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Abstract 
 
Phobos and Deimos, the mythological twin sons of the Greek god of war, Ares, gave their 
names to the two Martian natural satellites. Discovered by the American astronomer Asaph 
Hall in 1877, within six days of each other, they are respectively orbiting about 6000km and 
20070km around the red planet’s surface ground. 
However, still today their origin appears to be uncertain. Multiple theories have been 
developing during all these years, but no one has never been proved. Thus, the main issue 
remains: where do Phobos and Deimos really come from?  
 
Perhaps, this question left unanswered for many years, could finally find a response:  Japanese 
MMX (Martian Moons eXploration) mission planned by the JAXA for 2024 represents the 
world’s first practical attempts to solve this mystery. 
In fact, the Martian moon exploration had represented the main objective for no mission yet: 
only flybys and long-range observations have been realised up to now. On the contrary, MMX 
focuses its entire attention on this topic, planning flybys or rendezvous with Deimos, and orbits 
around Phobos leading the satellite to lend on its surface and collect samples, for the first time 
in the world. The mission outcome could inevitably provide useful information, getting closer to 
the truth about the Martian moon origin.  
Nevertheless, Phobos ground samples could not afford complete answers. To unveil this 
mystery, wider understandings in its physical features are necessary: the gravitational field, 
the ephemeris around Mars and the rotation around its axis are Phobos geodesic parameters 
whose knowledge is sensed to be improved during the MMX mission. 
 
Considering this purpose of detecting real Martian moon physics, this internship project is 
centred on Phobos gravity field analysis. Several existing models of this geodesic 
characteristic have been developed on the base of the latest Phobos shape model and 
assuming homogeneous density distribution. Three main modelling methods are being using 
[1]: the harmonic expansion approach (HEA), the mass elements approach (MEA), and the 
polyhedron approximation approach (PAA). 
The study here presented, is built on the first methodology: the considered Phobos gravity 
model is conceived as a spherical harmonic expansion.  
The latter can now relay on one of the most accurate shape models of Phobos to date, 
complete up to degree and order 20. Consequently, a set of spherical harmonic coefficients 
up to degree and order 20 describe one of the most realistic Phobos gravity models own at the 
present day. 
However, its precision is still far from the necessary level for conducting exact analysis. 
Effectively, one scientific purpose of the MMX mission is exactly to increase this model 
accuracy. Throughout orbits in proximity of Phobos surface and employment of multiple 
measurement techniques, the satellite would be able to adjust this current model.  
 
In this context, this internship project has been ideated to provide an estimation of the MMX 
capacity in recovering Phobos gravity field model, through the most realistic simulations 
possible. 
Conducted with the up to 20 degree-gravitational model as a realistic reference and 
hypotheses on actual unknowledge of real Phobos gravity field, this study has enabled an 
approximation of the model upgrade obtainable at the end of the MMX mission. This is an 
absolutely useful result: it elucidates which are the effective MMX possibilities in recovering 
the Martian moon gravity field and allows the identification of which are the mission conditions 
in term of trajectories and measurements, allowing the best model adjustment. 
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Abstract (Italian version) 
 
Phobos and Deimos, i due gemelli della Mitologia greca, figli del dio della guerra, Ares, danno 
il loro nome ai due satelliti naturali di Marte. Scoperti dall’astronomo americano Asaph Hall nel 
1877, essi orbitano ad una distanza rispettivamente di circa 6000km e 20070km attorno alla 
superficie del pianeta rosso. Tuttavia, ancora al giorno d’oggi la loro origine appare incerta. 
Molteplici teorie sono state formulate durante il corso di questi anni, ma nessuna tra queste è 
mai stata provata. Dunque, la domanda tutt’ora rimane: come Phobos e Deimos si sono creati? 
 

Tale questione rimasta a lungo irrisolta, potrebbe forse trovare ora una risposta: la missione 
giapponese MMX (Martian Moons eXploration), previsa dalla JAXA per il 2024, rappresenta il 
primo tentativo pratico al mondo di risolvere questo mistero. Infatti, la vera esplorazione delle 
lune di Marte non era ancora stata l’obiettivo principale di alcuna missione spaziale: solamente 
flyby ed osservazioni a lunga distanza sono state realizzate fino ad ora. Al contrario, la 
missione MMX concentra la sua attenzione sullo studio dettagliato di questi satelliti naturali, 
includendo flyby o rendez-vous con Deimos, orbite nelle strette vicinanze di Phobos e 
l’atterraggio sulla superficie di quest’ultimo, con il consecutivo prelevamento di campioni di 
terreno. Il successo di tale missione potrebbe fornire informazioni utili per avvicinarsi alla 
scoperta della verità sull’origine delle due lune marziane. 
Ciononostante, per svelare il mistero una più ampia conoscenza dei parametri geodetici è 
anche necessaria. Per tale motivo, il campo gravitazionale, le effemeridi attorno a Marte e la 
rotazione attorno al suo asse sono caratteristiche fisiche di Phobos la cui conoscenza verrà 
ampliata nel coro della missione MMX.  
 

Considerando questi obiettivi scientifici, il progetto svolto durante questo tirocinio è 
prettamente centrato sull’analisi del campo gravitazionale di Phobos. Diversi modelli già 
esistenti di tale caratteristica geodetica, sono stati matematicamente creati sulla base 
dell’ultima modellizzazione sviluppata per la forma di Phobos, considerando la presenza di 
una distribuzione omogenea di densità. Tre sono i più comuni modelli utilizzati al giorno d’oggi 
[1], sviluppati attraverso: il metodo dell’espansione armonica (HEA), il metodo degli elementi 
di massa (MEA) ed il metodo dell’approssimazione poliedrica (PAA). 
Lo studio qui presentato è realizzato sulla base del primo metodo: il modello di campo 
gravitazionale considerato è concepito come un’espansione di armoniche sferiche. 
Questa tecnica trova le sue fondamenta su uno dei più accurati modelli di forma di Phobos, 
anch’esso sviluppato attraverso l’uso delle armoniche sferiche, complete fino al grado e 
all’ordine 20. Di conseguenza, un insieme di coefficienti armonici dettagliati fino all’ordine 20 
descrive uno dei più realistici modelli gravitazionali di Phobos, conosciuti attualmente. Tuttavia, 
la precisione di quest’ultimo lunge ancora dal livello necessario per condurre studi esatti. Per 
tale ragione, uno degli obiettivi scientifici della missione MMX è esattamente quello di 
migliorare l’accuratezza di tale modello: attraverso l’utilizzo di particolari orbite in prossimità di 
Phobos e specifiche tecniche di misura, il satellite dovrà essere in grado di correggere il 
modello gravitazionale attuale. 
 

In questo contesto, tale progetto di tirocinio nasce con l’idea di realizzare simulazioni le più 
realistiche possibili, con l’obiettivo di fornire una stima dell’effettiva capacità della missione 
MMX di migliorare la conoscenza del reale campo gravitazionale di Phobos. Considerando il 
modello ad espansione di armoniche sferiche completo fino al grado 20 come referenza 
realistica e molteplici ipotesi sulla sua inaccuratezza, tale studio ha condotto ad 
un’approssimazione del possibile perfezionamento del modello gravitazionale attuale 
raggiungibile al termine della missione MMX. Questo risultato è utile non solo perché mostra 
le effettive potenzialità della missione, ma anche mette in evidenza quali sono le condizioni in 
termini di orbite e tecniche di misura, che possono condurre alla migliore ricostruzione 
possibile del vero campo gravitazionale di Phobos. 
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 Introduction  
 
Interplanetary space geodesy study of the MMX project. This is the title of the internship, upon 
which this report is written. This headline encloses the main global topic of the entire project: 
the analysis of geodesic parameters within the context of the MMX mission.  
This mission is envisaged by the Japanese space agency, the JAXA, but the collaboration with 
the French government space agency CNES has been demanded for specific operational 
sectors, as for orbital design and mission analysis. 
One of the main mission scientific purpose is the most accurate evaluation possible of the 
geodesic features characterising the Martian moons. Particularly, concerning the primary MMX 
target, Phobos, the Japanese project plans to measure its gravitational field, its ephemeris in 
relation to Mars and its rotation parameter.  
 
In this context, the internship has been realised in the CNES Space Geodesy DSO/DV/GS 
service, which takes part in the Groupe de Recherche de Géodésie Spatiale (GRGS, Space 
Geodesic Resarch Group). 
The entire project is focused on MMX phases dedicated to Phobos exploration. This principal 
concern imposes the necessity of going through the analysis of the specific trajectories which 
will be covered by the MMX satellite near the target body: the QSOs (Quasi-Satellite Orbits). 
Moreover, along its QSOs, the satellite will be sensed to use several measure techniques to 
get a complete Phobos observation. As regards geodesic parameter detection, DSN, LIDAR 
and Optical measurements will be adopted. This feature determines the main internship project 
procedure: the simulation and reinterpretation of these three MMX measures, for the purpose 
of evaluating the mission success in adjusting the actual Phobos gravity model. 
The entire project analysis has been conducted through the employment of the accurate 
CNES software called GINS (Géodésie par Intégrations Numériques Simultanées), able to 
compute trajectories and return planetary physic parameters, with an extreme precision 
level. 
 
Since the multiple aspects to be considered for a proper study development, an introduction 
about the global internship context and its detailed physic background is necessary. 
 
 

1.1 CNES: a main component in Geodesic Science 
 
Founded in 1961 the Centre National d’Etudes Spatiales (CNES, National Centre for Space 
Studies) is the French government spacy agency, responsible for shaping and implementing 
France’s space policy in all Europe. 
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CNES owns the “EPIC” (Etablissement Public à Caractère Industriel Commercial) title, 
meaning that it is a public state-owned company of commercial and industrial nature. It is now 
counting a more-than 2400-workforce, the biggest space budget in Europe and multiple 
collaborations with Arianespace and European Space Agency (ESA) on five main focusing 
sectors: 
 
1. Science and Innovation 
2. Space and Earth Observation 
3. Telecommunications 
4. Launchers 
5. Defence and Security 
 
CNES activities are distributed on four establishment centres: 
 
1. The Toulouse Space Centre: it is the main CNES site, counting 1700 employees, most of 

whom are engineers and managers. It is responsible for project management, research 
and technology studies, operations for satellite station acquisition and orbital control, 
computer and mathematics technology, support activities such as administration, logistics 
and communication. 

2. The Launching site in the Guyana Space Centre:  settled in 1964, 250 employees work 
in this launch site for all the ESA launchers, Ariane, Soyouz and Vega. It is set in Kourou, 
an ideal geographical position, near the equator, which enables launches towards the East 
and the North in maximal security conditions. 

3. The Launcher Direction Centre: created in 1974 in the town of Evry, this site counts 285 
employees ensuring Arian launcher developments, Arianespace production phases and 
realisation of first Vega launcher stages and launch pads for Soyouz launchers; 

4. The Launcher Directorate: settled in in Paris, 185 employees work there for Space policy 
direction and administration.  

 
 
This internship project has been completely realised in the first listed CNES site, the Toulouse 
Space Centre. The latter represents the central point of a vast scientific and university space 
complex, including aerospace engineering schools (ISAE-Supaero, ENAC, INSA, etc.), 
laboratories (OMP, OERA, CESR, etc.) and companies (Airbus Defence and Space, Thales 
Alenia Space, Interspace, etc.). 
In this technical and operational scientific centre led by CNES, this traineeship took specifically 
place in the Midi-Pyrénées Observatory (OMP) establishment, within the Space Geodesy 
service of the Toulouse Space Centre.  
On one side, this service is one of CNES Science Laboratories, taking part in the GRGS, since 
1971. This Space Geodesic Resarch Group is a consortium of French research institutes, 
which collaborate for the purpose of contributing to Space Geodesy analysis, Orbital 
Mechanics studies, Earth’s gravity field calculation, accurate Positioning and Reference 
Systems, etc. 
On the other side, the OMP is a Universe Science Observatory, constituted of Space 
Science, Earth and Environment Laboratories, focused on research, observation, 
education and common international scientific cooperation. 
The OMP counts 360 researchers, 325 engineers, 200 PhD students and postdocs, 
working in six different laboratories:  
 
1. GET: Géoscience Environnement Toulouse (Toulouse Geoscience Environment) 
2. CESBIO: Centre d’Etude Spatial de la BIOsphère (Biosphere Space Study Centre) 
3. IRAP: Institut de Recherche en Astrophysique et Planétologie (Astrophysics and 

Planetology Research Institute) 
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4. LEGOS: Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (Geophysical 
and Oceanographic Studies Laboratory) 

5. ECOLAB: LABoratoire ECOlogie fonctionnelle et environnement (Functional Ecology and 
Environment Laboratory) 

6. LA: Laboratoire d’Aérologie (Aerology Laboratory) 
 
These laboratories cover wide scientific study domains, from deep space exploration and 
interplanetary research, to solar system planet study and Earth interior science. All these 
space branches are treated through laboratory analysis, instrumental results, theoretical 
approaches and numerical simulations.  
 
This internship has been developed with the CNES Space Geodesy team, in GET 
laboratory, focusing on geodesic analysis in the context of the forthcoming MMX mission. 
 
 

1.2 The MMX mission 
 
As its title suggests, this internship project has completely been developed in the framework 
of the Martian Moons eXploration mission.  
This mission is envisaged by the Japan Aerospace Exploration Agency, while the CNES 
collaboration is requested for orbital mechanic design and mission analysis. 
The MMX mission in sensed to be launched in the second half of 2024 and realise the 
exploration of the two Martian moons, Deimos and Phobos. The latter corresponds to the 
primary focus of interest: the first landing on its surface, with a consequent ground sample 
collection, is the main purpose of the entire MMX project. The success in this objective would 
represent an extremely innovative result for all the Space scientific community. 
Overall, the mission appears to have an elevate scientific interest, since it aims to elucidate 
the origin of both the Martian moons. This discovery would enable an important advancement 
in the knowledge of small celestial bodies and early solar system evolution process [2]. 
 
Because of the delicate tasks assigned to the MMX project, several investigations on satellite 
system configuration are being conducted, in order to fix satellite requirements for the mission 
realisation: 
 
• The fixed propulsion system configuration consists in the employment of chemical 

propulsion, both for the outgoing and the return phases; 
• The global spacecraft configuration individuates three separate modules: the Propulsion, 

the Exploration and the Return ones; 
• The satellite launch will be realised in Summer 2024, from Tanegashima Space Center by 

an H3-24L rocket; 
• The total mission life duration is programmed to be more than five years; 
• The target satellite mass has been set at 3500kg; 
• The global power consumption should stay approximately within 900W; 
• The satellite orbital control will be performed by the generation of chemical speed variation 

∆𝑽 ≅ 𝟓. 𝟎𝒌𝒎/𝒔. 
 
Moreover, different launch window constraints are being evaluated at the present moment: 
 

• The nominal launch is supposed in 2024, while the backup one is fixed in 2026; 
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• At the launch date Earth 𝐶3 should be within 18m2/s2;  
• The launch asymptote declination should be within 30°, imposed by the launch site 

and the vehicle types; 
• More than two consecutive weeks in succession should be available within the launch 

window; 
• The time of flight to reach Mars should stay within one Earth year; 
• Considering the nominal launch date and a 3-year stay for a sufficient exploration, the 

departure from Mars should be in 2028 and the return to Earth in 2029. 
 

The global MMX orbital description is represented in the following figure:  
 

 
 
The entire satellite flight within the mission has been divided into five main phases. 
The first one considers the launch and the transfer toward Mars. The interplanetary trajectory 
is supposed to be a direct transfer orbit from Earth to Mars, where several correction 
manoeuvres and precise orbit determination (through two-way Doppler and delta-differential 
one-way ranging technique) will be adopted. 
 
The second phase includes the satellite transfer to Phobos co-orbit. Since the latter is 
characterised by an about zero degree-inclination, it is impossible to reach it directly from the 
interplanetary trajectory. Consequently, a specific Mars Orbit Insertion (MOI) has been ideated: 
it consists in three different steps, globally demanding an approximately two week-duration 
and a maximum ∆𝑽 ≅ 𝟐𝟎𝟎𝟎𝒎/𝒔.  
The following figure represents a 2-Dimensional composition of this consecutive three MOI 
trajectories: 
 
 
 
 
 
 

Figure 1 - Representation of MMX nominal interplanetary trajectories, in J2000 inertial frame [2]. 
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In the MOI1, the spacecraft will be first injected into an ellipsoidal orbit, defined by an apoapsis 
of about 40 times the Mars rayon (globally about 272200km), and a periapsis altitude of about 
500km. The argument of periapsis has not been fixed yet. The most convenient choice would 
be to set it around 0° and 180°: the equatorial plane would thus contain the apoapsis, where 
the next manoeuvre for the inclination change could be realised, leading to a significant 
reduction in the fuel consumption.  
The second transfer step constituted by the MOI2, will start about 3.5 days after the MOI1 
manoeuvre. It corresponds to an intermediate orbit characterised by the same periapsis and 
inclination of the Phobos co-orbit. 
About 2.5 days after, the MOI3 manoeuvre will be performed to lower the apoapsis to the 
Phobos co-orbit one and finally place the satellite on the real Phobos co-orbit around Mars. 
Once reached Phobos, the satellite will begin to orbit on specific trajectories, designed for this 
particular orbital condition: the Quasi-Satellite Orbits, whose features will be detailed in the 
next paragraph. 
 
After the completion of Phobos observation and sampling, the MMX program includes an 
additional third mission phase, consisting in several flybys around or rendez-vous with the 
second Martian moon, Deimos, in relation to the left fuel quantity: the rendez-vous operations 
would require about 500m/s excess compared to flybys.  
In the first case, the satellite would be positioned into Deimos co-orbit through a Hohman 
transfer orbit, while a flyby would need an apoapsis displacement so that the satellite could 
intersect the Deimos trajectory, achieving the orbital resonance. 
 
The fourth MMX phase is centred on the satellite operations for Mars escaping. Considering 
that at this point of the mission the satellite will be orbiting around Phobos or Deimos, the Mars 
Orbit Escape (MOE) consists in three control manoeuvres, representing the MOI reverse 
sequence. Therefore, the escape operations will again demand approximately two weeks and 
a maximum ∆𝑽 ≅ 𝟐𝟎𝟎𝟎𝒎/𝒔.  
During the MOE1 the spacecraft orbit apoapsis will be raised up to 40 times the Mars rayon.  

Figure 2 - Representation of the three MOI manoeuvres employed to reach Phobos co-orbit [2]. 
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In this specific orbital point, the MOE2 manoeuvre will lower the periapsis altitude to 500km 
and turn the orbit inclination into the correct escaping one. 
Finally, the MOE3 will be again execute at the apoapsis in order to insert the satellite in the 
definitive interplanetary transfer orbit, escaping from Mars.  
 
The fifth and last MMX phase concerns the satellite return on Earth, starting from the end of 
the last MOE3 and finishing about one month before the capsule re-entry. As for the outgoing 
flight, a direct transfer orbit will be used. 
In this situation, the employment of trajectory correction manoeuvres and precise orbital 
determination with two-way Doppler and delta-differential one-way ranging technique is 
requested again. In this way the satellite will be conducted to the accurate target point for the 
capsule separation. This capsule, containing Phobos ground samples, will be realised several 
hours before the re-entry in Earth atmosphere. It will then land using a parachute and be 
immediately recovered, while the spacecraft will be de-orbited thought the chemical propulsion 
system, escaping Earth gravity toward interplanetary space.   
 
 

1.3 QSO trajectoires 
 
As specified before, the MMX project is led by the JAXA, but since 2016 CNES is involved in 
its mission analysis and orbital mechanics aspects.  
The latter are being treating by the CNES Flight Dynamics team, who collaborate in the 
definition of preliminary orbital design for the mission phases addressed to the close Phobos 
observation. 
These orbital mechanics studies appear to be extremely delicate because of the particular 
physical conditions in which the satellite will realise its trajectories.  
 
These conditions are the results of the specific Mars-Phobos system, defining the main MMX 
sphere of action. 
Phobos is a Martian natural satellite, whose orbital plane roughly corresponds to both its 
equatorial plane and the Mars one. It is featured by a medium diameter of 22.2km, a surface 
of 1.5483∙10⁹ m² and a mass of 1.07∙10¹⁶kg. Its orbit around Mars is defined by a semi-mayor 
axis of 9375km, a period of 7.65h and an eccentricity of 0.015. 
However, the Martian moon dimension and proximity in relation to its central body generate an 
unusual problematic gravitational environment for any transiting trajectory. 
First of all, Phobos is characterised by a sphere of influence extremely close to its surface. The 
direct consequence is that any satellite orbiting in proximity this celestial body will be inevitably 
subjected not only its gravitational attraction, but also to the larger Martian influence. This 
means that the definition of the satellite motion through common Keplerian dynamics laws is 
forbidden.  
It is thus mandatory to set this orbital analysis as a three body-problem, where the central body 
is Mars, the secondary is Phobos and the third is the satellite. 
Moreover, neither the eccentricity of Phobos orbit around Mars, nor the non-uniformity 
characterising the moon gravitational field can be neglected in this artificial motion study. 
 
In the special environment constituted by this unique Mars-Phobos couple, a kind of retrograde 
orbits have been identified as possible observation trajectories at distances of several dozens 
of kilometres from Phobos surface: the so called Quasi-Satellite Orbits [3].  
These QSO trajectories are inspired by a particular formation flying of two satellites around a 
central body. In fact, a Quasi-Satellite is an object characterised by a specific co-orbital 
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configuration with a secondary planet to which the object stays close over several orbital 
periods.  
This configuration is defined by a 1:1 orbital resonance. In orbital mechanics, a resonance 
occurs when two or more orbiting bodies reciprocally exert a periodic gravitational influence, 
usually due to their orbital period ratio, defined by small integer values (𝒏𝒊). As an example, 
considering two bodies orbiting respectively with orbital periods 𝑻𝟏 and 𝑻𝟐, their resonance 
configuration can be expressed as: 
 

𝑻𝟏

𝑻𝟐
=

𝒏𝟏

𝒏𝟐
                                                  (1) 

In this case, they are characterised by an 𝒏𝟏: 𝒏𝟐 orbital resonance. 
Consequently, such a resonance definition can be interpreted as the ratio between the number 
of orbits completed by two bodies in the same time interval. 
This means that, with its 1:1 resonance with the secondary body, a QSO around a central 
body, takes the identical time to be completed than the orbit realised by the secondary around 
the same primary body. However, these two equal period-orbits are characterised by different 
eccentricities.  
In the specific MMX case, the satellite realises its QSOs around Mars, in 1:1 resonance 
configuration with Phobos:  

 
 
 
In this specific orbital configuration, the spacecraft realising a QSO trajectory follows a direct 
movement from the perspective of the central body, while if observed by the secondary, the 
satellite appears to travel in an oblong retrograde orbit. 
 
For the MMX case, both 2 and 3-Dimensional QSO trajectories are being evaluating. In fact, 
even if orbits within the Phobos orbital plane appear to be easier to be controlled, the sake of 
complete surface mapping and precise gravity estimation leads to the need of QSOs with non-
zero relative inclination with respect to Phobos equator, in order to fly over high latitude zones 
[4]. 

Figure 3 - Schematic representation of QSO trajectories employed in the MMX mission. 
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Because of this necessity, the methodology implemented for simulating them, is not limited to 
planar motions, but can be extended to inclined QSO, whose dimensions are only limited by 
the natural dynamics of the system.  
Since the particularities defining the Mars-Phobos environment, this methodology is 
completely based on a three-body model.  
The initial simplest model considered for describing QSOs is the Circular Restricted Three 
Body Problem (CR3BP), defined by the following dynamics equations: 
  

{
 
 

 
 𝒙̈ − 𝟐𝒚̇ =

𝝏𝜴

𝝏𝒙

𝒚̈ + 𝟐𝒙̇ =
𝝏𝜴

𝝏𝒚

𝒛̈ =
𝝏𝜴

𝝏𝒛

                                                          (2) 

   where the potential function 𝜴 is define as: 
 

 

{
 
 

 
 𝜴(𝒙, 𝒚, 𝒛) =

𝒙𝟐+𝒚𝟐+𝒛𝟐

𝟐
+

𝟏−𝝁

𝒓𝟏
+

𝝁

𝒓𝟐

𝒓𝟏 = √(𝒙 − 𝝁)𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒓𝟐 = √(𝒙 + 𝟏 − 𝝁)𝟐 + 𝒚𝟐 + 𝒛𝟐

                                        (3) 

 
This set of equations is expressed in the barycentric synodic frame, rotating with Mars and 
Phobos. It adopts the normalised quantity for: 
 
• the distance: the length unit corresponds to the Phobos orbit semi-major axis; 
• the time: the time unit correspond to the Phobos orbital period around Mars and it is defined 

considering a constant angular velocity (2π∙time unit); 
• the mass: μ is the mass parameter, assuming an approximate value of 1.66∙10 ֿ  ⁴ , defined 

through Phobos (𝑴𝑷𝒉𝒐𝒃𝒐𝒔) and Mars (𝑴𝑴𝒂𝒓𝒔) masses: 
 

𝝁 =
𝑴𝑷𝒉𝒐𝒃𝒐𝒔 

𝑴𝑷𝒉𝒐𝒃𝒐𝒔+𝑴𝑴𝒂𝒓𝒔  
                                                 (4) 

However, as expressed before, Phobos orbit eccentricity is not negligible since it also 
influences the satellite motion within this particular environment. 
Consequently, it is necessary to pass to an Elliptical Restricted Three Body Problem (ER3BP), 
in order to compute more realistic QSO trajectories. 
The dynamics equation system characterising this model, appears to be exactly the same as 
the (2), used for the CR3BP, with the only difference that the potential function has also to take 
into account Phobos eccentricity (𝒆): 
 

𝜴𝑬(𝒙, 𝒚, 𝒛) =
𝟏

𝟏+𝒆∙𝒄𝒐𝒔(𝝂)
(
𝒙𝟐+𝒚𝟐+𝒛𝟐

𝟐
+

𝟏−𝝁

𝒓𝟏
+

𝝁

𝒓𝟐
)                         (5) 

This time, the potential function is also defined in function of the satellite true anomaly 𝝂, the 
time dependent-orbital parameter. This element leads to the definition of normalised quantities 
also depending on time:  
 
• the distance: the length unit corresponds to the actual orbital radius of Phobos for each 

value of 𝝂; 
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• the time: since the angular velocity is no more constant on an elliptic orbit,the time unit is 
also time-dependent. 
 

On the contrary, the mass parameter μ always assumes the same time independent value.  
 
However, the consideration of the only Phobos eccentricity is not sufficient to obtain realistic 
QSO trajectories. For this aim, a complex gravity characterization of Phobos needs to be used 
instead of the point mass approximation. In this context, a spherical harmonic (SH) expansion 
of Phobos gravity based on Chao-Rubincam model [5], has been taken into account. 
The adoption of the spherical harmonic model enables to compute Phobos gravitational 
acceleration only within a reference frame cantered on its mass centre, and whose axes rotate 
with it. This specific reference frame is referred to as the Body Centred Body Fixed (BCBF) 
system.  
The best solution found is thus the introduction of a new equation system, providing the full 
time-invariant differential equations of the Mars-Phobos ER3BP-SH in Phobos BCBF frame, 
with the fixed physical units of the CR3BP.  
This new equation system consists in the description of the ER3BP dynamics with the mean 
anomaly (M) as independent variable.  
Once again, the first three dynamics equation are the same as in system (2), but two elements 
make the main difference. 
The first one is that a fourth equation is added: 
 

𝝂̇ = 𝝎𝒛(𝝂)                                                          (6) 

 The second difference is that the potential function is now expressed as: 
 

𝜴𝑴(𝒒) = 𝑼𝑮,𝟏 (𝒒 −
𝟏−𝒆𝟐

𝟏+𝒆∙𝒄𝒐𝒔(𝝂)
[𝟏, 𝟎, 𝟎]𝑻) + 𝑼𝑮,𝟏(𝒒) −

(𝟏+𝒆∙𝒄𝒐𝒔(𝝂))
𝟒

(𝟏−𝒆𝟐)
𝟑 (

𝒒𝑻𝒑𝒒

𝟐
+ (𝟏 − 𝝁)

𝟏−𝒆𝟐

(𝟏+𝒆∙𝒄𝒐𝒔(𝝂))
𝟐 𝒙)      (7) 

with: 
 

{
 
 

 
 𝒒 = (𝒙, 𝒚, 𝒛)

𝝎(𝝂) =
(𝟏+𝒆∙𝒄𝒐𝒔(𝝂))

𝟐

(𝟏−𝒆𝟐)
𝟑
𝟐

[𝟏, 𝟎, 𝟎]𝑻

𝑷(𝝂) = (𝝎(𝝂) ∧)𝟐

                                      (8) 

 
where the 𝑼𝑮,𝒊 term represents the gravitational acceleration due to i body: for Phobos case, 
it includes the gravity Spherical Harmonic accelerations [6]. 
 
