, signals from A/C power (see Figure 3.1.d)
supplies may corrupt the signal while being transferred from scalp electrodes to
the recording device. Line noise may corrupt the data of some or all electrodes
depending on the source of the problem. A notch filter centered at the current line
frequency is often used to remove this artifact. If line noise or harmonics occur in
frequency bands of interest, they interfere with the EEG that occurs in the same
band. The notch filter at these frequencies can remove useful information.

Muscle Activity

The contamination of EEG data due to muscle activity is a recognized problem and
difficult to manage because it is caused by several types of muscle groups, including
neck and face muscles (see Figure 3.1.e).

Typically the myoelectric potentials are characterized by a briefer duration than
the brain potentials and are distributed in a higher frequency band, in fact through
measurements with electromyogram, EMG it has been demonstrated that it dis-
tributes is from 0 Hz to >200 Hz and can be spread over different electrode groups
depending on the position of the original muscles. It should be added that EMG
contamination and EEG have substantial statistical independence from each other
both in time and in space, implying that Independent Component Analysis can be
an appropriate metric to remove artifact produced by muscle activity. [15]

Pulse

Cardiac artifacts can be introduced when the electrodes are placed on or near a
blood vessel, and are caused by the expansion and contraction movement of the
vessel that will introduce voltage variations in the recordings. [16] The artifact
signal has a frequency close to 1.2Hz and may appear as a sharp peak or smooth
wave, similar to the natural EEG wave, and in case of electrocardiogram, ECG co-
recording it can be seen synchronization with it. (see Figure 3.1.f) . One method
to remove this artifact may be to use a reference waveform, but there is no stan-
dardized method to remove this artifact.
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3.2 Blind Sources Separation

The method studied and used for the removal of artifacts is the Independent Com-
ponent Analysis, ICA. This algorithm is a statistical procedure for transforming
anobserved multidimensional random vector into components that are statisti-
callyas independent from one another as possible. The EEG data consists of
recording of electrical potentials in a lot of various location on the scalp and it
contains strong undesirable components, deriving from artifacts of physiological or
extra-physiological origin.

In order to identify and remove these artifacts is very useful to make an analysis
to the independent components. In fact, when this technique is applied to EEG
recording, some of the resulting independent components, ICs, represent signals
of brain origin while other ICs represent signal of extra-cerebral origin. After the
separation of the components, they can be eliminated from the original signals,
thus achieving clean signal. This makes ICA a good solution for the identification
and removal of artifact from EEG signals [8].

The BSS problem consists in recovering a set of source signals from the obser-
vations of their mixtures, without having any information either on the original
sources or on how they were mixed. Since no information about the mixing matrix
is available, then the linear mixture must be processed ”blindly”.

Figure 3.2. The cocktail party problem
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A classic example of BSS is the Cocktail-Party Problem (see Figure 3.2), in
which, for example, is considered a room with two subjects emitting the signals
s1(t) and s2(t), and two microphones, placed in different positions, which provide
two signals x1(t) and x2(t), which are recorded in the instant of time t. Each of
these recorded signals is a sum of the signals emitted by the two people, then it is
possible to express this relationship with a system of linear equations:{

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t)
(3.1)

where a11, a12, a21, a22 are parameters dependent on the distance of the microphones
from people.

The Cocktail-Party Problem consists in estimating the two original signals s1(t)
and s2(t) from the recorded signals x1(t) and x2(t)) only. In case the aij parameters
are known the problem can be solved in a simple way, but in case they are not known
the problem is much more complex. The solution to this problem is an algorithm
called independent component analysis technique.

There are different models of mixing, subsequently will be treated only linear
models that assume the instantaneous mixing of the sources, the signals of interest
in a given instant of time are obtained as linear combination of the source signals
at that same instant of time.

3.2.1 Definition

Independent component analysis is based on the identification of the sources that
maintain most of the information. The analysis of independent component is a
technique that allows to estimate s(t) signals from the knowledge of x(t) obser-
vations only. Assume to have N different sources simultaneously recorded by M
sensors with M≥N, the mathematical model can be described

x(t) = As(t), (3.2)

where x(t) = (x1(t), ...xn(t))T is the MxT size matrix containing the T samples
of the M signals observed, s(t) = (s1(t), ...sn(t))T is the NxT size matrix that
contains the T samples of the N source signals and A are the mixing matrix.
The properties of the mixing matrix A are briefly shown below [17]:

• Independence: if the signals are shared among the mixtures, then it is inde-
pendent when the source signals are independent by the mixture signals.

• Gaussianity: gaussianity is a process of mixing signals in a histogram shaped
like a bell. This can be used to search for non-Gaussian signals in the mixture
of signals. The signals are independently extracted when they are to be non-
Gaussian. Therefore signals are estimated independently when they have a
fundamental restriction in ICA.
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• Complexity: this is more elaborate than the source signals that is shown by the
above example of mixed signals. The extracted signals are independent and
are non-Gaussian histograms with these signals that represent source signals.

Observing equation 3.2, it can be seen that the linear mixing model has two
types of ambiguities [18]:

1. The variance of the individual source signals is not determinable. In fact both
A and s(t) are unknown and any scalar that moltiplicates a source signal can be
compensated by dividing the corresponding column of A; the energy of the single
source is placed by convection equal to 1;

2. The order of the sources is not determined. In fact any displacement of the
rows of s(t) can be compensated by the same displacement of the columns of A.

3.3 Independent Component Analysis

A very common BSS algorithm is the Independent Component Algorithm, ICA. In
the ICA algorithm the separation of sources is achieved by imposing their statistical
independence.
Assuming the statistical independence and non-gaussianity of the sources, from
equation 3.2, it is possible to take advantage of the central limit theorem for the
estimate of A. The goal is to obtain a demixing matrix W and obtain the inde-
pendent component simply by:

s(t) = Wx(t) (3.3)

where W = A−1 is the inverse of the mixing matrix. In the ICA model, as men-
tioned above, only the observations x(t) are available: the idea is therefore to
apply operations to the original data and calculate the independence between the
obtained signals in order to reconstruct an approximation of the sources s.

