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Abstract

The present work focuses on the development of a waypoint-based guidance algorithm to conduct
a multirotor UAS over a number of plants (grapevines, but application to other crops is worth
investigating) in order to precisely administer Plant Protection Products (PPP).
The position of each plant requesting intervention is fed into the algorithm, which will generate
a feasible path by means of a Traveling Salesman Problem (TSP) solver and a suitable path
planning routine (Theta*).
In the second part of the work, the UAS' autopilot has been implemented in Simulink and said
path was fed to it for the execution of the task.
Since the development of the spray controller is still underway, the need for a certain �exibility
in the planning e�ort arose and therefore this work is intended as a framework to be expanded
by further research.



1: Introduction

1.1 Introduction

Precision Agriculture is making numerous important leaps forward recently, and one of its major
advantages is to reduce and optimize the amount of resources employed while reducing and
optimizing the man-hours needed for crop management.

In the typical vineyard scenario, plants often require the spraying of products to counter the
insurgence of diseases and parasite attacks that requires highly trained personnell to walk the
yard, row after row, with several kilograms of tank/sprayer system on their shoulders to assess
each plant and, in case, treat it.

The present work is part of a larger research e�ort aiming at automating this speci�c task
by means of Unmanned Aerial Systems (UAS). The project foresees the employment of a small,
o�-the-shelf UAS to scan the �eld with multispectral imaging sensors, the development of an
AI algorithm to individuate, by canopy characterisation, the single plants requiring the admin-
istration of Plant Protection Products (PPP) and �nally the use of a larger, dedicated UAS to
precisely administer the PPPs on the marked plants.

In particular, this work focuses on the development of a waypoint-based guidance algorithm
to conduct the latter multirotor UAS. The input to this system, together with a Digital Elevation
Model (DEM) of the vineyard, will be the position of each plant to reach as individuated by the
AI. [1] suggests an unsupervised algorithm for the evaluation of features in a vineyard which could
be of great use during the upcoming work. Since for the moment the plant recognition algorithm
is not available, random points will be generated for the testing and evaluation of performance, at
�rst in a totally random way, then random plant positions from a realistically-arranged vineyard
will be picked.

The algorithm will then generate a feasible path by means of a Traveling Salesman Problem
(TSP) solver and a suitable path planning routine (Theta*, as we will see) where needed. The
generated path is �nally uploaded in the form of a series of waypoints into the sprayer UAS for
the execution of the task.

The advantage of using a multirotor system for this mission is the availability of a large
airstream from the rotor downwash, which is very e�ective in the nebulisation and channeling
of �uids towards the environment below. Since the development of the spray controller is still
underway, though, many open questions require a certain �exibility in the planning and control
e�ort, making this work a path�nder to be followed by further research.

Other applications for this system can be foreseen, such as the precise administration of
fertilizers on hardly-accessible hillside areas.

1.2 Methodology and Organization

All the software code has been written and ran in MATLAB® R2018b.

Part I designs an algorithm which organizes the input waypoints in the shortest feasible
sequence and, if required by obstacles in the way, searches for the shortest path to get through
them. A �rst chapter, no. 2, introduces the Traveling Salesman Problem with a brief look at
some of the solution methods and then transitions to the explanation of a picked solver.

2



3 Methodology and Organization

Chapter 3 introduces then some path planning algorithms of interest for the problem, namely
A* and its extension Theta*, going through the MATLAB implementation and comparison of
the two methods on three dimensional grids generated ad hoc.

Part II goes through the implementation of the UAS dynamics model (chapter 4) and of the
prototype of guidance and control logic in Simulink® (chapter 5) with the aid of the Control
System Toolbox� for the interactive tuning of controllers. After the validation of the model,
some tests are performed in chapter 6 and results are presented and discussed.

The work is closed with chapter 7 which presents the conclusive remarks and outlines the
future steps to take to improve on the developed model.

G&C strategies for UAS applications for Precision Agriculture



Part I

Planning
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2: The optimal sequence

The algorithm starts with the position of the plants to be treated fed as input by the charachteri-
sation routine. For the sake of energy and time saving, it makes sense to individuate the shortest
(closed) path through each and every of them: this is a typical iteration of the so called Traveling
Salesman Problem (TSP). The system will run through the path and administer the PPP where
required, starting and returning to a precise location whose coordinates are appended to the list
of waypoints.

2.1 The Traveling Salesman Problem1

The general formulation of the problem, to which it owns its name, could be phrased like this:
Given a number of cities that a salesman has to visit for business, what tour can he/she take so
as to visit each and every one of them exactly once while minimizing the total distance traveled?
It goes without saying that the cities represent points in space of interest (like waypoints on an
actual tour).
This is a well-known and debated open problem in the scienti�c community which has many
practical implications, especially in the logistics of freights and passengers, routing of networks,
microchip manufacture and many other applications that it's not worth noting here.
Since this problem is currently open, i.e. with no closed solution, some form of heuristic has
to be employed. The choice of said heuristic depends not only on the goodness of the solution,
but also to its computational requirements, which can increase tremendously with the number
of cities. A brief description of some of the possibilities, on which the reader can �nd further
information in [2], follows.

Brute Force Search (BFS) This method is based upon picking the best of all the possible
combinations. While being somewhat simple in its formulation, the reader can easily see
how prohibitive this evaluation becomes when the number of cities reaches immediately
after what can be considered �a handful�: the number of possible permutations goes with
the factorial of the number of cities. For example, given 15 cities, the possibilities are

15! = 1.307.674.368.000

While this would be an exact algorithm (hence not a heuristic), it is obvious to exclude
this possibility.

Nearest Neighbor (NN) One idea is to proceed by having the salesman move to the nearest
city from where they currently stand. This does not necessarily generate the shortest
possible path ([3] have shown that on certain speci�cally arranged scenarios it can even
give the worst, that is longest, possible solution).

1The curious reader interested in more stimulating heuristics is encouraged to visit the comprehensive
Wikipedia page. Albeit not very professional to cite, at the time of the composition of this work the English
article contained an extensive overview of the historical and technical aspects of a problem much important to
the last decades or even centuries of technical progress.

5



The optimal sequence 6

k-opt Heuristic, a.k.a. Lin-Kernighan k-optimization is an iterative algorithm which fore-
sees taking an existing path (generated by some other means, like a random path) and
exchanging k edges (linkages between cities), and rearrange them so as to yield a shorter
route. The number of edges is usually two or three, but it does not necessarily have to be
constant: a variation of the method, called V-opt, calls for a variable number of edges to
be rearranged at every iteration.

Genetic Algorithms (GA) These solvers create a population of possible paths, evaluate the
�tness of each of them and evolve the �ttest ones based on some logic, such as random
permutations or k-opt heuristics. More details are in the following section.

Of course, the list would be much longer, but for a basic presentation and the scope of current
application the presented methods are su�cient.

