
POLITECNICO DI TORINO

Master’s degree course in Mechanical Engineering

Master’s Degree Thesis

Study of Finite Element Analysis
Using the Shifted Boundary Method

Supervisor Candidate
Prof. Claudio Canuto Yamal Abou Jokh

Supervisor’s signature Candidate’s signature

Anno Accademico 2019-2020

Summary

Generally speaking, a differential problem has 3 main ingredients:

1. A differential equation to solve, with a physical quantity which we wish to find.

2. A physical domain where the differential equation is applied, including the boundary
of such domain.

3. And boundary conditions.

Over the course of history, several methods were developed to solve differential prob-
lems. As of today, mainly three of those methods prevail: Finite Difference Method
(FDM), Finite Volume Method (FVM), and Finite Element Method (FEM). This is be-
cause of the pros and cons which each of them has.

In the case of the FDM it is very easy to use and program, but it is restricted to
specific physical domains, and some conditions of continuity and smoothness are required.
The FVM is particularly useful where conservation laws hold, but it has issues with
continuity and it has the disadvantage to smooth large gradients. On the other hand,
the FEM is more complex algebraically and more difficult to program, but it lacks the
restrictions of the FDM and the disadvantages of the FVM.

Since the previous century, the Finite Element Method (FEM) has continuously found
applications to solve multiple types of physical problems, however as its range of applica-
tion has increased, many Engineers, Mathematicians, Physicists, and Programmers have
realized the difficulties that it encompasses.

From the 3 ingredients of a differential problem, the steps of a typical FEM are:

• Discretize the physical domain into small pieces, known as “finite elements”. Across
the finite elements, there will be points where it is wished to know the value of the
physical quantity, those points are called “nodes”.

• Then apply a suitable test function on every node, and assume that the physical
quantity is a linear combination of those test functions. Test functions are functions
which approximate the physical quantity over the physical domain, as well as min-
imize the error in the approximation. This step comes from a variational point of
view.

• According to the differential equation to solve, following the algebra will result into a
system of algebraic equations. Applying boundary conditions and solving the system
will give an approximated numerical solution of the physical quantity on every node.

• Finally, post-processing the results.

The reasons why the FEM gained increasing attention as to become a standard to
solve a wide range of situations in nowadays were two: Because it can practically solve

2

any differential problem, and the implementation of computers which allowed to obtain
and test solutions for such problems. The latter reason being the starting point for which
the scientific community paid attention to such method, even though this also represents
a drawback since computers only have a finite computational capacity.

In a broad sense, the FEM in its most basic definition is more expensive in terms of
computation cost compared to other methods, such as FDM and FVM. Even if the FEM
can solve any differential problem, it is useless if it can not do so in an acceptable amount
of time, for a certain precision. From this idea, it is logical that we wish to decrease the
computational cost of the FEM.

The total computational cost of a FEM is directly influenced by its first step, meaning
the way the physical domain is discretized, and this has implications on all of the remaining
steps of the method. This is so since, when there are different shapes and sizes of finite
elements along the physical domain, unique calculations have to be done for every unique
finite element.

This cost could be diminished by using a constant shape of finite element across the
physical domain, but this is not always possible since the physical boundary imposes
a restriction on the shape of the finite elements. To illustrate this, imagine trying to
divide a circle into small squares, no matter how small the squares are, they will never
be able to equal the boundary of the circle, so special elements will be needed to fill the
circle completely.

This is an obstacle only because there is information about boundary conditions at the
physical boundary, but could be avoided if equivalent boundary conditions were trans-
lated into the boundaries of the finite elements. That is the fundamental idea of Shifted
Boundary Method, which is to translate boundary conditions from the physical bound-
ary to the boundary of the finite elements, thus diminishing the computational cost of the
FEM while maintaining the same level of approximation. References to this can be found
in [1, 2, 3, 4, 5, 6].

This idea also breaks the restriction of the shape of the finite elements near to the
physical boundary, since there would be no need to approximate the physical boundary
at all. This is indeed a powerful advantage since we could use any shape of finite element
to fill any physical domain.

This advantage can be further extended if a constant shape of finite element is
used. In this case, we propose rectangular finite elements with bilinear shape functions,
instead of the typical triangular finite elements with linear shape functions. This choice
will give a set of computations which are the same for each finite element, a desirable
characteristic since it makes the method easier to write algebraically and to program,
such as the FDM. References to this procedure can be found in [7, 8].

These ideas can be used for the case in which the physical domain changes in time,
as we shall see in the development of this thesis, where we model the heat equation.
References to this can be found in [9, 10].

The implementation of the Shifted Boundary Method for rectangular elements and its
application in time-changing domains are among the original contributions of this thesis,
with respect to the existing literature on the subject cited above.

3

Preliminaries: Notation

Before proceeding, it is important to define a useful notation to avoid misconceptions. We
define 3 important notations:

• The dot product between 2 vectors ~v1 and ~v2, will be denoted by 〈~v1, ~v2〉. On this
paper, we treat the operator ∇ as a vector, therefor the divergence of vector ~v1 is
written as div(~v1) = 〈∇, ~v1〉.

• The multiplicative sign used is a simple dot, like ·

• In almost all integrals, the integrand is enclosed into brackets like
´

[I(x, y)] dxdy,
however it might also be enclosed into parenthesis like

´
(I) dxdy. Exceptions are

unless the integrand is easily distinguishable.

4

Contents

1 A simple beginning: Poisson’s equation 6

2 Applying Dirichlet boundary conditions through Nitsche’s method 17

3 Applying shifted boundary conditions 25

4 Extension to a more general problem 43

5 Introducing time dependence 53

6 Conclusions 77

Bibliography 79

5

Chapter 1

A simple beginning: Poisson’s
equation

We start with a simple problem. We wish to solve the Poisson equation over a rectangular
region Ω, with Dirichlet boundary conditions:

− 〈∇,∇u〉 = f in Ω (1.1)

u = g on ∂Ω

where u is a certain scalar physical quantity, g are the Dirichlet boundary conditions of
the differential problem, the region Ω is defined as a rectangle of base B and height H,
so Ω = [B × H], and ∂Ω is the boundary of Ω. To start solving our problem, we use a
Finite Element Analysis, for this we multiply the Poisson equation by an arbitrary test
function v and integrate over Ω. Performing the algebra we get to the following equivalent
problem:

ˆ
Ω
〈∇u,∇v〉 dΩ−

ˆ
∂Ω

[
v · du

dn

]
ds =

ˆ
Ω

(f · v) dΩ (1.2)

u = g in ∂Ω

where n is the outward unit vector normal to boundary ∂Ω. As an additional condition,
we add that v = 0 on ∂Ω, so

´
∂Ω

[
v · dudn

]
ds = 0. This last condition holds since we are

imposing Dirichlet boundary conditions along ∂Ω.
Performing the steps of the FEA:

• We choose to discretize region Ω into rectangular finite elements of constant base hx
and constant height hy, nodes will be placed on the corners of the finite elements,
therefore each finite element has 4 nodes.

• We assign a unique number to each node on region Ω (that way, each node is uniquely
identified).

6

1 – A simple beginning: Poisson’s equation

• The test functions v(x, y) are defined as to be equal to 1 on an internal node, and
decrease to 0 in a bilinear form as we move away from it towards its consecutive
most adjacent nodes, afterwards it remains zero everywhere else on domain Ω.

A representation of the discretization is shown next:

Figure 1.1: Discretization of region Ω and a patch of finite elements

where we can see how region Ω is discretized into a total of M · N finite elements, as
well as a patch of finite elements (meaning the rectangle of size 2hx× 2hy) with its nodes
(represented by the 9 blue dots on the corners of every rectangle of size hx × hy), and a
coordinate system useful to define all properties and points. The origin of the coordinate
system is set at the bottom left corner of region Ω. Notice how we have a total of
(M − 1) · (N − 1) inner nodes (where u is unknown) and 2 · (M +N) boundary nodes
(where we have boundary conditions).

Now we assume that variable u is approximated by a linear combination of the test
functions v, let’s call it ũ, therefore u ≈ ũ =

∑
ui · vi, where ui is the numerical value of

function ũ at node i. From here equation (1.2) becomes:
ˆ

Ω

〈
∇
(∑

ui · vi
)
,∇vj

〉
dΩ =

ˆ
Ω

(f · vj) dΩ (1.3)

where vj is a test function applied at node j. Following equation (1.3), we apply a test
function vj at every unknown node on region Ω in order to build a closed system of
equations. To do so, it is necessary to compute the integrals in equation (1.3) accordingly.

Equation (1.3) is based on the global numbering of the nodes, however to easily com-
pute the above integrals, we focus on each finite element individually, use a local number-
ing of the nodes on the finite elements, and use a local reference frame set at its bottom
left corner. The idea is to easily get general results based on local properties,
and extrapolate them to the global problem in order to build the system of
equations.

7

et al.

For the local numbering, our reference for a finite element R = [hx × hy] will be the
following:

Figure 1.2: Reference for a finite element

where we locally numbered the nodes to easily identify them.
Based on the above local numbering and local reference frame, we can define bilinear

functions va applied at a local node a as:

v1 =
(

1− x

hx

)
·
(

1− y

hy

)
v2 =

(
1− x

hx

)
· y
hy

v3 = x

hx
·
(

1− y

hy

)
v4 = x

hx
· y
hy

where 0 ≤ x ≤ hx and 0 ≤ y ≤ hy.

Concerning the term
ˆ

Ω
〈∇vi,∇vj〉 dΩ

For now, let us focus on the left hand side (LHS) of equation (1.3), which can be rewritten
as:

∑
ui

ˆ
Ω
〈∇vi,∇vj〉 dΩ

where both i and j correspond to nodes on the domain Ω. The above represents a Matrix-
vector product of the form A · ~u, where matrix A has entries aji =

´
Ω 〈∇vi,∇vj〉 dΩ, and

~u is a column vector containing the different values ui.
For some given integers i and j, because of the shape we chose for the test functions,

most of the entries
´

Ω 〈∇vi,∇vj〉 dΩ are zero, specifically when nodes i and j do not belong
to the same finite element. This is so since the gradients of test functions of further away
nodes are zero at the region of integration (they might touch at their ends but still, the
integral would be zero since they only touch along a line and not a finite area). The

8

1 – A simple beginning: Poisson’s equation

geometrical interpretation of this is that the only non-zero entries correspond to nodes
that are adjacent to each other.

To compute the above integral, we use local numbering of nodes a and b. Therefore,
for some given integers a and b, we compute

´
R 〈∇vb,∇va〉 dΩ.

As a final remark, it is convenient to express the following results in terms of a coeffi-
cient β defined as β = hy

hx
+ hx

hy
.

For a = 1 and b = 4:

ˆ
R

〈∇v1,∇v4〉dΩ =
ˆ hy

0

ˆ hx

0

·

 − 1
hx
·
(
1− y

hy

)(
1− x

hx

)
·
(
− 1
hy

) ·

(1
hx
· yhy

x
hx
· 1
hy

)dxdy
=
ˆ hy

0

ˆ hx

0

−(1
hx

)2
·
(

1− y

hy

)
y

hy
−
(

1− x

hx

)
x

hx
·
(

1
hy

)2
 dxdy

=− 1
6

(
hy
hx

+ hx
hy

)
= −β6

This is the same result for whenever nodes a and b are in opposite corners along a
diagonal of the finite element.

For a = 1 and b = 3:

ˆ
R

〈∇v1,∇v3〉 dΩ =
ˆ hy

0

ˆ hx

0

 − 1
hx
·
(
1− y

hy

)(
1− x

hx

)
·
(
− 1
hy

) ·

 1
hx
·
(
1− y

hy

)
x
hx
·
(
− 1
hy

) dxdy
=
ˆ hy

0

ˆ hx

0

−(1
hx

)2
·
(

1− y

hy

)2

+
(

1− x

hx

)
x

hx
·
(

1
hy

)2
 dxdy

= 1
6
hx
hy
− 1

3
hy
hx

= β

6 −
1
2
hy
hx

This is the same result for whenever nodes a and b are beside each other horizontally.

For a = 1 and b = 2:

We can use our previous result, which by symmetry gives:
ˆ
R

〈∇v1,∇v2〉 dΩ = 1
6
hy
hx
− 1

3
hx
hy

= β

6 −
1
2
hx
hy

This is the same result for whenever nodes a and b are one above the other vertically.

9

et al.

For a = 1 and b = 1:

ˆ
R

〈∇v1,∇v1〉 dΩ =
ˆ hy

0

ˆ hx

0

 − 1
hx
·
(
1− y

hy

)(
1− x

hx

)
·
(
− 1
hy

) ·

 − 1
hx
·
(
1− y

hy

)(
1− x

hx

)
·
(
− 1
hy

) dxdy
=
ˆ hy

0

ˆ hx

0

(1
hx

)2
·
(

1− y

hy

)2

+
(

1
hy

)2

·
(

1− x

hx

)2
 dxdy

= 1
3

(
hy
hx

+ hx
hy

)
= β

3

This is the same result for whenever a = b.

