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Abstract 
 

Since the beginning of turbulence studies, one of the most challenging problems 

was to correctly educe coherent structures within the chaotic motion of turbulent 

flows. From flow visualization through velocity gradient-based methods all have 

positive aspects and drawbacks. 

The present work takes inspiration and bases its development on previous studies 

concerning wavelet transform analysis of turbulent flow velocity signals for coherent 

structures’ eduction. The wavelet transforms come from signal analysis theory and 

are a mathematical means to perform signal analysis when signal frequency varies 

over time employing a small wavelet with a limited duration. Thus, frequencies 

which compose the signal and its energy content and, moreover, their location along 

the signal duration can be retrieved. This is the significative characteristics which 

distinguishes wavelet transforms and Fourier transforms. Indeed, the latter loses 

information about the energy content’s location within the signal. 

Particularly, we focused on the analysis of flow fields retrieved through Particle 

Image Velocimetry (PIV) technique and showing energy maps which highlight the 

presence of possible coherent structures within the flow field. 

Firstly, a synthetic vortex and a round jet, relatively simple flow fields, are eval-

uated to allow the wavelet-based code validation. Once it’s been ascertained for the 

code to work properly, despite some inaccuracies, a more sophisticated flow field is 

examined. The analysis is performed on turbulent boundary layer over smooth and 

riblet surfaces. Riblet surfaces (or simply riblets) are adopted for flow control show-

ing good drag reduction performances. The obtained results are then treated sta-

tistically to highlight possible differences between smooth plate and riblets’ bound-

ary layer.  

 

 

 

  



 

 

 

 

  



 

 

 

 Sommario 
 

Sin dagli albori dello studio di flussi turbolenti, una delle principali sfide risiede 

nell’identificazione di strutture coerenti. Nel corso degli anni, diversi metodi basati 

sulla visualizzazione dei campi di moto tramite traccianti o metodologie analitiche 

basate sulla valutazione di gradienti o in generale variazioni di velocità sono stati 

messi a punto. 

Il presente elaborato prende ispirazione da studi precedenti riguardo l’impiego 

delle trasformate di wavelet per l’analisi di segnali di velocità di flussi turbolenti 

con l’obiettivo di identificare la presenza di strutture coerenti. Le trasformate di 

wavelet provengono dalla teoria dei segnali e permettono la valutazione di segnali 

all’interno dei quali si hanno variazioni frequenza. Ciò viene effettuato tramite una 

“ondina”, appunto wavelet, la quale presenta una determinata frequenza e una du-

rata limitata, ovvero è dotata di un supporto limitato nel tempo (o nello spazio). 

Quindi, è possibile ottenere il contenuto energetico e, soprattutto, la posizione lungo 

il segnale delle varie frequenze che compongono lo stesso. È questa la significativa 

differenza rispetto alle trasformate di Fourier le quali, invece, perdono l’informa-

zione riguardo la posizione di tale contenuto energetico spalmandola su tutto il 

dominio. 

In modo particolare, si cerca di analizzare campi di moto ottenuti mediante tec-

nica PIV (Particle Image Velocimetry) visualizzando delle mappe di energia che 

mettano in luce la presenza di eventuali strutture coerenti all’interno del campo di 

moto. 

Inizialmente, vengono analizzati un vortice sintetico, ottenuto per via analitica, 

e il campo di moto di un getto che, in quanto campi relativamente semplici, possono 

permettere la validazione del codice. Una volta accertato il corretto funzionamento 

del codice, vengono analizzati dei campi di moto più complessi. In particolare, si 

valutano i campi di moto relativi allo strato limite che si genera su una placca piana 

liscia e su tre differenti tipi di superfici riblettate (o riblets). Le riblets vengono 

adoperate per il controllo di flussi e mostrano buone performance per quel che ri-

guarda la riduzione della resistenza. Questi ultimi risultati vengono, poi, analizzati 

statisticamente per cercare di mettere in luce eventuali differenze tra strato limite 

su placca liscia e su riblets. 
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1 Introduction to Wavelet Transform 

1.1 Definition 

Wavelet transform is a mathematical technique that allows to analyze signals or 

images which present abrupt changes. In fact, wavelet transform allows to unfold 

a signal into both time and frequency. The basic concept is to superimpose a mother 

wavelet on the test signal and to make two simple operations: scale and translate. 

The mother wavelet is a mathematical function characterized by a limited spatial 

support and a given frequency called center frequency of the mother wavelet. Typ-

ical shape of a wavelet is reported in 

Figure 1.1. As it can be seen, one can choose a real-valued or a complex-valued 

wavelet function. The choice of one or another type depends on the analysis to 

perform. For example, a complex wavelet function will return information about 

both amplitude and phase and is better adapted for capturing oscillatory behavior. 

A real wavelet function returns only a single component and can be used to isolate 

peaks or discontinuities. The shape of wavelet function should reflect the features 

present in the analyzed signal.   

 

 

 

Figure 1.1 - Three types of Wavelet functions. Solid lines represent real part of wavelet function, 

while the dashed lines represent the imaginary part. (a)Morlet complex-valued wavelet, (b) Paul 

complex-valued, (c) Mexican Hat real-valued wavelet. 

 

Thanks to these characteristics of the wavelet, the analysis can be performed 

locally on the signal, as opposed to the Fourier Transform which is nonlocal, indeed 

it does not lose information about the signal, but instead spread it away. As can 

be seen from Figure 1.2, the Fourier Transform detects the energy associated with 
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frequencies which constitute the signal, but it can’t give any information about 

where this energy is placed along the signal.  

The two operations previously mentioned are performed over the mother wavelet. 

The wavelet is, initially, scaled by a factor � and translated along the whole signal 

performing the convolution operation between the scaled wavelet and the signal. 

The scaling factor � stretch or compress the wavelet properly, so singularities inside 

the signal are detected. If � is increased the wavelet will appear stretched, whereas 

if it is decreased the wavelet will appear compressed fitting better the rapid changes 

in the signal.  

 

 

Figure 1.2 - Decomposition of signals based on the Fourier Transform and the Wavelet Transform. 

 

Figure 1.3 - Effect of scale factor � on wavelet spatial support.  

 

For each scale factor considered, a shifting operation is performed so, at the end 

of the analysis, a frequency (or scale) decomposition of the signal is obtained. That 

process gives very good resolution in the small scales and in large scales too. Nev-

ertheless, according to the Heisenberg’s uncertainty principle, the variation of the 

number of oscillations, or cycles, of the mother wavelet leads to a different resolu-

tion in time and frequency. Indeed, if a mother wavelet with many cycles is selected, 

we obtain a great resolution in frequency, while the time resolution, i.e. the time 

position of the detected variation in the signal is not well resolved. By contrast, 
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with less oscillation the wavelet gives a low resolution in frequency but a great 

resolution in time.   

Two main types of wavelet transform exist; the continuous wavelet transform, 

and the discrete wavelet transform. 

The 1D Continuous wavelet transform of the �(�) function scaled by the factor 

� is obtained as follows:  

 ��(�) = �−1/2 ∫ �(�′)ψ∗ (� − �′
� ) ��′ ( 1.1 ) 

whit � as the scale dilation parameter corresponding to the width of the wavelet, 

�′ as the translation parameter corresponding to the position of the wavelet and 

�∗ as the complex conjugate of �, the so-called mother wavelet function; � and �′ 
are dimensionless variables. The wavelet coefficients will correspond to energy den-

sities. If a function is locally smooth the corresponding wavelet coefficients will 

remain small, while if a singularity is present, in its vicinity the wavelet coefficients’ 

amplitude will increase [1]. For analysing purposes, the continuous wavelet trans-

form is preferable because its redundancy allows good legibility and an unfolding of 

the signal’s information content on the time-frequency domain. 

The Discrete wavelet transform (or orthogonal wavelet transform due to orthog-

onal wavelet property) is better suited for compression or modelling purposes be-

cause it decomposes the signal into a minimal number of independent coefficients 

on a dyadic grid. 

For present work’s objective, the continuous wavelet transform is adopted. 

1.2 Time-Frequency vs. Space-Scale analysis 

As mentioned above, the scale factor � is used to reduce or increase the mother 

wavelet’s width. Since the wavelet analysis was largely adopted in time signal anal-

ysis, the time-frequency study of the signal is performed. For the sake of simplicity, 

we consider a signal as reported in Figure 1.4, composed by two well distinguished 

frequencies; the wavelet analysis is performed and the so called scalogram is ob-

tained with time in the x-axis and frequencies in the y-axis, while the contour 

represents the energy density of the signal, obtained as the square value of wavelet 

coefficients. 

 ��(�, �′) = |�(�, �′)|2 ( 1.2 ) 

A local energy density, which measures the cross-energy density of two processes 

(that identifies their local correlation) is defined as: 
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 ����(�, �′) = ��(�, �′)��(�, �′) ( 1.3 ) 

which can be represented as wavelet coscalogram. 

 

 

Figure 1.4 - The signal is composed by two frequencies: 32Hz in 0.1-0.3 time interval with an 

amplitude of 1 and 64Hz in 0.6-0.9 time interval with a 1.5 amplitude. 

 

 

Figure 1.5 - The scalogram puts in evidence the signal’s frequencies and, as can be noted, the 

magnitude corresponds with the signal amplitudes.  

 The same thing can be expressed in terms of period instead of frequency obtain-

ing the same result, but in the form of time-period. 

The concepts stated above, can be perfectly translated in the space domain con-

sidering a signal sampled in space rather than in time. Thus, the scalogram obtained 

will have the space in x-axis and something like “space frequency” in y-axis. The 

product of this “space frequency” with the constant 2� is the wavenumber � de-

fined as � = 2�/  where   is the spatial size. In this case, we obtain a space-
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wavenumber, or better a space-scale analysis. To better understand, the analysis 

process will be well explained.  

The effect of the scale factor � is to shrink or widen the mother wavelet. The 

wavelet is associated with a purely periodic signal with frequency !", called center 

frequency of the wavelet with scale factor � = 1 (so, the wavelet is not shrunk nor 

widened). When a scale factor is applied, the center frequency is increased or de-

creased, as the equation ( 1.4 ) states, leading to the so called pseudo-frequency 

!$%.  

 !$% = !"�  ( 1.4 ) 

In other words, !$% represents the frequency of the periodic signal associated with 

the scaled wavelet (see Figure 1.6).  

 

 

Figure 1.6 - Effect of scale factor (� > 1) on wavelet (blue line) width and associated period signal 

(red line); (a) pseudo-frequency !$% = 3.08+, corresponding to a larger scale factor, (b) pseudo-

frequency !$% = 6.17+, corresponding to a lower scale factor. 

Thus, a relationship between frequency and scale is showed, precisely, the fre-

quency results to be inversely proportional to the scale. 

Once the wavelet is scaled, it is translated along the domain and the operation 

of convolution is performed with the signal to be analysed. Then, the process is 

repeated with another scale factor. In so doing, the wavelet coefficients are obtained. 

1.3 Wavelet transform and turbulence 

In the field of turbulence, it is well known the energy cascade spectrum of a 

turbulent flow, in which the three regions corresponding to integral scale, inertial 

range and dissipative scales are observed in relation with wavenumbers. Thus, we 



1 Introduction to Wavelet Transform 

 

- 6 - 

 

can retrieve from the spectrum at which frequencies (or wavenumbers) most of the 

energy is contained. But there is a lack in the theory. We don’t know, in physical 

space, where the energy is contained.  

In turbulent flows most of the energy is contained within rotating structures 

known as coherent structures. Therefore, we need to locate some elementary coher-

ent structures. With the help of wavelet this begin possible. In fact, wavelet trans-

form allows to unfold the signal in both space and scale, enabling the possibility to 

locate the structures and measure their contribution to the energy spectrum. 
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2 Coherent structures identification in 2D flow fields 

2.1 What is a coherent structure? 

Since the earliest observations, turbulence has been described as chaotic motions 

dominated by a random behavior. But soon, the observation of structures present-

ing some sort of order, took scientists to think about the possible presence of some 

sort of order in the chaos.  

Historically, the notion of coherence was related to wave phenomena of acoustic, 

electro-dynamic physics, meaning “[…] relation of coincidence between two sets of 

waves, which will produce interference phenomena […]”. In the present context, the 

meaning of coherence is intended in a wider significance, in a more colloquial sense. 

Thus, a coherent structure is a flow structure with discernible correlation and which, 

by its repetitive specific properties characterize a specific flow.  

Flow fields reproduced in laboratory (Figure 2.1) with relatively small Reynolds 

in which this type of structures was observed, invites criticism and skepticism with 

respect to the fully developed turbulent structures. Indeed, one must ask whether 

the clearly visible “coherent” structures are possibly relics of the characteristic 

structures of the laminar-turbulent transition. But, observation of natural phenom-

ena took off the answer (Figure 2.2). Essentially, meteorological structures, oil-

wakes in the lee of damaged tanker ships and, as an extreme case, the structures in 

the Jupiter’s atmosphere are all characterized by Reynolds number of the order of 

107 or greater, thus fully turbulent flow fields.  