2.2 Solver selection

In an e�ort to best exploit the available time and to channel the e�orts to the wider guidance
problem, it has been decided to pick a solver from the abundant choice available at the MATLAB
Central portal. The chosen solver is a very complete package spanning several cases like open
TSPs, multiple salesmen problems or vehicle routing problems2 developed by Joseph Kirk: the
MATLAB Traveling Salesman Problem (TSP) Genetic Algorithm Toolbox3. The content of
this toolbox that are of interest for the problem are the NN-TSP and the GA-TSP (Genetic
Algorithm) solvers which, as the author suggests in the examples, prove very fast when executed
in series: the output to the NN algorithm are fed into the GA for further re�ning.

2.2.1 Mechanics

The GA starts with the generation of a number of random permutations of the original path
(which can be an existing path, fed as input). Those permutations represent the initial popula-
tion, which is then evolved by chosing the best ones (four in this case) and mutating them so as
to rebuild a new population of the original size (hence, the remaining individuals from the choice
are discarded, or better extinct, mantaining the biological terminology from which the GAs take
inspiration). The possible permutations are �ip, swap, and slide. If the cities are contained in
the rows of a matrix, a path is represented by a vector containing the indices of said rows in
some order.

� Flip: a portion of the path, chosen by a random pair of indexes (start and end of the
segment) is reversed.

� Swap: the positions of two randomly chosen cities in the path are swapped.

� Slide: the last city of a random segment is pulled out and reinserted at the beginning of
the segment, which has now slid forward one position.

The process comes to an end after a predetermined number of iterations is reached.

2A popular variation of the TSP concerning the optimisation of the paths of one or more freight vehicles
among a series of deposits. The vehicles can even have a limited capacity or even a determined loading/unloading
sequence: it is easy to imagine how such kind of problems is relevant in the modern logistics of goods and
passengers.

3Joseph Kirk (2020). Traveling Salesman Problem (TSP) Genetic Algorithm Toolbox
https://www.github.com/rubikscubeguy/matlab-tsp-ga, GitHub.
Retrieved June 16, 2020.

G&C strategies for UAS applications for Precision Agriculture



7 Solver selection

(a) 20 cities

(b) 100 cities

Figure 2.1: The evolution of the test paths in the �rst two cases

2.2.2 Comparison

A brief comparison between two methods has been put in place: the GA alone and, as suggested
by the author, a two-stage computation executing the NN algorithm and feeding its result to the
same GA as the �rst case.
Sets of 20, 100 and 500 cities have been randomly generated in 3D space, spanning 100 metres in
each direction. The running times have been recorded using the well-known tic/toc MATLAB
commands and are compared in table 2.1 together with the best distances found. Figure 2.1
shows the paths calculated at each step, except for the 500-cities case which would add no
further clarity than actual confusion.
The results from table 2.1 show the clear avantage of the combined approach over the direct run
of the GA: as described previously, the NN produces a widely suboptimal solution and the second
run provides a substantial improvement of about 2.2%, 8.9% and 2% (over the NN solution) in
the 20, 100 and 500-city scenarios respectively. The direct run is still 1.4%, 6.7% and 158.8%
worse than the combined run in terms of total length, even though having taken 92.9% and 13.8%
longer and 62.3% shorter, respectively. We can see that the computational times of the direct
run with respect to the two-stage execution descend rapidly with the increase of the population,
at the expense of an ever-worsening solution.
In conclusion, the combined approach has been selected.

G&C strategies for UAS applications for Precision Agriculture



The optimal sequence 8

20 cities 100 cities 500 cities
t length t length t length

NN 1.38 646.36 5.139 1949.9 17.5 5263.5
GA 2.91 632.05 10.429 1775.6 143.6 5157.0
Total 4.296 632.05 15.568 1775.6 161.1 5157.0

Direct GA 8.287 640.86 17.726 1883.3 60.7 8191.2

Table 2.1: Comparison between combined approach and direct run

2.3 Application

The selected algorithm has been applied to a simulated vineyard built and visualised in MATLAB.
The rows are uniformly distributed, as are the plants in each row. Each plant's height matches
the local map height and spans three metres above it. The x, y, z coordinates of the plants are
registered in a list, with their height increased by an arbitrary height (4 metres in the present
case) from their tops. This constitutes the list of possible waypoints, some of which the system
will randomly pick, in a number speci�ed by input, to become actual waypoints.

A pair of test scenarios has been put in place, with 12 and 80 waypoints each, to show the
performance of the algorithm. Figure 2.2 shows the generated path for the 12-waypoint case,
while in 2.3 presents the results for the 80-waypoint scene.

(a) 12 cities (b) 12 cities

Figure 2.2: The 12 waypoint case

G&C strategies for UAS applications for Precision Agriculture



9 Application

(a) 80 cities (b) 80 cities

Figure 2.3: The 80 waypoint case

G&C strategies for UAS applications for Precision Agriculture



3: Path Planning Algorithms

3.1 Introduction

The calculated optimal sequence of waypoints from the previous chapter is not su�cient, by itself,
as a feasible path for the UAS to �y through: this would be close to true if the yard were a �at
(even though sloped), perfectly obstacle-free surface where line of sight between each and every
waypoint were guaranteed. Since this is almost never the case, especially in the hillside vineyards
of Italy, a path planning approach to re�ne the generated tour was deemed essential. An initial
proposal was made to employ Dubins paths to smooth the corners of the trajectory, but after a
short literature review it was rejected due to the suboptimality of the solution when compared
to other strategies involving path planning on grids, which also enabled obstacle avoidance. The
next subsection illustrates the reason behind this choice.

3.1.1 Dubins paths

Dubins curves are minimum-lenght paths that connect two points in space with prescribed tan-
gents to the path at said points, when the curvature is contrained to a certain turning radius. It
was proved by mathematician L. Dubins in [4] that said shortest path is always composed of two
minimum radius circular segments and a straight segment or three curved segments, typically
shortened as CSC (Curve-Straight-Curve) or CCC. The 2D case is often used for the planning
of paths of (wheeled) robots and cars with constant forward speed, but 3D adaptaions for �ying
systems have been devised as well, placing a further constraint on the maximum climb/descent
angle such as [5]. Some papers evaluated involved interesting approaches, such as the solution of
a Dubins TSP (DTSP) where each city has to be visited with a predetermined heading ([6]). The
reason to not include this system is that another philosophy, based on the A* search algorithm,
can easily include obstacles and is known to produce shorter trajectories.

3.1.2 On Path Planning on grids

In a most general way possible, path planning is a task consisting of the generation of a sequence
of actions that will take the user (a UAS in this scenario) from a starting point (or con�guration)
to a goal point (or con�guration). The surrounding environment is discretized in some kind of
compatible notation: in the example of the navigation in a road network that a stanav may
perform, the intersections are represented by nodes connected by edges (the roads themselves)
in what is commonly referred to as a graph. The present case, however, does not feature distinct
paths that can be taken and instead models the surrounding environment as a grid : a set of cells,
regularly distributed and characterised by the possibility of being traversed of not, connected
by a series of allowed movements. Often, the cells, which are portions of 2D or 3D space and
therefore not practical to handle, are themselves represented as nodes, hence 0-dimensional points
in space described by coordinates and connected by edges representing the possible movements:
this makes the two examples virtually identical from the mathematical standpoint, and hence
able to be treated with the same instruments.
As introduced above, the path is a sequence of actions to be undertaken by the system, possibly
with the lowest e�ort which is generally minimised by the planning algorithms. This is done by
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11 A* on grids

means of a cost system: some form of cost function is implemented in order to quantify how
convenient is the use of an edge or movement with respect to the other possibilities. In the
example of the satnav system, the cost associated to a road segment can be proportional to the
time required to drive through it, but it can also take into account tra�c jams, tolls, etc.
On the other hand, for a generic system moving in a tridimensional space, the cost of the
maneuvres from a node to the other can be quanti�ed with the distance between the start and
end points. An extensive presentation on planning algorithms can be found in [7]1. The one
employed here and its extension are quite popular and will be introduced in the next section.