At the same time, it is also possible to use a method defining the satellite relative speed and 
position, in relation to Phobos. 
The starting point is the study of the unperturbed Hill’s relative motion equations for the elliptic 
case, assuming that the attraction of the secondary body is negligible (μ = 0). 
The consequent dynamics equations are the Tschauner-Hempel equations: 
 

{
𝒙̈ − 𝟐𝒚̇ −

𝟑𝒙

𝟏+𝒆∙𝒄𝒐𝒔(𝝂)
= 𝟎

𝒚̈ + 𝟐𝒙̇ = 𝟎
𝒛̈ + 𝒛 = 𝟎

                                              (9) 
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The solution of this differential equation system can be written as a function of six parameters, 
referred to as the Osculating Elements, C = [α, φ, δx, δy, γ, ψ] ] [7], where: 
 
• α and γ represent the amplitude of satellite motion in the in-plane and in the out-of-plane 

directions, respectively; 
• φ and ψ represent the injection phases; 
• (δx, δy) represent displacement of the centre of motion in Phobos orbital plane, where (0, 

0) corresponds to the Martian moon mass centre. 
 

As a consequence, the equation solutions, defining the six components of the satellite state 
vector (position and speed), are expressed as follows: 
 

𝒙 = 𝜶 ∙ (𝟏 + 𝒆 ∙ 𝒄𝒐𝒔(𝝂)) 𝒄𝒐𝒔(𝝂 + 𝝋) + 𝜹𝒙

𝒚 = −𝜶 ∙ (𝟐 + 𝒆 ∙ 𝒄𝒐𝒔(𝝂)) 𝒔𝒊𝒏(𝝂 + 𝝋) + 𝜹𝒚

𝒛 = 𝜸 ∙ 𝒄𝒐𝒔(𝝂 + 𝝍)

𝒙̇ = −𝜶 ∙ (𝒔𝒊𝒏(𝝂 + 𝝋) + 𝒆 ∙ 𝒔𝒊𝒏(𝟐𝝂 + 𝝋))

𝒚̇ = −𝜶 ∙ (𝒄𝒐𝒔(𝝂 + 𝝋) + 𝒆 ∙ 𝒄𝒐𝒔(𝟐𝝂 + 𝝋))

𝒛̇ = −𝜸 ∙ 𝒔𝒊𝒏(𝝂 + 𝝍)

                          (10) 

 
Successively, it is possible to set two realistic hypotheses: 
 
1. The mass of the secondary body (Phobos) is much smaller than the primary (Mars) one:  

μ ≪ 1; 
2. The satellite orbits in the proximity of the secondary body: r2 ≪ 1. 
       
These considerations allow to eliminate from equation system (9) all the negligible terms, 
obtaining the simplified equation system: 
 

{
 
 

 
 𝒙̈ − 𝟐𝒚̇ −

𝟑𝒙

𝟏+𝒆∙𝒄𝒐𝒔(𝝂)
= −

𝟏

𝟏+𝒆∙𝒄𝒐𝒔(𝝂)
∙ (

𝝁𝒙

𝒓𝟐
𝟑)

𝒚̈ + 𝟐𝒙̇ = −
𝟏

𝟏+𝒆∙𝒄𝒐𝒔(𝝂)
∙ (

𝝁𝒚

𝒓𝟐
𝟑)

𝒛̈ + 𝒛 = −
𝟏

𝟏+𝒆∙𝒄𝒐𝒔(𝝂)
∙ (

𝝁𝒛

𝒓𝟐
𝟑)

                             (11) 

 
Finally, this set of differential equations can be turned into an equation system of Osculating 
Elements, by the application pf the constant variation method to solutions (10). 
The consequent resolution of the Osculating Element system, leads to compute satellite state 
vector components, expressed in the Cartesian coordinate system, at each step of the 
integration.  
 
This QSO simulation methodology presents multiple advantages for the MMX mission 
analysis.  
Firstly, thanks to the employment of the Osculating Elements, it enables a full control of 
trajectory design parameters, such as the amplitude, the phases and the displacement of the 
satellite motion centre. 
Furthermore, this method can be applied to both planar and 3-Dimensional QSO trajectories, 
exactly in the same way, without any excessive computational time increase. 
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Figure 4.b - 2D low-altitude QSO.  
 

  

In fact, the most significant difference is that the calculation of 2-Dimensional orbits involves 
an out-of-plane amplitude 𝜸 = 𝟎, representing the null Cartesian z-dimension 𝒛 = 𝒛̇ = 𝟎. 
Since these QSOs are contained in the Phobos orbital plane around Mars, they can be 
represented through xy-graphs:  
 
 

EME2000 frame Mars-
centred  

EME2000 frame Phobos-
centred 

Phobos BCBF rotating 
frame 

   

   

 
 
On the contrary, 3-Dimensional QSO trajectories are characterised by an out-of-plane 
amplitude 𝜸 ≠ 𝟎. However, both the literature and orbit simulation prove that the consideration 
of 𝜸 > 𝟎. 𝟗𝜶 leads to trajectory instabilities. Consequently, it is necessary to individuate couples 
(𝜸, 𝜶) able to respect the QSO stability conditions, while maximising the reachable latitude over 
Phobos equator, in order to explore the largest portion possible of the target surface.  
Effectively, the ideal purpose is to realise orbits characterised by a high inclination and close 
to the Martian moon, so that areas at high latitudes would be accessible with an excellent 
resolution. 
However, the combination of decreasing the satellite altitude (𝜶), while increasing the orbital 
inclination (𝜸) inevitably causes instable QSO trajectories. 
An example of a stable 3-Dimensional QSO is presented in the following figures: 
 
 
 
 

Figure 4.a - 2D high-altitude QSO.  
 

  

Figure 4 - Representation of 2-Dimensional QSO trajectories. 
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To conclude, this set of computed QSO trajectories not only enable the satellite to orbit in 
Phobos proximity and observe its surface, but also they allow the detection of its gravity field, 
whose accurate restitution represents one of the main scientific purpose of the MMX mission.  
 
 

1.4 Gravity field model 
 
As mentioned before, the main focus of this internship project is the analysis of MMX mission 
capability of recovering current Phobos gravity field model.  
 
Effectively, at the present moment the knowledge of this Martian moon geodesic feature has 
not reached an excellent accuracy level yet. This means that nowadays Phobos gravity model 
is characterised by a certain imprecision. 
Consequently, MMX will start its exploration, relying on this approximate target gravity 
awareness. However, during the mission phases centred on Phobos exploration, a continue, 
gradual update of Phobos model will be realised. 
This procedure is based on the realistic concept that the closer the satellite will move towards 
the Martian moon and the more measurements it will make, the more it will be able to increase 
its precision in detecting gravity field, through the employment of specific measure techniques 
(such as Doppler, LIDAR and Optical navigation images).  
This improvement in Phobos gravity restitution with the shorting of spacecraft altitude over 
Phobos surface and its observation operations, will be translated in an upgrade in the current 
gravity model available along the mission.  
The final purpose is that, once the satellite will have completed its QSOs near the Martian 
moon, the new obtained Phobos gravity model will result much more accurate and closer to 
the real field, than the initial template used at the beginning of the mission. 
 
Nevertheless, in order to understand the evaluation in this Phobos geodesic parameter, it is 
firstly necessary to know how its gravity field is modelled.  
Firstly, its model takes origin from the body shape and gravity potential (U) model, developed 
as a series of spherical harmonics [8]. The latter can be expressed as: 
 

EME2000 frame Mars-
centred  

EME2000 frame Phobos-
centred 

Phobos BCBF rotating 
frame 

    

Figure 5 - Representation of 3-Dimensional QSO trajectories. 
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𝑼(𝒓,𝝋, 𝝀) =  
𝝁

𝒓
∙ ∑ (

𝑹

𝒓
)
𝒍

∞
𝒍=𝟎 ∙ ∑ 𝑲𝒍𝒎𝒀𝒍𝒎(𝝋, 𝝀)𝒍

𝒎=−𝒍                (12) 

where: 
 
• (𝒓,𝝋, 𝝀) are the spherical coordinates relative to the body, its radius vector latitude and 

longitude, respectively (Figure 6);  
• R represents the reference length (normally the semi-mayor body axis);  
• 𝑲𝒍𝒎 corresponds to the dimensionless coefficient of degree l and order m; 
• 𝒀𝒍𝒎 is the complex surface harmonic function of degree l and order m; 
• 𝝁 is the body standard gravitational parameter, defined by its gravitational constant G and 

its mass M: 
𝝁 = 𝑮 ∙ 𝑴                                               (13) 

 

 
 
The 𝒀𝒍𝒎 terms are strictly linked to the usual Legendre polynomials (order m = 0) and the 
relative functions (order m ≠ 0) 𝑷𝒍𝒎: 
 

𝒀𝒍𝒎(𝝋, 𝝀) = 𝑷𝒍𝒎(𝒔𝒊𝒏𝝋)𝒆𝒊𝒎𝝀                             (14) 

where, for orders m ≥ 0, and considering 𝒖 = 𝒔𝒊𝒏𝝋, the Legendre elements are defined as 
follows: 
 

𝑷𝒍𝒎(𝒖) =
(𝟏−𝒖𝟐)

𝒎
𝟐

𝟐𝒍!
 ∙

𝒅𝒍+𝒎

𝒅𝒖𝒍+𝒎
[(𝒖𝟐 − 𝟏)𝒍]

𝑷𝒍,−𝒎(𝒖) = (−𝟏)𝒎 ∙
(𝒍−𝒎)!

(𝒍+𝒎)!
𝑷𝒍𝒎(𝒖)

                            (15) 

These surface harmonic functions 𝒀𝒍𝒎 can be graphically represented, in relation to different 
orders and degrees: 

Figure 6 - Spherical coordinate schematic representation. 
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With this 𝒀𝒍𝒎 definition, it is possible to express the 𝑲𝒍𝒎 terms as: 
 

𝑲𝒍𝒎(𝝋, 𝝀) =
(−𝟏)𝒎

𝑴𝑹𝒍
∙ ∭𝒓′𝒍 𝒀𝒍,−𝒎(𝝋′, 𝝀′)𝒅𝑴′                   (16) 

The previous expression relies on an integral extended to the entire body volume and on the 
current spherical coordinates (𝒓′, 𝝋′, 𝝀′) and mass element 𝒅𝑴′ of the considered point on the 
body surface. 
 
Moreover, these complex spherical harmonic elements 𝑲𝒍𝒎 are normally related to the real 
Stokes coefficients 𝑪𝒍𝒎 and 𝑺𝒍𝒎 (m ≥ 0): 
 

(𝟐 − 𝜹𝟎,𝒎)𝑲𝒍𝒎 = 𝑪𝒍𝒎 − 𝒊𝑺𝒍𝒎

(𝟐 − 𝜹𝟎,𝒎)𝑲𝒍,−𝒎 = (𝑪𝒍𝒎 + 𝒊𝑺𝒍𝒎) ∙
(𝒍+𝒎)!

(𝒍−𝒎)!
(−𝟏)𝒎               (17) 

where 𝜹 is the Kronecker symbol. 
It is exactly this set of Stokes coefficients to be implemented in order to define a body gravity 
field model described as expansion of spherical harmonics. 
They are completely related to the spherical harmonic functions and at the same time, to the 
body shape. In fact, they are defined as follows: 
 
• Zonal coefficients: they are characterised by an order m=0. If they assume a value 

different from zero, they represent a lack of symmetry along the body latitude (“North-
South” direction), relative to its equatorial plane. 

• Sectorial coefficients: they are characterised by the same degree and order value, l=m. 
If they are different from zero, they represent a lack of rotational symmetry around the body 
polar axis, along its longitude. 

• Tesseral coefficients: they are characterised by different degree and order values, l ≠ m 
≠ 0. If they are different from zero, they represent a lack of rotational symmetry around the 
body polar axis, along both its longitude and latitude. 

 
However, in geodesic analysis the normalised version of Stokes coefficients is usually 
adopted: 

Figure 7 - Spherical harmonic schematic representation. 
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𝑪̅𝒍𝒎 =
𝑪𝒍𝒎

𝑵𝒍𝒎

𝑺̅𝒍𝒎 =
𝑺𝒍𝒎

𝑵𝒍𝒎

                                             (18) 

where the 𝑵𝒍𝒎 term is defined as follow: 
 

𝑵𝒍𝒎 = [
(𝟐−𝜹𝟎,𝒎)(𝟐𝒍+𝟏)(𝒍−𝒎)!

(𝒍+𝒎)!
]

𝟏

𝟐                               (19) 

In the context of this internship project, gravity filed models of both the central body, Mars, and 
its moon, Phobos, have been defined by ones of the respective most precise known set of 
normalised Stokes coefficients. 
 
Consequently, this entire analysis aimed to simulate the restitution of the Martian moon gravity 
field, has been based on the capability of the MMX mission to return accurate 𝑪̅𝒍𝒎 and 𝑺̅𝒍𝒎 
values. 
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 Employed and 
implemented informatics tools 

 
The main purpose of this internship project is the evaluation of the accuracy level reachable in 
Phobos gravity filed model recovery within the MMX mission. Consequently, this estimation 
has to take into consideration the mission phases strictly dedicated to the specific Martian 
moon exploration.  
It has thus been necessary to simulate and analyse the satellite capability of returning a precise 
Phobos gravity field, while it is realising its QSO trajectories, considering the employment of 
measurement techniques fixed by the JAXA. 
 
The search of this primary objective led to the necessity of three separate, but consecutive 
moments, within this project development: 
 
1. A precise orbital analysis, addressed to the treatment of preliminary QSO trajectories 

computed by the JAXA and CNES Flight Dynamics teams; 
2. An accurate evaluation of MMX mission effective possibilities in generating a reliable 

restitution of Phobos gravity filed; 
3. A detailed study conducted on the obtained results: visual and graphical representations 

proved to be inevitable for accurate result interpretations. 
 
It has been possible to complete the first two steps, throughout the employment of the powerful 
CNES GINS software, expressly designed for orbital and geodesic studies. Effectively, this 
tool enables both realistic orbital processing and planetary physical parameter correction. 
Thus, GINS is able to provide all the demanded results. 
However, for what concerns the consecutive analysis of these results, particular graphical tools 
have been needed.  
Therefore, a specific Python module has been developed, for the visualisation of main GINS 
outputs: the Visualisation Module. 
 
The two following paragraphs will detail both these informatics tools, the GINS software and 
the Python module. 
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2.1 The GINS software 
 
GINS is an orbitography software completely realised by the CNES Space Geodesy team. Its 
code writing started at the beginning of the 1970s, and from that moment on, it has known 
numerous evolutions, updates and improvements, constantly following the changes in 
international standards. Nowadays, it is constituted by 240000 Fortran90 code lines [9].   
At first, GINS got born to process the available space geodesy data, taking into account only 
one satellite at a time.  
In the early 1990s, the software became able to include more than one satellite: it was 
designed to consider GPS constellation satellites and to process data from their receivers, 
both on board and on the Earth ground.  
A fundamental evolution arrived in 1999, when GINS turned into an “planetary” software, able 
to process DSN (Deep Space Network) tracking data of satellites orbiting around bodies other 
than the Earth (Mars, Venus, planetary satellites, asteroids). 
In 2009, GINS was updated to also treat the multi-constellation cases of study. 
From 2010 up to the present day, the software continues to be constantly updated in order to 
improve its reliability and calculation times for routine processes of space gravimetric missions 
(CHAMP, GRACE, GOCE) and DORIS, GNSS, LASER and VLBI ((Very Long Baseline 
Interferometry)) data processes for the kinematics and the terrestrial reference system as part 
of the GRGS's contribution to international services (IGS, IDS, ILRS, IVS). 
The main applications of the GINS software can be classified in four macro categories: 
 
1. Precise calculation of artificial satellite orbits around different celestial bodies in the solar 

system; 
2. Determination, correction and restitution of geodesic features: gravitational field 

coefficients, rotation parameter, ground station position and speed, solid and oceanic tide 
model coefficients, mean oceanic surfaces, atmospheric model parameters, etc.; 

3. Simulation of several measurement techniques; 
4. Treatment of cases without any satellite (landers, VLBI). 

 
As detailed below, all these software applications have to be developed following the same 
procedures, dictated by the GINS standard operating. 
 
 

2.1.1  GINS Organigram 
 
In order to clarify the GINS functioning, the following figure represents a detailed visual 
schema, showing the main software components. 
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As underlined by this schema, the first necessary component for the GINS chain it is the so 
called “Director” input file. This element contains all the instructions the software needs to 
realise the desired procedure.  
The “Director” file is characterised by the following structure: 
 

 
 
 
 
The elements present in this schema, are here described: 
 
• The version specifies the GINS edition to be used for a specific study case. 

Figure 8 - Schematic representation of the GINS software organigram. 

 

Figure 9 - Schematic representation of the “Director” file structure. 
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• The date parameter identifies the interval time relative to the whole computation. The 
interval starting and the ending instants are defined by the values assumed by the arc start 
and arc stop parameters.  

• The model section specifies which models are adopted for the computation, in terms of 
central body, environment (physical phenomena to be taken into account and natural 
satellite) and mean pole location.  

• The object section lists all the elements involved in the computation: ground stations, 
constellation or satellite(s), their initial state vectors and the forces acting on them, and, in 
the only case of VLBI computation, the quasar model. 

• The observation section describes all the measurements realised between objects and 
the way they are taken into account. In its interior, the inter-object data subsection mainly 
defines between which objects these measurements are effectuated, the reference 
“Measurements” file, the measurement type (laser, Doppler, interferometer, ephemeris, 
inter-satellites, etc.), the a priori standard deviation on measurements (𝝈𝒎𝒆𝒔) and on 
adopted models (𝝈𝒎𝒐𝒅).  
In this context, it is important to underline that the quadratic mean of these two last 
parameters defines the white noise 𝑾𝒏 characterising each type of measurements: 

 

 𝑾𝒏 = √
𝟏

𝟐
∙ (𝝈𝒎𝒆𝒔

𝟐 + 𝝈𝒎𝒐𝒅
𝟐)                                (20)                                                     

Moreover, another remarkable parameter is defined in this section. In the removal 
subsection, the time simulation step-size between consecutive measurement simulations 
is here expressed in seconds. 

• The parameter section describes all the elements of the specific study case, including the 
so defined adjustable parameters, which are set as free, so that GINS can modify and 
correct them, for the purpose of obtaining realistic and accurate results. 

• The output section specifies which elements have to be inserted in the desired GINS 
outputs. 

• The user extension section gathers various parameters used for extending GINS standard 
functionality. 
 

Considering the GINS organigram in Figure 8, the second element necessary for the software 
operating is the “Database”. It contains a list of specific files thoroughly describing every 
physical parameter relative to all the celestial bodies considered in GINS, callable from the 
“Director” file. 
 
Both the “Director” file and the “Database” represent the input elements for the PREPARS 
module. This module constitutes a first important step in the complete GINS chain, since it 
allows to turn the input “Director” instructions into a precise formulation readable from the GINS 
software. In fact, the PREPARS output is an “Intermediate” file, which contains all the 
calculation directions, translated in GINS informatics language. 
Thus, this “Intermediate” file represents the effective input element for the real software, which, 
in turn, gives birth to four main outputs: 
 
1. “Ephemeris” file, containing the satellite tabulated orbits which have been adjusted during 

the process and their possible extrapolation. Various formats are possible for this file, but 
the standard counts: 
 
• the satellite identifying number 
• the exact integration instant, expressed in Julian Day and Second; 
• the time reference frame (TAI, TUC, TE, etc.) 
• the coordinate system (XYZ, RTN, AEI, etc.) 
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• the celestial reference frame (EME, etc.) 
• the reference mean equator date (J2000, 1950.0, etc.) 
• the three components of the satellite position (expressed in [m]) speed (in [m/s]) and 

acceleration (in [m/s²]) vectors in the integration reference frame;  
• the three components of the satellite position (expressed in [m]) and speed (in [m/s]) 

vectors in the terrestrial reference frame; 
• the eclipse index ranging from 0 to 1 expressing the satellite passage in the shade 

(index=0) or in the half-light (0<index<1) of a celestial body; 
• the quality index, expression of the accuracy level. 
 

This output file can be in turn, an input for GINS, as an ephemeris “Measurement” file to 
enter in the “Director” observation block, or as a bulletin source to insert in the object 
section, under heading initial state vector. 

 
2. “Listing” file, the main software output, containing a list describing the performed 

calculations and parameters. It involves a global summary of all the main results: general 
statistics on measurement residuals for each iteration, adjusted parameter values and 
characteristics of input models and “Director” file. 
 

3. “Normal Equations” file, written in a binary format and containing the set of p linear 
equations linking p unknown parameter values, which can be expressed in the form a 
symmetrical definite positive matrix. This file can be read and used by the various programs 
in the DYNAMO package, which leads to their resolution. 

 
4. “Statistics” file, containing individual measurement residuals and all information useful to 

produce measure statistics, graphical representation and evolution in time control.  
 

 

2.1.2  GINS software reference system 
 

Before starting to talk about how effectively the GINS software works, it is preliminary important 
to know which are the possible reference frames it can use to realises all its data computations. 
It is therefore necessary to rapidly describe GINS time and space scales, both of which are 
defined by the International System (IS) units.  
 
Concerning time references, International Atomic Time (IAT) is used in study cases where 
Earth represents the central body, while Barycentric Dynamical Time (BDT) is preferred for all 
other solar system bodies. 
All dates involved in orbit descriptions, are expressed considering the modified Julian date 
1950.0 (01/01/1950) as the origin. Generally, the input data are converted to IS and IAT units 
when being read, along with result values reported in output files (orbits, normal equations, 
statistic files), which are also normally expressed in IS units. 
However, input and output files can employ different date systems: 
 
• Calendar dates: DD/MM/YYYY, DD/MM/YY or DOY/YYYY (Day of Year/Year); 
• Julian dates 1950 (JUL50) = days after 01/01/1950 at 0h; 
• Julian dates J2000 = days after 01/01/2000 at 12h; 
• Julian/Gregorian dates = J2000 dates + 2451545 days; 
• Modified Julian dates (MJD) = J2000 date – 51544.5 (days); 



 Interplanetary space geodesy study of the MMX project                               Rebecca Martinelli 
 __________________________________________________________________________________  

 
21 

 

• GPS dates: WWWW/D = GPS week and day of the week (from 0=Sunday to 6=Saturday, 
week 1 = week starting 13/01/1980). 

 
Moreovere, these files can use various time scales: 
 
• IAT = International Atomic Time; 
• UTC (Coordinated Universal Time). The relation between the UTC and the IAT depends 

on the date in question (UTC = IAT – 34.0s at the start of 2011); 
• GPS time (GPST = IAT-19 s); 
• BDT = Barycentric Dynamical Time; 
• TT = Terrestrial Time (TT=IAT +32.184 s). 

 
In any case, if necessary, GINS is able to perform conversions between these several time 
scales and date systems. 
 
As regard the space references, many different frames are again possible.  
Anyway, it is always first necessary to fix the central body, around which all the orbits have to 
be calculated. This body can be chosen between the Earth and any other celestial body within 
the Solar System, implemented in the GINS software. The central body centre of mass 
represents the origin of the main coordinate reference system, whose axis orientation follows 
the usual international conventions.  
However, in most cases, two main reference frames are adopted: a spatial system linked to 
the central body and the inertial EME2000 (Earth's Mean Equator, at 12:00 Terrestrial Time on 
1 January 2000) reference system, in which the dynamical computations are made.  
Moreover, for what concerns coordinates system, the standard employed for GINS calculations 
is the Cartesian one (x,y,z).  
Nevertheless, for some input and output files, different coordinate and reference systems are 
available. In fact, in order to model the satellite motion, process particular data or realise 
specific calculations regarding the central and secondary bodies, GINS offers the possibility to 
choose between the most common frame systems employed in space geodesic studies: 
 
• Ellipsoidal reference system: it adopts ellipsoidal coordinates (φ,λ,h), describing the 

ellipsoidal longitude φ, measured positively from South to North, the longitude λ, measured 
positively from West to East, and the height h, above the ellipsoid surface. It owes its name 
to the closest mathematical modelled surface to the real celestial rotating body one: a 
revolution ellipsoid or of a sphere flattened at its poles. These shapes are featured by the 
equatorial semi-mayor axis a and the polar semi-minor axis b, defining their oblateness f 
= (a-b)/a. In case of spherical surface shape (f=0, rayon R), these coordinates are referred 
to as spherical coordinates, and they can be linked to the rectangular coordinates, by the 
following geometrical relations: 
 

{

 𝒓 = 𝑹 + 𝒉                         
𝒙 = 𝒓 ∙ 𝒄𝒐𝒔(𝝋) ∙ 𝒄𝒐𝒔(𝝀)

𝒚 =  𝒓 ∙ 𝒄𝒐𝒔(𝝋) ∙ 𝒔𝒊𝒏(𝝀)

 𝒛 =  𝒓 ∙ 𝒔𝒊𝒏(𝝋)                

                                           (21) 

 
• Local ellipsoidal reference system: it adopts two angles in order to individuate a specific 

point direction in relation to a particular observer or geodesic instrument. These angular 
coordinates are the Elevation (or Altitude) angle γ, set between the local normal direction 
and the imaginary line linking the observer to the observed object, and the Azimuth angle 
θ, between the projection of the observed object direction on the local horizontal plane and 
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a system reference direction. This last direction is usually identified with the North or with 
the normal of the reference ellipsoid. 
 

• Keplerian orbital elements: this specific spatial system allows to describe any object orbit 
around the central body and it is constituted by the six following elements: 
 

                                             

𝒂 ∶  semi − mayor axis
𝒆 ∶  eccentricity
𝒊 ∶  inclination
𝝎 ∶  argument of periapsis
𝜴 ∶  argument of ascending node
𝑴 ∶  mean anomaly

 

 
The Keplerian elements are able to define the form of the tangential ellipse to an object 
orbit, its orientation in relation to the central body and the exact position of the studied 
object on the ellipse. Moreover, they conduce to the computation of the elliptical orbital 

period (𝑻 = 𝟐𝝅 ∙ √
𝒂𝟑

𝝁
). 

If the object in question realises an unperturbed motion along its trajectory, only subjected 
to the attractional forces exercised by the central body, all the Keplerian elements defining 
its orbit are constant, apart from the mean anomaly, which varies over time along with the 
object position. However, even if the orbiter is exposed to other perturbing forces, its 
Keplerian elements usually change slowly in time and it is always possible to define at any 
moment an osculating orbit, based on its instantaneous Keplerian elements. 
 

• Satellite RTN local orbital coordinates: this system has its origin in the satellite centre 
of mass and it is defined by three main directions. The radial direction R, links the system 
origin to the central body centre of mass, the tangential direction T, along the satellite track 
and parallel to its speed vector, and the normal direction N perpendicular to the orbit plane 
completing the right-hand orthogonal frame. This kind of coordinate system is especially 
appropriate for ephemeris analysis along the orbit. 
  

• Coordinate systems linked to the satellite: every satellite is characterised by its own 
coordinate system, which identifies the position of its various components. Its origin and 
mayor axis depend on the spacecraft and its attitude law, while its main coordinates have 
to be specified in the input file of the satellite macro-models. 