3.3.1 Assumptions

The independent component analysis model can be used under the following as-
sumptions

• The component s are statistical independent

• The independent component must have non-Gaussian distribution

• The number of the sources is equal to the number of observations

• The unknow mixing matrix A is square

• The signals acquired by the sensors are instantaneous linear combinations of
the sources
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Under the previous constraints the problem is well placed, in fact, the solutions
of the problem, the independent components, i.e. are unique, less than the sign,
the demixing matrix.
A series of hypotheses are the underlying basis of ICA methods, in fact it is as-
sumed that the signals recorded on the scalp are mixtures of temporal courses of
temporally independent cerebral and artificial, that the potentials derived from
different parts of the brain, scalp and body are linearly added to the electrodes
that the propagation delays are insignificant. When the independent time courses
of the various brain sources and artifacts are extracted from the information, the
”correct” EEG signals are derived by eliminating the contributions of the artifact
sources.

3.3.2 Pre-processing for ICA

There are two main pre-processing strategies in ICA, centering and whitening.
These strategies are implemented in order to simplify the algorithm, reduce the
dimensionality of the problem and the number of parameters.

• Centering: this operation is necessary and simply refers to subtracting the
mean vector m = E{x}, in this way x became a zero-mean variable. This
implies that also the average of s is zero. The mean can always be re-added to
the result the end after estimating the mixing matrix A with centered data.

• Whitening: this strategy reduces the complexity of the problem and the
dimension of the data. The idea is to transform the vector x into a new vector
x̂ which is white, so its components are uncorrelated and their variances equal
unity. In other words, after whitening, the covariance matrix of x̂ is equal to
the identity matrix E{x̂x̂T} = I.

A method for whitening is to use EVD, the eigenvalue decomposition, of the
covariance matrix E{x̂x̂T} = EDET, where D is the diagonal matrix of the
eigenvalues and E is the orthogonal matrix of eigenvalues of E{xxT}. The
withening can be performed by

x̂ = ED−1/2ETx (3.4)

where D−1/2ET is the whitening matrix. Substitute equation (3.2) in equation
(3.4), we obtain:

x̂ = ED−1/2ETAs = Âs (3.5)

Applying this pre-processing you get a new mixing matrix Â that is orthogonal.
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3.3.3 Measurement of non-gaussainity

As mentioned before, in the BSS model only the x(t) (Equation 3.3) observations
are accessible: the main idea is therefore to apply some adjustments to the original
data and measure the dependence between the signals obtained to reconstruct an
approximation of the sources s(t). According to the central limit theorem, the
distribution of a sum of independent random variables tends to be toward a Gaus-
sian distribution: in order to separate independent sources, Gaussianity should be
minimized.
There are several measures of non-Gaussianity, below are proposed the most com-
mon ones [18]:

Kurtosis

Kurtosis is the statistical fourth moment standardized by the square variance. The
index of kurtosis of a causal variable with average null v is defined as:

K(x) = E

[(x− µ
σ

)4]
=
µ4

σ4
(3.6)

where, µ4 is the fourth central moment and σ is the standard deviation.
Equation (3.6) can we rewritten as:

K(v) = E[v4]− 3(E[v2])2 (3.7)

For a gaussian distribution the equation (3.7) and the fourth moment 3(E[x2])2 goes
to 0, while for non-Gaussian it is different from 0. It is clear that the greater the
value, the more the variable considered is different from a Gaussian distribution.

As shown in the figure 3.3 below variables with a kurtosis value greater than 0
are called super-gaussian and present a leptocurtic distribution, variables with a
kurtosis value less than 0 are called sub-gaussian and have a platicurtic distribution.

Super-gaussian random variables usually have a spiky probability density func-
tion (pdf for short) with heavy tails, i.e. the pdf is relatively large at zero and
large variable values, while it is small for intermediate values. Sub-gaussian ran-
dom variables, on the other hand, generally have a flat pdf, which is quite constant
near zero, and very small for larger values of the variable. [18]
The main problem with kurtosis is that can be very sensitive to outliers. Its value
may depend only on some observations in the distribution queue, which may be
incorrect or irrelevant. In other terms, kurtosis is not a robust measure for the non
gaussianity. [19]
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Figure 3.3. Gaussian, sub-gaussian and super-gaussian distributions

Negentropy

Considering the covariance matrix of a random variable, negentropy is defined as
the difference between the entropy of a Gaussian random variable with the same
covariance matrix and the covariance matrix of the considered random variable.
Entropy is small for distributions that are sharply focused on certain values, i.e.
when the variable is clearly grouped, or has a very spiky pdf. A Gaussian ran-
dom variable has a value of entropy greater than any random variable of identical
variance. [20] This implies that entropy can be interpreted as the amount of infor-
mation needed to describe a variable; the higher the randomness of a variable, the
higher the value of entropy. To obtain a measure of non-Gaussianity that is zero
for a Gaussian variable and always not negative, often a slightly modified version
of the definition of differential entropy, called negentropy, is used. Entropy, from a
mathematical viewpoint, given a random variable v with probability density p(v)
is defined as

H(v) = −
∫
p(v) ln p(v)dv (3.8)

Defining a random Gaussian variable that presents the same covariant vgauss matrix,
negentropy can be defined as

N(v) = H(vgauss)−H(v) (3.9)

33



3.3. INDEPENDENT COMPONENT ANALYSIS

According to a theoretical point of view negentropy is the best estimator of gaus-
sianity, because it considers all the statistical moments, but it presents a high
computational cost due to the fact that it is necessary to calculate the density
function of probability of an unknown random variable [18].