3.2 A* on grids

The A* search algorithm was introduced in [8]. Many expansions have been thought of to adapt
the logic to di�erent situations and notations, and some of them will be seen in the following.
The domain is discretised through a grid made up of nodes, or vertices, for each of which three
values are retained:

G-value g(s) is the cost-to-come of the vertex s, that is the smallest cost found to go from the
starting node sI to s;

H-value is an estimate of the cost-to-go, or an underestimation of the cost to go from s to the
goal node sG. It is identi�ed by h(s) and usually the best estimate, easy to calculate and
su�cient to ensure a satisfactory performance, is the distance between s and goal:

h(s) = ‖sG − s‖ (3.1)

Of practical usefulness is the F-value, namely the sum of G and H, which indicates the
estimated cost of a shortest start-end path passing through s:

f(s) = g(s) + h(s)

parent identi�cation is needed to trace back the path from the goal to the start once A* has
succesfully reached the end of the search. In the following, it will be identi�ed by p(s).

Two data structures are the building blocks of the procedure:

open list contains the nodes that are still available for expansion;

closed list gathers all the nodes which have been expanded and for which no further examina-
tion is possible.

The idea is to move from node to node by choosing the one with the lowest F-value. Algorithm
1 is extracted from [9] and contains the pseudocode for the procedure.

In the basic initialization of lines 2 to 5, the cost-to-go for the starting node is set to zero,
its parent is set to itself and the open list is initialized with only sstart inside. Afterwards, a
while loop is executed as long as the open list contains at least one node. The function referred
to as list.getBest() in line 8 operates on the list list by extracting from it the best node in
terms of F-value. After a brief check for success in line 9, the node is registered in the closed list
and every possible neighbour is evaluated for the next move: each candidate is initialised with
in�nite G-cost and s as parent, then UpdateVertex() is run on the two nodes.

The inner working of this function is detailed in algorithm 2, which receives the two nodes
as input and compares the current G-value of s′ (which after initialisation is ∞) with the value
calculated in 1 as the sum of the parent's G-value and the length of the segment connecting the
two nodes according to (3.1). Line 5 checks if the node has already been registered (which could
happen in case the node s′ has been reached on a previous occasion by a di�erent path). Finally,
line 8 recalculates the F-value of s′ and (re)inserts it in the open list before returning control to
1. At this point, the cycle is repeated with the choice of the best neighbour s′ of s, which now
becomes s itself. Figure 3.1 visualises the choice mechanism with two neighbours.

1Available for download at http://planning.cs.uiuc.edu/
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Path Planning Algorithms 12

Figure 3.1: A* choice mechanism: node s′2 is selected because of the lower F-cost

A note on F-value update The F-value is updated as follows, in this case:

f(s′) = g(s′) + αh(s′)

In this case, an α value which multiplies the heuristic H-value, called a �heuristic weight�, is
inserted. This weight in�uences the relevancy of the heuristic with respect to the cost-to-go.
This technique does not appear in the original work cited, but was inserted by the author of the
selected script (see next subsection). Another source, [10], uses an even more advanced method
where two gains are employed:

f(s′) = αg(s′) + βh(s′)

The application of this latter method has not been deemed prioritary, but is worthy of further
consideration.

Obstacles The obstacles are simply represented as nodes on the map which have a �xed, in�-
nite G-value: even when evaluated as candidates for movement, their G-cost cannot be changed
and therefore will remain the highest possible value, excluding them from consideration.

3.2.1 Selected code

As done in the previous chapter with the TSP solver, a MATLAB function implementing the A*
was retrieved and adapted for the occasion.

The selected script was developed by A. Chrabieh and is available at MATLAB Central File
Exchange2. This is a 2D solver that was choosen based on the clarity and readability of the code,
due to the necessity for an intense modi�cation. Figure 3.2 demonstrates its functionality on a
simple map with α being set to 1.5. It must be noted that the cells are marked as an obstacle
(white) if one of the neighboring nodes is forbidden, but this does not mean that stepping on a
white cell is also forbidden. The obstacles here are one-dimensional objects (lines), spanning the
cells' borders and not actual 2D, rectangular elements as might appear. The reader unaware of
this plotting logic of MATLAB which is based, in the present case of map plotting, on cells and
not points or lines, might think that the path treads on some of the obstacles, therefore failing in
the pursuit of feasible planning. This little graphic mishap was not important (it only a�ects the
2D view) and hence not been corrected, since it would have required quite a large reprogramming
e�ort that was prioritary elsewhere. From �gures 3.2 the algorithm's main drawback is clearly

2Anthony Chrabieh (2020). A star search algorithm
https://www.mathworks.com/matlabcentral/�leexchange/64978-a-star-search-algorithm, MATLAB Central File
Exchange.
Retrieved July 13, 2020.
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13 A* on grids

Algorithm 1 Basic A* path �nding

1. % Initialization start
2. g(sstart) = 0
3. p(sstart) = sstart
4. open = [empty]
5. open.Insert(sstart, g(sstart))
6. % Initialization end
7. while !isEmpty(open) do
8. s = open.getBest()
9. if s = sG then

10. return �path found� % Success!
11. end if

12. closed.Insert(s)
13. for all s′ ∈ N(s) do
14. if s′ /∈ closed then
15. if s′ /∈ open then
16. g(s′) =∞
17. p(s′) = s
18. end if

19. UpdateVertex(s,s')
20. end if

21. end for

22. end while

23. return �no path found� % Failure

Algorithm 2 The UpdateVertex(s,s') subroutine for A*

1. Gnew = g(s) + c(s, s′)
2. if Gnew < g(s′) then
3. g(s′) = Gnew
4. p(s′) = s
5. if s′ ∈ open then
6. open.Remove(s')
7. end if

8. updateF(s')
9. open.Insert(s')
10. end if
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(a) Weight α = 1.5

(b) Weight α = 10

Figure 3.2: A* script functionality demonstration

evident: the course is changed by multiples of 45°, due to the geometrical constraint of working
on a grid. It is clear how the true shortest path would cut those corners, requiring smaller turning
angles. The next section introduces a smarter extension of the procedure to account for this.

Also, the e�ect of a greater heuristic weight is that of pulling more strongly the solver towards
the goal. The solution takes shorter, but the result is not as accurate as with a smaller weight.

Tridimensionalisation As mentioned, the script works on two-dimensional grids. A tridi-
mensionalisation e�ort was necessary and, luckily, not particularly challenging: usually just the
repetition and slight modi�cation of lines of code, or the shifting of vector indexes, were necessary.

