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Abstract

One of the most important challenges of our century is ensuring, as engineers, the design of
the most sustainable machines guaranteeing anyway the right amount of performances. A
clear example of this topic comes from the aeronautical field where it is possible to observe
the will to push for an increase of weight reduction and aerodynamic efficiency, which lead
to energy savings and performance increment. An effort in this sense has been made for
what concerns the engine design in an open rotor configuration. An example of this trend is
found in the increase of adoptions of propfan engine. In fact, this architecture can be more
efficient from the aerodynamic and thermodynamic point of view. On the other hand, the
open rotor configuration and the goal of weight reduction lead to a flexibility increase of the
engine parts. A particular focus is put on the bladed disc-shaft assembly. In fact, despite
the classical approach for the study of the engine dynamics, which provides the analysis of
each component separated, neglecting the Gyroscopic effect, the new trend goes towards a
"whole engine philosophy design" analysis [1]. This new way of working is exploited, in
this thesis, in order to evaluate the behaviour of a bladed disc shaft assembly. A particular
focus is put on the influence of the phenomenon of the gyroscopic effect.
To pursue these objectives, some benchmark models of a Stodola-Green rotor have been
realized through different codes (Ansys and Dynrot student version) in order to understand
and compare how the different codes handled the problem. After this step, another simple
model was realized in order to fully understand the dynamic features added to the system by
including blades to the disc of a Stodola-Green model and, making the pitch angle change.
In the final stage,the work is centred on the rotordynamic modelling, through FE, of the
behaviour of a lightweight propeller of an ATR-72 mounted on his shaft.

Figure 1: ATR-72

1



1 Introduction

1.1 Aim of the work and premises
The aim of the work is analysing, exploiting FE capabilities, the dynamic behaviour of a rotating
shaft with an overhung bladed disc. In particular the focus is on the the assessment of the
influence of the gyroscopic effect on the rotor and of the change in the pitch angle of the blades.
The analysis is a rotor dynamic one in order to evaluate the critical speeds, mode shapes and
possible instabilities which could affect the life and the correct functioning of these components
which are the main parts of an open rotor engine. Particular attention is dedicated to the study of
the flexural modes of the blades which , as the evolution of the engine continues, are becoming
longer increasing their flexibility. In order to understand how to correctly represent all these
situations in a finite element environment, the process has started with the creation of simple
models of Stodola-Green rotor. At these models have been added the complications of the blades
and of the variability of the pitch angle. These example are taken as the starting ones because the
work has begun with the analysis of [1] and the replication of its results. At the end, in order to
try something tangible, a simplified model of the shaft-propeller assembly of an ATR-72 was
analyzed.

1.2 General rotordynamics considerations
For what concerns the rotor dynamics study, it is reasonable to say that it is an expansion of the
dynamic analysis in which is inserted another hypothesis that is the revolution of the part. In
fact, if for example, for a dynamic analysis we start from an equation of the type:

[M]{ẍ}+[C]{ẋ}+[K]{x}= 0 (1)

where [M] is the mass matrix, [C] is the damping matrix and [K] is the stiffness matrix, x is the
vector of the degrees of freedom . On the other hand, the equation describing the free beahviour
of a rotating system is:

[M]{ẍ}+
[
[C]+ [G(Ω)]

]
{ẋ}+

[
[K]+ [H]

]
{x}= 0 (2)

where [G] is the Gyroscopic matrix depending on the rotational speed and [H] being the circula-
tory matrix. In principle what is possible to extract from the 2 systems is , in the first case, the
eigenvalues of the system from which can be extracted the mode shapes, whose mathematical
expression is related to the eigenvectors. Moreover, for what concerns the rotordynamic case
formulation 2, it is possible another time to extract the eigenvalues which, this time, do not
represent just the frequency of vibration at standstill but the whirling frequency, during the system
rotation, in their complex part and, the decay rate in their natural part. In fact the eigenvalues in
natural coordinates are expressed as:

ω = ωw + iωi (3)

where ω i represents the decay rate of the free motion of the rotor and ωw the whirl frequency.
Being the solution of the type:

x = x0eiωt (4)

which becomes:
x = x0e(−ωi+iωw)t (5)
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Instead if the eq. 2 was solved in the Laplace domain the solution would be of the type

x = x0est (6)

where
s = sr + isi (7)

and the whirling frequency is represented, this time, from the si whereas the decay rate by sr.
To note that since through this methodology of solution a state space system is used, the output
will be directly the eigenvalues while, in the previous method the results were given in terms
of the square of the eigenvalue. The whirl frequency mentioned opens the important topic of
the definition of the whirl. In fact, considering a simple Jeffcott rotor which is described by the
possibility of moving just in the plane along the x and y direction, the whirl motion is represented
as the orbit coming out from the deflection of the shaft or of the supports of the shaft. This is due
to the problem that, usually, for manufacturing reasons the center of gravity (G in fig. 2) does
not coincide with the geometrical center of the the rotor giving birth to an orbital motion like in
figure 2.

Figure 2: Jeffcott rotor deflection due to whirl motion

Moreover, there are some other distinctions to do about these whirl motions since they are of
two different types:

• forward whirl;

• backward whirl.

The difference between these two cases is the direction of the whirl speed: in the FW the whirl
motion happens accordingly to the angular velocity rotation direction, in the BW the whirl
motion occurs in the opposite direction with respect to the rotational speed (around the main
rotation axis). Moreover, it is possible to distinguish between cylindrical and conical whirl
modes. The first ones are described as a whirl (circular or elliptical depending on the properties
of the rotor/stator) with the axis of the rotor always parallel to the fictitious axis passing through
the center of the orbit. In the conical whirling instead the axis of the rotor is no more parallel to
the fictitious axis passing through the center of the orbit (figure 3).
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Figure 3: Cylindrical and Conical whirling [2]

Another peculiar thing adopted to describe in a easier way the whirl motion is the complex
coordinate z, which in the xy plane describes the whirl orbit conjugating the x and y displacement
through the expression [7]:

z = x+ iy (8)

which applied to the solutions becomes:

z = z0eiωt (9)

From the modulus of z in fact, as logical, it is possible to extract the orbit of the center of the
rotor C. From the analysis of the behaviour of the whirl frequencies, as the revolution speed
changes, it is possible to obtain a diagram called Campbell diagram (figure 4 ). This diagram
help us to identify the critical speeds and the different mode shapes.
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Figure 4: Campbell diagram example

The critical speeds are the speeds for which the response to the excitation keeps growing
linearly as time passes. It is spotted just for the FW motions and to assess the values of these
frequencies (in an inertial reference frame), it is found the intersection between a line ωw = kΩ

and the forward whirl curves. k is usually equal to 1 (dotted line figure 4) but, generally, it is
chosen with respect to the frequency of an harmonic excitation acting on the system (and with
excitation frequency multiple of the rotational speed or multiple of some particular features of
the geometry). For what concerns, instead, a Campbell diagram plot in the rotating reference
frame, the critical speeds are identified immediately by the intersection of the FW curve with the
x axis. Another problem affecting the functioning of the rotor are the instability fields: these
zones are found when the component of the eigenvalue ωi is negative or becomes negative or, in
the Laplace Domain, when sr becomes positive. In fact, if this condition is satisfied, the growth
of the orbit becomes exponential bringing the system to a really dangerous condition.

1.3 Gyroscopic effect
The Gyroscopic effect is a direct consequence of the Coriolis acceleration acting on the rotor

ac = 2Ω×vr (10)

where vr is the velocity vector of one point of the non inertial reference frame (rotational
reference frame). The consequence is the generation of a torque acting on the system 5.
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Figure 5: Torque applied by the gyroscopic effect during a turning manuever

In rotors this happens when the axis has more components of rotational speed: in other words
the Ω vector has not just the component around the rotation axis but also around the other two.
The physical consequence of this phenomen is the generation of a torque which tries, if the rotor
is adequately designed, to re-align the shaft along the principal rotation axis. In some other cases
it could bring to a further destabilization of the system and even to rupture. Anyway the shaft is
subjected to a flexural action.

Considering the effect of the Gyroscopic phenomenon on the rotor frequencies it is important
to highlight a parameter which is called δ and is equal to the ratio between Jp (polar mass
moment of inertia of the rotor) and Jt (transversal mass moment of inertia of the rotor). In terms
of effect on the Campbell diagram ([3]):

• δ < 1 (long rotor) yields to the identification of a critical speed (intersection of the FW
curve with line ω = Ω), linked to the conical whirling;

• δ > 1 (disc rotor) let the system avoid critical speeds (this at least for what concerns
critical speed given by the intersection of the FW curves with the line ω = Ω);

• if δ = 1 (spehrical rotor), the system never reaches the critical speed but, in this way, the
excitation on the system keeps growing in time as a sort of instability.