Mutual Information

It is possible to define the mutual information I between m random variables, by
using concept of differential entropy, such as

I([v1, . . . , vm]) =
m∑
i=1

H(vi)−H(v) (3.10)

The mutual information is a measure of dependence between random variables, it is
always not negative and equal to zero if the variables are statistically independent.
Suppose having 2 independent variables v1 and v2, the entropy is defined as

H(v1, v2) = −
∫
p(v1, v2) ln p(v1, v2)dv1dv2 =

= −
∫
p(v1)p(v2) ln (p(v1)p(v2))dv1dv2 =

= −
∫
p(v1)p(v2) ln p(v1)dv1dv2 −

∫
p(v1)p(v2) ln p(v2)dv1dv2 =

= −
∫
p(v1) ln p(v1)dv1 −

∫
p(v2) ln p(v2)dv2 = H(v1) +H(v2)

(3.11)

It has been demonstrated that the mutual information of variables with unitary
variance is equal to the negentropy less than the sign and a constant and that the
minimization of the mutual information coincides with the maximization of the
negentropy.

Maximum likelihood estimation

Independent components can be estimated through the maximization of the log-
similarity function defined as

L =
T∑
t=1

n∑
i=1

log pi[(w
T
i x(t)] + T log |det W| (3.12)

where T is the duration of the time series, wi is the ith row of matrix W and pi is
the probability density of the ith source signal.
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3.3.4 Limitations and advantages of ICA

The main limitation in the application of ICA, as explained above, is that Gaussian
sources cannot be separated even if they are independent. Partitioning with ICA
can be done only if at most one source in the mixture has a Gaussian distribution.
In fact, if all sources have a Gaussian distribution, any linear combination of them
still has a Gaussian distribution, so it is impossible to separate them trying to make
them non-Gaussian. [14]
This method has other inherent limitations. First, it can decompose, at maximum,
N sources from N data channels. The exact number of statistically independent
signals that contribute to scalp EEG is generally unknown, but brain activity is
probably derived from sources that are actually more physically separable than the
number of EEG electrodes available. Secondly, ICA is based on statistical analysis
of data, so its results will not be significant if the amount of data provided to the
algorithm is insufficient. In general, it is best to use all available data to reliably
derive the spatial filters that characterize the appearance and spread of artifacts in
the EEG. However, this is only true when the physical sources of artifact and brain
activity are spatially stationary over time and the total number of these sources
is less than the number of data channels. Overall, there is no reason to believe
that brain sources and artifacts are spatially stationary over time. The goal should
therefore be to use the maximum amount of data during which the sources are
reasonably stationary.

Despite the not few limitations, the analysis of independent components has sev-
eral advantages. [21] The algorithm is computationally efficient and the calculation
demands are not excessive even for fairly large EEG data sets. Another benefit of
this technique is that it is generally applicable for the removal of a wide variety
of EEG artifacts. It simultaneously separates both the EEG and its artifacts into
independent components based on data statistics, without relying on the availabil-
ity of one or more ”clean” reference channels for each type of artifact. In addition,
separate analysis is not necessary to remove the different classes of artifact. Once
the training is completed, artifact-free EEG records can then be obtained in all
channels by simultaneously removing contributions from various artifact sources
identified in the EEG record. [22]
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3.4 ICA Decomposition

The following ICA-based algorithms have been evaluated: Infomax, fastICA and
robustICA. The three algorithms are available in EEGLAB [23], an open source
toolbox that provides a graphical user interface and integrated functions that can
be easily integrated into custom Matlab scripts.

EEGLAB allows the user to read data, information on events and channel de-
tection files in different formats, including Matlab and Biosemi EDF. EEGLAB’s
standard data analysis functions include filtering of data, extraction of data epochs,
database removal, reference average conversion, resampling of data and extraction
of time-locked data epochs to specific experimental events. EEGLAB also includes
methods that allow users to remove entire channels of data, eras or components
dominated by non-neural artifacts through visual inspection.
The figure 3.4 below shows the typical user interface related to the properties of
the single independent component. In particular it is shown, on top left there is
the topographic 2-D scalp map, on top right there is the plot of the event-related
potential, ERP, on the bottom there is the representation of the power spectrum
activity. Through the commands below there is the possibility to accept or reject
that component, after having an overall view of the IC properties.

Figure 3.4. Component Properties for a single IC in EEGLAB
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3.4.1 Decomposition algorithms

Below is a brief description of the theoretical principle behind these methods, with-
out going into the details of the optimization algorithms used:

• Infomax: This algorithm is based on maximizing mutual information between
the input and output of a neural network. The method minimizes mutual
information between sources. [24] This particular algorithm works on bleached
data and is easy to implement for the search of independent components.

• FastICA: This algorithm minimizes gaussianity through a measurement of ne-
gentropy. [18]

• RobustICA: This algorithm uses a kurtosis contrast function. [25]

The last two algorithms are based on gaussianity measurements. The central
limit theorem provides a justification for using the technique of non-gaussianity
maximization for the estimation of independent components, IC. This theorem
asserts that the linear combination of k independent random variables converges to
a Gaussian distribution as k increases whatever the probability density function of
the individual variables. According to this theorem, if the independent variables
that are combined are non-Gaussian, as assumed to be the sources of the ICA
model, then their linear combination is certainly more Gaussian than the individual
independent variables.
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Chapter 4

Cross-frequency coupling

In more and more studies, the human brain is being shaped as a complex network
with distributed topology. All this can be translated into parallel, specialised in-
formation processing.
Therefore, the need to elaborate a neural mechanism that allows the integration of
information through specialised brain regions has arisen. [26]

What has emerged from recent studies is that oscillations from different fre-
quency bands are not isolated and independent; consequently, they can interact
with each other in the form of modulation.

The study of interactions between different oscillations at various frequency
bands is called cross-frequency coupling, CFC. Different couplings have been stud-
ied, including phase-amplitude, phase-phase and amplitude-amplitude.
Phase-Amplitude Coupling, PAC, is the most studied type of cross-frequency cou-
pling and is believed to be responsible for the integration of neuron populations. In
particular, with PAC the phase of the lower frequency oscillation drives the ampli-
tude of the coupled upper frequency oscillation, which results in the synchronization
of the amplitude envelope in faster rhythms with the phase in slower rhythms.