The presentation of the result is put o� to a later section, when the performance of the
original A* will be compared to those of its extension.
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15 Any-angle path planning with Theta*

3.3 Any-angle path planning with Theta*

Figure 3.3: Θ∗ parent choice mechanism with
line of sight

Theta*, or Θ∗, was introduced by Nash et al.
[9] in 2010 to overcome A*'s main drawback,
outlined at the end of the previous section. It
is an extension of A* based on the concept of
line of sight (LOS), that is the existence of an
unobstructed path between two points, used as
explained below. The modi�cation is sourced
directly by [9].

As anticipated, the mechanism is the
same as algorithm 1; what changes is
UpdateVertex(), which is explained in algo-
rithm 3. Lines 1 to 6 represent the novel ap-
proach, based on some form of LOS checking
routine that will be introduced in 3.3.1. In
short, if there is visibility between the candidate s′ and the parent of s, the same vertex updat-
ing routine of A* is run with this last node as parent. This happens, as an example, in �gure
3.3, where LOS is clearly present between nodes p(s) and s′. Therefore, s by itself is by-passed
and the corner it represents is cut. If there is no LOS, instead, line 7 and following are executed
as before.

The function call terminates with the update of s′ in open and the return to the main routine.

Algorithm 3 The UpdateVertex(s,s') subroutine for Θ∗

1. if isThisLOS(p(s),s') then
2. Gnew = g(p(s)) + c(p(s), s′)
3. if Gnew < g(s′) then
4. g(s′) = Gnew
5. p(s′) = p(s)
6. end if

7. else % In common with A*: it's the same as alg. 2
8. Gnew = g(s) + c(s, s′)
9. if Gnew < g(s′) then
10. g(s′) = Gnew
11. p(s′) = s
12. end if

13. end if

14. % Update of the vertex
15. if s′ ∈ open then
16. open.Remove(s')
17. end if

18. updateF(s')
19. open.Insert(s')

3.3.1 Checking line of sight

The line of sight (LOS) checking routine makes use, as suggested by [9], of the Bresenham line-
drawing algorithm. Published in 1965 to draw rectilinear segments on rasters, it can easily be
modi�ed to check if there is a straight, unobstructed rectilinear path between to points on a map.
This algorithm is included in the �rmware of virtually all devices needing to draw lines (plotters,
monitors, graphic cards) because of one of its great advantages: its simplicity. The procedure is
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based on the parametrisation of the line segment connecting the two points to verify which cells
are crossed by the line. Algorithm 4 illustrates the procedure and the modi�cation put in place
to switch from line-drawing to LOS check and to perform the check in three dimensions.

The 3D extension is just made of two instances of the 2D algorithm, working on the XY
and XZ projections of the line and merging the coordinates of the blocks. Since the original,
2D algorithm can only run correctly for lines in the �rst octant (East to South-East), a series of
preliminary checks has to be performed to determine which among ∆x,∆y,∆z is the largest with
respect to the others (and therefore, in which octant the XY and XZ projections lie) and swap
those coordinates so as to reorganise the problem in order for the algorithm to work. At the end,
the coordinates are swapped back to the original. This operation is performed by the swap()

subroutine, which also raises a �ag identi�yng the swapped coordinates so as to restore the
original order before proceeding with plotting/checking (otherwise, with the coordinates mixed
up, the plotted/checked point would be another on the map).

The �rst 11 lines perform exactly this operation, which is propedeutcal to the actual scanning
cycle.

The coordinates are duplicated in line 16 and following to perform the unswapping and access
the raster without altering the originals, needed to proceed with the scan. Line 23 is to be ignored
in the case plotting is not the necessary operation, and instead the following cycle has to be run.
If an object is encountered, line 25 stops the check with negative result: LOS is corrupted and
it makes no sense to keep searching if the �rst object has been found.

This particular script was retrieved on the Internet3 and adapted as needed.

(a) Some random lines generated with alg. 4

(b) Line of sight veri�cation test

Figures 3.4a and 3.4b show the functionality of algorithm 4: in the former it has been used to
generate straight lines between random pairs of points on a 3D raster (which implies using line
23), while in the latter the visibility between a starting point (coordinates 5,5,0) and an array of
others has been put to test. Green lines represent a favourable outcome of the procedure, while
red ones imply that one of the walls got in the way. It will be noticed that a green line actually
crosses the corner of a wall, and this is due to an intrinsic limitation of the algorithm which is
based on integer logic and operates on a discretised domain. A suggested solution, to keep the
formulation as simple as possible, is to tighten the size of the grid (i.e. increase the resolution)
so as to reduce this error as much as wanted, as is done on modern monitors and screens. A

3https://web.archive.org/web/20110708171823/http://www.cobrabytes.com/index.php?topic=1150.0
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17 Any-angle path planning with Theta*

Algorithm 4 3D Bresenham algorithm

Input: 3D raster
Output: isThisLOS
1. ∆x = |X1 −X0|
2. ∆y = |Y1 − Y0|
3. ∆z = |Z1 − Z0|
4. if ∆y > ∆x then
5. [X0, X1, Y0, Y1] = swap(X0, X1, Y0, Y1)
6. swap_xy = true
7. end if

8. if ∆z > ∆x then
9. [X0, X1, Z0, Z1] = swap(X0, X1, Z0, Z1)
10. swap_xz = true
11. end if

12. y ← Y0
13. z ← Z0

14. % begin of line scanning/drawing
15. for all x ∈ [X0 : stepx : X1] do
16. cx = x; cy = y; cz = z; % Copy of the variables
17. if swap_xy then
18. [cx, cy] = swap(cx, cy)
19. end if

20. if swap_xz then
21. [cx, cz] = swap(cx, cz)
22. end if

23. plot(cx,cy,cz)
24. if map(cx,cy,cz) is an obstacle then
25. return false % there is no line of sight, execution stops
26. end if

27. step in y plane
28. step in z plane
29. end for

30. return true % no obstacle encountered, LOS con�rmed
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Path Planning Algorithms 18

more complicated option is, instead, to use multiple iterations of Bresenham's algorithm to draw
a voxel tube instead of a voxel line.

3.3.2 Results

Comparison with A* (2 dimensions)

A small comparison between Theta* and A* has been put in place on the same map as of �gure
3.2 and is shown in �gure 3.5. For both functions, α = 1.5.

