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Abstract

ESA estimated the current number of space debris to be around 129 million [24];
collisions with orbital debris can bring failure to the mission or completely destroy
the spacecraft, so space debris need to be tracked and catalogued to plan and
perform collision avoidance. SPOOK is a SST software currently in development at
Airbus Defence and Space GmbH in Friedrichshafen, Germany, and the objectives
of the thesis were to enhance the software by improving preexisting functions and
implementing new ones and to test the implemented methods and settings for Orbit
Determination aiming to determine good parameter settings. The following goals
have been accomplished:

• two functions have been improved and implemented respectively, that return
output files useful for optimization of observation strategies;

• a function has been implemented to compute the orbit determination errors
with respect to accurate ephemerides;

• SPOOK has been made faster in performing multiple runs of orbit determina-
tion by implementing a function to create multiple initial state vectors and
perform orbit determination with each one of them and by writing a Python
function that launches orbit determination semi-automatically;

• the tests have determined that simple propagation of the state vector should
be performed instead of orbit determination when the accuracy of the initial
state is very high, that the Weighted Least Square method is insensitive to the
accuracy of the initial state, and that Extended Kalman Filter and Unscented
Kalman Filter with simulated measurements return very similar outputs if
the physical model used for OD is very accurate.
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Chapter 1

Introduction

1.1 The Space Debris problem

Figure 1.1: Model of the space debris distribution around Earth [23].

Nowadays orbital debris pose a huge threat for the safety and success of space
missions. Defined as "all the inactive, man-made objects, including fragments, that
are orbiting Earth or reentering the atmosphere" [13], space debris mainly occupy
low Earth orbits and geostationary orbits, as shown in Figure 1.1. ESA estimated
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Introduction

that by February 2020 there were 34000 debris larger than 10 cm, 900000 debris
with size between 1 cm and 10 cm and 128 million debris ranging from 1 mm to
1 cm size [24].

Space debris are dangerous for spacecrafts because of their high kinetic energy:
according to ESA [13], collisions with millimetre-size objects could cause local
damage on spacecrafts or disable their subsystems; collisions with debris larger
than 1 cm can disable or cause the break-up of satellites and rockets; collisions with
debris larger than 10 cm can lead to the complete destruction of the spacecrafts and
formation of a new debris cloud. If these catastrophic collisions keep happening,
eventually they will cause the so-called Kessler syndrome, a chain reaction where
collisions generate new debris leading to more collisions that generate even more
debris and so on. Therefore countermeasures must be taken to avoid collisions with
orbital debris and keep their number in check.

One of the countermeasures to the space debris problem is constituted by the
Space Surveillance and Tracking (SST) systems, whose objective is monitoring
space, detecting space debris, tracking and cataloguing them in order to plan
strategies and manoeuvres to avoid collisions between spacecrafts and orbital debris.
As shown by Figure 1.2, today the number of catalogued objects amounts to more
than 45000, which is still a small fraction of the space debris’ number estimated by
ESA.

The Special Perturbations Orbit determination and Orbit analysis toolKit (SPOOK)
is a SST tool for the cataloguing and orbital analysis of Earth orbiting objects;
SPOOK is also able to create observation plans for user-defined sensors: in par-
ticular it produces observation plans for the Airbus Robotic Telescope (ART),
whose measurements are used as testbed for most SPOOK modes. SPOOK is
currently in development at Airbus Defence and Space GmbH in Friedrichshafen,
Germany, and it is the tool used in this thesis, especially for what concerns the
Orbit Determination (OD) section of the software.

1.2 Main Goals
These are the objectives of the thesis:

• Enhancement of SPOOK Sensor Simulation and Orbit Determination modes;

• Study of the OD methods that have been implemented in SPOOK;

• Tests on the available OD settings in the tool and comparison between the
implemented methods;

• Definition of good parameter settings for orbit determination.

2



1.3 – Structure of the Thesis

Figure 1.2: Growth of the number of catalogued debris from 1957 to 2020 [22].

1.3 Structure of the Thesis
Here follows an overview of the structure of the thesis:

• the current Chapter 1 briefly describes the orbital debris problem, introduces
SPOOK and presents the goals and structure of the thesis;

• Chapter 2 describes SPOOK, its modes and its structure;

• Chapter 3 provides the necessary theoretical background behind the thesis,
focusing especially on orbit determination;

• Chapter 4 shows the improvements that have been made on SPOOK in the
framework of the thesis;

• Chapter 5 shows and discusses the tests on orbit determination that have been
performed;

• Chapter 6 summarizes the conclusions that can be drawn from the previous
two chapters;

• Chapter 7 contains some suggestions for who will work on SPOOK in the
future.

3
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Chapter 2

SPOOK

The Special Perturbations Orbit determination and Orbit analysis toolKit (SPOOK)
is a SST software developed by Airbus Defence and Space in Friedrichshafen. This
chapter provides an overview of the SPOOK tool focusing on its structure and
modes; also a brief presentation of the ART telescope used to take or simulate
measurements is given. A detailed description of SPOOK is available in [21].

2.1 SPOOK structure
The tool consists of a FORTRAN processing core and a Python wrapper: the
Fortran part reads the input files, performs the calculations required by the used
SPOOK mode and returns the output files; the Python wrapper is used as inter-
face between the user and the core, receiving basic direct inputs from the user,
writing the input files and providing them to SPOOK; also the Python wrapper
performs the post processing and visualization of the results and manages the
objects’ database, which would be complex tasks for FORTRAN. SPOOK has its
own visualization tool; Figure 2.1 is an example of the pictures it can produce.

SPOOK can be split up into three layers [18]:

• Simulation layer : it generates the objects population, performs sensor simula-
tion and propagates the object and the observer (if needed);

• Analysis layer : it processes the measurements, performs orbit determination,
initial orbit determination, covariance propagation and further analysis on the
results;

• Interface layer : mostly implemented in the Python wrapper, it writes the
input files and manages the outputs and the visualization tool.

5



SPOOK

Figure 2.1: Picture produced by SPOOK visualization tool [21].

There are three input files that are always required by SPOOK independently
of its mode: the objects configuration file to define the characteristics of one or
more space objects (see Section 3.3); the observers configuration file to define
the characteristics of one or more observers and give additional information like
weather and illumination conditions, the pointing mode and so on; the parameters
configuration file to set the options for executing SPOOK in the desired way, e.g.
the SPOOK mode, the time step for propagation, the chosen method for orbit
determination and so on. These three files are written in Key-Value Notation
(KVN), where each option corresponds to a keyword and a value.

Additional input files may be needed basing on the SPOOK mode and the
content of the three main files: e.g. measurements file, space weather files and
ephemerides.

2.2 SPOOK modes

Figure 2.2 shows the main SPOOK modes, that are:

6



2.3 – The ART telescope

• Sensor Simulation: SPOOK simulates the observer(s) defined in the observers
configuration file, estimates the measurements of the object(s) defined in the
objects file (by propagating the state vector(s) in the desired time frame and
computing the corresponding measurements with Equation 3.4) and applies
optical and relativistic corrections to the measurements;

• Sensor Calibration: the time bias of the sensor is evaluated by comparing the
real or simulated measurements of an object with the measurements estimated
from an ephemeris of the same object [20] (usually interpolation is needed to
match the measurements’ and ephemeris’ times);

• State and Covariance Propagation: the state vector and covariance matrix
of an object are propagated from an initial time (for which the state and
covariance have to be provided) to an user-defined final time; the propagation is
performed by an indipendent tool, the Special Perturbation Object Propagator
(SPOP), that is able to take into account several types of perturbations;

• OEM to ECI conversion: an ephemeris inside an OEM file is converted into
the ECI reference frame;

• Orbit Determination: initial orbit determination (if needed) and orbit deter-
mination are performed as explained in Sections 3.5 and 3.6;

• Correlation: Tracklets, i.e. series of measurements, are correlated to objects
or to other tracklets.

2.3 The ART telescope
The Airbus Robotic Telescope (ART), located in Extremadura, Spain, is an optical
observer that is able to take measurements from every orbital region. It is used
to test observation strategies and provide SPOOK with real measurements (there
is an interface between ART and SPOOK); thanks to ART, SPOOK is able to
perform and manage the complete pipeline from the acquirement of measurements
to orbit determination.

In order to take measurements, ART requires an observation plan, i.e. settings
and sets of pointings (couples right ascension - declination); if the observation
plan is provided, the observation is performed automatically. All the technical
information about ART are available in [8], from which the previous description
comes.

7



SPOOK

Figure 2.2: Flowchart of the main SPOOK modes [20].
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2.3 – The ART telescope

Figure 2.3: Airbus Robotic Telescope [8].
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Chapter 3

Theoretical background

This chapter provides the theoretical background behind the work carried out
in this thesis. The concept of state vector, the coordinate systems, the files for
object definition and measurements input and the different types of measurements
are presented; the implemented methods for initial orbit determination and orbit
determination are described as well as the OD success criteria; eventually the
classification of orbital regions is shown.