Building local matrix A

With this information, we can build the local matrix A, which is given by:

Alocal = β

6 ·


2 1 1 −1
1 2 −1 1
1 −1 2 1
−1 1 1 2

− 1
2 ·


0 hx

hy

hy
hx

0
hx
hy

0 0 hy
hx

hy
hx

0 0 hx
hy

0 hy
hx

hx
hy

0



Concerning the term
ˆ

Ω
(f · vj) dΩ:

Let’s assume that f is approximated by a linear combination of the test functions v, let’s
call it f̃ , therefore f ≈ f̃ =

∑
fi · vi, where fi is the numerical value of function f̃ at node

i. Correspondingly we get:

ˆ
Ω

(f · vj) dΩ ≈
ˆ

Ω

(
f̃ · vj

)
dΩ =

∑
fi

ˆ
Ω

(vi · vj) dΩ

The above represents a Matrix-vector product of the form K · ~f , where the matrix K has
entries kji =

´
Ω (vi · vj) dΩ (thus, it is the mass matrix), and ~f is a vector containing the

different values fi.
For some given integers i and j, because of the shape we chose for the test functions,

most of the entries
´

Ω (vi · vj) dΩ are zero, specifically when nodes i and j do not belong to
the same finite element (for the same reason as with matrix A). Performing the integrals
for some local nodes a and b, we get:

10

1 – A simple beginning: Poisson’s equation

For a = 1 and b = 4:

ˆ
R

(v1 · v4) dΩ =
ˆ hy

0

ˆ hx

0

[(
1− x

hx

)
·
(

1− y

hy

)
· x
hx
· y
hy

]
dxdy

=hx · hy
36

This is the same result for whenever nodes a and b are in opposite corners along a diagonal.

For a = 1 and b = 3:

ˆ
R

(v1 · v3) dΩ =
ˆ hy

0

ˆ hx

0

[(
1− x

hx

)
·
(

1− y

hy

)
· x
hx
·
(

1− y

hy

)]
dxdy

=hx · hy
18

This is the same result for whenever nodes a and b are one beside the other horizontally.

For a = 1 and b = 2:

By symmetry, we get:
ˆ
R

(v1 · v2) dΩ = hx · hy
18

This is the same result for whenever nodes a and b are one above the other vertically.

For a = 1 and b = 1:

ˆ
R

(v1 · v1) dΩ =
ˆ hy

0

ˆ hx

0

(1− x

hx

)2
·
(

1− y

hy

)2
 dxdy

=hx · hy
9

This is the same result for whenever a = b.

Building the local matrix K

With this information, we can build the local matrix K, which is given by:

Klocal = hx · hy
36 ·


4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4


11

et al.

Assembly of the system of equations
Having all necessary information, we can start building the system of equations which will
have a total of (M − 1) · (N − 1) equalities.

For this particular case, the equalities obtained for every test function vj follow the
same pattern. To properly write such pattern, we take as model the following patch of
finite elements of size 2hx × 2hy, where we have labeled the nodes to identify them:

Figure 1.3: Reference for a patch of finite elements used for the assembly of system of
equations

Hence, we can write for all inner nodes on region Ω that:

4 · β
3 uC −

β

6 (uDL + uDR + uUL + uUR) +
(
β

3 −
hx
hy

)
(uU + uD) +

(
β

3 −
hy
hx

)
(uL + uR)

= hx · hy
36 · [fDL + fDR + fUL + fUR + 4 · (fU + fD + fL + fR) + 16 · fC]

This forms one single equation of our system. It is important to mention that, depend-
ing on the test function vj , on the LHS of the above equality we might have boundary
nodes whose contribution has to be passed to the Right Hand Side (RHS) in order to close
the system. In other words, this means that ui = gi if node i belongs to ∂Ω, where gi is
the Dirichlet boundary condition at node i.

Finally, solving the system will give a numerical approximation of variable u at the
unknown nodes.

Practical implementation of the method
Now let us look at some examples. To test our model, we will do the following:

12

1 – A simple beginning: Poisson’s equation

1. Set u to any known function and apply it on some selected rectangular region Ω.
From that we will compute the right hand side f and the Dirichlet boundary condi-
tions g.

2. Then we will perform a discretization of region Ω and apply our finite element model.
Solving the system of equations we are able to get the numerical approximation ũ of
u.

3. With the actual function u and its numerical approximation ũ, we can compute the
error of ũ based on some parameters.

What we are mostly interested with this procedure, is checking how does the error decrease
when the discretization is enriched, or as how it’s commonly called, the mesh is refined.
To study this, since we have 2 discretization steps (meaning hx and hy), we define a new
equivalent length, which we will call h̄:

h̄ =

√
h2
x + h2

y

2
We expect that the error (computed for some given norm) follows the relationship:

error ≈ Cspace · h̄q

where Cspace is a certain scalar constant and q is the rate of decay of the error. We will
compute the error in our approximation under 3 norms: the 1-norm, the 2-norm, and the
infinity norm. The computation of them is given by the following formulas:

ep =
(´

Ω |u− ũ|
p dΩ

‖Ω‖

)1/p

where for a finite element R, using the local numbering, we have that:ˆ
R

|u− ũ|p ≈ (|u1 − ũ1|p + |u2 − ũ2|p + |u3 − ũ3|p + |u4 − ũ4|p) ·
hx · hy

4
The 1-norm corresponds to the case p = 1, the 2-norm to the case p = 2, and the

infinity norm to the limit when p→∞, in which:

e∞ = limp→∞

(´
Ω |u− ũ|

p dΩ
‖Ω‖

) 1
p

= maxΩ |u− ũ|

We will also be interested in computing the error for the gradient of u.

Example
Problem 1:

• Consider region Ω as a rectangle of size [5×4] whose bottom left corner coincides with
the origin of a coordinate system, and that the physical quantity under investigation
is given by u = 2 + sin

(2·π
5 · x

)
· sin

(3·π
4 · y

)
.

13

et al.

From function u we can compute f according to equation (1.1), which gives:

f =
[(2 · π

5

)2
+
(3 · π

4

)2
]
· sin

(2 · π
5 · x

)
· sin

(3 · π
4 · y

)
On the other hand, g = 2 on ∂Ω.
Performing a series of discretizations and applying our FEA, we can compute the errors

and check how they decrease with respect to the discretization step. By doing so, we get
the following results:

Figure 1.4: Errors of ũ vs h for problem 1

Figure 1.5: Errors of ∂ũ∂x vs h for problem 1 Figure 1.6: Errors of ∂ũ∂y vs h for problem 1

Notice how the rate of decay is reported for every case at the upper left corner of each
graph. We can appreciate quadratic convergence for function u and linear convergence for
∇u.

14

1 – A simple beginning: Poisson’s equation

As a plus, we also show a graph of ũ and its absolute error:

Figure 1.7: Graph of ũ for problem 1 Figure 1.8: Graph of the absolute error |u−
ũ| for problem 1

15

16

Chapter 2

Applying Dirichlet boundary
conditions through Nitsche’s
method

So far, we managed to compute all necessary information on equation (1.3) to properly
apply our FEA, however we did it by imposing boundary conditions in the “strong” form.
The “strong” form means that the discrete solution takes the Dirichlet data at each node
on ∂Ω, meaning that the contribution of boundary nodes in the system of equations had
to be passed towards the RHS in order to close the system.

However, to apply shifted boundary conditions, it is necessary to apply boundary con-
ditions in another way, which we call the “weak” form. To do so, we use Nitsche’s method
which is a formulation that enforces the boundary conditions through a penalization tech-
nique. The formulation is the following, from equation (1.2) we get that:

ˆ
Ω
〈∇u,∇v〉 dΩ−

ˆ
∂Ω

(
v · du

dn

)
ds−

ˆ
∂Ω

[
(u− g) · dv

dn

]
ds

+ γ

h

ˆ
∂Ω

[(u− g) · v] ds =
ˆ

Ω
(f · v) dΩ (2.1)

where γ is a penalty constant at least larger than 1, and g are the Dirichlet boundary
conditions. Equation (2.1) is correct for the exact solution u of Problem (1.1) (since u = g
on ∂Ω), however not for its numerical approximation ũ. The idea is that by applying a
penalization, equation (2.1) will force ũ to approach g on ∂Ω. Let us rewrite equation
(2.1) as:

ˆ
Ω
〈∇u,∇v〉 dΩ−

ˆ
∂Ω

(
v
du

dn

)
ds−

ˆ
∂Ω

(
u
dv

dn

)
ds+ γ

h

ˆ
∂Ω

(uv) ds =
ˆ

Ω
(f · v) dΩ−

ˆ
∂Ω

(
g
dv

dn

)
ds+ γ

h

ˆ
∂Ω

(gv) ds

17

et al.

By assuming that u ≈ ũ =
∑
ui · vi, that g ≈ g̃ =

∑
gi · vi where g̃ is the numerical

approximation of the boundary conditions, applying a test function vj to each node on
region Ω now including those on ∂Ω, and rearranging the LHS as to get a matrix vector
product, we get to a system of equations of the shape:

[
A−
ˆ
∂Ω

[
vj ·

dvi
dn

]
ds−

ˆ
∂Ω

[
vi ·

dvj
dn

]
ds+ γ

h

ˆ
∂Ω

(vi · vj) ds
]
· ~u =

K · ~f +
[
γ

h

ˆ
∂Ω

(vi · vj) ds−
ˆ
∂Ω

[
vi ·

dvj
dn

]
ds

]
· ~g (2.2)

where the entries of matrices A and K were computed previously, and ~g is a column
vector containing the different values of gi. It is important to notice that in this new case,
matrices A and K are larger than before, since now we will also have equations for all
nodes on ∂Ω. Nitsche’s formulation also has the advantage that it makes the coefficient
matrix symmetric and diagonally dominant.

Concerning the term
ˆ
∂Ω

[
vj · dvidn

]
ds

The term
´
∂Ω

[
vj · dvidn

]
ds represents a matrix, which we will call C, with entries cji =´

∂Ω

(
vj · dvidn

)
ds.

For some given global nodes i and j, because of the shape we chose for the test func-
tions, most of the coefficients

´
∂Ω

(
vj · dvidn

)
ds are zero, specifically when nodes j do not

belong to the boundary ∂Ω and when nodes i do not belong to finite elements being on
the boundary ∂Ω. In order to compute the above coefficients, we need to differentiate be-
tween the different boundaries of ∂Ω, meaning if it’s a left, right, upper or lower boundary.
Following our reference finite element, we will compute the above integrals
using a local numbering of the nodes, therefore:

For the left boundary we have that:
ˆ
∂R

(
v1 ·

dv1

dn

)
ds =

ˆ hy

0

(
1− y

hy

)2

· 1
hx
dy = 1

3 ·
hy
hxˆ

∂R

(
v1 ·

dv3

dn

)
ds =− 1

3 ·
hy
hxˆ

∂R

(
v1 ·

dv2

dn

)
ds =

ˆ hy

0

(
1− y

hy

)
· y
hy
· 1
hx
dy = 1

6 ·
hy
hxˆ

∂R

(
v1 ·

dv4

dn

)
ds =− 1

6 ·
hy
hx

18

2 – Applying Dirichlet boundary conditions through Nitsche’s method

ˆ
∂R

(
v2 ·

dv1

dn

)
ds =

ˆ hy

0

y

hy
·
(

1− y

hy

)
· 1
hx
dy = 1

6 ·
hy
hxˆ

∂R

(
v2 ·

dv3

dn

)
ds =− 1

6 ·
hy
hxˆ

∂R

(
v2 ·

dv2

dn

)
ds =

ˆ hy

0

(
y

hy

)2

· 1
hx
dy = 1

3 ·
hy
hxˆ

∂R

(
v1 ·

dv4

dn

)
ds =− 1

3 ·
hy
hx

With this information, we can build the local matrix C for the left boundary:

C left
local = 1

6
hy
hx
·


2 1 −2 −1
1 2 −1 −2
0 0 0 0
0 0 0 0



For the right boundary we have that:

By symmetry, we can get the local C matrix for the right boundary:

Cright
local = 1

6
hy
hx
·


0 0 0 0
0 0 0 0
−2 −1 2 1
−1 −2 1 2



For the upper boundary we have that:

In a similar way, we can also use symmetry to get the local C matrix for the upper
boundary:

Cupper
local = 1

6
hx
hy
·


0 0 0 0
−2 2 −1 1
0 0 0 0
−1 1 −2 2



For the lower boundary we have that:

Also, symmetry works for the local matrix C for the lower boundary:

C lower
local = 1

6
hx
hy
·


2 −2 1 −1
0 0 0 0
1 −1 2 −2
0 0 0 0


19

et al.

Concerning the term
ˆ
∂Ω

[
vi · dvjdn

]
ds

In our previous step, we computed matrix C which corresponds to
´
∂Ω

[
vj · dvidn

]
ds. The

term
´
∂Ω

[
vi · dvjdn

]
ds has nodes i and j interchanged with respect to matrix C, therefore

this means that:
ˆ
∂Ω

[
vi ·

dvj
dn

]
ds = CT

where T represents the transpose of a matrix.