Cross-frequency coupling could prove to be a mechanism underlying the coordi-
nation of neural dynamics. Several research groups have studied CFC and linked
it to information processing, in particular learning and memory. It has also been
shown that the study of CFC to study neurological and psychiatric disorders. Thus,
CFC analysis is potentially a promising approach to reveal brain functions and some
of their pathologies.

In particular, the PAC has aroused growing interest, given the growing amount
of evidence of its potential role in processing information about the brain and its
changes in pathological conditions, including epilepsy.
Within the PAC the instantaneous amplitude of a higher frequency band within a
signal is modulated by the instantaneous phase of a lower frequency band within
the same signal.
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4.1 Feature extraction steps

Several studies in the literature on the electrophysiology measurement of neural
activity have observed that different frequency bands are responsible for distinct
computational roles, as the oscillations create synchronisations between specialised
regions to ensure cognitive processing. [27]

CFC is not limited to memory processes, but has been reported in sensory
processing, including vision and visual attention, smell, and auditory perception.
For example, as mentioned in the previous chapter, neuronal activity of the gamma
band in the human brain has been shown to play an important role in visual
perception, while fluctuations in the alpha band in the occipital region have been
interpreted as an indicator of reduced visual attention.

To proceed with the PAC calculation, conventionally there are three steps to be
completed:

1. filter the input data in the bands of interest, in our case, in alpha and gamma
band

2. apply the Hilbert transform to extract the amplitude and phase time series
from each frequency band of interest

3. quantify the relationship between the phase and the time series of amplitude

The following will be explained in a little more detail.

4.1.1 Band component extractions

For the extraction of spectral components from a signal, filtering must be done
first. For filters, there are two broad categories:

• Finite Impulsive Response - FIR: these filters are characterized by a finite,
symmetrical pulse response and have a linear phase. These filters can be
described through an MA system, Moving Average. If a linear phase filter is
used, a shift is introduced in the signal and this time delay is proportional to
the order of the filter and is the same for all harmonic components.

• Infinite Impulsive Response - IIR: these filters have an infinite impulsive re-
sponse and a non-linear phase. They can be recursively defined with an
ARMA, AutoRegressive Moving Average system. In this case, being the non-
linear phase, the delay is different at different frequencies and this leads to a
distortion of the signal. To avoid this, a null phase filtering must be used, so
as to modify only the input module of the signal and not the phase.
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4.1.2 Phase and amplitude extraction

In our study CFC represents the link between the alpha-band phase and the gamma-
band amplitude, therefore it is necessary to extract these components from the
signal to be analysed.

Hilbert’s transform was used to obtain the phase and amplitude trend over time.
This transformation can be interpreted as a function that receives an input vector
x, the analytical signal, containing the real values of the signal to be analysed and
returns a complex vector in output.

xa(t) = x(t) + iH(x(t)) (4.1)

where H(x(t)) is the Hilbert’s transformation of x(t) and i is the imaginary units.
The output vector is composed of the real part x which is the same input vector x,
while the imaginary part y is the vector x out of phase by 90°.

If the phase of the Hilbert transform of a signal is calculated, the phase trend over
time is obtained. Therefore, to obtain the alpha band phase, the alpha band signal
must be filtered, then apply the Hilbert transform and finally extract the phase. As
far as the amplitude trend in time is concerned, instead, the transformation module
must be determined. In our case, to obtain the amplitude in the gamma band, first
filter the signal in the gamma band, then apply the transform and finally calculate
its module.

4.2 Coupling Indexes

To obtain an idea of the level of coupling between phase and amplitude, numerical
indexes can be used. There is no unique convention on how to calculate phase-
amplitude coupling, but there is a heterogeneity of methods used in the literature.

Some of the most widely used phase amplitude coupling measurements today are
phase locking value PLV, the mean vector length MVL, the modulation index MI,
the GLM method of generalized linear modeling and phase binning combined with
variance analysis ANOVA. Recent approaches use mutual information to calculate
phase-amplitude coupling. The calculation of mutual information is sensitive to
the amount of data and noise, but is advantageous when dealing with non-linear
relationships. All these measurements use the instantaneous phase and amplitude
of the signals after being filtered with a bandpass to calculate a measurement
representing the coupling force. [28]
A first comparison between the indices in terms of noise level, coupling phase, data
length, sampling frequency, non-stationary signal and multi-mode, showed that:
the performance of the various indices differed considerably in conditions of poor
quality of the analysed signal, including high noise and low sampling frequency,
but all showed good qualities in the presence of signal with good qualities, such as
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longer periods and less noise.
The main characteristics of the most used indexes in the literature are shown below.

Modulation Index - MI

The MI is an index that quantifies the deviation of the phase amplitude distribution
from the uniform distribution through the Kullback-Leibler divergence. [29]
This index can change between 0 and 1, and is equal to 0 in the complete absence
of coupling. To obtain a value approximately equal to 1, an amplitude function
completely opposite to a uniform distribution should be used, i.e. a distribution
that resembles the Dirac Delta.

Through experimental tests in literature, it has been seen that the MI index has
very low values, about 10−3 10−4.
This index is robust when used in the presence of noise and even with short data
ages.

Phase Locking Value - PLV

The phase locking value index is another method used for coupling measurement.
In this case the PLV is calculated starting from the time trend of the alpha phase
and the corresponding amplitudes in the gamma band.
Therefore it calculates the circular variance of the consistency of the phase dif-
ferences between the low frequency signal phase and the high frequency signal
amplitude phase.

We can speak of reciprocal modulation if the time course of the amplitudes in
the gamma band are in phase with the alpha band waves. In this case the index
tends to 1 if the difference between the phase and the amplitude of the two bands
remains constant over time, and in this case we speak of phase locking. In the same
way, the PLV value deviates from the unit value the more the difference between
phase and amplitude changes over time.

Mean Vector Length - MVL

This index quantifies circular variances by the amplitude of the average of the com-
plex composite signal. To obtain good results, this index requires the use of a signal
characterised by high SNR.
This index is calculated as the modulus of the time average of the vector represent-
ing the graphical projection between phase and amplitude.