3.1 Object state vector
Orbit determination is used to estimate the state vector of a space object, which is
a vector whose components determine the position and velocity of the object in
space at a specific time t. Several representations are possible for the state vector;
in this thesis the state vector x consists of three components of position, forming
the position vector r, and three components of velocity, forming the velocity vector
v:

x =
C
r
v

D
(3.1)

In SPOOK two more parameters can be included in the state vector: the atmospheric
drag coefficient CD and the solar radiation pressure coefficient CSP .

3.2 Reference frames
The state vector of an object can be represented in various reference frames. Here
the three reference frames implemented in SPOOK are presented.

The Earth Centred Inertial (ECI) coordinate system, also called Geocentric Celes-
tial Reference Frame (GCRF), is an inertial frame centred in the Earth’s centre
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of mass. As shown in Figure 3.1, the I-axis points towards the Vernal Equinox,
the K-axis points towards the Earth’s north pole and the J-axis completes the
right-handed system. However, the orientation of the North Pole changes because
of Earth’s precession and nutation and so should do the orientation of the K-axis;
to avoid this the axes are defined w.r.t. a particular epoch: in SPOOK the reference
date is the 1st January of 2000 at 12:00 [18].

Figure 3.1: ECI reference frame [1].

The Earth Centered Earth Fixed (ECEF) coordinate system, also known as Inter-
national Terrestrial Reference Frame (ITRF), is an Earth-centred reference frame
that rotates with the Earth. The X-axis points towards a reference meridian, the
Z-axis directs towards the reference pole and the Y-axis completes the right handed
system [14]. The ECEF coordinate system is shown in Figure 3.2.

The Radial-Tangential-Normal (RTN) reference frame is an object-centred co-
ordinate system whose axes are the R axis (on the orbital plane, parallel with the
object’s radius vector), the T axis (on the orbital plane, tangential to the orbit) and
the N axis (perpendicular to the orbital plane); Figure 3.3 shows a representation
of the RTN system.

The RTN reference frame has been chosen for the tests performed in Chapters 4
and 5.

12



3.3 – Input files for object definition

Figure 3.2: ECEF reference frame [3].

Figure 3.3: RTN reference frame [7].

3.3 Input files for object definition
When SPOOK works in Orbit Determination mode, it needs one or more space
objects (also referred to as target objects) to be defined so that its or their orbits
can be estimated; the definition of one or more objects is also required by the other
SPOOK modes, that are not the scope of this thesis.

"Defining an object" means providing SPOOK with data about that specific
object, e.g. the name, the size, the mass and so on; different SPOOK modes
generally need different types of data about the object(s).

13
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If SPOOK is used in Orbit Determination mode and initial orbit determination
is not performed (see Section 3.5), the initial state vector x0 of the object and
the initial covariance matrix P0, both referred to an initial time t0 which has to
be specified too, are required by the software. SPOOK can be provided with the
initial time, state vector and covariance matrix in several ways:

• the user can write them manually in the objects configuration file (see Section
2.1); the initial state vector and covariance matrix can be written in either
ECI or ECEF or RTN reference frame;

• real or simulated ephemerides of the object can be provided by passing an
Orbit Ephemeris Message (OEM) file to SPOOK: OEM files contain the state
vector and the covariance matrix of the object at given epoch times;

• a Two-Line Element (TLE) file can be provided to SPOOK: this file contains
object related information from which the state vector can be derived.

OEM files are written according to the standards set by the Consultative Committee
for Space Data Systems (CCSDS); the CCSDS recommended standards for the
structure, the notation and the contents of OEM files are available in [4]. Subsection
3.3.1 describes the structure of TLE files and the data they contain. Examples of
OEM and TLE files can be found in Appendix B.

3.3.1 TLE files
The following description and discussion about TLE files come from [20], where
more information on this topic are available.

TLE files contain one or more sets of data arranged in two lines as shown
in Figure 3.4; these files can contain data about more than one object but each
two-line set refers to a single object and epoch (indeed the object’s number, the
international designator and the epoch are among the parameters included in a
two line set).

The values contained in a two line set include five of the six Earth Orientation
Parameters (EOP) of the object: inclination i, RAAN Ω, eccentricity e, argument
of perigee ω and mean anomaly M ; these five values are the "mean" orbital elements,
i.e. they have been computed by removing some periodic oscillations [15]. The
sixth "mean" orbital element is the semi-major axis a, which can be computed from
the mean angular motion n (one of the data in the set) using the equation

n =
ò

µ

a3 (3.2)

where µ is Earth’s gravitational parameter (3.986× 1014m3s−2 [6]).

14



3.4 – Observation Theory

So SPOOK can convert the six orbital elements of a two-line set into a Cartesian
state vector in the desired reference frame (RTN for this thesis). It is important to
notice that while all the possible methods to provide SPOOK with a state vector
introduce uncertainties due to the ways the single components have been computed
and how well the measurements have been taken, the TLE format also introduces
an additional uncertainty due to the fact that the epoch and the orbital elements
are written with a finite number of digits [20].

TLE files do not provide any accuracy information, so it would be impossible
to compute the covariance matrix of the object. However, Fiusco [15] implemented
a method to extract the covariance matrix from a TLE file in a statistical manner;
to use this algorithm the TLE file has to contain several instances of the same
object, spread in a time interval between 15 days and one month: the algorithm
computes the state vector and covariance matrix at the epoch of the last instance.

Figure 3.4: Structure of a TLE set [20]. S is the sign of the values, E the exponent.

3.4 Observation Theory
Measurements of the space object are needed to perform orbit determination:
SPOOK can either provide the OD algorithms with measurements from external
sources or simulate an observer and produce simulated measurements. This sub-
section presents the different types of real or simulated observers and the kinds of
measurements provided by them; it also briefly describes the measurements’ files
that can be taken as input by SPOOK.

It is worth mentioning that whether they are real or simulated, inside SPOOK
the measurements are processed in the form of tracklets, i.e. series of consecutive
measurements referred to a single object for only a small portion of its orbit.
More information on how tracklets are built and associated to an object (because
generally the observer takes measurements of more than one object during its
observation time) can be found in [19].

15
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3.4.1 Observers types and measurements

If observations are made from Earth, we talk about "ground-based observers";
instead the observer is defined as "space-based" if it is a satellite orbiting around
Earth. We can also distinguish between two types of observers basing on their
functioning [11]:

• optical observers (i.e. telescopes): their sensors receive the light reflected by
the observed object; knowing the pointing information of the observer, the
direction of the object is derived in the form of two angular measurements:
topocentric right ascension and declination (see Figure 3.5).

• radar observers: they emit radio waves that are reflected by the object and
collected by their sensors; the direction of the object is measured as a couple
of angles, i.e. azimuth and elevation (see Figure 3.6). Radar observers can
provide two additional measurements: the slant range ρ, by measuring the
time needed for the signal to go from the radar to the object and back to the
radar, and the slant range rate ρ̇, by using the Doppler effect [11].

Both radars and optical observers can be ground-based or space-based.

Figure 3.5: Optical measurements: right ascension αt and declination δt [12].

16



3.4 – Observation Theory

Figure 3.6: Radar measurements: azimuth βt and elevation el [12].

3.4.2 Measurements’ files

Real or simulated measurements have to be written in files that SPOOK receives as
input to perform OD or other functions depending on which mode is used. There
are two main formats of measurements’ files that SPOOK can read and elaborate
[16]:

• Orbit Tracking Definition Format (OTDF): for each measurement time it
shows the measurements mentioned in Subsection 3.4.1 and also the location
of the observer and information like pressure, humidity and temperature at
observer’s location (however these additional information can be shown only
in the case of ground-based observers). In this format the measurements are
not divided into tracklets;

• Tracking Data Messages (TDM): the main difference from OTDF is that TDM
format divides the measurements into tracklets; TDM files’ structure, content
and notation follow the CCSDS recommended standards, that are available in
[17].

In this thesis only TDM files have been used. Appendix B provides examples of
OTDF and TDM files.
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3.5 Initial Orbit Determination
The OD methods of Section 3.6 require an initial state vector x0 (referred to an
initial time t0) of the target object; filters also require an initial covariance matrix
P0.

In SPOOK two options are available to provide the initial state vector and
covariance matrix:

• Initial Covariance Propagation (ICP), where the initial state vector and
covariance matrix (if needed) are manually written by the user or extracted
from the input files that are presented in Section 3.3; then the initial state
and covariance matrix are propagated to the time of the first measurement
and OD is performed.

• Initial Orbit Determination (IOD), where a limited set of measurements is
used to estimate the initial state vector.

During the work for this thesis only ICP has been used; however the following
subsections briefly describe the implemented methods for IOD. If filters are used
to perform OD after initial orbit determination, SPOOK uses the Weighted Least
Squares method (Subsection 3.6.1) to improve the estimation of the initial state
vector and to estimate the initial covariance matrix.