 

   

Figure 2.1 - Flow structures in laboratory visualization: (a) Karman vortex street behind a circular 

cylinder at Re = 140 (Ref [2], 94), (b) Turbulent water jet at Re = 2300 (Ref. [2], 166). 

From flow visualization, some criteria may be derived for coherent structure with 

the purpose to provide a definition.  

(a) (b) 
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Typically, coherent structures are composed by different scales, from the largest, 

comparable to the lateral flow dimension, to the smallest and, sometimes, large-

scale structures can be broken down in more elementary small structures with their 

own coherent properties. They exhibit a high degree of organization in their struc-

tures as well as in their dynamics and they show a strong similarity with the struc-

tures of the laminar-turbulent transition. Lastly, they are pattern recurrent, having 

such a temporal coherence, i.e. they must persist  

 

 

 

Figure 2.2 - Coherent structures observed in nature: (a) Von Karman vortex street behind the 

Robinson Crusoe Island [NASA Earth Observatory], (b)Turbulent structures in Jupiter’s atmos-

phere [NASA/JPL-Caltech]. 

 

(a) 

(b) 
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in time [3]. In the past years, efforts to provide a precise definition of what a 

coherent structure is was made by many researchers.  

In 1983, Hussain, with his article, proposed a definition for coherent structures. 

He stated that “a coherent structure is a connected turbulent fluid mass with in-

stantaneously phase-correlated vorticity over its spatial extent” [4]. That means, 

the random three-dimensional vorticity, that characterizes turbulence, possesses an 

organized component which is phase-correlated over the spatial extent of the struc-

ture.   

The initial formation of coherent structures is the result of local instability of 

laminar or turbulent free shear layers or boundary layers and initial conditions play 

a fundamental role in their generation.  

In wall or free flows, different types of coherent structures can be distinguished 

becoming a characterization feature of that precise flow fields (see Section 3.2.2 and 

4.2 for more details).  

 

2.2 Eduction techniques 

In previous years, the main approach for coherent structures and eddy detection 

was the visualization technique by means the injection of tracing fluids or particles 

in the main flow. Lately, several “analytic” methodologies have been developed for 

the extraction of coherent structures from bidimensional velocity fields which are 

obtained, for example, through particle image velocimetry technique which provides 

the two components 0  and 1  of velocity vector 2 . Some of these methods are 

briefly described below [5]: 

 

Direct analysis of vorticity field 3  

Regions of maximum vorticity, computed from the velocity field, can show local 

rotational velocity vectors according to its definition 3 = ∇ × 2 . However, this 

approach may not be always satisfactory since |3| doesn’t identifies vortex cores in 

a shear flow, especially if the background shear is comparable with the vorticity 

magnitude of the vortex core. Moreover, the locality of the vorticity definition en-

hances small scales, so it become difficult to separate noise from real small length 

scales structures.  
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Galilean decomposition  

The velocity field is translated by the convective velocity Ua, so rotating struc-

tures become well visible by plot the velocity vector field. The drawback of the 

method stands in the non-deterministic value of the convective velocity, so some 

rotating structures are advected with slightly different velocity. For example, in 

the shear layer of a jet flow the convective velocity can be assumed equal to half of 

the jet ejection velocity obtaining good results. Nevertheless, it is way too problem-

atic to establish a correct velocity value of convection of many structures in a fully 

turbulent boundary layer flow. So, the plot of velocity field for more than one 

convective velocity is needed to visualize all the eddies within the flow. 

 

89 and : definition [5]: 

Both methods adopt the evaluation of the velocity gradient tensor ∇2 . The 

symmetric ; and antisymmetric < components of ∇2  are defined, respectively, as:  

 =>? = 12 (A>,? + A?,>)                Ω>? = 12 (A>,? − A?,>) ( 2.1 ) 

We compute the eigenvalues of ;9 + <2 and, since this tensor is symmetric, it 

has real eigenvalues only. If λ1, λ2 and λ3 are the eigenvalues and λ1 ≥ λ2 ≥ λ3, 
the region where λ2 < 0 is the vortex core (λ2-Definition). 

The quantity I of the I-definition method is defined as: 

 I = − 1
2 J (;9 + <2) = −1

2 (λ1 + λ2 + λ3) ( 2.2 ) 

Regions in which I is positive locate vortex cores. The λ2 and I definition give 

comparable results in some flow fields, but it seems that λ2 definition shows better 

results in a larger variety of flows in which I definition provides incorrect descrip-

tion of vortex topology and geometry. 

 

Proper orthonormal decomposition (POD) 

The POD is an eduction technique based on the identification of the motions 

which contain the most part of the energy of the flow. Precisely, it exploits the two-

point velocity correlation and provides a representation for the fluctuating velocity 

field. Considering a random scalar function A(�) in the domain 0 ≤ � ≤ L, an 

orthonormal decomposition of the function is performed 

 A(�) = ∑ �NON(�)
∞

N=1
 ( 2.3 ) 
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where ϕN is a set of real non-random basis function which satisfy the orthogonal 

condition and �N are the random coefficients of the basis function. The average 

mean energy of A(�) is defined as 

 � = 1
L∫ 1

2
Q

0
⟨A(�)2⟩�� ( 2.4 ) 

and by means the equation ( 2.3 ) it can be written 

 �U = ∑ 1
2

U

N=1
⟨�N2 ⟩ ( 2.5 ) 

which represents the energy content of the first N modes. The basis functions are 

chosen in a way to maximize the energy content of the first N modes [6].   

 

2.3 Particle Image Velocimetry 

The Particle Image Velocimetry (PIV) is a non-intrusive anemometric technique 

which provides a quantitative measure of the instantaneous flow field. Three types 

of PIV technique exist based on the number of velocity vector’s components re-

trieved and on the dimension of the flow field portion analysed. 

- 2C2D  Two in-plane components retrieved in a two dimensions sample 

domain, i.e. a plane, by means a single camera; 

- 3C2D (Stereoscopic PIV)  Three components retrieved in a plane, by 

means two cameras. 

- 3C3D (Tomographic PIV)  Three components retrieved in a 3D volume, 

by means two or more cameras. 

Data in the present work was obtained with 2C2D PIV technique. To allow par-

ticles visualization, tracing particles are added to seed the flow. These particles 

should have similar characteristics with the flow, like density, in order to ensure 

that particles follow closely flow motion. To guarantee that, the non-dimensional 

parameter called Stokes number should be much smaller than unity: 

 =J = JVJ0 ≪ 1 ( 2.6 ) 

where J0 is a typical time of the flow, like the convection time, while JV is the par-

ticle relaxation time:  

 JV = �V2XVY  ( 2.7 ) 



2 Coherent structures identification in 2D flow fields 

 

- 12 - 

 

with �V the particle diameter, ρV particle density and µ the fluid dynamic viscosity. 

At this point, the area to be examined is illuminated with two consecutive laser 

sheet impulse. The tracing particles reflect the laser light, which is collected by a 

camera which is synchronised with the laser. Two images at two different time 

instants are obtained. By comparison of the two images, which shows the displace-

ments of particles, the velocity components are retrieved, since the time interval 

ΔJ between two laser flashes is known. The right time interval must be chosen; if 

a too long time interval is selected, probability that particles leave the 2D illumi-

nated plane during ΔJ increases (3D effect) and, moreover, the obtained velocity 

departs from the real instantaneous value and approaches a mean value. By con-

trast, short ΔJ give short displacements which are not reliable due to background 

noise effects. In order to analyse the images each shot is divided into smaller win-

dows called interrogation window. So, each window of the first frame is compared 

with the second one by means a cross-correlation approach. This way, for each 

interrogation window a velocity vector is obtained (see Figure 2.3). A good pro-

cessing output requires the correct particle density within each window to obtain a 

relatively high value of the cross-correlation coefficient. Poor and high density par-

ticle distribution both lead to a low value of cross-correlation coefficient resulting 

in a not reliable processed image. 

 

 

Figure 2.3 - The two consecutive frames are divided into small interrogation window, and later are 

processed by a cross-correlation process obtaining a velocity vector for each window. 

 

2.4 Wavelet analysis of particle image velocimetry data 

The present technique is proposed by R. Camussi and for more detail we remand 

to the related scientific article reported into the references [7]. 
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The starting point of the method is the definition of wavelet transforms reported 

in Section 1.1. The type of mother wavelet selected for the present study is the 

complex-valued Morlet one, while in the scientific article is select the real-valued 

Mexican Hat. It is been checked that the use of others mother wavelet’s types does 

not affect the result obtained [7].  

In 2D velocity fields, the equation ( 1.1 ) can be extended to two dimensions, but 

for the present purpose, 1D wavelet transform will be adopted in order to obtain 

quantities which have clearer physical meaning related to the vorticity. 

From PIV measurements, two bidimensional matrixes are usually retrieved cor-

responding each to the two components 0(�1, �2) and 1 (�1, �2) of the velocity 

vector 2 , where �1 and �2 are the Cartesian axes with 0  parallel to �1 e 1  paral-

lel to �2.  
Thus, when 1D wavelet transform is applied to velocity vector’s components four 

tensor are obtained: 

�>,\] (�1, �2)        ^, � =  1,2;        `>N ≤  ≤  `��. 

The index ^ correspond to the selected velocity component (1 for 0  and 2 for 1 ) 

and the index � to the direction of transformation (i.e. along �1 and �2). In order 

to evaluate the contribution of vorticity, the two matrices �1,2]  and �2,1]  are con-

sidered. Indeed, the definition of the z-component of vorticity is given by: 

 ab = c0
cd − c1

c�  ( 2.8 ) 

So, the following quantity is defined: 

 �(�1, �2)]  = [( �1,2] �1,2]∗

⟨�1,2] �1,2]∗ ⟩)( �2,1] �2,1]∗

⟨�2,1] �2,1]∗ ⟩)]
12
 ( 2.9 ) 

The quantities �>,\]∗  are complex conjugates and the ⟨⋅⟩ notation states for spatial 

average over both �1 and �2. So, �(�1, �2)]  represents the 2D map of a non-di-

mensional normalized energy at the scale   (or �). The presence of coherent struc-

tures might be associated with region where this quantity is large. There is a direct 

connection between the quantity �(�1, �2)] and the 1D counterpart called local 

intermittency measure (LIM), introduced by Farge [1] and successively adopted for 

coherence structure eduction of 1D velocity time series. So, we refer to the quantity 

of equation ( 2.9 ) as local energy. In equation ( 2.9 ), the numerator is a measure 

of the cross-energy density of the two transformed signals. 
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To better identify these regions a threshold can be defined. Thus, regions where 

the value of �(�1, �2)] overcomes its standard deviation at the scale   are consid-

ered, as the following equation states: 

 �(�1, �2)] > ⟨[�(�1, �2)] − ⟨�(�1, �2)]⟩]2⟩12 ( 2.10 ) 

 

The spatial average, reported as ⟨⋅⟩, is performed over the whole field, once the 

scale   is selected. We denote with �1̃ and �2̃ that regions which satisfy the equa-

tion ( 2.10 ). Once a region is selected, the mean energy content within it is calcu-

lated by: 

 �̃( ) = ⟨�](�1̃, �2̃)⟩�̃1,�̃2 ( 2.11 ) 

For each scale  , the average of the energy over the region  �1̃, �2̃ is performed. 

Thus, the quantity �̃( ) represents the mean energy within that region for each 

scale and, clearly, it will be a function of the scale   only. That quantity can be 

utilized to determine the typical length scale   (or wavenumber) characterizing the 

coherent structure within the region selected. The typical length scale of the coher-

ent structure corresponds to the resolution   which maximize the energy content, 

in other words, the resolution   corresponding to the maximum of the curve �̃( ) 
is the typical length scale, as the following condition states: 

  =   ∶ �̃( ) = r�� {�̃( ) } ( 2.12 ) 

Once the scale   is selected, the precise position of the coherent structure (�1, �2) 
can be identified locating the coordinates of the maximum value of �](�1̃, �2̃): 
 �1, �2 = �1, �2  ∶   �](�1, �2) = r��{�](�1̃, �2̃)} ( 2.13 ) 

We expect that the maximum value of energy is located in (or near) the vortex 

core, in the light of the connection between wavelet transform and velocity gradient.  

The presented technique will be applied in the present study. 
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3 Wavelet based code validation 

In the following sections, the examined flow fields are presented, and the related 

wavelet analysis and consequent results are discussed. We start with the analysis 

of a synthetic flow field which consists in a Lamb-Oseen vortex analytically gener-

ated. In so doing, we will have a general idea whether the code works properly. To 

obtain a better validation, the code will be applied to the round jet flow field which 

shows a relatively simple structure of the flow near the potential core, at least. In 

Section 5, turbulent boundary layer over smooth and riblet surfaces will be analyzed 

to capture possible differences between them. The round jet and boundary layer 

flows was obtained by means PIV measures. 