 
Despite the various reference systems utilisable by GINS, the realisation of specific coordinate 
changes is within the software capabilities. 
In fact, a given set of position and speed coordinates (𝑷𝟏, 𝑽𝟏) expressed in a particular 
reference fame 1, can always be expressed in another reference frame 2 by the correspondent 
coordinates (𝑷𝟐, 𝑽𝟐), through the use of the transformation relations, containing the relative 
rotation matrix M(t): 
 
 

{

𝑷𝟐 = 𝑴(𝒕) ∙ 𝑷𝟏

𝑽𝟐 = 𝑴(𝒕) ∙ 𝑽𝟏 + 
𝒅𝑴(𝒕)

𝒅𝒕
∙ 𝑴(𝒕)−𝟏 ∙ 𝑷𝟐

 

                        (22) 
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2.1.3  The GINS software structure 
 
Once understood on which time and space reference frames GINS bases its calculations, it is 
possible to pass to the description of the real software structure. The latter is constituted by 
the concatenation of the steps represented in the figure below: 
 

 
 
A detailed description of each of the GINS step is reported below. 
 
 
GINS first step: Data read and management   
Starting from the beginning, the GINS software receives the “Intermediate file as input. It is so 
able to interpret all the instructions and data it needs to realise a specific calculation. Moreover, 
in this first step, GINS already starts to elaborate the freed parameters: the physical elements, 
whose initial a priori value can be adjusted by GINS in order to get closer to a more realistic 
condition. 
 
 
GINS second step: Calculation of satellite orbits    
Once GINS received the instructions for a specific study case and all the necessary data from 
the input file, it moves to the numerical computation of artificial satellite orbits. It consists of a 
dynamics equation integration between specific initial and final time instants, [ 𝒕𝒊𝒏 , 𝒕𝒇𝒊𝒏 ]. 
 
In order to realise this computation, the software necessitates two main pieces of information: 
 
1. The satellite initial state vector at the time instant 𝒕𝟎 =  𝒕𝒊𝒏, [ 𝒓̅𝟎 , 𝒓̇𝟎  ] (where 𝒓𝟎 =

( 𝒙𝟎 , 𝒚𝟎 , 𝒛𝑶 ) and 𝒓̇𝟎 = ( 𝒙̇𝟎 , 𝒚̇𝟎 , 𝒛̇𝟎 ) are respectively its initial position and speed vectors, 
here written in Cartesian coordinates) or the relative Keplerian elements (𝒂𝟎 , 𝒆𝟎 , 𝒊𝑶,
𝜴𝟎 , 𝝎𝟎 ,𝑴𝟎 ); 
 

Figure 10 - Schematic representation of the GINS software structure. 
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2. Models of all the forces acting on the satellite along its orbit. 
 
Starting from these elements, GINS calculates the numerical integration of the fundamental 
dynamics equation: 
 

𝒓̈ =  
𝒅𝟐𝒓̅

𝒅𝒕𝟐
= ∑ 𝑭𝒊𝒏 (𝒓 , 𝒓̇ , 𝜶𝒊)                                             (23) 

where 𝒓̈ is the satellite acceleration, ∑ 𝑭𝒊𝒏  the sum of the n forces acting on the orbiter and 𝜶𝒊 
the adjustable parameters on which the n forces depend. The integration of equation (23) 
conducts to the calculation of the desired orbit.  
However, coupled with the trajectory computation, the adjustment of the initial state vector and 
of the adjustable dynamic parameters have also to be calculated. This step involves the 
derivation of the fundamental dynamics equation in relation to the respective elements ( 𝒓̅𝟎 and 
𝜶𝒊 ) : 
 

 
𝒅𝟐

𝒅𝒕𝟐
(

𝝏𝒓

𝝏𝒓𝟎
) =

𝝏𝒓̈

𝝏𝒓𝟎
= ∑

𝝏𝑭

𝝏𝒓𝒏 ∙
𝝏𝒓

𝝏𝒓𝟎
 + ∑

𝝏𝑭

𝝏𝒓̇
𝒏 ∙

𝒅

𝒅𝒕
(

𝝏𝒓

𝝏𝒓𝟎
)                (24) 

 
𝒅𝟐

𝒅𝒕𝟐
(

𝝏𝒓

𝝏𝜶𝒊
) =

𝝏𝒓̈

𝝏𝜶𝒊
= ∑

𝝏𝑭

𝝏𝒓𝒏 ∙
𝝏𝒓

𝝏𝜶𝒊
 + ∑

𝝏𝑭

𝝏𝒓̇
𝒏 ∙

𝒅

𝒅𝒕
(

𝝏𝒓

𝝏𝜶𝒊
) + ∑

𝝏𝑭

𝝏𝜶𝒊
𝒏              (25) 

 
All these three differential equations need to be solved with a very high precision, since GINS 
furnish results characterised by an excellent accuracy level. As a consequence, GINS adopts 
one of the actual most used integration method for orbitohraphy: the Cowell integration method 
[10].  
This method was proposed in 19th century by Numerov and then developed by Cowell as a 
multistep “prediction-correction” method, which brings the resolution of differential equations. 
It proved to be particularly suitable for studies of orbital mechanics especially because: 
 
• It allows to conserve in memory information relative to the previous steps (whose number 

depends on the integration degree), useful for interpolation at different dates from the 
current one;  

• It requires less CPU time in comparison with direct integration methods. 
  
Re-writing the dynamics fundamental equation in a more schematic form, it is possible to 
describe an artificial satellite motion as follows: 
 

𝒚̈(𝒕) = 𝒇 (𝒕, 𝒚(𝒕),  𝒚 ̇ (𝒕))                                            (26)                                            

This relation links the instantaneous satellite acceleration vector 𝒚̈(𝒕) to the time instant 𝒕, the 
relative instantaneous position 𝒚(𝒕) and speed  𝒚 ̇ (𝒕) vectors, by a specific function 𝒇. As a 
consequence, elements 𝒚̈(𝒕), 𝒚 ̇ (𝒕) and 𝒚(𝒕) correspond respectively to the  𝒓̈, 𝒓̇ and 𝒓 terms 
used in equation (23), while the function 𝒇 includes all the perturbing forces acting along the 
satellite orbit. 
In order to resolve this vectorial differential equation, it is necessary to discretise the problem 
in a specific study interval time [ 𝒕𝟎 , 𝒕𝑵 ], so that: 
 
•  𝒕𝒏+𝟏 = 𝒕𝒏 + 𝒉 , where  𝒏 = 𝟎,… ,𝑵 − 𝟏 ; 
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• (𝑵 − 𝟏) is the number of time intervals discretizing the considered orbit arc; 
• 𝒉 is the discretization step. 
 
At this point, the Cowell method searches for an approximation 𝒚

𝒏
 of the equation (26) real 

solution 𝒚, at any instant 𝒕𝒏 belonging to the study interval time [ 𝒕𝟎 , 𝒕𝑵 ], so that 𝒚
𝒏
 ≃  𝒚(𝒕𝒏) . 

Consequently, it is possible to consider the following approximations: 
 
• 𝒚

𝒏−𝒊
 ≃  𝒚(𝒕𝒏−𝒊) ; 

• 𝒇(𝒕𝒏−𝒊 , 𝒚𝒏−𝒊
 , 𝒚̇

𝒏−𝒊
 ) ≃  𝒇(𝒕𝒏−𝒊 , 𝒚(𝒕𝒏−𝒊), 𝒚̇(𝒕𝒏−𝒊)) . 

 
It is now possible to improperly adopt the following denomination: 𝒚 = 𝒚,  𝒚̇ = 𝒚̇ and 𝒚̈̅ = 𝒚̈. 
Moving on with the application of the finite difference method, it is possible to re-write the 
equation (26) in the following form: 
 

∑  (𝒂−𝒊
𝑴
𝒊=𝑵 ∙  𝒚𝒏−𝒊) = 𝒉𝟐 ∙  ∑  (𝒃−𝒊

𝑸
𝒊=𝑷 ∙  𝒇𝒏−𝒊)                     (27) 

The first equation member is an 𝒚̈(𝒕𝒏) approximation, resulting from Taylor’s developments, 
while the second one is an 𝒇(𝒕𝒏−𝒊 , 𝒚𝒏−𝒊 , 𝒚̇ 𝒏−𝒊 ) approximation. In general, the inferior and 
superior limit values of the summations are set at: 𝑵 = 𝑷 =  −𝟏 , 𝑴 = 𝒌 and 𝑸 = 𝒍 , where k 
and l are the indexes we want to consider. 
 
The following step is the 𝒚(𝒕𝒏−𝒊) development around 𝒕𝒏 , which allows to calculate 𝒚̇ 𝒏−𝒊 and 
𝒚̈𝒏−𝒊 = 𝒇𝒏−𝒊 . The numerical integration of these developments within equation (27), brings to: 
 

𝒂𝟏 ∙ 𝒚𝒏+𝟏  + 𝒂𝟎 ∙ 𝒚𝒏 + 𝒂−𝟏 ∙ 𝒚𝒏−𝟏 = 𝒉𝟐 ∙ [𝒃𝟏 ∙ 𝒇𝒏+𝟏  +  𝒃𝟎 ∙ 𝒇𝒏 + 𝒃−𝟏 ∙ 𝒇𝒏−𝟏 ]      (28) 

After that, by identifying each member to its corresponding one, it is possible to find the 
appropriate values for coefficients 𝒂𝒊 and 𝒃𝒊 : 
 

𝟏

𝟐
𝒚𝒏+𝟏 − 𝒚𝒏 +

𝟏

𝟐
𝒚𝒏−𝟏 = 𝒉𝟐 ∙ [

𝟏

𝟐𝟒
𝒇𝒏+𝟏  +  

𝟏𝟎

𝟐𝟒
𝒇𝒏 +

𝟏

𝟐𝟒
𝒇𝒏−𝟏 ]           (29) 

The 𝒇𝒏+𝟏 term intervenes in the previous equation, which shows that the descripted integration 
method is an implicit one, also defined as a correction method. It consequently means that it 
is necessary to preliminary use an explicit numeric integration method: a prediction method. 
 
1. Prediction method: Firstly, this preliminary method allows to calculate a first 𝒚𝒏+𝟏 
evaluation: 
 

∑  (𝒂−𝒊
𝟏
𝒊=−𝟏 ∙  𝒚𝒏−𝒊) = 𝒉𝟐 ∙  ∑  (𝒃−𝒊

𝟐
𝒊=𝟎 ∙  𝒇𝒏−𝒊)                       (30) 

This expression development brings to the following equation, expressed for instance, till 
the third order: 
 

𝒚𝒏+𝟏 −  𝟐𝒚𝒏 + 𝒚𝒏−𝟏 =
𝟏

𝟏𝟐
𝒉𝟐 ∙ [𝟏𝟑𝒇𝒏+𝟏 −  𝟐𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 ] =  𝒉𝟐 ∙ 𝒇𝒏      (31) 

Its resolution enables the computation of the 𝒚(𝟎)
𝒏+𝟏

 term, which will be the initial point in 
the correction method. 
 

2. Correction method: Secondly, it is possible to pass to the correction step, using an iterative  
    numeric method based on equations of the style of (29): 
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𝒚(𝒌+𝟏)
𝒏+𝟏

− 𝟐𝒚𝒏 + 𝒚𝒏−𝟏 =
𝟏

𝟏𝟐
𝒉𝟐 ∙ [𝒇(𝒕𝒏 , 𝒚

(𝒌)
𝒏+𝟏

) +  𝟏𝟎𝒇𝒏 + 𝒇𝒏−𝟏 ]   (32) 

In such a way, it is now possible to define the 𝒚𝒏+𝟏 value: 
 

𝒚𝒏+𝟏 = 𝒍𝒊𝒎
𝒌 →∞

𝒚(𝒌)
𝒏+𝟏

                                              (33)                                               

Specifically, the GINS software uses this Cowell linked-step numeric integration method, 
adopting a constant integration step size and normally an 8 grade-integration, which consists 
in considering the actual state vector value, the three previous ones and the four following 
ones: 

 
 
Now, coming back to the dynamics equation (23), it is also important to focus on which forces 
𝑭𝒊 the GINS software takes into account to compute the satellite acceleration along its orbit. 
GINS has the access to the detailed description of all the possible force and relative 
acceleration models it can uses, by the documentation contained in the “Obelix” numerical 
library [11]. 
Within all forces acting on satellites, it is possible to make a distinction between gravitational 
and non-gravitational ones. 
 
1. Gravitational forces: their definition in GINS is based on calculation of the gravitational 
potential of the central and perturbing bodies, which cause satellite accelerations that can be 
expressed as spherical harmonic functions. Gravitational force origins are multiple: 
 
• Central body gravity potential: the central body attraction acting on satellites, is due to its 

potential U, conventionally expressed in a system of spherical coordinates (𝒓,𝝋, 𝝀): 
 

𝑼 = 
𝝁

𝒓
∙ ∑  ∑  (

𝒂𝒆

𝒓
)𝒍𝒍

𝒎=𝟎 ∙
𝒍𝒎𝒂𝒙
𝒍 𝑷𝒍𝒎(𝒔𝒊𝒏𝝋)[𝑪

𝒍𝒎
𝒄𝒐𝒔(𝒎𝝀) + 𝑺𝒍𝒎𝒔𝒊𝒏(𝒎𝝀)]  (34) 

This definition, almost equivalent to equation (12) and valid if the distance r from the 
central body centre of mass is larger than its semi-mayor axis 𝒂𝒆, contains the normalized 
Legendre function 𝑷𝒍𝒎(𝒔𝒊𝒏𝝋), the normalized Stokes coefficients 𝑪𝒍𝒎 and 𝑺𝒍𝒎, (equation 
(18)) and the standard gravitational parameter 𝝁. 
Once defined the gravitational potential, the acceleration 𝒂 produced on the satellite by 
the central body is calculated in the rotating frame linked to this specific celestial body: 
 

Figure 11 - Schematic Cowell method representation. 
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𝒂  = ( 
𝝏𝑼

𝝏𝒙
,
𝝏𝑼

𝝏𝒚
,
𝝏𝑼

𝝏𝒛
 )                                                 (35) 

Since the gravity field of a celestial body is completely defined by the 𝝁 and the 𝒂𝒆 
parameters, 𝑪𝒍𝒎 and 𝑺𝒍𝒎 coefficients are free. As a consequence, their partial derivatives 
are calculated:  

 
𝝏𝑼

𝝏𝑪𝒍𝒎
=

𝝁

𝒓
∙  (

𝒂𝒆

𝒓
)𝒍 ∙ 𝒄𝒐𝒔(𝒎𝝋) 𝑯𝒍

𝒎(𝒔𝒊𝒏𝝋)𝒄𝒐𝒔(𝒎𝝀)

𝝏𝑼

𝝏𝑺𝒍𝒎
=

𝝁

𝒓
∙  (

𝒂𝒆

𝒓
)𝒍 ∙ 𝒄𝒐𝒔(𝒎𝝋) 𝑯𝒍

𝒎(𝒔𝒊𝒏𝝋)𝒔𝒊𝒏(𝒎𝝀) 
                   (36) 

where 𝑯𝒍
𝒎 represent the Helmoltz polynomials. 

 
• Perturbing body potentials: particularly interesting for this internship project, a perturbing 

object is any celestial body, other than the central one, which exercises a gravitational 
influence over the satellite motion. Effectively, gravitational accelerations generated by all 
the perturbing bodies, have to be added together, to compute their total action on the 
spacecraft orbit.  
In order to understand how these forces act, it is possible to consider an inertial system 
with origin in O, where only one perturbing body 𝑷, characterized by a mass 𝑴𝒑 influences 
the motion of the spacecraft S around the central body C : 
 

 
 

Now, it is possible to define two different acceleration terms. The first one is the central 
term of the perturbing body acceleration: 

 

𝒂𝒔̅̅ ̅𝑹𝑪 = −𝑮 ∙ 𝑴𝑷 ∙
𝑷𝑺⃑⃑⃑⃑  ⃑

|𝑷𝑺⃑⃑⃑⃑  ⃑|
𝟑 +

𝑪𝑷⃑⃑⃑⃑  ⃑

|𝑪𝑷⃑⃑ ⃑⃑  ⃑|
𝟑                                    (37) 

In order to take into account of all the perturbations caused by secondary bodies, the 
celestial body point-mass hypothesis is not sufficient. Thus, it is necessary to add a 
specific second term, referred to as the coupling term of the perturbing body acceleration. 

Figure 12 - Representation of three-body reference frame. 
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This term, limited to the 𝑪𝟐𝟎 coefficient of the harmonic development of the potential of 
the central body, is expressed in the following form: 

 

𝒂𝒔̅̅ ̅𝑪𝒐𝒖𝒑𝒍𝒊𝒏𝒈 = −
𝟑

𝟐
√𝟓 

𝑮∙𝑴𝑪

|𝑪𝑷⃑⃑ ⃑⃑  ⃑|
𝟓 ∙ 𝒂𝒆

𝟐 ∙ 𝑪̅𝟐𝟎 [ 𝟓𝒔𝒊𝒏𝟐(𝝋𝒑) − 𝟏(
𝒙𝒑
𝒚𝒑
𝒛𝒑

) − 𝟐(
𝟎
𝟎
𝒛𝒑

)]  (38) 

Moreover, it is important to underline that differently from the previous case, in this force 
model, no parameter is free. 

 
• Surface masses: particular massive elements on central body surface can generate an 

acceleration 𝒂 on satellite motion. This acceleration, normally expressed in the primary 
body rotating frame, can be computed, knowing the main features of these surface 
elements: their mass, height and instantaneous distance from the satellite flying over them. 
 

• Potential of Earth tides:  Earth tides influence satellite orbit, by generating accelerations 
derived from the central body deformation potential, due to gravitational effects of 
perturbing bodies. This deformation potential is described by four different terms: 
- 𝑼 = 𝑼𝒌 : Earth tide potential 
- +∆𝑼𝜹𝒌  : frequency dependent correction of Love numbers 𝑲𝒍𝒎 of the deformation [12] 
- +∆𝑼𝒆    : correction of ellipticity 
- +∆𝑼𝒑    : correction of Earth polar tide 

 
• Potential of fluid tides: it is induced by the water mass movement, caused by perturbing 

body the potential. This movement is not only radial and the horizontal displacement is 
highly perturbed by the presence of the continents. Generically, fluid waves are classified 
in long-period, diurnal and semi-diurnal waves, and they are divided into main (whose 
amplitude is defined by the model) and secondary (whose amplitude is computed by the 
admittance) waves. 
 

• Potential of solid and ocean polar tides: this model enables the consideration of solid Earth 
response to the rotational movement. It is computed taking into account the rotation pole 
posting in relation to the mean pole and employing spherical harmonic coefficients. 
 

• Potential of atmospheric pressure variations: this template considers the gravitational 
potential generated by the displacement of atmospheric masses. 
 

• Relativistic forces: the relativistic effects are considered as second order perturbation 
within the non-relativistic mechanics adopted to integrate the satellite dynamics equations. 
The model considered in GINS comprises three terms: the Schwarzschild (the most 
significant), the Coriolis (or geodetic precession) and the Lense-Thirring (relativistic effects 
due to the rotation of the central body) terms.  

 
2. Non-Gravitational forces: their definition in GINS is free from celestial body gravitational 
characteristics. The software takes into account the following Non-Gravitational acceleration 
origins: 
 
• Atmospheric layers: the atmospheric friction generates a satellite acceleration, which is 

computed in GINS as the sum of frictional forces applied to every elementary spacecraft 
structural part (flat facets, cylinders, spheres or semi-spheres). In fact, each particular 
shape produces a drag and lift acceleration. 
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• Direct solar pressure: the solar radiation pressure causes a satellite acceleration because 
of the received solar flux action. GINS calculates it, by adding up all the elementary 
radiation influences over each satellite surface components. Moreover, the software is able 
to compute when the global received solar flux needs to be attenuated by the presence of 
one or more bodies between the Sun and the satellite (eclipse condition). In fact, a shadow 
function is introduced (between 0 and 1) to represent the effective solar flux received by 
the satellite.  
 

• Re-diffused and infra-red radiation pressures: the re-diffused radiation pressure is the 
origin of a satellite acceleration, mainly caused by the action of the solar flux re-transmitted 
by the central body. However, if a part of this body is in a shadow condition, it does not 
transmit any albedo flux, exactly as for a satellite passing in an eclipse zone, it is 
considered not to receive any albedo effect. At the same time, the infra-red radiation 
pressure generates another satellite acceleration due to the action of the infra-red flux 
transmitted by the central body. Once again, GINS calculates both these influences 
through the addition of each elementary accelerations applying on every satellite exposed 
surface parts. 
 

• Empirical accelerations: in order to decrease the effects of modelling faults, model 
imprecisions, poor knowledge of physical or thermo-optical satellite properties, a set of 
empirical accelerations is adopted by GINS. They can be added to the main acceleration 
total sum in the three directions, at each integration step.  

 
 
GINS third step: Calculation of theoretical measurements and measure residuals 
Normally, an artificial satellite is supposed to realise different kinds of measurements along its 
trajectory, in relation to the mission purposes.  
The GINS software employs specific techniques in order to take into account this measuring 
capacity.  
 
Firstly, theoretical quantities of measurements (𝑸𝒕𝒉) are calculated, using if necessary, the 
very precise knowledge of the Earth ground station positions and of their movements due to 
plate tectonics and loading phenomena.  
In this context, GINS is able to process several measure techniques: Laser Telemetry, VLBI, 
Optical, Altimetric, Crosspoint, Doppler (DSN or ESA network), PRARE, GNSS, inter-satellite 
(GRACE) and Gradiometric (GOCE) measurements can be directly treated by the software. 
Despite the multiple measures, the most of them can be defined in GINS using two main 
modelled physical parameters, relative to optical and radio signal: the travel time 𝝉 and the 
geometric distance 𝒅. 
The first one includes the signal geometric travel time (𝝉𝒈𝒆𝒐𝒎), to be added to relativistic 
propagation corrections (𝝉𝒓𝒆𝒍) and delays (𝝉𝒅𝒆𝒍) occurring when signals cross the atmosphere 
(for ground receivers), troposphere, ionosphere, interplanetary medium (plasma, for 
interplanetary measurements) and solar corona proximity. As a consequence, the travel time 
is considered to be composed of three terms: 
 

𝝉 = 𝝉𝒈𝒆𝒐𝒎 + 𝝉𝒓𝒆𝒍 + 𝝉𝒅𝒆𝒍                                          (39) 

The first term, 𝝉𝒈𝒆𝒐𝒎, is obtained directly from geometric distance, which is calculated by a 
GINS specific measurement function. The latter returns the distance between any two objects 
(orbiters, stations, quasars) according to their positions 𝑷⃑⃑  at the time instant 𝒕𝟏, corresponding 
to the signal emission from the emitter (object 1), and at the time instant 𝒕𝟐, identifying the 
signal reception through the receiver (object 2): 
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𝒅𝒈𝒆𝒐𝒎 =  𝒄 ∙ 𝝉𝒈𝒆𝒐𝒎 = |𝑷⃑⃑ 𝟐(𝒕𝟐) − 𝑷⃑⃑ 𝟏(𝒕𝟏)|                    (40) 
                                         

Once GINS computed the desired measurement theoretical quantities (𝑸𝒕𝒉), the next step is 
the measurement adjustment. This action consists in the comparison between theoretical 
quantities and actual measurements (𝑸𝒐𝒃𝒔) of the measure type i, in order to find its residual 
𝑹𝒊 : 

𝑹𝒊 = 𝑸𝒐𝒃𝒔,𝒊 − 𝑸𝒕𝒉,𝒊                                                      (41) 

This residual quantity contains both the probable measurement instrumental noise and the 
inaccuracy contribution caused by errors in theoretical quantity modelling. 
The process to establish the best measure value possible, continues with the minimization of 
the deviations between actual and theoretical measurements. In fact, the global residuals are 
gradually reduced in GINS iterations until convergence is achieved, by adjusting physical and 
empirical parameters set as adjustable (free) in a specific study case. 
 
 
GINS fourth step: Numeric calculation of normal equations 
As expressed before, at each iteration GINS computes the residual 𝑹𝒊 of all the n types of 
measurement taken into account in a specific study case. Moreover, each of these types is 
associated with a particular weight 𝝅𝒊, specified in the “Director” file measurement section. 
Therefore, the following expression is considered for each measure 𝒊 (= 𝟏, 𝟐,… , 𝒏): 
 

{
𝑹𝒊 = 𝑸𝒐𝒃𝒔,𝒊 − 𝑸𝒕𝒉,𝒊(𝑿⃑⃑ )      (𝝅𝒊)   

𝑿⃑⃑  =  (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒑)
                                (42) 

As this expression shows, every theoretical measurement is a non-linear function of the 
parameters 𝑿𝒋 (j = 1, 2, …, p), which take part in its calculation. All or part of these parameters 
are refined by writing the linearization in the first order of the measurement equations according 
to the following general expression: 
 

𝑸𝒕𝒉,𝒊( 𝑿⃑⃑ + ∆𝑿⃑⃑  ) = 𝑸𝒕𝒉,𝒊(𝑿⃑⃑ ) + ∑
𝝏𝑸𝒊

𝝏𝑿𝒌
∆𝑿𝒌𝒌     (𝝅𝒊)              (43) 

where the 𝑿𝒌 variable represents the a priori (or current) value of a parameter, the ∆𝑿𝒌 term 
is the correction to this 𝑿𝒌 value and it is a component of the parameter correction vector ∆𝑿⃑⃑  , 
and the 𝝏𝑸𝒊

𝝏𝑿𝒌
 terms correspond to the partial derivatives of the theoretical quantities computed 

by the measurement function.  
At this point, considering the set of p parameters 𝑿⃑⃑  =  (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒑) and the residuals of the 
set of n weighted measurements 𝑹⃑⃑  =  (𝑹𝟏, 𝑹𝟐, … , 𝑹𝒏) GINS is able to generate the matrix 
system of the linear observation equation (43), linked to each type of measures: 
 

𝑨𝒏,𝒑∆𝑿⃑⃑ = 𝑹⃑⃑ + 𝜺⃑      (𝝅𝒏,𝒏)                             (44) 

where 𝜺⃑  is the residual error between theoretical 𝑸𝒕𝒉,𝒊( 𝑿⃑⃑ + ∆𝑿⃑⃑  ) and actual 𝑸𝒐𝒃𝒔,𝒊, 𝑨𝒏,𝒑 is the 
nxp partial derivative matrix, while 𝝅𝒏,𝒏 is the nxn measurement weight square matrix. The 
latter is a diagonal matrix if all the considered measurement types are independent, but it may 
contain non-diagonal elements in case of measurements correlated with one another. 
The GINS objective is to minimize the residual error 𝜺⃑ , using the conventional least square 
method. This resolution method allows to demonstrate that:  
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𝑨𝑻𝝅𝜺⃑ = 𝑶⃑⃑                                             (45) 

Consequently, by multiplying all members of matrix system (44) by the 𝑨𝑻𝝅 term, it is possible 
to obtain the corresponding normal equations: 
 

𝑨𝑻𝝅𝑨∆𝑿⃑⃑ = 𝑨𝑻𝝅𝑹⃑⃑                                    (46) 

The latter represents the standard normal equation. However, in "degraded" cases, in which 
a low number of measurements in relation to the considered parameters generates an under-
determined system, it may be useful to add to the (46) a set of nc  equations of constraints 
applying to all or part of the parameters. These constraint equations are generated in a second 
phase, by the DYNAMO chain (directly connected with GINS) and they can be expressed in 
the following form: 

𝑪𝒑,𝒑∆𝑿⃑⃑ = 𝑶⃑⃑                                        (47)                                      
where the 𝑪𝒑,𝒑 term represents the matrix of constraints on parameters, which has to be added 
to the standard normal equation matrix 𝑨𝑻𝝅𝑨, in order to generate the normal constrained 
system: 

(𝑨𝑻𝝅𝑨 + 𝑪)∆𝑿⃑⃑ = 𝑨𝑻𝝅𝑹⃑⃑                                (48) 

The term on the right is referred to as the second term of the normal equation: 𝑫⃑⃑ = 𝑨𝑻𝝅𝑹⃑⃑  . The 
complete system matrix 𝑵⃑⃑ = 𝑨𝑻𝝅𝑨 + 𝑪 is called normal matrix, and it is defined as constrained 
if the 𝑪 matrix is non-zero. 
Once the process reached the convergence, GINS stores the normal equation relative to each 
types of measurement in the output file “Normal Equations”. 
Moreover, another index is calculated by GINS: the a priori standard residual variation, before 
the resolution: 

𝝈𝟐 =
𝑹⃑⃑ 𝑻𝝅 𝑹⃑⃑ 

𝒏
                                         (49) 

 
GINS fifth step: Resolution of the parameters 
Once collected all the normal equations, GINS pass to their numerical resolution by an 
inversion method: 

∆𝑿⃑⃑ = (𝑨𝑻𝝅𝑨 + 𝑪)−𝟏𝑨𝑻𝝅𝑹⃑⃑                              (50)                             
Using this invers equation, it is possible to calculate the measurement residuals and their a 
posteriori variance: 

 𝑹⃑⃑ ′ = 𝑹⃑⃑ − 𝑨∆𝑿⃑⃑                                       (51)                                     

𝝈′𝟐 =
𝑹⃑⃑ ′

𝑻
𝝅 𝑹⃑⃑ ′

𝒏−𝒑+𝒏𝒄𝒐𝒏𝒕
= 

𝒏𝝈𝟐−∆𝑿⃑⃑ 𝑻𝑫

𝒏−𝒑+𝒏𝒄𝒐𝒏𝒕
                                 (52) 

At the same time, the formal uncertainty is given by the diagonal terms of the variance-
covariance matrix: 

𝑪𝒐𝒗 = 𝝈′𝟐(𝑨𝑻𝝅𝑨 + 𝑪)−𝟏                              (53) 

 
GINS Iterations: As shown in Figure 10, GINS adopts an iterative approach: once generated 
the normal equations, the software repeats all its steps starting from the numerical integration 
for the orbit computation. 
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In the first iteration, the parameters are initialized at their a priori value, depending on the 
selecting model, and the software calculates the measurement residuals and their partial 
derivatives, building the normal equation system for the first time and invers it to find a first 
solution. 
Then, in each iteration, the obtained correction ∆𝑿⃑⃑  is added to the current value 𝑿⃑⃑  , which is 
taken into consideration for computing theoretical measurement quantities and their residuals. 
These iterations continue until convergence is reached, this means when global residual 
variation assumes a lower value then the desired convergence criterion 𝜺𝒄𝒐𝒏𝒗, according to the 
following expression: 

[ ∑ 𝑹𝒊
𝟐] 𝒏 𝒊𝒕𝒆𝒓

− [ ∑ 𝑹𝒊
𝟐] 𝒏 𝒊𝒕𝒆𝒓−𝟏

[ ∑ 𝑹𝒊
𝟐] 𝒏 𝒊𝒕𝒆𝒓−𝟏

< 𝜺𝒄𝒐𝒏𝒗
                                  (54) 

Both the convergence criterion and the maximal number possible of iterations can be chosen 
by the user, who has to express them in the “Director” file. 
The set of normal equations can be saved on demand once the convergence is achieved or 
after an additional iteration. This particular iteration starts from the beginning of the orbit 
numeric integration, but continues only until the generation of the normal equation matrix, 
which in this case is stocked in the “Normal Equations” output file. If this last iteration is 
requested, the final value of the parameters (sum of a priori values and successive corrections 
obtained in the iterations, is used for the additional iteration, in which the residuals of the 
retained measurements and the partial derivatives are recalculated. If an additional iteration is 
imposed, residuals of the retained measurements and their partial derivatives are recalculated. 
In this case, normal systems without constraints are then rebuilt and stored in “Normal 
Equations” output files, which are ready for use by the programs in the DYNAMO chain. 
 