Concerning the term γ
h

ˆ
∂Ω

(vi · vj) ds

For this term we just have to evaluate the integral of the product of the test functions over
∂Ω, it will be zero for all test functions vi or vj associated with nodes that do not belong
to ∂Ω. It is to be mentioned that coefficient h is the discretization step aligned with the
direction of the normal vector n, so for the upper and lower boundary we have that h = hy,
and for the left and right boundary we have that h = hx. The terms γ

h

´
∂Ω (vi · vj) ds are

the entries dji of a matrix which we will call D. To compute matrix D we follow
our reference finite element, and will compute the above integrals using a
local numbering of the nodes

To ease the computations, we follow the same procedure as with matrix C, first we
compute the entries for a given boundary (either the left, right, lower or upper boundary)
and use symmetry to compute all the other local matrices. For example, for the left
boundary we have that:

γ

h

ˆ
∂R

(v1 · v1) ds = γ

hx

ˆ hy

0

(
1− y

hy

)2

dy = γ

3 ·
hy
hx

γ

h

ˆ
∂R

(v2 · v2) ds = γ

hx

ˆ hy

0

(
y

hy

)2

dy = γ

3 ·
hy
hx

γ

h

ˆ
∂R

(v1 · v2) ds = γ

hx

ˆ hy

0

(
1− y

hy

)
· y
hy
dy = γ

6 ·
hy
hx

From here, we can write the local D matrix for the left boundary:

Dleft
local = γ

6
hy
hx
·


2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0


Using symmetry, we can write the remaining local D matrices for each boundary:

20

2 – Applying Dirichlet boundary conditions through Nitsche’s method

Dright
local = γ

6
hy
hx
·


0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2



Dupper
local = γ

6
hx
hy
·


0 0 0 0
0 2 0 1
0 0 0 0
0 1 0 2



Dlower
local = γ

6
hx
hy
·


2 0 1 0
0 0 0 0
1 0 2 0
0 0 0 0



Example
Problem 2:

• Consider the same rectangle of size [5 × 4] as in the previous example, with a new
physical quantity under investigation given by u =

(
x+1

5
)2.5 +

(
y+1

4

)3.2
. Now we

are interested in checking how do the errors behave with respect to the penalization
parameter γ. To study this, we choose a fixed discretization (hx = 0.1 and hy = 0.08)
and compute the errors for several values of γ. By doing so we get that:

Figure 2.1: Errors of ũ vs γ for problem 2

21

et al.

Figure 2.2: Errors of ∂ũ∂x vs γ for problem 2 Figure 2.3: Errors of ∂ũ∂y vs γ for problem 2

Similar results are obtained with different values of the discretization parameters.
Notice how as γ increases, the errors decrease (as expected, since BC’s are imposed
"stronger"). What happens with Nitsche’s method is that as γ −→ ∞, the numeri-
cal solution using Nitsche’s method converges towards the numerical solution imposing
boundary conditions in the "strong" form.

In this new case, we are also interested in checking how do the errors behave with
respect to the discretization step while keeping γ fixed. By performing several discretiza-
tions and computing the errors for γ = 1000 we get that:

Figure 2.4: Errors of ũ vs h for problem 2

22

2 – Applying Dirichlet boundary conditions through Nitsche’s method

Figure 2.5: Errors of ∂ũ∂x vs h for problem 2 Figure 2.6: Errors of ∂ũ∂y vs h for problem 2

In our results, we can appreciate quadratic convergence for the error ũ and linear
convergence for ∇ũ, as in Chapter 1.

23

24

Chapter 3

Applying shifted boundary
conditions

So far we have applied non-shifted boundary conditions since our rectangular finite ele-
ments filled completely region Ω, meaning that the boundary ∂Ω coincided perfectly with
the boundaries of the finite elements. Now, we are interested in the case in which region
Ω is not rectangular, therefore the rectangular finite elements contained in Ω will not fill
region Ω completely.

To properly apply boundary conditions in this new case, we can use our previous
results to shift the boundary conditions from the actual physical boundary ∂Ω towards the
boundary of the region Ω̃ formed by the finite elements, which we will call the “numerical
boundary” and denote by ∂Ω̃. A representation of this is shown in the following picture:

Figure 3.1: Comparison between region Ω and Ω̃

Here, the black curve represents the physical boundary ∂Ω (where we have information
about boundary conditions), and the red curve represents the numerical boundary ∂Ω̃
(where we wish to have information about boundary conditions).

25

et al.

In order to translate the boundary conditions from the physical boundary, which we
have called g, to boundary conditions on the numerical boundary, which we will call g

∂Ω̃,
we perform a first order Taylor approximation. This is expressed as:

g = g
∂Ω̃ + 〈∇u, d〉+ r

where d is a function which gives the distance vector between two points in boundaries
∂Ω and ∂Ω̃, and r is the remainder. We can appreciate this in figure (3.1), where the blue
dot represents a point in ∂Ω̃, the yellow dot represents a point in ∂Ω, and d is the vector
that connects these two points.

The idea is that for every node on boundary ∂Ω̃, we find a suitable point on the
physical boundary ∂Ω and shift the boundary condition of that point into the node. By
doing so, new coefficients will be added into the system of equations, which will depend
on the behaviour of function d, after neglecting the remainder. There is not a single
way of doing this, since a node on boundary ∂Ω̃ can take information from any point on
boundary ∂Ω, however because we are doing a first order Taylor approximation it is best
to take information from points which are the closest to the node.

Therefore we define function d such that it connects a node on ∂Ω̃ to its closest points
on the physical boundary and give the distance vector between them. Since in our
formulation we will have a set of line integrals over ∂Ω̃ which involve function d, it is upon
us to find such function. A way to do this is to find the values of function d at the different
nodes belonging to ∂Ω̃, and then interpolating between them with linear functions.

On the following parts, we will assume that we already have the different values of
function d for every node i on boundary ∂Ω̃, which we will call di. We will also assume that
vectors di have components d = (dix, diy). Interpolating with linear functions between the
different di vectors, in order to approximate the behaviour of function d along boundary
∂Ω̃, we get that d ≈

∑
di · vi.

It is important to emphasise that function d is what allows to shift the boundary condi-
tions, and the better the choice of it will give better results. In practice, the computation
of our previously explained function d is not difficult, since it is a geometrical problem
and it can be resumed in 3 simple steps:

26

3 – Applying shifted boundary conditions

1. First, start with region Ω and choose a
certain discretization. With such dis-
cretization, fill region Ω with as many
finite elements as possible without cross-
ing boundary ∂Ω. As an example, refer
to image (3.2) where region Ω is a cir-
cle, and the finite elements are the blue
rectangles.

Figure 3.2: Region Ω and a mesh of finite
elements

2. Then identify the nodes belonging in ∂Ω̃
and compute their closest points on the
physical boundary. This is seen on im-
age (3.3) where the nodes of ∂Ω̃ are the
red dots, and their closest points on ∂Ω
are the blue dots, notice how each pair
of blue and red dots are connected with
a green line. These green lines are the
different di vectors.

Figure 3.3: Nodes on ∂Ω̃ (red) with their
closest points on ∂Ω (blue)

3. Finally, we interpolate between the dif-
ferent di vectors with linear functions,
which approximates the behaviour of
function d across boundary ∂Ω̃. Since
test functions vi become linear at ∂Ω̃,
this means that d ≈

∑
di · vi. This is

visible on image (3.4), where the pink
lines represent what function d believes
what the physical boundary is. The ap-
proximation of function d towards ∂Ω
becomes better as more finite elements
are added into the discretization.

Figure 3.4: Behaviour of function d
along ∂Ω̃

27

et al.

It is important to notice that this whole procedure is to shift boundary conditions from
the blue points into the red nodes. Now that we have completely explained how to obtain
function d, we continue by writing equation (2.1) in the region Ω̃ rather than Ω, and by
substituting g with g

∂Ω̃, which gives:

ˆ
Ω̃
〈∇u,∇v〉 dΩ−

ˆ
∂Ω̃

(
v · du

dn

)
ds−

ˆ
∂Ω̃

[
(u− g

∂Ω̃) · dv
dn

]
ds+ γ

h

ˆ
∂Ω̃

[
(u− g

∂Ω̃) · v
]
ds

=
ˆ

Ω̃
(f · v) dΩ

Substituting for g
∂Ω̃ as g

∂Ω̃ = g − 〈∇u, d〉, gives:

ˆ
Ω̃
〈∇u,∇v〉 dΩ−

ˆ
∂Ω̃

[
v · du

dn

]
ds−

ˆ
∂Ω̃

[
(u− g + 〈∇u, d〉) · dv

dn

]
ds

+ γ

h

ˆ
∂Ω̃

[(u− g + 〈∇u, d〉) · v] ds =
ˆ

Ω̃
(f · v) dΩ (3.1)

Approximating u, g, and f as a linear combination of the test functions, and doing
the same steps of the FEA as done in previous chapters, we only have 2 new terms
appearing into equation (3.1) in comparison to our previous cases, since equation (3.1)
can be rewritten as:

(
A− C − CT +D

)
· ~u−

ˆ
∂Ω̃

[
〈∇ũ, d〉 · dvj

dn

]
ds+ γ

h

ˆ
∂Ω̃

[〈∇ũ, d〉 · vj] ds

= K · ~f +
(
D − CT

)
· ~g

Therefore we need to compute their contribution.

Concerning the term
ˆ
∂Ω̃

[
〈∇ũ, d〉 · dvjdn

]
ds:

The above term represents a Matrix-vector product of the form E ·~u, where matrix E has
entries eji =

´
∂Ω̃

[
〈∇vi, d〉 · dvjdn

]
ds.

For some given global nodes i and j, because of the shape we chose for the test func-
tions, most of the coefficients

´
∂Ω̃

[
〈∇vi, d〉 · dvjdn

]
ds are zero, specifically when nodes j do

not belong to finite elements being on the boundary ∂Ω̃. In order to compute the above
coefficients, we need to differentiate between the different boundaries of ∂Ω̃, meaning if
it’s a left, right, upper or lower boundary.

It is to be noted that, in this particular case, due to the extensive algebra that comes
with substituting for ũ =

∑
ui ·vi, we will leave the term

´
∂Ω̃

[
〈∇ũ, d〉 · dvjdn

]
ds as it is and

work with it accordingly.

28

3 – Applying shifted boundary conditions

Also, we need to develop further the above term, since it can be rewritten as:
ˆ
∂Ω̃

[
〈∇ũ, d〉 · dvj

dn

]
ds =

ˆ
∂Ω̃

[
∂ũ

∂x
· dx ·

dvj
dn

]
ds+

ˆ
∂Ω̃

[
∂ũ

∂y
· dy ·

dvj
dn

]
ds

For all upcoming computations, we will follow our reference finite element and use a
local numbering of the nodes. Therefore we can write that:

∂ũ

∂x
= (u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

∂ũ

∂y
= (u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

For the left boundary:

• For the x component we have that:

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv1

dn

]
ds =

ˆ hy

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

]
· . . .

. . . ·
[
dx1 ·

(
1− y

hy

)
+ dx2 ·

y

hy

]
· 1
hx

(
1− y

hy

)
dy

= 1
12
hy
h2
x

· [(u3 − u1) (3 · dx1 + dx2) + (u4 − u2) (dx1 + dx2)]

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv3

dn

]
ds =− 1

12
hy
h2
x

· [(u3 − u1) (3 · dx1 + dx2) + (u4 − u2) (dx1 + dx2)]

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv2

dn

]
ds =

ˆ hy

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

]
· . . .

. . .

[
dx1 ·

(
1− y

hy

)
+ dx2 ·

y

hy

]
· 1
hx

y

hy
dy

= 1
12
hy
h2
x

· [(u3 − u1) (dx1 + dx2) + (u4 − u2) (dx1 + 3 · dx2)]

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv4

dn

]
ds =− 1

12
hy
h2
x

· [(u3 − u1) (dx1 + dx2) + (u4 − u2) (dx1 + 3 · dx2)]

• For the y component we have that:

29

et al.

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv1

dn

]
ds =

ˆ hy

0

(u2 − u1)
hy

·
[
dy1 ·

(
1− y

hy

)
+ dy2 ·

y

hy

]
· 1
hx

(
1− y

hy

)
dy

=(u2 − u1)
6 · hx

· (2 · dy1 + dy2)

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv3

dn

]
ds =− (u2 − u1)

6 · hx
· (2 · dy1 + dy2)

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv2

dn

]
ds =

ˆ hy

0

(u2 − u1)
hy

·
[
dy1 ·

(
1− y

hy

)
+ dy2 ·

y

hy

]
· 1
hx
· y
hy
dy

=(u2 − u1)
6 · hx

· (dy1 + 2 · dy2)

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv4

dn

]
ds =− (u2 − u1)

6 · hx
· (dy1 + 2 · dy2)

With this information we can write the local matrix E for the left boundary:

Eleft
local = 1

12
hy
h2
x

·


−(3 · dx1 + dx2) −(dx1 + dx2) 3 · dx1 + dx2 dx1 + dx2
−(dx1 + dx2) −(dx1 + 3 · dx2) dx1 + dx2 dx1 + 3 · dx2
3 · dx1 + dx2 dx1 + dx2 −(3 · dx1 + dx2) −(dx1 + dx2)
dx1 + dx2 dx1 + 3 · dx2 −(dx1 + dx2) −(dx1 + 3 · dx2)



. . .+ 1
6 · hx

·


−(2 · dy1 + dy2) 2 · dy1 + dy2 0 0
−(dy1 + 2 · dy2) dy1 + 2 · dy2 0 0

2 · dy1 + dy2 −(2 · dy1 + dy2) 0 0
dy1 + 2 · dy2 −(dy1 + 2 · dy2) 0 0


For the right boundary we have that:

• For the x component we have that:

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv3

dn

]
ds =

ˆ hy

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

]
· . . .