Accordingly, the effect on the frequencies behaviour gives no straight lines in the Campbell
diagram (apart from the case in which δ = 0 and the Gyroscopic effect is neglected) [3]:

• the frequency of BW whirling decreases in absolute value and tends to 0 as Ω goes to
infinite;

• the frequency of FW whirling grows following the asymptote ω = δΩ.
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It is possible to claim at the end, that the effect of the Gyroscopic phenomenon is a stiffening
one. For example, in the case of the Stodola-Green Rotor, the Coriolis effect splits the complex
conjugate frequencies, as shown in figure 6.

Figure 6: Campbell diagram showing the frequency split due to the Gyroscopic effect

As previously said, in figure 6 it is possible to appreciate the frequency split between the forward
and backward whirl modes in absolute value.

1.4 Stress stiffening
Given a beam under an axial stress, its bending frequency of vibration (11) will be higher or
lower depending on the fact that the stress is a stretching or a compressive one. The formula
demonstrating the previous concept is taken by [7]:

ω =
iπ
l

√
EI
ρA

(
iπ
l

)2

+
Fz
ρA

(11)

where:

• I,A,l are respectively the moment of area of the section of the beam, the area of the beam,
the axial length;

• ρ is the density of the material;

• Fz is the axial force;

• i is the number of the mode shape.

Considering a rotating system, a feature , always characterizing, will be the presence of a
centrifugal field given by the centrifugal force. This induces on the rotor a positive stress field
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which is reflected into an increase of the frequencies: this phenomenon is represented in the field
of the finite elements by the Geometric stiffness matrix. In the case of the stress stiffening effect
caused by the centrifugal force field, the matrix is proportional to the spin speed because the
centrifugal force has in its expression a dependence coming from it. At the end, the previous
equation of the rotating system becomes:

[M]{ẍ}+
[
[C]+ [G(Ω)]

]
{ẋ}+

[
[K]+ [KG(Ω)]+ [H]

]
{x}= 0 (12)

In order to be consistent with the formulation o many commercial codes, it must be said that
another effect influencing the stiffness of our system is present: the effect is called spin softening
and acts differently depending on the reference system chosen (inertial or non inertial). In our
case will be related to the centrifugal field force and so to Ω. At the end the equation comes out
as:

[M]{ẍ}+
[
[C]+ [G(Ω)]

]
{ẋ}+

[
[K]+ [KG(Ω)]− [KS(Ω)]+ [H]

]
{x}= 0 (13)

where [KS] is the spin softening matrix.
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2 Bladed discs and their dynamic behaviour
A common method to model bladed discs and in general cyclic symmetric structures exploits
this symmetry around an axis in order to save computational efforts and time. In fact, the method
consists in modelling just one sector and extending the result to the others. This can be done
both for what concerns the static analysis and for the dynamic one.

2.1 Classification of mode shapes
From the theory of the axialsymmetric structures, if a mode has the maximum deflection point at
some point on the structure, it is possible to rotate the mode shape of any angle not changing the
frequency of vibration. The same holds for Cyclic symmetric structures. In the dynamic field,
which is the one interested by this thesis, the possible mode shapes for the solution of a cyclic
symmetric structure modal analysis can be classified into 3 categories [4]:

• each substructure has the same mode shape as its neighbours and is described by the
expression

u j = u( j+1); (14)

• each substructure has the same mode shape as its neighbours but is vibrating in antiphase
and is described by the expression

u j =−u( j+1); (15)

• all other possible mode shapes.

The second class of modes can only exists if the number of sectors composing the cyclic structure
is even. For the first and the second types, rotating the mode shape is useless since the same
shape is obtained. So their mode shape description is made with just one eigenvector. The third
class, instead, can be described by different mode shapes for following sectors. Moreover, as
demonstrated in [4], the solution of this type of modes can be represented better using complex
coordinates, coming from the linear combination of real orthogonal eigenvectors {u}and{ū}
which are individually solution of the system. So the complex linear combination coming out
from those solutions is:

{z}= {u}+ i{ū} (16)

Now it is possible to write a solution of the equation which takes into account the deformed
vector {z′} around all the sectors by the formulation:

{z′}= e−iΨ{z} (17)

from which comes out the expression relating the displacement of the sectors:

{z( j)}= eiΨ{z( j−1)} (18)

where Ψ is the so called phase angle which is a parameter connected to the delay of the mode
shape with respect two subsequent sectors. Moreover, its expression is:

Ψ =
2πn
N

(19)

where N is the number of the cyclic sectors and n is the number of the nodal diameters. The
number of the nodal diameters is another number that takes into account how a mode repeats
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equal to itself after a certain number of sectors: in fact n/N gives the number of substructures
after which the mode shapes repeats equal to itself. It is also important to say that n (integer
number) ranges between zero and N/2 (excluding n = 0), if the number of sectors is even, and
from zero to (N−1)/2 if the number of sectors is odd. Moreover, in order to give a physical
meaning to these complex solutions [4], what represents the instantaneous deflected shape of
the system is the real part of eq. 17. Then it is important to underline also that since {z} is
a solution of the system obtained by a linear combination of two complex solutions, also its
complex conjugate will be a solution of the system. The difference between the two will be the
rotation direction of the mode shape: the first clockwise, the second anticlockwise. So, in other
words, the multiplicity of the solution will be 2 for this type of mode shape while, for the other
two the multiplicity will be 1 since the solution is real.

2.2 Modal analysis data interpretation
In order to understand the behaviour of the bladed disc, what is commonly done is to plot a
diagram relating the frequencies of the different mode shapes with their nodal diameter related
parameter. In fact, usually, the modal analysis output of the commercial code provides this last
parameter.

Figure 7: Modal families plotted with respect to nodal diameters

As shown in fig. 7, it is possible to distinguish between two different behaviours of the bladed
disc: in fact depending on the frequency there is a major incidence of the movements of the
blades 8 or of the disc 9. This behaviour is strictly dependent on the geometry of the system
since for example, having a bulky disk and thin blades could cause the rise of only blade modes.
On these types of graph it is possible to identify the areas dominated by disc modes since they
present an increasing trend of the frequencies. On the other hand the blade dominated modes are
identified by series of constant frequencies.
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Figure 8: Blade mode correspondent
to one nodal diameter

Figure 9: Disc mode corresponding to
two nodal diameters

2.3 Rotating bladed discs
A good starting point for the study of a rotating part, attached radially to a disc, is the rotating
pendulum. A basic and important point is the understanding of the difference between the in
plane vibration of the pendulum and the out of plane one. In fact, they represent two ways of
vibration, of the free pendulum, which are different starting from the mathematical expression of
their frequencies [3]. Evolving the model, it is possible to write the expressions describing a
rotating string attached to a disc. In particular, if the string is constrained to vibrate in a plane, it
is found the dependence of the frequency from the angle Ψ between the axis of rotation and the
plane [3]:

ω =

√
ω1−Ω2sin2

Ψ (20)

Moreover, ω1 is the out of plane natural frequency of the string when it is free of vibrating
and Ω is the spin speed of the rotor system. A particular feature to underline is that if Ψ = 0 a
correspondence with an infinitely thin blade lying in the plane of the disc is found. The case is
coincident with the one of out of plane vibrations while, if Ψ = 90° the scenario is the one of
the in plane vibrations. Evolving another time the description of our model, leads us to have
a description of a rotating blade attached to a disc : the beam taken into consideration is an
Euler-Bernoulli beam which is slender and neglects the shear deformation and the kinetic energy
of the cross section rotation about its axis [3].A major characteristic of the mathematical problem,
in this case, is that the solution depends strongly on the boundary conditions and so, on how
the blade is constrained to the disc. The model shows, in analogy with the previous model, that
if there is an angle Ψ between the rotation axis and one of the axis of symmetry of the beam
(assuming the section of the beam as rectangular), the frequency will have a direct dependence
on this angle and also a monotonic growth due to the spin speed. The natural frequency of
vibration of the rotating beam attached to the disc is thus described by:

ω =

√
ωin +Ω2(ci− sin2

Ψ) (21)

Here (eq. 21) it is possible to notice how the frequency of the rotating blade is derived from an
expansion of the standstill vibration frequency (ωin). Moreover from the dynamic of the rows of
rating pendulum chapter in [3], it is known that:

• in case of in-plane vibrations with no nodal diameter (commonly called nodal diameter 0)
the bending behaviour of the blades is coupled with the torsional behavior of the shaft and
disc composing the rotor;
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• in case of out-of-plane vibrations with nodal diameter equal to 0 the bending behaviour of
the blades is coupled with the axial behavior of the shaft ;

• for both out-of-plane and in-plane behaviour the nodal diameter equal to one exerts a
bending exerts a bending excitation on the shaft ;

• the behaviour of the other mode shapes (with nodal diameter different from 0 or 1) is not
influent on the dynamics of the rotor ;

If the blade, as commonly happens, is twisted, Ψ is not constant so the effect is a mix of the
two. A step forward in the theory is made considerating instead of a single entity pendulum or
blade, a row of pendulums or blades evenly spaced and atteched to a disc. From the results of
the model reported at page 484 of [3], it is possible to understand, now, how the frequencies
extracted describe a situation coincident with the modal analysis of the previous case which
was in static conditions. In fact the row of pendulums are subjected exactly to the modes and
the phase angles governed by the theory of the bladed discs. From the study of the interaction
between the dynamics of a row of blades with the shaft in a rotor, it is found, numerically and
experimentally, the rise of a instability region. The instability is detectable by the real part of
the eigenvalue which becomes positive (Laplace convention) and is due to the presence of a
geometrical ratio between the radius of the disc and the length of the blade, (or pendulum) which
is minor than one. The phenomenon verifies just for the forward whirling mode (in the inertial
reference frame) and has a worse effect when the angle Ψ is close to 90° or it is 90° since the
speed for which rises are smaller. Instead, for the Ψ angle going towards zero, the effects are
negligible since the birth of the instability is found for higher spin speeds. Anyway the instability
verifies always in the supercritical field and, in the practical application, is usually not dangerous
since the speed for which verifies cannot be reached for strenght related reasons of the materials
adopted. On the other hand, because of the development of lighter and more resistant materials,
the field of instability issue is a concept not to dismiss [3].

Figure 10: Rotating blade sketch (from [3])
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3 FE codes Gyroscopic effect evaluation
As the mathematical methods and the hardware to perform the computations are being evolved,
the approach to study the dynamic behaviour of engines becomes centered on the simulation
of an always bigger part of the final assembly. This way of proceeding is the result of what is
called "whole engine philosophy design"[1]. This allows in particular to take into account all
the modes exchanges between a component and the other (for example between blisc and shaft
connected) when the frequencies of the two are quite similar. In particular what gives value to
this way of reasoning, which usually is closer to what happens in reality, is the need to model all
the elements as elastic, neglecting the rigid body or rigid connections approximations [1]. At the
end this way of proceeding is particularly important for our purpose since the open rotors design,
with its increasing dimensions for what concerns the blades is particularly compliant as there is
the will to go towards lighter structures.

3.1 Stodola-Green rotor modelling
In order to understand the peculiarities of the commercial code used (Ansys), for what concerns
the rotordynamic analysis dealing with Gyroscopic effect, some benchmark models are here
created to compare the results and try to replicate the numbers obtained in [1]. The example
chosen for this "evaluation" of the codes is the well known "Stodola-Green" model which consists
of a Disc attached to a cantilever shaft (which obviously can rotate around its axis). More than
one modelling technique has been used in order to create this test (fig. 11):

• the first was written by myself on Matlab and it is a 2 complex degrees of freedom lumped
model implementing the gyroscopic matrix (code in the Appendix, representation not
present in fig. 11);

• the second model (still lumped) was obtained using a Matlab toolbox called ’DYNROT
student version’ which is a FE extension for rotordynamics (fig. 12);

• the third and fourth model were obtained using Ansys Mechanical APDL and they are
constituted by a solid (fig. 13) and a lumped model (script in the Appendix);

• the last solid model was created employing Ansys Workbench.

Figure 11: Starting from the left upper corner in clockwise order: Matlab ’DYNROT’ model,
Ansys Mechanical APDL lumped model, Ansys Workbench model, Ansys Mechanical APDL
solid model
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3.1.1 Lumped models

The lumped models used are the simplest available to simulate the case of the Stodola-Green
rotors. They are both devoloped using Matlab and they are simply composed of 2 nodes connected
by a beam. The nodes are employed, in one case to fix a concentrated mass (with mass moment
of inertia to simulate the disc), and in the other case to set the cantilever constraints. A difference
to underline is that the beams to simulate the shafts have 2 different formulations: in the first
model a Euler beam was used while, a Timoshenko’s one has been utilized through the Dynrot
script. Moreover, the second model used was capable of developing a solution to the equation
system with a professional mathematical solver able to operate in all cases in the field of the
axial symmetric rotordynamic systems. Instead, the first model exploits the simplicity of its
formulation: the solution in fact is obtained performing the modal analysis and Diagonalizing
the system. At this point only decoupled equations are obtained and solved individually. The last
lumped model, obtained using concentrated elements in Ansys APDL is the same as the other
two, but this time it is obtained in a commercial software enviroment.

Figure 12: Lumped Stodola

3.1.2 Explicit models

The remaining models where created staring from a 3D CAD drawing. The mesh has been
realised by employing solid elements such as 8 node brick element and tethrahedronal elements.
In the case of the 8 node element, implemented in Ansys Mechanical APDL, the mesh was
realized with particular attention to the axial symmetry: for this purpose a sector has been
meshed and then replicated (axially symmetric) in order to obtain the final shape 13. In the other
model developed with Ansys Workbench, the mesh was completely delegated to the software,
as well as the choice of the elements (as it is default for this environment). What came out,
obviously, is a more irregular mesh due also to the fact that here the volume imported in the
software was the entire one. The method of solution this time employs, in both the situations,
the QR damped method which allows the calculations of complex eigenvalues. Another detail
to mention is that, differently from [1] centrifugal stiffening has been neglected as well as spin
softening.
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Figure 13: Solid model obtained through Ansys APDL

3.2 Results comparison
The term of comparison for the four different models has been the Campbell diagram for the
two first whirling frequencies. It is possible to notice how the results are close to each other
(fig. 14). So, for this geometry configuration, it is possible to appreciate how the different
models formulations lead all to the same results (at least for what concerns the first family of
whirling modes). As expected and showed in figure 14 the solid model brings with him a major

Figure 14: Campbell diagram in NON rotating reference frame

compliance with respect to the lumped one. This is due mainly to the shape functions of the
elements which are of higher order compared to the one of the lumped beam. Another reason
comes from the higher number of elements used in the discretization of the solid volume. Since
for this study a really important starting point is constituted by the comparison also with [1],
what comes out is the fact that for this geometry the effect of centrifugal stiffening (on the solid
models) is negligible. This is due to the fact of the bulky profile of the disc which does not feel
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so much the change in stiffness due to the centrifugal stresses. The proof of this is obtained
in figure 15 where it is possible to see that there is no difference between the the pre-stressed
configuration and the basic one. The little offset present between the 2 is of the order of the
hundredths of Hz and can be associated to a small error in the numerical solver.

Figure 15: Campbell comparison among the pre-stressed case and the basic one

Moreover, another possible of the configuration of the Campbell Diagram can be plot in the
rotating reference frame as shown in [1] and in figure 16. The choice of this type of graph allows
to immediately identify the critical speed (around 1200 rpm) which is in correspondence of the
drop of the branch below.

Figure 16: Campbell diagram in the rotating reference frame
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3.3 Chapter conclusions
In conclusion, for this type of system it is possible to obtain similar results both employing
minimal models, like the lumped models, in which are used few elements and nodes, both using
solid element models. It is always important to evaluate if the geometry to represent is bulky
enough to neglect the centrifugal stiffening and the spin softening.
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4 Blade effect evaluation on Stodola-Green model
Since our final target is the understanding of the dynamic behaviour of a propeller-shaft assembly
of a turboprop engine, a good way to start is with a simple model. In particular the choice has
fallen on the introduction of some blades on the disc of a Stodola-Green rotor (fig. 23). In this
process another important parameter to take into account is the pitch angle, or in other words,
the angle between the chord line of the blade and the plane of the axis of rotation of the shaft. In
fact, it is important to have an idea of the frequency changes as the pitch angle varies since, such
a technique is adopted in to satisfy the aerodynamic requirements, during the different phases of
the flight.