Figure 3.5: 2D comparison between A* and Θ∗

Comparison with A* (3 dimensions)

Another comparison has been put in place after tridimensionalisation of both algorithms. The
simple map was generated so as create a small di�culty for the algorithms, without being visually
overbearing. Figure 3.6, where α is set to 2, showcases the staggering di�erence in the resulting
paths. Not as staggering, yet still evident, is the di�erence in �gure 3.7 in which α = 10. In
both cases, A* �nds a 10% longer solutions than the competitor, with a path that looks much
more fragmented than necessary, with a large number of useless direction and altitude changes.
Between the two iterations, instead, Theta* show a very subtle and irrelevant di�erence in path
lenght and geometry.
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19 Any-angle path planning with Theta*

(a) 3D view

(b) Top view

Figure 3.6: 3D comparison between A* and Θ∗, α = 2
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(a) 3D view

(b) Top view

Figure 3.7: 3D comparison between A* and Θ∗, α = 10
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4: UAS dynamics and implementation

4.1 Dynamics

Considering the classical dynamics of an aircraft, whatever its size, six states are considered:
three translations and three rotations. However, a quadrotor can in�uence its own dynamics by
means of four control inputs, that is, its rotors' thrusts and torques. Due to the miniaturization
involved, the rotors have a �xed geometry, hence the only way to modulate torques and forces is
varying each rotor's angular velocity. At this point it is enough to quantify the relation between
the ith rotor speed and its actions on the quadrotor frame as

Ti = KT ω
2
i (4.1)

τi = (−1)i+1Kq ω
2
i (4.2)

This relations exclude more complex e�ects such as blade �apping and aerodynamics, but are
su�cient to guarantee a satisfactory model.

4.1.1 Flying con�guration

The general structure of a quadcopter is made of four arms spanning from the centre and hold-
ing one rotor each. They are placed at 90° increments. There are at least two ways to �y a
quadcopter: either in a �cross� or in a �plus� con�guration, depending on the orientation of the
structure and, consequently, on the e�ect that each rotor has on the dynamics.

Figure 4.1: �Plus� con�guration Figure 4.2: �Cross� con�guration

Plus cfg The �plus� con�guration has two of the booms parallel to the body-x axis and the
other two parallel to the body-y yb, as in a plus sign �+� or as �gure 4.1 illustrates. This is the
selected architecture.
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23 Dynamics

Cross cfg An alternative is to make the axis a bisector of two contigous arms, so that the
vehicle resembles a �×� sign when seen from the top. Of course more exotic con�gurations exist,
but in the scope of the present work are of no interest whatsoever for the time being.

4.1.2 Control architecture

As mentioned previously, the controls are represented by the four rotors' speeds, on which the
respective forces and moments derive.
A brief note on rotation directions for the rotors: the modulation of the single velocities is
required to modulate the thrusts, but reaction torques due to gyroscopic e�ects arise, causing
the system to turn along the z-axis. The most common strategy to avoid this yawing action is
to alternate the directions of rotation of the rotors: 1 and 3 are clockwise, while 2 and 4 are
counter-clockwise. This is re�ected in formulae by the (−1)i+1 term in (4.2). The general control

Figure 4.3: Forces and moments

strategy envisions four control inputs depending on the rotor speeds, de�ned as follows:

Total thrust u1 is the sum of all rotor forces. Referring to (4.1),

u1 = Tb =

4∑
i=1

KTω
2
i (4.3)

Knowing the maximum and minimum rotation speeds for the rotors, the limit control
actions can be easily evaluated: in the case of the total trhust, the limits are:

u1,max = 4KTω
2
max (4.4a)

u1,min = 4KTω
2
min (4.4b)

Rolling moment u2 is the torque generated by the even-numbered rotors, that is the ones
placed along yb. They generate a moment along xb as follows:

u2 = τϕ = l(−F2 + F4) (4.5)

Again, the limit controls available amount to

u2,max = lKTω
2
max (4.6a)

u2,min = −u2,max (4.6b)
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Pitching moment u3 a similar equation can be obtained for the moment along yb:

u3 = τθ = l(F1 − F3) (4.7)

Due to the symmetry of the vehicle, the pitch dynamics is the same as the roll dynamics,
so for the limits equations 4.6 are valid.

Yawing moment Moment along zb is generated by taking advantage of the directions of rota-
tion of the rotors: by using (4.2),

u4 = τψ =
4∑
i=1

(−1)i+1Kqω
2
i (4.8)

For the limits, we have

u4,max = lKqω
2
max (4.9a)

u4,min = −u4,max (4.9b)

The above equations can be gathered in a much more practical matrix form as follows:

U =


u1
u2
u3
u4

 =


KT KT KT KT

0 −lKT 0 lKT

lKT 0 −lKT 0
Kq −Kq Kq −Kq



ω2
1

ω2
2

ω2
3

ω2
4

 (4.10)

With a slight abuse of notation, we can further compact (4.10) into

U = [K] ω2 (4.11)

Albeit not modeled, the electric motors powering the rotors are fed a Pulse Width Modulated
(PWM) signal with a duty cycle proportional to the desired speed with respect to the maximum
speed. Said desired speeds are generated by a Motor-Mixing Algorithm (MMA) which essentially
inverts (4.11), taking the control inputs generated by the autopilot and outputting the PWM
signal for each motor. In formulae:

PWMreq =
1

ωmax
ωreq =

1

ωmax

√
[K]−1U (4.12)

4.1.3 Preliminary assumptions

In order to simplify the equations, some assumptions have been made:

� the �exibilty of the small structure is not taken in consideration;

� also the rotors are not �exible, so no �apping e�ect takes place;

� the Earth is considered �at and non rotating, as is often done when such phenomena
contribute largely insigni�cant accelerations of small and relatively slow aircraft;

� the ground e�ect is negligible, as is the wind;

� the motors are not modeled (yet), and therefore do not introduce delays in the dynamics;

� the inertia matrix Jb is symmetrical:

Jb =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 .
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4.1.4 Translational dynamics

We will study the motion on the system from an inertial reference frame, that is the classi-
cal North-East-Down (�NED� hereafter) triad, which will be noted in the formulae by a �G�
superscript for �ground�, to which it is �xed. Therefore, XG = {N,E,D}ᵀ will indicate the
coordinates. The dynamics is organized according to Newton's well-known formula:

ẌG =
1

m

∑
Fi (4.13)

The total force in the ground frame is given by the sum of the elements described as follows.

Gravity not much is to be said on gravity: it goes down.

Fg =


0
0
mg

 (4.14)

Drag is modeled as proportional to the velocity in each direction

Fd =

kdx 0 0
0 kdy 0
0 0 kdz



ẊG

˙Y G

ŻG

 (4.15)

Total thrust , or the sum of each rotor' thrust, is aligned with the body z-axis (i.e. zb) and
has to be rotated in ground reference, that is:

FT
G = RGb (ϕ, θ, ψ)


0
0
−u1

 (4.16)

The rotation matrix from body to ground1 frame is de�ned as

RGb (ϕ, θ, ψ) = (Rx(ϕ)Ry(θ)Rz(ψ))ᵀ =

=

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

ᵀ
(4.17)

Remember that u1 = KT
∑4

i=1(ω
2
i ). Also, since we are using NED and the total force is

pointing upwards, the minus sign is required.

For completeness, the three contributions are gathered in (4.13) so as to yield:
ẌG

Ÿ G

Z̈G

 =


0
0
g

+
1

m

kdx 0 0
0 kdy 0
0 0 kdz



ẊG

˙Y G

ŻG

+
RGb (ϕ, θ, ψ)

m


0
0
−u1

 (4.18)

Modelization

This subsystem represents equation (4.18). The block Rb2G calls a simple MATLAB function
tasked with generating the rotation matrix for the body-to-ground reference rotation.
The summation block at the centre generates the acceleration vector ẌG which is fed to a
second-order integrator. The choice for this type of block was driven by the increased solver
performance it yields with respect to having two �rst-order integrators in series, as claimed by
The MathWorks.2 The derivative of the position, ẊG or dx as it is labeled on the block, is also
output for the generation of the drag forces according to the simpli�ed model of (4.15).