 

2.1.4  DYNAMO chain  
 
The DYNAMO chain consists in a series of programs which uses the furnished normal 
equations and performs usual linear algebra operations: 
 
1. DYNAMO-D: this program allows to resolve a normal equation, using three possible 
inversion techniques: the Cholesky method, the conjugate gradient method or the specific 
value and vector method. As before, resolving normal equations in DYNAMO consists in 
inverting the normal matrix N (with possible constraints), in order to obtain the solutions:  
 

𝑿⃑⃑ = 𝑿⃑⃑ 𝟎 + ∆𝑿⃑⃑ =  𝑿⃑⃑ 𝟎 + 𝑵−𝟏𝑫⃑⃑                           (55) 

where 𝑿⃑⃑ 𝟎 represents the a priori values of the parameters. 
Again, the a posteriori residual variance 𝝈′ 𝟐 is computed through the a priori value 𝝈𝟐, by the 
following expression: 

𝝈′𝟐 = 𝝈𝟐 +
𝑫⃑⃑ 𝑻∆𝑿⃑⃑  

𝒏−𝒑
                                       (56) 

Its output consists in a file containing solutions, possibly with the variances or the complete 
covariance matrix of the parameters, according to the selected inversion method. Before the 
inversion, it is also possible to add a predefined constraint equation (Kaula's law for gravity 
field coefficients, the minimum constraints for station network solutions or a set of constraint 
values specified by the user). 
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2. DYNAMO-B: this DYNAMO tool leads to normal equation reduction. By reducing a normal 
equation, only its most useful parameters are retained. This operation is essential when 
working with equations containing a very high number of parameters: they are determined by 
combining the observations over several months or years. This operation consists in excluding 
from the equation those parameters which do not need to be solved. The latter can either be 
completely eliminated (fixed to their initial values and ignored) or reduced (resolved and 
reinjected in the normal equation system). 
 
3. DYNAMO-C: this DYNAMO module allows the combination of several normal equations 
(which may be weighted) in a single equation by summing the various contributions on the 
common parameters. Considering two normal equations, weighted by 𝝅𝟏 and 𝝅𝟐, the following 
operations are performed: 
 

{
𝝅𝟏 ∙ (𝑵𝟏∆𝑿⃑⃑ = 𝑫𝟏) 

                                        

𝝅𝟐 ∙ (𝑵𝟐∆𝑿⃑⃑ = 𝑫𝟐)

  →   (𝝅𝟏𝑵𝟏 + 𝝅𝟐𝑵𝟐)∆𝑿⃑⃑ = (𝝅𝟏𝑫𝟏 + 𝝅𝟐𝑫𝟐)       (57) 

 
In this case, the variance is defined as:  
 

𝝈𝟐 = ∑ 𝜋𝑖𝒊 𝝈𝒊
𝟐                                   (58) 

 
4. DYNAMO-P: this program is useful to act the permutation of a normal equation. In fact, it 
places the equation unknowns in a predefined sequence by permuting the order of lines and 
columns of the matrix and of the second member. After the permutation, if two or more identical 
unknowns are detected, they are compacted into a single unknown. 
 
 
5. DYNAMO-W: this module applies the research for optimal weighting. This aspect is 
important, since it is often needed to combine normal equations derived from observation of 
different tracking systems, natures, precisions, etc. This search aims to estimate the weight of 
each equation set, in order to obtain the optimal combination of the various measurements, 
thereby producing the most accurate solution of parameters to be determined. 
 
 
 

2.2 Python Visualisation Module 
 
As mentioned before, in the context of this internship, GINS outputs needed to be treated by 
a visualisation tool, which enables an intuitive an immediate interpretation of the obtained 
results. This particular need led to the generation of a specific informatics module, coded in 
Python language and able to simplify the result comprehension.  
Since the multiple quantity of result types to be analysed within this project, several functions 
have progressively become part of the Python Visualisation Module.  
 
Firstly, this project has required an orbital study, focused on QSO trajectories realised by the 
satellite around Mars, in constant proximity to its main target, Phobos. 
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Considering this orbital design, as explained in paragraph 2.1.1, GINS gives birth to 
“Ephemeris” output files, mainly containing the satellite state vector components et every 
demanded time instant, in relation to the central body (Mars, in this case).  
This aspect resulted in the creation of several specific Python functions, designed to deal with 
this output kind: 
 
• “Trace_Orbits_GINS” function: its primary input is exactly an “Ephemeris” file resulting 

from GINS, and its output is a 3-Dimensional representation of the described orbit trace, 
within a Cartesian coordinate system (x,y,z). Moreover, if the user desires, it is also able 
to create the graph relative to the evolution in time of satellite speed. Furthermore, this 
function (along with all the next ones) has the possibility to take into account the presence 
of a multi-satellite situation.  
In the specific MMX study case, this function has been employed for tracing satellite QSO 
trajectories around Mars. Examples of the derived orbit visualisation are presented in the 
first column of Figure 4 and Figure 5. 
 

• “Trace_Orbits_Phobos_Centered” function: its main input is again represented by the 
GINS “Ephemeris” output file, relative to the satellite orbits around the primary body. 
However, if requested by the user, it can also receive two of these inputs, since it is able 
to treat two orbits together, while comparing them. Its second input type is newly an 
“Ephemeris” file, but relative to the secondary body ephemeris around the primary. This 
function realises an interpolation (whose function is detailed below) of the secondary 
ephemeris, in relation to the satellite time vector containing all its integration instant. In this 
way, the position vectors of both the satellite and the secondary body are obtained at the 
same time moments. Consequently, a displacement of the reference system origin is 
applied. The latter consists in the subtraction between position components of the satellite 
and the secondary body, leading to the computation of satellite trajectory expressed in the 
reference system centred on the secondary object. Finally, its 3-Dimensional 
representation in the Cartesian coordinate system is provided as output. Moreover, if 
demanded, this function can apply the same procedure to speed vectors. 
Within the MMX context, this function enables to pass from satellite QSO centred on Mars, 
to trajectories expressed in Phobos-centred frame. Visual examples are shown in the 
second column of Figure 4 and Figure 5. 

 
• “Trace_Dist_Eph” function: its input can still be an “Ephemeris” GINS file expressed in the 

central body reference frame, or the trajectory file generated by the previous 
“Trace_Orbits_Phobos_Centered” function, cantered on the secondary body. It is able to 
trace the time evolution of several distance parameters, in relation to user’s need: the 
satellite position vector modules or only its three Cartesian components, separately. 
In the MMX mission study, this function enables the trace these satellite position distances, 
in relation to Mars or Phobos centre of mass. 
 

• “Trace_Dist_Multi_Eph” function: as its name suggests, it is similar to the previously 
described function “Trace_Dist_Eph”. In fact, it considers exactly the same input types, but 
it needs two of these files. The direct consequence is that, according to user’s request, this 
function can trace on the same graph the distance parameter time evolution of both the 
orbits defined in the two inputs. Moreover, it also enables the visualisation of relative 
differences between the two trajectories, considering again the position vector modules 
and/or each of their components.  
Within the internship project, this function has turned out to be useful for visualising relative 
distances between two QSO trajectories around Phobos. Resulting examples are 
presented in graphs in Figure 20. 
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• “Interp_Ephem” function: it is the ephemeris interpolation function, employed by the 
previous ones. Its inputs are the time vectors of both the trajectory to be interpolated and 
to be used as reference, and the corresponding series of one position coordinate, to be 
interpolated. In this way, using this function on all the three position coordinates, 
separately, the complete interpolated satellite position vector is obtainable. This orbital 
interpolation is computed by a Lagrange function of order 8. This specific order has been 
chosen in order to be consistent with the Cowell grade 8 integration method employed by 
GINS. 

 
Secondly, as specified before, during Phobos exploration phase of the MMX mission, several 
measurement types will be employed. The measure techniques here taken into account for the 
geodesic analysis are the Doppler DSN, the LIDAR and the Optical navigation images.  
While the latter two can be represented as particular type of ephemeris measurements, 
Doppler captures provide completely different results. Consequently, they need separate 
functions, allowing their visual representation: 
 
• “Trace_Dop_Mesure” function: its input is the DSN “Measurements” GINS output file, 

which provides the measure values and their time instants, employed for tracing Doppler 
measurement evolution in time. Examples of this representation are reported in Figure 24 
and Figure 25. 
 

• “Trace_Point_Mesure” function: its first input is an “Ephemeris” file, describing the orbit 
along which the satellite realises Doppler captures, whose “Measurements” file constitutes 
the second input. It traces the positions where these measurements are taken, along a 
specific orbit. 
Within the MMX mission analysis, this function is a significant tool for visualising the QSO 
sections covered by DSN captures. Examples of these traces are reported in Figure 27. 

 
Finally, throughout QSO trajectories and specific measurement techniques, the MMX satellite 
is sensed to return the most precise Phobos gravity field possible. The evaluation of the 
accuracy level obtainable by the MMX mission in recovering this geodesic parameter has been 
realised by the GINS adjustment (paragraph 2.1.3) of Phobos gravity Stokes coefficients 
(detailed in the following chapters).  
A visual representation of this adjustment capacity is thus necessary in order to immediately 
interpret the results. This graphical expression has been obtained through the development of 
a specific function: 
 
• “Coeff_Grav” function: its main inputs are two files containing the normalised Stokes 

coefficients, defining two different Phobos gravity models. The first one represents the most 
accurate model of this project, employed as reference realistic template, while the second 
one corresponds to the corrected gravity model, returned after the GINS adjustment 
procedure. All these coefficients are graphically represented by rectangular blocks, 
composing the typical pyramidal shape of spherical harmonic representation, relying on 
degrees l and orders m (Figure 7). 
In order to estimate the reached adjustment precision level, the percentage difference is 
computed between every corresponding 𝑪̅𝒍𝒎 and 𝑺̅𝒍𝒎 belonging to the two different models. 
A special colour scale is used to underline this difference: the more the adjusted 
coefficients are similar to the reference ones, the more their block assumes a colour close 
to the blue. On the contrary, if this difference increases, they tend to a reddish colour. 
In this MMX analysis, this function has resulted to be a powerful tool, able to elucidate the 
Phobos gravity recovery performances both of each QSO trajectory and of the entire 
mission. Examples of resulting graphs are presented in Figure 38. 
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 Internship project 
development 

 
As expressed before, the main internship objective is the analysis of Phobos geodesic 
features, especially its gravity field.  
In order to reach this target, multiple development steps had been necessary. This step chain 
is represented in the following schema: 
 

 
 
Each of these development steps has required the coding of specific scripts in Bash and 
Fortran languages, aimed at generating and treating the needed input and output files for the 
GINS software and its DYNAMO chain.    
A detailed description of each project step is reported in the following paragraphs. 
 
 

Figure 13 - Schema representing the step series followed to develop the internship project. 
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3.1 Starting point:  preliminary QSO trajectories 
  
During the MMX phases designed for Phobos exploration, the satellite will realise several QSO 
trajectories, allowing it to stay in near proximity to the Martian moon. 
The JAXA FD team has already simulate these orbits: they represent the preliminary QSOs 
for the CNES Space Geodesic group.  
Primarily, in order to employ these simulated trajectories for a realistic mission analysis 
throughout the GINS software, they have to be adjusted to get the same GINS high precision 
level. Successively, multiple procedures can be applied over the corrected trajectories, for the 
purpose of realising the desired geodesic analysis. 
 
Thus, the starting point of this internship project is exactly represented by the set of preliminary 
QSO trajectories simulated by the FD teams. 
Effectively, all the QSOs necessary to complete the MMX mission part relative to Phobos, have 
already been fixed by the JAXA. The last update to this specific set of trajectories was 
established by the Japanese Space Agency in May 2020, and it represents the QSO database 
used to develop the internship project.  
Each of these orbits is characterized by three size parameters X, Y and Z, where the latter is 
different from zero for only 3-Dymensioanl orbits. This specific identification is adopted 
because of the impossibility of describing QSOs through the common orbital parameters: as 
detailed in paragraph 1.3, these trajectories are not Keplerian movements, consequently a 
characterisation different from the six Keplerian orbital elements (paragraph 2.1.2) has to be 
used. 
Moreover, they are also defined by an approximate revolution period around Mars and fixed 
initial and final dates (all the considered QSOs last between 14 and 35 days).  
The list of the thirty-three selected QSO in the following table: 
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Table 1 - Table containing all the QSO trajectories, which will be used in the MMX mission. 

Name Type X 
[km] 

Y 
[km] 

Z 
[km] 

Pseudo 
period 

[h] 
Start 
(TDB) 

End 
(TDB) 

CNES 
ref 

QSO-H 2D High 
altitude 100 200 0 7.6 

2025 OCT 15 
2025 DEC 15 
2026 JAN 15  

2025 NOV 14 
2026 JAN 15 
2026 FEB 14 

10_H_2D 

 
QSO-M 

 
2D 

Medium 
altitude 

 
50 

 
96 

 
0 

 
7.1 

 

2025 NOV 15 
2026 FEB 15 
2026 JUL 15 
2026 AUG 15 
2026 SEP 15 
2026 OCT 15 
2026 NOV 15 
2027 JAN 15 
2027 FEB 15 
2027 MAR 15 
2027 MAY 15 
2027 JUIN 15 
2027 AUG 15 
2027 SEP 15 
2027 OCT 15 
2027 NOV 15 
2027 DEC 15 

 

2025 DEC 14 
2026 MAR 02 
2026 AUG 13 
2026 SEP 13 
2026 OCT 14 
2026 NOV 13 
2026 DEC 14 
2027 FEB 13 
2027 MAR 16 
2027 APR 13 
2027 JUIN 13 
2027 JUL 14 
2027 SEP 13 
2027 OCT 14 
2027 NOV 13 
2027 DEC 14 
2028 JAN 13 

 
11_M_2D 

 
QSO-L-A 

 
2D Low 
altitude 

 
30 

 
50 

 
0 

 
5.8 

2026 MAR 01 
2026 DEC 01 
2027 JAN 01 
2027 APR 01 
2027 MAY 01 
2028 JAN 15 

 

2026 MAR 30 
2026 DEC 30 
2027 JAN 15 
2027 APR 30 
2027 MAY 15 
2028 JAN 13 

 
12_L_2D 

 
QSO-L-B 

 
2D Low 
altitude 

 
 

 
22 

 
32 

 
0 

 
4.4 

 

2026 APR 01 
2026 MAY 01 
2026 JUIN 01 
2026 JUL 01 

 

 

2026 APR 30 
2026 MAY 30 
2026 JUIN 30 
2026 JUL 16 

 
12_Lb_2D 

 
QSO-L-C 

 
2D Low 
altitude 

 

 
20 

 
27 

 
0 

 
3.8 

 
 

2026 JUIN 01 
2026 JUL 01 

 

2026 JUL 01  
2026 JUL 14  

 
12_Lc_2D 

 
QSO-M-3D 

 
3D 

Medium 
altitude 

 

 
50 

 
100 

 
25 

 
 

 

2027 JUL 15 
 

2027 AUG 14   
 

 
 
 
 
At the same time, all the QSO trajectories appearing in the table below, are organised in four 
different MMX mission phases, in order to reach the prefixed objectives in the best way 
possible: 
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Each particular combination of QSO trajectories is recognized to be the best one to fulfil the 
purpose of every phase: 
 
• Phase 1: referred to as LSS phase, it consists in a first Phobos observation, leading to the 

Landing Site Selection. 
• Phase 2: referred to as LSS-MEGANE phase. MEGANE stands for "Mars-moon 

Exploration with GAmma rays and NEutrons". This is a gamma ray and neutron 
observation instrument to clarify the characteristics of chemical elements constituting 
Phobos ground. It allows the observation of the major elements and hydrogen composing 
the global target surface, which can be used for selecting the sampling location.  

• Phase 3: it represents the spacecraft landing moment on Phobos surface. 
• Phase 4: it consists in a series of trajectories leading the satellite to escape from Phobos. 
• Phase 5: it represents the moment of the possible flyby or rendez-vous with the second 

Martian moon, Deimos. Since Phobos is no more the main target in this mission phase, 
the latter has not been considered within the internship project.  

 
As Table 1 shows, QSO trajectories are characterized by different designations, depending on 
their orbital size and the altitude h they reach over Phobos surface: 
 
• QSO-H: they are 2-Dimensional orbits, reaching high altitudes over Phobos surface (h ≥ 

100km) and characterised by a revolution period of about 7.6h. This trajectory class is 
exclusively adopted during the initial MMX phase, when the satellite is still quite distant 
from the Martian moon, but starts to move nearer. 

• QSO-M: they are 2-Dimensional orbits, reaching medium altitudes (100km ≤ h < 50km) 
and characterised by a revolution period of about 7.1h. This class of orbits is adopted in all 
the MMX phases. 

• QSO-M-3D: as specified by its name, it is a 3-Dymensional orbit class, characterized by a 
medium size, as the QSO-M trajectories, and used in the first period of the fourth mission 
phase. 

Figure 14 - QSO repartition between the MMX mission phases, in nominal and first alternative cases. 
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• QSO-L: they are 2-Dimensional orbits, reaching low altitudes (h ≤ 50km). Within this 
trajectory class, there are three different subgroups. The QSO-L-A are characterised by a 
revolution period of about 5.8h and they have a role in the second, third and fourth mission 
phases. The QSO-L-B and the QSO-L-C are smaller than the previous one: with a period 
of 4.4h and 3.8h respectively, they are used in the second MMX phase. 

 
For what concerns the last mentioned second phase, it is important to point out a particular 
aspect. As exposed in Figure 14, the JAXA not only has already fixed a nominal combination 
of QSO trajectories composing the second MMX phase, but also a first alternative case. In the 
standard situation, the QSO-L-B trajectory is covered by the satellite for a period starting on 
the 01/04/2026 and finishing on the 15/07/2026. The possible alternative is bringing the QSO-
L-B final date forward to the 01/06/2026 and adding a consecutive QSO-L-C trajectory, 
continuing until the 15/07/2026. Both this study cases have been analysed in this project. 
 
However, as Table 1 and Figure 14 underline, the nominal and first alternative sets of QSOs 
manly consist in 2-Dimensional orbits, with the only exception of one 3-Dymensional trajectory. 
Nevertheless, as explained before, orbits passing out Phobos orbital plane, are useful to reach 
the observation of a larger part of the target surface: their presence would be important to get 
better scientific objectives. As a consequence, a second alternative orbit set counting more 3-
Dimensional QSOs, is being taking into account as a possible orbital solution. The table below 
lists different versions of the two QSO-M-3D groups considered for this second supplemental 
case:  
 
 

Name Type X 
[km] 

Y 
[km] 

Z 
[km] 

Pseudo 
period 

[h] 
Start 
(TDB) 

End  
(TDB) 

CNES 
ref 

 
QSO-

M-3D-A 

 
3D 

medium 
altitude 

 
49.6 
48.8 
47.2 
49.9 
50.0 

 
93.8 
92.3 
89.6 
95.8 
96.7 

 
10.5 
19.6 
30.3 
39.4 
50.3 

 
 

 
2026 SEP 01 
2026 SEP 01 
2026 SEP 01 
2026 SEP 01 
2026 SEP 01 

 
2026 OCT 02 
2026 OCT 02 
2026 OCT 02 
2026 OCT 02 
2026 OCT 06 

 
13_M_3D 

 

QSO-
M-3D-B 

 

3D 
medium 
altitude 

 

49.6 
48.8 
47.2 
49.9 
50.0 

 

93.8 
92.3 
89.6 
95.8 
96.7 

 

10.5 
19.6 
30.3 
39.4 
50.3 

 
 

 

2027 JUL 15 
2027 JUL 15 
2027 JUL 15 
2027 JUL 15 
2027 JUL 15 

 

2027 AUG 15 
2027 AUG 15 
2027 AUG 15 
2027 AUG 15 
2027 AUG 19 

 
 

 
 
These 3-Dimensional QSO classes are referred to as QSO-M-3D-A and QSO-M-3D-B. Both 
them are medium-altitude orbits and five their versions characterized by different Z-dimensions 
are being analysing at the moment. In the context of this project, only the two versions reaching 
the lower (QSO-M-3D-A1 and QSO-M-3D-B1) and the higher (QSO-M-3D-A5 and QSO-M-3D-
B5) latitudes over Phobos surface, have been considered in order to analyse this third 
alternative case. 
The latter thus differs from the nominal situation in the definition of the second and the fourth 
mission phases. In the second alternative phase, the period between the 01/09/2026 and the 
02/10/2026 is covered by one of the first four versions of the QSO-3D-M-A trajectory, instead 
of the nominal QSO-M one. A second possible option is the use of the most inclined QSO-3D-
M-A5, finishing on the 06/10/2026. 

Table 2 - Table containing two possible groups (and different versions of them) of 3-Dimensional 
QSO trajectories. 
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Instead, the fourth phase presents a substitution of the initial nominal QSO-3D-M trajectory 
with one of the first four versions of the QSO-3D-M-B, both ending on the 14/08/2027. Again, 
a second solution is the employment of the most inclined QSO-3D-M-B5, continuing until the 
19/08/2027: 
 

 
 
Thereby, these lists of 2 and 3-Dimensional QSO trajectories, represent the basis of this 
internship project.  
Starting by the FD preliminary simulations of these orbits, all the project steps have been 
developed in order to adapt these trajectories to GINS precision level and treat them for the 
purpose of reaching the prefixed objective: the analysis of Phobos gravity field model.  
 
However, a preparatory step is necessary. In fact, since the entire project method is based on 
the use of the GINS software, it is mandatory that all the input files describing the QSO sets 
are in the correct GINS format.  
Effectively, the FD team adopts its own specific software for orbital simulation. This means that 
the preliminary QSO files arrive to the CNES Space Geodesy group in a particular format, 
containing:  
 
• The time passed from an orbit initial date, expressed in [s]. An integration step size of 120s 

have been used; 
• The three components of satellite position (expressed [m]) and speed (in [m/s]) vectors, in 

Phobos centred EME2000 reference frame; 
• The three components of satellite position (expressed [m]) and speed (in [m/s]) vectors, in 

in Mars centred EME2000 reference frame; 
• The dimensionless satellite position and speed vectors in Phobos rotating frame. 
 
As a consequence, the first action to do on preliminary QSO trajectory files, is their conversion 
into the correct ephemeris GINS format, detailed in section 2.1.1. 
At the same time, also Phobos ephemeris around Mars have to be computed. Relying on FD 
files, a simple subtraction is calculated between satellite state vector components expressed 
in the two different reference systems centred respectively on Mars and Phobos. In this way, 
the Martian moon motion relative to its central body, Mars, is thus calculated. This operation is 

Figure 15 - QSO repartition between the MMX phases, in nominal and second alternative cases. 
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realised using the only preliminary orbital data, so that exactly the same FD hypotheses have 
been here considered for Phobos ephemeris. 
 
 
 

3.2  QSO trajectory adjustment 
 
Once obtained the preliminary QSO trajectories in the GINS format, it is necessary to apply an 
orbital adjustment, in order to provide them with the same precision level adopted in the CNES 
Space Geodesy software. 
This aim is reached by using really precise full dynamical force models to make the desired 
corrections to the preliminary orbits. Effectively, GINS is perfectly adapted to this purpose. In 
the specific case of the MMX mission analysis, its utilisation allows to take into account [13]: 
 
• The real celestial body ephemeris, instead of the Keplerian approximation to their orbital 

motions; 
• The Mars gravitational attraction, computed with the accurate JPL Mars gravity field model, 

derived from the MRO mission and developed up to degree/order 120 [14]. Mars gravity 
spherical harmonics up to degree 10 have been taken into account within this project; 

• The Mars tidal effects, which are taken into account through the 𝒌𝟐 coefficient; 
• The perturbing third body attraction of the Sun and the planets (Earth, Jupiter, Saturn, 

Uranus and Neptune); 
• The solar radiation pressure effecting the spacecraft, considering the following set of 

assumption: 

{
𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 52𝑚2

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓 𝑚𝑎𝑠𝑠 = 1000𝑘𝑔
𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐶𝑟 = 1.3 

   

 
where the 𝐶𝑟 term represents the satellite reflectivity coefficient. 
The force exercised by the solar pressure is considered to be zero when the satellite 
transits in an eclipse condition in relation with the Sun: when the Sun is behind Mars or 
Phobos. Instead, this solar action is considered to grow as gradually as the satellite passes 
from an eclipse condition, to a half-light situation, to a complete visibility state. In order to 
take into account this solar pressure variation along the satellite orbits, the eclipse index 
described in section 2.1.1 is employed; 

• The relativistic effects generated by the most important of the three terms GINS can take 
into account: the Schwarzschild term; 

• The Phobos gravitational attraction, calculated using a specific model. Normalized gravity 
Stokes coefficients of the Martian moon can be computed under the assumption of a 
homogeneous mass distribution, considering Phobos equatorial radius 𝒂𝒆 =
𝟏𝟏𝟎𝟎𝟎. 𝟎 𝒎 and its gravitational parameter 𝝁 = 𝑮 ∙ 𝑴 = 𝟕𝟏𝟏𝟑𝟖𝟏. 𝟔𝟔 𝑵𝒎²/𝒌𝒈². Firstly, 
Phobos polyhedron shape is converted into a series of spherical harmonics (Figure 16.a), 
secondly this series is used to compute the target gravity field in each point of its modelled 
shape (Figure 16.b):  
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Figure 16.b – 2D representation of 
internal Phobos gravity model. 