. . .

[
dx3 ·

(
1− y

hy

)
+ dx4 ·

y

hy

]
· 1
hx

(
1− y

hy

)
dy

= 1
12
hy
h2
x

· [(u3 − u1) (3 · dx3 + dx4) + (u4 − u2) (dx3 + dx4)]

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv1

dn

]
ds =− 1

12
hy
h2
x

· [(u3 − u1) (3 · dx3 + dx4) + (u4 − u2) (dx3 + dx4)]

30

3 – Applying shifted boundary conditions

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv4

dn

]
ds =

ˆ hy

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

]
· . . .

. . .

[
dx3 ·

(
1− y

hy

)
+ dx4 ·

y

hy

]
· 1
hx

y

hy
dy

= 1
12
hy
h2
x

· [(u3 − u1) (dx3 + dx4) + (u4 − u2) (dx3 + 3 · dx4)]

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv2

dn

]
ds =− 1

12
hy
h2
x

· [(u3 − u1) (dx3 + dx4) + (u4 − u2) (dx3 + 3 · dx4)]

• For the y component we have that:

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv3

dn

]
ds =

ˆ hy

0

(u4 − u3)
hy

·
[
dy3 ·

(
1− y

hy

)
+ dy4 ·

y

hy

]
· 1
hx

(
1− y

hy

)
dy

=(u4 − u3)
6 · hx

· (2 · dy3 + dy4)

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv1

dn

]
ds =− (u4 − u3)

6 · hx
· (2 · dy3 + dy4)

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv4

dn

]
ds =

ˆ hy

0

(u4 − u3)
hy

·
[
dy3 ·

(
1− y

hy

)
+ dy4 ·

y

hy

]
· 1
hx
· y
hy
dy

=(u4 − u3)
6 · hx

· (dy3 + 2 · dy4)

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv2

dn

]
ds =− (u4 − u3)

6 · hx
· (dy3 + 2 · dy4)

With this information we can write the local matrix E for the right boundary:

Eright
local = 1

12
hy
h2
x

·


3 · dx3 + dx4 dx3 + dx4 −(3 · dx3 + dx4) −(dx3 + dx4)
dx3 + dx4 dx3 + 3 · dx4 −(dx3 + dx4) −(dx3 + 3 · dx4)

−(3 · dx3 + dx4) −(dx3 + dx4) 3 · dx3 + dx4 dx3 + dx4
−(dx3 + dx4) −(dx3 + 3 · dx4) dx3 + dx4 dx3 + 3 · dx4



. . .+ 1
6 · hx

·


0 0 2 · dy3 + dy4 −(2 · dy3 + dy4)
0 0 dy3 + 2 · dy4 −(dy3 + 2 · dy4)
0 0 −(2 · dy3 + dy4) 2 · dy3 + dy4
0 0 −(dy3 + 2 · dy4) dy3 + 2 · dy4


31

et al.

For the upper boundary:

• For the x component we have that:
ˆ
∂R

[
∂ũ

∂x
· dx ·

dv2

dn

]
ds =

ˆ hy

0

(u4 − u2)
hx

·
[
dx2 ·

(
1− x

hx

)
+ dx4 ·

x

hx

]
· 1
hy

(
1− x

hx

)
dx

=(u4 − u2)
6 · hy

· (2 · dx2 + dx4)

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv1

dn

]
ds =− (u4 − u2)

6 · hy
· (2 · dx2 + dx4)

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv4

dn

]
ds =

ˆ hy

0

(u4 − u2)
hx

·
[
dx2 ·

(
1− x

hx

)
+ dx4 ·

x

hx

]
· 1
hy

x

hx
dx

=(u4 − u2)
6 · hy

· (dx2 + 2 · dx4)

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv3

dn

]
ds =− (u4 − u2)

6 · hy
· (dx2 + 2 · dx4)

• For the y component we have that:
ˆ
∂R

[
∂ũ

∂y
· dy ·

dv2

dn

]
ds =

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

]
· . . .

. . .

[
dy2 ·

(
1− x

hx

)
+ dy4 ·

x

hx

]
· 1
hy

(
1− x

hx

)
dx

= 1
12
hx
h2
y

· [(u2 − u1) (3 · dy2 + dy4) + (u4 − u3) (dy2 + dy4)]

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv1

dn

]
ds =− 1

12
hx
h2
y

· [(u2 − u1) (3 · dy2 + dy4) + (u4 − u3) (dy2 + dy4)]

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv4

dn

]
ds =

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

]
· . . .

. . .

[
dy2 ·

(
1− x

hx

)
+ dy4 ·

x

hx

]
· 1
hy

x

hx
dx

= 1
12
hx
h2
y

· [(u2 − u1) (dy2 + dy4) + (u4 − u3) (dy2 + 3 · dy4)]

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv3

dn

]
ds =− 1

12
hx
h2
y

· [(u2 − u1) (dy2 + dy4) + (u4 − u3) (dy2 + 3 · dy4)]

32

3 – Applying shifted boundary conditions

With this information we can write the local matrix E for the upper boundary:

Eupper
local = 1

6 · hy
·


0 2 · dx2 + dx4 0 −(2 · dx2 + dx4)
0 −(2 · dx2 + dx4) 0 2 · dx2 + dx4
0 dx2 + 2 · dx4 0 −(dx2 + 2 · dx4)
0 −(dx2 + 2 · dx4) 0 dx2 + 2 · dx4



. . .+ 1
12
hx
h2
y

·


3 · dy2 + dy4 −(3 · dy2 + dy4) dy2 + dy4 −(dy2 + dy4)
−(3 · dy2 + dy4) 3 · dy2 + dy4 −(dy2 + dy4) dy2 + dy4

dy2 + dy4 −(dy2 + dy4) dy2 + 3 · dy4 −(dy2 + 3 · dy4)
−(dy2 + dy4) dy2 + dy4 −(dy2 + 3 · dy4) dy2 + 3 · dy4


For the lower boundary:

• For the x component we have that:
ˆ
∂R

[
∂ũ

∂x
· dx ·

dv1

dn

]
ds =

ˆ hy

0

(u3 − u1)
hx

·
[
dx1 ·

(
1− x

hx

)
+ dx3 ·

x

hx

]
· 1
hy

(
1− x

hx

)
dx

=(u3 − u1)
6 · hy

· (2 · dx1 + dx3)

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv2

dn

]
ds =− (u3 − u1)

6 · hy
· (2 · dx1 + dx3)

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv3

dn

]
ds =

ˆ hy

0

(u3 − u1)
hx

·
[
dx1 ·

(
1− x

hx

)
+ dx3 ·

x

hx

]
· 1
hy

x

hx
dx

=(u3 − u1)
6 · hy

· (dx1 + 2 · dx3)

ˆ
∂R

[
∂ũ

∂x
· dx ·

dv4

dn

]
ds =− (u3 − u1)

6 · hy
· (dx1 + 2 · dx3)

• For the y component we have that:
ˆ
∂R

[
∂ũ

∂y
· dy ·

dv1

dn

]
ds =

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

]
· . . .

. . .

[
dy1 ·

(
1− x

hx

)
+ dy3 ·

x

hx

]
· 1
hy

(
1− x

hx

)
dx

= 1
12
hx
h2
y

· [(u2 − u1) (3 · dy1 + dy3) + (u4 − u3) (dy1 + dy3)]

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv2

dn

]
ds =− 1

12
hx
h2
y

· [(u2 − u1) (3 · dy1 + dy3) + (u4 − u3) (dy1 + dy3)]

33

et al.

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv3

dn

]
ds =

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

]
· . . .

. . .

[
dy1 ·

(
1− x

hx

)
+ dy3 ·

x

hx

]
· 1
hy

x

hx
dx

= 1
12
hx
h2
y

· [(u2 − u1) (dy1 + dy3) + (u4 − u3) (dy1 + 3 · dy3)]

ˆ
∂R

[
∂ũ

∂y
· dy ·

dv4

dn

]
ds =− 1

12
hx
h2
y

· [(u2 − u1) (dy1 + dy3) + (u4 − u3) (dy1 + 3 · dy3)]

With this information we can write the local matrix E for the lower boundary:

Elower
local = 1

6 · hy
·


−(2 · dx1 + dx3) 0 2 · dx1 + dx3 0

2 · dx1 + dx3 0 −(2 · dx1 + dx3) 0
−(dx1 + 2 · dx3) 0 dx1 + 2 · dx3 0
dx1 + 2 · dx3 0 −(dx1 + 2 · dx3) 0



. . .+ 1
12
hx
h2
y

·


−(3 · dy1 + dy3) 3 · dy1 + dy3 −(dy1 + dy3) dy1 + dy3

3 · dy1 + dy3 −(3 · dy1 + dy3) dy1 + dy3 −(dy1 + dy3)
−(dy1 + dy3) dy1 + dy3 −(dy1 + 3 · dy3) dy1 + 3 · dy3
dy1 + dy3 −(dy1 + dy3) dy1 + 3 · dy3 −(dy1 + 3 · dy3)



Concerning the term γ
h

ˆ
∂Ω̃

[〈∇ũ, d〉 · vj] ds:

The above represents a Matrix-vector product of the form L·~u, where matrix L has entries
lji = γ

h

´
∂Ω̃ [〈∇vi, d〉 · vj] ds.

For some given global nodes i and j, because of the shape we chose for the test func-
tions, most of the coefficients γ

h

´
∂Ω̃ [〈∇vi, d〉 · vj] ds are zero, specifically when nodes j do

not belong to the boundary ∂Ω̃. In order to compute the above coefficients, we need to
differentiate between the different boundaries of ∂Ω̃, meaning if it’s a left, right, upper or
lower boundary.

Due to the extensive algebra that comes with substituting for ũ =
∑
ui · vi, we will

leave it as it is and work with it accordingly following a local numbering of the nodes.
Also:

γ

h

ˆ
∂Ω̃

[〈∇ũ, d〉 · vj] ds = γ

h

ˆ
∂Ω̃

[
∂ũ

∂x
· dx · vj

]
ds+ γ

h

ˆ
∂Ω̃

[
∂ũ

∂y
· dy · vj

]
ds

Using the results obtained from the computation of matrix E, we can easily find all
coefficients for the local L matrices:

34

3 – Applying shifted boundary conditions

For the left boundary:

• For the x component we have that:

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v1

]
ds = γ

12
hy
h2
x

· [(u3 − u1) (3 · dx1 + dx2) + (u4 − u2) (dx1 + dx2)]

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v2

]
ds = γ

12
hy
h2
x

· [(u3 − u1) (dx1 + dx2) + (u4 − u2) (dx1 + 3 · dx2)]

• For the y component we have that:

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v1

]
ds = γ

6 · hx
· (u2 − u1) · (2 · dy1 + dy2)

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v2

]
ds = γ

6 · hx
· (u2 − u1) · (dy1 + 2 · dy2)

Lleftlocal = γ

12
hy
h2
x

·


−(3 · dx1 + dx2) −(dx1 + dx2) 3 · dx1 + dx2 dx1 + dx2
−(dx1 + dx2) −(dx1 + 3 · dx2) dx1 + dx2 dx1 + 3 · dx2

0 0 0 0
0 0 0 0



. . .+ γ

6 · hx
·


−(2 · dy1 + dy2) 2 · dy1 + dy2 0 0
−(dy1 + 2 · dy2) dy1 + 2 · dy2 0 0

0 0 0 0
0 0 0 0



For the right boundary:

• For the x component we have that:

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v3

]
ds = γ

12
hy
h2
x

· [(u3 − u1) (3 · dx3 + dx4) + (u4 − u2) (dx3 + dx4)]

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v4

]
ds = 1

12
hy
h2
x

· [(u3 − u1) (dx3 + dx4) + (u4 − u2) (dx3 + 3 · dx4)]

• For the y component we have that:

35

et al.