3.1 Synthetic Lamb-Oseen vortex analysis 

The Lamb-Oseen vortex models a vortical structure which decays in time due to 

the action of viscosity. The analytical model describes the tangential velocity 1θ as 

function of the radial coordinate v and the time J through the equation: 

 1w(v, J) = Γ

2�v (1 − y− z24|}) ( 3.1 ) 

where Γis the circulation of the vortex core and ν is the cinematic viscosity. The 

evolution of 1θ along v is depicted in Figure 3.1(a), where we indicate as vortex 

radius � the distance from the vortex center at which the tangential velocity 

reaches its maximum value. 

The x-component 0  of the velocity is reported in Figure 3.1(c).  

 

   
Figure 3.1(a)(b) - For caption see next page. 

(a) (b) 



3 Wavelet based code validation 

 

- 16 - 

 

      

Figure 3.1 - (a) Evolution of 1w from vortex centre; (b) Velocity vectors show the vortex structure; 

(c) Variation of U along the vertical direction y; (d) Vorticity map of the vortex. 

 From wavelet analysis, we expect that the energy concentration will reach its 

maximum value for a length-scale multiple of the vortex radius and the energy 

distribution in the � − d plane should mimics the distribution of vorticity due to 

the definition of �(�1, �2)] in the eq. ( 2.9 ). Indeed, once the analysis was per-

formed, the obtained results clearly indicated a positive detection of the vortex. 

The �( ) plot, where � is the result of the energy average over the selected area 

and   indicates the resolution (or scale) as described by eq. ( 2.11 ), presents a 

dominant maximum for  /� � 1.18 which, finally, should indicates the vortex 

length scale (see Figure 3.2). There is not a perfect matching between the vortex’s 

radius and the resolution  , that is  /� =  1, because there isn’t a perfect definition 

of the vortex radius, and more important, because the peak in the �( ) plot repre-

sents the averaged value over the selected area which take into account the low 

energy distribution around the vortex which became a little wider, in terms of 

spatial extension, for  /� =  1.178 (Figure 3.3(d)) and contributes more than the 

very well localized maximum of energy on the vortex centre showed in Figure 3.3(c) 

for  /� � 1.081 which, thus, results to be the effective vortex length-scale. The 

wavelet maps (or energy maps) obtained are reported in Figure 3.3, and they show 

that the energy concentration is magnified for the vortex length-scale.  

The wavelet maps represent for each scale   the magnitude of �(�1, �2)] which, 

as stated before in section 2.4, it is the 2D counterpart of the LIM. Whereas, the 

numerator (�1,2] �1,2]∗ ⋅ �2,1] �2,1]∗ )1/2 represent in some way the cross-energy density 

of the two signal examined, which in this case are the signal of velocity component 

0  sampled in the y-direction and the signal of velocity component 1  sampled in 

the x-direction, respectively.   

(c) (d) 
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Figure 3.2 - E(r) plot which indicates the length-scale of the detected vortex. 

 

  
  (a)  (b) 

 
  (c) (d) 

Figure 3.3 - Wavelet maps at four increasing scales show a maximum value of energy at the scale 

corresponding to the vortex length-scale.   
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3.2 The round jet 

3.2.1 Jet description 

 The round jet is one of the most studied flow fields. The experimental configu-

ration lies in a fluid flowing out, through a nozzle of diameter �, into an ambient 

with same fluid, which is at rest. Downstream of the nozzle, three regions can be 

distinguished, according to the behavior of the fluid (see Figure 3.4).  

The first region is known as potential core and it extends from the exit to the 

distance of about 5 ÷ 6 diameters (0 ≤ �/� ≤ 6). It consists of a nearly flat ve-

locity profile with centerline velocity 0" corresponding to the exit velocity 0� . 

The second zone is the transition region extending approximately to 15 diame-

ters (6 ≤ �/� ≤ 15 ). In this region the center velocity, along the x-axis, begin to 

decrease and the previously formed structures evolve and interact.  

The third and last region is the self-similarity region. This is the fully developed 

region where, with the appropriate scaling, velocity profiles all collapse into a single 

curve.  

Of course, the indicated ranges can vary according to different Reynolds numbers. 

 

            
 (a) (b) 

Figure 3.4 - (a)A schematic view of typical round jet flow field and (b) the mean axial velocity 

profiles for round jet Re = 95500 at different distance x/d from the nozzle exit (Ref. [6]). 

A commonly used characteristic length in order to define the jet width going 

downstream, is the half-radius  1/2, defined as the radius where velocity reach 0"/2. 

Downstream, fluid is entrained due the turbulent nature of the flow, so the mass 

flux of the jet increase, whereas momentum flow rate is almost conserved, since the 

jet is not subjected to external forces.  

The initial instability at the end of the nozzle exit produce vortices in the shear 

layer. They evolve as depicted in Figure 3.5, where we can see the rolling and then 

pairing of these vortices [8]. 
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Figure 3.5 - Evolution of structures created at the nozzle exit. 

3.2.2 Coherent structures in a turbulent round jet 

Jet flows are characterised by large-scale structures which are generated at nozzle 

exit and advected downstream. These structures start to shape due to the instabil-

ity of the shear layer which is formed by the interaction between the high-speed 

fluid issued by the jet nozzle and the free irrotational ambient fluid. The coherent 

structures obtained are vortex rings. In a longitudinal cut plane, it appears as two 

rolling up vortices near the nozzle just outside the potential core (see Figure 3.6(a)). 

Field perturbations and motions induced in the fluid by each vortex affect other 

vortices which begin to pair off giving birth to the vortex pairing process. After 

that, the ring vortex motion develops a circumferential wave instability which 

causes the vortex break up (see Figure 3.6(b)). Indeed, once the vortices begin to 

merge each other and constitute larger structures, at least as far as the end of 

potential core region, they break up into finer scale structures. Moreover, stream-

wise counter-rotating structures was observed near the potential core, between suc-

cessive vortex rings, which are formed due to secondary instabilities. 

        
  (a) (b) 

Figure 3.6 - (a) ¼-inch round jet of CO2 issuing into air at 38 m/s at a Reynolds number of about 

30000. About one diameter downstream it shows instability, formation of vortex rings and transition 

to turbulence; (b) Wavy Instability and vortex rings breakdown in a round jet. (Ref. [2]).  
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3.2.3 Experimental set-up 

The study is initially conduced in the potential core region, in the range 0 ≤
�/� ≤ 2. The jet diameter is � =  20 rr and the velocity 0� = 12.5r/�. Since 

the Reynolds number is defined to be vy = 0"�/ν, it results vy = 16500. The 

results are discussed in Section 3.2.4. The velocity fields are obtained by means the 

Particle Image Velocimetry (PIV) technique. Thus, we obtain two velocity compo-

nents: 0  is the longitudinal component (x-axis component) and 1  is the vertical 

component (in this case the radial ones). A schematic view of the PIV set-up is 

reported in Figure 3.7. 

 

Figure 3.7 - Representation of the PIV set-up. The CCD-camera catches the flow filed and the 

tracing particles enlightened by the laser sheet, flashing at a known frequency, at two different 

moment with a known time interval thanks to a synchronizer. Later, the two images are compared 

and from particles displacement velocity components are retrieved.   

The laser plane is parallel to the longitudinal axis, so we obtain a lateral view of 

the jet. 

Afterwards, a new set of PIV images of a jet flow field are analysed. In this case, 

the flow field extends to the transitional region in a range of about  0 ≤ �/� ≤ 8. 

The jet diameter is, same as above, � = 20 rr and the Reynolds number reaches 

the value vy � 18000 with 0� = 13.5 r/�. The results are presented in Section 

3.2.5. The number of pixels per unit distance, the distances Δ� and Δd  between 

two samples and other data are summarized in Table 3.1. 

 

 Pixel/mm N° of samples Field extension 
�� | �� 

(��) 
Jet 1 60 359x425 0.005 ≤ �/� ≤ 2.125 

0.005 ≤ d/� ≤ 1.795 0.1 | 0.1 

Jet 2 - 336x1654 0 ≤ �/� ≤ 8.268 
−0.885 ≤ d/� ≤ 0.79 

0.1 | 0.1 

Table 3.1 - Data of round jet PIV images with � =  20 rr 
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3.2.4 Wavelet analysis near the potential core 

 The procedure of the analysis is described in section 2.4 and the adopted method 

to evaluate length-scale   is reported in Section 1.2. We underline that the spatial 

resolution of the wavelet, as described in Section 1.2, corresponds to the spatial 

length-scale.  

The study is carried out over many PIV snapshots in order to evaluate whether 

one or more structures are retrieved within the analysed domain. Indeed, within 

some snapshots no vortices were retrieved. Results for some of the processed images 

are showed below. 

In Figure 3.8 the vorticity field and the velocity fluctuation plot are reported. 

The nozzle exit is placed on the left side of both figures, so the fluid flows from left 

to right. As can be seen from Figure 3.8(b), some structures are evident, so we can 

use this flow field to begin the code validation. 

 

 
(a) 

Figure 3.8 (a) - For caption see next page 
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(b) 

Figure 3.8 - (a)The vorticity field and (b) velocity vectors of fluctuating component of velocity 

obtained through Reynolds decomposition, which show the presence of different structures.  

Once the energy map �(�, d)] of the complete flow fields is computed a local 

examination of the field is performed. A window of defined dimensions is slid along 

the entire field and for each window position, depicted in Figure 3.9, the �( ) 
graphic is computed by evaluating the space average over the selected window for 

each scale, as the equation ( 2.11 ) states.   

 

Figure 3.9 - The grid shows the various position reached by the sliding window. 
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Regions not interested by the presence of vortices show very low level of energy 

without any kind of peak in the �( ) plot, like the cell 20 (see Figure 3.10(a)) 

where some energy is detected, but at very low level and without remarkable peaks. 

Otherwise, one absolute maximum or more relative maximums indicates the pres-

ence of one or more structures inside the examined window (see Figure 3.10) at a 

 

 
 (a)  (b) 

Figure 3.10 - The �( ) plot shows the mean value of the energy over (a) cell 20 and (b) cell 21 for 

each scale. 

specific length scale  /�. In fact, the energy content is maximized for that resolu-

tion.  

Considering the plot of Figure 3.10(b), the presence of one maximum is related 

with the presence of one or more structures inside the selected window, in this case 

cell 21. Why do we say “more structures can be associated also to a single maxi-

mum”? Within the reference [7], it is stated that one absolute maximum coincides 

with one structure. But, if two structures inside the same window have the same 

length scale (or nearly the same), they will have an energy peak for the same scale 

contributing to the same maximum. This is because of the definition of �( ); indeed, 

it is an average of the energy enclosed in the selected region. Thus, the localization 

characteristic is slightly lost. At that point, in order to have a better understanding 

of what is enclosed within the window, we need to visualize the energy map �(�, d)] 
for values of scale around the peak. This way, if more than one structure is included, 

we will see them. Indeed, for cell 21 at the scale corresponding to the peak at  /� =
 0.2 the map showed in Figure 3.11(a) is obtained.  
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 (a) (b) 

Figure 3.11 - (a) Contour map of �(�, d)] for the selected cell 21 at scale  /� � 0.2; (b) the Galilean 

transform of  the velocity field. Two structures are visible. The one on the centre appears to be 

deformed and a little bit stretched and seems to be the end of a rising shear layer where we hypoth-

esize, a streamwise structure, probably is formed.  

With the purpose to confirm what the �(�, d)] map is showing the Galilean 

transform of the velocity field in the same cell is evaluated  (see Figure 3.11(b)) 

with a convective velocity 0� equal to half the jet velocity 0�  (the same result can 

be achieved through the visualization of the fluctuating component of the velocity 

fields). 

The central structure enlightened in Figure 3.11(a) has a non-defined shape, as 

we can see from the Galilean transform. Because of this type of structure is present 

in many other images, we can hypothesize that it corresponds to a section of a 

streamwise vortex, but with PIV data in our possession it isn’t possible to obtain 

an indisputable confirmation.  

At this stage, we focus our attention on the right vortex presented in Figure 3.11 

which results well defined. We center the window on this structure, in order to 

isolate it from the second vortex, and we obtain the map and the �( ) plot reported 

in Figure 3.12. 
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 (a) (b) 

Figure 3.12 - (a) Energy map, (b) and �( ) plot of a selected vortex. 

As we can see, the length-scale at which the energy content is magnified is 

 /� � 0.15 and it should correspond approximately to the size of the vortex. Since 

the nozzle diameter is � =  20 rr the resulting size is about 3 rr. Comparing 

this value with the Galilean transform in Figure 3.13, that value almost matches 

the effective size of the vortex.  The second vortex of Figure 3.11 has a peak in the 

�( ) graphic at  /� � 0.2 and it corresponds to the width of the stretched vortex.  