 
 

 
 

On the base of this shape model, Phobos external gravity filed can be expressed by a set 
of Stokes coefficients (paragraph 1.4).  
In this internship project, the reference model is represented by gravity spherical 
harmonics up to the degree 20 (whose respective normalised coefficient values are 
reported in Annex A): one of the most precise Phobos gravitational model available 
nowadays. Consequently, this reference gravitational field has been used as “natural 
satellite gravity” in the “model” section of the Adjustment “Director” GINS file. 

 
With this precise force model, it is possible to proceed with the adjustment of all the QSO 
trajectories needed in the MMX mission and listed in Table 1 and Table 2. The same procedure 
detailed in the following, is applied to every orbit, one by one, within the Adjustment project 
step. 
The Adjustment step consists in adopting the format corrected-preliminary orbits as 
measurements of ephemeris type, within the GINS software. This means that the approximate 
QSO trajectory files are employed as “inter-object data – file” in the “observation” section of 
the Adjustment “Director” input file.  
Moreover, a smaller integration step-size is here considered, in comparison to the 120.0s 
employed by the JAXA FD team. With the aim of having more adjusted ephemeris information, 
a value of 60.0s has been inserted under heading “integration step-size” in the “parameter” 
section of the Adjustment “Director”. 
GINS execution of instructions contained in this “Director” file, leads to the correction of satellite 
initial state vectors (initial position and speed) on each QSO. The adjustment criterion is the 
minimization of the 3-Dimensional residuals computed along the entire orbits, which means 
the distance between the dynamically QSOs simulated by GINS and the FD team preliminary 
orbits. 
 
The first tested approach for QSO adjustment, was composed by the following two moments: 
 
1. Inserting the preliminary QSO trajectory files under heading “satellite – initial state vector” 

in the “object” section of the Adjustment “Director” input file, the adjustment was conducted 
only over the first 6-hour orbit arc of each orbit. These corrected arcs were then described 
in the “Ephemeris” output files, whose post-treatment through the Python Visualisation 
Module, allowed their graphical representation. One of these visualisations is observable 
in the figure below, where an adjusted QSO-L-A arc is considered as an example: 

Figure 16.a – 3D visualization of Phobos 
spherical harmonic shape model. 

Figure 16 - Phobos shape and gravity modelling through spherical harmonic expansion. 
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2. This adjusted initial 6-hour arc of each trajectory was then propagated over all the orbit 

duration, for the purpose of generating complete adjusted QSOs. In this case, an additional 
Propagation “Director” file was thus necessary. Its entry “satellite – initial state vector” in 
the “object” section was dedicated to the adjusted 6-hour QSO arc files, created by GINS 
in the previous moment. 

 
Fortunately, this adjustment technique brought to light two important aspects. 
First of all, GINS adjustment procedure failed in several QSO cases. This feature is due to the 
fact that on these particular orbits, even a little error on satellite initial state vector is able to 
propagate and grow out of all proportion along a period of 6 hours. This element caused the 
uncorrected GINS adjustment execution or the absence of the adjustment procedure 
convergence, for several considered trajectories.  
Secondly, even when certain orbits succeeded in their 6-hour adjustment, the moment of their 
propagation highlighted a second problem. The propagation of a QSO trajectory over a period 
between 14 and 35 days, generates an excessive propagation of the probable initial state 
vector error, remaining from the previous GINS orbit arc adjustment.   
 
A perfect graphical representation of this error increase in time, is shown in the figure below, 
reporting as an example the same QSO-L-A trajectory than Figure 17. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 - Adjustment example over a 6-hour QSO-L-A orbit arc. 
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This figure represents the module of the difference between the position vectors on the 
preliminary QSO trajectory and its initial adjusted and propagated version. As it is clear from 
this graph, the starting difference between the two orbits is almost null, while it gradually keeps 
growing until the final date. This position discrepancy evolution in time perfectly confirms the 
propagated growth to excess of an initial position and speed error.  
 
Because of these constraints in QSO behaviour, another adjustment process has thus been 
ideated. Taking into account the failure of some trajectories in being adjusted over a period of 
6 hours, the strong error rise in time and the necessity of correcting orbits along their entire 
duration, a gradual adjustment has been developed.  
Thus, the procedure has been split into five Adjustment sub-steps: 
 

 

Figure 18 - Position difference between an original preliminary QSO-L-A and its propagated orbit 
starting from a 6-hour adjusted arc. 

Figure 19  - Shema representing the adjustment procedure developed in this internship project. 
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Each Adjustment sub-step is detailed below: 
 
1. All the entire QSO trajectories are firstly divided into 30 minute-orbit arcs. Considering that 

it is the satellite initial state vector to be corrected, only one in every forty-eight arcs is 
adjusted using GINS. In this way, the correction is applied at the beginning of each day 
taking part in a QSO. As it represents the first orbital adjustment, again the preliminary 
QSO trajectory files correspond to the “satellite – initial state vector” in the “object” section 
of the Adjustment “Director”. 
This method allows to eliminate all problems in adjustment execution and convergence, 
since considering only half an hour, the remaining initial state vector errors cannot 
excessively propagate. 

2. The complete QSO trajectories are successively split into 2-hour orbit arcs. The files 
containing the previously adjusted orbit arcs of thirty minutes is now used as “satellite – 
initial state vector” in the Adjustment “Director”. In this case, one every twelve arcs is 
adjusted, in order to get one corrected arc at the beginning of each QSO day. 

3. The whole QSO trajectories are then decomposed in 6-hour orbit arcs. One every four of 
these arcs is effectively adjusted, using the previous 2-hour corrected arc files as “satellite 
– initial state vector” in the Adjustment “Director”. Consequently, the first six hours of each 
QSO day are corrected. 

4. The entire QSO time periods are now split into 12-hour orbit sections. In order to correct 
the initial state vector at the beginning of each day composing the trajectories, one every 
two arcs is adjusted. This time, the entry “satellite – initial state vector” in the Adjustment 
“Director” is reserved for the adjusted 6-hour QSO arc files. 

5. The entire QSOs are finally parted into 24-hour orbit arcs. Adopting the adjusted 12-hour 
arc files as “satellite – initial state vector” in the Adjustment “Director”, each of these arcs 
is really adjusted and concatenated to each other, in order to cover all the QSO durations. 

 
It is possible to realise this global adjustment since a gradual operation is employed. In every 
sub-step, the adjustment period increases, but at the same time, an always more precise 
corrected initial state vector is provided. Consequently, even with a strong initial error 
propagation in time, this method enables to obtain complete adjusted QSO trajectories, similar 
to the preliminary ones.  
 
As all GINS “Ephemeris output files, these adjusted orbits are expressed in the central body 
(Mars) centred reference system. With the purpose of better observing the results, they can 
be treated with the Python Visualisation Module, to turn their reference coordinate system into 
the Phobos centred one. The following figures, representing one orbit for each QSO class as 
an example, show the satisfying results for the Adjustment step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Interplanetary space geodesy study of the MMX project                               Rebecca Martinelli 
 __________________________________________________________________________________  

 
47 

 

Figure 20.a – QSO-H class example. 

Figure 20.b – QSO-M class example. 

 
 
 
 

Trajectories Position Difference 
  

  

Adjusted QSO – Preliminary QSO 
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The trajectory representations on the left of the figure, prove that all the QSO classes allow a 
satisfactory orbital adjustment: the corrected orbit traces appear not to be that far from the 
preliminary ones. 
Moreover, a significant remark stands from the observation of graphs on the right, reporting 
the evaluation in time of satellite-Phobos distance difference between the corrected and the 
preliminary trajectories. Generically, the higher diversities correspond to the conjunction 
instants between consecutive 24-hour orbit arcs. Again, this aspect does not represent a 
problem: the adoption of this QSO partition method in all the project steps, allows anyway an 
accurate geodesic analysis. 
Furthermore, the difference increases with the 2-Dimensional QSO dimensions, while the 
highest value is reached with the 3-Dimensional cases. This aspect is highlighted in the 
following table, showing the maximal difference and final r.m.s. (between all the 24h-arcs 
composing these orbits) values of every QSO class (in relation to the orbits employed as 
examples): 
 
 

Figure 20.d – QSO-M-3D class example. 

Figure 20.c – QSO-L class example. 

Figure 20 - Adjustment examples over 24-hour arcs, covering the complete QSO trajectories. 
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Orbit class Maximal difference [km] Maximal r.m.s. [km] 
QSO-H 5.45  2.35 
QSO-M 0.585  0.155 
QSO-L 0.165  0.051 

QSO-M-3D 11.8  3.77 
 
 
 
 
Both this difference values and graphs in Figure 20.d lead to understand that the QSO-M-3D 
represents the most difficult class to be treated and adjusted. In fact, even if these 3-
Dimensional orbits reach only medium altitudes over Phobos surface, their adjusted versions 
appear to be farther from their respective preliminary trajectories, than the 2-Dimensional 
QSO-M orbits. However, their adjustments result to get an acceptable accuracy level.  
 
To conclude, it is possible to supposed that the larger a QSO is, the higher are the relative 
maximal preliminary-adjusted position distances and the adjustment r.m.s. values, probable 
because of a difference in Mars gravity models used for the preliminary simulations and the 
GINS adjustment. Nevertheless, all the adjusted QSOs conserve their orbital features, 
dimensions, stability, and distances from Phobos. Thus, the primary adjustment purpose is 
reached: the obtainment of reference orbits on which apply all the necessary procedures to 
return the target gravity filed.  
Finally, it is important to underline that an orbital adjustment over consecutive 24-hour arcs, 
concatenated over the entire period of a QSO, may generate a gap between state vectors at 
the last instant of an arc and at first instant of the consecutive one. In any case, this possibility 
does not represent a problem for this specific internship project. In fact, its final scientific 
purpose is the analysis of Phobos physical parameters and not the perfect reconstruction of 
the MMX orbital evolution.  
This means that, once chosen to adopt this partition method of QSO trajectories in 24-hour 
orbit arcs, it is sufficient to apply it in all the following project steps. In this way, this splitting 
procedure cannot damage the final geodesic analysis results.   
 
 
 

3.3 DSN measurement simulation and QSO 
extrapolation  

 
Once adjusted the necessary QSO trajectories, the second project step is the simulation of the 
desired measurements along these orbits. 
As announced before, measures concerning Phobos geodesic analysis are the DSN, LIDAR 
and Optical navigation ones. 
 
The initial measure Simulation step deals with the first group of measurements, the Doppler 
DSN type. 
DSN measurements represent an important component in the MMX mission, since they 
provide Doppler and Range information in the spacecraft line of sight, in deep space.  
The method selected to capture these measurements is the 2-Way Doppler approach. It 
consists in the transmission of a signal by an Earth station, with a frequency 𝒇𝑻 (usually in the 
S or X band) during an interval [𝒕𝟏,𝒔, 𝒕𝟏,𝒆]. Normally, this frequency can be controlled: by 
changing it in a linear manner in each time interval, an optimisation of the final signal reception 

Table 3 - Maximal differences in satellite position along adjusted and preliminary orbits. 
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on Earth is possible. The signal transmitted by the station is then received on-board by the 
satellite transponder, which multiplies it by a specific frequency factor 𝑴𝟐 and re-transmits it 
during a time interval [𝒕𝟐,𝒔, 𝒕𝟐,𝒆], with a frequency 𝒇𝑹. 
This signal is successively received by a ground station on Earth, during a time interval 
[𝒕𝟑,𝒔, 𝒕𝟑,𝒆], referred to as the counting time 𝑻𝒄. Finally, this received signal frequency is then 
compared with a reference frequency 𝒇𝒓𝒆𝒇, calculated by multiplying the originally transmitted 
𝒇𝑻 with a frequency factor 𝑴𝟐,𝑹. 
 
A visual representation of a 2-Way Doppler method is given by the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
On the basis of this 2-Way Doppler approach, the measured quantity is expressed and 
calculated by the GINS software as follows [13]: 
 
 

𝒒𝒐𝒃𝒔 =
𝑴𝟐𝑹

𝑻𝒄
∫ 𝒇𝑻(𝒕𝟑)𝒅𝒕𝟑 −

𝑴𝟐

𝑻𝒄
∫ 𝒇𝒕(𝒕𝟏)𝒅𝒕𝟏 + 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝒔 

𝒕𝟏,𝒆(𝑺𝑻)

𝒕𝟏,𝒔(𝑺𝑻)

𝒕𝟑,𝒆(𝑺𝑻)

𝒕𝟑,𝒔(𝑺𝑻)
   (59) 

 
where 𝑺𝑻 represents the Earth station time and the 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝒔 term includes all the 
necessary adjustments for signal propagation in Earth atmosphere, interplanetary environment 
(plasma) and Sun proximity (corrections due to the solar corona).  
In reality, modelling these propagation effects over an electromagnetic signal, results to be 
quite difficult. Models used in the GINS software are accurate, but their precision level does 
not allow to calculate absolutely exact values. Consequently, the wider are the DSN signal 
passages through these delicate space environments, the more the simulated Doppler values 
are compromised by the 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝒔 model inaccuracies.  
In the specific MMX study case, a particular expedient has been adopted to reduce this Doppler 
measurement imprecision. In fact, the GINS software enables to fix a limit for Earth atmosphere 
portion to be crossed by the electromagnetic signal.  
 

Figure 21 - Schematic representation of the 2-Way Doppler technique [9]. 



 Interplanetary space geodesy study of the MMX project                               Rebecca Martinelli 
 __________________________________________________________________________________  

 
51 

 

As the following figure shows, this crossed atmosphere layer almost depends on the ground 
DSN antenna observation angle. 
 

 
 
 
 
This figure highlights that the smaller is the ground antenna minimum Elevation angle, the 
thicker is the Earth atmosphere layer which DSN signals have to cross. However, a higher 
minimum observation angle provides a low number of Doppler captures, since resulting the 
area covered by the DSN station turns out to be reduced. 
Because of this aspect, the antenna Elevation parameter has to be fixed for an accurate 
Doppler measurement simulation. For the purpose of finding a compromise between the 
necessity of minimizing the crossed atmosphere width and the need of getting the maximum 
quantity of DSN measurements possible, the optimised minimum antenna Elevation angle has 
been fixed at 15.0°.  
 
Apart from the thus set antenna observation angle, the JAXA has already imposed many other 
parameters and constraints, relative to the caption of DSN measurements during the MMX 
mission: 
 
• Normally, DSN measurements will be realised using Madrid (Spain) and Usuda (Japan) 

ground stations;  
• The possibility of employing only Usuda station is taken into account (this hypothesis 

represents an additional study case analysed in this project); 
• In these station-covered areas, one DSN measurement will be taken every minute; 
• The Doppler noise standard deviation (𝝈𝑫𝑺𝑵) is fixed at 3.75mHz, corresponding to a speed 

error of 0.2 mm/s in the satellite line of sight. 
 
Taking into account these hypotheses, the procedure followed in the DSN Simulation step is 
reported in schema below: 
 
 
 
 
 

Figure 22 - Effects of the DSN antenna observation angle on the crossed atmosphere layer. 
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The aim of this project step is to follow the method represented in the schema, in order to 
simulate Doppler measurements along all the adjusted QSO trajectories.  
Since the latter have been realised as a concatenation of corrected 24-hour orbit arcs, also in 
the DSN Simulation step it is necessary to treat each entire orbit by splitting it into 1 day-
portions. These orbit arcs have then to be newly concatenated at the end of the simulation 
procedure. 
Once again, the GINS software is perfectly adapted for this DSN measurement simulation. The 
specific DSN Simulation “Director” input file to be used is mainly composed by: 
 
• The same reference Phobos gravity field, modelled by spherical harmonics up to the 

degree 20, under heading “natural satellite gravity” in the “model” section; 
• The “Ephemeris” files defining the complete adjusted QSOs (generated in the previous 

step), as “satellite – initial state vector” in the “object” section; 
• The station file containing the detailed positions of Madrid and Usuda DSN ground 

antennas (for the nominal case), under heading “inter-object data – objects” in the 
“observation” section; 

• The key word “DSN Doppler 2”, defining the 2-Way Doppler technique, as “inter-object data 
– simulation” in the “observation” section. The same section included the minimum antenna 
elevation angle, fixed at 15.0°, under heading “removal – minimum elevation threshold”; 

• The Doppler white noise to be simulated along with DSN measurements, in order to 
represent possible errors in the generated values. The white noise is calculated by GINS 
with equation (20). Consequently, it can be defined in the “Director” file through the 
measurement noise standard deviation 𝝈𝑫𝑺𝑵, fixed at 3.75mHz by the JAXA. 

 
In addition to these main DSN Simulation “Director” instructions, two different measurement 
time steps need to be set, in order to respect all JAXA constraints.  
Specifically, as preannounced before, DSN measurement type requires a simulation time step 
of 60.0s.  
However, this value would not be appropriate for the next LIDAR Simulation step. In fact, the 
time step between two consecutive LIDAR measures is fixed by the JAXA at 1.0s. The problem 
is that, as the next paragraph will detail, LIDAR (and Optical) measurements are simulated as 

Figure 23 - Schematic representation of the DSN simulation approach. 
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ephemeris measure types. This means that their simulation has to be based on QSO trajectory 
files generated as “Ephemeris” outputs from the DSN Simulation step.  
Therefore, because of the 1 second-time step imposed for LIDAR measures, output QSO 
“Ephemeris” characterised by an integration time step of 60.0s would not be utilisable for the 
next LIDAR simulation. 
Consequently, it is necessary to fix two different time steps in the DSN Simulation “Director” 
file: 
 
1. A “simulation step size” of 60.0s in its “observation” section, relative to the Doppler 

measurement simulation; 
2. An “integration step size” of 1.0s in its “parameter” section, relative to the integration time 

step for the output “Ephemeris” files. This element involves a GINS orbit interpolation, 
needed to pass from the previous adjusted QSO files, integrated every 60.0s, to the new 
1.0s-integrated ones. 
 

In this way, once GINS realised the entire DSN Simulation procedure over all the 24-hour orbit 
arcs, two main types of output are generated: 
 
1. The Doppler “Measurements” file, containing the measures stimulated every 60.0s, in time 

intervals corresponding to areas not covered by the DSN Earth stations; 
2. The “Ephemeris” file, containing the adjusted QSO arcs, interpolated every 1.0s.  

 
Finally, as for the Adjustment step, all the simulated DSN measurements and the interpolated 
QSO ephemeris on 24-hour orbit arcs, have then to be concatenated.  
In this way, the entire Doppler “Measurements” and interpolated QSO “Ephemeris” output files 
are obtained.  
 
Beginning with the first of these GINS outputs, its treatment with the Python Visualisation 
Module leads to generate a representation of Doppler measurements captured during the 
entire orbit durations.  
A QSO-L-A trajectory is here considered as an example, in order to show DSN measure 
evolution in time. For the purpose of a clear representation, a period of only five days has been 
considered to generate the following graphs.  
 

Figure 24 - Example of DSN measurements evolution in time along a 5-day period of a QSO-L-A. 
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This figure perfectly proves the sinusoidal time progress of Doppler measurements. This 
temporal evolution is due to constant relative motion between Earth and Mars (and Phobos). 
Moreover, this graph underlines the lack of measurements in some time intervals. This aspect 
witnesses an important consequence of the JAXA hypothesis over the DSN captures.  
Since each ground station covers a time of about 8.0h per day, the employment of two DSN 
antennas leads to Doppler measures available only for 16.0h every 24.0h. This causes visibility 
interruptions along QSO trajectories, between the Madrid and the Usuda covered areas.  
Obviously, this situation got worst if considering only the Japanese antenna.  
The analysis of this additional study case starts with the generation of a new complete Doppler 
“Measurement” file for each QSO, containing the only information relaying on the Japanese 
ground station. It is not necessary to repeat all the GINS simulation procedure: a simple 
extraction of Usuda measures from the original files is sufficient.  
Once again, the employment of the proper Python Visualisation Module function, leads to the 
following result, relative to the same QSO-L-A trajectory taken as an example in the previous 
figure: 
 

 
 
In comparison with Figure 24, this graph presents the only red curves corresponding to the 
Usuda captures. These remaining DSN traces highlight the larger time intervals without any 
Doppler measurements. This bigger lack of measures causes a lower accuracy level in the 
DSN data treatment realised in the next project step, detailed in the following. 
 
Passing now to the second fundamental DSN Simulation output, it is possible to visualise the 
orbital traces described in the “Ephemeris” file, defining the entire 1 second-interpolated QSO 
trajectories.  
In fact, once again the Python Visualisation Module allows the representation of these 
trajectories and their differences in relation to the simply adjusted ones. The same trajectories 
reported in Figure 20, are used here as examples again: 
 
 
 

Figure 25 -  Example of DSN measurements along a 5-day period of a QSO-L-A, simulated with the 
only Usuda ground station. 
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Trajectories Position Difference   

  

 

 
Figure 26.a – QSO-H class example. 

Interpolated QSO – Adjusted QSO 

Figure 26.b – QSO-M class example. 
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These figures prove the accuracy level of GINS interpolation procedure. Effectively, for all the 
QSO classes, the satellite position difference between the adjusted and the interpolated 
trajectories is minimal.  
 
Moreover, the combination of both Doppler “Measurements” and interpolated QSO 
“Ephemeris” files, enables the visualisation of areas covered by DSN measures along satellite 
orbits:  
 
 
 
 

Figure 26 - Examples of interpolated trajectories belonging to the four QSO classes. 

Figure 26.d – QSO-M-3D class example. 

Figure 26.c – QSO-L class example. 
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Figure 27.a – QSO-H class example. Figure 27.b – QSO-M class example. 

Figure 27.d – QSO-M-3D class example. Figure 27.c – QSO-L class example. 

  

  

 
 
These graphs prove the presence of certain QSO portions not covered by DSN measurements. 
This feature appears no to be so evident in lower trajectory cases (Figure 27.c), because of 
the multiple complete orbits realised by the satellite within the entire QSO durations.  
In any case, there are little Doppler-free sections in all these orbits, corresponding to the about 
8.0h per day not covered by Madrid and Usuda DSN antennas (or the 16h not covered by the 
only Usuda ground station). 
  
To conclude, along with DSN measurement and trajectory graphical visualisation, both the 
Doppler “Measurements” and the interpolated QSO “Ephemeris” output files constitute the 
basis for the next project step: the ephemeris measurement simulation. 
 
 

Figure 27 - Areas covered by DSN measures along trajectories belonging to the four QSO classes. 

DSN measurement position 
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3.4 Ephemeris measurement simulation 
 
Apart from DSN, the other important MMX measurements for Phobos geodesic analysis are 
the LIDAR and Optical ones.  
Respectively useful for detecting satellite altitude and its motion within its tangential plane, they 
both directly give information about the spacecraft position over its orbits. Consequently, the 
model developed for their simulation, treats both LIDAR and Optical measures as ephemeris 
measurement types.  
Therefore, the best coordinate reference frame where to simulate them, has been individuated 
in the strictly linked to the satellite-RTN system: 
 

 
 
In the MMX context, the RTN system has its centre in the satellite centre of mass, its radial 
direction R pointing Phobos mass centre, its tangential direction T along the satellite QSO 
track, and its normal direction N perpendicular to the other two, oriented for respecting the right 
hand rule. 
This coordinate system selection defines the first preliminary action to do in the Ephemeris 
Simulation step. Since the previously interpolated QSO trajectories are expressed in the GINS 
standard Cartesian (x,y,z) coordinate system centred on Mars, they firstly need to be 
converted in the satellite (R,T,N) system. 
 
However, as for the DSN case, before starting with LIDAR and Optical simulation, it is 
necessary to take into account the constraints fixed by the JAXA: 
 
• LIDAR and Optical measurements will be taken only when the satellite will pass in areas 

not covered by the DSN antennas; 
• In these parts of QSO trajectories, the satellite will capture one LIDAR measurement every 

second and only one Optical measurement every hour; 
• The satellite will be always able to take Optical captures, independently from its altitude, 

while LIDAR technique will be employed only in case of distance between satellite and 
Phobos surface equal or lower than 50.0km. This means that only along orbits belonging 
to QSO-L class, LIDAR measurements will be considered; 

Figure 28 - Satellite RTN coordinate system, used for LIDAR and Optical measure simulation. 
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• LIDAR noise standard deviation (𝝈𝑳) is set at 2.0m if satellite altitude over the target surface 
is equal or lower than 100.0m, while it assumes a value of 22.0m if this distance is equal 
or higher than 100.0km.  
Instead, the Optical noise standard deviation (𝝈𝑶) is defined as an angular error in relation 
to Phobos centroid and it is fixed at 0.1°. 

 
Respecting all these JAXA hypotheses, the ephemeris measure simulation method is 
completely built on results of the previous DSN Simulation step. In fact, its two outputs, the 
Doppler “Measurements” and the 1 second-interpolated QSO “Ephemeris” files, are the 
starting points for this Ephemeris Simulation project phase.  
This direct dependence on the preceding step is highlighted by the schema below, showing 
the procedure followed for the treatment of LIDAR and Optical measures.    
 

 
 
The approach reported in this schema has been developed coding a Fortran programme able 
to: 
 
1. Reading the complete simulated DSN “Measurements” files (with Madrid and Usuda 

captures and with the only Usuda ones) relative to each QSO trajectory.  
This leads to establish which are the time intervals within the orbit total durations, without 
Doppler measures. As imposed by the JAXA constraints, these intervals represent the 
ranges where LIDAR and Optical measurements can be taken, thus simulated. 
 

2. Reading the complete 1 second-interpolated QSO “Ephemeris” files, which provide all the 
necessary data on which LIDAR and Optical measure simulation is developed.  
Firstly, these QSO trajectories are treated with the same technique used in the 
“Trace_Orbits_Phobos_Centered” function of the Python Visualisation Module: their 
reference system origin is displaced from Mars to Phobos and they are expressed in 
relation to the Martian moon position. 
Secondly, once obtained the spacecraft position (𝑷⃑⃑ 𝒙𝒚𝒛) and speed (𝑽⃑⃑ 𝒙𝒚𝒛) vectors in relation 
to Phobos mass centre, they are converted in (R,T,N) coordinates, adopting the following 
rotation method [15]: 

Figure 29 - Schematic representation of LIDAR and Optical measure simulation approach. 
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 𝑷⃑⃑ 𝑹𝑻𝑵 = (
𝑹
𝑻
𝑵
)
𝒔𝒄

=  𝜞 ∙ (
𝒙
𝒚
𝒛
)
𝒔𝒄

= 𝜞 ∙ 𝑷⃑⃑ 𝒙𝒚𝒛                     (60) 

where 𝜞 is the (x,y,z) to (R,T,N) rotation matrix. It is an orthonormal matrix defined as: 
 

 𝜞 = (
𝑺̂𝑻

𝑰̂𝑻

𝑪̂𝑻

)                                        (61) 

where: 

{
 
 

 
 𝑺̂ =  

𝑷⃑⃑ 𝒙𝒚𝒛

|𝑷⃑⃑ 𝒙𝒚𝒛|

𝑪̂ =  
𝑷⃑⃑ 𝒙𝒚𝒛  𝒙  𝑽⃑⃑ 𝒙𝒚𝒛

|𝑷⃑⃑ 𝒙𝒚𝒛  𝒙  𝑽⃑⃑ 𝒙𝒚𝒛|
 

𝑰̂ = 𝑪 𝒙 𝑹

                                 (62) 

 
3. Simulating the two ephemeris measurement types. After getting satellite position vectors 

𝑷⃑⃑ 𝑹𝑻𝑵 in the (R,T,N) coordinate system, it is possible to proceed with the real simulation of 
LIDAR and Optical measurements, which will be detail in the next two paragraphs.  
It leads to the computation of satellite simulated position vectors (𝑷⃑⃑ 𝑹𝑻𝑵)′ in the (R,T,N). 
 