4.1 Bladed disc modelling
Before even start to think to the analysis of the rotor, it is intelligent to run a modal Analysis
of the bladed disk in order to understand its dynamic behavior. In fact, as said in [3] in the part
reguarding the dynamic of the rows of pendulums, the blisc dynamic influences a lot the one of
the rotor. Moreover, this blisc model is similar to the one described in the ideal case (which has
a rigid disc with attached pendulums) since features a bulky disc and thin blades.

Figure 17: Bladed disc

4.1.1 Model features

In order to describe the bladed disc, a model exploiting the circular symmetry has been created.
Such a way of proceding helps to find directly a solution to the modal analysis (in Ansys APDL)
which takes into account the nodal diameters.
The only particular thing to mention is that, to simulate the constraint of the shaft, the degrees of
freedom of the circular crown of the hole in the center of the disc have been locked.

4.1.2 Modal results analysis

From the data obtained from the modal analysis it is possible to characterize the blisc.
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Figure 18: Frequencies of the disc as the nodal diameter varies

In figure 18, it is possible to notice as the frequencies, for the first three modal families, remain
the same as the nodal diameter changes. This is index of the non participation of the disc to the
mode shape: in fact all these 3 families are constituted by blade modes. This happens because of
the thick profile of the disc with respect to the blades. Moreover, as expected, the number of
nodal diameters is 4 (excluding the zero nodal diameter):the solutions are complex and conjugate
for Nodal diameters from 1 to 4, while the Zero nodal diameter brings a real solution.
More than the image plot of the modal shape it is important to have something numerical in
order to find out the behaviour of the mode shape. This tool of comparison is constituted by the
plot of the angular displacements of the tip of the blade and, is useful to spot the participation of
the blisc to the total mode shape of the rotor in the following section analysis.

Figure 19: Tip displacement diagram for each cyclic symmetric sector of the blisc in the 1st
modal family (all these modes of blade are at 29 Hz as shown in fig. 18)
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Figure 20: Mode shapes (1st modal family) of the previous tip displacement plots (starting from
the upper right in clockwise order Nd = 1,Nd = 2,Nd = 4,Nd = 3)

As it is possible to notice (fig. 19) the tip displacement, represents just a rough indication of
the nodal diameter, since, having an odd number of sectors, the cyclic symmetry cannot be ’cut’
in equal pieces having inside the same number of sectors: thus the tip displacement curve can
not be related strictly to the periodicity of the nodal diameters. Anyway, the plots from Nd = 1
to Nd = 3 give the idea in a pretty precise way of the corresponding nodal diameters since the
number of intersections with the X axis are the right ones. The last mode shape missing is the
one describing the Zero nodal diameter.

Figure 21: Zero nodal diameter plot tip displacement at 29 Hz
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Figure 22: Zero nodal diameter mode shape

It is evident both from fig. 21 and 22 that the displacement of the blades is the same in the same
direction as predicted.

4.2 Bladed Rotor modelling
Differently from the other rotors of the previous chapters, for this model, just solid elements
(SOLID 186) have been used in order to discretize the structure. The mesh in particular is
obtained by replicating one meshed sector (like in fig. 13) of the assembly Blisc-shaft. In this
way it is possible to obtain a discretization which is as homogeneous as possible, avoiding the risk
of having variations in stiffness and mass distribution due to difference in the mesh. Moreover, as
announces the title of the chapter, the scheme of the constraints and of the model is the same of
the simple Stodola-Green rotor model: this time there is just a difference for what concerns the
dimensions which have been increased (Drawing in the APPENDIX). Using these dimensions
it is possible to obtain numbers, at 0 rpm, comparable with the base Stodola-Green model. On
the other hand such a bigger bladed disc, compared to the shaft, allows a clear identification
of the mode shapes (fig. 23). Anyway, the first part of the process has been dedicated to the
understanding of the results. For this purpose a geometry analogous to the one of [1] was
employed (drawing in the appendix).
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Figure 23: Bladed Stodola-Green rotor with 90° pitch angle

4.3 Model validation
The first step of the process concerns the validation of the mathematical model replicating the
results of the article [1]. This step is fundamental in order to understand precisely what happens
in the analysis. Having this article as term of comparison helped a lot since the the main struggles
were about the use of the software and the identification of the different modal families.

4.3.1 Solver peculiarities

Another fundamental step is the identification of the commands to supply to the software to
obtain a pre-stressed analysis of an asymmetric rotor: in fact, as all the bladed disc built by
identical circular sectors (such as turbine discs, propellers etc.), this rotor is NOT symmetric.
This detail is important because, the software requires the use of the rotating reference frame for
the solution. So, in this way, the imaginary part of the eigenvalue represents the frequency in the
rotating reference frame. For this model, and the following, also the centrifugal stiffening has
been added from the beginning because for the slenderness of the blades it is possible to have an
important effect on the frequencies given by this particular,as seen in the theory part.

4.3.2 Dynamic behaviour of the blisc-shaft assembly with pitch angle of 90°

As the previous chapter shows, in order to access the dynamic behavior of the model in the free
response configuration, a Campbell diagram was plotted. The computations have been extended
on the first 10 complex frequencies since, usually, the lowest frequencies are the ones which
cause more problems, in terms of amplitude of displacements, when excited. In fig.24 is possible
to appreciate the mentioned Campbell diagram in the rotating reference frame.The denomination
of the data in the legend is made accordingly to the stationary reference frame for simplicity:

• the curve called ’Shaft FW’, decreasing and increasing, (fig.24) represents what in the
stationary reference frame is the forward whirl motion and, consists in a flexural excitation
of the shaft (fig.25);

• the orange curve (fig.24), ’Shaft BW + Nd1 BW’, begins in the same point as the ’Shaft
FW’ and then disappear under the frequencies denominated ’Nd..’. This is emblematic

22



of a particular feature of this family of frequencies which begins as a shaft modal shape
(fig.25) and becomes a blade-shaft mixed one (fig.25);

• the rest of the data (denominated ’Nd..BW/FW’) plotted ,superposed to the ’Shaft BW +
Nd1 BW’ curve (fig.24), show in principle modes of blade. In fact, since the disc is really
rigid with respect to the blades, what is going to vibrate is just the blade (fig.25), as seen
in the previous section.

• the curves denominated as ’Nd1 FW + Shaft FW’ and ’Nd1 BW + Shaft BW’ are the two
families of frequencies starting as modes of blade and becoming a mix between shaft and
blade modes after the veering process with the ’Shaft BW + Nd1 BW’ curve;

• the frequencies denominated ’Nd0’ represent a mode shape which does not vary a lot with
the rotational speed, and couples zero diameter vibration with the torsional vibration of
the shaft.

Figure 24: Campbell Diagram in the rotating reference frame of Bladed Stodola-Green rotor
with 90° pitch angle

After this rough description of the results of the model, it is good to point out the peculiarities:

• the first evident feature is the drop to zero of the ’Shaft FW’ frequency. This is particularly
helpful since allows us to identify immediately the the critical speed: in fact since in the
rotational reference frame, that curve is obtained subtracting the rotational speed to the
frequency, when the two values are equal, the critical speed is spot;

• between ’Shaft FW’ and the ’Shaft BW + Nd1 BW’ it is possible to notice a frequency
split to be imputed to the gyroscopic effect;
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• there is an exchange of modes (at about 500 rpm), called ’veering’ in literature, between
the ’Shaft BW + Nd1 BW’ curve and the ones denominated ’Nd1 FW + Shaft FW’ and
’Nd1 BW + Shaft BW’: this veering phenomenon turns the ’Shaft BW + Nd1 BW’ family
in a blade mode and the other 2 families in a mix of shaft and blade mode;

• at around 12000 rpm the ’Shaft BW + Nd1 BW’ curve returns into a pure shaft mode
meeting the ’Shaft FW’ curve;

• in the curves denominated ’Nd1 BW/FW + Shaft BW/FW’ is possible to notice a split to
which they undergone. This split is given by the blades exerting a bending excitation on
the spin axis which [1], which with the help of the Gyroscopic effect, determines their
frequency split;

Figure 25: Respectively flexural shaft mode on the right and blade flexural in plane mode on the
left, where the blue profile represents the undeformed configuration

Another predictable behaviour of the system is related to the rise of the blade modes (de-
nominated in fig. 24 ’Nd..BW/FW’) which are, in a certain way, expected since the system is
constituted by a really compliant shaft and a really stiff disc. This gives birth to the classical
modes describing the behaviour of the bladed discs:

• in particular 8 modes of blade are present, which represent the 4 nodal diameters (non
counting the zero nodal diameter) of which the bladed disc disposes;

• these modes are 8 (not counting the zero nodal diameter mode) since they are couples of
the same mode, one rotating clockwise and the other counterclockwise on the bladed disc;

• their frequencies are really close to each other (they all start at 29 Hz as possible to see
also in the first modal family in fig. 19 and go on at the same frequencies fig. 24) and in
the representation in fig. 24 they result as superposed.