1A simple yet e�ective explanation can be found at http://www.chrobotics.com/library/understanding-euler-
angles

2See the Simulink documentation page for Zero-Crossing Detection.
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Figure 4.4: Translational dynamics subsystem

4.1.5 Rotational dynamics

A note on rotational velocities

In a very speci�c situation where the system is in stable hover and not rotating, it can be asserted
that the angular velocities along each axis, that is p, q, r, coincide with the derivatives of the
Euler angles:

ω =


p
q
r

 =
d

dt


ϕ
θ
ψ

 (4.19)

This makes it very easy to read and use the rates picked up by gyroscopes, which are �xed with
the frame of the vehicle.
In reality, this steady-state relation is most often not true and the wider picture is more compli-
cated: we want to study the rotation of the body from a body-centered NED (inertial) frame.
Now, to switch from a generic, rotated con�guration to NED three consecutive rotations are
required, which means that each element of the angular velocities vector will undergo a growing
number of rotations through intermediate systems.

Roll does not need any rotation:

ϕ̇ = p

pitch rate must be rotated into the vehicle-1 frame:

θ̇b
Rx(ϕ)−−−−→ θ̇1 = q

and yaw rate has to be rotated to the inertial frame, so

ψ̇b
Ry(θ)−−−→ ϕ̇2

Rx(ϕ)−−−−→ ψ̇1 = r

To explicitate this transformation, we can write:

ω =


p
q
r

 = Rx(ϕ)

Ry(θ)


0
0

ψ̇

+


0

θ̇
0


+


ϕ̇
0
0

 = S


ϕ̇

θ̇

ψ̇

 (4.20)
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where a matrix has been de�ned to perform rotation:

S(ϕ, θ) =

1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ

 (4.21)

A reader armed with paper and pencil can clearly see how, for zero pitch and roll, S(ϕ, θ) becomes
the identity matrix I3, and equation (4.20) decays into (4.19).
Of greater interest, however, is the inverse of S, allowing to project a vector of angular rates
estimated by sensors on the inertial body frame:

S−1(ϕ, θ) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

 (4.22)

We can now proceed with the study of the rotational dynamics.

Moments on the frame

In a similar manner to what has been done for the translational dynamics, the rotational equa-
tions can be found as a sum of three contributions:

Jbω = τm − τg − ω × Jbω (4.23)

Motor torques are the torques due to the controls:

τm =


τϕ
τθ
τψ

 =


u2
u3
u4

 (4.24)

Gyroscopic torques due to propellers Let Jr be the rotational inertia of the single rotor,
Gz the global z-axis versor (i.e. Gz = {0, 0, 1}ᵀ) and ωi the angular velocity of the ith

rotor. Then

τg = ω ×Gz
4∑
i=1

Jr(−1)i+1ωi (4.25)

represents the gyroscopic torques generated by the propellers rotation when coupled with
the rotation of the frame. Keep in mind that the boldface ω represents the angular velocities
with respect to the frame p, q, r and that the signs in the sum have to be alternated to
account for the di�erent spin directions of the propellers as described in section 4.1.2. The
development of the cross product yields

τg =

 θ̇
−ϕ̇
0

 Jr

4∑
i=1

(−1)i+1ωi (4.26)

Gyroscopic torques due to rigid body rotation are described by classical, rigid body dy-
namics:

ω × Jbω =


θ̇ψ̇(Jz − Jy)
ψ̇ϕ̇(Jx − Jz)
θ̇ϕ̇(Jy − Jx)

 (4.27)

Again, for the sake of readiness of information, the above formulae are gathered in a single
equation, extension of (4.23):

Jb


p
q
r

 =


u2
u3
u4

− Jr
 θ̇
−ϕ̇
0

 (ω1 − ω2 + ω3 − ω4)−


θ̇ψ̇(Jz − Jy)
ψ̇ϕ̇(Jx − Jz)
θ̇ϕ̇(Jy − Jx)

 (4.28)
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Modelization

Again in a similar manner to the translational dynamics, the rotational one is modeled on
(4.23). Figure 4.5 presents its block diagram. As opposed to its peer subsystem, a second-order

Figure 4.5: Rotational dynamics subsystem

integrator could not be employed because of the rotation operation sandwiched between the two
integrations. Said operation performs the transition between body-referenced angular rates and
Euler angular rates for the sake of the exportation as a state.

4.2 High-level Simulink® implementation

Figure 4.6 shows the high-level construction of the model. The blocks D:# are called �signal

Figure 4.6: Simulink Dynamics

speci�cation� and assure that the signal traversing them has the speci�ed size. This caused
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annoying3 problems at compilation time, when the signals were still having unspeci�ed size and
drove other blocks downstream to have unspeci�ed sizes as well. The discovery of the existance
of this block was very welcome by the author.

Inputs

1. U is the control input vector, as introduced in section 4.1.2;
2. X0 is the initial position vector. Originally introduced for testing, its usefulness will be

fully explained in later chapters.

Outputs

1. X vector, containing the position in the ground frame;
2. eul vector, gathering the Euler angles;
3. omega vector, with the three angular rates according to body axes (p, q, r);
4. the angular velocities of the rotors, for monitoring purposes;
5. output 5 is another control watch, to be explained in a while.

4.2.1 Evaluation of rotor speeds

Figure 4.7: Rotor speeds evaluation subsystem

The subsystem4 labeled with �getRotorSpeeds()� implements the reverse relation between
the input controls and the rotors' angular velocities expressed by (4.11) and recalled in the an-
notation. Figure 4.7 shows its working and the constraints imposed by means of two saturations:

� the �rst limits the argument of the square root to be zero or more in order not to produce
complex output that would render the rest of simulation meaningless. Its range is [0,+∞)
for each of the four elements of its input, representing each row of the K matrix;

� the second keeps the requested rotor velocities between the minimum (0, in this case) and
maximum possible values (920 rad/s).

In orange is a comparison between input and output of the �rst saturation block, which will
output a logical true if the block is actually clamping any of the values. This result is the
previously introduced 5th output and serves debugging purposes.

3
very annoying

4In hindsight, this block could have been included into its only user, which is the �Gyroscopic torques� block
in 4.5 for the sake of clarity.
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4.2.2 Model Testing and Validation

Before proceeding with the control system implementation, some tests have been carried out to
validate the model. All the runs have been performed across a 10-second time span, without any
control whatsoever. In the following �gures, the 3D view on the left has the ZG axis inverted
in order to represent more intuitively the trajectory. On the right, instead, it has been kept
aligned with the orginial NED triad. The reader is advised to keep this in mind to avoid possible
confusion.

Free fall

First of all, a free-fall test: setting all the control inputs to zero, the system was expected to
accelerate in the positive-z direction (which is down).

Figure 4.8: Free falling test

Hovering

The sole control input is u1 = mg. No other command is given and no disturbing action enters
the system, which remains stable.