In Figure 3.12(a), on the right side of the bigger area of energy, we can see a 

small area with a significative energy magnitude. Navigating through the energy 

maps �(�, d)] at different scales, another not well defined small structure is found, 

which has a peak for the energy magnitude at scale of about  /� � 0.13 resulting 

in the effective size of about 2.6 rr. This can be confirmed through Figure 3.13 

where the Galilean transform is reported. 

As remarked before, the �( ) graphic is obtained through an average over the 

area selected losing some localized information. Thus, if we visualize the energy 

map for each scale, we can find at which one the energy content is magnified and 

so the characteristic length scale of the structure is retrieved. 
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Figure 3.13 - (a) Galilean transform with convective velocity equal to half the jet velocity on the x-

axis. The small structure is pointed with an arrow. 

Now, a global view of the flow field is given with the purpose to visualize all the 

energy concentrations for each scale and compare them with the Galilean transform. 

This way, we are able to associate the presence of a possible vortex with the “local 

energy”. Later, a more accurate method will be adopted for comparison. 

Considering the same PIV snapshot as above, we examine four wavelet maps at 

the related resolutions which emphasise vortices’ presence. In Figure 3.14(b) and 

Figure 3.14(c), vortices 1, 2 and 3 are clearly visible, while we can discern the small 

amount of energy indicated with number 5 which corresponds to the small structure 

of Figure 3.12. Moreover, in the lower side two other regions are indicated with 4 

and 6.  

An interesting thing comes from the Figure 3.14(a) which present the local energy 

for a small resolution. The small illuminated areas are all divided, but if we look at 

them “globally” we see they are located in regions where vortices are detected. Thus, 

this small energy concentrations can represent the small irregularities and vorticity 

concentrations that constitute the bigger vortices. Within the circled area there 

must be something. As can be seen from the Galilean transform images of Figure 

3.15(b), there are some not well identified structures which from wavelet analysis 

are not well retrieved. However, Figure 3.15(a) as well Figure 3.13 show a great 

matching between the wavelet maps and the velocity vector field. 
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  (a) (b) 

 
 (c) (d) 

Figure 3.14 - Four energy maps (or wavelet maps) showing possible vortices at different resolution. 

 
  (a) (b) 

Figure 3.15 - (a) Three vortices (3,4 and 6) on the lower side of the flow field; (b) the area in the 

upper-right side of flow field marked with a white circle in Figure 3.14(a). 
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Now, results of another analysed snapshot are presented which show a very in-

teresting outcome.  

The flow field reported in Figure 3.16 is obtained through a Galilean transform 

adopting an advective velocity 0� equal to half the jet velocity 0� . What appears 

very clear is the presence of one counter-clockwise rotating coherent structure in 

the region labelled as A and a second clockwise structure in the region C which 

both corresponds to a section of vortex-rings. Very remarkable is what appears in 

the region C. Indeed, we can see two coherent structures pairing off.  

 

 

Figure 3.16 - Velocity vectors’ field obtained by means Galilean transform of the instantaneous 

velocity field. Different coherent structures are visible included the pairing process of two vortices 

in the area named as B.  

In Figure 3.17 the wavelet maps at scales which highlight the various vortices 

are depicted. From the Galilean transformed PIV images, one can suppose that the 

flow field is animated by events of the same length-scale, but through the wavelet 

maps we can state that the flow field is actually multiscale which contains various 

coherent structure at different length-scale.  

If we superimpose the Galilean vector field onto the wavelet maps, we discover a 

perfect matching between vortices and enlightened areas of the wavelet maps (see 

Figure 3.18). 

C 

A 
B 
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  (a)  (b) 

Figure 3.17 - The wavelet maps show (a) the vortex over the region A which is preceded by a 

“stretched” structure and (b) two vortices of the region B where the pairing process is going on. 

 
 

 

 

 

 

 

 

Figure 3.18 - Galilean vector field with 0" = 0.50�  superimposed onto the wavelet maps (a) for the 

region B and (b) for the region A including the preceding structure which are remarked in (c) and 

(d), respectively. 

 

(a) 
(b) 

(c) 

(d) 
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  By the exam of Figure 3.18, we notice that for the two pairing structures (see 

Figure 3.18(a)) the maximum of energy is reached in positions slightly different of 

the precise vortex centre core and this was observed in many other images. The 

length-scale of these two structures is nearly the same with  /� � 0.18. 

The coherent structure of Figure 3.18(d) finds a perfect matching with the veloc-

ity vectors’ field and the energy content rises at its maximum value for a resolution 

of  /� � 0.26 which corresponds to the coherent structure’s length-scale. 

The structure highlighted by Figure 3.18(c) doesn’t seem an azimuthal vortex, 

but the vectors’ orientation could indicate a streamwise structure, although typical 

streamwise structure detected by flow visualizations are located between two suc-

ceeding vortex-rings.    

The structures in the zone C are not well detected, that means there isn’t a clear 

identification from the wavelet map. However, at low scale all the regions interested 

by vortices are spotted and small-scale “constituent” are visible all over that regions 

as can be seen from Figure 3.19. 

 

Figure 3.19 - Small scale wavelet map ( /� = 0.1) shows areas of the domain affected by vortices 

presence. The map is related to the PIV image of Figure 3.16. 
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3.2.5 Wavelet analysis extended to the transitional region 

In this section, the new set of PIV data extends in 0 ≤ �/� ≤ 8 and results are 

presented ranging from potential core to transitional region.  

We begin analyzing the first snapshot whose vorticity and Galilean velocity field 

is depicted in Figure 3.20. The Galilean transform is performed with a convective 

velocity value 0� equal to half the jet velocity 0�  whose value is around 13.5 r/�.  
With the purpose to analyze the entire field the following procedure is applied: 

- The wavelet transform is performed over the complete flow field, so energy map 

(or wavelet map) is obtained for each scale (or resolution). 

- A threshold is set for energy; only energy which overcomes that threshold is 

considered. In the present case the threshold is set at two times the standard 

deviation over the whole flow field at each scale. 

- The entire area is scanned by means an 8x8 rr matrix window within which 

the �( ) graphic is evaluated for each window’s position. 

- By the �( ) plot and related energy map examination possible vortex or coher-

ent structures are identified. 

- To confirm the presence of structures the Galilean transform and the λ2-Crite-

rion (described in Section 2.2) are applied to the selected window.  
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(a) 

 
(b) 

Figure 3.20 - Motion field of selected PIV snapshot’s, (a) vorticity field, (b) Galilean transform of 

velocity field with convective velocity 0� = 0.50� . Both images show the typical conformation of a 

jet, where potential core and transitional region are clearly visible. The jet issues from left to right 

with velocity equal to 0� = 13.5 r/�.    
First of all, we choose a small flow region and we report the corresponding Gali-

lean transform to physically visualize the velocity field conformation (see Figure 

3.21(a)). Next, we compare that region’s vorticity field with the λ2-Criterion and 

the wavelet map and a very interesting thing comes out. As can be seen in Figure 

3.21, there is a great correspondence between the high vorticity areas, the isolines 

of λ2 and the high energy regions at very small scale, which means high resolution. 

This confirm the definition of quantity �(�, d)] in Section 2.4 is associated with 

vorticity. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 3.21(a)(b)(c) - For caption see next page. 
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(d) 

Figure 3.21 - Comparison of different methods used to retrieve vortices; (a) Galilean transform with 

convective velocity 0� = 6.5r/� equal to half the jet velocity, (b) vorticity field (c) �2-Criterion, 

(d) wavelet map at small scales.  

One advantage of wavelet analysis with respect to other methods lies in the pos-

sibility to separate the energy content for each scale. 

Now, the whole jet region is scanned by a sliding window (see Figure 3.22), as 

done before, and within each window the graphic �( ) is computed. Results for 

significative windows are report below.  

 

Figure 3.22 - Window position within jet flow field 

Cell 7 (�/� � �. � - �/� � −�.�) 

The �( ) graphic obtained for this window is reported in Figure 3.23(c). As we 

can see, two peaks are evident, one at small scale ( /� � 0.06) and one at larger 

scales ( /� � 0.25). To understand what these peaks represent, it is always fun-

damental to visualize the wavelet map for each scale. Thus, the wavelet maps at 

scales’ peaks are depicted in Figure 3.23(a) and Figure 3.23(b). If we look at the 

small scales’ peak, we notice many little areas at very high energy content caused 
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by great values of the z-component of velocity curl, i.e. the z-vorticity. As showed 

before in Figure 3.21, all these areas represent high vorticity small regions which 

constitutes bigger ones or, probably, they also can be noisy areas within the turbu-

lent flow. We can neglect values at scale smaller than  /� � 0.1 as it has been 

done in Ref. [7]. So, we focus our attention on the second peak. There is an area of 

consistent energy content, which probably represents a vortex, surrounded by a low 

energy distribution. The Galilean transform and the fluctuating velocity (see Figure 

3.24) show and confirm clearly the presence of a vortex in that area. Moreover, we 

have confirmation through the λ2-criterion. In Figure 3.23(d), the second eigenvalue 

of matrix ;9 + <2, namely λ2 (see Section 2.2 for details), is represented by white 

isolines superimposed over wavelet map and it is clear the correspondence at small 

scales. The position of λ2 isolines matches the location of vortices.  

  
 (a) (b) 

  
  (c)   (d) 

Figure 3.23 - (a) Wavelet map related to (a) first peak and (b) second peak of (c) �( ) plot and (d) 

�2 isolines over small scales’ wavelet map over cell 7. 
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  (a) (b) 

Figure 3.24 - (a) Galilean transform and (b) fluctuating velocity within window 7. 

However, there is an uncertainty of which the correct scale of this structure is 

due to the following reason. The surrounding low-level energy is caused by the 

chaotic motion of the turbulent flow field and it must not be considered when 

defining the length scale. But, the �( ) graphic is obtained, as more times remarked, 

by an average over the selected area, so, for example, we can obtain the same peak 

for a well localized high energy content and a distributed low energy area. Thus, 

the surrounding energy in Figure 3.23(b) contributes to the peak at  /� � 0.25. 

To determine the correct length scale, we visualize the wavelet map for more scales 

around the peak (see Figure 3.25). As can be noted, the high energy area finds its 

maximum value for  /� � 0.2. This value corresponds approximately with the 

vortex size visible in Figure 3.24.  

Since a threshold was set for the energy, the problem of surrounding energy can 

be partially solved increasing that threshold. For the current cell, we increase the 

threshold value to 5. The resulting �( ) graphic, depicted in Figure 3.26 has a 

lower peak than before because the amount of energy is smaller, and average is 

always made over the same area, but its position in terms of  /� is nearly the 

correct one. Thus, the peak has moved back from  /� � 0.25 to  /� � 0.217 
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  (a)  (b) 

 
(c) 

Figure 3.25 - Wavelet maps of cell 7 for three scales; the energy maximum is found for scales between 

(a)  /� = 0.199 and (b)  /� = 0.217 while for (c)  /� = 0.237 the energy decreases and the sur-

rounding low energy is spreading. 
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  (a) (b) 

Figure 3.26 - (a) E(r) graphic and (b) wavelet map of cell 7 with threshold increased to the value  

Magnitude = 5. 

Cell 31 (�/� � �. � - �/� � −�.�) 

In this area, we discover the presence of small scales structures. The �( ) graphic, 

which we use as guideline, is reported in Figure 3.27(a) and a peak is evident. Thus, 

we examine the wavelet maps (see Figure 3.27) around the  /� value at which the 

peak is placed.  

 

  
  (a) (b) 

Figure 3.27(a)(b) - For caption see next page  
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  (c) (d) 

Figure 3.27 - (a) E(r) plot which show a peak around  /� � 0.1 and (b)(c)(d) wavelet maps at 

three scales near the peak of the E(r) plot. The actual length scale is retrieved through the maps. 

As previous case has showed, the energy maximum is obtained not exactly for 

 /� =  0.11, but for  /� � 0.09 ÷ 0.1 as the wavelet maps show. Increasing the 

threshold value, the peak moves to the correct value in terms of length scale in the 

�( ) plot and the wavelet map appears more clear (see Figure 3.28). 

 
  (a) (b) 

Figure 3.28 - (a) Graphic E(r) and (b) wavelet map at scale relative to the E(r) peak of cell 31 with 

an increased threshold to the value of Magnitude =5. 

In order to have a basis for comparison, the velocity fluctuations are reported 

below in Figure 3.29 together with λ2-Criterion. 
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  (a)  (b) 

Figure 3.29 - (a) Velocity fluctuations and (b) isolines of �2 value superimposed to the wavelet map 

of cell 31 at the indicated scale. 

  

Cell 37 (�/� � �. � - �/� � −�.�) 

This window is located at the beginning of the transitional region. Here, we see 

from the �( ) plot (see Figure 3.30(a)) two peaks and the first one is not so well 

defined. This peak’s shape is due to the presence of two or more structures with a 

similar length-scale, i.e. navigating through the scales the smaller eddy is, initially, 

enlightened and then, increasing the scale value, its energy content start to decrease 

while the second slightly bigger eddy start to arise. 