In order to understand that those frequencies, which differs of some tenths of Hz, belonged
to the different modal diameters, it was necessary to plot the displacement of the tips versus
the number of the sector, for what concerns the data coming from the rotordynamic analysis
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and, compare them to the ones coming from the modal analysis of the bladed disc (fig. 26). The
curves of the modal analysis are not always the same (in fig. 26) since some of the curves of fig.
19 have been translated of some sectors: anyway this is a regular operation since the modes are
harmonic and rotating on the structure.

Another feature of these frequencies to note is that their increasing behaviour is mostly due,
as shown in eq. 21 (eq.13.71 of [3]), to the rotational speed. The fact that the blade frequency
increases monotonically with the rotational speed [5] is an effect related to the centrifugal
stiffening. In fact neglecting this last one, the curve of these frequencies would come out flat as
the speed increases.

Figure 26: Angular tip displacement comparison in order to identify the identity of the modes
extracted in the rotor analysis (at 29 Hz) with respect to the ones found in the modal analysis of
the bladed disc

Last but not least there is an instability phenomenon which verifies at around 12000 rpm
and is predictable since of the ratio between the radius of the disc and the blade length is less
than one (from the theory of the rotating pendulum in [3]). This instability is connected to the
’Shaft FW’ frequencies. No evidences of this fact are present in the Campbell diagram since the
phenomenon is recognizable from the real part of the eigenvalue (Laplace) turning positive.
At the end, it is good, to have clearer in mind what happens from our physical point of view, the
Campbell diagram in the non rotating reference frame was plotted (fig.27). This is done by sub-
tracting or adding the rotational speed to the frequency found in the non-inertial reference frame.
In conclusion in this diagram it is possible to notice the stiffening phenomenon, represented by
the the frequency split, due to the gyroscopic effect mainly on the bending modes of shaft (since
the others ’stiffening’ are due to the centrifugal field). A peculiarity to underline is the change in
direction of rotation of the ’Shaft BW + Nd1 BW’ mode and the other modes of blades. This
fact is represented by the rising branch after the meeting with the x axis (effect given by the
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centrifugal stiffening phenomenon without which the frequencies would just tend to zero as ω

increases) and, was already encountered for the ’Shaft FW’ curve in the rotating reference frame.

Figure 27: Campbell diagram in the inertial reference frame

4.4 Evaluation of the influence of the blade pitch angle on the dynamic
behaviour

The evaluation of the change of frequency given by the the change of the pitch angle of the
blade is fundamental. In fact, for example there are some planes like the ATR-72 for which the
pitch angle of the propeller is variable due to efficiency reasons. What has been done in this
case is studying the change in frequency with reference to the ones in the rotating reference
frame including, as before, the gyroscopic effect. From the theory of the rotating pendulum it is
expected a change in the frequency due to the change of the pitch angle. The purpose here is to
assess the effect on the assembly dynamic behaviour.

4.4.1 Description of the model

Compared to previous blisc-shaft assembly, for the extraction of these results the disc had to be
modified at the blade base in order to have the same blade disc attach for all the different cases
(fig.28). This allows not to have influences of the different masses and stiffness that would come
out if just the blade pitch angle was changed maintaining the curvature of the disc (drawing in
the appendix). Moreover, the mesh this time implies, since of the impossibility of obtaining
a mapped mesh with brick elements, tetrahedonal elements (10 nodes) for the ’disc’ volume.
These elements are anyway a variation of the brick element SOLID 186. The constraints as
always are put in order to simulate a cantilever at the free end of the shaft.
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Figure 28: Modified bladed disc with pitch angle of the blades of 60°

4.4.2 Comparison of the different pitched assemblies behaviour

The results obtained for this calculation allow us to plot the Campbell diagram of each version
of the model. In particular fig.29 holds the same notation as the previous diagrams or, in other
words, the legend related to the inertial reference frame.

Figure 29: Campbell diagram changing the pitch angle

At first sight comes to the eyes the fact that, as the pitch angle decreases, there is no more
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convergence of the ’Shaft BW + Nd1 BW’ and ’Shaft FW’ curves which tend to diverge.This
thus leads to an increase in the frequency as shown in fig. 30.

Figure 30: Backward whirl frequencies comparison as the pitch angle changes

Another peculiar feature of the ’Shaft BW + Nd1 BW’ modal familiy is that, as anyone logically
can predict, more the curve differentiate from the ’Nd..BW/FW’ curves, more the influence
of the bending mode shape rises, up to the 30° pitch angle ’Shaft BW + Nd1 BW’ curve,
whose behaviour is mainly flexural as the ’Shaft FW’ one. This could be explained because the
excitation of the blades on the shaft, coupled with the gyroscopic effect, is higher in the case of
the 30° pitch angle: the cause can be imputed to the fact that the mode shape resulting from the
vibration of the blades, in this case, is no more representing an in plane motion but an out of
plane one (fig. 31).

Figure 31: Respectively pure in plane blade vibration (90° pitch, o the left) and predominant
bending mode (30° pitch, on the right) at the same rotational speed of 7198 rpm for the ’Shaft
BW + Nd1 BW’ curve
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On the contrary,as predictable, the difference between the ’Shaft FW’ curves is minimal (fig.
32). This is understandable since, being this a bending mode of the shaft, the blades are not
implied actively in the vibration and do not exert any vibrational contribution.

Figure 32: Forward whirl frequencies comparison as the pitch angle changes

Stating this behaviour for the ’Shaft FW’ mode, it is possible also to declare that the small
difference found on these frequencies is imputable to the gyroscopic effect on the assembly, since
the centrifugal stiffening and the spin softening act in the same way since the main vibrating part
is the shaft. In order to quantify the outcoming frequency difference, a graph (fig. 33 ) has been
prepared.

Figure 33: Frequency split in absolute value with respect to the 90° pitch angle case for the
’Shaft FW’ mode

From this graph is possible to conclude that the highest frequency split with respect to the 90°
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case is found, another time, decreasing the pitch angle (fig. 33).
On the other hand, once the vibration of the blades comes into play, the frequency difference
becomes higher but, this time, is imputable to the pitch angle itself as shown in 20 (fig. 34 ).

-

Figure 34: Blade modes curves comparison

As it is possible to observe from fig. 34, since the curves describing the nodal diameter 2 up to
the nodal diameter 4 are almost superposed in all the cases, the split among their frequencies is
the same up to a maximum value of 80 Hz at around 14000 rpm. If compared to these splits, the
frequencies splits due to the families characterized by a nodal diameter equal to one are lower.
This happens, as before, since the curves in fig. 35 describe mixed modal shapes between blades
ones and shaft ones (bending modes of shaft).

Figure 35: One nodal diameter curves comparison

In fact the maximum splits in fig. 35 are respectively 10 and 57 Hz at 14000 rpm.
For what concerns, instead, the vibration given by the ’Nd0’ curve, which couples the zero

nodal diameter and the shaft torsional vibration, the frequencies start as different of some Hz
and then converge as the rotational speed increases (fig. 36).
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Figure 36: Zero nodal diameter curves comparison

The frequency difference at 0 rpm can be due to the fact that the vibration of the blades changes
progressively from an in plane one, exciting mainly the torsional behaviour of the shaft, to an
out of plane one coupled with the axial behaviour of the shaft. Moreover, at high speed the
frequencies converge, since the stiffening effect inhibits the blade vibrations and turns all mode
shapes into a pure torsional shaft mode.

Last but not least, it is important to underline that the instability (rising at 12000 rpm), due
to the ratio between radius and blade length being less than one, disappears changing the value
of the pitch angle from 90° (instability related to the ’FW’ mode). This was expected from the
thoery of the rotating blade constrained to oscillate in a plane [3].
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5 Modelling of the propeller shaft assembly of the engine of
the ATR-72

5.1 General overview of the ATR72
The ATR-72 is a short haul plane (1100-1500 km) powered by a twin turboprop engine. It is
principally a Civil plane even though it has some military versions. As the name predicts, its
passenger carrying configuration could seat 72 to 78 people in a single class arrangement. The
current production series is the ATR72-600 which is different, from the previous ones, since a
lot of structural parts have been substituted in order to make the structure lighter and, in this way,
increase the performances and the efficiency.