What is therefore studied is an estimate of the centre of the figure created by
the projection on the complex plane of the vector. It has been analysed that
in the absence of coupling, on the complex plane, the vector designs the circular
figures centred in the origin as time varies. In fact, in the absence of coupling, the
amplitude of the gamma waves are equally distributed in all the phases of the alpha
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waves and the value of the MLV index tends to 0. If coupling is present, the centre
of the graph will no longer be centred at the origin and the index deviates from the
zero value the greater the coupling between phase and amplitude. [30]

From the calculation of this index there are three tricks: the final value depends
on the general absolute amplitude of the amplitude providing the frequency, outliers
can strongly influence the measurement and phase angles are often not uniformly
distributed.

After a statistical comparison between the three indices described above, in
which the focus was on the effects of data length and the accuracy of finding
the coupling frequencies that contribute within exploratory analyses over wide fre-
quency ranges, the following conclusions were reached. MVL estimates the coupling
force more correctly and MI is more robust to noise with regard to the detection of
coupling frequencies.

4.3 CFC and Neural Disorder

Several studies that process information received from the cerebral cortex have
hypothesized that high frequency brain oscillations reflect local cortical information
processing and that low frequency brain oscillations project the flow of information
through larger cortical networks.

The CFC refers to the link between two bands within the signal. In this work the
link between the phase of the alpha band waves and the amplitude of the gamma
band waves has been studied cause there are numerous studies in the literature
that have studied their application to cases of epileptic patients.
This type of coupling has aroused a lot of interest over the years as it is considered
fundamental for the correct functioning of the memory, both sensorial and associa-
tive. [27] Moreover, given the close link with remembering, its study could play an
important role in research on neuro-degenerative diseases.

PAC can be studied for the functional aspect of normal brain dynamics, and
in the same way the study of an abnormal PAC could be a cause or symptom of
unhealthy brain function. Several studies have worked on the PAC applying it
between different frequency bands, in different brain regions and under different
working conditions. Associations between brain disease and PAC have been found
in epilepsy, Parkinson’s disease, Alzheimer’s disease. This makes the PAC estimate
of interest for clinical trials.

Over the years, the idea that there may be a scientific and clinical basis for
investigating the role of CFCs in healthy patients and patients with neurological
disorders has been growing. In particular, as already mentioned, more and more
attention has been focused on the study of the PAC, as it has been widely demon-
strated that several neurological diseases can alter its characteristics due to its
rhythmic activity. [31]
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Neural mechanism of CFC

Although CFC has been widely studied, its neurophysiological relevance has never
been fully understood and is still under study. A number of theories have been
hypothesized that link some computational models to the data recorded in human
and animal studies.
A modulation study has demonstrated a series of fundamental properties necessary
for a brain network to generate CFCs: first of all, it is necessary to be in the
presence of distinct multi-frequency neural oscillations and also to have different
coupling mechanisms between the single neuronal circuits responsible for rhythmic
activities. The first property is based on synaptic coupling between excitatory
and inhibitory populations and also, electrical coupling between individual neurons
through gap junctions.

In this thesis work the coupling between the low frequency alpha phase and the
high frequency gamma amplitude was analysed. It has been seen in some studies
how gamma activities may result from interactions within highly interconnected
inhibitory neuron populations or may result from network interactions between
exciting local interneuron network populations. For alpha band oscillation activ-
ity, however, these are the result of the interneuronal network activity involving
both pyramid cells and interneurons and their interactions in generating a range of
oscillations.

There has also been an in-depth study in the literature on the effect that certain
neurotransmitters may have on CFCs. In a recent study, the effects of dopamine
release on CFC modulation between different frequency bands were explored in a
study population consisting of rats that have been given dopamine.
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Chapter 5

Results and Discussions

5.1 Dataset

The dataset consists of fifteen patients with EMA, eyelids myoclonia with absences,
a disease that will be described in the next paragraph.
Specifically, there are thirteen females with an average age of 25.4 years and an
average age of onset of epilepsy at 8 years. The demographic and electro-clinical
details of the EMA group are summarized in the following Table 5.1.
The inclusion criteria for the diagnosis of EMA were as follows:

1. age of onset between 2 and 14 years

2. eyelid myoclonus with or without absence

3. related generalised paroxysmal activity

4. epileptic seizures induced by eye closure, electroencephalographic paroxysms
(EEG) or both, within 0.5-4 seconds of eye closure

5. photosensitivity

Scalp EEG was recorded by means of a 32-channel MRI-compatible EEG record-
ing system (Micromed, Treviso, Italia).
Simultaneously, a video was recorded during the EEG-fMRI acquisition, which
made it possible to control the movements and physiological activities of the pa-
tients and controls, as well as the eyelid myoclonus triggered by the closing of the
eyes in the EMA.[32] For part of the work, the video was essential to recognise the
exact moment of eye closure.
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Patient
Age

Seizure
Onset

Sex
Cognitive

Status

Voluntary
Eye

Closures

Spontaneous
Blinks

1 16/8 M Normal 12 91
2 29/8 F Normal 21 39
3 18/5 F Normal 12 91

4 21/9 F
Mind mental
retardation

13 191

5 21/13 F
Learning
disability

12 12

6 17/11 M Normal 12 35
7 26/9 F Normal 12 46
8 30/15 F Normal 12 42
9 18/13 F Normal 12 21
10 56/14 F Normal 12 70
11 35/14 F Normal 12 3

12 19/2 F
Learning
disability

12 29

13 57/NR F Normal 12 85
14 11/9 F Normal 12 64

15 8/5 F
Learning
disability

13 36

Table 5.1. Demographic and Eletroclinical Features of Patients with EMA

Patients were trained to open and close their eyes for periods of 30 seconds in
response to a beep from a headset. Each condition was repeated 3 times per session
for 4 consecutive sessions lasting 3 minutes, so a total of 12 conditions with eyes
closed and eyes open. The first and third fMRI series started with eyes closed, the
second and fourth with eyes open. This sequence was alternated from one subject
to another. [33]
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5.1. DATASET

5.1.1 Eyelid myoclonia with absences

The International League against Epilepsy, ILAE, proposal Diagnostic Scheme of
Epileptic Seizures has recognized eyelid myoclonia as a seizure type, but EMA is
not one of the epilepsy syndromes, blending it with other photosensitive epilepsies
under the etiquette of other visually sensitive epilepsies.
Jeavons in 1977 [34] for the first time gave a complete description of epileptic
syndrome characterised by eyelid myoclonus associated with brief absences and
photosensitivity, i.e. eyelid myoclonia with absences, EMA.