3.5.1 Gauss’ Technique
Gauss’ method requires three sets of topocentric angular measurements (couples
right ascension - declination or azimuth - elevation) at three different and sequential
times (t1 < t2 < t3) and it is able to estimate r2, i.e. the position vector at the
middle time.

The implemented algorithm uses the three measurements to define and solve an
8th order equation for r2, and the estimated r2 allows the computation of r1 and r3;
then either Gibbs’ Method or Herrick-Gibb’s Method estimates the velocity vector
at middle time v2; the whole process is repeated until the slant ranges ρ1, ρ2 and
ρ3 stop changing.

Gauss’ Technique works well if the angular separation between the three mea-
surements is lower than 60°[18] and even better if the separation is lower than
10°[1]. The full derivation of the method can be found in [1] and [9].

3.5.2 Gibbs’ Method
Gibbs’ algorithm requires three position vectors and estimates the velocity at the
middle time incident: in SPOOK it receives the r1, r2 and r3 previously estimated
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with Gauss’ method and returns the velocity v2. Gibbs’ technique uses a geometrical
approach and it fails when the angles between the three position vectors are smaller
than 1◦ because of numerical instability [1]. The full derivation of the algorithm
can be found in [1].

3.5.3 Herrick-Gibbs’ Method
Herrick-Gibbs’ method uses Taylor series expansion to estimate v2 from r1, r2 and
r3 (derived with Gauss’ technique) and their respective times t1, t2 and t3. This
algorithm performs best when the angular separation between the three position
vectors is smaller than 3◦ [18]. The full derivation of Herrick-Gibbs’ technique can
be found in [1].

3.5.4 Lambert Solver
Lambert’s problem is a technique to derive the orbit of an object by only knowing
two position vectors and the time of flight between them. In SPOOK this problem
is applied to IOD and two solvers have been implemented:

• Lambert-Gauss’ solver, whose derivation can be found in [1], receives two
position vectors r1 and r2 and the flight time as input and returns estimations
of v1 and v2.

• Izzo’s solver, implemented by Fiusco [15], computes v2 from r1 and r2 and
the flight time between them; then it computes v2 again from r2 and r3 and
their flight time; the final estimate of v2 is the average of the previous two.

3.6 Orbit Determination methods
The aim of orbit determination is to estimate the state vector and the covariance
matrix of an object by using a set of measurements.

The covariance matrix has to be computed too during OD because it is useful
to evaluate the errors in the estimation of the state vector. In SPOOK the results
of orbit determination are assumed to be Gaussian distributed with the exact state
vector as mean (this assumption is applied to every component of the state vector),
i.e. the OD errors are Gaussian distributed with null mean and standard deviation
equal to the sensor accuracy; the diagonal elements of the covariance matrix are
the variances σ2 of the corresponding state vector’s components, so by making the
square root we get the standard deviation σ of each component and we can use 3σ
as approximation of the real errors (since in Gaussian distribution 99.7% of the
errors are smaller than 3σ). More information about the covariance matrix and its
meaning are available in Appendix A.
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Since 3σ is used as approximation of the real error, the ideal scenario would be
that for each component of the state vector the corresponding 3σ is bigger than the
real error (at least 99.7% of the time) in order to be conservative, but also that 3σ
is very close to the real error: if 3σ were too much bigger, it would mean we expect
to get huge errors (since in real applications the real errors are not available) from
OD, making it useless.

The following subsections present five methods for orbit determination that are
implemented in SPOOK. Also other orbit determination algorithms have been
implemented but they are not the focus of this thesis.

3.6.1 Weighted Least Squares
The Weighted Least Square (WLS) iterative method aims at correcting the initial
state vector x0 provided by ICP or IOD and improving its accuracy. Depending on
the user’s needs, at the end of all iterations the final x0 and its covariance matrix
(which is computed by the WLS algorithm) can be propagated either forwards or
backwards or in both directions with a chosen step size.

The following WLS algorithm comes from [11] and a more in-depth explanation
is available in [1].

Assuming there are n measurements of the object, the initial state vector x0
is propagated to all measurements’ times: so we get predicted state vectors.

xj = f (x0, tj) ∀j = 1, ..., n (3.3)

Predicted measurements zp,j of the same type of the real ones (zr,j) are derived from
the predicted state vectors; then the residuals bj are computed as the difference
between real and predicted measurements:

zp,j = g (xj) (3.4)

bj = zr,j − zp,j (3.5)

The objective of the WLS method is to correct x0 in order to minimize the sum of
the squared residuals, where each residual is weighted with the inverse accuracy of
the sensor: if the observer produces m measurements in an instant of time (e.g.
m = 2 for optical observers because in an instant they produce a right ascension -
declination couple), the weight wi of the i-th type measurement is

wi = 1
σi

∀i = 1, ..., m (3.6)
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where σi is the sensor accuracy for that kind of measurement. So the WLS algorithm
produces the weighting matrix W:

W =


w1 0 0
0 . . . 0
0 0 wm

 (3.7)

The WLS method uses W to compute the initial covariance matrix with the
following equation:

P0 =
A

nØ
AT

j WAj

B−1

(3.8)

where Aj is the partial derivative matrix of the measurements at time tj w.r.t.
x0. Aj can be written as the product of two matrixes: the observation matrix Hj,
which shows how the changes in the state vector at time tj affect the measurements
at the same time, and the error state transition matrix Φj, that shows the influence
of the initial state on the state at time tj.

Aj = ∂zj
∂x0

= ∂zj
∂xj

∂xj
∂x0

= HjΦj (3.9)

SPOOK computes the error state transition matrix Φj by solving the following
system of differential equations:

Φ̇j = FjΦ (3.10)

where Fj is the matrix of the partial derivatives of the state rates (velocity v and
acceleration a) w.r.t. the state vector.

F = dẋ
dx

=
C
dv
dr

dv
dv

da
dr

da
dv

D
(3.11)

After solving the system of Equation 3.10, SPOOK computes the correction of the
initial state vector and corrects the initial state:

δx0 =
A

nØ
(AT

j WAj)
B−1 nØ

(AT
j Wbj) (3.12)

x0new = x0 + δx0 (3.13)
The improved initial state vector is given as input to the algorithm and the whole
process is repeated; this iterative process lasts until the max number of iterations
is achieved or the truncation error τ falls below a preset tolerance.

τ =
óqn(bTj Wbj)

nm
(3.14)
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3.6.2 Sequential Batch Least Squares
While WLS uses all the available measurements together to improve the initial state
vector, the Sequential Batch Least Squares (SBLS) method divides the measurements
into batches and performs OD with one batch at a time: essentially the WLS
algorithm is applied in order to correct x0 but using only one batch of measurements;
at the end of the iterations (the convergence criteria are the same as in Subsection
3.6.1), the improved x0 becomes the input for a new round of iterations but with
the next set of measurements.

The advantage of the SBLS method over WLS is that the former allows the
processing of new measurements even if they are received while the previous ones
are still being processed [14] and this is very useful especially if a big number of
observations are available: the WLS method processes all the observations together
and if new ones are received, the WLS algorithm has to restart and process the old
measurements again along with the new ones, leading to a waste of time; instead
the SBLS algorithm simply finishes processing the old measurements and then
starts processing the new ones.

In the SPOOK version of SBLS the measurements’ batches correspond to the
tracklets (see Section 3.4). When the iterations with one tracklet are over, the
algorithm starts the iterations with the next tracklet; however, the information of
the previous tracklets should not be lost, so the new round of iterations does not
receive only the corrected x0 as input, but also the matrices

1qn
1
AT

j WAj
22

old

and
1qn

1
AT

j Wbj
22

old
; so the equations for the computation of P0 and δx0, i.e.

Equations 3.8 and 3.12 respectively, have to be modified [14]:

P0 =
A
nkØ

AT
j WAj +

Ank−1Ø
AT

j WAj

B
old

B−1

(3.15)

δx0 =
A
nkØ

AT
j WAj +

Ank−1Ø
AT

j WAj

B
old

B−1 A nkØ
AT

j Wbj +
Ank−1Ø

AT
j Wbj

B
old

B
(3.16)

where k is the index of the tracklet that is being processed.

A problem with the SBLS is that when the algorithm starts processing a new
batch, it may diverge after a few iterations if the noise in the new measurements
is bigger than the error that has been minimized during the iterations with the
previous batch. Also the SBLS algorithm implemented in SPOOK turned out to
be too inaccurate even before the beginning of the works for this thesis, so no
meaningful tests and work have been carried out on SBLS.
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3.6.3 Extended Kalman Filter
One problem with the Least Square methods is that they work by processing
measurements spread over a certain time interval and if this frame is too long and
the forces acting on the object are not perfectly modeled, the orbit determination
deteriorates [1]. Also the Least Square methods just estimate the state vector and
covariance matrix associated to a specific epoch (t0 in our case), so the estimated
state and covariance need to be propagated in order to estimate the whole orbit
of the object in the desired time period. In SPOOK these problems are avoided
by using the Extended Kalman Filter (EKF), a technique that is able to track the
object in real time, i.e. it estimates the state vector and covariance matrix at every
measurement time; this also leads to the same advantage SBLS has over WLS: the
EKF does not need to reprocess the old measurements when new measurements
are provided [18].