 

   
  (a) (b) 

Figure 3.30(a)(b) - For caption see next page 
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  (c)  (d) 

Figure 3.30 - (a) E(r) plot which show two peaks and (b)(c)(d) wavelet maps at three scales near 

the peaks value of the E(r) plot. The actual length scale is retrieved through the maps. 

Three structures are visible, two for  /� =  0.05 depicted in Figure 3.30(b) and 

one for  /� =  0.077 reported in Figure 3.30(c) which are all indicated by arrows. 

The Figure 3.30(d) shows a big enlightened area which matches with the velocity 

fluctuations plot. The velocity fluctuations and the λ2 value isolines are reported 

in Figure 3.31 for comparison. 

 
  (a)  (b) 

Figure 3.31 - (a) Velocity fluctuations and (b) isolines of �2 value superimposed to the wavelet map 

of cell 37 at the indicated scale. 
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Cell 77 (�/� � �. � - �/� =  �. �) 

The window considered is placed in the upper shear layer of the flow field at the 

beginning of the transitional region. As the windows examined previously, the �( ) 
plot shows a peak at about  /� � 0.11 (see Figure 3.32(a)). Thus, the wavelet map 

is reported in Figure 3.32(b) and it clearly shows the presence of one structure at 

 /� � 0.11. This time the peak in �( ) plot matches the right length scale value.  

 

  
  (a) (b) 

Figure 3.32 - (a) E(r) plot which show a dominant peak for  /� � 0.11 and (b) wavelet map for 

the same r/D value. 

  
  (a) (b) 

Figure 3.33 - (a) Velocity fluctuations and (b) isolines of �2 value superimposed to the wavelet map 

of cell 77 at the indicated scale. 
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The energetic area which is marked in Figure 3.32(b) with an arrow matches the 

presence of a swirling motion visible through the velocity fluctuations in Figure 

3.33(a) and the λ2 values depicted as isolines in Figure 3.33(b).  

Above the marked vortex, a small energetic area is also visible so another small 

structure should be present which, although it is not clearly visible by means the 

velocity fluctuations. Conversely, the λ2 isolines match with that small area and, 

moreover, in the lower-right side of Figure 3.33(b), the λ2-Criterion and the velocity 

fluctuations plot suggest the presence of another structure. Actually, the wavelet 

map also shows an energy concentration on the lower-right corner where the isolines 

are placed, but the energy level is lower than the energy of other structures. This 

fact finds an answer on the vorticity field map (see Figure 3.34) where the vorticity 

value of the arrow marked vortex is consistently higher than the value of the struc-

ture at the bottom right. 

 

Figure 3.34 - Vorticity field of cell 77. It is evident the matching of high vorticity area with wavelet 

maps. 

We can conclude that the code works properly, and it is capable to discern co-

herent structures and eddies, in a wider vision, at the proper length-scale for each 

structure. There are, of course some inaccuracies when the flow field becomes cha-

otic and fully turbulent, it nevertheless works well being able to spot small structure 

inside the chaotic motion as described for the transitional region of the jet flow. 

At this point, we adopt the code in order to perform the analysis over a more 

sophisticated flow field that is the turbulent boundary layer. We focus our attention 

on the differences between a boundary layer over a smooth plate and over a riblet 

surface with the purpose to reveal some drag reduction characteristics of riblets 

widely observed in various industrial and practical applications. 
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4 Turbulent boundary layer over smooth and riblet  
surfaces 

4.1 Boundary layer description 

We consider a fluid flowing over a flat plate at null angle of attack with velocity 

00. From the leading edge of the plate (� = 0), a thin layer arises better known as 

boundary layer, within which the viscous stress is no more negligible. Along the x-

axis going downstream, the boundary layer evolves and its thickness δ(�) increases. 

The boundary layer thickness δ(�) is generally defined as the value of d at which 

the mean velocity ⟨0(�, d)⟩ reaches the 99% of the free stream velocity 00. There 

are more reliable quantities in order to characterize the boundary layer such as the 

displacement thickness: 

 
�∗(�) = ∫ (1 − ⟨0⟩

00
)�d∞

0
 ( 4.1 ) 

and the momentum thickness: 

 
�(�) = ∫ ⟨0⟩

00
(1 − ⟨0⟩

00
)�d∞

0
 ( 4.2 ) 

The free stream pressure �0(�) is linked to the free stream velocity by the Ber-

noulli’s equation  

 �0(�) + 1
2 ρ002(�) = ����J��J ( 4.3 ) 

so, the pressure gradient results to be: 

 −��0�� = ρ00
�00��  ( 4.4 ) 

According to equation ( 4.4 ), accelerating flow (�00/�� > 0) corresponds to a 

negative pressure gradient, or favourable pressure gradient. By contrast, decelerat-

ing flow (�00/�� < 0) corresponds to a positive pressure gradient, or adverse pres-

sure gradient. The statement adverse is due to the tendency of separation of the 

boundary layer from the surface in a positive pressure gradient situation. 

In a zero-pressure gradient boundary layer, i.e. over a flat plate, there is laminar 

flow from the leading edge and when a critical value of the Reynolds number is 

reached it evolves through a transitional process and become fully turbulent (see 

Figure 4.1). 



4 Turbulent boundary layer over smooth and riblet  surfaces 

 

- 45 - 

 

 There are many formulations of the Reynolds number definition based on differ-

ent characteristic quantities of the boundary layer, i.e. the displacement and the 

momentum thickness, and, among them, one formulation is based on the stream-

wise direction x as follow: 

 vy� = 00��  ( 4.5 ) 

 

 

 

Figure 4.1 - Structure of boundary layer over flat plate at null angle of attack. 

The critical vy� which separates the laminar and transitional regime is approxi-

mately vy"]>} = 5 ⋅ 105. The critical value of vy� depends considerably on the level 

of disturbances in the free stream.  

As can be seen by Figure 4.2, the mean velocity profile for a turbulent boundary 

layer is fuller than the laminar counterpart and rises much more steeply from the 

wall than the laminar profile does. Since the wall shear stress is defined to be: 

 �� = X� (�⟨0⟩
�d )

�=0
 ( 4.6 ) 

it is clear the turbulent boundary layer has a higher value of wall shear stress than 

laminar boundary layer. 

The total shear stress τ(d) is the sum of the viscous shear stress τν and the Reyn-

olds stress τz$: 
 �(d) = �| + �z$ = X� (�⟨0⟩

�d ) − X⟨A¡⟩ ( 4.7 ) 

Close to the wall, the viscous shear stress dominates while the Reynolds stresses 

are negligible and become zero at the wall, since the boundary condition at the wall 

is ¢(�, J) = 0. Profiles of viscous and Reynolds shear stresses are reported in Figure 
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4.2. Therefore, it is evident that, close to the wall the dominant parameters are the 

cinematic viscosity ν and the wall shear stress τ�. Thus, in the near wall-region we 

define viscous scales for velocity and length scales. These are the friction velocity 

Aτ and the viscous length  ¤τ defined as follow 

 A¥ = √��X                    ¤¥ = �
A¥

 ( 4.8 ) 

   

             

Figure 4.2 - Mean velocity profiles and stresses of laminar and turbulent boundary layer. 

The distance from wall can be measured in viscous length, or wall units called 

d+ and, similarly, the velocity can be related to the friction velocity as 

 d+ = d
¤τ                          A+ = ⟨U⟩

uτ
 ( 4.9 ) 

Since the important role played by viscosity in the near-wall zone, in 1925 Prandtl 

postulated that, at high Reynolds number, in the region d/δ ≪ 1 close to the wall, 

an inner layer exist within the mean velocity profile is determined by the viscous 

scales and results independent of the outer quantities δ and 00.  
The mean velocity profile obeys different laws according to the wall distance. In 

the closest part to the wall, the velocity is described by the linear law 

 A+ = d+ ( 4.10 ) 

and the layer is known as viscous sublayer which extends from the wall to approx-

imately, d+ = 5. For d+ < 1000 the mean velocity profile follows a logarithmic law 

(due to von Kármán) and the layer is named log law region: 
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 A+ = 1
� ¤� d+ + § ( 4.11 ) 

where � = 0.41 is the von Kármán constant and § = 5.2. The region between the 

viscous sublayer and the log law region is a transition layer between the viscosity-

dominated and the turbulence-dominated regions and it is called buffer layer and 

it is placed approximately at 5 < d+ < 30. The Figure 4.3 shows the structure and 

the mean velocity profile of the inner layer. 

 

Figure 4.3 - Turbulent boundary layer’s structure  

4.2 Coherent motion in turbulent boundary layer 

Turbulent structures within wall flows are identified by flow visualization or 

other eduction methodologies, but they result to be difficult to define precisely. 

There are many structures some of which present a recurrent and characteristic 

coherent pattern. Kline and Robinson provided a categorization of quasi-coherent 

structures and some of them are: 

• Low-speed streaks in the region 0 < d+ < 10. 

• Ejection of low-speed fluid outward from the wall. 

• Sweeps of high-speed fluid toward the wall. 

• Large-scale motions (LSM) in the outer layer including bulges, superlayer 

and deep valleys of free-stream fluid. 

• Several proposed forms of vortical structures. 

In the near wall region for d+ < 40, numerous flow visualization experiments 

have revealed streaks. The streaks correspond to relatively slow-moving fluid while 

the fluid between the streaks is relatively fast. In Figure 4.4, two successive layers 
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of the flow over a flat plate in a water channel at d+ = 2.7 and d+ = 38 show the 

presence of streaks in the streamwise direction (�) which are revealed by the accu-

mulation of tiny hydrogen bubble generated periodically by means a fine wire placed 

across the flow in the spanwise direction (,) which acts as an electrode.  

With the increasing streamwise distance, the streak slowly moves upward until 

it is rapidly lifted away from the wall by the wall-normal fluctuations, a process 

known as ejection and then the streak exhibits a rapid oscillation followed by a 

breakdown into finer scale motions [6]. In order to guarantee continuity, regions of 

high-speed fluid move toward the wall and these events are called sweeps. The 

Figure 4.5 shows the evolution process of a streak and the A − ¡ plane, representing 

respectively the streamwise and wall-normal components of fluctuating velocities, 

in which ejections and sweeps are identified.  

    

 

 

Figure 4.4 - Successive layers of the flow near a flat plate in a water channel in a streamwise-

spanwise plane. The visible streaks are generated by the accumulation of tiny hydrogen bubbles 

released periodically from a thin platinum wire visible on the left (Van Dyke [2]). 

, 

� 
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  (a) (b) 

Figure 4.5 - (a) A streak in a turbulent boundary layer showing the ejection of low-speed near-wall 

fluid. (b) The A − ¡ sample plane showing the four quadrants and the quadrants corresponding to 

ejections and sweeps (Pope [6]). 

In the outer part of the boundary layer there is a thin turbulence front, called 

viscous superlayer, separating the turbulent fluid of the boundary layer from the 

free-stream fluid. There, one can see the large-scale motions (LSM) or turbulent 

bulges having length of order δ to 3δ. These large-scale eddies or bulges are inclined 

at a characteristic angle of 20-25° and they are separated by valleys of non-turbu-

lent fluid which penetrate the boundary layer. In Figure 4.6, a typical structure of 

large-scale motions is depicted remarking the characteristic features.  

 

 
(a) 

Figure 4.6(a) - For caption see next page 
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(b) 

Figure 4.6 - (a) Fog of tiny oil droplets introduced in a turbulent boundary layer with Reynolds 

number based on momentum thickness is about vyw = 4000 (Van Dyke [2]). (b) Large-scale features 

of turbulent boundary layer at vyw = 4000 (Pope [6]). Both images are retrieved from the experi-

ment of Falco in 1977. 

The large eddies and the superlayer also contain finer-scale structures that Falco 

called typical eddies (see Figure 4.7) which later were identified to be hairpin or 

horseshoe vortices inclined at 45°.  

 

 

Figure 4.7 - Oil fog illuminated by a sheet of laser light shows a portion of a turbulent boundary 

layer. The vortex-ring indicated with an arrow is an example of what Falco called “typical eddy”. 

The hairpin vortices spanwise dimensions scale with viscous length ¤τ while in 

the streamwise direction they can be considerably elongated with an overall length 

of order δ. Indeed, the part of filament moving away from the wall (known as head 

of the hairpin vortex) experiences higher mean flow velocity and therefore will be 

advected downstream faster than the lower part. Thus, the “legs” of the hairpin 

vortex will be stretched and, consequently, intensified. A sketch of a conceptual 

hairpin vortex is shown in Figure 4.8a. Moreover, many studies have reported that 

hairpin or horseshoe vortices occur in streamwise sequence with increasing size 
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downstream and that they often occur in packets as sketched in Figure 4.8b. Larger 

structures may be composed by packets of hairpin vortices. 

 

   
  (a) (b) 

Figure 4.8 - (a) Theodorsen’s depiction of a horseshoe vortex and (b) Conceptual scenario of growing 

hairpin packets (Ref. [9]). 