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v3

]
ds = γ

6 · hx
· (u4 − u3) · (2 · dy3 + dy4)

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v4

]
ds = γ

6 · hx
· (u4 − u3) · (dy3 + 2 · dy4)

Lrightlocal = γ

12
hy
h2
x

·


0 0 0 0
0 0 0 0

−(3 · dx3 + dx4) −(dx3 + dx4) 3 · dx3 + dx4 dx3 + dx4
−(dx3 + dx4) −(dx3 + 3 · dx4) dx3 + dx4 dx3 + 3 · dx4



. . .+ γ

6 · hx
·


0 0 0 0
0 0 0 0
0 0 −(2 · dy3 + dy4) 2 · dy3 + dy4
0 0 −(dy3 + 2 · dy4) dy3 + 2 · dy4


For the upper boundary:

• For the x component we have that:

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v2

]
ds = γ

6 · hy
· (u4 − u2) · (2 · dx2 + dx4)

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v4

]
ds = γ

6 · hy
· (u4 − u2) · (dx2 + 2 · dx4)

• For the y component we have that:

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v2

]
ds = γ

12
hx
h2
y

· [(u2 − u1) (3 · dy2 + dy4) + (u4 − u3) (dy2 + dy4)]

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v4

]
ds = γ

12
hx
h2
y

· [(u2 − u1) (dy2 + dy4) + (u4 − u3) (dy2 + 3 · dy4)]

Lupperlocal = γ

6 · hy
·


0 0 0 0
0 −(2 · dx2 + dx4) 0 2 · dx2 + dx4
0 0 0 0
0 −(dx2 + 2 · dx4) 0 dx2 + 2 · dx4



. . .+ γ

12
hx
h2
y

·


0 0 0 0

−(3 · dy2 + dy4) 3 · dy2 + dy4 −(dy2 + dy4) dy2 + dy4
0 0 0 0

−(dy2 + dy4) dy2 + dy4 −(dy2 + 3 · dy4) dy2 + 3 · dy4


36

3 – Applying shifted boundary conditions

For the lower boundary:

• For the x component we have that:

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v1

]
ds = γ

6 · hy
· (u3 − u1) · (2 · dx1 + dx3)

γ

h

ˆ
∂R

[
∂ũ

∂x
· dx · v3

]
ds = γ

6 · hy
· (u3 − u1) · (dx1 + 2 · dx3)

• For the y component we have that:

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v1

]
ds = γ

12
hx
h2
y

· [(u2 − u1) (3 · dy1 + dy3) + (u4 − u3) (dy1 + dy3)]

γ

h

ˆ
∂R

[
∂ũ

∂y
· dy · v3

]
ds = γ

12
hx
h2
y

· [(u2 − u1) (dy1 + dy3) + (u4 − u3) (dy1 + 3 · dy3)]

Llowerlocal = γ

6 · hy
·


−(2 · dx1 + dx3) 0 2 · dx1 + dx3 0

0 0 0 0
−(dx1 + 2 · dx3) 0 dx1 + 2 · dx3 0

0 0 0 0



. . .+ γ

12
hx
h2
y

·


−(3 · dy1 + dy3) 3 · dy1 + dy3 −(dy1 + dy3) dy1 + dy3

0 0 0 0
−(dy1 + dy3) dy1 + dy3 −(dy1 + 3 · dy3) dy1 + 3 · dy3

0 0 0 0



Examples
Problem 3:

• Consider region Ω as the set of points (x, y) such that 0 ≤ y ≤ 4 + sin(π · x)
and 0 ≤ x ≤ 5, and that the physical quantity under investigation is given by
u = 2 + sin

(2·π
5 · x

)
· sin

(3·π
5 · y

)
, namely the same quantity in Problem 1. We wish

to apply our FEA to check how do the errors on ũ and ∇ũ decrease when the mesh
is refined.

As explained previously, now region Ω can not be completely filled with finite elements,
the idea in order to get the best possible approximation of the physical variable u, will
be to fill region Ω with as many finite elements as possible without crossing the physical
boundary ∂Ω. This will give a mesh of finite elements with a set of nodes, for which we
need to calculate vector d for the nodes on the numerical boundary ∂Ω̃, and from there

37

et al.

we can perform our FEA to compute the errors in our approximation. By doing so, we
get the following results:

Figure 3.5: Errors of ũ vs h for problem 3

Figure 3.6: Errors of ∂ũ∂x vs h for problem 3 Figure 3.7: Errors of ∂ũ∂y vs h for problem 3

We can appreciate quadratic convergence, or at least super-linear for the Infinity norm,
for ũ, and linear convergence for ∇ũ. Graphs of the numerical solution and their errors
can be appreciated next:

38

3 – Applying shifted boundary conditions

Figure 3.8: Graph of ũ and |u− ũ| for h = 0.1 for problem 3

Figure 3.9: Graph of ũ and |u− ũ| for h = 0.05 for problem 3

Figure 3.10: Graph of ũ and |u− ũ| for h = 0.025 for problem 3

39

et al.

As we can see, the maximum errors occur near the upper boundary, and they decrease
rapidly as the discretization increases.

Problem 4:

• Consider region Ω as the set of points (x, y) such that x2 +y2 ≤ 1, 0 ≤ x and 0 ≤ y,
and that the physical quantity under investigation is given by u = ln (1 + 2 · x+ 3 · y).
We wish to apply our FEA to check how do the errors on ũ and ∇ũ decrease when
the mesh is refined. Applying our FEA we get to the following results:

Figure 3.11: Errors of ũ vs h for problem 4

10-2 10-1

discretization step - h

10-3

10-2

10-1

100

e
rr

o
rs

error of the x derivative vs h

P1 norm, q= 1.0419

P2 norm, q= 1.0387

Inf norm, q= 0.95959

Figure 3.12: Errors of ∂ũ
∂x vs h for problem

4

10-2 10-1

discretization step - h

10-3

10-2

10-1

100

e
rr

o
rs

error of the y derivative vs h

P1 norm, q= 1.0279

P2 norm, q= 1.0251

Inf norm, q= 0.9414

Figure 3.13: Errors of ∂ũ
∂y vs h for problem

4

40

3 – Applying shifted boundary conditions

Figure 3.14: Graph of ũ and |u− ũ| for h = 0.02 for problem 4

Figure 3.15: Graph of ũ and |u− ũ| for h = 0.01 for problem 4

Figure 3.16: Graph of ũ and |u− ũ| for h = 0.0063 for problem 4

41

et al.

Also in this case, we can appreciate quadratic convergence for ũ, and linear convergence
for ∇ũ. Graphs of the mesh and numerical solution can be appreciated as well, where the
maximum errors concentrate near the boundary and decrease rapidly as the discretization
increases.

42

Chapter 4

Extension to a more general
problem

Diffusion: introducing porosity k

So far, we have made great advances on a very simple case of Poisson’s equation, however
a more general case is when we have the following:

− 〈∇, k · ∇u〉 = f in Ω (4.1)

u = g on ∂Ω

where coefficient k = k(x, y) is a function usually called “porosity” or “conductivity”,
which satisfies k ≥ k0 > 0 in Ω, where k0 is a constant. Equation (4.1) is particularly
applied on heat transfer phenomenon and fluid flow situations.

We wish to find a solution for equation (4.1), while still maintaining several of the
results obtained for equation (1.1). To do this, we will approximate function k, to a
certain degree, over each finite element.

To apply the FEA to equation (4.1), first we transform it into its equivalent weak
formulation , therefore we get to:

ˆ
Ω̃
〈k · ∇u,∇vj〉 dΩ−

ˆ
∂Ω̃

(
vj · k ·

du

dn

)
ds−

ˆ
∂Ω̃

(
u · k · dvj

dn

)
ds

+ γ

h

ˆ
∂Ω̃

(uvj) ds−
ˆ
∂Ω̃

[
〈k · ∇u, d〉 · dvj

dn

]
ds+ γ

h

ˆ
∂Ω̃

[〈∇u, d〉 · vj] ds

=
ˆ

Ω̃
(f · vj) dΩ−

ˆ
∂Ω̃

(
g · k · dvj

dn

)
ds+ γ

h

ˆ
∂Ω̃

(g · vj) ds (4.2)

Approximating u, f , and g as a linear combination of the test functions we immediately
notice the problem for this new general case: Having the integral

´
R I(x, y) · dΩ, how can

43

et al.

we compute the integral
´
R k · I(x, y) · dΩ for a given function k? To avoid complications

and still use our previous results, we would like to obtain something like
´
R k ·I(x, y)·dΩ =

k̄ ·
´
R I(x, y) · dΩ. This happens only when k is constant, therefore we will approximate k

as almost constant along each finite element.
To compute each of the local matrices for this new problem, our solution will be to

evaluate porosity k̄ at the geometrical center of each finite element and multiply it by
the expressions of the local matrices we obtained before. This does not imply any major
mistake since the error of our FEA, theoretically, decreases quadratically.

To properly express this, we redefine matrices A, C, and E as:

A =
ˆ

Ω̃
〈k · ∇vi,∇vj〉 dΩ

C =
ˆ
∂Ω̃

(
vj · k ·

dvi
dn

)
ds

E =
ˆ
∂Ω̃

[
〈k · ∇vi, d〉 ·

dvj
dn

]
ds

And, for example, now the local matrix A is given by:

Alocal = k̄ · β6 ·


2 1 1 −1
1 2 −1 1
1 −1 2 1
−1 1 1 2

− k̄ · 1
2 ·


0 hx

hy

hy
hx

0
hx
hy

0 0 hy
hx

hy
hx

0 0 hx
hy

0 hy
hx

hx
hy

0


The same procedure must be done with matrices C and E.

Advection: introducing velocity field V

Equation (4.1) can be further expanded by introducing an advection term. Advection is
a phenomenon caused by the transport of a certain quantity along with its mass due to
a velocity field V = V (x, y), like energy or momentum. To add this into our formulation
we have that:

− 〈∇, k · ∇u〉+ 〈∇, V · u〉 = f in Ω (4.3)

u = g on ∂Ω

To deal with this new term 〈∇, V · u〉, we do the same procedure as with the others
(multiply it by test function vj , integrate over the whole region, and approximate u, f ,
and g as a linear combination of the test functions). By doing so and developing further
we get that:

ˆ
Ω̃

[〈
∇, V ·

∑
(ui · vi)

〉
· vj
]
dΩ =

∑
ui

ˆ
Ω̃

[〈∇, V 〉 · vi · vj] dΩ +
∑

ui

ˆ
Ω̃

[〈V,∇vi〉 · vj] dΩ

Therefore we need to get the above 2 integrals.

44

4 – Extension to a more general problem

Concerning the term
´

Ω̃ [〈∇, V 〉 · vi · vj] dΩ
The above term represents a matrix, which will call P , whose entries will be pji =´

Ω̃ [〈∇, V 〉 · vi · vj] dΩ. Due to the shape of the test functions, most of the entries of
matrix P , will be zero, specifically when nodes i and j do not belong to the same finite
element. As we did with the integrals involving porosity k, we will approximate the above
integral in each finite element as:

ˆ
R

[〈∇, V 〉 · vi · vj] dΩ ≈ 〈∇, V 〉 (ε, η)
ˆ
R

(vi · vj) dΩ

where ε and η represent the coordinates of the geometric center of region R. The different
coefficients

´
R (vi · vj) dΩ are the entries of matrix K introduced in chapter 1, so Plocal =

〈∇, V 〉 (ε, η) ·Klocal.

Concerning the term
´

Ω̃ [〈V,∇vi〉 · vj] dΩ
The above term represents a matrix, which we will call Q, whose entries will be qji =´

Ω̃ [〈V,∇vi〉 · vj] dΩ. Most of the entries of matrix Q will be zero, and this happens when
nodes i and j do not belong to the same finite element. For the computation of matrix Q,
in order to simplify calculations, it is better to calculate the integral

´
Ω̃ [〈V,∇ũ〉 · vj] dΩ.

To deal with the above term, we separate it by performing the dot product. Therefore
assuming that V has components Vx and Vy in the x and y direction respectively, we get:

ˆ
R

[〈V,∇ũ〉 · vj] dΩ ≈ Vx(ε, η) ·
ˆ
R

[
∂ũ

∂x
· vj
]
dΩ + Vy(ε, η) ·

ˆ
R

[
∂ũ

∂y
· vj
]
dΩ

where ε and η are again the coordinates of the geometric center of the finite element.
Calculating the above integrals for a local numbering of the nodes, where the derivatives
of ũ are also expressed under the local numbering like:

∂ũ

∂x
= (u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

∂ũ

∂y
= (u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

we get:

ˆ
R

[
∂ũ

∂x
· v1

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

] [(
1− x

hx

)(
1− y

hy

)]
· dxdy

=hy
12 [2 · (u3 − u1) + (u4 − u2)]

45

et al.