4. Re-converting these simulated (𝑷⃑⃑ 𝑹𝑻𝑵)′ vectors in the Cartesian (x,y,z) coordinate system, 
using the inverse formula of the equation (60): 

 
(𝑷⃑⃑ 𝒙𝒚𝒛)

′ = 𝜞−𝟏 ∙ (𝑷⃑⃑ 𝑹𝑻𝑵)′                          (63) 

Considering the orthonormal propriety characterizing the rotation matrix 𝜞, this equation 
can be simplified in: 

(𝑷⃑⃑ 𝒙𝒚𝒛)
′ = 𝜞𝑻 ∙ (𝑷⃑⃑ 𝑹𝑻𝑵)′                           (64) 

The obtained (𝑷⃑⃑ 𝒙𝒚𝒛)
′ vectors have then to be expressed in relation to the Mars mass 

centre, by a reverse displacement of the reference frame origin from Phobos to its central 
body. 
This last action is mandatory, since “Ephemeris” files (for both QSO trajectories and 
simulated ephemeris measurements) must be expressed in a coordinate system centred 
on the central body, if they represent input files for the GINS software.  
 

5. Writing at most four output files for each QSO, containing the simulated ephemeris 
measurements: 
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QSO 
class Simulated ephemeris measurement file 

 
QSO-H 

 
QSO-M 

 
QSO-L 

 

1. Optical simulated (𝑷⃑⃑ 𝒙𝒚𝒛)
′ vectors: one every hour, only in time 

intervals not covered by Madrid and Usuda DSN measurements 

2. Optical simulated (𝑷⃑⃑ 𝒙𝒚𝒛)
′ vectors: one every hour, only in time 

intervals not covered by Usuda DSN measurements 

QSO-L 

3. LIDAR simulated (𝑷⃑⃑ 𝒙𝒚𝒛)
′ vectors: one every second, only in time 

intervals not covered by Madrid and Usuda DSN measurements 

4. LIDAR simulated (𝑷⃑⃑ 𝒙𝒚𝒛)
′ vectors: one every second, only in time 

intervals not covered by Usuda DSN measurements 

 
 

All these simulated ephemeris measure files are suitable for being used in GINS “Director” 
as “Measurements” input, for the next project steps.   
 

The next two paragraphs will go into the details of the third action realised by the Fortran 
programme: LIDAR and Optical measurement effective simulation. 
 
 

3.4.1 LIDAR measurement simulation 
  
Following the project chronological order, the first ephemeris measures to be modelled have 
been the LIDAR ones. 
LIDAR stands for “Light Detection And Ranging”. Effectively, this is a ranging instrument, which 
will be positioned on-board the satellite and whose project is now headed by the JAXA member 
Dr. Hiroki Senshu as a PI (Principal Investigator) of LIDAR in MMX mission. 
On one side, LIDAR instrument will be useful to detect information on shape of the Martian 
moon surface. This is a fundamental element for MMX scientific purposes, such as the creation 
of shape models and the investigation of the surface conditions [16]. 
However, LIDAR technique will be primarily indispensable for spacecraft operations thanks to 
its ranging detection capability. In fact, this instrument will be able to measure distances 
(ranging) by irradiating a laser light which will illuminate parts of the target surface and will be 
then reflected towards a specific LIDAR sensor on-board the satellite.  
Moreover, it will be possible to derive Phobos surface altitude and albedo distribution, from 
measuring time taken for the laser reflected light to return to the sensor and its reflection 
energy.  

Table 4 - Possible simulated “Ephemeris” measurement output files. 
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Since this laser instrument deals with distance evaluations, in this internship project LIDAR 
captures are simulated as altimetric measurements, in a simplified model. The definition 
“simplified” is referred to the fact that the laser simulation method has been developed taking 
into account the instantaneous distances between the satellite and Phobos mass centre, while 
in the reality, LIDAR laser light will reach the target surface.  
However, this approach enables to get an initial LIDAR measurement approximation, which 
appears to be sufficiently accurate (especially considering the limited Phobos dimensions). 
In accordance with this altimetric concept, the simulation model defines LIDAR measurement 
error as an inaccuracy on the altitude reached by the satellite over the centre of Phobos.  
This distance imprecision leads to an ephemeris uncertainty along the radial direction R of the 
instantaneous spacecraft positions on its QSO trajectories.  
Evidently, LIDAR inaccuracy level increases with the satellite altitude: this aspect justifies 
JAXA constraint of using LIDAR instrument only within a distance of 50.0km from Phobos. 
All these altimetric considerations lead to a LIDAR measurement simulation model consisting 
in the addition of a perturbation (𝜹⃑⃑ 𝑹𝑻𝑵)

𝑳
 along the radial direction of the satellite position vector 

𝑷⃑⃑ 𝑹𝑻𝑵, during time intervals without DSN measures, along the only QSO-L trajectories.  
The consequent simulated position vector is: 
 

(𝑷⃑⃑ 𝑹𝑻𝑵)
′

𝑳
= 𝑷⃑⃑ 𝑹𝑻𝑵 + (𝜹⃑⃑ 𝑹𝑻𝑵)

𝑳
                          (65) 

Taking into account that LIDAR perturbation involves the only radial direction, the previous 
relation can be expressed as: 
 

(𝜹⃑⃑ 𝑹𝑻𝑵)
𝑳
= (

𝜹𝑹
𝜹𝑻
𝜹𝑵

)
𝑳

= (
𝜹𝑹𝑳
𝟎
𝟎

)                            (66) 

The quantification of this additional radial perturbation 𝜹𝑹𝑳 depends on LIDAR measurement 
error, defined by the relative noise standard deviation (𝝈𝑳).  
In fact, in this ephemeris measurement model, the 𝝈𝑳 element corresponds to an error 
standard deviation (𝝈𝑹) over the satellite radial position in relation to Phobos mass centre: 
 

Figure 30 - Schematic representation of LIDAR technique. 
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 𝝈𝑳 = 𝝈𝑹                                        (67) 
The figure below shows a graphical interpretation of the 𝝈𝑹 element. 
 

 
 
As announced before, the 𝝈𝑳 value is fixed by the JAXA at:  
 
• 𝝈𝑳 = 𝟐. 𝟎𝒎 if the satellite reaches an altitude equal or lower than 100.0m over Phobos 

surface; 
• 𝝈𝑳 = 𝟐𝟐. 𝟎𝒎 if the satellite reaches an altitude equal or higher than 100.0km over Phobos 

surface 
 
This JAXA hypothesis suggests that, starting from an error standard deviation of 2.0m 
characterising an altitude of 100.0m, every increase of 99.9km in satellite distance from the 
Phobos surface generates an augmentation in the 𝝈𝑳 value of 20.0m.  
As a consequence, in order to compute an appropriate LIDAR noise standard deviation for 
each spacecraft radial distance (𝑹)  from the Martian moon, a mathematic linear proportion is 
used: 

𝟗𝟗. 𝟗𝒌𝒎 ∶ 𝟐𝟎𝒎 = (𝑹 − 𝟎. 𝟏𝒌𝒎) ∶  (𝝈𝑳 − 𝟐. 𝟎𝒎)             (68) 

The resolution of this linear proportion between satellite altitude and LIDAR noise element 𝝈𝑳, 
leads to the definition of the standard deviation to be used to compute the radial position 
perturbation: 

𝝈𝑹 = 𝝈𝑳 =
𝟐𝟎𝒎∙(𝑹−𝟎.𝟏𝒌𝒎)

𝟗𝟗.𝟗𝒌𝒎
+ 𝟐. 𝟎𝒎                           (69)                           

Naturally, this expression involves a linear increase in LIDAR noise standard deviation with the 
distance reached by the satellite from Phobos mass centre.  
Effectively, this feature is coherent with LIDAR technique, considering that the longer is the 
path to be cross by the laser light and its reflected ray, the larger its measuring inaccuracy is.  
Once the 𝝈𝑹 value is computed, it is used to generate LIDAR radial perturbation over satellite 
positions on its QSO trajectories: 𝜹𝑹𝑳 =  𝜹𝑹𝑳(𝝈𝑹). 

Figure 31 - Schematic representation of LIDAR measurement noise standard deviation 𝝈𝑳 = 𝝈𝑹. 
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LIDAR ephemeris measurements – Interpolated QSO 

In fact, this perturbation is numerically calculated throughout a random normal Gaussian 
distribution function, characterized by mean value 𝝁 = 𝟎, a standard deviation equal to 𝝈𝑹 and 
a probability density function expressible as follows: 

𝒇(𝒙) =
𝟏

𝝈𝑹√𝟐𝝅
𝒆

−
𝟏

𝟐
(
𝒙−𝝁

𝝈𝑹
)
𝟐

                            (70) 

This radial perturbation created in function of the LIDAR noise standard deviation 𝜹𝑹𝑳(𝝈𝑹), is 
then added to the first component of satellite position vector, expressed in the (R,T,N) 
coordinate system.  
Consequently, the effective LIDAR measurement simulation consists in the following 
perturbation of the only radial component of the 𝑷⃑⃑ 𝑹𝑻𝑵 satellite vectors, expressed in the 
Phobos centred reference frame: 

𝑹′ =  𝑹 +  𝜹𝑹𝑳(𝝈𝑹)                                (71) 

As explained in the previous paragraph, the consequent perturbed satellite position vector 
(𝑷⃑⃑ 𝑹𝑻𝑵

′ )
𝑳
 is then rotate in the Cartesian coordinates system (𝑷⃑⃑ 𝒙𝒚𝒛

′ )
𝑳
 and expressed in relation 

to Mars mass centre. Finally, these (𝑷⃑⃑ 𝒙𝒚𝒛
′ )

𝑳
 vectors are used to generate the resulting measure 

simulation outputs. Each QSO-L trajectory is thus characterized by two simulated LIDAR 
measurement files, containing: 
 

1. the (𝑷⃑⃑ 𝒙𝒚𝒛
′ )

𝑳
 vectors calculated every second, within time intervals without Madrid and 

Usuda DSN measurements; 
2. the (𝑷⃑⃑ 𝒙𝒚𝒛

′ )
𝑳
 vectors calculated every second, within time intervals without Usuda DSN 

measurements. 
 

These two simulated measure files represent the basis for the next Phobos gravity field 
Restitution project step. 
Moreover, the treatment of the first of these resulting files with the Python Visualisation Module, 
enables the graphical representation of simulated ephemeris LIDAR measurements and the 
relative satellite position differences in relation to the interpolated QSOs: 
 
 
 

Trajectories Position Difference 
 

 
 

 

. Figure 32 - Example of simulated LIDAR measurements along a QSO-L trajectory. 
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The ephemeris representation on the left underlines that LIDAR measurements are only 
considered in some portions of QSO-L trajectories. More precisely, laser captures are realised 
in only the DSN measurement-free orbit sections, complementary to areas represented in 
Figure 27. 
 
 

3.4.2 Optical measurement simulation 
 
On-board the satellite designed for the MMX mission, not only DSN sensors and LIDAR 
instrument will be present, but also specialised optical navigation cameras. 
For instance, there will be the OROCHI. This name stands for “Optical RadiOmeter composed 
of CHromatic Imagers”. It is a wide-angle camera, suitable for observation of topography and 
material compositions of Phobos surface. This instrument is able to take images in the visible 
light reflected by the Martian moon surface at multiple wavelengths, and it can be employed 
for the identification of organic and inorganic materials. 
A second conceived navigation camera is the so called TENGOO. TENGOO stands for 
“TElescopic Nadir imager for GeOmOrphology”. It is a telescopic camera, characterized by a 
narrow observation angle, useful for analysing the terrain details on Phobos surface. In fact, 
TENGO is able to capture surface images with a resolution of about 40.0cm and obtain 
information about the distribution of different materials, corresponding to the Martian moon 
samples which will be collected. Moreover, it can also be employed for checking safety at the 
planned landing site [17].   
 
 
Such on-board cameras are a fundamental presence for the MMX mission: they allow the 
capture of navigation images, which not only are important for the target surface exploration, 
but also enable Optical navigation measurements.  
The latter represent the complement to LIDAR measures and again, they are useful for 
detecting satellite motion along its orbits. In fact, Optical measurements provide information 
about satellite position within the normal plane to its radial direction pointing Phobos. This 
means that, considering the satellite (R,T,N) coordinate system, Optical captures are referred 
to the T-N plane, tangential to the spacecraft orbital track:  

Figure 33 Schematic representation of Optical navigation image technique. 
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Because of their nature, Optical images provide direct information on satellite position vector 
(𝑷⃑⃑ 𝑹𝑻𝑵), exactly as the LIDAR laser. This leads to treat also the Optical as ephemeris 
measurement types, within this internship project. 
 
However, differently from LIDAR measures, the Optical are modelled as angular 
measurements. This modelling approach is due to the fact that their capture and accuracy level 
strictly depend on the camera observation angle and its centring in relation to Phobos centroid.  
This characteristic imposes on the simulation model to define the Optical measurement error 
as an angular inaccuracy. Consequently, this time the measure inaccuracy leads to an 
ephemeris uncertainty along the tangential (T) and the normal (N) directions of instantaneous 
spacecraft positions on its QSO trajectories. 
Therefore, the model developed for simulating Optical measurements consists in the addition 
of a perturbation (𝜹⃑⃑ 𝑹𝑻𝑵)

𝑶
 along the tangential and normal directions of satellite position vectors 

𝑷⃑⃑ 𝑹𝑻𝑵, during time intervals without DSN captures. The consequent simulated position is 
defined as: 

(𝑷⃑⃑ 𝑹𝑻𝑵)
′

𝑶
= 𝑷⃑⃑ 𝑹𝑻𝑵 + (𝜹⃑⃑ 𝑹𝑻𝑵)

𝑶
                           (72) 

Considering that Optical perturbation involves only the tangential and normal directions, the 
previous relation can be expressed as: 
 

(𝜹⃑⃑ 𝑹𝑻𝑵)
𝑶

= (
𝜹𝑹
𝜹𝑻
𝜹𝑵

)
𝑶

= (
𝟎

𝜹𝑻𝑶

𝜹𝑵𝑶

)                             (73) 

 
The quantification of this additional tangential and normal perturbations, 𝜹𝑻𝑶 and 𝜹𝑵𝑶, 
depends on the Optical measurement error, defined by the relative noise standard deviation 
(𝝈𝑶).  
In fact, in this simulation model, the navigation image noise relays exactly on the error standard 
deviation of the camera centring, imposed by the JAXA to be 𝝈𝑶 = 0.1°.   
As a consequence, the relative tangential (𝝈𝑻) and normal (𝝈𝑵) perturbation standard 
deviations are modelled through the following relation, linking the 𝝈𝑶 term to the spacecraft 
radial distance (𝑹) from Phobos mass centre: 
 

𝝈𝑻 = 𝝈𝑵 = 𝑹𝒔𝒄 ∙ 𝒔𝒊𝒏(𝝈𝑶)                             (74) 

The figure below shows a graphical interpretation of the 𝝈𝑶, 𝝈𝑻 and 𝝈𝑵 elements. 
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This figure, along with equation (74), highlights the inevitable increase in Optical noise 
standard deviation with the altitude reached by the satellite over the target body. However, 
different form the LIDAR case, this augmentation is reduced by the sinusoidal presence. 
 
Once computed the 𝝈𝑻 and 𝝈𝑵 values, they are used to generate the Optical ephemeris 
perturbations over satellite positions along its QSO trajectories: 𝜹𝑻𝑶 = 𝜹𝑻𝑶(𝝈𝑶) and 
𝜹𝑵𝑶(𝝈𝑶) =  𝜹𝑵𝑶. 
In fact, as for the LIDAR situation, these perturbations are numerically calculated through a 
random normal Gaussian distribution function, characterized by a mean value 𝝁 = 𝟎, a 
standard deviation equal to 𝝈𝑻 (= 𝝈𝑵) and the same probability density function expressed in 
equation (70). 
Consequently, both tangential and normal perturbations are modelled in function of the 𝝈𝑶 
term, which is equivalent to mean that they are created in function of the derived tangential 
and normal error standard deviations: 𝜹𝑻𝑶(𝝈𝑻) and 𝜹𝑵𝑶(𝝈𝑵).  
These two Optical perturbations are then added to the second and third components of satellite 
position vectors, expressed in the (R,T,N) coordinate system.  
Therefore, Optical navigation measurement simulation consists in the following perturbation of 
the only tangential and normal components of 𝑷⃑⃑ 𝑹𝑻𝑵 satellite vectors, expressed in the Phobos 
centred reference frame: 
 

{
𝑻𝒔𝒂𝒕

′ = 𝑻𝒔𝒂𝒕 +  𝜹𝑻𝑶(𝝈𝑻)

𝑵𝒔𝒂𝒕
′ = 𝑵𝒔𝒂𝒕 +  𝜹𝑵𝑶(𝝈𝑵)

                                       (75) 

As explained in the previous chapter, perturbed satellite position vector (𝑷⃑⃑ 𝑹𝑻𝑵
′ )

𝑶
 is then rotate 

in the Cartesian coordinates system (𝑷⃑⃑ 𝒙𝒚𝒛
′ )

𝑶
  and expressed in relation to Mars mass centre. 

Therefore, each QSO trajectory is characterized by two simulated Optical navigation 
measurement files, containing: 
 
1. The (𝑷⃑⃑ 𝒙𝒚𝒛

′ )
𝑶
 vectors calculated every hour, within time intervals without Madrid and Usuda 

DSN measurements; 

Figure 34 - Schematic representation of Optical measurement noise standard deviation. 
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2. The (𝑷⃑⃑ 𝒙𝒚𝒛
′ )

𝑶
 vectors calculated every hour, within time intervals without Usuda DSN 

measurements. 
 
Along with LIDAR ones, these two simulated measurement files constituted the basis for the 
immediately following Phobos gravity field Restitution project step. 
Moreover, the treatment of the first of these resulting files with the Python Visualisation Module, 
enables the graphical representation of simulated ephemeris Optical measurements and the 
relative satellite position differences in relation to the interpolated QSOs: 
 
 
 
 

Trajectories Position Difference   

 
 

 

 
 

Optical ephemeris measurements – Interpolated QSO 

Figure 35.b – QSO-M class example. 

Figure 35.a – QSO-H class example. 
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These graphs prove that, despite the small amount of Optical measurements, the latter 
represent an additional contribution in providing spacecraft position along its orbits. Effectively, 
the comparison between Figures 32 and Figure 35.c relative to the QSO-L trajectory, 
underlines the lower presence of Optical captures (one every hour) in relation to LIDAR ones 
(one every second). However, this aspect does not preclude the Optical navigation images to 
furnish quite precise position measures.    
Moreover, the graphs on the right, reporting the module of the difference between position 
vectors relative to the interpolated QSO and the Optical simulation, highlights the increase in 
Optical measurement inaccuracy with the dimensions characterising a specific trajectory:  
 
 
 
 
 
 

Figure 35.d – QSO-M-3D class example. 

Figure 35.c – QSO-L class example. 

Figure 35 - Examples of simulated Optical measurements along one trajectory for each QSO class. 
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Orbit class Maximal difference 
QSO-H 1 km 
QSO-M 0.5 km 
QSO-L 0.175 km 

QSO-3D-M 0.5 km 
 
 
 
 
 
 

3.5 Phobos gravity field restitution 
 
At this point of the project, all measurement types requested from the JAXA for Phobos 
geodesic analysis, have been simulated.  
As specified before, the simulation of all the DSN, LIDAR and Optical measures, is realised 
considering the project reference Phobos gravity model, defined by gravity spherical 
harmonics up to degree 20. This means that the simulated values represent the most realistic 
measurements possible within this study. Consequently, the latter are traded as precise 
measures to be used as reference in this gravity field Restitution project step. 
 
Overall, a GINS parameter restitution procedure is able to estimate what could happen in a 
real mission. At the same time, it is useful at the moment when physical parameters need to 
be evaluated and adjusted, in case of non-perfectly accurate a priori values.  
For instance, in the MMX case, the mission will start with a lack of knowledge of real Phobos 
gravity field: one of its objectives will be to correct the Martian moon gravitation model and 
finally return the most truthful version possible.  
GINS restitution can emulate this process. Using both the initial unknowledge of some physical 
features and the reference measurements, GINS operates the correction of parameters set as 
adjustable in a specific study case.  
This adjustment is realised by the software through a specific technique. During the restitution 
procedure, a new set of desired measurements is generated: GINS corrects the adjustable 
parameters, so that these new measures are forced to be as similar as possible to the 
reference ones. In this way, free parameters are conducted towards the values they would 
have within an accurate realistic geodesic model. 
  
Specifically, in this internship context, the reference measurements are represented by the 
simulated DSN (with Madrid and Usuda stations and with the only Usuda one), LIDAR and 
Optical “Measurements” files: 
 
 

Table 5 - Maximal differences in satellite position along simulated Optical ephemeris and 
interpolated orbits. 
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In this MMX analysis, the initial imprecise geodesic knowledge concerns Phobos gravity field: 
the mission is supposed to recover as precisely as possible this parameter model. 
Consequently, in order to simulate the inaccuracy level of the target gravity model at the 
beginning of the mission, four different precise (the first) and non-accurate (the other three) a 
priori spherical harmonic templates are adopted: 
 
1. “Gravity model 1”: the first a priori Phobos gravity template is equivalent to the reference 

up-to-degree-20 model, used for QSO adjustment and measurement simulation; 
2. “Gravity model 2”: the second a priori Phobos gravity model contains the same reference 

Stokes coefficient values, but only up to degree 2. It is the less accurate template of the 
four used in this project; 

3. “Gravity model 3”: the third a priori Phobos gravity model includes the same Stokes 
coefficient values of the reference model, but only up to degree 3. This means that it is a 
little more accurate than the second template; 

4. “Gravity model 4”: the fourth a priori Phobos gravity filed template contains again 
gravitational spherical harmonics up to degree 20, but its Stokes coefficient numerical 
values are truncated at the third decimal place. Consequently, it is less precise than the 
reference model. 

 
The first a priori Phobos gravity field model has been chosen in order to verify the influence of 
the simulated measurement noises on the restitution of gravitational Stokes coefficients. 
Instead, the other three inaccurate models are useful to test if an initial non-precise knowledge 
of real Martian moon gravity parameter, could preclude the correct model adjustment. 
 
At the same time, exactly as for the Phobos gravitational field, the interest is also to understand 
if less precise satellite initial state vectors [ 𝒓⃑ 𝟎 , 𝒓⃑̇ 𝟎 ] can be adjusted into their correct values, 
leading to a proper gravity model recovery.  
Basically, the most accurate initial state vectors of each 24-hour orbit arc are expressed in the 
complete interpolated QSO “Ephemeris” files. In fact, the latter are the outputs generated in 
the DSN Simulation step, where all trajectory arcs are interpolated taking into consideration 
the reference Phobos gravity model.  

Figure 36 - Schematic representation of the restitution procedure. 
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Thus, an a priori imprecise version of initial state vectors is used. Their noised version is 
calculated though the addition of a vectorial perturbation, including: 
 
• a module position noise of 200.0m 
• a module speed noise of 0.8m/s 
 
The perturbed initial state vectors [ 𝒓′⃑⃑  ⃑

𝟎 , 𝒓
′̇⃑⃑  ⃑
𝟎 ] are set as QSO arc initial state vectors in GINS 

Restitution “Director” file, in order to discover if their perturbation can preclude the target gravity 
model adjustment.  
 
Taking into account all these considerations, Phobos gravity Stokes coefficients up to degree 
4 and satellite initial state vectors have been set as adjustable parameters. 
It indicates that these two parameter groups can be corrected by GINS in order to conduct the 
newly simulated DSN, LIDAR and Optical measurements to be as close as possible to the 
reference ones.  
However, the parameter adjustment method followed is not the same for both the groups.  
For satellite initial state vectors, the correction procedure is completely solved within the GINS 
restitution procedure. On the contrary, for Phobos gravity field a supplemental iteration is 
imposed (paragraph 2.1.3). This means that the up to 4 degree-normalised Stokes coefficients 
are not directly adjusted during the restitution phase: their partial derivatives are computed and 
their normal systems without constraints rebuilt during the requested additional iteration.  
This approach leads to generate “Normal Equations” output files, available for use by 
DYNAMO chain, where normal equation resolution could furnish the corrected up to 4-degree 
normalised Stokes coefficients. 
 
As for the previous project steps, all the considerations expressed so far, have to be turned 
into GINS instructions in the Restitution “Director” file.  
Moreover, since both DSN “Measurements” and interpolated QSO “Ephemeris” (which gave 
birth to the simulated LIDAR and Optical files) files are generated as a concatenation of 24-
hour orbit arcs, it is again necessary to execute the GINS restitution procedure over each 1 
day- QSO section, separately.  
Therefore, every orbit arc is finally characterized by multiple Restitution “Director” files, in order 
to considerate all the various combinations of a priori Phobos gravity models and measurement 
types (DSN, LIDAR, Optical). The latter are represented in the following table: 
 
 

QSO 
arc 
type 

Initial 
state 

vector 

A priori 
gravity 
model 

Measurement restitution Imprecision 
weight 

QSO-H 
QSO-M 
QSO-L 

[ 𝒓′⃑⃑  ⃑
𝟎 , 𝒓

′̇⃑⃑  ⃑
𝟎 ] 

1  
2 
3 
4 

DSN (Madrid + Usuda) + Optical 
𝝈𝑫𝑺𝑵 , 𝝈𝑻𝒎𝒂𝒙

 
DSN (Usuda) + Optical 

QSO-L [ 𝒓′⃑⃑  ⃑
𝟎 , 𝒓

′̇⃑⃑  ⃑
𝟎 ] 

1 
2 
3 
4 

DSN (Madrid + Usuda) + LIDAR 
𝝈𝑫𝑺𝑵 , 𝝈𝑹𝒎𝒂𝒙 

DSN (Usuda) + LIDAR 

 
This table reports in its last column another important parameter, linked to measurement types 
to be returned in the restitution procedure: the measurement imprecision weight.  

Table 6 – Phobos a priori gravity model and measurement combinations used in the Restitution step. 
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This value represents the accuracy characterising a specific measure. More precisely, the 
higher a measurement type imprecision weight is, the lower its accuracy level results to be and 
the less it affects the parameter restitution. Put differently, the GINS restitution tends to rest 
more confident in reference measure types characterised by a lower imprecision weight 
parameter. 
In this project, the accuracy of a measurement type is considered as inversely proportional to 
its error standard deviation. This leads to match the imprecision  weight with the error standard 
deviation 𝝈𝑫𝑺𝑵 for DSN, 𝝈𝑹 for IDAR and 𝝈𝑻 (= 𝝈𝑵) for Optical captures.  
In DSN case, there is no doubts that the imprecision weight is equal to 𝝈𝑫𝑺𝑵 = 𝟎. 𝟐𝒎𝒎/𝒔. 
On the contrary, in LIDAR and Optical measure simulation, these standard deviation values 
are calculated for each satellite position vector, with a time step of 1.0s. It is thus necessary to 
fix one single 𝝈𝑹 and 𝝈𝑻 for each QSO, individuated in the maximum values reached by LIDAR 
(𝝈𝑹𝒎𝒂𝒙) and the Optical (𝝈𝑻𝒎𝒂𝒙 = 𝝈𝑵𝒎𝒂𝒙) standard deviations on every entire orbit. 
 
Once executed the entire GINS restitution procedure, the most significant outputs are the 
“Listing” and the “Normal Equations” files. 
The “Listing” allows to discover which combinations of QSO arcs, measurements and a priori 
Phobos gravity models enable the GINS restitution to get the convergence at the correct 
measure residuals (r.m.s.), computed by equation (41). In this case, the correct measurement 
residual value corresponds to the measurement error standard deviation, since GINS uses 
these 𝝈 elements to calculate the relative measure white noise (equation (20)). Consequently, 
it is possible to conclude that correct r.m.s. values are: 
 
• 𝒓𝒎𝒔 ≅  𝝈𝑫𝑺𝑵 = 𝟎. 𝟐𝒎𝒎/𝒔 for DSN measurements; 
• 𝒓𝒎𝒔 ≅  𝝈𝑹𝒎𝒂𝒙

 for LIDAR measurements; 
• 𝒓𝒎𝒔 ≅  𝝈𝑻𝒎𝒂𝒙

= 𝝈𝑵𝒎𝒂𝒙
 for Optical measurements. 