Figure 4.9: Hovering test

Small roll angle

In addition to the vertical force command, the initial conditions for the Euler angle integrator
have been modi�ed to include a nonzero angle: ϕ = 5◦. The tilting will produce a sideways force
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along the body-y axis, and as a side e�ect, the system will accelerate downwards because the
vertical component of the force is not able to compensate for gravity anymore.

Figure 4.10: Nonzero roll angle

Small pitch angle, balanced

Under the same conditions as before (except now the pitch is 5 degrees instead of roll, in a poor
attempt to make the presentation less boring to the reader), the thrust input has been corrected
to account for this angle:

u1 =
mg

cos θ0
, θ0 = 5◦

Figure 4.11: Nonzero pitch angle with balancing thrust

Helix

To conclude, the inputs have been set so as to yield a slight climb coupled with a half-turn yaw
with a rate of 10 rad/s:

u1 = 1.05 ·mg, u4 = Jzz
π

10

Figure 4.12, right shows the working of the �wrap state� option in the Euler angle integrator
block (the last to the right in �gure 4.5, with a circling arrow around the 1/s symbol): when the
integrated value reaches π, instead of continuing, it is reset at −π and keeps growing from there
(or viceversa, of course). This prevents the output of meaningless multiples of π.
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On the left, instead, is the trajectory traced by one arm of the quadcopter: since no movement
of the centre of mass is in place (with the exception of the vertical translation), it has been
necessary to visualize the trajectory otherwise.

Figure 4.12: Ascending helical trajectory
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5: Control system structure

5.1 Basics of PID control

This section introduces some of the basic concepts that have been useful in the present work.
Of course, the reader who is �uent in this subject can skip it without repercussions on their
understanding of the chapter.

5.1.1 Continous-time formulation

The general concept of PID control is to produce a control output to be fed to the controlled
system based on the behaviour of said system with respect to time. The idea can be visualised
as in �gure 5.1. The output of the controlled process is measured and compared to a reference

Figure 5.1: Block diagram of basic PID control

signal (the command, or desired output), generating what is referred to as an error:

e(t) = r(t)− u(t) (5.1)

This error is then evaluated in (a combination of) three ways, each of whose result is multiplied by
a dedicated gain and added to the others to produce the control action. Again, this architecture
can be visualised in �gure 5.2. Those three ways, to whom the controller ows its name, are:

Proportional (P) is a measure of the instantaneous error, and its associated gain is kp:

P (t) = kP e(t) (5.2)

Integral (I) by integrating the error in time we can quantify its history and account for when
it has been di�erent from zero in the past:

I(t) = kI

∫ t

0
e(τ)dτ (5.3)

The gain kI scales the relevance of this term when confronted to the other terms.

Derivative (D) accounts for the time derivative, hence the rate of change, of the error:

D(T ) = kD
de(t)

dt
(5.4)
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If we identify the output of the controller with c(t), we can gather equations (5.2), (5.3) and
(5.4) as:

c(t) = kP e(t) + kI

∫ t

0
e(τ)dτ + kD

de(t)

dt
(5.5)

Not all the actions are compulsory, and in fact they can hinder the quality of the response of the

Figure 5.2: Block diagram of a PID controller

controlled system in some cases: for example, a large derivative action will generate an overshoot
in the response to a step command, or the extensive use of integral control can produce control
actions that saturate the actuator (i.e. require more action than the actuator can generate),
with increasingly negative e�ects on control performance. For this reason, which combination of
P,I and D to employ is a decision to be carefully taken in close relation with the system to be
controlled.

5.1.2 Tuning

The term �tuning� refers to the decision of the gain values to employ. It is not usually an easy
task, since the controlled systems are usually nonlinear and therefore require some �xed-point
linearized approximation outside of whose validity the controller is not able to perform as wished.
Neither the calculation, once the linear model is available, is always intuitive, and often requires
trial-and-error on the phisical hardware which can be costly if not downright hazardous: the
availability of a digital model on which to perform simulations can greatly reduce the amount of
time and resources necessary to tailor the gains to a desired performance. After the approximate
gains are found via the simulations, the real controller can be initialised with those values and
validated on the hardware with considerable savings, especially in terms of risk since tuning from
scratch can bring the system on the brim of instability.

Probably the widest-used tuning method is Ziegler-Nichols, [11], which foresees the setting
of all gains to zero, and the gradual change of the proportional term until a gain ku (or ultimate
gain) such that the system shows stable, periodic oscillations in the response. After measuring
the period of the oscillations Tu, the gains can be calculated as a function of the two parametres.
An alternative form to equation (5.5) is the classical form, which makes use of time constants:

c(t) = kP

(
e(t) +

1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

)
(5.6)

which, when ra�ronted with (5.5), yields a di�erent way of writing the gains:

kI =
kP
Ti

(5.7)

kD = kPTd (5.8)
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kP /ku Ti Td kI kD
P 0.5
PI 0.45 0.8 Tu 0.54 ku/Tu
PD 0.8 0.125 Tu 0.1 kuTu
PID 0.6 0.5 Tu 0.125 Tu 1.2 ku/Tu 0.075 kuTu

Table 5.1: Reference coe�cients for PID tuning according to Ziegler-Nichols

The parametres for some architectures can be found in table 5.1.

Automatic tuning with MATLAB Since some early attempts to tune manually each con-
troller using the above method have had results of limited quality, the automated tuning applica-
tion within Simulink has been employed with satisfactory outcomes. Each PID block can access
a routine from the Simulink® Control Design� which linearises the plant connected downhill and
suggests the gains based on the simulated response, which the user can �ne-tune with respect to
rise time and robustness of the control.

5.2 Philosophy

The control system relies, to date, solely on PID control. It is organized by concentric control
loops, each one providing the setpoint for the next or, eventually, the control inputs for the
system itself:

� the outermost provides an attitude request based on the distance from the goal,

� the middle one provides an angular rate request based on the angular distance from said
command,

� and the last loop listens to these rate commands in order to generate the actual control
inputs (u2, u3, u4) to the plant, which is constituted by the four rotors with their respective
motors (the actuators) and the frame of the UAS (the aircraft).

A further controller regulates the altitude by commanding the cumulative rotor thrust u1, without
interacting with the others.
At the time of the actual hardware assembly, a fourth array of controllers will be required: the
propellers have to be spun at an exact speed, which is calculated by inverting equation 4.11.
The input to each electrical motor, which is usually a Pulse Width Modulation (PWM) voltage
signal, will have to be generated by another PID (likely only PD, due to the almost instantaneous
nature of the rotor dynamics). So far, however, we are not interested in the modelisation of the
actuators and therefore will skip the inverse dynamics calculation and rotor speeds estimation,
unless strictly necessary as discussed in section 4.2.1.

5.3 Structure

Figure 5.3 shows the top-level structure of the controller. The explanation will proceed from the
inner loop outward, so as to evolve the augmented model at each step.

5.3.1 First Loop

The innermost loop generates the torque commands based on the error between each attitude
angle and the commanded received from the second loop:
Figure 5.4a details the lowest-level structure, embedded in the corresponding block of 5.3.
A Proportional + Derivative (PD) architecture has been preferred over the PID con�guration in
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Figure 5.3: Structure

pursuit of a better behaviour: as �gure 5.4b clearly shows, the addition of the integral term would
cause a di�erent dynamics, with a longer settling time and, most importantly, an overshoot that
could interfere with the precision of the control in the wider picture.