ˆ
R

[
∂ũ

∂y
· v1

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

] [(
1− x

hx

)(
1− y

hy

)]
· dxdy

=hx
12 [2 · (u2 − u1) + (u4 − u3)]

ˆ
R

[
∂ũ

∂x
· v2

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

] [(
1− x

hx

)
· y
hy

]
· dxdy

=hy
12 [(u3 − u1) + 2 · (u4 − u2)]

ˆ
R

[
∂ũ

∂y
· v2

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

] [(
1− x

hx

)
· y
hy

]
· dxdy

=hx
12 [2 · (u2 − u1) + (u4 − u3)]

ˆ
R

[
∂ũ

∂x
· v3

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

] [
x

hx
·
(

1− y

hy

)]
· dxdy

=hy
12 [2 · (u3 − u1) + (u4 − u2)]

ˆ
R

[
∂ũ

∂y
· v3

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

] [
x

hx
·
(

1− y

hy

)]
· dxdy

=hx
12 [(u2 − u1) + 2 · (u4 − u3)]

ˆ
R

[
∂ũ

∂x
· v4

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u3 − u1)

hx
·
(

1− y

hy

)
+ (u4 − u2)

hx
· y
hy

] [
x

hx
· y
hy

]
· dxdy

=hy
12 [(u3 − u1) + 2 · (u4 − u2)]

ˆ
R

[
∂ũ

∂y
· v4

]
dΩ =

ˆ hy

0

ˆ hx

0

[
(u2 − u1)

hy
·
(

1− x

hx

)
+ (u4 − u3)

hy
· x
hx

] [
x

hx
· y
hy

]
· dxdy

=hx
12 [(u2 − u1) + 2 · (u4 − u3)]

Using all of the above information, we can build the local matrix Q as:

Qlocal = Vx(ε, η)hy12 ·


−2 −1 2 1
−1 −2 1 2
−2 −1 2 1
−1 −2 1 2

+ Vy(ε, η)hx12 ·


−2 2 −1 1
−2 2 −1 1
−1 1 −2 2
−1 1 −2 2


46

4 – Extension to a more general problem

Examples
Problem 5:

• Consider region Ω as the set of points (x, y) such that 0 ≤ y ≤ 3 + sin(2 · π · x) ·
tan−1(x − 4) and that 0 ≤ x ≤ 5. Assume that function u is some polynomial of
the shape u = c1 · (x+ 1)2 + c2 · (y + 1)3, that porosity k = 4, and velocity field as
V = (2,1). In the following images we can see how the errors behave when the mesh
is refined:

Figure 4.1: Errors of ũ vs h for problem 5

Figure 4.2: Errors of ∂ũ∂x vs h for problem 5 Figure 4.3: Errors of ∂ũ∂y vs h for problem 5

We can appreciate near quadratic convergence for ũ and near linear convergence for
∇ũ. Also we can show different discretizations for our FEA:

47

et al.

Figure 4.4: Graphs of ũ for several discretizations for problem 5

Problem 6

• As a more general case, we take as region Ω the set of points (x, y) such that 0 ≤
y ≤ 5 − e x2 and 0 ≤ x ≤ 2 · ln(5), porosity k = (x+ 1)2 + (y + 1)2, velocity field
V = (x+ y + 2, sin(x · y)), and solution u as u = 2 + sin

(
π

ln(5) · x
)
· sin

(3·π
4 · y

)
.

Note that for this example k0 = 2, since k ≥ 2 > 0 In the following images we can
see the behavior of the errors with respect to the discretization step:

48

4 – Extension to a more general problem

Figure 4.5: Errors of ũ vs h for problem 6

Figure 4.6: Errors of ∂ũ∂x vs h for problem 6 Figure 4.7: Errors of ∂ũ∂y vs h for problem 6

Again, we can appreciate near quadratic convergence for ũ and near linear convergence
for ∇ũ. Graphs of the discretizations are shown next:

49

et al.

Figure 4.8: Graphs of ũ for several discretizations for problem 6

Problem 7

• So far, we have only taken on problems where we knew the solution, condition which
was necessary to compute the errors in the approximation. Now we decide to study
another type of problem just to show convergence as the discretization increases,
which is:

−〈∇, k · ∇u〉+ 〈∇, V · u〉 = 1 in Ω

u =
√
x2 + y2 on ∂Ω

where we take region Ω as the set of points (x, y) such that 0 ≤ y ≤
√

1− x2 and 0 ≤
x ≤ 1, porosity k = 1

1+x2+y2 , and velocity field with components Vx = ln(1 + x+ y)
and Vy = 5 + ex−y. Note that for this example k0 = 1

2 .

Performing our FEA for several discretization steps, we get the following graphs for ũ:

50

4 – Extension to a more general problem

Figure 4.9: Graphs of ũ for discretization steps h = 0.05, h = 0.025, h = 0.0125, and
h = 0.00625 (left to right) for problem 7

Notice how as the the discretization is enriched, the resulting graph converges more
and more. To show this, we show the value of ũ at point (x, y) = (0.8,0.2) for the different
values of h:

h ũ

0.05 0.824376171840539
0.025 0.824577483938598
0.0125 0.824658354934295
0.00625 0.824674019954887

Table 4.1: Values of ũ at point (x, y) = (0.8,0.2) for several values of h

Using the last value of ũ on the above table as a reference for the actual solution, we
can get that the overall convergence rate is 2.12, meaning quadratically.

51

52

Chapter 5

Introducing time dependence

We have made continuous progress in solving Poisson’s equation and its extensions through
the FEA, however, so far we only handled steady state cases, which translates to all time
derivatives being null.

Therefore, in this chapter we deal with the time dependent case of Poisson’s equation
and its extensions, or how it is widely known, the heat equation. For this we introduce
the time variable denoted by t. This implies that variable u might change over time, as
well as other properties like porosity k and velocity field V . We will also admit that region
Ω may change over time, i.e., Ω = Ω(t) = Ωt, according to a given law.

To study this, we further extend equation (4.3) by adding a time dependent term in
the following way:

∂

∂t
(s · u)− 〈∇, k · ∇u〉+ 〈∇, V · u〉 = f in Ωt (5.1)

u = g on ∂Ωt u = u0 in Ω0

where u0 are the initial conditions and s is called “volumetric capacity”. Volumetric
capacity s is a property which measures the “resistance” of a small volume of mass to
keep its current value of quantity u even when subjected to different conditions over time,
a concept similar to inertia. It is to be noted that s = s(x, y, t)

To deal with this new problem, we apply our FEA as previously: we multiply equation
(5.1) by the test functions vj , , integrate over the whole domain Ω̃t, and assume that u, f ,
and g are approximated by a linear combination of the test functions. Doing so will give
similar expressions to the matrices we computed previously, however now time dependant.
Because of this, we redefine all previously computed matrices as:

53

et al.

At =
ˆ

Ω̃t
〈k · ∇vi,∇vj〉 dΩ Ct =

ˆ
∂Ω̃t

(
vj · k ·

dvi
dn

)
ds

Dt = γ

h

ˆ
∂Ω̃t

(vivj) ds Et =
ˆ
∂Ω̃t

[
〈k · ∇vi, d〉 ·

dvj
dn

]
ds

Lt = γ

h

ˆ
∂Ω̃t

[〈∇vi, d〉 · vj] ds P t =
ˆ

Ω̃t
[〈∇, V 〉 · vi · vj] dΩ

Qt =
ˆ

Ω̃t
[〈V,∇vi〉 · vj] dΩ Kt =

ˆ
Ω̃t

(vi · vj) dΩ

where the superscript t means that all matrices were computed at time t.
Additional to the above matrices, our FEA on problem (5.1) will give a new contribu-

tion which is expressed by
´

Ω̃t
∂(s·
∑

uti·vi)
∂t · vj · dΩ, where uti means quantity ũ at node i

and at time t.
To deal with the time dependence, we will assume that the different values of uti at the

different nodes are time dependent. Focusing on the above single term, we can rewrite it
as:

ˆ
Ω̃t

∂ (s ·
∑
uti · vi)

∂t
· vj · dΩ =

∑
uti ·
ˆ

Ω̃t

(
∂s

∂t
· vi · vj

)
· dΩ +

∑ ∂uti
∂t
·
ˆ

Ω̃t
(s · vi · vj) · dΩ

Now we define two new matrices as:

T t =
ˆ

Ω̃t

(
∂s

∂t
· vi · vj

)
· dΩ W t =

ˆ
Ω̃t

(s · vi · vj) · dΩ

whose local matrices will be approximated as:

T tlocal ≈
∂s

∂t
·Klocal W t

local ≈ s̄ ·Klocal

where matrix Klocal was presented in chapter 1, and s̄ and ∂̄s
∂t are the values of s and ∂s

∂t ,
respectively, at the geometrical center of finite element R. Notice how matrices T t and
W t are similar in structure to matrix P t.

Therefore, our FEA results in the following system of equations:

W t · ∂
~ut

∂t
+
(
At − Ct − CtT +Dt − Et + Lt + P t +Qt + T t

)
· ~ut = Kt · ~f t+

(
Dt − CtT

)
· ~gt

In order to simplify the above expression, it is useful to group some of the above terms
like:

54

5 – Introducing time dependence

Zt = At − Ct − CtT +Dt − Et + Lt + P t +Qt + T t

~F t = Kt · ~f t +
(
Dt − CtT

)
· ~gt

so:

W t · ∂
~ut

∂t
+ Zt · ~ut = ~F t (5.2)

It’s important to remember that our goal with this procedure is to approximate function
u across domain Ωt while we are able to advance in time. For this we can apply any time
time advancing scheme to equation (5.2).

Change of region Ωt

From problem (5.1) we managed to apply our FEA to reach equation (5.2), and choosing
a time advancing scheme for equation (5.2) allows to approximate a solution for problem
(5.1) at any time instant. However there are still some details to discuss for the case in
which region Ωt changes in time.

To understand this idea, let’s concentrate first in the case in which region Ωt is fixed
over time. In this case, for fixed spatial discretization steps, there is a constant number
of nodes on Ωt at any time t. Besides that, the initial condition of each node is contained
within the information given by u0.

Now let’s concentrate in the case in which region Ωt does change over time, specifically
when Ωt grows larger. In this case, for fixed spatial discretization steps, the number of
nodes in Ωt increases over time, and u0 only gives information of initial conditions on the
nodes appearing at time t = 0. Now the question is, how to get "initial conditions" for
newly created nodes?.

As a reference, look at the following image:

Figure 5.1: Description of the creation of new nodes during the time advancing scheme

therein, we have a set of nodes (black and green), and two curves (blue and red). The
blue curve is the physical boundary at a time t, meaning ∂Ωt, and the red curve is the
physical boundary at a later time t + ∆t, meaning ∂Ωt+∆t. The black nodes are nodes
which participate on the FEA at time t and t+∆t, but the green node (identified as point
C) only participates on the FEA at time t+ ∆t.

55

et al.

For the FEA to be able to advance in time in a situation similar to the above, we need
to find two things:

• The moment at which point C was “created”, which we will name time t+ δt.

• The value of quantity u at point C at the moment t+δt, which following the notation
will be named as ut+δtC .

For that, we find two points, A and B, such that points A, B and C are co-linear.
Point A belongs to ∂Ωt+∆t, and point B belongs to ∂Ωt. Now we write first order Taylor
expansions centered at point C, neglecting higher order terms, which relate to points A
and B, so:

ut+∆t
A = ut+δtC + 〈∇ut+δtC , ~e〉 · d2 + ∂ut+δtC

∂t
· (∆t− δt)

utB = ut+δtC − 〈∇ut+δtC , ~e〉 · d1 −
∂ut+δtC

∂t
· δt

where:

• ~e is a unit vector which connects point C to point A.

• d1 is the distance between points B and C.

• d2 is the distance between points C and A.

In the above 2 equations, our unknowns are ut+δtC and δt. To find these two unknowns,
we multiply the first Taylor expansion by d1, the second Taylor expansion by d2, and add
them:

d1 · ut+∆t
A + d2 · utB = (d1 + d2) · ut+δtC + ∂ut+δtC

∂t
· [d1 ·∆t− (d1 + d2) · δt]

Since ∂ut+δtC

∂t is not known, we define δt as:

δt = d1 ·∆t
d1 + d2

(5.3)

and we get that:

ut+δtC = d1 · ut+∆t
A + d2 · utB
d1 + d2

(5.4)

With this information, we can build the time advancing scheme for any situation.
Notice how for the case in which Ωt grows smaller over time, this question about "initial
conditions" does not happen, since no nodes are created. Before proceeding, it is important
to comment some details for this methodology:

56

5 – Introducing time dependence

• The geometrical interpretation of this methodology is that there is a constant velocity
of deformation for boundary ∂Ωt between times t and t+ ∆t, so the time increment
δt at which point C is reached is proportional to the space increment d1 between
points B and C. Furthermore, it is implicit that we assume that u varies linearly
between ut+∆t

A and utB.

• For a given time step and assuming that ∂Ωt grows over time, if the difference be-
tween ∂Ωt and ∂Ωt+∆t is large and new nodes are created, then the actual behaviour
of function u on the newly created nodes might not be correctly modelled by our lin-
ear approach. This is not convenient, therefore we need to introduce a CFL condition
to avoid this. This condition can be written as:

V∂Ωt ·∆t
h

< C

where V∂Ωt is the velocity of deformation of boundary ∂Ωt, and C is a certain con-
stant. Since V∂Ωt is considered constant between times t and t + ∆t, this relation
can be rewritten for every time step as:

(d1 + d2)max
h

< C (5.5)

where (d1+d2)max is the maximum distance between points A and B measured along
one of the newly created nodes. From now on, we will refer to coefficient (d1+d2)max

h
as the CFL number.

• Obviously, the correct choice of points A and B for every newly created node affects
the performance of the method. There are infinite combinations for points A and B
which will work, but it is better to choose the best combination of them.

Computation of points A and B

When boundary ∂Ωt grows in time, new nodes are created and we must find points A and
B to compute the "initial conditions" for such nodes. The best choice for them is so that
the distance between points A and B is minimum.