Figure 37: Use of composite materials in the ATR72 structure

5.2 General overview of open rotors technology
Open rotors technology is not a new engineering discover but has been used since the past in the
aviation field for the propulsion of planes. Since the 2nd World War with the wide development
and spread of the jet and turbojet engines, the upper mentioned architecture has been stopped in
its diffusion and innovation. In recent times the open rotor solution has come back into the field
for advantages in efficiency problems.

5.3 Propeller model
In order to evaluate the influences of the gyroscopic effect on the ATR-72 propeller, the work has
started from the creation of a 3D-model. It is important to underline that, since the precise data
for the geometries and the materials are not available for industrial purposes, they are obtained
starting from images and some drawings found online. The model (fig. 38) schematize the
structures and the masses directly connected to the blades and to the rotor shaft.
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Figure 38: Simplified model used to represent the shaft and propeller assembly of the ATR-72

Figure 39: Real picture of the ATR72 modelled part

A particular attention has been put on the drawing of the blade which is tilted along its length.
In fact the challenge was constituted not only from the drawing itself and from the lack of
informations about the dimensions but also, from the fact that a model with a reasonable quantity
of nodes in the FE analysis was needed. In other words the model had to be run on a not so
powerful hardware (laptop). So the main concern was about the drawing of the blade which
has been obtained, at the end, by a simplification which consisted in the substitution of the
continuous line, along the length of the profile, with some small straight segments (fig. 40). This
holds also for what concerns the drawing of the wing profile: for this purpose, some points of a
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Table 1: Materials properties

NACA4 curve were calculated and used in order to draw the lines useful for approximating the
profile (fig.40).

5.3.1 Material choice

Another issue was constituted by the choice of the materials: for what concerns the disc
constraining the blades, the cylinder attached to it and the shaft, they were assumed to be made
of steel. For the blade, instead, the process was more complicated since from the description
of the propfan engine, it is known that they are made of composite material. In particular, to
guarantee the lightweight and the proper mechanical properties, the blade is made as a sandwich
structure: the outer skin in fact is made of carbon fiber and the inner core is filled with a foam.
This informations were acquired not directly from a single source but from the comparison of
multiple sources on the subject of the lightweight blades mounted on modern airplanes. At the
end the choice of the material for the blades has fallen on a compromise which took into account
the problem, sticking to reality but also simplifying it: the blade has been built with isotropic
elastic properties and as elastic modulus the value found in the article [6]. This value has been
obtained trough an experimental 3 point bending test, considering a sandwich panel constituted
by a carbon skin of 8 layers and a poliurethane foam core (tab. 1). The value of the elastic
modulus chosen is taken from a bending test since the behavior of the blade is mainly flexural
in plane (for the configuration chosen in fig. 38). Moreover, the equivalent density has been
evaluated taking into account the values of the single materials and the dimension of the part.
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Figure 40: On the left the NACA4 disctretized profile, on the right the simplified blade drawing

5.3.2 Constraints setting

As already said the drawings of the assembly parts are obtained by non official technical drawings
so, also the choice of the dimensions of the shaft is reasonable but, probably, does not comply
to the real part. Moreover, also the casing and the bearings mounted are unknown: what it is
assumable is their position based on how the shaft was modeled. Obviously then, they for sure
will constrain both the radial and axial displacement. The locking of the last degree of freedom
is fundamental, as seen before, since an axial trust coming from the dynamic vibrations, will
be always present as the pitch angle becomes lower than 90° and the blade modes turn into
out of plane modes (the ATR-72 has the possibility of varying the pitch angle). In the end the
constraints settings is composed by one hinge and a simple support (in all the directions) as
shown in fig. 41.
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Figure 41: Model constraints

5.4 Dynamic behaviour of the ATR-72 assembly
As before, in order to assess the dynamic behaviour of the assembly composed by the Propeller
of the ATR-72 and its shaft, a Campbell diagram of the structure has been plotted. Taking into
account that the pitch angle of the blade varies along its height, the case studied was that taking
as reference the first pitch angle of the NACA4 profile (the first one starting from the blade
attach) as a 90° angle. The choice of studying this case only has turned out successful since the
behaviour of the ’blisc’ is more or less the same as the one studied in the previous chapter. In
fact, another time, the bulky profile of what it is possible to call approximately as disk (but really
is constituted by the blades attach and a cylindrical disc) does not contribute to the mode shapes
of the propeller assembly. So in other words a good approximation in this case is constituted
by a rigid disk where only blade modes are present. So, as already said, the behavior of the
assembly propeller-shaft is the same as the model analysed in the previous chapter. Referring
to the rotating reference system, the Campbell diagram has been obtained for a speed range
comprised between 0 and 14000 rpm (fig. 42):

• it is possible to notice as before the ’Shaft FW’ curve whose name is another time referred
for convention to the inertial reference frame (fig. 42) and still prepresents a flexural mode
of shaft;

• as the previous chapter also the ’Shaft BW + Nd1 BW’ represents a flexural shaft mode at
the beginning and then turns into a blade mode;

• the families of frequencies representing the modes of blade (denominated as ’Nd..FW/BW’)
from the nodal diameter equal to 2 to the nodal diameter equal to 3 are superposed;
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• the curves referred to the the modes starting as blade mode with nodal diameter equal
to one and becoming a mix between a blade and a shaft mode are highlighted as ’Nd1
BW+Shaft BW’,’Nd1 FW+Shaft FW’;

• The curve curve denominated ’Nd0’ is related to a mode of blade and in particular to the
nodal diameter zero.

After listing all the modes it is dutiful to describe in deep what happens to the system in this
range of speeds:

• the ’shaft FW’, curve as before, tells us where it is situated the critical speed (around 5200
rpm). The mode shape is a bending mode of shaft and changes the direction of rotation
after the critical speed (due to centrifugal stiffening phenomenon);

• the ’Shaft BW + Nd1 BW’ family represents at the beginning a flexural mode of shaft but
at around 2000 rpm there is a veering phenomenon ,interesting this mode and ’Nd1 FW
+ Shaft FW /Nd1 BW + Shaft BW’ , which transforms the behaviour of the mode into a
blade mode with nodal diameter equal to one (and in this way become superposed by the
other blade modes);

• the curves denominated ’Nd1 BW+Shaft BW’,’Nd1 FW+Shaft FW’ show, after the 2000
rpm, a behaviour characterized by a flexural excitation of the shaft and, before the 2000
rpm, a pure blade flexural mode characterized by one nodal diameter;

• For the blade modes (denominated ad ’Nd..’), their shape is found to be, for the majority,
the one of an in plane vibration : this is due for sure to the pitch angle with respect to the
first section of the blade and the fact that in the lower part the blade is thicker.

A particular feature is constituted by the fact that, since the the number of cyclic sector of the
propeller can be thought to be coincident with 6, since of the 6 blades, the eigenvalues coming
from the solution of the modal analysis are always complex with multiplicity 2 except for 2
cases: the case of the nodal diameter zero and the case of the nodal diameter 3. In fact, if in the
first scenario the blades are vibrating in phase, in the other one they are rotating in anti-phase
or mathematically with a phase angle of pi. It is important to remark that this last condition is
possible just if an even number of cyclic sectors is present, if not, like in the case of the previous
chapter, only the nodal diameter equal to zero has a real solution.
As in the previous chapter , the ’Nd0’ family exhibits an in plane vibration coupled with the
torsional motion of the shaft.
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Figure 42: Campbell diagram of the ATR-72 propeller model in the rotating reference frame

Figure 43: Respectively blade mode corresponding to nodal diameter equal to zero and bending
mode of shaft

At this point, in order to stick to the reality, it is necessary to point out a consideration concerning
the maximum rotational speed reached by the propeller: in fact as declared by the manufacturer
on its website the propeller of the PW120 (model of the turboprop engine by Pratt and Withney)
spins at a maximum rotational speed of 1200 rpm. So what has to be done is evaluating the
behaviour of our system in the restricted range (fig. 44).
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Figure 44: Campbell diagram of the ATR-72 propeller model in the rotating reference frame in
the restricted range

The curves trend, as before, is the same as the one seen in the previous picture (fig. 42).The main
features in (fig. 44) concern the influence of the gyroscopic effect on the frequencies:

• it is possible to observe the frequency split between ’Shaft BW + Nd1 BW’ and the ’Shaft
FW’ curve given by the gyroscopic effect;

• the gyroscopic effect influence is visible another time for ’Nd1 BW + Shaft BW’,’Nd1 FW
+ Shaft FW’ for which anyway, the effect is attenuated since the mode has a predominance
of the blade vibrating effect up to 2000 rpm;

In conclusion what is really important to underline, is the fact that in the range analysed there
are two missing factors who are usually not good to find in the working range: the critical speed
and the instability field. For what concerns the instability, this value, for a system similar to this,
comes out at high rotational speeds as seen in the previous chapter. So, its calculation turns out
to be more an exercise than a practical need. If the model was precise it would be possible to say
the same also for the critical speed: since the model is an approximation what is possible to say
is that engineers, most likely, tuned the system in such a way not to encounter the critical speed
value. The last particular to be nominated is the fact that, it is true, as previously said, that the
frequencies of blade are for the most described by an in plane vibration but, since of the change
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of the pitch angle along the height of the blade, there is always s light coupling with the axial
vibration.