For each observation time the EKF algorithm estimates the state vector and
covariance matrix by following two steps:

• prediction step: the estimates of the state vector and covariance at the previous
measurement time are propagated to the time of the current measurement
(the predicted state vector and covariance matrix at time tj are indicated as
xj and Pj respectively);

• update step: the predicted state vector and covariance matrix are corrected in
order to get better estimates (the estimated state and covariance are shown
as âxj and âPj respectively).

As shown in Figure 3.7, the ideal outcome of the EKF would be to get closer to
the real orbit at every measurement time.

Figure 3.7: Extended Kalman Filter converging over time [1].

A short description of the main steps of the EKF algorithm is provided; the in-depth
derivation can be found in [1]; the notation in use is the same as Subsection 3.6.1.
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Assuming the state vector and covariance matrix at time tj have been estimated,
these are the steps to estimate state and covariance at time tj+1:

Prediction step

The estimated state âxj is propagated at time tj+1 in order to get the predicted
state xj+1. To do the same with covariance matrix the state transition matrix Φ
has to be computed by integrating Equation 3.10, which requires to derive the
matrix

Fj = ∂ â̇xj
∂âxj (3.17)

So the predicted covariance matrix is

Pj+1 = Φ âPjΦT + Q (3.18)

where Q is called "second moment of the process noise"; to compute Q we need
the process noise ν, which is the uncertainty in the propagation process due to
uncertainties in the dynamics model [18]:

Q = E(ννT ) (3.19)

ν =
Ú t

t0
Φ (t, t0) u dt (3.20)

where u is the statistically measured uncertainty in the force model. So Q represents
the propagation errors due to modelling errors in dynamics.

The prediction step and therefore the whole EKF algorithm is computationally
expensive because the integrator has to be run at every observation time.

Update step

The observation matrix Hj+1 is computed:

Hj+1 = ∂zj+1

∂xj
(3.21)

Then the Kalman Gain matrix Kj+1 is calculated:

Kj+1 = Pj+1HT
j+1

1
Hj+1Pj+1HT

j+1 + R
2−1

(3.22)

where R is the measurement noise matrix, that contains the uncertainties in the
measurements:

R =


σ2

1 0 0
0 . . . 0
0 0 σ2

m

 (3.23)
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Eventually the Kalman Gain is used to correct the predicted state vector:

δâxj+1 = Kj+1bj+1 (3.24)

âxj+1 = xj+1 + δâxj+1 (3.25)
where bj+1 is the residual at time tj+1:

bj+1 = zj+1 −Hj+1xj+1 (3.26)

The Kalman Gain is also used to correct the predicted covariance matrix:
âPj+1 = Pj+1 −Kj+1Hj+1Pj+1 (3.27)

As it can be seen in Equations 3.24 and 3.27, if the Kalman Gain is small, the
corrections of the predicted state and covariance are also small, reducing the con-
tribution of the j + 1-th measurement; the following explanation on the role of the
Kalman Gain comes from [19].

Another way to compute the Kalman Gain is:

K = Ôest
Ôest + Ômeas

(3.28)

where Ôest is the error estimate and Ômeas is the uncertainty in the measurements.
The value of K ranges between 0 and 1: if the value is close to 1, it means the error
in the estimate is far bigger than the measurement uncertainty, so we trust more
in the new measurement and apply a big correction to the estimate; if the Kalman
Gain is close to 0, it means the uncertainty in the measurement is big compared to
the error of the estimate, so we trust the previous estimate more ignoring the new
measurement and applying only a small correction (or a null one if the value of K is
equal to 0); this second behaviour of the filter is called saturation or smugness and
it becomes a problem when it happens too soon ignoring too many measurements.

One drawback of the EKF is that it does not need only x0 as input, but also
the matrixes P0, R and Q, where Q can be difficult to compute (see [19] for the
methods implemented in SPOOK); also if the measurements are very noisy, R is
too big and leads the filter to smugness.

3.6.4 Unscented Kalman Filter
The Unscented Kalman Filter (UKF) is a method that works especially well in
models where the process noise is not enough to model the uncertainties in the
system dynamics [18].
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In order to understand why the UKF can be better than the EKF, the nonlinearity
of the Orbit Determination problem has to be mentioned: according to [2], the
propagation of the state vector x is influenced by the process input and the model
noise, while measurements z are influenced by measurement noise; so the following
nonlinear equations are used to propagate x and z to discrete times:

xj+1 = f (xj, uj, wj)
zj = h (xj, vj)

(3.29)

where u is the process input, w is the model noise and v is the measurement noise
[2]. During the prediction step the Extended Kalman Filter linearizes Equation
3.29 around the mean of a Gaussian distribution and propagates the state and
covariance through this linearized model; instead the Unscented Kalman Filter
uses a technique called unscented transform, i.e it computes a set of points, called
sigma points, that completely capture the mean and covariance of the Gaussian
distribution, and propagates them through the nonlinear model: then the predicted
mean and covariance are calculated from the propagated points. Typically with
UKF the accuracy of the estimate increases while the computation time decreases
w.r.t. EKF [2].

Here follow the steps of the UKF to estimate the state vector and covariance
matrix at time tj; the equations and comments come from [2].

Prediction step

The state vector x is augmented in order to include the components of the process
noise and measurement noise; the augmented state vector is indicated as xα and its
size is L, which is equal to the sum of the sizes of the original state vector, model
noise vector and measurements noise vector.

xαj−1 =

xj−1
0w
0v

 (3.30)

The advantage of augmenting the state vector is that the sigma points are selected
from xα, so the nonlinear effects due to the two types of noise are captured and
represented with the same accuracy as the "original" state. The covariance matrix
is augmented to the L2 size:

Pα
j−1 = E

51
xαj−1 − âxαj−1

2 1
xαj−1 − âxαj−1

2T 6

=

Pj−1 0 0
0 Qj−1 0
0 0 Rj−1

 (3.31)
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Now 2L + 1 sigma points are formed; they are computed in the form of the columns
of a matrix χα:

χα
i,j−1 = xαj−1 i = 0 (3.32)

χα
i,j−1 = xαj−1 +

1
α
ñ

LPα
j−1

2
i

i = 1, ..., L (3.33)

χα
i,j−1 = xαj−1 −

1
α
ñ

LPα
j−1

2
i−L

i = L + 1, ..., 2L (3.34)

where i is the index of the columns of χα. The tuning parameter α belongs to the
interval (0,1] and defines the spread of the sigma points; α is usually set to a low
value (around 0.001) in order to guarantee positive semidefinite covariance matrices
and avoid the sampling of non-local features. The calculation of the square root of
Pα
j−1 is the most coputationally expensive part of the UKF.
The χα

j−1 matrix can be decomposed in χx
j−1 rows, which contain the state, χw

j−1
rows, which contain sampled process noise, and χv

j−1 rows, which contain sampled
measurement noise. Each sigma point is also assigned a weight for mean and a
weight for covariance, indicated with the apexes (m) and (c) respectively.

w
(m)
i = 1− 1

α2 i = 0 (3.35)

w
(c)
i = 4− 1

α2 − α2 i = 0 (3.36)

w
(m)
i = w

(c)
i = 1

2α2L
i = 1, ..., 2L (3.37)

Eventually the sigma points are propagated through Equations 3.29 and the
predicted state, covariance matrix and estimated measurements are computed as
weighted averages:

χx
j = f

1
χx
j−1, uj, χw

j−1

2
(3.38)

xj =
2LØ
i=0

w
(m)
i χx

i,j (3.39)

Pj =
2LØ
i=0

w
(c)
i

è
χx
j − xj

é è
χx
j − xj

éT
(3.40)

Zj = h
1
χx
j , χv

j−1

2
(3.41)

âzj =
2LØ
i=0

w
(m)
i Zx

i,j (3.42)
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Update step

The state-measurement cross-correlation matrix Pxz and the measurement covari-
ance matrix Pzz are calculated and used to compute the Kalman Gain:

Pxz =
2LØ
i=0

w
(c)
i

è
χx
i,j − xj

é
[Zi,j − âzj]T (3.43)

Pzz =
2LØ
i=0

w
(c)
i [Zi,j − âzj] [Zi,j − âzj]T (3.44)

Kj = PxzP−1
zz (3.45)

Eventually the state vector and covariance matrix are updated:

âxj = xj + Kj (zj − âzj) (3.46)

âPj = Pj −KjPzzKT
j (3.47)

3.6.5 Unscented-Schmidt Kalman Filter
The Unscented-Schmidt Kalman Filter (USKF) is very similar to the UKF: it
augments the state vector and the covariance matrix to sizes LUSKF and L2

USKF

respectively; then the sigma points are formed and propagated to the next timestep
and the predicted state and covariance are computed; eventually the state vector
and covariance matrix are updated. The difference with the UKF is that in the
USKF the state vector is additionally augmented by a number nc of consider
parameters c, so LUSKF = L + nc. Thus 2nc sigma points more than in the UKF
are formed; these additional sigma points are propagated in the same way as
the others during the prediction step; however, in the update step the consider
parameters are not updated [18]. Although it is similar to the UKF, the USKF
probably gives different results because the additional sigma points affect the
predicted state and covariance. See [10] for the full algorithm.