  



4 Turbulent boundary layer over smooth and riblet  surfaces 

 

- 52 - 

 

4.3 Drag Reduction technologies 

Since the beginning of the technological development, humans have been inspired 

by nature and animals in the attempt to transfer what the nature has refined during 

millions of years of evolution into his own technological application. These biologi-

cally inspired designs are called biomimetics which means mimicking biology or 

nature.  

Observation of sharks and, specifically, their ability to move so fast took someone 

to wonder which could be their secret. They can reach up to 15 − 20 r/�, so why 

they can swim so fast? Scientists focused their attention onto the particular mor-

phology of shark skin. They found that the shark skin is a non-smooth surface. On 

their skin surface, there are many micro-scales called dermal denticles which form 

a kind of riblet surface (see Figure 4.9). This riblet surface is able to reduce the 

shear stress which leads to a faster motion of the water over shark skin. Skin friction 

accounts for a great portion of the total drag. Friction, or viscous friction, is caused 

by the interaction between two layers of the same fluid flowing at different speed 

generating the shear layer, or between the fluid flowing over a surface and the 

surface itself. Indeed, the viscous drag is a measure the momentum transfer between 

the body moving within a flow field and the fluid. 

Riblets is one of many drag reduction technologies which is studied and adopted 

for industrial purposes or marine navigation and so more. 

Figure 4.10 shows different types of marine drag reduction techniques some of 

which can be implemented for non-marine purpose too. Three main types of drag 

reduction techniques exist: active, passive and composite drag reduction [10] which 

are rapidly presented below. 

 

 

Figure 4.9 - Detail of fast sharks’ skin (Ref. [10]). 
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Figure 4.10 - Different drag reduction technologies (Ref. [10]) 

Bionic jet surface drag reduction 

When sharks swim, they inhale water through their half-opened mouth, and it is 

successively discharged flowing through the gills for gas exchange. The water jet 

discharged by gills helps to increase the viscous sublayer thickness resulting in a 

decreased skin friction. 

 

Heating wall drag reduction 

In heated wall flows, the turbulent kinetic energy decreases in the buffer layer, 

resulting in a decreased Reynolds shear stresses and, hence, in a less turbulent 

production. Moreover, the lower fluid viscosity near the wall contributes to skin 

friction decrease. The overall contribution of Reynolds shear stress and skin friction 

decrease results in drag reduction. 

 

Wall vibration drag reduction 

The reduction of turbulence intensity caused by disruption of the interaction 

between the quasi-streamwise vortices and the low velocity streaks results in drag 

reduction and can be achieved through wall vibrations. 

 

Air bubble drag reduction 

More viscous fluids have higher drag than less viscous fluid. Thus, in water flows 

drag reduction can be achieved injecting a thin layer of air between the water and 

the body surface. This thin layer can be composed by small air bubbles or air film. 

A video documentation of swimming penguins shows that penguins exhale air before 

emerging at high speed from the sea and that exhaled air sometimes agglomerates 
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in rings surrounding the body of the penguins and remain there for several seconds 

[11]. 

Air bubble or film drag reduction technique was adopted in underwater missiles 

and torpedo.  

 

Compliant wall drag reduction 

 The first experimental studies were carried by Kramer, which argued the possi-

bility that compliant wall, such as dolphins’ skin, can delays transition from laminar 

to turbulent regime stabilizing the boundary layer. Coupling between the flow dy-

namics and wall dynamics have an effect on drag reduction. However, when the 

compliant surface hardens, it will lose its drag reduction performance. 

 

Hydrophobic coating 

One of the most studied hydrophobic surfaces is the lotus leaf which presents a 

super-hydrophobic behaviour. Hydrophobic and super-hydrophobic surfaces lead to 

a slip condition in the near wall area, instead of the typical no-slip condition. This 

results on a reduced drag. Moreover, this characteristic contributes to keep the 

surface clean and free from any kind of dirt particles.  

 

Composite drag reduction 

This kind of drag reduction technique employs two different passive or active 

techniques simultaneously. It’s been observed that the results of combined methods, 

such as polymer additives and riblets, work better than the algebraic sum of both 

effects [11]. 

 

4.4 Drag reduction by riblet surfaces 

Turbulent flows over a smooth surface, like a flat plate, exhibit strong velocity 

deviation from the mean velocity direction. The strong exchange of momentum in 

a turbulent boundary layer is due to characteristics motions carrying high-speed 

fluid from higher layer to the near-wall zone (sweeps) and low-speed fluid away 

from the surface (ejection) into high speed regions of the flow. These two types of 

local events require fluid motion in the spanwise direction. Thus, hampering this 

spanwise motion the momentum exchange will be reduced, hence, the wall shear 

stress decreases. Riblets aligned with flow streamwise direction acts as barriers for 

z-direction velocity w.  
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Riblets with height of about d+ � 3.5 are included in the viscous sublayer, so the 

flow around the riblets can be analysed with the viscous theory, since fluid within 

this layer act as a viscous fluid. Under viscous condition, it results that the ribbed 

surface appears as a smooth surface located at a virtual origin (see Figure 4.11). 

However, the virtual origin depends on the flow direction. Indeed, for a fluid flowing 

streamwise, so parallel to riblets and grooves the virtual origin ℎQ turns out to be 

lower than the virtual origin ℎª for a crossflow motion. This difference in height 

for virtual origins Δℎ = ℎQ − ℎª plays an important role, because an increased 

Δℎ turns out in higher resistance if the flow placed at a fixed d+ moves laterally 

than if it moves in the longitudinal direction. Thus, the crossflow is hampered by 

the riblets and momentum transfer and shear stress decrease.  

 

 

Figure 4.11 - Longitudinal and crossflow on riblets surface with different virtual origin height (Ref. 

[11]). 

Another effect which contributes to drag reduction is due to the reduced area 

exposed to high velocity vortices. By keeping the vortices above the riblet tips the 

crossflow velocity fluctuation interact only with a reduced part of the entire surface 

[12], as showed in Figure 4.12, for two value of �, where s is defined to be the 

distance between two successive tips. The numerical results obtained by Choi et al. 

[12] are reported in Figure 4.13 which shows how the higher value of wall shear 

stress are obtained mainly over the riblet tips while the grooves exhibit relatively 

lower values. 
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Figure 4.12 - Schematic sketch of drag increase and reduction by riblets due to exposed area. (a) 

�+ � 40 shows an increase of drag due to extensive area exposed to downwash motion; (b) �+ � 20 

shows a drag reduction due to limited area affected by downwash motion (Ref. [12]). 

 

Figure 4.13 - Instantaneous flows over the riblets with « = 60°; (a) contours of the wall shear stress 

rate on the riblet surfaces; (b) crossflow velocity vectors ¡ and � and contours of the streamwise 

vorticity (Ref. [12]). 

In order to evaluate drag reduction performances of different shapes of riblets 

with different spacing value, all length dimensions are scaled by the viscous length 

¤τ = ν/Aτ where ν is the kinematic viscosity and Aτ is the friction velocity. The 

resulting quantities have the structure of a Reynolds number as can be seen from 

equation ( 4.12 ). 

 �+ = �A¥�                     ℎ+ = ℎA¥�  ( 4.12 ) 
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For an optimization of shear stress reduction, more than one geometry of riblets 

was tested. To quantify the real performance of riblets, a comparison with a smooth 

reference surface is made. Thus, Δτ is the difference between shear stress τ on the 

ribbed surface and τ0 on the smooth reference surface (Δτ = τ − τ0). So, negative 

values of Δτ/τ0 turns out into drag reduction while positive values refer to an 

increase of drag. Some results obtained by Bechert et al [11] are reported in Figure 

4.14. 

The optimum value of drag reduction is obtained for the very thin blade-like ribs, 

which presents the maximum height difference Δℎ, as suggested by theory. The 

achieved shear stress reduction is around 9.9%. Bechert, through this oil channel’s 

experiment, has showed that the optimum height of thin blade riblets was around 

ℎ = 0.5�. Of course, it results difficult to manufacture this type of riblets and, 

moreover, in technical applications, like aircraft, these ribs are too weak to face dirt 

and particles impacts. 

 

 

Figure 4.14 - Drag reduction performance of various riblet geometries (Ref. [11]). 

Other riblet configurations were examined by Bechert et al. [11] like “brother and 

sister riblets”, where between two ribs one small rib is inserted (see Figure 4.15). 

This geometry came out by the observation of two ribs being way too far from each 

other, i.e. � is too high, the drag reduction performances drastically fall down, prob-

ably because of increased sloshing of the fluid in the grooves which, in this way, 

enhances momentum transfer and, as a consequence, increased wall shear stress 

occurs. Thus, they though to place another small rib in the grooves. This riblet 

configuration took drag reduction performance results comparable with blade ribs. 
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Figure 4.15 - “Brother and sister riblets” configuration (Ref. [11]). 

Observation of shark skin and ideas similar to the “brother and sister riblets” led 

Bechert et al to investigate two more configurations: the 3D riblets and the shark 

skin riblets replica. 

The former consisted in blade riblets of finite length as displayed in Figure 4.16. 

The various experiments performed with different riblet heights showed a wall shear 

stress reduction of about 7.3%, slightly below the 9.9% of the continuous blade 

riblets.  

The shark skin replica was tested to discover if other mechanism plays a role in 

the drag reduction process. They reproduced the single skin element of sharks, 

which was placed on top of a spring to simulate the non-rigid body of the shark 

(see Figure 4.17). The wall shear stress reduction was found to be around 3% when 

scales are aligned each other. Of course, there can be many unknown factors which 

can help shear stress reduction for sharks, and moreover, usually the water flow 

can be not perfect aligned with the shark skin scales.   

 

 

Figure 4.16 - Test surface with three-dimensional riblets (Ref. [11]). 
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Figure 4.17 - Schematic of the artificial shark scale replica with the suspension mechanism (Ref. 

[11]). 

Since the dependence of drag reduction performances, besides the spacing �, by 

the geometry of riblets, Mayoral and Jimenez [13] suggested a new geometric pa-

rameter which could capture at the same time the influence of both the spacing 

and shape of ribs on drag reduction performances. The better results were obtained 

considering the cross section of the groove ­® defining the parameter 

 ¤®+ = √­®+ ( 4.13 ) 

As Figure 4.18 shows, the optimum values of �+ and ℎ+ have variations of the 

order of 40%, while the optimum ¤®+ varies by approximately 10%. Moreover, it can 

be seen a better collapse of the data over a limited area for ¤®+ with respect to the 

data for �+ where drag reduction is defined �v = −Δτ/τ0. 

 

Figure 4.18 - Drag reduction curves od diverse riblets, reduced to a common viscous slope r. Drag 

Reduction �v (a) as function of �+ and (b) as function of  ¤®+ (Ref. [13]). 

The drag reduction plots appear to be all similar, so a typical curve of drag 

reduction as function of �+  is depicted in Figure 4.19, in which different drag 
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regimes are discernible according to the �+ values. The first regime is known as 

viscous regime which extends from �+ = 0 to approximately �+ � 10, and within it, 

the contributions of non-linear terms to the flow in the near-wall zone inside the 

riblet’s grooves are negligible and drag reduction �v is proportional to �+. The 

slope can be quantified as:   

 r° = − c(Δ�/�0)c�+ ∣
°+=0

  ( 4.14 ) 

Then, once the optimum value �´V}+  is reached, the viscous regime breakdown 

occurs, and the reduction become a drag increase instead. 

 

Figure 4.19 - Drag reduction regimes observed over triangular riblets with 60° tip angle, as a function 

of �+ (Ref. [13]). 

The analytic estimation of the drag reduction by riblet surfaces can be made 

looking at many studies which pointed out that when drag reduction occurs the 

mean velocity profile rises with respect to mean velocity profile of boundary layer 

over a smooth surface due to an increased thickness of the viscous sublayer which 

leads to an upward displacement of the logarithmic region, as suggested by Choi 

[14] (see Figure 4.20). 
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Figure 4.20 - Semi-logarithmic plot of mean velocity profiles over smooth and riblet surfaces (Ref. 

[14]). 

The log law at the top of the turbulent boundary layer can be expressed as: 

 0µ+ = 1
� ¤� �+ + §  ( 4.15 ) 

where 0δ+ can be written as 

 0µ+ = ��
��

= ( 2
��

)1/2  ( 4.16 ) 

with �·  being the friction coefficient, 0δ the velocity at the edge of boundary layer, 

� the von Kármán constant and B a constant. The effect of a given riblet surface 

would be to change the B value which can be estimated through the relation  

 Δ� = ��Δℎ�  ( 4.17 ) 

because of the linearity of the viscous regime, so considering Δ§ proportional to 

the protrusion height Δℎ+ with a universal coefficient µ0. So, the drag reduction 

estimation can be obtained by the equation 

 Δ��
��0 =Δ�

�0 = Δ§
�2��0 −1/2 + !2�"−1  ( 4.18 ) 

 

To conclude the overview, sinusoidal riblets are rapidly presented. We previously 

mentioned the enhanced effect of composite drag reduction technique. So, the com-

bination of longitudinal riblets and wall-oscillation technique can have great results 

in terms of drag reduction performances, but it could struggle to find a practical 

application due to technological complication. Therefore, the oscillation of the flow 
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can be forced by sinusoids of riblets which mimic the oscillation behaviour with a 

specific path given by 

 , = � �^�(2�
� �)  ( 4.19 ) 

where time J has been replaced by the streamwise coordinate �, � represent the 

amplitude, λ the wavelength and , the spanwise coordinate [15]. 