Eyelid myoclonia, not absences, is the hallmark of Jeavons syndrome. Eyelid
myoclonia consists of a marked tearing of the eyelids often associated with an
upward jerking deflection of the eyeballs and retropulsion of the head. This may
be associated with or followed by a slight impairment of consciousness, precisely
eyelid myoclonia with absences.
Seizures are short, usually lasting 3-6 s and occur mainly and immediately after
closing the eyes and repeatedly many times a day. All patients suffering from this
pathology are photosensitive. Myoclonic shots of the limbs may occur, but they
are rare and random. The onset is typically in childhood with a peak at the age of
6-8 years.

From a pharmacological point of view, modern therapeutic combinations, such
as valproic acid and ethoxymide, or valproic acid and lamotrigine, are usually effec-
tive; however, in a percentage of patients, seizures are resistant to pharmacological
treatment.
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5.2. OCULAR ARTIFACT REMOVAL

5.2 Ocular Artifact Removal

The EOG waveform depends on the direction of eye movement. The vertical move-
ment of the eyes produces a square waveform while the blink of the eyelashes looks
like a waveform with a very intense peak, with a duration of about 0.2-0.4 s.

As already mentioned in the previous chapter, these types of artifacts are usually
eliminated by regression methods that require EOG recording.
The method used in this work for the removal of artifacts has been proposed and
implemented on the EEGLAB Matlab toolbox by German Gomez-Herrero [35], it
is a fully automatic method based on the fastICA algorithm that does not require
the EOG tracks.
The technique used can be divided into three basic steps [36]:

1. FastICA algorithm application and source estimation. Starting from equation
3.2, it is possible to write:

x(t) = xEEG(t) + xEOG(t) = A(t)s(t) = AEEGsEEG(t) + AEOGsEOG(t) (5.1)

where AEEG and AEOG are the submatrices of A built considering only the
columns of A associated, respectively, to the neural and artifact sources, while
sEEG and sEOG indicate the neural and artifact sources.

2. Identification of artefact sources. It has been chosen to use a criterion based
on fractal dimension, FD, for the determination of the sources associated to
artefact components.

FD is a measure of signal complexity, in fact the EOG spectrum presents
a dominance of low frequency components while the EEG spectrum is more
distributed and flatter. For these reasons neural sources have higher FD values
than those related to eye activity.
In particular, the Sevcik algorithm is used to calculate FD, which maps the
waveforms in a unitary square to create standardised coordinates.

The fractal dimension is calculated as follows:

FD = 1 +
ln(l)

ln(2(n− 1)
(5.2)

where l is the total length of the waveform in the unitary square and n is is
the number of the points of the waveform.
To obtain a more robust estimate of the FD it is possible to divide the sources
into windows containing 10% of the total samples, calculate the FD for each
window and average them to obtain the FDmean value. Sorting the sources
according to their FDmean in descending order, the sEEG will be the k sources
s1, s2, ..., sk where k is the smallest integer in the range M/2 ≥ k ≥ 1 such that

(fdk+1 − fdk) < (fdk − fdk−1)
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5.2. OCULAR ARTIFACT REMOVAL

3. Removal of artifact sources and reconstruction of EEG data. After estimating
the mixing matrix we can proceed with the reconstruction of the EEG signal of
the various channels, multiplying the signals themselves with the sub-matrix
A and its pseudo-inverse A∗.

xnew(t) = AEEGA∗
EEGx(t) (5.3)

These three steps described above are the steps applied to patients’ EEG signals for
EOG artifact removal. This algorithm was not applied directly to the entire signal
but a time window was used without overlapping samples. This choice was made
considering that the EEG signal is a non-stationary signal. For the time choice
different tests were carried out and in the end a 200 s window was chosen which is
the best to avoid an excessive removal of neural sources.

The figure 5.1 shows a complete EEG trace of a patient composing our dataset.
In this case the patient was asked to open and close his eyes in response to a
stimulus.

Figure 5.1. Example of an EEG plotting

Below are two excerpts from the epochs, of the signal shown above, with a length
of 20 s to view the removal of artifacts in detail.
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5.2. OCULAR ARTIFACT REMOVAL

Figure 5.2. Extract of an epoch 20s long before removal of the eye artifact

Figure 5.3. The same epoch after removal of the eye artifact
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5.3. CROSS-FREQUENCY COUPLING

5.3 Cross-frequency coupling

To calculate the cross-frequency coupling, the phase of the filtered signal and the
amplitude of the signal in each of the frequencies that compose the EEG signal
have been calculated. In particular, after a study in the literature, it was decided
to keep the electrode fixed in the occipital position and this was coupled with the
other electrodes. Among all the indexes described, it was decided to use the PLV
value to quantify the coupling between the various electrodes. The mathematical
structure at the base of this index will be described below.

The algorithm elaborated for the calculation of the index has not been applied
to the entire signal in its length, but has been divided into 3 second periods.
These periods correspond to the event immediately after the closing or opening of
the eye following an external stimulus. In the following these events will be called
with the acronym OA to indicate the moment of the opening of the eye and OC to
indicate the closing.
A further subdivision has been made to check whether or not the subject had an
attack as a result of the stimulation. Again, acronyms will be used, specifically pos
if there is a seizure or neg if it has not occurred.

To study the coupling, two indices were evaluated, in particular a bivariate index,
the phase locking value, and an amplitude phase coupling indicator.