USKF gives different results from UKF only if the state vector is augmented
to include the consider parameters: in particular the one implemented in SPOOK
can consider CD and CSP as consider parameters and estimate them along with
the "regular" components of the state vector; however this thesis focuses on the
estimation of the not augmented state vector written in Equation 3.1, so no special
test has been performed on the USKF method; the few tests performed on the
implemented USKF algorithm just proved that it and the UKF algorithm return
exactly the same results if the state vector does not include CD and CSP .
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3.7 Orbit Determination success criteria
Five methods to check the success of orbit determination were implemented in
SPOOK by F. Fiusco [15].

After orbit determination SPOOK converts the estimates of the state vector into
observable quantities, i.e. measurements of the same type of the real or simulated
ones that have been used as input for OD (see Subsection 3.4.1); output measure-
ments and input measurements are compared and the residuals are computed; most
of the implemented OD success tests act on the residuals.

Here follows a brief description of the implemented OD success tests:

• χ2 test: this test checks whether the assumption of Gaussian distribution of
the OD errors is true or not. Mean and standard deviation are computed for
each residual type and a test statistic χ2 is computed; then the computed
statistic is compared with the theoretical χ2 that would give a confidence level
of 95%: if the theoretical χ2 is smaller than the computed one, the assumption
of Gaussian distribution is accepted;

• Weighted Root Mean Square (WRMS): it consists in computing

WRMS =

öõõôqN
i=1

res(i)2

σ2
i

N
(3.48)

which is the RMS of all the N residuals averaged with the proper sensor
accuracy σi. WRMS should be the smallest possible in order to have a
successful OD, but it should never be lower than 1 (otherwise it would mean
that the final result is inside the sensor noise [15]);

• Self consistency test: this test can be used only for filters and it verifies if
the filter’s estimate is coherent with the orbit of the target object. Given N
measurements, after OD the estimated state vector and covariance matrix at
time N − 1 are propagated to time N and turned into observable quantities;
so it is computed how far the real N th measurement is from the propagated
one;

• McReynold’s filter-smoother consistency test: this test can be used only if
OD is performed with a filter and a smoother (a technique that improves the
filtered state); it computes the difference between filtered and smoothed state
vectors and between filtered and smoothed covariance matrices for each time
step tj in order to check if the smoothed state is consistent with the filtered
state;
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• 3σ envelope test: it checks if at least 99% of the residuals are smaller than 3σ,
being σ the sensor’s accuracy for the considered observable, in order to verify
the assumption of Gaussian distribution.

The described methods have not been used in this thesis because Fiusco himself
concluded them to be unreliable and in need of being tested more; see [15] to read
the tests he performed and his conclusions about them.

3.8 Orbital regions
Earth-orbiting objects’ trajectories fall into orbital regions, whose classification is
based on the altitude, i.e. the distance from the Earth surface. An orbital region
classification is also implemented in SPOOK in order to perform statistical analysis,
simulations or other functions if needed; this classification is a modified version
of the one from ESA Space Situational Awareness programme [5] and is shown in
Table 3.1.

Name Perigee [km] Apogee [km]
Min Max Min Max

LEO resident 0 2000 0 2000
LEO transient 0 2000 2000 ∞

Low MEO resident 2000 16000 2000 16000
Low MEO transient 2000 16000 16000 ∞

High MEO resident (GNSS) 16000 33786 16000 33786
High MEO transient 16000 33786 33786 ∞

GEO resident (i ≤ 20◦) 33786 37786 33786 37786
GEO resident (i > 20◦) 33786 37786 33786 37786

GEO transient 33786 37786 37786 ∞
HEO 37786 ∞ 37786 ∞

Table 3.1: Orbital region classification [14].

For the tests of Chapters 4 and 5 GPS satellites have been used as target objects to
perform OD. GPS satellites have been chosen because they belong to the class of
MEO objects and so they are not as affected by atmospheric drag as LEO objects,
leading to less complex results. GPS satellites have been chosen also because it is
easy to find their ephemerides and TLE files; in particular Airbus has open access
to very accurate ephemerides of GPS satellites, so in the tests of Chapter 5 they
have been used as "ground truth" for error evaluation.
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Chapter 4

Work carried out

This chapter presents the modifications made and the new functions implemented
in SPOOK during the works for this thesis; these extensions were needed to reach
the end goal of the thesis, i.e. the definition of the settings to perform OD in the
best way. Two improvements have been made on the Sensor Simulation mode in
order to obtain better measurements: the augmentation of the accessibility report
writing function and the implementation of a function to write optical output files.
Also three OD analysis tools have been implemented: a function to evaluate the
errors of OD and Covariance Propagation modes w.r.t. ephemerides, a function to
perform OD with randomized initial states and a function to run OD faster from
the Python interface.

4.1 Expansion of the Accessibility Report
As mentioned in Section 2.2, Sensor Simulation mode makes SPOOK simulate at
least one observer and produce simulated measurements of one or more objects.
When it works in this mode, SPOOK can produce output files called accessibility
reports if the user enables the corresponding option in the parameters configuration
file.

One accessibility report file is produced for each simulated observer and it
consists of three sections:

• the first section is related to the observer and is a list of the constraints applied
to it (that are set by the user in the observers configuration file), like the
maximum elevation considered for the Sun, the minimum and the maximum
elevation considered for target objects, the weather and illumination models
and so on;

• the second section provides a list of all the objects (among the ones written
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in the objects configuration file) that have crossed the field of view of the
observer during a certain time interval, called crossing time, and so have been
observed, producing measurements;

• the third section is just a list of the objects (from the objects file) that have
not been observed at all during the observation time.

An example of accessibility report is shown in Appendix B.

We are interested in the second section of the document, that does not only
list the crossing objects, but also provides a set of data for each one. Before the
start of this thesis the data associated to each crossing objects were:

• the object’s name and its international identification codes, that SPOOK
extracts from the objects configuration file;

• the start time, the end time and the duration of the object’s crossing time
interval;

• the azimuth and the elevation of the object at the start and at the end of the
crossing time frame;

• the apogee and the perigee of the object’s orbit and the orbital region it
belongs to (based on the classification of Section 3.8).

In this thesis the function to write the accessibility report has been modified in
order to write additional data for each crossing object. The added values are:

• the altitude range, i.e. the minimum and maximum altitude reached by the
object during the crossing interval;

• the minimum angular motion nmin and the maximum angular motion nMAX ,
computed with the equation n =

ñ
µ
r3 , where r is the distance between the

object and the Earth center;

• the minimum and maximum shadowing parameter during the crossing time,
i.e. an index that is equal to 1 if the object is fully illuminated by sunlight, is
equal to 0 if the object is totally inside the Earth’s shadow, and has a value
between 0 and 1 if the object is in penumbra [19];

• the minimum and maximum Signal to Noise Ratio (SNR), which is the ratio
of the power of the signal coming from the object over the noise;

• the minimum and maximum phase angle, which is the angle Sun-object-
observer, nearly equal to the angle Sun-object-Earth if the observer is ground-
based [27].
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We can see that all the data (both the old ones and the new ones) in the second
section of the accessibility report, except for the objects’ names and identifiers, are
simulated measurements or are derived from them; the shadowing parameter of
the object is computed with a function implemented by Cirillo [19].

The data added to the accessibility report are useful because they enable the user
to optimize the generation of observation plans: if the user wants to observe a target
object with a specific observer during a certain time frame, first he can perform
a test by simulating the observation and reading the corresponding accessibility
report; basing on whether the object has crossed the observer’s field of view (in the
simulation) and on the object related values added to the accessibility report, the
user can decide if it is worth planning and performing that observation for real (e.g.
it is not convenient if the simulated SNR is too low or if the object is in Earth’s
shadow). Additionally the values of minimum and maximum altitude can be used
to compute the exposure time of the camera.

4.2 The Optical Output file
The work that has been carried out in the thesis includes the implementation
of a new function in the frame of Sensor Simulation mode: if the corresponding
option in the parameters configuration file is enabled, the new function produces
so-called optical outputs files; one optical output file is generated for each couple
observer-observed object. Appendix B provides an example of this file.