This is a purely geometrical problem, since having a newly created node, which we have
called point C, and boundaries ∂Ωt and ∂Ωt+∆t, the goal is to find points A ∈ ∂Ωt+∆t
and B ∈ ∂Ωt, such that points A, B, and C are colinear, and the distance between points
A and B is minimal. Due to the physical interpretation of the circumstances, another
condition is that point C must be between points A and B.

57

et al.

Figure 5.2: Representation of how boundaries ∂Ωt and ∂Ωt+∆t are linearized over a small
interval

Since finding a solution for a general problem like this is highly difficult (and in some
cases unfeasible), we will study this problem over small segments of boundaries ∂Ωt and
∂Ωt+∆t which are approximated as straight lines, as it can be seen in figure (5.2). However
this is not an obstacle, since boundaries ∂Ωt and ∂Ωt+∆t can be thought as to be made
of consecutive segments of straight lines.

For this, assume we have 2 line segments which represent boundaries ∂Ωt and ∂Ωt+∆t:

• L1 which represents ∂Ωt+∆t, and has extreme points P1 = (x1, y1) and P2 = (x2, y2).
Remember that A ∈ L1.

• L2 which represents ∂Ωt, and has extreme points P3 = (x3, y3) and P4 = (x4, y4).
Remember that B ∈ L2

From the above ideas, we can say that:

A = P1 + (P2 − P1) · a
B = P3 + (P4 − P3) · b

where a and b are scalars such that 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. The key now is finding a
and b, and from there finding points A and B.

Before starting, it is useful to define 3 important notations:

• We define vector Vij , such that Vij = Pj −Pi, which is a vector that goes from point
Pi to point Pj .

• We define the norm of the cross product between 2 vectors ~a and ~b as |~a×~b|.

• The dot product between 2 vectors ~a and ~b is still given by 〈~a,~b〉

To proceed, let’s focus on point A, and connect it to point B through point C. For
this, assume that point C has coordinates (xC , yC), and let’s define line L3 which goes
from A to C, so:

L3 = A+ (C − A) · c

58

5 – Introducing time dependence

where c is another scalar. Point B follows from colinearity, so we need to find b based on
this condition. For this let’s intersect lines L2 and L3, and we get the following system of
equations to solve for parameters b and c (even though c is not important):

V34 · b+ VCA · c = V3A

Using Kramer’s rule, we find that:

b = |V3A × VCA|
|V34 × VCA|

Let’s try and simplify the above into something more understandable. Since V3A =
V31 + V12 · a and VCA = VC1 + V12 · a, we can write:

b = |(V31 + V12 · a)× (VC1 + V12 · a)|
|V34 × (VC1 + V12 · a)| = |V31 × VC1|+ |V3C × V12| · a

|V34 × VC1|+ |V34 × V12| · a

The above value of b represents point B, such that points A, C and B are colinear. As
a reference, look at image (5.3) where we can see the colinearity of points A, C, and B,
and the different vectors used in our analysis:

Figure 5.3: Graph of the different vectors used in the computations of points A and B

Having this, we define the distance dAB between points A and B from the following:

d2
AB = 〈VBA, VBA〉

Now, points A and B both depend on parameter a, so in order to minimize the distance,
we derive with respect to a and nullify the derivative. To make things easier, let’s find
db/da first.

59

et al.

db

da
= |V3C × V12| · (|V34 × VC1|+ |V34 × V12| · a)− (|V31 × VC1|+ |V3C × V12| · a) · |V34 × V12|

(|V34 × VC1|+ |V34 × V12| · a)2

= |V3C × V12| · |V34 × VC1| − |V31 × VC1| · |V34 × V12|
(|V34 × VC1|+ |V34 × V12| · a)2

The above can be further simplified like:

db

da
= − |V34 × VC3| · |VC1 × V12|

(|V34 × VC1|+ |V34 × V12| · a)2

Now we can get the minimum distance by deriving dAB with respect to a and nulling
the derivative. This is given by solving for a in the following equation:

2 ·
〈
VBA,

dVBA
da

〉
= 0 (5.6)

Computing what is needed:

VBA =A−B
=P1 + (P2 − P1) · a− (P3 + (P4 − P3) · b)

=V31 + V12 · a− V34 ·
|V31 × VC1|+ |V3C × V12| · a
|V34 × VC1|+ |V34 × V12| · a

=(|V34 × VC1|+ |V34 × V12| · a) · (V31 + V12 · a)− (|V31 × VC1|+ |V3C × V12| · a) · V34

|V34 × VC1|+ |V34 × V12| · a

Which simplifies to:

VBA = |V34 × V31|+ |V34 × V12| · a
|V34 × VC1|+ |V34 × V12| · a

· (VC1 + V12 · a)

Introducing the above into equation (5.6), we get:

|V34 × V31|+ |V34 × V12| · a
|V34 × VC1|+ |V34 × V12| · a

·
〈

(VC1 + V12 · a) ,
(
V12 − V34 ·

db

da

)〉
= 0

Which, already gives the first solution, which is when:

|V34 × V31|+ |V34 × V12| · a = 0

So:

a = −V34 × V31

V34 × V12

60

5 – Introducing time dependence

The above value of a represents the point where lines L1 and L2 would theoretically
intersect (meaning A and B would be the same point), giving d = 0, a solution which
is independent of point C but it is not what we’re looking for since C must be between
points A and B, so we discard it. The remaining solutions are when:

〈
(VC1 + V12 · a) ,

(
V12 − V34 ·

db

da

)〉
= 0

Substituting for db/da:
〈

(VC1 + V12 · a) ,
(
V12 + |V34 × VC3| · |VC1 × V12|

(|V34 × VC1|+ |V34 × V12| · a)2 · V34

)〉
= 0

Multiplying by (|V34 × VC1|+ |V34 × V12| · a)2, performing the algebra and the dot
product, reduces to:

C0 + C1 · a+ C2 · a2 + C3 · a3 = 0 (5.7)

where:

C0 =|V34 × VC1|2 〈VC1, V12〉+ |V34 × VC3| · |VC1 × V12| · 〈VC1, V34〉

C1 =2 · |V34 × VC1| · |V34 × V12| · 〈VC1, V12〉+ |V34 × VC1|2 · 〈V12, V12〉+ . . .

. . .+ |V34 × VC3| · |VC1 × V12| · 〈V12, V34〉

C2 =|V34 × V12|2 · 〈VC1, V12〉+ 2|V34 × VC1| · |V34 × V12| · 〈V12, V12〉

C3 =|V34 × V12|2 · 〈V12, V12〉

Solving for a in equation (5.7) gives information about points A and B. It’s valid to
mention that equation (5.7) is a cubic polynomial, so it has 3 solutions. Since coefficients
C0, C1, C2, and C3 are real scalars, then (5.7) has either 1 real and 2 complex solutions,
or 3 real solutions. Both cases are possible but complex solutions are discarded.

Having a solution for equation (5.7), it has to be tested it with our restrictions, meaning
that 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, and point C must be between A and B. This last conditions
translates to:

0 ≤ 〈VAC , VAB〉
〈VAB, VAB〉

≤ 1

In case any of these restrictions is not met, then other segments of boundaries ∂Ωt

and ∂Ωt+∆t have to be considered until all conditions are fulfilled.
It is important to mention that all possible combination of segments between bound-

aries ∂Ωt and ∂Ωt+∆t have to be considered in order to find the global minimum for
dAB.

61

et al.

Assembling all pieces together
Suppose we wish to solve the general problem (5.1). For that we apply our FEA and reach
to equation (5.2). Suppose that our choice for the time advancing scheme is Backward
Euler, therefore:

∂uti
∂t
≈ ut+∆t

i − ut+δtii

∆t− δti
where δti is the time interval of creation of node i after time t, and is given by equation
(5.3). In case node i is not a newly created node, then δti = 0. It is to be noted that
during a time step, several nodes can be created, as well as others can be "destroyed".

The above derivative can be expressed for all nodes on Ωt as a matrix vector product
like:

∂ ~ut

∂t
≈ 1

∆T ·
(−−−→
ut+∆t −

−−−→
ut+δti

)
where matrix 1

∆T is a diagonal matrix whose entries are the different 1
∆t−δti coefficients.

From here equation (5.2) becomes:

W t+∆t · 1
∆T ·

(−−−→
ut+∆t −

−−−→
ut+δti

)
+ Zt+∆t ·

−−−→
ut+∆t =

−−−→
F t+∆t

Solving for
−−−→
ut+∆t allows advancing in time, having a set of initial conditions.

It is worthwhile mentioning that in case ∂Ωt is constant over time, it is easier to use
higher order methods than Backward Euler on equation (5.2) since the issue of "initial
conditions" on newly created nodes does not happen since there are not any, and δti = 0
for every node. For example, we can use the Trapezoidal rule (which is a second order
method), which starting from equation (5.2) can be written as:

W t+∆t +W t

2 ·

(−−−→
ut+∆t −

−→
ut
)

∆t + Zt+∆t + Zt

2 ·

(−−−→
ut+∆t −

−→
ut
)

2 =
−−−→
F t+∆t +

−→
F t

2

where, as for Backward Euler, solving for
−−−→
ut+∆t allows advancing in time.

Practical implementation of the method
In previous chapters, our scheme for the FEA was straight forward:

• We started from a known function u, together with porosity k and velocity field V ,
which allowed to compute functions f and g.

• Then we built a mesh of finite elements, which allowed to compute function d across
∂Ω̃.

62

5 – Introducing time dependence

• With a proper choice of parameter γ, we were able to compute all necessary matrices
for the simulation.

• Solving the system of equations allowed to get ũ, and together with function u, we
measured the error in our approximation for a given norm.

• Then post-process the results to check certain conditions, as well as the convergence
of the method, which we have numerically proofed to be quadratic with respect to
the spatial step h for a wide variety of cases.

Since we are now dealing with time dependence, for our FEA we will have to do all of
the above steps for every time step of our simulations, in addition to the following:

• Include volumetric capacity s to compute its contribution to function f , and to
compute the matrices which depend on it, meaning matrices W t and T t.

• In case Ωt grows at a time step, compute the "initial conditions" for the newly created
nodes.

Since we already demonstrated quadratic convergence with respect to the spatial dis-
cretization, for this new case we will be interested in studying how the error behaves with
respect to the time step. For this, now we consider that the error will be approximated
by the following relationship:

error ≈ Cspace · h̄2 + Ctime ·∆tq (5.8)
where Ctime is a certain scalar constant, and now q is the rate of decay of the error with
respect to the temporal discretization step.

The current interpretation of the error is that it is composed by a sum of an error due
to the discretization in space and another error due to the discretization in time. This is
valid since the differential equation we are trying to solve, meaning the heat equation, is
linear.

By performing some simulations we expect that q will be similar to the of order of the
method used to advance in time. For example, we expect q ≈ 1 for the Backward Euler
scheme, and q ≈ 2 for the Trapezoidal rule.

We will also modify the expressions we used to measure the errors to include the time
variation. For this, we redefine the error as:

ep =

 1
tf

ˆ tf

0

´
Ωt

∣∣∣u− ũt∣∣∣p dΩ
‖Ωt‖

dt

1/p

where tf is the final time instance of the simulation. To approximate the time integral,
we focus on a single time step between times t and t + ∆t and use the Trapezoidal rule,
so:

ˆ t+∆t

t

´
Ωt

∣∣∣u− ũt∣∣∣p dΩ
‖Ωt‖

dt ≈

´
Ωt

∣∣u−ũt∣∣pdΩ
‖Ωt‖ +

´
Ωt+∆t

∣∣∣u−ũt+∆t
∣∣∣pdΩ

‖Ωt+∆t‖

2 ·∆t

63

et al.

A special case to consider, as was also described in chapter 1, is when p→∞, since:

e∞ = limp→∞

 1
tf

ˆ tf

0

´
Ωt

∣∣∣u− ũt∣∣∣p dΩ
‖Ωt‖

dt

1/p

= maxΩt [0,tf]|u− ũt|

Meaning that e∞ is the maximum error occurred during the whole simulation.
Now we have everything necessary to test our FEA. The goals are 2:

1. Test if the the rate of decay of the error with respect to the temporal discretization
step, meaning q, does match that of the order of the time advancing scheme.
For this we will compare the errors for different combinations of h and ∆t in a logical
manner. The idea is that, having a simulation with parameters h0 and ∆t0, we expect
to see quadratic convergence if, for example, another simulation has parameters h
and ∆t such that: (

h0

h

)2
=
(∆t0

∆t

)q
2. Study how the errors behave with respect to the CFL number, given in equation

(5.5). For this we will perform several simulations for a fixed discretization step h
while changing ∆t, and compute the errors and the CFL number.

Examples
Problem 8:

• Consider the following problem:

– Region Ωt as the set of points (x, y) such that 0 ≤ y ≤ 2+sin (π · x) ·sin
(
t+ π

2
)
,

where 0 ≤ x ≤ 3 and 0 ≤ t ≤ 2 · π.
– Assume that function u is of the shape u = 2 + sin

(2π·x
3
)
· sin (π · y) · sin (t)

– Porosity k is given by k = 1 +
(
t

6·π
)2 · (x2 + y2)

– Velocity field V has components Vx = x+ y − t and Vy = 1− exp
(
−x+y+t

3

)
– Volumetric capacity s is given by s = 2 + sin (x · t− y · t)

We wish to study how the errors computed by our FEA behave for the above problem.
This can be done by performing several simulations of our FEA, measuring the errors,
and checking how they behave with respect to the discretization steps ∆t and h. Since
boundary ∂Ωt changes in time, we prefer to use Backward Euler as a time advancing
scheme.