The graphs relating to a single patient are shown below, dividing the study by
the different frequency bands and evaluating five different cases:

• epoch of length equal to 3s following the closure of eyes after an external
stimulation and with the appearance of a seizure

• epoch of length equal to 3s following the closure of eyes after an external
stimulation without the appearance of a seizure

• epoch of length equal to 3s following the opening of eyes after an external
stimulation without the appearance of a seizure

• epoch of length equal to 3s taken at a random point while the subject had his
eyes closed

• epoch of length equal to 3s taken at a random point while the subject had his
eyes opened

Then the graphs for each brain rhythm will be shown for the two indexes studied.
For each of them there are five graphs related to the five cases described.
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5.3.1 Phase Locking Value - PLV

As already mentioned in the previous chapter, the Phase Locking Value is another
index used for the mathematical measurement of coupling. In this case the index
is calculated starting from the time trend of the alpha wave phase xp and the
corresponding amplitudes in the gamma band xA. The idea behind the PLV is to
compare the xp vector with the alpha band phase of the xA vector.

The first step is to filter the xA signal into the alpha band and thus obtain
the xAθ vector. Then the temporal trend of the signal phase xAθ will have to be
extracted, going to calculate the phase of its Hilbert transform.
In mathematical formulas, this translates into:

yAp = /hilbert(yAθ) (5.4)

Then the vector xp and xAp are compared with each other using the vector plv.
This vector for each instant of time contains a complex number whose module is
unitary and the phase is calculated as the instantaneous difference between the
vector xp and xAp.

plv(t) = ei[xP (t)−xAp(t)] (5.5)

The PLV index is obtained from the average of the plv vector.

PLV = |mean{plv}| (5.6)

This index will tend to 1 if the difference between xp and xAp remains constant
over time, and this is called phase locking. Instead, the PLV deviates from the unit
value the more the difference between xp and xAp changes over time.

Remembering how the dataset was structured, for each patient the recorded data
showed repeated tasks carried out by the latter, such as the opening and closing of
the eyes following a stimulus. The considerations that will be made for the PLV
index and the PAC index, were made following several tests.
In fact, different positions indicating the same case were considered for the same
rhythm. For example, 2 to 4 events were available for the study of the case of eye
closure with a subsequent seizure within the track, so the results were elaborated
for each of them and then general considerations were drawn.

For the graphic illustration of this index, the representation of the cerebral scalp
was used. In particular, the 10 highest of the calculated couplings are highlighted
within this index.
Note that we have chosen to keep an occipital electrode fixed because it is the one
that is always more coupled and useful for the purpose of our study.

51



5.3. CROSS-FREQUENCY COUPLING

PLV index for delta rhythm

Figure 5.4. Representation of the 10 most paired electrodes in the delta rhythm
divided in the five cases of clinical interest

By filtering the signals in the frequency range of the delta rhythm, it is possible to
notice a greater coupling between the occipital electron and the frontal electrodes.
The value of the average coupling represented is 0.09435.
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PLV index for theta rhythm

Figure 5.5. Representation of the 10 most paired electrodes in the theta rhythm
divided in the five cases of clinical interest

For this particular case, after filtering the epochs with the theta frequency range,
a greater coupling at central level has been noticed. In this case the average coupling
value was 0.07632.
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PLV index for alpha rhythm

Figure 5.6. Representation of the 10 most paired electrodes in the alpha rhythm
divided in the five cases of clinical interest

As in the case of delta-band filtering, there is greater coupling at the frontal
level and in some cases, coupling at the temporo-occipital level has been noted.
The average value for this patient in this range was 0.0657.
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PLV index for beta rhythm

Figure 5.7. Representation of the 10 most paired electrodes in the beta rhythm
divided in the five cases of clinical interest

In this case, a greater coupling has been noted at the front-central level. The
average value calculated for the case of coupling in beta band was 0.0547.
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PLV index for gamma rhythm

Figure 5.8. Representation of the 10 most paired electrodes in the gamma rhythm
divided in the five cases of clinical interest

For the last frequency range analysed the results obtained were very variable
between the various cases analysed even within the same run analysed. A very low
average coupling value of 0.0234 is obtained.
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After a comprehensive analysis of all patients, a general comparison can be made
and common considerations can be drawn.
The first thing that was noticed is that the value of the PLV index decreases by
increasing the frequency of study.
Another consideration that can be made for all cases is that the major couplings
are almost always those between the occipital electrode and the frontal electrodes.

Subsequently, analogies were searched for similarities between the results ob-
tained for the cases separately: for example, as expected, it was noted that during
the eye opening and closing events there were higher coupling values between the
occipital and frontal electrodes. For the events studied in random positions during
which the patient’s eyes were constantly closed or constantly open, on the other
hand, no particular recurring characteristics were noted.

5.3.2 Phase Amplitude Coupling - PAC

Another index that has been calculated to numerically evaluate the coupling be-
tween the electrodes was the value RPAC .

For its representation it was chosen to use a heatmap of the scalp shape. In
particular, hot colours indicate higher index values and cold colours indicate lower
values.
Also for this index will be shown for a single patient the five cases described in the
previous paragraph separated for different brain rhythms.
For this index too, all events of the same type within the track have been subse-
quently considered for each event elaborated.