 
Therefore, the “Listing” files provide information about Phobos gravity filed restitution capability 
of each QSO, considering all measurement and Phobos gravity model combinations.  
Thus, it is firstly possible to determinate which orbits are the more suitable for restitution 
convergence. Secondly, within all the convergent cases, an estimation of which QSOs are 
favoured in reaching correct final measurement residuals, appears to be useful. 
This analysis over “Listing” data leads to the global percentage quantifications expressed in 
the table below, for each QSO group: 
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QSO Class A priori gravity 
model 

% Convergence 
 over all the cases 

% Correct r.m.s. 
over the converged 

cases 

QSO-H 

1 99.44 100.0 
2 99.44 100.0 
3 99.44 100.0 
4 99.44 100.0 

QSO-M 

1 98.39 99.80 
2 98.48 99.38 
3 98.28 99.90 
4 98.39 99.80 

QSO-L 

1 75.67 98.46 
2 76.49 5.320 
3 77.41 61.16 
4 75.67 96.82 

QSO-M-3D 

1 97.90 100.0 
2 98.20 100.0 
3 97.90 100.0 
4 97.90 100.0 

 
 
 
 
This table highlights the strong impact of the a priori Phobos gravitational field model on Stokes 
coefficient restitution.  
Effectively, the least accurate a priori Phobos “Gravity model 2” can cause a low number of 
converged cases to proper r.m.s, especially considering QSO-L trajectories. The latter are the 
most affected by a large lack of knowledge of real Martian moon gravitational field. This aspect 
is made evident by their inferior percentages of correct final r.m.s., when both Phobos “Gravity 
model 2” and “Gravity model 3” are considered. 
This QSO-L higher sensitivity is coherent with their smaller dimensions, in comparison with 
QSO-H and QSO-M. In fact, the more a satellite transits in proximity of Phobos (or generically 
of every celestial body) the more it is influenced by the target gravity field. Consequently, these 
orbits are more impacted by the effects of higher degree-gravity coefficients. Since the a priori 
“Gravity model 2” and “Gravity model 3” count normalised Stokes coefficients only up to degree 
2 and 3, respectively, the low-altitude QSOs suffer from their excessive inaccuracy. 
 
The mathematical translation of these restitution data is represented by the second important 
output file: the “Normal Equations”.  
In fact, as imposed by instructions set for GINS in the Restitution “Director”, one “Normal 
Equations” output file is written for every combination of arcs, measurement types and a priori 
Phobos gravity model, having reached the convergence in the restitution procedure.  
In all these combining cases, one normal equation is created for every single measure kind. 
This leads to the generation of all the following possible normal equations, for each 24-hour 
orbit arc: 
 
 
 
 
 
 

Table 7 - Global gravity field restitution capability of each QSO class. 
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These normal equations are written in a binary format in their relative output files and they 
express the linear systems corresponding to the parameters set as adjustable in the Restitution 
“Director”: satellite initial state vectors and Phobos gravity normalised Stokes coefficients up 
to degree 4. 
As explained before, position and speed vectors at the beginning of each QSO arc, are 
corrected within the restitution procedure. On the contrary, Phobos gravity coefficient 
correction is completely left to the DYNAMO chain.  
Therefore, DYNAMO represented the main tool of the next project step, aimed to resolve 
harmonic Stokes coefficient normal equations. 
 
 

3.6 Phobos gravity field resolution over each QSO  
 
The preceding parameter Restitution phase provides the necessary results, upon which to 
base the development of the Resolution project step. In fact, each “Normal Equations” file 
contains one normal equation for each measure type considered in single 24-hour orbit arcs, 
characterised by every converged combination of Phobos gravity models and measurement 
kinds (Table 8).   
Therefore, it is now necessary to resolve all these equation linear systems, in order to know in 
which way each QSO could contribute at the target gravity model recovery.  
This leads to individuate the first action to be realised in this step: the accumulation of all the 
normal equations characterising each 24-hour orbit arc, for the purpose of generating single 
equations describing the entire QSOs. 
 
However, as explained before, every trajectory is featured by a multiple series of normal 
equation types, corresponding to different measurements and a priori gravity models. Thus, it 
is fundamental to distinguish and collect properly al the possible kinds of information. 
Especially, it results particularly useful to combine all the normalised Stokes coefficient 
equations in relation to different types of measurements. In this way, it is possible to 
understand which measures really allow a precise reconstruction of Phobos gravity field.  
Finally, the resolution of these clustered linear systems enables the computation of corrected 
normalised Stokes coefficients for every measurement combination, along each QSO. 

QSO 
arc 
type 

A priori 
gravity 
model 

Measurement combination Normal equation relative to:  

QSO-H 
QSO-M 
QSO-L 

1  
2 
3 
4 

DSN (Madrid + Usuda) + Optical 
Ephemeris Optical measurements 

Doppler DSN measurements 

DSN (Usuda) + Optical 
Ephemeris Optical measurements 

Doppler DSN measurements 

QSO-L 

1 
2 
3 
4 

DSN (Madrid + Usuda) + LIDAR 
Ephemeris LIDAR measurements 
Ephemeris DSN measurements 

DSN (Usuda) + LIDAR 
Ephemeris LIDAR measurements  
Ephemeris DSN measurements  

Table 8  - Possible normal equation types, for each QSO and a priori model combination, reaching 
the restitution procedure convergence. 
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A visual representation of this step approach, is represented in the following schema: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The next two paragraphs detail normal equation accumulation and the resolution phases. 
 
 

3.6.1 Normal equation accumulation 
 
The phase of normal equation accumulation is necessary to collect information coming from 
the different measurement and a priori model conditions, expressed in Table 8.  
In practical terms, for each of the four a priori Phobos gravity field models and for every single 
QSO, normal equations of the 24-hour orbit arcs are cumulated, according to the following 
measure combinations: 
 

 
 

QSO arc 
type 

A priori 
gravity 
model 

Accumulation of normal equations relative to measurements: 

QSO-H 
QSO-M 
QSO-L 

1  
2 
3 
4 

Doppler DSN (Madrid+Usuda) only 

Normal equations relative to Doppler DSN (Usuda) only 
 

Doppler DSN (Madrid+Usuda) + Ephemeris Optical  
 

QSO-L 

1 
2 
3 
4 

 
Doppler DSN (Madrid+Usuda) + Ephemeris LIDAR  

 
 

Ephemeris Optical + LIDAR measurements 
 
 

Doppler DSN (Madrid+Usuda) + Ephemeris Optical + LIDAR  
 

Table 9  - Possible normal equation accumulation, for each converged combination of 24-hour 
QSO arcs, a priori Phobos gravity models and measurement types. 

Figure 37 - Schematic representation of the Resolution project step. 
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This specific accumulation is conducted for the purpose of understanding which combinations 
of measurements are the most suitable for the detection of a precise Phobos gravity field, 
considering every QSO separately. 
 
At a practical level, the numerical accumulation is realised by the DYNAMO-C program, which 
is specialised in this normal equation treatment. It directly works on normal linear systems, 
expressed in equation (46), where in this case the normal matrix is defined as: 
 

𝑨𝑻𝝅𝑨 ∙   ∆𝑿⃑⃑ =  

[
 
 
 
 
 [ 

𝝏𝑸𝟏

𝝏𝒓′⃑⃑  ⃑
𝟎

 ] [ 
𝝏𝑸𝟏

𝝏𝒓′⃑⃑  ̇⃑
𝟎

 ] [ 
𝝏𝑸𝟏

𝝏𝑪̅
 ]    [ 

𝝏𝑸𝟏

𝝏𝑺̅
 ]

⋮    ⋱                  ⋮
⋮ ⋱                 ⋮   

[ 
𝝏𝑸𝑴

𝝏𝒓′⃑⃑  ⃑
𝟎

 ]   [ 
𝝏𝑸𝑴

𝝏𝒓′⃑⃑  ̇⃑
𝟎

 ]     [ 
𝝏𝑸𝑴

𝝏𝑪̅
 ]   [ 

𝝏𝑸𝑴

𝝏𝑪̅
 ]
]
 
 
 
 
 

  ∙   

(

 
 

∆𝒓′⃑⃑  ⃑
𝟎

∆𝒓′⃑⃑  ̇⃑
𝟎

[∆𝑪̅]

[∆𝑺̅])

 
 

= 𝑨𝑻𝝅𝑹⃑⃑              (76) 

This matrix is constituted by the partial derivatives of all the measurement types considered 
(Doppler and/or ephemeris) in relation to the physical parameters set as free in the Restitution 
procedure. The latter are thus the six state vector components 𝒓′⃑⃑  ⃑

𝟎,𝒊 , 𝒓
′⃑⃑  ̇⃑
𝟎,𝒊 and the normalised 

Stokes coefficients 𝑪̅𝒍𝒎 and 𝑺̅𝒍𝒎 up to degree 4, represented by vectorial terms 𝑪̅ and 𝑺̅. 
DYNAMO-C operates the accumulation of all the considered normal equations, by summing 
the various contributions on common parameters, both in the normal matrix and in the second 
member. This action leads to generate one single global equation, representing all cumulated 
information. 
  
 

3.6.2 Normal equations resolution: result analysis 
 
Once realised the desired normal equation accumulation over each QSO, numerical resolution 
is possible. 
This action is charged for DYNAMO-D program. Employing equation (55), it realises the normal 
system inversion, leading to the calculation of the desired corrected parameters. 
Final results relative to every entire QSO are thus obtained: the adjusted Phobos gravity 
coefficients up to degree 4, along with the value of their effective correction (equation (50)) 
and their standard deviation (equation (56)). 
  
Successively, the “Coeff_Grav” function of Python Visualisation Module allows a visual 
representation of these results. In fact, the latter are here presented in form of graphs, showing 
the differences percentages between GINS adjusted coefficients and the most accurate ones, 
belonging to Phobos reference gravity model (20x20 spherical harmonic terms). 
By the utilisation of this function, multiple result analyses are possible. 
 
First result analysis: A first global result analysis enables to compare the capability of each 
QSO trajectory to adjust Phobos gravity field model.   
In this context, results relative to the only combination of the DSN and Optical measurements 
are presented, as an example. 
This analysis is here exposed following the accuracy level of the a priori gravitational templates 
employed in this project, but in a reverse order. 
Therefore, the first exposed case involves results obtained with the a priori Phobos “Gravity 
model 1”, which immediately appears interesting. In fact, since it perfectly corresponds to the 
most precise template used as a reference, it is inevitable to think that coefficient adjustment 
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should be excellent for all degrees. However, this is not what happens in 2-Dimensional QSO 
classes:  
 
 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

Figure 38.a – QSO-H class example. 

Figure 38.b – QSO-M class example. 
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These graphs show results obtained with three different orbits, taken as examples to represent 
the general behaviour of the three 2-Dimensional QSO classes. 
As they bring to light, the low-altitude orbits manage to return a sufficiently precise Phobos 
gravity version. On the contrary, the largest QSO-H trajectories are unable to correctly adjust 
normalised Stokes coefficients, apart from the perfect recover of the 𝑪𝟎𝟎 term, corresponding 
to the Martian moon standard gravitational parameter 𝝁 = 𝑮𝑴. At the same time, the QSO-M 
class results the get a better restitution of few gravity coefficients, almost up to the degree 3, 
but they are still far from a realistic representation of Phobos reality.  
 
In the particular case of “Gravity model 1”, this general inability is strictly linked to the high 
sensitivity to measurement noise and initial state vector perturbation. Effectively, in the 
measure Simulation step, a white noise has been considered for all the simulated 
measurement types. Moreover, a noised initial position and speed vector version has been 
adopted in the Restitution phase. Consequently, this missed correct reconstruction of Phobos 
gravity is a consequence of these two noise considerations.  
This aspect proves that high and medium QSOs result to be more influenced by measurement 
and initial state vector noise then QSO-L trajectories. However, the same cannot be said for 
the 3-Dimensional QSO-M class, whose higher latitudes reached over Phobos surface allows 
them to recover almost all the Stokes coefficients: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38 - Stokes coefficients adjusted from a priori Phobos “Gravity model 1”, considering the 
DSN and Optical measurement combination along 2D QSOs. 

Figure 38.c – QSO-L class example. 
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𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

 
 

 
 
 
The previous graphs correspond to two 3D-QSO trajectories, respectively characterised by a 
lower (Figure 39.a) and a higher (Figure 39.b) latitude reachable over the target body.  
These figures not only highlight the more precise restitution of Phobos gravity field afforded by 
the 3-Dimensional trajectories, but also prove that the more elevate is their Z-dimension, the 
more their capacity in Stokes coefficient reconstruction increases. 
 
Continuing this analysis with the coefficient correction resulting from the adoption of the quite 
precise “Gravity model 4”, the following graphs correspond again to the same 2-Dimensional 
trajectories taken as examples before:  
 
 
 
 
 

Figure 39 - Stokes coefficients adjusted from a priori Phobos “Gravity model 1”, considering the 
DSN and Optical measurement combination along QSO-M-3D trajectories. 

 

Figure 39.a – QSO-M-3D-A1. 

Figure 39.b – QSO-M-3D-A5. 
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𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

 
 

 
 
 

Figure 40 - Stokes coefficients adjusted from a priori Phobos “Gravity model 4”, considering the 
DSN and Optical measurement combination along 2D QSOs. 

Figure 40.a – QSO-H class example. 

Figure 40.b – QSO-M class example. 

Figure 40.c – QSO-L class example. 
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Figure 41 - Stokes coefficients adjusted from a priori Phobos “Gravity model 4”, considering the 
DSN and Optical measurement combination along QSO-M-3D trajectories. 

These graphs allow to understand that even adopting a Phobos gravity model not that different 
form the precise reference one, not all the orbits are able to correctly adjust all the normalised 
Stokes coefficients up to degree 4.  
Without any doubts, the best gravity model adjustment is again realised by the low-altitude 
trajectories. In fact, they prove to be sufficiently near Phobos surface to be able to entirely 
return its up-to-degree-4-gravitational coefficients, corrected in a very precise way. In relation 
to the a priori “Gravity model 1” results, here a light worsening can be observed especially on  
𝑺̅𝒍𝒎 coefficients, but it is absolutely negligible 
Exactly as for the previous case, the largest QSO-H trajectories only manage to perfectly 
recover the 𝑪𝟎𝟎 = 𝝁 = 𝑮𝑴. Unfortunately, for what concerns the correction of all the others 
Stokes harmonic elements, these orbits result to be too far from the target body. 
The medium size-QSOs manifest again a proper correction of some of the coefficients, but 
they still result in not that proximity to Phobos in order to completely adjust its gravity model. 
Moreover, since in this case not only the measurement noises and the initial state vector 
perturbations, but also the inferior a priori model accuracy influences the results, the latter turn 
out to be slightly less precise than the “Gravity model 1” ones.   
However, the adjustment capability of the 3-Dimensional QSO-M trajectories is newly different: 
 
 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

 

Figure 41.a – QSO-M-3D-A1. 

Figure 41.b – QSO-M-3D-A5. 
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These graphs perfectly confirm that thanks to their passage in higher latitudes over Phobos 
body, the 3-Dimensional orbits allow a better restitution of the Martian moon gravity field, even 
starting with a slightly perturbed a priori model. 
Moreover, these trajectories appear to be almost insensitive to moderate inaccuracy in the a 
priori knowledge of Phobos real gravity field: these graphs perfectly correspond to the ones in 
Figure 39, obtained with the a priori “Gravity model 1”.  
 
Passing now to the analysis of results achieved conisdering a compltelly inacurate a priori 
template, as the “Gravity model 2”, it is possible to observe different behaviours. Employing 
again the same 2-Dimensional trajectories as examples, the resulting normalised Stokes 
coefficient graphs are the following: 
 
 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

 
 
 
 
The first remarkable aspect is that, even starting with an inaccurate a priory Phobos gravity 
model, both the QSO-H and the QSO-M classes turn out to have similar predisposition to adjust 
Stokes harmonic coefficients than the previous case, even if with a lower accurate level. 

Figure 42 - Stokes coefficients adjusted from a priori Phobos “Gravity model 2”, considering the 
DSN and Optical measurement combination along 2D QSO-H and QSO-M examples. 

 

Figure 42.a – QSO-H class example. 

Figure 42.b – QSO-M class example. 
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However, the most important result to highlight, concerns the QSO-L trajectories. In fact, this 
orbit class does not appear in Figure 42: the number of low-altitude-orbit arcs converged to a 
proper r.m.s. value within the restitution procedure is too small for ad adequate gravity recover. 
In fact, most of the QSO-L normal equations relative to the worst a priori “Gravity model 2”, 
have been discarded because of their inaccuracy level (Table 7).  
Consequently, since this extreme lack of information, it is impossible to generate a correction 
of Martian moon gravity coefficients. This impossibility is again linked to the fact that the low-
altitude QSOs are the most affected by a gravity model inaccuracy. This is the reason why, in 
case of an excessive lack of the a priori knowledge of Phobos gravity field, the latter cannot 
be directly improved through the employment of QSO-L trajectories. 
Nevertheless, this is not a motive to exclude this QSO class from the MMX orbital design. On 
the contrary, they represent a real strong element for the entire mission success, on condition 
that their employment occurs when a quite accurate Phobos gravity model is already available 
(Figure 38.c and Figure 40.c).  
Because of this characteristic, the satellite will realise these smallest dimensioned orbits only 
starting from the second mission phase. The objective is to get a first target model correction 
during the initial Phobos mission phase, where only QSO-H and QSO-M are used. 
Successively, only when the Martian moon geodesic parameters will have been already 
updated, the satellite will begin its QSO-L trajectories. At that moment, Phobos gravity model 
will be sensed not to be that inaccurate: even the most sensitive orbits, will be able to calculate, 
partially correct and return the desired gravitational parameters. 
 
In addition to this, another significant remark can be expressed in relation to 3-Dimensional 
QSOs. Effectively, these particularly trajectories result again to be sufficiently able to correct a 
strongly imprecise a priori Phobos gravity model: 
 
 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

Figure 43.a – QSO-M-3D-A1. 
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These graphs confirm that both the 3-Dimensional QSOs here presented as examples, are 
suitable for the reconstruction of Phobos gravity coefficients, even in initial conditions of a 
severely incomplete a priori model.  
Moreover, even in this hardest case, it is newly clear that the more an orbit reaches elevate 
latitudes over the target surface, the higher is its capability of correctly adjusting a larger 
number of Stokes coefficients.  
To conclude, the QSO-M-3D proved to be the least sensitive to any perturbation in the a priori 
gravity models. It is thus already possible to understand that the employment of these 3-
Dimensional trajectories could represent a strength within the MMX mission. 
 
 
Second result analysis: A second type of result analysis allows to compare the influence of 
different measurement combinations on QSO ability to correct a priori Phobos gravity field 
models. For this study, it is useful to consider an orbit belonging to the QSO-L class: in this 
way all the six computed measure combinations (Table 9) are available.  
The choice of a low altitude trajectory leads to taking mainly into account results calculated 
with a sufficiently precise a priori Phobos gravity model. Effectively, as figured out in the 
previous analysis, these smaller orbits will be presumably employed only when the knowledge 
of target geodesic parameters will have already been improved. Consequently, an appropriate 
example can be individuated in the set of results relative to a QSO-L trajectory, with the a priori 
“Gravity model 4” (resulting graphs relative to the DSN and Optical measurement combination 
is available in Figure 40.c): 
 
 
 
 
 
 
 
 
 
 
 

Figure 43 - Stokes coefficients adjusted from a priori Phobos “Gravity model 2”, considering the 
DSN and Optical measurement combination along QSO-M-3D trajectories. 

 

Figure 43.b – QSO-M-3D-A5. 
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Figure 44.c – LIDAR and Optical  measurement combination. 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

 
 

Figure 44.a – DSN measurements. 

Figure 44.b – DSN and LIDAR measurement combination. 
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Summarily, these graphs report satisfying adjusted gravity coefficients.  
This aspect is another prove of the fact that QSO-L trajectories are perfect tools for improving 
the current knowledge of Phobos gravity field. Effectively, almost all the six combinations of 
measurements turn out to be sufficiently suitable for the scientific purposes of the MMX 
mission.  
 
However, the most remarkable case which stands immediately out, is the combination of the 
two ephemeris measurement types, LIDAR and Optical ones (Figure 44.c). The adoption of 
only these two measures would not afford a perfect reconstruction of the realistic target gravity 
field: their final results are not that precise, despite the elevate quantity of LIDAR 
measurements. In the relative graph it is possible to observe the presence of some incorrect 
or only partially adequately adjusted normalised coefficients. More precisely, the ephemeris 
measurements here considered appear to be more sensitive to 𝑪𝟏𝒎 (both the zonal and 
sectorial terms), 𝑪𝟒𝒎 (the sectorial and some tesseral terms) and 𝑺𝒍𝒎 Stokes elements.  
Instead, if DSN measurements are considered too, precise model recovery is reachable 
(Figure 44.d). 
In conclusion, LIDAR and Optical techniques are not able to perfectly return real Phobos 
gravity field, alone: for higher accuracy levels, Doppler measures are necessary. 
 
 
Third result analysis: A third type of result analysis allows the comparison between the 
employment of complete Doppler measurements, captured with both Madrid and Usuda DSN 
Earth stations, and Doppler information available with only the Japanese ground antenna.  
In order to explain the different impact on results generated by these two Doppler approaches, 
it is useful to take as an example the same QSO trajectories as before, and the quite precise 
a priori Phobos “Gravity model 4”.  
The following figures represent 𝑪̅𝒍𝒎 coefficients adjusted by the two different Doppler method. 
Relative 𝑺̅𝒍𝒎 coefficient correction is impacted in the same way and its graphs are observable 
in Figure 57 in Annex B. 
 
 
 

Figure 44 - Stokes coefficients adjusted from a priori Phobos “Gravity model 4”, considering all the 
five remaining combinations of measurements. Graphs relative to a QSO-L trajectory. 

 

Figure 44.d – DSN, LIDAR and Optical measurement combination. 
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𝑪̅𝒍𝒎 – DSN (Madrid + Usuda) 𝑪̅𝒍𝒎 – (DSN Usuda) 
  

 
 

 
 

 
 
 

Figure 45 - Stokes 𝑪̅𝒍𝒎 coefficients adjusted from a priori Phobos “Gravity model 4”, considering 
DSN measurements realised with both Madrid and Usuda stations and with only Usuda antenna.  

Figure 45.a – QSO-H class example. 

Figure 45.b – QSO-M class example. 

Figure 45.c – QSO-L class example. 
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These graphs prove that exactly the same feature is repeated in all the 2-Dimensional QSO 
classes: the employment of the only Usuda ground station, would lead inevitably to a slightly 
less accurate reconstruction of Phobos gravity field. This aspect is linked to the fact that the 
adoption of one single DSN antenna would clearly conduct to the collection of an inferior 
quantity of Doppler measurements. This reduction of information would translate in a lower 
capability of computing a completely precise adjustment of Martian moon gravity coefficients.  
However, this accuracy loss appears not to be that significant, especially in terms of global 
mission results. 
Therefore, it is possible to conclude that the use of both the DSN Earth stations would allow a 
better success as regard the MMX scientific objectives. Nevertheless, taking into account the 
entire mission, the imprecision caused by the use of one single DSN station is not excessive, 
thus acceptable. 
 
The analyses carried out on every single QSO trajectory taking part in MMX orbital design, 
have been replicated on all the mission phases, in the next and last project step. As paragraph 
3.7 will detail, all remarks and conclusions reached by studying results characterising each 
orbit separately, have then been found the same in mission phase analysis.  
 
 

3.6.3 Parametric sensitivity 
 
The detailed analysis over each QSO trajectory designed for the MMX phases focused on 
Phobos exploration, have been concluded with a parametric sensitivity study. Effectively, it 
appears useful to understand in which way and proportion these orbits are influenced by 
certain parameters and how the latter impact the QSO capability in recovering Phobos gravity 
model.  
Thus, the sensitivity of previous described results has been tested to two different parameters: 
LIDAR measurement noise and Phobos ephemeris uncertainty. 
 
 
1. LIDAR measurement noise: As equation (69) underlines in paragraph 3.4.1, LIDAR 
measure noise standard deviation 𝛔𝐋(𝐑) (= 𝛔𝐑(𝐑)) linearly changes with the instantaneous 
satellite radial position 𝐑, in relation to Phobos mass centre.  
This means that the noise considered for LIDAR simulation varies with the frequency of laser 
captures, fixed by the JAXA at 1.0s. 
Consequently, an interesting analysis has been conducted throughout maintaining constant 
the 𝛔𝐑 value over a time interval of five minutes. 
LIDAR simulation has been exactly the same, except for the noise standard deviation 
calculation: the total QSO-L periods have been divided into five-minute sections, whose first-
second 𝛔𝐑 values calculated with equation (69) have been employed as a constant during the 
entire sections. Once gotten these five-minute constant 𝛔𝐑, formula (71) has been normally 
applied for simulating satellite radial position perturbation, due to LIDAR measurements. 
In order to show the consequent effects, next figure reports the gravity model adjustment 
obtained with this LIDAR noise simulation method, along the QSO-L here taken as an example, 
considering LIDAR-Optical measure combination and Phobos a priori “Gravity model 4”: 
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𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

Figure 46 - Stokes coefficients adjusted from a priori Phobos “Gravity model 4”, considering a five-
minute constant 𝝈𝑹 for LIDAR measurement simulation. 

  
 
These Stokes coefficient graphs have to be compared with the corresponding nominal ones in 
Figure 44.c.  
It is possible to notice that the maintenance of LIDAR noise standard deviation constant over 
five-minute sections leads to slightly improved Phobos gravity model correction, in relation to 
the standard case, where 𝛔𝐑 changes every second. For both 𝑪̅𝒍𝒎 and 𝑺̅𝒍𝒎 groups, an 
increasement in the model recovery precision level is here visible. 
However, result sensitivity to the change frequency of LIDAR measure noise appears to be not 
that high. 
This aspect is probably due to the fact that along a QSO-L, satellite-Phobos radial distance 𝐑 
does not undergo drastic changes, and the same applies for LIDAR 𝛔𝐑 parameter. The direct 
consequence is that even keeping constant LIDAR noise standard deviation for a set period, 
final Phobos gravity model reconstruction improves, but not that much. 
  
 
2. Phobos ephemeris uncertainty: As expressed in paragraph 3.1, the same hypotheses 
employed by the FD groups have been considered in this internship project for Phobos 
ephemeris. 
Nevertheless, it is worthwhile knowing how this Martian moon ephemeris and a not perfect 
awareness of them can influence QSO behaviour in detecting the real gravitational field. 
This interest has conducted to the study of Phobos gravity model adjustment sensitivity to a 
particular uncertainty over Phobos ephemeris. 
Therefore, a displacement of 50.0m along Phobos speed direction has been simulated on the 
Martian moon position along its ephemeris around Mars. The perturbed Phobos ephemeris 
have then been used to describe the natural satellite motion in the Restitution “Director” file. 
The influence of this parameter has been tested to increase with the reduction in QSO 
dimensions: 
 
• The Phobos furthest QSO-H trajectories appear to be almost not impacted from a Martian 

moon position uncertainty. They proved to be still able to recovery the only Stokes 𝑪𝟎𝟎 
term, but in a lightly less accurate way than the original case. 

• The QSO-M class starts to be influenced by a 50-meter Phobos displacement: its gravity 
model recovery is amply worse than the original case (Figure 47). 
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• The QSO-L are the most influenced by Phobos ephemeris parameter. Since they are the 
closest to the target surface, a not sufficiently accurate knowledge in its correct position, 
not allow the low-altitude QSO to generate a precise Phobos gravity model reconstruction.  
In fact, this analysis has brought to light that the largest part of QSO-L arcs is not able to 
get the convergence in GINS restitution procedure nor to converge to the correct r.m.s. 
value (paragraph 3.5). Consequently, the probability of obtaining accurate Phobos model 
recovery turns out to be extremely low, considering QSO-L trajectories and target 
ephemeris uncertainties. 

 
Since all these consideration over QSO sensitivity to this Phobos geodesic parameter, the 
most significant graphs to report in this context, are relative to the medium-altitude-orbit class. 
Thus, the following figure presents results obtained with the QSO-M here taken as an example, 
considering DSN measurements and the a priori target “Gravity model 4”: 
 
 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

Figure 47 - Stokes coefficients adjusted from a priori Phobos “Gravity model 4”, considering a 50-
meter displacement in Phobos position along its ephemeris around Mars. 