Given a step size that is written in the parameters configuration file, the optical
output file provides some object related parameters (that are derived from the
simulated measurements) for each time step from the beginning to the end of the
crossing time. Here follows the list of the values:

• altitude of the object;

• phase angle;

• elevation;

• range, which is the distance between the object and the observer;

• angular velocity of the object, computed as the 2-norm of the first derivative
of the angular measurements vector;

• apparent magnitude of the object;

• SNR.
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The SNR is function of the other values contained in the file, so the optical output
makes it possible to plot and visualize how the parameters evolve in time and how
their evolution affects the value of SNR; thus we can evaluate the performances
of the measurements estimation model: for example we can detect errors in the
model if we see that certain values of the parameters lead to unexpected values of
SNR. We can also use the optical output to optimize observations plans along with
the accessibility report.

4.3 Errors evaluation with ephemerides
In the frame of this thesis a function for errors evaluation has been implemented
both for the Covariance Propagation mode and for the Orbit Determination mode.
If the corresponding option in the parameters configuration file is enabled, at the
end of OD or propagation the new function compares the propagated or estimated
state vector to an ephemeris from an input OEM file and computes the errors; of
course this function should be used only if the ephemeris is accurate enough to
be assumed to be the ground truth, and this is the case for the GPS satellites’
ephemerides used in Chapter 5.

OD and covariance propagation modes return the state vector and covariance
matrix of the object at times set by the user (as he or she sets the start and end
times and the size of the time step), which are usually different from the epochs of
the ephemeris: so the first step performed by the function is the interpolation of
the ephemeris at the times of SPOOK’s output; a Lagrange interpolator of ninth
order is used, the same as in Sensor Calibration mode. Once the interpolation
has ended, the function derives the following values for each time of the OD or
covariance propagation output:

• the estimation or propagation error of every component of the state vector,
computed as xi,ephemeris − xi,estimate;

• the standard deviations and variances (i.e. the diagonal components of the
covariance matrix) of the state vector’s components, that are simply extracted
from the outputs of OD or propagation;

• the total errors in position and velocity, computed as the 2-norm of the position
error vector and the 2-norm of the velocity error vector respectively;

• the total standard deviations in position and velocity, i.e. the 2-norms of the
corresponding standard deviation vectors.

All these values are computed in the RTN reference frame. Eventually the function
writes the computed values in an output file called ephemeris errors file, that can
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be used to plot the behaviour of the errors and standard deviations in time; in
particular these files have been used to plot and compare the errors and the 3σs
(that in SPOOK are assumed to be estimates of the real errors) in Chapter 5.

Appendix B contains an example of ephemeris errors file.

4.4 Randomization of the initial state vector
As discussed in Section 3.5, the orbit determination process always requires an
initial state vector. During this thesis’ work a function has been implemented that
"randomizes" a given initial state vector x0 by creating random initial state vectors
x0,rand and performs one OD run for the original state vector and one OD run for
each new state; so if N is the number of new initial states, that is set by the user
in the parameters configuration file, SPOOK performs N + 1 orbit determinations.
Performing multiple runs of orbit determination where only the initial state changes
can be useful to analyze the sensitivity of the chosen OD algorithm to the initial
state itself.

The randomizing function creates the new initial state vectors assuming the origi-
nal x0 to be the mean of a Gaussian distribution, i.e. assuming that each of its
components x0,i is the mean of a Gaussian distribution with variance σ2

i which is
the corresponding diagonal element of the initial covariance matrix P0. So the
function uses P0 to create N state vectors x0,rand that should follow a Gaussian
distribution centred around x0 for each of their components.

It follows that if the assumption of Gaussian distribution of the new initial
state vectors is true, for each OD output time the average of the estimated state
vectors for the runs with the random initial states should be equal to the theoretical
mean, i.e. the estimated state vector for the run with the original x0. Whether the
assumption is true or false is verified in Section 5.1.

4.5 User interface for orbit determination
One of the contributions given to SPOOK by this thesis is the implementation of a
Python function to perform orbit determination without having to write or modify
the configuration files manually.

Before this thesis the user had to write or modify the configuration files and
execute SPOOK every time he wanted to use the OD mode; this process was very
time consuming, especially when the user wanted to run orbit determination several
times with different settings. Instead the new Python function writes the configu-
ration files almost completely by itself: of all the entries in the configuration files,
only a few are read and used when running SPOOK in Orbit Determination mode;
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so the Python function writes the files by assigning default values to the "useless"
entries and requiring the user to input only the values of the "useful" entries. The
advantage of the Python function is that if the user wants to perform multiple runs
of orbit determination with different settings, now he or she can just call the Python
function from command line or in a script many times as needed and change only a
few input arguments at every call instead of manually writing a great number of files.

The implemented Python function does not set only the "useless" entries of the
configuration files to default values, but also some of the entries that affect the
orbit determination process; in particular:

• corrections of light time delay and diurnal aberration (more information in
[11]) are enabled by default when real measurements are used;

• ART is set as the default observer (because it is the one used by Airbus to
perform tests) and so all the entries of the observers configuration file are set
to its parameters;

• Initial Covariance Propagation is set as the default method to compute the
initial state vector and covariance matrix because the methods for Initial Orbit
Determination have not been fully tested yet.
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Chapter 5

Tests and comments

This chapter presents and discusses the main tests that have been performed on
orbit determination: test on the randomization function, comparison between Orbit
Determination and Covariance Propagation modes’ results, test on the sensitivity
of the WLS method to x0, comparison of the performances of EKF and UKF. In
all the tests the RTN reference frame has been used, so the state vector of the
object is

x =



rR
rT
rN
vR
vT
vN


(5.1)

5.1 Tests on the randomization function
As explained in Section 4.4, the assumption of Gaussian distribution of the "random"
initial state vectors is true if at every OD output time the mean computed from
the estimated states of the runs with the new x0s is equal to the estimated state of
the run with the original x0. The same logic can be applied to the errors: the error
of the run with the original x0 should be the mean of the errors of the runs with
the randomized initial states if the distribution is really Gaussian. In this section
two tests are described that verify if the true mean error is equal to the error of
the run with the original x0.

In the first test x0 was one of the entries of an OEM file and the initial co-
variance matrix P0 has been manually written in the objects configuration file. The
target object was the GPS satellite with NORAD ID 40105 (this is the identification
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number assigned by US Space Command [28]).

P0 =



25 km2 0 0 0 0 0
0 100 km2 0 0 0 0
0 0 25 km2 0 0 0
0 0 0 10−6 km2

s2 0 0
0 0 0 0 4 ∗ 10−6 km2

s2 0
0 0 0 0 0 10−6 km2

s2


(5.2)

The randomization function has been used to generate 100 initial state vectors and
for each one of them and for the original x0 an Orbit Determination with EKF has
been performed, for a total of 101 runs; then the function presented in Section 4.3
computed the errors of each run with respect to the ephemeris from an OEM file
(the same from which the original x0 has been extracted); eventually the average
errors of the 100 "randomized" runs have been computed for each component of
the state vector at every output epoch.

The results of this test are shown in Figure 5.1, where for each state’s com-
ponent the true average error (i.e. the average of the 100 errors) is plotted together
with the error of the run whit the original state vector, that is the theoretical mean;
the two vertical lines in the figure mark the beginning and the end of a tracklet; in
the figure the 3σ of the run with the original initial state and the 3σ computed
from the errors are different because the former has been estimated by the EKF
while the latter has been calculated with Equation A.1.

In Figure 5.1 it can be seen that the lines of the true and the theoretical mean
are almost completely overlapped in the time interval inside the tracklet, where OD
has been performed, and completely overlapped after the end of the tracklet, where
the state vectors have been simply propagated forward. So it can be concluded that
the distribution of the 100 random initial state vectors is almost Gaussian (and
would be Gaussian if more than 100 initial states were generated) if the original x0
comes from an ephemeris; the conclusion is reinforced by the fact that for every
run the total errors read in the ephemeris errors file are smaller than the respective
3σ, as expected from a Gaussian distribution.

The second test had the same settings as the first one except for the original
initial state vector that was extracted from a TLE file. Figure 5.2 shows the results.

It is clearly visible that the true average and the theoretical average are different
for most of the time for all the components, so the distribution is not Gaussian;
this is also proved by the fact that 88 runs out of 100 have bigger total errors than
the respective 3σ.
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Figure 5.1: Average components’ errors of 101 runs; x0 from OEM file.
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Figure 5.2: Average components’ errors of 101 runs; x0 from TLE file.

While it can be concluded that 100 randomized initial states do not follow a
Gaussian distribution if the original x0 comes from a TLE file, it is also true that if
the randomizing function produced more than 100 states, there would be a number
of initial states for which their distribution would be Gaussian. However, tests for
more than 100 randomized states have not been performed because they would have
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been too computationally expensive: the reason is that the state vector extracted
from the TLE file has to be propagated to the time of the first measurement; in
the case of this test the TLE and the first measurement were more than one day
apart (and the TLE file was the closest of the available ones), leading to a very
long propagation; it took almost two hours to perform just 101 runs.