Figure 45: Front view of the blade mode corresponding to the nodal diameter equal to 2
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6 Conclusion
At the end it what is worth to say in order to make a summary of this work in the following: when
analyzing a bladed disk-shaft assembly, it will be always possible to find some common features
in the behaviour. One of this feature is always constituted by the particular way of vibrating of
the bladed disk. Its behaviour will be always characterized by mode shapes associated to the
nodal diameters. Moreover, considering a propeller-shaft assembly of the open rotor of a plane,
probably, since the the part where the blades are connected to the shaft has not to be compliant at
all, it will be bulky and whereby the most evident mode shapes will be the ones of the blades.
On the other hand, considering the right supports such as bearings and casings, it is possible to
avoid to strong excitation of the shaft which could lead to the instability of the system, at least
for what concerns a reasonable range of speed: for reasonable in fact it is intended a range in
which commonly a propeller does work (not like a range of 0-14000rpm). In fact as seen in the
chapter 5, the speed range of rotation of a real propeller, used in a turboprop engine, is between
0 and 1000 rpm. Also the critical speed is a property which has to be assessed and tuned in
advance. In conclusion, all these computations represent a good starting point to understand the
peculiarities of the behaviour of a propeller-shaft assembly. Anyway it has to be considered that,
a forced analysis should be performed to effectively asses which of the excitation can be possibly
constitute a danger for the structural integrity of the engine during its life. Such an analysis
would include also the determination of the characteristics of the damping of the bearings and of
the materials, the excitation coming from the engine and from the aerodynamic interactions. For
example, the damping related to the bearings would constitute a light factor of variation for what
concerns also the whirling frequencies. At the end, each simulation of a real component must
always be correlated to an experimental data acquisition in order to validate the model, which
can not be always too much detailed for problems related to computational times,hardware and
increasing time to market in general. It is anyway true that a good numerical model allows to
avoid fatal dangerous behaviors of the part which can create a real loss of money after the piece
has been brought to production.

For what concerns the numerical results obtained in the thesis we are pretty sure of the work
done since we have successfully replicated the results obtained in [1] by our colleagues of the
Imperial college (maybe with some small difference due to model slight changes), both for the
case of the Stodola-Green (fig. 46) rotor and for the case of the Bladed Stodola Green rotor (fig.
47). About the last one, since our interest was all over the behaviour of the rotor, we took into
consideration some more frequencies (like the one related to the nodal diameters different from
one).

Figure 46: Stodola Green Campbell obtained in the thesis work and in [1]
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Figure 47: Bladed disk Campbell obtained in the thesis work and in [1]
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7 Appendix

7.1 Ch.3
The following three pieces of code have to be used at the same time to perform the Stodola-Green
free analysis. In order, they represent the main code for running the analysis and two functions.
The first function serves as matrix assembler, while the second is used to decouple the equations
and solve them separately.

7.1.1 Stodola-Green Matlab lumped model personally written

1 w=23*10^ -3; %disc thickness (m)
2 d=80*10^ -3; %disc diameter (m)
3 do=10*10^ -3; %(m) shaft outer diam.
4 di=7*10^ -3; %(m) shaft inner diam.
5 I=pi*do^4/64-pi*di ^4/64; %(m^4) shaft mom. of Area
6 L=0.25; %(m) shaft length
7 E=2.1*10^11; %(N/m^2) Elastic modulus of the steel
8 Poiss =0.33; %(-) Poisson ratio
9 G_el=E/2*((1+ Poiss)); %(N/m^2) Shear elastic modulus

10 rho =7.8*10^3; %(kg/m^3) Density of steel
11 V=w*pi*(d/2) ^2; %(m^3) Volume of the disc
12 A_beam=pi*(do^2-di^2) /4; %(m^2) section of the beam
13 Vbeam=L*A_beam; %(m^3) volume of the beam
14 m=V*rho; %disc mass(kg)
15 mbeam=Vbeam*rho;
16 Jt =(1/12)*m*(3*(d/2) ^2+w^2); %(kg*m^2) disc transv. mom. of inertia
17 Jp=0.5*m*(d/2)^2; %(kg*m^2) disc polar mom. of inertia
18 OM=linspace (0 ,6000 ,1000); % rotational speed vector (rad/s)
19 n_el =2; %number of elements to discretize the beam
20 n_n=n_el +1; %number of nodes
21

22 %%MATRIX ASSEMBLY AND CONSTRAINTS APPLICATION
23

24 [K,M,G]= matrix_ass(L,rho ,A_beam ,E,I,m,n_el ,Jt,Jp);
25

26 %constraints application (cantilever)
27 Kcons=K(3: length(K) ,3:length(K));
28 Mcons=M(3: length(M) ,3:length(M));
29 Gcons=G(3: length(G) ,3:length(G));
30

31 %SOLUTION
32 [om_sol ,eigval ]= diagSYS(OM ,Mcons ,Kcons ,Gcons);
33

34 %Campbell diagram plot
35 figure ()
36 for p=1:2* length(Mcons)
37 plot(OM,abs(imag(om_sol(:,p))));
38 hold on
39 end
40 grid on
41 title(’Stodola -Green ’);
42 xlabel(’Rotational speed (rad/s)’);
43 ylabel(’whirling frequency(rad/s)’);

Listing 1: Stodola-Green lumped model Matlab Code
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7.1.2 FUNCTION TO ASSEMBLE MATRICES

1

2

3 function [K,M,G]= matrix_ass(L,rho ,A,E,Ix,m_disc ,n_el ,Jt ,Jp)
4 n_n=n_el +1;
5

6 %beam stiffness matrix definition
7

8 [Kb]=(E*Ix/((L/n_el)^3))*[12 ,6*(L/n_el) ,-12,6*(L/n_el);...
9 6*(L/n_el) ,4*(L/n_el)^2,-6*(L/n_el) ,2*(L/n_el)^2;...

10 -12,-6*(L/n_el) ,12,-6*(L/n_el);...
11 6*(L/n_el) ,2*(L/n_el)^2,-6*(L/n_el) ,4*(L/n_el)^2];
12

13 %beam lumped mass matrix definition
14

15 [Mbd]=( rho*pi*A/4)*L/(n_el *2) *[1 ,((L/n_el)^2)/12,1,((L/n_el)^2) /12];
16 Mbd=diag(Mbd);
17

18 M=zeros (2* n_n);
19 K=zeros (2* n_n);
20

21 %Disc inertia properties definition
22 Mdisc=zeros (2*n_n ,2*n_n);
23 Mdisc (2*n_n -1,2*n_n -1)=m_disc;
24 Mdisc (2*n_n ,2* n_n)=Jt;
25

26 G=zeros (2*n_n ,2* n_n);
27 G(2*n_n ,2* n_n)=Jp;
28

29 for t=1:1: n_el
30 MM=zeros (2*n_n);
31 KK=zeros (2*n_n);
32 qq=2*(t-1)+1; % counter
33 qq1=qq+3; % counter
34

35 MM(qq:qq1 ,qq:qq1)=Mbd;
36 KK(qq:qq1 ,qq:qq1)=Kb;
37 M=M+MM;
38 K=K+KK;
39 end
40 M=M+Mdisc;

Listing 2: Stodola-Green lumped model assembly matrix function

7.1.3 FUNCTION TO DECOUPLE AND SOLVE THE SYSTEM

1

2 function [OMEGA ,eival ]= diagSYS(rot_speed ,Mtot ,Ktot ,G)
3

4 %where md,kd,gd are the diagonals of the diagonalized matrices M,K,G
5

6 [OMEGA]= zeros(length(rot_speed) ,2*length(diag(Ktot)));
7

8 [eivect ,eival ]=eig(Ktot ,Mtot);
9

10 %diagonalization of the matrices to decouple the equations
11
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12 Kd=eivect ’*Ktot*eivect;
13 Md=eivect ’*Mtot*eivect;
14 Gd=eivect ’*G*eivect;
15 kd=diag(Kd);
16 md=diag(Md);
17 gd=diag(Gd);
18

19 %eigenvalues extraction from the decoupled equations
20

21 for n=1: length(rot_speed)
22 for o=1: length(md)
23

24 coeff=[md(o) ,-1i*rot_speed(n)*gd(o),kd(o)];
25

26 OMEGA(n,2*o-1:2*o)=roots(coeff); %to find the whirling frequencies
27 %results are saved 2by2 in columns
28 end
29 end

Listing 3: Stodola-Green lumped model assembly matrix function

7.1.4 Stodola-Green Ansys APDL lumped model

Code to simulate a Stodola-Green rotor with lumped elements in Ansys APDL. The code uses
just one element in order to simulate the shaft: obviously creating more nodes it is possible
to change the discretization. Just copying the solution in the prompt bar in Ansys, the routine
should work.