64

5 – Introducing time dependence

Changing ∆t while keeping h fixed

For a fixed spatial discretization step h ≈ 0.05 and varying ∆t, we get the following
results for the CFL number and the errors:

Figure 5.4: Dependence of the CFL number with respect to ∆t for problem 8

Figure 5.5: Errors of ũ vs ∆t for problem 8 Figure 5.6: Errors of ∂ũ
∂t vs ∆t for problem

8

65

et al.

Figure 5.7: Errors of ∂ũ
∂x vs ∆t for problem

8
Figure 5.8: Errors of ∂ũ

∂y vs ∆t for problem
8

From the above figures, 4 things are to be noted:

• The rapid decrease of the CFL number as ∆t becomes smaller. Simulations were
made with CFL numbers ranging from as high as 20 to as low as 2, and the method
is stable. Obviously as ∆t → 0 then CFL → 0, though this highly increases the
number of time steps for the whole simulations. From the above we can see that the
CFL number does not pose a real restriction on the choice of ∆t.

• The errors for ũ decrease with a decreasing ∆t in a trend which is almost linear, as
it should be since Backward Euler is a first order method. The reason why the trend
is not exactly linear is because of the errors due to the spatial discretization.

• The errors for ∂ũ
∂t also decrease almost linearly with respect to ∆t for the 1-norm and

2-norm, but not for the infinity norm (which seems to oscillate around a constant
value).

This is the case since a first order time advancing scheme gives a zeroth order ap-
proximation for the first time derivative, which means that ∂ũ

∂t might not converge,
as shown.

• There is almost no change in the errors for the spatial derivatives, ∂ũ∂x and ∂ũ
∂y , with

respect to ∆t.

Changing h while keeping ∆t fixed

We will also be interested in studying how the errors behave with respect to h while
keeping ∆t fixed. For a fixed time discretization step ∆t ≈ 0.42 and varying h, we get
the following results for the errors:

66

5 – Introducing time dependence

Figure 5.9: Errors of ũ vs h for problem 8 Figure 5.10: Errors of ∂ũ
∂t vs h for problem

8

Figure 5.11: Errors of ∂ũ
∂x vs h for problem

8
Figure 5.12: Errors of ∂ũ

∂y vs h for problem
8

From the above figures, 3 things are to be noted:

• The errors for ũ decrease quadratically with a decreasing h in the first part of the
plot, but then they flatten. This is because of the predominance of the errors due to
the time discretization.

• We still have linear convergence for ∇u for the 1-norm and 2-norm, however not for
the infinity norm. This is due to the errors involved in the time discretization.

• There is no change in the errors for the time derivative, ∂ũ∂t , with respect to h.

67

et al.

Changing h and ∆t together

Now we would like to check if the rate of decay of the error with respect to the temporal
discretization step, q, does match that of the order of the time advancing scheme. In
shorter words, we would like to see if q ≈ 1 since we are using Backward Euler.

For this we start with a simulation with parameters h0 and ∆t0, perform other sim-
ulations by dividing h0 by 2 and ∆t0 by 4, and compare the errors to check if we have
quadratic convergence. If yes, then indeed q ≈ 1.

To include the contribution of both discretization steps, we graph the errors vs param-
eter h+

√
∆t. By doing so, we get the following graph of the errors:

Figure 5.13: Errors of ũ vs parameter h +√
∆t for problem 8

Figure 5.14: Errors of ∂ũ∂t vs parameter h+√
∆t for problem 8

Figure 5.15: Errors of ∂ũ∂x vs parameter h+√
∆t for problem 8

Figure 5.16: Errors of ∂ũ∂y vs parameter h+√
∆t for problem 8

68

5 – Introducing time dependence

From the above figures, 3 things are to be noted:

• As we can see at the top left corner of figure (5.13), we do get quadratic convergence
for ũ for all norms, so indeed q ≈ 1. This also means that equation (5.8) does give
a very good approximation of how errors of ũ behave with respect to discretization
steps h and ∆t.

• We have complete linear convergence for ∇u for the 1-norm, 2-norm, and the infinity
norm. Even though the convergence for the infinity norm on ∂ũ

∂x is a bit low (0.743),
we can see that for ∂ũ

∂y it is actually pretty high (1.119).

• The errors of ∂ũ∂t for the 1-norm and 2-norm become quadratic, but since we’re using
a first order time advancing scheme, the infinity norm still diverges.

Graphs of interest

Together with this file, there are attached 3 videos titled "Problem 8 - u", "Problem
8 - f", and "Problem 8 - e", which represent a live graphical representation of the
approximation of ũ, f̃ , and |ũ − u| respectively. Also, we show several graphs of ũ for
different time instances:

Figure 5.17: Graph of ũ at time t = 10
33π

for problem 8
Figure 5.18: Graph of ũ at time t = 28

33π
for problem 8

69

et al.

Figure 5.19: Graph of ũ at time t = 46
33π

for problem 8
Figure 5.20: Graph of ũ at time t = 64

33π
for problem 8

Problem 9:

• Consider the following problem:

– Region Ωt as the set of points (x, y) such that 0 ≤ y ≤ 6
x , where 1 ≤ x ≤ 6 and

0 ≤ t ≤ 6.
– Assume that function u is of the shape u = (1 + 2 · x+ 3 · y) · (t− 3)

– Porosity k is given by k = 1 +
(
t

6·π
)2 · (x2 + y2)

– Velocity field V has components Vx = x+ y − t and Vy = 1− exp
(
−x+y+t

3

)
– Volumetric capacity s is given by s = 2 + sin (x · t− y · t)

We wish to study how the errors computed by our FEA behave for the above problem.
This can be done by performing several simulations of our FEA, measuring the errors,
and checking how they behave with respect to the discretization steps ∆t and h. Since
region Ωt is constant in time, we decide to use the Trapezoidal rule as a time advancing
scheme.

In this problem, our main concern is to validate if q in equation (5.8) is approximately
equal to the order of the time advancing scheme, meaning that we wish to check if q ≈ 2.
Since region Ωt is constant in time, there is not any CFL condition associated to this
problem.

We will also be interested in studying how to the errors behave while changing param-
eters h and ∆t separately.

Changing ∆t while keeping h fixed

For a fixed spatial discretization step h ≈ 0.2 and varying ∆t, we get the following
results for the errors:

70

5 – Introducing time dependence

Figure 5.21: Errors of ũ vs ∆t for problem
9

Figure 5.22: Errors of ∂ũ∂t vs ∆t for problem
9

Figure 5.23: Errors of ∂ũ∂x vs ∆t for problem
9

Figure 5.24: Errors of ∂ũ∂y vs ∆t for problem
9

From the above figures, we can see that all of the errors decrease with a decrease in
∆t, but up to a certain extent since, when ∆t becomes very small, the curves become flat.
This is because the errors of the spatial discretization become more prominent than those
of the temporal discretization.

Changing h while keeping ∆t fixed

For a fixed temporal discretization step ∆t ≈ 0.3 and varying h, we get the following
results for the errors:

71

et al.

Figure 5.25: Errors of ũ vs h for problem 9 Figure 5.26: Errors of ∂ũ
∂t vs h for problem

9

Figure 5.27: Errors of ∂ũ
∂x vs h for problem

9
Figure 5.28: Errors of ∂ũ

∂y vs h for problem
9

From the above figures, we can see that there is not much change for the errors with
respect to h, either for ũ or for its derivatives.

Changing h and ∆t together

Now we decide to change parameters h and ∆t together. We wish to study how the
errors behave for this case, and check if q ≈ 2. For this, we start with a simulation with
discretization parameters h0 and ∆t0, perform other simulations by dividing h0 by 2 and
∆t0 by 2, and compare the errors to check if we have quadratic convergence. If yes, then
indeed q ≈ 2.

To include the contribution of both discretization steps, we graph the errors vs param-
eter h+ ∆t. By doing so, we get the following graph of the errors:

72

5 – Introducing time dependence

Figure 5.29: Errors of ũ vs parameter h+∆t
for problem 9

Figure 5.30: Errors of ∂ũ∂t vs parameter h+
∆t for problem 9

Figure 5.31: Errors of ∂ũ∂x vs parameter h+
∆t for problem 9

Figure 5.32: Errors of ∂ũ∂y vs parameter h+
∆t for problem 9

From the above figures, 3 things are to be noted:

• We do get quadratic convergence for ũ for all norms, so indeed q ≈ 2.

• We have super linear convergence for ∇u for all norms.

• The errors of ∂ũ
∂t also quadratically converge.

Graphs of interest

Also, we show several graphs of ũ, f̃ , and the absolute error |ũ − u| at several time
instances:

73

et al.

Figure 5.33: Graph of ũ at time t = 1
for problem 9

Figure 5.34: Graph of |ũ − u| at time
t = 1 for problem 9

Figure 5.35: Graph of f̃ at time t = 1 for problem 9

Figure 5.36: Graph of ũ at time t = 5
for problem 9

Figure 5.37: Graph of |ũ − u| at time
t = 5 for problem 9

74

5 – Introducing time dependence

Figure 5.38: Graph of f̃ at time t = 5 for problem 9

75

76

Chapter 6

Conclusions

The aim of this thesis was to instruct and show the reader the benefits and extents of the
Shifted Boundary Method. For this, we made continuous progress through the different
chapters, with detailed explanations and testing.

On chapter 1, we started with a simple problem which is common in the literature. On
chapter 2, we focused on how to apply boundary conditions through Nitsche’s method,
necessary for the procedure on chapter 3, in which we showed how to shift boundary
conditions. Chapters 4 and 5 were dedicated on the extensions of the main problem from
chapter 1.

From our results and studies, we can conclude that:

• Shifting boundary conditions is a useful technique when the numerical boundary
does not match with the physical boundary.

• Shifting boundary conditions increases the convergence of the FEA up to the mini-
mum order between the approximation done by the test functions, and function d.
Because of this, it is useful if both, the test functions and function d, have the same
order of approximation.

• For all of our case of studies done up to chapter 4, we could appreciate quadratic con-
vergence for ũ and linear convergence for∇ũ with respect to the spatial discretization
step.

• For the time dependent cases studied in chapter 5, we can appreciate that the rate
of decay of the error with respect to the time discretization matches the order of the
time advancing scheme.

• For time dependent cases, since we have spatial and time discretizations, we obtained
the best results for convergence when both of the discretization steps where changed
accordingly to their respective order of convergence.

• Also we saw that the CFL condition does not restrict the choice of spatial and
temporal discretization steps, since there was no correlation between the magnitude
of the errors and the CFL number.

77

78

Bibliography

[1] N. M. Atallah, C. Canuto, and G. Scovazzi, Analysis of the Shifted Boundary Method
for the Poisson Problem in General Domains, arXiv:2006.00872v1 [math.NA] 1 Jun
2020.

[2] N. M. Atallah, C. Canuto, and G. Scovazzi, Analysis of the Shifted Boundary Method
for the Stokes Problem, Comput. Methods Appl. Mech. Eng., 358:112609, 2020.

[3] N. M. Atallah, C. Canuto, and G. Scovazzi, The Shifted Boundary Method for the
Darcy flow problem, J. Comput. Phys., 2020. in preparation.

[4] N. M. Atallah, C. Canuto, and G. Scovazzi, The Second Generation Shifted Boundary
Method and Its Numerical Analysis, Comput. Methods Appl. Mech. Engrg. 372 (2020),
113341

[5] A. Main, and G. Scovazzi, The shifted boundary method for embedded domain compu-
tations. Part I: Poisson and Stokes problems, J. Comput. Phys. 372 (2018), 972-995.

[6] A. Main, and G. Scovazzi, The shifted boundary method for embedded domain computa-
tions. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations,
J. Comput. Phys. 372 (2018), 996-1026.

[7] Lecture notes on "Numerical Modelling" by C. Canuto, Politecnico di Torino.
[8] K. J. Bathe, Finite Element Procedures, Prentice Hall, 1996.
[9] A. Bonito, I. Kyza, and R. Nochetto, Time Discrete Higher Order ALE Formulations:

Stability, SIAM J. Numer. Anal. 51 (2012), 577-604.
[10] L. Formaggia and F. Nobile, A stability analysis for the arbitrary Lagrangian Eulerian

formulation with finite elements, East-West J. Numer. Math., 7(2):105–131, 1999.
[11] R. Aris, Vectors, Tensors, and the Basic equations of Fluid Mechanics, Dover Publi-

cations Inc, Berlin, 1989.

79

	A simple beginning: Poisson's equation
	Applying Dirichlet boundary conditions through Nitsche's method
	Applying shifted boundary conditions
	Extension to a more general problem
	Introducing time dependence
	Conclusions
	Bibliography