5.2 Comparison between OD and Propagation
This section discusses the tests performed to compare the accuracies of OD and
simple propagation of the space vector and covariance matrix. In general orbit
determination methods should be more accurate than propagation because they
either improve the initial state and propagate it (Least Squares methods) or correct
the state after every propagation step (Kalman Filters); however, the aim of the
following tests is to analyze what happens if the initial state vector is already very
accurate: in these tests the initial state vector is one of the entries of the ephemeris
in the OEM file used as ground truth for the error calculation, so the OD error and
the propagation error at time t0 are null. The target object is the GPS satellite
with NORAD ID 25933.

The first test was a comparison between the Extended Kalman Filter and simple
propagation. At first four runs of orbit determination have been performed with
different initial covariance matrices, whose non-diagonal components were null
while the diagonal components (i.e. the variances) are written in Table 5.1. The
plots of the errors and 3σ of each run are shown in Figure 5.3.

Run σ2
rR

[km2]
σ2
rT

[km2]
σ2
rN

[km2]
σ2
vR

[km2s−2]
σ2
vT

[km2s−2]
σ2
vN

[km2s−2]
1 10−1 1 10−1 10−6 10−6 10−6

2 10−3 10−2 10−3 10−8 10−8 10−8

3 10−5 10−4 10−5 10−10 10−10 10−10

4 10−7 10−6 10−7 10−12 10−12 10−12

Table 5.1: Variances of the initial covariance matrix for each run.

Then for each component of the state vector the "best" variance has been chosen
from Figure 5.3: what is meant by "best" variance is that the corresponding 3σ is
bigger than the real error (because we want 3σ to be a conservative overestimation
of the error) for most of the time but also that 3σ is very close to the real error (in
order to not overestimate it too much making the OD results seem too inaccurate);
when two or more variances satisfied the requirements, the one that returned the
smallest error was chosen. So a new initial covariance matrix has been formed with
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Figure 5.3: EKF errors for different covariances.

the selected best variances in its diagonal:

P0 =



10−7 km2 0 0 0 0 0
0 1 km2 0 0 0 0
0 0 10−7 km2 0 0 0
0 0 0 10−6 km2

s2 0 0
0 0 0 0 10−12 km2

s2 0
0 0 0 0 0 10−12 km2

s2


(5.3)

Eventually OD and propagation have been run with the P0 from Equation 5.3 as
initial covariance matrix and the errors and 3σ have been plotted in Figure 5.4. The
plots of Figure 5.4 show that for every component of the state vector the 3σ from
OD is lower than the 3σ from propagation for nearly all the time and both are larger
than the respective errors (except for the tangential position in the first 20 minutes
of the EKF run): this means that in both cases 3σ overestimates the error (as we
want) but the EKF overestimates it less. Regarding the errors, we can see that
propagation always returns the smallest errors, except for the normal components of
position and velocity where propagation errors are similar to EKF errors; the lower
accuracy of the filter may be due to the influence of the non-diagonal elements of the
covariance matrix, that are null at t0 but acquire non-null values in other time steps.

The same test has been repeated for the WLS method, using the same settings and
the variances from Table 5.1; the errors of the four runs have been plotted in Figure

41



Tests and comments

Figure 5.4: EKF vs propagation.

5.5, the "best" variances have been chosen and the new initial covariance matrix
has been formed (Equation 5.4). Eventually P0 has been used to run propagation
and orbit determination; Figure 5.6 contains the plots of the errors and 3σs.

P0 =



10−5 km2 0 0 0 0 0
0 1 km2 0 0 0 0
0 0 10−7 km2 0 0 0
0 0 0 10−8 km2

s2 0 0
0 0 0 0 10−12 km2

s2 0
0 0 0 0 0 10−12 km2

s2


(5.4)

The results are similar to the test with EKF: WLS returns a 3σ that is smaller
and closer to the error than propagation’s one for every state’s component, but
the propagation is more accurate because it returns mostly smaller errors than
WLS (which also presents bigger errors than 3σ for tangential position and radial
velocity). So the same comments as the test with EKF can be repeated.

The conclusion that could be derived from these two tests is that if the ini-
tial state is very accurate, it is more convenient to perform propagation rather
than OD in order to minimize the error; this would be true if we knew that the
accuracy of the initial state is very high, but in real applications the accuracy of
the initial state is usually unknown and there is no way of computing the real error,
so it is worth doing orbit determination because it gives a smaller 3σ, i.e. a smaller
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Figure 5.5: WLS errors for different covariances.

Figure 5.6: WLS vs propagation.

theoretical error, than propagation.

43



Tests and comments

5.3 WLS sensitivity to the initial state
The tests in this section were aimed at analyzing how much sensitive the Weighted
Least Square method is to the accuracy and variations of the initial state vector.
The target object of the performed orbit determinations was the GPS satellite
with NORAD ID 32711. The initial covariance matrix used in the following tests
is shown in Equation 5.5; although the WLS method does not need an initial
covariance matrix because it computes P0 at every iteration with Equation 3.8,
the algorithm implemented in SPOOK can receive an initial covariance matrix as
input, like in this case, and skip the computation of P0 during the first iteration.

P0 =



10 km2 0 0 0 0 0
0 102 km2 0 0 0 0
0 0 10 km2 0 0 0
0 0 0 10−6 km2

s2 0 0
0 0 0 0 10−6 km2

s2 0
0 0 0 0 0 10−6 km2

s2


(5.5)

The measurements in the TDM file used for these tests were split into 13 tracklets,
whose start and end times are marked with vertical lines of the same colour in the
plots of Figures 5.7 and 5.8.

In the first test orbit determination with WLS method has been run twice: first
using an initial state vector from the OEM file used for error computation, so that
the error at time t0 is null; then extracting the initial state vector from a TLE file,
leading to a quite inaccurate x0. The total errors and the corresponding 3σ of the
two runs are plotted in Figure 5.7.

Looking at Figure 5.7 it seems that only the plots of the run with the initial
state from the TLE file have been drawn; actually, also the plots of the run with
the initial state coming from the OEM file are in the figure, they are just totally
overlapped with the corresponding plots of the other run. Looking at SPOOK
output files it turns out that the two runs return exactly the same state vectors (and
therefore the same errors) and covariance matrices at every output time, except for
the initial states, that are not plotted in the picture (time 0.00 in the figure is the
relative time of the first measurement).

The second test consisted of the randomization of the initial state vector from the
same TLE file as before by using the function of Section 4.4: 100 new initial state
vectors were formed and 101 (including the original x0) OD runs with the WLS
algorithm were performed. The total errors and 3σs of all the runs are shown in
Figure 5.8.
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Figure 5.7: Total WLS errors for TLE input and OEM input.
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Figure 5.8: Total WLS errors for 101 runs.

From the thickness of the lines we can see that in Figure 5.8 all the plots of
the same type are overlapped for all the runs; also the output files show that the
estimated states, errors and covariances are the same at every time step for all the
101 runs (except for the initial states, that have not been plotted). Repeating this
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test using an initial state vector from the OEM file gave the same outcome.

From these tests it can be concluded that the Weighted Least Squares method is
insensitive to the accuracy and the changes of the initial state vector: a possible
explanation may be that since the implemented WLS algorithm propagates the
initial state vector to the time of the first measurement and then improves it
at every iteration, it manages to correct the state vector at the point of getting
the same improved state whatever the initial one is (and then the outputs of the
propagation will be the same). This hypothesis needs to be tested more, maybe
by finding a way to reduce the computational costs of the extraction and initial
propagation of x0 and performing more than 100 runs.

Anyway, even if the WLS output were really the same independently of which
x0 is given as input, the choice of the initial state vector would still be important
because it affects the number of iterations and the computation time needed to
perform the extraction of x0 from its file and propagate it to the first measurement
time.

5.4 Comparison between EKF and UKF
Several comparative tests have been conducted to assess the differences between the
outputs of the Extended Kalman Filter and the outputs of the Unscented Kalman
Filter: runs of orbit determination with both methods have been performed on four
GPS satellites, whose NORAD IDs were 25933, 26360, 32711, 40105, using different
settings in terms of source of the initial state vector, values of the elements of the
initial covariance matrix, length and number of tracklets in the TDM files, length
of propagation time at the end of OD and so on. The outcome of all these tests
was that EKF and UKF gave very similar results for both estimated states, errors
and estimated covariance matrices.

Figures 5.9 and 5.10 are shown here as examples: they contain the plots of
the errors and 3σs of two tests conducted on the GPS satellite 32711 with the
same initial covariance matrix of Equation 5.5; in the first test the initial state
vector came from an OEM file, in the second test x0 came from a TLE file; the
measurements came from a SPOOK simulated TDM file, like all the tests of this
section.