1

2 FINISH
3 /Clear ,all
4 /prep7
5 /Title ,Stodola -Green:Critical Speed/Campbell
6

7 !CONSTANTS DEFINITION
8 !Rotor properties
9 L=0.25 !shaft length

10 Di =0.007 !shaft inner diameter (m)
11 Ri=Di/2 !shaft inner radius (m)
12 Do=0.01 !shaft outer diameter (m)
13 Ro=Do/2 !shaft outer radius (m)
14 D=0.08 !disc diameter (m)
15 R=D/2 !disc radius (m)
16 w=0.023 !disc axial width (m)
17 $E=2.1 E11$ !young modulus of steel (N/m^2)
18 PR=0.3 !Poisson ratio
19 Density =7800 !(kg/m^3) density of steel
20 m=3.14*R**2*w*Density !mass of the disc
21 Id=(m*((3*R**2)+(w**2)))/12 !mass moment of inertia around the
22 !axis different from the one of rotation (kg*m^2)
23 Ip=(m*R**2)/2 ! (kg*m^2) mass moment around the rotation axis
24

25 !DEFINING NUMBER OF BEAMS
26

27 !Speed characteristics
28

29 Start_rpm =0 !definition of the range of speed and of the increment
30 End_rpm =6000
31 Increment =100
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32

33 !modal anlaysis prameters
34 N_modes =2 !number of modes to extract
35

36 !SHAFT ELEMENT
37 Et ,1,beam188 !beam element selection
38 KEYOPT ,1,3,2 !imposing to the element a quadratic shape function
39

40 !material properties
41 Mp ,ex ,1,E
42 Mp ,prxy ,1,PR
43 Mp ,Dens ,1,Density
44

45 !Section type of the shaft (circular)
46 Sectype ,1,beam ,ctube
47 Secdata ,Ri,Ro ,30 !data for the creation of the tubular section
48

49 !NODES CREATION
50 N,1,0
51 N,2,L
52

53 !Shaft element creation (in this case just
54 !one element to discretize the shaft)
55 Type ,1
56 Mat ,1
57 Secnum ,1
58 E,1,2 !Assign the element to the nodes
59

60 !DISC -Concentrated mass
61 ET ,2,Mass21 !element lumped mass selection
62 R,2,m,m,m,Ip ,Id ,Id
63 Type ,2
64 Real ,2
65 E,2 !location of lumped the mass on the shaft tip
66

67 !Boundary conditions (cantilever constraints)
68 /SOLU
69 D,1,uz
70 D,1,rotz
71 D,1,ux
72 D,1,rotz
73 D,1,uy
74 D,1,roty
75

76 ! solution TIME
77 /SOLU
78 Esel ,s,ename ,,188
79 Esel ,a,ename ,,21
80 Cm ,rot_part ,elem !creation of a group of elements in order
81 !to assign the rotational speed
82 Esel ,all
83

84 !specify the rotational velocity of the rotating elements
85 !CHOICE OF QRDAMP eigensolver
86 Antype ,modal
87 Modopt ,qrdamp ,N_modes ,,,on
88 Mxpand ,N_modes
89 Coriolis ,on,,,off !coriolis effect ON
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90 !in the inertial reference frame (OFF)
91

92 !SOLUTION routine
93 *DO ,J,Start_rpm ,End_rpm ,Increment
94 spinRPM=J
95 Spin_rds=spinRPM *6.28/60
96 Cmomega ,rot_part , Spin_rds
97 !application of the rotational speed to
98 !the previous selected group (rot_part)
99 SOLVE

100 *ENDDO
101

102 /OUTPUT ,Stodola_Green_RES ,txt
103 FINISH
104 /post1
105 Set ,list
106 Plcamp ,0,1,rpm ,0,rot_part ,0
107 Prcamp ,0,1,rpm ,0,rot_part ,0
108 FINISH

Listing 4: Stodola-Green lumped model assembly matrix function
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Figure 48: Stodola Green
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7.2 Ch.4

Figure 49: Bladed disc shaft assembly dimensions
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Figure 50: Bladed disc modified shaft assembly dimensions

7.2.1 Solution routine for the pre-stressed rotordynamic analysis of the bladed disc-shaft
assembly

This routine solution holds for all the rotordynamic analysis to which apply the centrifugal
stiffening effect, the gyroscopic effect, the spin softening effect IN THE LINEAR FIELD. If
you just copy the solution in the Ansys APDL command bar, it should work. Remember always
to check the differences between each version of the software (this routine works for the 2016
version). ’!’ symbol is needed to report something as comment in Ansys APDL. If you want to
find examples about rotordynamics in Ansys Mechanical APDL you should check the software
’HELP’ in the Rotordynamic section.

1

2 /prep7
3 !define materials
4 !select the element
5 !mesh the geometry
6 !set the constraints
7

8 ! set the analysis initial conditions:
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9 spin =1400 ! in rad/s
10 nbstep = 28 !number of steps into which divide the analysis
11 dspin = spin/(nbstep -1)! speed increment
12 *dim ,spins ,,nbstep !creation of the vector of the speeds
13 *vfill ,spins ,ramp ,0.,dspin !definition of the values of
14 !the spin vector through a ramp function
15 spins (1) = 0.1 ! non zero to ease the
16 !Campbell diagram sorting
17

18 *do ,iloop ,1,nbstep !do loop which solves firstly the static
19 !analysis which allows to build the geometrical
20 !stiffening matrix and the spin softening one
21 /solu !solution of the static analysis
22 antype ,static
23 rescontrol ,linear ! Enable file writing for
24 !a subsequent linear perturbation
25

26 coriolis ,on ! Coriolis effect is On
27 !To note that the default reference frame
28 !to solve the analysis is the rotating one
29

30 omega ,,,spins(iloop) !Imposition of the rotational speed
31 !for the centrifugal force calculation \\
32

33 campbell ,rstp
34 solve !solution of the static analysis
35 finish
36

37 /solu !Perform a restart in order to
38 !insert in the modal analysis
39 the matrices coming from the previous step
40 !( Geometric stiffness , spin softening)
41

42 antype ,static , restart ,,,perturb
43 ! Perform a static restart from the last
44 !load step and substep of the previous static solve
45

46 perturb , modal ,,, INERKEEP
47

48 solve , elform ! Reform element matrices
49

50 modopt ,damp ,40,,,on ! selection of the
51 !solver an the number of modes to extract
52

53 mxpand ,40 !Number of modes to expand
54

55 coriolis ,on ! Coriolis effect On (to constitute
56 !the gyroscopic matrix) in the rotating reference frame
57

58 omega ,,,spins(iloop) !Assignation of the
59 !rotational speed to the modal analysis
60 !in order to solve a rotordynamic analysis
61

62 solve
63 finish
64 *enddo
65 /OUTPUT ,freq_rot_blisc ,txt
66 finish
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67 ! *** Campbell diagram section in order to
68 !create a picture of the campbell and
69 !an automatic collection of its frequencies
70 !on the file freqrotblisc.txt
71 /post1
72 file ,,rstp
73 /show ,JPEG
74 plcamp ,,,rpm !plot the campbell with rotational speed in rpm
75 prcamp ,,,rpm ! save the frequencies
76 !of the campbell the text file
77 finish
78 /show ,CLOSE

Listing 5: Stodola-Green lumped model assembly matrix function
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