 

Figure 4.21 - Comparison between straight and sinusoidal riblets from a top view (from Ref. [16]). 

 

4.5 Technological applications of riblets 

In previous years, both Airbus and Boeing had carried out riblet film tests on 

full-size aircraft. Airbus started with an A320 aircraft covered with riblet film and 

obtained the expected results. Later, a long range A340-300 partly covered with 

3M-type (see Figure 4.22) riblets was flown for several years in commercial service 

by Cathay Pacific Airways. Nowadays, riblets are not implemented in long range 

aircraft for few reasons concerning maintenance operations and riblets degradation. 

Bechert and Hage [17] considered a hypothetical application of riblet film on a long 

range A340-300. Considering that the contribution of skin friction to the total drag 

of this aircraft is about 50%, the implementation of riblets with trapezoidal grooves, 

taking into account possible imperfections, leads to a skin friction reduction of 

about 6%. Clearly, the entire surface of the aircraft cannot be covered by riblets, 

for example windows and leading edges of wing where riblets can interfere with de-

icing system. So, only 70% of the surface of the aircraft can be coated with riblet 

film. The resulting reduction of aircraft total drag can probably achieve 2% which 

turn out in a 2% reduction of fuel consumption with a related 1.6 tons additional 

payload which substitute the saved fuel. Clearly, this leads to a profit increase for 

airline companies.  
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Figure 4.22 - Long range commercial aircraft A340-300 (Cathay Pacific Airways) partly covered 

with riblet film. The film was not applied under the wing and on the lower half of the fuselage (Ref. 

[17]). 

Another interesting application of riblets is within gas pipelines. The pressure 

loss in pipelines is caused by wall friction alone. However, it would be difficult to 

apply plastic riblet film inside the pipe. Thus, Marvin Weiss had the idea that 

longitudinal scratching inside on the inside part of the pipeline tube can in some 

way like non-efficient riblets. These scratches are produces by means steel wire 

brushes which are moved along the pipeline which simultaneously perform cleaning 

of the surface from various roughness caused by corrosion and welding connections. 

This combined effect was tested on a ten miles piece of operating gas pipeline con-

firming a 10% of pressure loss reduction [11]. 

Other applications of riblets are found in sports. The most famous application of 

riblet surface in sport is sharkskin swimming suit. The sharkskin suit became pop-

ular in Olympics Games and swimming competition, when in 2010 they were 

banned from competitions as significantly improving performance.    
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5 Wavelet analysis of turbulent boundary layer 

5.1 Experimental set-up and PIV measurements 

The experimental activity was carried out within the laboratory of aerodynamics 

of Politecnico di Torino by means an open circuit wind tunnel depicted in Figure 

5.2. The test section has a longitudinal length of 4 r and a cross section of 

0.7�0.5 r . At the test section’s centre there is a square opening where the 

25�25�1 �r examined plates were placed. In order to force the transition of the 

flow from laminar to turbulent and enhance the boundary layer thickness some 

strips were added upstream the plate. 

Above the test section the laser is placed (see Figure 5.3) which through a system 

of lenses generates a thin laser sheet in the streamwise and wall-normal plane, i.e. 

the � − d plane. The laser has a wavelength of λ =  532 �r and it flashes at 15 +, 

with a maximum energy of 200 r¸ . Due to the low flashing frequency this Low 

Speed Laser is not suitable for time history acquisition.  

The measurements of turbulent boundary layer were carried out for a smooth 

plate and for three types of riblet surfaces. The geometry scheme of the three riblets 

types are sketched Figure 5.1 and the related geometry data are reported within 

Table 5.1. Data concerning PIV images are reported within Table 5.2, Table 5.3 

and Table 5.4 for each Reynolds number examined. 

 

Figure 5.1 - Schematic of riblets’ geometry; (a) Longitudinal riblets (R_Long); (b) Sinusoidal 1 

(R_S1); (c) Sinusoidal 2 (R_S2). 

 
 ¹ (º�) » (º�) ¼�½¾¿ÀÁ�Â (��) ÃÄÅÂ¾ÂÆÇ»À (��) 

R Long 300 210 - - 
R S1 300 210 0.15 19.2 
R S2 300 210 0.6 19.2 

Table 5.1 - Geometry data of riblet surfaces. 
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ÈÉÊ = ��Ë� Ì¿�Â¾/�� 
Í° ÎÏ ¹Ä�½¾Â¹ ½ÂÐ ¿�ÄÇÂ 

Ñ¿Â¾� ¹¿ÒÂ 
��|�Ó 
(��) 

Smooth 80 833x893 4 ≤ .� ≤ 820 
4 ≤ /� ≤ 765 0.025 

R Long 80 828x893 4 ≤ .� ≤ 820 
4 ≤ /� ≤ 760 0.025 

R S1 92.4 468x632 4 ≤ .� ≤ 1000 
7 ≤ /� ≤ 750 0.0433 

R S2 80 805x893 4 ≤ .� ≤ 820 
4 ≤ /� ≤ 740 0.025 

Table 5.2 - PIV images data for smooth plate and riblets at vyw = 2790. All wall variables indicated 

with ⋅+ are scaled by viscous length ¤¥ = 27.3Yr related to the smooth plate. 

 

ÈÉÊ = �Ë�� Ì¿�Â¾/�� 
Í° ÎÏ ¹Ä�½¾Â¹ ½ÂÐ ¿�ÄÇÂ 

Ñ¿Â¾� ¹¿ÒÂ 
��|�Ó 
(��) 

Smooth 80 830x893 4 ≤ .� ≤ 1040 
4 ≤ /� ≤ 970 0.025 

R Long 80 820x893 4 ≤ .� ≤ 1040 
4 ≤ /� ≤ 960 0.025 

R S1 92.4 468x632 4 ≤ .� ≤ 1270 
8 ≤ /� ≤ 950 0.0433 

R S2 80 815x893 4 ≤ .� ≤ 1040 
4 ≤ /� ≤ 950 0.025 

Table 5.3 - PIV images data for smooth plate and riblets at vyw = 3900. All wall variables indicated 

with ⋅+ are scaled by viscous length ¤¥ = 21.5Yr related to the smooth plate. 

 

ÈÉÊ = ��Ë� Ì¿�Â¾/�� 
Í° ÎÏ ¹Ä�½¾Â¹ ½ÂÐ ¿�ÄÇÂ 

Ñ¿Â¾� ¹¿ÒÂ 
��|�Ó 
(��) 

Smooth 80 831x893 6 ≤ .� ≤ 1300 
6 ≤ /� ≤ 1200 0.025 

R Long 80 823x893 6 ≤ .� ≤ 1300 
6 ≤ /� ≤ 1200 0.025 

R S1 92.4 466x632 6 ≤ .� ≤ 1600 
10 ≤ /� ≤ 1170 0.0433 

R S2 77 803x893 6 ≤ .� ≤ 1350 
6 ≤ /� ≤ 1210 0.026 

Table 5.4 - - PIV images data for smooth plate and riblets at vyw = 4895. All wall variables indi-

cated with ⋅+ are scaled by viscous length ¤¥ = 17.3Yr related to the smooth plate. 

The results presented in Section 5.2 and 5.3 for all four boundary layer measure-

ments are related to the free-stream velocity 00  =  13.4 r/� leading to a Reynolds 

number vyw  =  2790 computed through the momentum thickness θ.  
The viscous length ¤τ is different for each plate, but to make possible comparison 

between them, the length quantities are all scaled by ¤τ = 27.3µr corresponding to 

the viscous length of the smooth plate. The graphic �( ) for the boundary layer is 
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not evaluated because the extremely chaotic motion makes not possible the identi-

fication of structures from it.  

For the statistical analysis all three Reynolds numbers will be examined. 

 

 
 

 

 

Figure 5.2 -(a) Schematic of the adopted wind tunnel; (up) lateral view and (down) top view; (b) 

photo of the wind tunnel. 

 

 

Figure 5.3 - Laser beam pattern entering into the test section (Ref. [18]).  

(a) 

(b) 

Test Section 



5 Wavelet analysis of turbulent boundary layer 

 

- 67 - 

 

5.2 Smooth plate 

The turbulent boundary layer results to be very complex due to its remarked 

multiscale nature and the extremely chaotic motion.  

By means the viscous length, the inner variable A+, d+ and �+ can be defined as 

previously described in Section 4.1. 

The mean velocity profile for �+ � 360  with viscous and outer variables is de-

picted in Figure 5.4. The experimental data lie over the linear law curve (A+ = d+) 
with the first point located at about d+ = 3.5, so within the viscous sublayer and 

then proceed through the buffer layer and the log law region with good approxima-

tion. The sampling domain stay within the boundary layer without going in the 

free-stream.  

 

 
(a) 

 
(b) 

Figure 5.4 - Mean velocity profile of boundary layer at �+ � 360 expressed by means (a) inner 

variables and (b) outer variables where �(�) represents the boundary layer thickness for a fixed �. 
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Figure 5.5 - Galilean flow field of turbulent boundary layer over a flat plate at null angle of attack 

with convective velocity 0� = 0.700. Three structures labelled as A, B and C are visible.  

The Galilean vector field of the first snapshot examined is reported in Figure 5.5, 

where the advective velocity Ua is equal to 70% of the free-stream velocity 00. 
Inside the chaotic tangle of the turbulent motion two vortices, indicated as A and 

B, are well visible. 

We performed the wavelet analysis for the entire flow field and the wavelet maps 

at scales which reveal the presence of a coherent structure are reported in Figure 

5.6. We can spot the two structures A and B, but C is not visible at this scale 

neither at lower scale due to its position d+ < 100 where the boundary layer is 

extremely chaotic and it is merged with some other “structures”. We, also, notice, 

just above the vortex B, a small area of energy. Indeed, if we change the convective 

velocity Ua from 70% to 95% of the free-stream velocity, the structure D appears 

in the Galilean vector field as showed by Figure 5.7. Indeed, if one takes into ac-

count more than one value of the convective velocity ranging, for example, from 

60% to 100% of the free-stream velocity 00, for each value of Ua different vortices 

can show up just because they move within the flow field with velocity Ua. 

A 

B 

C 
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These vortices seem to be what Adrian [9] and others have described as hairpin 

vortices, and specifically, what we see corresponds to the heads of hairpins. 

 

 

 

Figure 5.6 - Wavelet maps for (a)  + = 112 and (b)  + = 122 show three different vortices while in 

the lower part of the images there are some energy strips. 

B 

D 

A 

(a) 

(b
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Figure 5.7 - Galilean vector field with an increased convective velocity to 0� = 0.9500 shows one 

more coherent structure. 

As previously mentioned, in the bottom of the wavelet maps some energy strip 

are visible and decreasing the resolution, we obtain the map reported in Figure 5.8. 

It is too difficult to say what type of structure they are. Perhaps, they can be 

streaks or also the legs of hairpin vortices. 

 

Figure 5.8 - Wavelet map at low scales which shows the presence of energy concentration in the 

lower side of the map. 

D 
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5.3 Riblet surfaces 

We present here some wavelet maps for the three types of riblets. These results 

are, obviously, very similar to smooth plate results. Distinction between boundary 

layers can be highlighted through a statistical analysis of data in the attempt to 

catch a different behaviour of smooth and riblet surfaces. Many studies have been 

made analysing the turbulent statistics of the velocity field. In Section 5.4 we try 

to evaluate statistics of the wavelet-transformed flow field.  

 

Longitudinal riblets 

Many snapshots were evaluated, and some significative results are provided. The 

flow field displayed by the Galilean transform reported in Figure 5.9 shows a clear 

vortex circled and labelled as A considering an advection velocity 0� equal to 70% 

of the free-stream 00. This vortex is correctly identified by the wavelet analysis. 

Indeed, for a resolution of  + � 145 the energy concentration corresponds exactly 

with the coherent structure of the A zone (see Figure 5.10). We notice another 

energy concentration just beneath the clear vortex. Figure 5.9 doesn’t provide a 

clear view of what is there, but perhaps, another structure is present. The super-

imposed velocity vector field over the wavelet map shows the almost perfect match-

ing and the correct detection of the coherent structure which probably corresponds 

to a hairpin vortex’s head, while the area below it is not identified.  
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Figure 5.9 - Galilean transform of boundary layer velocity field over longitudinal riblet surface with 

convective velocity 0� = 0.700.  