Making general considerations about coupling considering the same frequency
band, there are some characteristics that distinguish some of them. For example,
studies in the literature have shown that alpha-band coupling is mainly localised
in the occipital and parietal regions and decreases towards the frontal area. This
has often been found also in the cases studied in this work.
Another characteristic is on the study of the beta rhythm that is localized in the
central-parietal regions and also this characteristic has often been noticed in this
study.
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PAC index for theta rhythm

Figure 5.9. Representation of the heatmap to illustrate the PAC of the theta
rhythm divided in the five cases of clinical interest

In this example it was possible to notice a coupling always present at the level
of the temporal electrodes on the left side of the scalp. In one case, on the other
hand, we have seen a high coupling at frontal level on the right side.
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PAC index for alpha rhythm

Figure 5.10. Representation of the heatmap to illustrate the PAC of the alpha
rhythm divided in the five cases of clinical interest

In this example, when using alpha-band filtering, there is a greater coupling at
the frontal-temporal level on the right side of the cervical. In the case of eye closure
and a subsequent crisis it is possible to see a high coupling at the centre-frontal
level.
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PAC index for beta rhythm

Figure 5.11. Representation of the heatmap to illustrate the PAC of the beta
rhythm divided in the five cases of clinical interest

As far as the study of beta-band coupling is concerned, no particular recurrences
are noted. This was also true for other patients.
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PAC index for gamma rhythm

Figure 5.12. Representation of the heatmap to illustrate the PAC of the gamma
rhythm divided in the five cases of clinical interest

In this case, the index value calculated by filtering the gamma band signal was
the lowest. As you can see from the images in the figure, there is a higher coupling
at the temporo-parietal level.
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PAC index for alpha-gamma rhythms

Figure 5.13. Representation of the heatmap to illustrate the PAC of the coupling
between alpha and gamma rhythms divided in the five cases of clinical interest

Going to analyse the coupling between alpha and gamma rhythm, a strong
coupling in the temporal-frontal area can be seen. Note the values that are reached
in the case of eye closure and a seizure immediately afterwards.
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PAC index for theta-beta rhythm

Figure 5.14. Representation of the heatmap to illustrate the PAC of the coupling
between theta and beta rhythms divided in the five cases of clinical interest

Also for this frequency couple a higher level at the height of the temporal-frontal
region is noted, but compared to the previous case, lower index values are reached.
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Chapter 6

Conclusion

After having elaborated all of the individual patient tracks and analysed for each
of them the indexes and related cases shown above, I wondered if there was an
analogy between them. We have seen that among the results obtained there are
some characteristics that recur within the same patient but it is difficult to notice
some of them among various patients.

At the end of my study, we asked ourselves how we could continue this work in
the future in order to continue to obtain new information from the study of the
EEG signal.

At the basis of everything that concerns ourselves there is a dense and complex
network of nervous communication controlled exclusively by the brain. How this
organ functions and how its different regions communicate with each other remains
one of the most studied questions in the field of neuroscience.
Among the most discussed topics in recent years is the report between neurophysi-
ological processes, consciousness and brain functions such as attention, perception,
memory and language. Understanding the relationship between brain structure and
function is one of the fundamental questions of neuroscience.

In order to have a more complete perspective of what is happening at the brain
level, it is necessary to take into account not only local and global structural changes
but also the way these different aspects are related.

6.1 Future Work

In this thesis work for the study of cross-frequency coupling, we focused on the
study of coupling between different frequency bands that make up the EEG signal,
going to study the results separately for each of them.

A subsequent work could certainly be to examine coupling between other fre-
quency bands, particularly interesting would be the study of theta-gamma coupling.
Another consideration about our study is the fact that not all possible electrode
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pairs were compared, but only couplings between the occipital electrodes and the
others. Therefore one electrode always remained one of the electrodes placed on
the occipital lobe while the other channel compared varied from time to time.

So also in this case, it will certainly be interesting to go into this aspect in depth,
that is to go and analyse different pairs of electrodes.

Once we have examined the different brain rhythms and studied their coupling
between different recording channels, the next step could be the study of functional
connectivity. Briefly, functional connectivity is the study of the synchronization
strength of neuronal activity in different regions of the brain.

The various techniques and methods developed for the study of brain activ-
ity have shown that the different neuronal regions of the brain do not operate in
isolation but interact with each other forming a complex network of connections.
The study of the relationships/connections existing between the different cortical
regions is commonly referred to as the study of brain connectivity.

The functional information usually used for connectivity estimation is provided
through non-invasive imaging techniques, based on hemodynamic measurements
e.g. functional magnetic resonance imaging, fMRI, metabolic, with the position
emission tomography, PET, electrical, such as electroencephalography, EEG, or
electromagnetic, through magnetoencephalography, MEG.

6.1.1 Functional Connectivity

As defined in 1994 by Professor Friston, functional connectivity is defined as the
temporal coincidence of spatially distant neurophysiological events. The assump-
tion behind this technique is that the similarity in temporal trends of signal fluctua-
tions in different areas suggests that they are in constant communication forming a
functional network. Several studies have analyzed the coherence of these networks,
showing it under physiological conditions. Neurophysiologic coherence among dif-
ferent locations varies under pathological conditions. [37]

In order to proceed with the analysis of functional connectivity, reference is
made only to statistical dependencies among the measured data and no knowledge
or assumptions regarding the structure and mechanisms of the neural system are
included. An important point to underline is that what is of interest in the end is
not the study of functional connectivity point by point but the information that
can be deduced from the patterns of related activities.

Numerous methodologies exist to study functional connectivity, as shown in
Figure 6.1.

The methods are mainly divided into two categories: frequency-based and time-
series-based. The first subgroup is subsequently composed of the coherence analysis
and the study of the transfer function. [38]
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Figure 6.1. Overview of the main functional connectivity survey groups.

Those based on time-series provide a further subdivision between linear and
non-linear measurements, i.e. a subdivision between hypotheses of gaussianity and
non gaussianity of data. In the first case the cross-correlation between time series
is analysed, while in the second case the mutual information or synchronisation is
evaluated.
Among the most widely used methods for the study of functional connectivity in
non-Gaussian time series, there are certainly ICA and PCA analysis.
A disadvantage in the calculation of functional connectivity is that we do not know
unambiguously the correlation between different areas. Considering for example
two temporal series x and y, coming from two different functionally correlated
brain regions, it is not possible to establish univocally if:

• it is x to influence y

• it is y to influence x

• the two areas condition each other

• both are modulated by a third variable

In summary, the brain can be schematised as a brain network composed of
nodes and links: the nodes represent the regions of the brain and the links are the
connections. Functional connectivity aims to establish the type of connection that
binds each node. To do this, the time series that define the brain activity of a
certain area are extracted and studied in function of the others.
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