 
Correspondent 𝑪̅𝒍𝒎 and 𝑺̅𝒍𝒎 graphs obtained with nominal Phobos ephemeris, are respectively 
reported in Figure 45.b and Figure 57.b. The comparison between these results highlights the 
large QSO-L sensitivity to this Martian moon parameters. A 50-meter perturbation of Phobos 
position leads the medium-dimensioned trajectories to succeed in recovering only Stokes 𝑪𝟎𝟎 
coefficient and few 𝑺𝒍𝒎 terms: the global worsening in comparison to nominal results is evident. 
 
 
 

3.7 Phobos gravity field resolution over the entire 
MMX mission 

 
The final purpose is now to obtain Phobos gravity model correction results, relative to the 
complete MMX mission.   
The method here employed is perfectly similar to the one adopted for the analysis over each 
trajectory, separately. The main difference resides in the process used for cumulating the 
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normal equations through the DYNAMO-C program, while their resolution by the use of 
DYNAMO-D, is exactly the same. 
 
 

3.7.1 Normal equation accumulation and resolution 
 
This second normal equation accumulation is based on outputs of the first one. In fact, the 
latter combines all the normal equations describing each 24-hour orbit arcs, giving birth to one 
single normal equation with inside global Phobos gravity information of the entire QSO 
trajectory. This approach is applied on every converged combination of a priori Phobos gravity 
models and measurement types, for every single MMX orbit.  
Consequently, in this second accumulation step the collection is realised within the previously 
created normal equations, defining each complete QSO trajectory. 
More precisely, it consists in a gradual accumulation over the four MMX mission phases 
(Figure 14 and Figure 15): 
 

 
 
These gradual accumulation and resolution enable an approximate simulation of what 
effectively will happen in the real mission: 
 
1. Normal equations of each QSO trajectories composing the first mission phase are 

combined in one single linear system, whose resolution leads to a first global correction of 
Phobos gravity coefficients. This represents one of the first updates of the Martian moon 
gravity model reachable during the MMX mission. The latter will thus be able to continue 
its operations with a better knowledge of the target. 

2. Normal equations of all the QSOs taking part in the second phase of the mission are 
cumulated with the equation characterising the entire first phase, by generating another 
single equation. The resolution of such a normal system provides a new adjustment of 

Figure 48 - Schematic representation of the gradual normal equation accumulation and resolution 
over the entire MMX mission. 
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Stokes harmonic coefficients. This is a representation of what will be the second probable 
Phobos gravity model update in the real MMX mission. 

3. Normal equations characterising every QSO trajectory realised by the satellite during the 
third mission phase, are combined with the previous created equation containing 
information of the first two phases. One new global linear system is computed and solved, 
leading to an always better correction of the target gravity coefficients. At this point of the 
real MMX mission, the knowledge of Phobos gravity model should be farther increased. 

4. Finally, normal equations of each QSO constituting the fourth mission phase, are combined 
with the equation computed before, with inside the complete information reached in the 
first three phases. This last accumulation provides a final linear normal system which 
allows the computation of furtherly adjusted Stokes coefficients. Therefore, at the end of 
the fourth phase, the real MMX mission is supposed to ensure the most accurate Phobos 
gravity field model possible, much more precise than the initial one.  

 
 

3.7.2  Global result analysis  
 
The gradual accumulation and resolution process detailed before, is applied on previously 
generated normal equations, relative to all the twenty-four possible combinations of a priori 
Phobos gravity models and measurement types (expressed in Table 9). Consequently, results 
relative to all these combinations, are available for a global analysis involving the entire MMX 
mission. 
Specifically, this analysis has been conducted over all the three MMX study cases proposed 
by the JAXA: the nominal and the two alternative QSO scenarios (Figure 14 and Figure 15) 
have been studied within this internship project. 
Once again, results obtained with exclusively DSN and Optical measurements are 
represented.  
 
 
Nominal case: Nominal trajectory composition fixed by the JAXA for the MMX mission, 
consists in the following series of consecutive orbit classes: 
 
• Phase 1: QSO-H → QSO-M → QSO-H 
• Phase 2: QSO-M → QSO-L-A → QSO-L-B → QSO-M 
• Phase 3: QSO-L-A → QSO-M → QSO-L-A → QSO-M 
• Phase 4: QSO-3D-M → QSO-M → QSO-L-A  

 
Since the first mission phase is constituted exclusively by high and medium altitude QSO 
trajectories, the only measurements available will be the DSN and the Optical ones. Effectively, 
during this initial part of the mission, the satellite will not be sufficiently near the target to be 
able to take accurate LIDAR measurements. Consequently, it will be allowed to use the only 
Doppler sensors and navigation camera, while it will exploit this phase to move closer to the 
Martian moon surface. The first Stokes coefficient adjustment is here represented, in relation 
to the four different a priori Phobos gravity: 
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𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

 
 

Figure 49.a – A priori Phobos “Gravity model 1”. 

Figure 49.b – A priori Phobos “Gravity model 4”. 

Figure 49.c – A priori Phobos “Gravity model 3”. 
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. 

 
 

These results confirm an important conclusion, already stood out during the analysis of each 
QSO separately. The adoption of all the four a priori models proves that QSO-H and QSO-M 
trajectories composing the first mission phase, could afford an adequate correction of few 
gravity coefficients, especially up to the degree 3.  
This means that, even if it is still far from a realistic restitution of Phobos reality, an initial slightly 
improved update of the Martian moon geodesic model can be reached at the end of the first 
MMX phase. Once terminated the initial phase, the satellite will already have reached a 
sufficient proximity to the target body to afford the realisation of its first low altitude trajectories. 
This means that also LIDAR measurements will be now available.  
 
Considering now all the combinations of a priori Phobos gravity models and measurement 
types, the evaluation of Stokes coefficient adjustment at the end of the second mission phase 
has been realised. The followed procedure involves the accumulation of normal equations 
defining every orbit taking part in this phase, with the normal system generated at the end of 
the first phase. The resulting graphs are the following: 
 
 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

Figure 49 - Phobos gravity coefficient adjustment at the end of the first MMX Phobos phase. 

Figure 49.d – A priori Phobos “Gravity model 2”. 

Figure 50.a – A priori Phobos “Gravity Model 1”. 



 Interplanetary space geodesy study of the MMX project                               Rebecca Martinelli 
 __________________________________________________________________________________  

 
96 

 

 
 

 
 

 
 

 

Figure 50 - Phobos gravity coefficient adjustment at the end of the second MMX Phobos phase. 

 

Figure 50.b – A priori Phobos “Gravity model 4”. 

Figure 50.c – A priori Phobos “Gravity model 3”. 

Figure 50.d – A priori Phobos “Gravity model 2”. 
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These graphs prove that at this point of the mission, the knowledge of Phobos real gravity field 
could already have significantly improved, especially in relation to the initial model employed 
at the beginning of the first phase. This model amelioration is particularly evident throughout 
the consideration of the two most precise a priori models (Figure 50.a and Figure 50.b), where 
all Stokes coefficients up to degree 4 manage to be properly adjusted. This high precision level 
gradually decreases with the worst a priori “Gravity model 3” and “Gravity model 2”. 
Particularly, the latter turns out to cause particularly difficulties in the restitution of proper 
degree 4-𝑪̅𝟒𝒎 and 𝑺̅𝟒𝒎. 
Generically, it is possible to affirm that the accuracy level reachable at the end of the second 
MMX phase, could allow a much more precise update of Phobos gravity model. The third MMX 
phase will thus have the possibility to begin with a higher detailed awareness the of Martian 
moon real gravity field.  
 
The same approach has been used for the treatment of the third phase. By cumulating normal 
equations relative to this mission part, with the normal system generated by the two previous 
phase information, the reached coefficient correction level is presented in the following graphs: 
 
 

𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

Figure 51.a – A priori Phobos “Gravity model 1”. 

Figure 51.b – A priori Phobos “Gravity model 4”. 
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This result representation makes clear the fact that at the end of the third phase, the MMX 
mission would have the potential for providing a quite precise evaluation of Phobos gravity 
field. Again, the best model correction arrives from the employment of the most accurate a 
priori “Gravity model 1” and “Gravity model 4”: all the coefficients are successfully adjusted. 
Moreover, this time also the other less precise a priori templates afford a consistent model 
improvement. In fact, with the a priori “Gravity model 3”, no more difficulties are detected for 
the return of correct order 4-Stokes coefficients, while “Gravity model 2” now allows the 
adjustment of a larger number of terms than at the end of the second phase.   
In conclusion, at this point of the mission, an accurate update of the target gravity model could 
be affordable. Consequently, the beginning of last Phobos mission phase could rely on a 
sufficiently corrected gravity model.  
 
Finally, the fourth phase have been treated. The accumulation of normal equations 
characterising every QSO composing this MMX part, has been combined with the collected 
information resulting from the previous three mission phases. The reached final normalised 
Stokes coefficient adjustment is presented below: 
     

Figure 51.c – A priori Phobos “Gravity model 3”. 

Figure 51.d – A priori Phobos “Gravity model 2”. 

Figure 51 - Phobos gravity coefficient adjustment at the end of the third MMX Phobos phase. 
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𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 
  

 
 

 
 

Figure 52.a – A priori Phobos “Gravity model 1”. 

Figure 52.b – A priori Phobos “Gravity model 4”. 

Figure 52.c – A priori Phobos “Gravity model 3”. 
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Figure 52 - Phobos gravity coefficient adjustment at the end of the fourth MMX Phobos phase. 

 

 
 

 
 
 
 
The most of these final results appear to be entirely satisfactory. Phobos gravity model turns 
out to be sufficiently improved through this numerical computation.  
In fact, the biggest part of all degrees and orders of both 𝑪̅𝒍𝒎 and 𝑺̅𝒍𝒎 coefficients results to get 
almost the same value of their counterparts in the target reference gravity model. 
This result analysis leads to the conclusion that the MMX mission have the potential to carry 
out an accurate recovery of Phobos gravitational field model. Thus, the probable final update 
achievable by MMX could turn out to be much more accurate and closer to the real gravity field 
of the Martian moon.  
 
In addition to this first conclusion, it is useful to exploit results obtained and the end of the 
fourth phase, in order to underline a relevant aspect. This remark concerns ephemeris 
measurements: LIDAR and Optical. As already stood out during the analysis of each single 
QSO, the combination of only these two measurement types provides the worst coefficient 
adjustment also in global mission results.  
This feature is particularly evident with low precision-a priori models. Therefore, for the purpose 
of underlining the difference relative to results obtained with DSN and Optical combination, the 
graphs here presented correspond to the second worse a priori Phobos “Gravity model 3”: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52.d – A priori Phobos “Gravity model 2”. 
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𝑪̅𝒍𝒎 𝑺̅𝒍𝒎 

  

 
 
 
 
 
The comparison between these graphs and the corresponding in Figure 52.c, highlights the 
disparity in results obtainable with DSN-Optical and LIDAR-Optical measurement combination. 
The latter appears to have a lower ability to precisely adjust a perturbed initial gravity model. 
While the presence of Doppler measuring technique allows an almost perfect correction of all 
the normalised Stokes coefficients up to degree 4, the employment of only measurements of 
ephemeris type leaves many adjustment inaccuracies.  
This feature is probably linked to the fact LIDAR and Optical measurements are characterised 
by a more significant white noise, in relation to DSN captures. The direct consequence is that 
Doppler measures are defined by a higher precision level, which leads them to reach better 
results and to prevail over the other measurement types. 
 
Finally, a relevant remark concerning all the four MMX phases can be added. This analysis 
over the entire mission furtherly proves that the adjustment of a too inaccurate a priori Phobos 
gravity model, results to be impossible throughout the employment of the only low altitude 
trajectories.  
This aspect is coherent with the typical attitude of QSO-L, already stood out by the previous 
steps of gravity field Restitution and normal equation Resolution for each trajectory, separately. 
In fact, this global accumulation over the phases proves again that the QSO-L class appears 
to be too sensitive to an excessive lack of precision in the a priori gravitational model.  
The consequence is that the most imprecise a priori “Gravity model 2” does not allow QSO-L 
trajectories to be involved in normalised Stokes coefficient adjustment.  
Thus, no measure combinations including LIDAR technique is able to furnish final results, for 
this a priori template. This situation reoccurs for all the four mission phases analysed: gravity 
model recovery from the a priori “Gravity model 2”, is exclusively realised by QSO-M and QSO-
H measurements. 
 
Next chapter proposes possible solutions designed to avoid this inconvenience. The simulation 
of more realistic situations could enable not to consider any QSO-L trajectories for Phobos 
model correction with the imprecise a priori “Gravity model 2”. 
 
 

Figure 53 -  LIDAR and Optical measurement influence over the global Phobos gravity coefficient 
adjustment at the end of the fourth MMX Phobos phase. A priori Phobos “Gravity model 3”. 
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First alternative study case: The first alternative case differs from the nominal one exclusively 
in the definition of QSO trajectories composing the second phase:  
 
• Phase 2: QSO-M → QSO-L-A → QSO-L-B → QSO-L-C → QSO-M 
 
Consequently, the study of this first alternative case has been conducted exclusively up to the 
end of the second mission phase, where the difference with the nominal case should already 
be observable. 
Moreover, since these two study cases differ from a various employment of QSO-L trajectories, 
the most useful comparison is between results obtained with measurement combination 
including LIDAR technique. A good example can thus be the accumulation of all ephemeris 
measures, whose graphs relative to 𝑪̅𝒍𝒎 coefficients are here presented (while the respective 
𝑺̅𝒍𝒎 are reported in Figure 58 in Annex C): 
 
 

𝑪̅𝒍𝒎 - Nominal Case 𝑪̅𝒍𝒎– 1st Alternative Case 
  

 
 

Figure 54.a – a priori Phobos “Gravity model 1”. 

Figure 54.b – a priori Phobos “Gravity model 4”. 
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The first remarkable aspect is that no results are presented for the a priori Phobos “Gravity 
model 2”. Now, this lack appears clear: as confirmed by the conclusion stood out before, this 
gravity model is too inaccurate for its recovery by LIDAR measurements and any of their 
combinations. 
Secondly, an attentive observation enables to confirm that in both nominal and first alternative 
cases, the adoption of the a priori “Gravity model 3” (Figure 54.c) leads to an absolutely 
equivalent correction of Stokes coefficients.  
This feature is due to the fact that within a quite imprecise a priori Phobos gravity model, the 
same behaviour corresponds to both the QSO-L-B and the QSO-L-C sub-classes: the only two 
trajectory types defining the diversity between the nominal and this alternative case. In fact, 
the a priori “Gravity model 3” turns out to be still too inaccurate for allowing all the QSO-L 
trajectories to succeed in a proper geodesic parameter restitution and correction.  
Especially, these QSO-L-B and QSO-L-C prove to be too sensitive to a lack of precision in the 
a priori gravitational model, so that both of them result to have very low effects on Stokes 
coefficient adjustment in the second mission phase. Effectively, at the end of this MMX phase, 
all model corrections based on LIDAR measurements arrive from the slightly larger and less 
sensitive QSO-L-A. 
However, considering that at the end of the first phase, the MMX mission could already have 
reached a better resolution of the Martian moon field, the situation may appear different. In 
fact, the use of the more accurate a priori “Gravity model 4”, evidences a light difference 
between the two study cases (Figure 54.b). This time, the employment of the QSO-L-B and 
QSO-L-C combination (first alternative case) provides a globally more complete resolution over 
all the coefficient degrees, except for the 𝑪𝟒𝟑 term,. This marginally better adjustment also 
recurs with the a priori “Gravity model 1” (Figure 54.a) 
 
 
Second alternative case: The second alternative case proposed by the JAXA, is the richest 
in 3-Dimensional QSO trajectories. It differs from the nominal one in the definition of the second 
and the fourth phases:  
 
• Phase 2: QSO-M → QSO-L-A → QSO-L-B → QSO-M → QSO-3D-M-A → QSO-M 
• Phase 4: QSO-3D-M-B → QSO-M → QSO-L-A 

Figure 54 - Phobos gravity 𝑪̅𝒍𝒎 coefficient adjustment at the end of the second nominal and 
alternative MMX Phobos phase, considering the LIDAR and Optical measurement combination. 

 

Figure 54.c – a priori Phobos “Gravity model 3”. 
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In this project context, only the alternative QSO-3D-M trajectories reaching the lowest (A1 and 
B1) and the highest (A5 and B5) latitude over Phobos surface have been analysed. 
Consequently, this case comparison has been conducted over results obtained at the end of 
the second and the fourth mission phases, taking into account the QSO-3D-M- A1, B1, A5 and 
B5.  
 
First of all, it is immediately possible to make a remark. As brought out by the analysis of each 
single orbit, 3-Dimensional QSOs result to be more suitable for better Phobos model 
correction, especially with less accurate a priori conditions.  
Effectively, the employment of sufficiently accurate gravity models allows also the 2-
Dimensional medium-altitude orbits to get precise geodesic parameter adjustment. On the 
contrary, an adequate improvement in Phobos gravity knowledge, starting from less precise 
initial templates, is affordable only by 3-Dimensional QSO-M trajectories (Figure 39, Figure 41 
and Figure 43).  
This consideration is furtherly proved by the fact that, using the a priori Phobos “Gravity model 
1” and “Gravity model 4”, results reached by the nominal and the second alternative cases are 
basically the same (Figure 59 and Figure 60 in the Annex C).  
For such reason, 𝑪̅𝒍𝒎 coefficient results here presented, correspond to the most imprecise a 
priori Phobos “Gravity model 2”. The same combination of DSN and Optical measurements is 
taken as an example, as for nominal case graphs relative to the second (Figure 50.d) and 
fourth (Figure 52.d) phases. Relative 𝑺̅𝒍𝒎 graphs are in Figure 61 in Annex C. 
 
 

𝑪̅𝒍𝒎 – Lower inclination 
(A1,B1) 

𝑪̅𝒍𝒎 – Higher inclination 
(A5,B5) 

  

Figure 55.a – End of the second mission phase. 
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If compared with the corresponding nominal case results, these graphs highlight a more 
precise Phobos gravity model correction, at the end of both the mission phases taking into 
account. However, this better resolution is particularly evident in the second phase. In fact, 
here a part of the nominal 2-Dimensional QSO-M trajectory is substituted by a QSO-M-3D-A: 
the consequent improvement in the accuracy level is more pronounced.  
Instead, in the last phase, the exchange is between the nominal QSO-M-3D and a QSO-M-
3D-B, both 3-Dimensional orbits. The resulted improving impact is thus present, but less 
marked.  
 
Moreover, it is possible to conclude that the employment of the 3D-QSO versions reaching 
higher z-dimensions, could lead to an even better recovery of global Phobos gravity model. 
This is made evident by the supplemental comparison between graphs reported in the two 
columns of Figure 55. The ones on the right, showing a slightly more accurate gravity filed 
reconstruction, have been obtained with the consideration of the QSO-M-3D-A5 and the QSO-
M-3D-B5. Effectively, both these orbits achieve higher latitudes over the Phobos surface than 
the QSO-M-3D-A1 and the QSO-M-3D-B1, whose marginally less precise results are 
presented on the left. Particularly, the more a 3-Dimensional orbit is inclined, the more its ability 
in adjusting 𝑪̅𝟒𝒎 Stokes elements increases.  

Figure 55 - 𝑪̅𝒍𝒎 adjustment from “Gravity model 2” at the end of the second and fourth phases, 
considering DSN-Optical measurement combination, along the least and the most inclined 3D orbits. 

 

Figure 55.b – End of the fourth mission phase. 
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 Conclusions and 
possible prospects  

 
 

This internship project has turned out to produce suitable results for the evaluation of which 
could be the real Phobos gravity model correction reachable by the MMX mission.  
First of all, this analysis allows to understand the contribution of each 2 and 3-Dimensional 
QSO to the MMX success. In fact, results here presented, highlight that: 
 
• The QSO-H trajectories, reaching exclusively higher altitudes over the Martian moon 

surface, are suitable for the perfect return of only the 𝑪𝟎𝟎 Stokes element, thus the real 
Phobos standard gravitational constant 𝝁. 
 

• The QSO-M trajectories allow an incomplete reconstruction of the target gravity field: they 
enable the partial correction of up-to-2/3-degree-normalised Stokes coefficients. 
Consequently, they result to be suitable for the initial mission phases. Not being 
excessively sensitive to a large real field unknowledge, they allow first model corrections. 

• The QSO-3D-M trajectories always manage to get a larger improvement in the actual 
knowledge of Phobos gravity model, in relation to their counterpart 2-Dimensional medium-
altitude orbits. The higher is the latitude they can reach over the target body, the more 
accurate their gravity field detection can be. 
 

• The QSO-L trajectories, reaching the closest proximities to Phobos surface, proved to be 
the most sensitive to the body gravity field. This feature implies two complementary 
aspects. Firstly, the low-altitude orbits are not able to correct a gravity model too imprecise 
in relation to the real field. Secondly, they amply proved to have the largest ability to 
precisely correct a not excessively perturbed a priori gravity model. The employment of 
these orbits in mission phases succeeding the first one, is a strong point for the entire MMX 
success in its geodesic objectives. In fact, they allow the recovery of Phobos gravity 
coefficients up to degree 4, the maximal degree analysed within this internship project. 

   
Moreover, this project enables an evaluation of the influence relative to every considered 
measurement combination: 
 
• DSN measurements appear to be fundamental for a complete and accurate restitution of 

Phobos gravity field. They are characterised by a high precision level, which is able to lead 
to an excellent correction of normalised Stokes coefficients (up to degree 4). 
 

• Doppler measurements captured with the only DSN Usuda ground station, result in a loss 
of precision in Phobos gravitational field evaluation. In fact, this technique implies less DSN 
captures, thus less accurate gravity coefficient reconstruction. However, this loss of 
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Figure 56 - Possible more realistic and gradual Restitution-Accumulation-Resolution method. 

precision turned out to be rather limited, especially considering its slight effects on the 
entire mission. Consequently, it is possible to conclude that global model adjustment can 
still be sufficiently accurate, with the employment of the single Usuda antenna. 

 
• The combination of only LIDAR and Optical measures is not able to rich the perfect 

correction of Phobos gravity model, especially considering a quite imprecise initial a priori 
knowledge. Consequently, DSN captures are necessary for reaching the best model 
recovery possible. 
 

To sum it up, the global evaluation of all these results allows to get an important conclusion. 
They prove that using appropriate combinations of QSO trajectories and measurement 
techniques, the MMX mission has the potential to reach one of its main scientific purpose: the 
improvement in the knowledge of Phobos gravity field. 
 
Furthermore, these first important results can represent the basis for a possible even more 
detailed analysis: the MMX mission study could proceed in many different directions. Thus, 
multiple are the prospects for the future: 
 
• This internship study has been conducted considering all the four a priori Phobos gravity 

models separately, within the analysis of each MMX phase. This procedure allows to get a 
first interesting version of the probable target gravity restitution reachable by the mission.   
However, a more realistic case could be analysed. In fact, as detailed before, during the 
MMX process, a gradual correction will be applied over the actual Martian moon gravity 
model. While the satellite will move nearer the target body, the knowledge in its 
gravitational field will increase, so that a constant update of the relative model will be 
possible. As a consequence, it would be useful to proceed in a realistic gradual way within 
the last project steps of the Restitution, Accumulation and Resolution: 
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It would thus be possible to realise an initial gravity filed restitution over only the QSO 
trajectories taking part in the first mission phase, considering the desired a priori Phobos 
gravitational models. 
Subsequently, their relative normal equations could be accumulated and resolved in order 
to get a first adjustment of Stokes coefficients. This would correspond to the earliest update 
reachable by the MMX mission of the knowledge in this target geodesic parameter.  
These corrected gravity coefficients would then constitute the new a priori model, to be 
used in the Restitution procedure for QSO trajectories belonging to the second phase. It 
would lead to another normal equation accumulation and resolution in a new set of adjusted 
gravity coefficients. The latter would represent the second Phobos gravity update available 
in the MMX mission.  
This second corrected model would also appear as a priori reference, in the gravitational 
field restitution in QSO trajectories of the third mission phase. Newly, the Accumulation 
and Resolution steps would give birth to an always more precise update in the actual a 
priori gravity model.  
Finally, the latter would be employed in the Restitution step concerning the remaining 
QSOs, taking part in the fourth mission phase. The last normal equation accumulation and 
resolution would generate the final correction results, representing the definitive Phobos 
gravity model update accessible from the MMX mission. 
 

• In the context of this internship project, only Stokes coefficients up to degree 4 have been 
set as free parameters, so that results here obtained are representative of only this limited 
group.  
It would be useful to extend the maximal adjustable degree of harminic gravity coefficients. 
In this way, it would be possible to understand which are the QSO trajectories and the 
measurement combinations more suitable for the reconstruction of higher degree-
coefficients.  
At the same time, it would be clear the comprehension of how far the entire MMX mission 
would be able to recover Phobos gravity field model.   
 

• This internship study has been completely focused on Phobos gravity filed study. However, 
the MMX mission has among its scientific objectives, the correct evaluation of the Martian 
moon ephemeris in relation to Mars and its rotation around its spin axis.  
Consequently, it would be possible to complete this space geodesy analysis with the 
addition of these two Phobos physical parameters, both treatable by the GINS software. 
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Annexes 
 

Annex A: Normalised Stokes coefficients from Phobos 
shape model 

 
The following two tables show normalised Stokes coefficients 𝑪̅𝐥𝐦 and 𝐒̅𝐥𝐦 numerical values, 
computed from Phobos shape model. These up-to-20-degree coefficients represent the 
Phobos gravity filed model used as realistic reference in this internship project. 
 

 

 
 

Table 10 - Computed normalized Stokes 𝑪̅𝒍𝒎coefficients from Phobos shape model. 

 
 

 

Table 11 - Computed normalized Stokes 𝑺̅𝒍𝒎coefficients from Phobos shape model. 
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Annex B: Phobos gravity field model adjustment along 
each QSO 

 
 

𝑺̅𝒍𝒎 – DSN (Madrid + Usuda) 𝑺̅𝒍𝒎 – DSN (Usuda only) 
  

 

 

  
 

Figure 57.a – QSO-H class example. 
 

 

Figure 57.b – QSO-M class example. 
 

Figure 57.c – QSO-L class example. 
 

-L 
Figure 57 - Stokes 𝑺̅𝒍𝒎 coefficients adjusted from a priori Phobos “Gravity model 4”, considering DSN 

measurements realised with both Madrid and Usuda stations and with only Usuda antenna. 
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Annex C: Phobos gravity field model adjustment along 
the entire MMX mission 

 

𝑺̅𝒍𝒎 – Nominal Case 𝑺̅𝒍𝒎 – 1st Alternative Case 
  

 
 

 
 

. 

 

Figure 58.a – a priori Phobos “Gravity model 1”. 

Figure 58.b – a priori Phobos “Gravity model 4”. 

Figure 58.c – a priori Phobos “Gravity model 3”. 

Figure 58 - Phobos gravity 𝑺̅𝒍𝒎 coefficient adjustment at the end of the second nominal and alternative 
MMX Phobos phase, considering the LIDAR and Optical measurement combination. 
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𝑪̅𝒍𝒎 – Lower inclination 
(A1,B1) 

𝑪̅𝒍𝒎 – Higher inclination 
(A5,B5) 

  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 59.b – End of the fourth mission phase. 

Figure 59.a – End of the second mission phase. 

Figure 59 - 𝑪̅𝒍𝒎 adjustment from “Gravity model 1” at the end of the second and fourth phases, 
considering the DSN-Optical measure combination, along the least and the most inclined 3D orbits. 
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𝑪̅𝒍𝒎 – Lower inclination 
(A1,B1) 

𝑪̅𝒍𝒎 – Higher inclination 
(A5,B5) 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 60.b – End of the fourth mission phase. 

Figure 60.a – End of the second mission phase. 

Figure 60 - 𝑪̅𝒍𝒎 adjustment from “Gravity model 4” at the end of the second and fourth phases, 
considering the DSN-Optical measure combination, along the least and the most inclined 3D orbits. 
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𝑺̅𝒍𝒎 – Lower inclination 
(A1,B1) 

𝑺̅𝒍𝒎– Higher inclination 
(A5,B5) 

  

 
 

 
 
 
 
  

Figure 61.b – End of the fourth mission phase. 

Figure 61.a – End of the second mission phase. 

Figure 61 - 𝑺̅𝒍𝒎 adjustment from “Gravity model 2” at the end of the second and fourth phases, 
considering the DSN-Optical measure combination, along the least and the most inclined 3D orbits. 
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