In the pictures it is clearly visible, and it is also confirmed by SPOOK output
files, that for both tests the errors (and so the state vectors) resulted from UKF
and EKF are very similar, especially in the time intervals inside the tracklets
(delimited by vertical lines of the same colors) where the error plots of the two
methods are almost overlapped; in particular the 3σs from UKF and EKF are so
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Figure 5.9: UKF and EKF errors; x0 from OEM file.
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Figure 5.10: UKF and EKF errors; x0 from TLE file.

similar that their plots are completely overlapped in both figures. More or less the
same outcomes have been gotten for all these kinds of tests.

One possible explanation of the similarity of the outputs of EKF and UKF could
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be the goodness of the physical model used for orbit determination: as explained
in Subsection 3.6.4, the UKF works better than the EKF if the physical model
used to perform orbit determination is not accurate; when it is run in Orbit De-
termination mode with simulated measurements, SPOOk uses a physical model
to generate measurements and another physical model to perform OD; the two
models are set by the user in the parameters configuration file, where he or she
can decide to enable or disable certain orbital perturbations and can choose how
to model them (for example the user can set the maximum degree and order of
Earth’s spherical harmonics). In these tests the two physical models had the same
settings, so the model used for OD was accurate because it was equal to the model
where measurements had been "taken" from and this was why EKF could work as
effectively as UKF.

In order to verify the previous explanation, comparative tests should be per-
formed in which the OD model is less accurate than the measurements model (e.g.
not considering the third body effects of Venus and Mars or using a less accurate
model for the atmosphere, etc.); if EKF results were less accurate than UKF ones
with these settings, it would mean the explanation is correct.
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Chapter 6

Conclusions

In the frame of this thesis the following improvements have been performed on
SPOOK:

• the function to write accessibility reports has been modified in order to include
additional information in these output files, making them useful to help
planning real future observations;

• a new type of output file has been introduced, i.e. the optical output, whose
information can be used to study the influence of certain parameters on the
SNR and to optimize observation strategies along with the accessibility report;

• a function to compute the errors of Orbit Determination and Covariance
Propagation modes has been implemented, making it possible to test the
accuracy of OD results if an accurate ephemeris of the target object is available;

• a randomizing function for the generation of multiple initial state vectors and
the performance of multiple OD runs has been implemented and tested: if
the original state vector comes from an OEM file, 100 new states are almost
enough to have a Gaussian distribution; if the original state vector is extracted
from a TLE file, more than 100 new states are needed for their distribution to
be Gaussian;

• the Python wrapper has been enriched with a function that speeds up the
process of launching an Orbit Determination run.

Also several tests have been performed on the OD section of SPOOK’s code; these
are the conclusions of the tests:

• if the initial state vector is very accurate, propagation of the state vector
returns smaller errors than orbit determination; however, if the accuracy of
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the state vector is unknown and the real error cannot be computed, it is more
convenient to perform orbit determination because it returns a lower 3σ than
propagation;

• the accuracy of the Weighted Least Squares method is not affected by the
accuracy of the initial state vector; so the main criteria for choosing the
initial state should be the minimization of the number of iterations and the
minimization of the time needed to extract the initial state and propagate it
to the first measurement time;

• Extended Kalman Filter and Uscented Kalman Filter seem to give very similar
results when the physical model used for orbit determination is very accurate
with respect to the physical model used to simulate measurements.
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Chapter 7

Future Projects

Here some suggestions are presented for people who will follow up on this thesis:

• the Python function for launching orbit determination should be improved by
automatizing even more settings and adding calls to functions that plot the
results automatically;

• the Python function should be used several times in order to create some
statistics and define the best OD settings for different scenarios (e.g. what is
the best OD method for certain tracklet lengths and certain sensors’ accuracy)
and orbital classes of the objects;

• the tests to compare EKF and UKF should be performed with less accurate
physical OD models than the physical model for measurements simulation in
order to prove if UKF really is better when the model is inaccurate;

• it could be possible to improve the number of orbit determinations performed
by the randomization function without having a large computation time by
implementing code parallelization in the function, so that it could perform
multiple runs simultaneously;

• the OD success tests implemented by Fiusco [15] should be accurately tested
in order to enable them and use them with confidence;

• tests on the implemented IOD methods should be performed to evaluate how
accurately they estimate the initial state vector and covariance matrix and
whether they improve the whole OD process;

• the implemented methods for wrong measurements (called outliers) removal
should be tested and improved.
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Appendix A

Fundamentals of Statistics

The aim of this appendix is to explain some of the statistical concepts that have
been used in the previous chapters. The following definitions are taken from [15].

Given a random variable x and N samples xi, the mean of x can be computed as
m = E(x) and the variance of x is

σ2 = E[(x−m)2] ≈ 1
N − 1

NØ
i=1

(xi −m)2 (A.1)

The variance describes how close the samples are to the mean [29]; the square root
of the variance σ =

√
σ2 is called standard deviation.

If two random variables x and y are considered, their covariance can be computed
as

cov(x, y) = E[(x− E(x)) (y − E(y))] (A.2)

and represents the tendency of the two variables to be linearly correlated; comparing
Equations A.1 and A.2 it is clear that the variance is just the covariance of a variable
with itself.

It is worth introducing the correlation coefficient µ of two variables [26] to better
understand the meaning of covariance; considering the two variables x and y, their
correlation coefficient is

µxy = cov(x, y)
σxσy

(A.3)

The correlation coefficient can range from −1 to +1: if positive, the two variables
have a direct correlation (if one increases, the other one increases too); if negative,
the variables have an inverse correlation (one increases if the other one decreases
and viceversa); if null, the two variables are indipendent.
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Fundamentals of Statistics

If we now consider a vector X = [X1, ..., XN ] of random variables, we can compute
the covariance matrix P:

P = E
è
(X− E(X)) (X− E(X))T

é
(A.4)

where E(X) is the vector of the expected values of the components of X. P is a
N ×N matrix where every component Pij = cov (Xi, Xj) is the covariance between
two components of X: it results that the matrix is symmetric and the elements on
the main diagonal are the variances of the components of X.

So for example, if X = [α, β, γ], the covariance matrix is

P =

 σ2
α µαβσασβ µαγσασγ

µαβσασβ σ2
β µβγσβσγ

µαγσασγ µβγσβσγ σ2
γ



In this thesis it is assumed the errors in measurements and OD process to be
Gaussian distributed for every component of the target object’s state vector [11],
so that their mean is null (because the mean of each component of the state vector
corresponds to its exact value) and their standard deviation is approximately equal
to the sensor accuracy [15]. The assumption of Gaussian distribution also means
that most (at least 99.7%) errors are lower than 3σ (for each component of the state
vector) and that the object’s position should be inside a region called covariance
ellipsoid [11], whose shape and size depend on the covariance matrix.
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Appendix B

Examples of files

This appendix provides examples of the files described in the previous chapters.

B.1 Object definition files

B.1.1 OEM file
The following two pictures show two sections of an OEM file: in Figure B.1 the
state vector is given for each epoch; Figure B.2 shows the covariance matrix at
every epoch.

Figure B.1: OEM file part 1 [16].
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Figure B.2: OEM file part 2 [16].

B.1.2 TLE file
Here follows an example of a two-line set that can be found inside a TLE file.
Figure B.3 has been downloaded from Space-Track.Org as well as the other TLE
files used in this thesis.

Figure B.3: TLE element [25].

B.2 Measurements files

B.2.1 OTDF file
Figure B.4 is an example of OTDF file. It can be seen that the observer in the
picture is an optical one because there are non-zero values for the columns of
right ascension and declination; this file also contains the columns (that are not
included in the picture) for the measurements of a radar observer, i.e. azimuth and

56



B.3 – Output files

elevation, that in this case have only null values (it would be the opposite for a
radar observer).

Figure B.4: OTDF file [16].

B.2.2 TDM file
Figure B.5 presents an example of the measurements inside a TDM file; additional
measurements like humidity and pressure can be written in these files too.

Figure B.5: TDM file [16].

B.3 Output files

B.3.1 Accessibility report
Figures B.6 and B.7 show an example of the accessibility report produced by
SPOOK. The columns from "ALTITUDE" to "PHASE ANGLES" in Figure B.7
are the ones added during this thesis’ works.
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Figure B.6: Accessibility report part 1.

Figure B.7: Accessibility report part 2.

B.3.2 Optical output
An example of optical output file is given in Figure B.8. The function to write this
file has been written in the framework of this thesis.

Figure B.8: Optical output file.

B.3.3 Ephemeris errors
An example of ephemeris errors file can be seen in Figures B.9 and B.10. The first
and last columns of the file, corresponding to the time in Julian Days (JD) and to
P66 respectively, are not included in the pictures.
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Figure B.9: Ephemeris error file part 1.

Figure B.10: Ephemeris error file part 2.
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