 

 

Figure 5.10 - Wavelet map and vortex visualization. 

A 

A 
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Sinusoidal Riblets 1 

The flow field over the first type of sinusoidal riblet surface is reported in Figure 

5.11. Two vortices labelled as A and B are clearly visible, while a third vortex is 

barely visible in the zone C. The wavelet map reported in Figure 5.12 enlightens 

all three coherent structures for slightly different scales. These, as said before, are 

probably hairpin vortex’s heads, but it depends on where exactly the x-y laser plane 

has cut the horseshoe. Indeed, the C structure is not well defined, maybe because 

it can be part of the hairpin but not exactly the head. The sequence of A, B and C 

structures lead to think to a packet of hairpins. 

  

 

Figure 5.11 - Galilean transform of boundary layer velocity field over sinusoidal type 1 riblet surface 

with convective velocity 0� = 0.8500. 

A 
B 

C 
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Figure 5.12 - Wavelet map and vortex visualization. 

 

 

Sinusoidal Riblets 2 

Figure 5.13 and Figure 5.14 show the boundary layer over the second type of 

sinusoidal riblets which have same wavelength, but a greater amplitude of the si-

nusoid than R S1 (see Table 5.1). As previously observed many structures appear. 

There are many energy contributions which are not well linked with observable 

vortices, and probably, they are related to areas which present anyway a space-

correlation for the cross-energy density, so for the vorticity intensity of coherent 

structures.  

A B 

C 
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Figure 5.13 - Galilean transform of boundary layer velocity field over sinusoidal type 2 riblet surface 

with convective velocity 0� = 0.8 00. 

 

 

Figure 5.14 - Wavelet map and vortex visualization. 

A 

C 

B 

A 

B 

C 
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5.4 Statistical analysis 

The performed statistical analysis is based on the evaluation of the mean energy 

at each d+ and at each scale or resolution value. In order to allow a comparison 

between the four different boundary layer flow fields the quantity �(�1, �2)] which 

is defined in eq. ( 2.9 ), need to be reshaped. The introduced quantity is called as 

��,}(�1, �2)] and represents the numerator of the eq. ( 2.9 ) where J is the instan-

taneous PIV snapshot and   the scale 

 ��,}(�1, �2)] = [(�1,2] �1,2]∗ )(�2,1] �2,1]∗ )]1/2 ( 5.1 ) 

The difference between the two quantities lies in the normalization of �(�1, �2)] 
which, as previously mentioned, becomes the 2D counterpart of LIM. 

With eq. ( 5.1 ), comparison between different fields is possible, since we excluded 

the denominator of eq. ( 2.9 ) which is different for each wavelet map at each scale. 

The following operation is performed for each d+,   and J values: 

 12,4!/"5 = 1
6 7 12,4!., /"58.

9

�
 ( 5.2 ) 

where L is the total streamwise distance. The eq. ( 5.2 ) represents the mean value 

of the cross-energy density at each d+ at the scale   and snapshot J. The value of J 
represents a temporal instant, but due to a lack of time-correlation between two 

successive snapshots, J accounts for the snapshots’ number which run from 1 to 

2000. So, since we have discrete data the eq. ( 5.2 ) is expressed for a discrete domain 

as: 

 12,4!/"5 = 1
:;

< 12,4!=, /"5
>?

@AB
 ( 5.3 ) 

where ×� is the total number of spatial samples along the streamwise direction �. 

At this point, we performed the time-average of eq. ( 5.3 ) 

 12!/"5 = 1
C 7 12,4!/"58D

E

�
= 8=F�GHDH = 1

:4
< 12,I!/"5
>J

IAB
 ( 5.4 ) 

with ×} the total number of PIV snapshots (×}  =  2000).  
The eq. ( 5.3 ) and ( 5.4 ) are applied to wavelet maps of smooth and riblet plates. 

Results for some scales  + are showed in Figure 5.15, Figure 5.16 and Figure 5.17 

for the three Reynolds number vyθ = 2790, vyθ = 3900 and vyθ = 4895 corre-

sponding to 00 = 13.4r/�, 00 = 18.2r/� and 00 = 22.7r/�, respectively. 
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The quantity �]>· is defined as follow with notation ⟨⋅⟩ representing the spatial 

average over the whole map for the larger scale and it refers to the smooth plate.  

 �]>· = 1
×}

∑[⟨�1,2] �1,2]∗ ⟩⟨�2,1] �2,1]∗ ⟩]?1/2UØ

?=1
 ( 5.5 ) 
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Figure 5.15 - Statistics of energy distribution for smooth and riblet surfaces at vyw = 2790;  +is 

obtained through ¤¥ = 27.3Yr. 

(d) 

(e) 

(f) 
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Figure 5.16 - Statistics of energy distribution for smooth and riblet surfaces at vyw = 3900;  +is 

obtained through ¤¥ = 21.5 Yr. 

(d) 

(e) 

(f) 
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Figure 5.17 - Statistics of energy distribution for smooth and riblet surfaces at vyw = 4895;  +is 

obtained through ¤¥ = 17.3Yr. 

(d) 

(e) 

(f) 
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For all Reynolds numbers, the larger scales show a peak value for 50 < d+ < 100 

approximately, which slowly moves toward lower d+ as the scale  + decreases.  

As said before, the ��(d+)] is the mean value of the cross-energy density and it 

is somehow linked to the spanwise vorticity as well as �(�1, �2)] which enlighten 

the high vorticity areas at different scales related to coherent structures. Therefore, 

the curves should indicate the cross-energy density level of “coherent structures” 

which also incorporate sweeps, ejections or hairpin legs which probably cause the 

distribution of energy visible for about d+ < 150, despite we have not a reliable 

confirmation.  

The lowest Reynolds number vyθ = 2790 (see Figure 5.15) shows how the curves 

related to the sinusoidal type 1 and 2 riblets (R S1 and R S2, respectively) have a 

lower peak than the smooth plate for larger scales while the longitudinal riblets (R 

Long) shows the same shape but higher values within the logarithmic region. In the 

near-wall region both R Long and R S1 riblets show a greater amount of energy 

than the smooth plate.  

This seems like the longitudinal riblets for larger scales within the logarithmic 

region presents a greater value of turbulent activity with respect to the smooth 

plate, while both sinusoidal riblets shows a lower activity. This, probably, turns in 

good drag reduction performances for R S1 and R S2, while for R Long a drag 

increase is obtained with respect to the smooth plate performances at this Reynolds 

number.   

At Reynolds number vyθ = 3900 (see Figure 5.16), the energy content of longi-

tudinal and sinusoidal type 2 riblets is nearly always lower than the smooth plate 

values, while sinusoidal type 1 riblets shows values greater than the smooth plate 

curves only for d+ < 25.  

Lastly, at vyθ = 4895 (see Figure 5.17), approximately, the same behaviour for 

all the surfaces is observed with respect to vyθ = 3900. 

The proposed results need a more accurate investigation to better understand the 

behaviour of coherent structures within the boundary layer. With present data a 

deeper investigation is almost not feasible.  

However, according to present outcomes, we can hypothesize that all riblets have 

good drag reduction performances almost for all three Reynolds numbers examined, 

except an increased activity observed for R Long at vyθ = 2790, but the sinusoidal 

riblets type 2 seems to play a better role in drag reduction performances with re-

spect to the other two riblet surfaces. The different sinusoid amplitude, specifically 

greater than the amplitude of R S1, can be the key for the marked difference in 



5 Wavelet analysis of turbulent boundary layer 

 

- 85 - 

 

behaviour. Probably, the enhanced amplitude acts like an oscillating plate with an 

increased oscillating amplitude. The R S2 plate can break the vortical structures 

better than others do. Thus, the turbulent activity is decreased. 

Results at larger scales need a critical evaluation. Indeed, the amount of energy 

represented is due to the whole area interested by coherent structures, which in the 

wavelet map would not appear as single structures at larger scales. In fact, the 

energy of single structures can be distributed between them, covering the entire 

area interested by coherent structures without distinction between them, because 

of the stretching of the wavelet reaches values which englobe contribution of all 

structures. So, the peak visible at larger scales for d+ � 100 indicates where most 

of the structures are placed and the turbulent activity intensity.  

 The great out of scale peak which characterizes the R Long and R S1 for small 

scales well visible for vyθ = 2790 can find an explanation in the following reason. 

At very small scales, the procedure of wavelet analysis enlightens the very tiny 

high-vorticity areas which in the near-wall region are hugely enhanced for both 

plates, while for smooth and RS2 plate this behaviour is not encountered. We show 

in Figure 5.19 the wavelet maps of one snapshot for each surface, and it is clear the 

presence of high-energy areas along the near-wall region for R Long and R S1, while 

for smooth and R S2 plates the energy content is lower and not only concentrated 

near the wall. Thus, R Long and R S1 enhance the spanwise vorticity as confirmed 

by the Figure 5.18, where the root mean square value of spanwise vorticity is re-

ported, showing a significative peak for R Long and R S1.  

 

 

Figure 5.18 - Root mean square of spanwise vorticity at vyw = 2790. 
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Figure 5.19 - Wall region focus of wavelet maps at low scales of (a) smooth plate and (b) longitudinal, 

(c) sinusoidal 1 and (d) sinusoidal 2 riblets at vyw = 2790.  
 

Lastly, the convergence analysis of statistics is performed. In order to evaluate 

convergence characteristics for different values of  + and d+ the following quantity 

is defined: 

 ϵ = �N − �U�U
∗ 100  

where �U  is the mean value over the whole set of samples and �N is the mean 

value at the nth iteration over the � samples both concerning quantity ��(d+)] 
for a set of × = 2000 images for each plate. Results are reported in Figure 5.20, 

Figure 5.21 and Figure 5.22. For low-scales and high d+ values we notice a not very 

good convergence behaviour, while for higher  + and lower d+ the value of ϵ is 
within 2%. 
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Figure 5.20 - Convergence curves for different scales  + and wall-normal coordinate d+ at vyw =
2790. 

(e) 
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Figure 5.21 - Convergence curves for different scales  + and wall-normal coordinate d+ at vyw =
3900. 
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Figure 5.22 - Convergence curves for different scales  + and wall-normal coordinate d+ at vyw =
4895. 
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6 Conclusion 

The analysis process adopted during the development of the present study appear 

to work properly and give a good description of the flow field examined for the 

coherent structure identification. The coherent structures result, generally, cor-

rectly educed and associated to the corresponding length-scale. There are also some 

inaccuracies concerning highlighted areas which do not shows the presence of vor-

tices, despite they have a cross-energy correlation.  

Within the round jet flow field, the method correctly identities coherent struc-

tures relative to the planar section of azimuthal structures, i.e. vortex-rings, while 

going downstream through the transition region things become more complicated 

due to the enhanced chaotic motion of the flow and some vortices are identified, 

anyway. The identified structures show values of length-scale coherent with those 

found in literature. Furthermore, the wavelet maps had been compared with the 

λ2-Criterion, showing a good matching between the two methods.     

In fully turbulent flow field, like turbulent boundary layer, the method is well 

stressed, although it shows good results too. The educed coherent structures consist, 

in all likelihood, to section of hairpin vortices’ heads as showed through the Galilean 

transform of the velocity field which clearly reveals the vortices, while we have no 

confirmation about sweeps, ejections, and widely, streamwise structures which 

seems to be effectively retrieved, but there isn’t the absolute confidence due to the 

impossibility to perform a comparison. 

Lastly, a statistical analysis of wavelet maps for the boundary layer of smooth 

and riblet surfaces was conducted on the attempt to evaluate possible differences 

between them. These results need to be treated carefully due to the convergence 

performances, although they seem to confirm riblets performances. The sinusoidal 

riblets appear to have an increased drag reduction performance than straight riblets. 

Indeed, the “vortical” activity appear to be reduced with respect to smooth and 

longitudinal riblet surfaces. The sinusoid probably modifies the properties of coher-

ent structures within the boundary layer mixing the drag reduction effects of riblets 

with those related to oscillating plates. Moreover, the sinusoidal riblets with the 

higher amplitude value appear to work better than others, while sinusoidal riblets 

with lower amplitude show a behaviour, in the near-wall area, in contrast with 

other riblets. Therefore, a more accurate evaluation of these statistics data is needed. 
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6.1 Future works 

The wavelet analysis of particle image velocimetry can be adopted for future 

deepest analysis to evaluate the characteristics of riblets boundary layer’s flow fields  

by means other PIV data sampled within different planes, like the horizontal plane 

(x-z plane), or more likely, the transversal plane (y-z plane) in order to obtain 

values of the spanwise component of velocity, which, as literature states, is the 

responsible for the drag reduction performances. Moreover, the correct eduction of 

streamwise structures which is only hypothesized in the present work can be con-

firmed or denied and can give a significative contribution to a better understanding 

of drag reduction mechanism and properties modification of coherent structures 

adopting riblet surfaces. 
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