(a) p, q, r control loop

(b) PD vs. PID comparison

Figure 5.4: Angular rates control loop

The comparison has been run for the roll dynamics (p), but since the system is symmetrical
in all respects the same conclusion works for the pitch dynamics (q) as well. Furthermore, due
to the similarity in the rotational behaviour as can be understood from the previous chapter
(Section 4.1.5 in particular), these considerations also apply to yaw (r).

All the three controllers have been saturated to the minimum and maximum amounts allow-
able for each command, as calculated through equations (4.4), (4.6) and (4.9). The resulting
limitations, along with the controller coe�cients, are summarised in Table 5.2.

5.3.2 Second Loop

The middle loop controls the attitude based on the reference given by the position control and
the altitude based upon the reference altitude. See �gure 5.5 for the block diagram.

Attitude

Figure 5.6a shows the inner working of the attitude control. The structure is exactly the same
from 5.4a, and given how intimately connected, though hierarchically superior to it it is, this will
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Figure 5.5: ϕ, θ, ψ control loop

not come as a surprise. The only di�erence is one outport gathering the requested Euler angles
and exporting them for plotting.

(a) Attitude control loop

(b) Respone to a ramp roll command, with/out in-
tegral control

In fact, the same considerations about wether or not to employ Integral control have arisen.
This time though, the decision is put o� until the presentation of the next loop: check out ramp
at 5.6b shows the di�erence.

Altitude

In �gure 5.7 is the inner working of the altitude control. There is no particular reason to prefer
the collocation of the altitude control in any loop. In fact, it could have been placed outside of
the three loops: in any case, it does not interact with any of the other controllers. The controller
sports a slightly di�erent structure to the ones seen until now: the block labeled �Error Generator�
receives the current position from the InBus port and the position requirement from inport 1.
The reason to gather this small step into a further subsystem was to hide some minor algebraic
blocks to avoid cluttering the view more than necessary. The task of the block, however, is to
take the third element of each input (which are both vectors) and subtract them, so as to have
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the altitude error in the ground frame:

eGZ (t) = Zreq − ZG(t)

The next step is the rotation in the body frame, since the action is �xed to it. For this reason,
the third input brings in the system the Euler angles vector, from which ϕ and θ are taken:

ebZ(t) =
eGZ (t)

cosϕ cos θ
(5.9)

The transformation is also annotated in the model.
Another interesting aspect is the feed-forwarding of gravitational action: by adding it downhill

of the controller, we can actually rid it of a control action that is always present and focus it on the
control of the altitude. Figure 5.8 shows the performance of the controller in the two situations
with response to a step command. Finally, the output is saturated to prevent requesting excessive

Figure 5.7: Altitude control

actions which could not be delivered by the motors. The formula is (4.4) and the results, along
with the coe�cients, are given in table 5.2.

Figure 5.8: Altitude controller performance with and without gravity feedforward

5.3.3 Third Loop

The last, outermost loop is tasked with the generation of pitch and roll commands based on the
X-Y position error, so as to tilt the rotor thrust and drag the system toward the destination.
Since the motion is tracked in the ground reference and the control forces act on the frame, a
rotation needs to be put in place, as done in the altitude control:

ebX,Y (t) = Rz(ψ)eGX,Y (t), eGX,Y (t) =

{
Xgoal −XG(t)
Ygoal − Y G(t)

}
(5.10)
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This is the reason why �gure 5.9a shows an input port carrying the Euler angles vector, and
the block RefSystemRotation() there depicted executes exactly (5.10). Figure 5.9b is the mask
carried by the subsystem, visualising the need for the rotation: the X,Y components of the
position error evaluated along the ground frame are di�erent from the ones considered through
the body frame.

Again, table 5.2 contains information on this controller. There is also a limit on the output:
this prevents the system to be tilted excessively, either sideways or longitudinally, resulting in
excessive speeds. While having both ϕ and θ constrained to ±5◦ for the presented work, the
system shown acceptable results even when limited to ±25◦.

(a) Position control

(b) Rotation

Heading control

From inspection of �gure 5.9a, it is easy to notice how the heading command signal, ψreq,
is grounded as in an electrical scheme. In the Simulink notation, this block generates a zero
constant signal. An attempt to build a better control logic (or a control logic at all) has not
produced any signi�cant advantage at the time of writing and is left for future work. However,
the idea is to instruct the ψ controller in loop #2 to direct the system head-on toward the
next waypoint: the direct consequence is that the position error with respect to the body frame
is almost entirely along the body-x axis, letting the X-translation (pitch) controller to work
on reducing the distance on its own, and using the Y (roll) controller almost exclusively for
course-correction actions. The �ight dynamics, therefore, would resemble more closely that of a
�xed-wing system.
In this situation, the goal ψ would be calculated as the arctangent of the error components in
the body frame:

ψreq = arctan

(
ebY
ebX

)
(5.11)

However, as stated above, this feature is not yet implemented because of numerical issues in
the simulation to be further investigated. It doesn't seem unlikely that the implementation of
discrete control logics will allow the simulation to be more favourable in this respect.
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P I D min max

p = q 0.194 8.330e-3 -4.46 Nm 4.46 Nm
r 0.471 -0.339e-2 -1.485 Nm 1.485 Nm

ϕ = θ 1.571 0.423* 0.594
ψ 2.087 0.839* 0.284

Z -8.282 -0.748* -18.193 0 57.54 N

X = Y 1.002e-3 1.115 9.434e-3 -5° 5°

Table 5.2: Relevant coe�cients for the angular rates control loop
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6: Complete model and simulation

Figure 6.1 shows how the model and controller have been put together and joined with blocks
called WptSelector, which works as illustrated below, and Output which exports the results of
the simulation to the MATLAB workspace for plotting and examination.

Figure 6.1: Quadcopter model

6.1 Waypoint selection

The WptSelector block, illustrated in �gure 6.2, receives the waypoint sequence calculated by
the algorithm of part I as input and outputs the current waypoint for simulation. The output is
held constant until the system is within a predetermined distance from the waypoint, at which
point an internally-stored index is incremented by the getIndex() block and used as a key to
extract the next set of coordinates from the lookup table loaded with the sequence. When the
index reaches the last point, that is when it equals the number of rows of sai table, the simulation
stops. The initial index is 2, since the �rst waypoint has been set to the starting position and

Figure 6.2: The waypoint selection block
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its coordinates used to initialize the phisical model.

For all the next results, Rmin has been set to 1 metre.

6.1.1 Waypoint enrichment

As will be seen in the next section with the single-waypoint simulation, the overshoot on position
is quite large if the guidance is only based on the calculated waypoints: large position errors will
cause large overshoots and hinder the precision of the command. To overcome this problem, each
path segment has been enriched with more, secondary waypoints interpolated between the two
extremes to make sure guidance is smooother and the overshoots in position are reduced. For
all the next simulation runs, the �secondary� waypoints are distributed every 5 metres.

6.2 Simulation

6.2.1 Single-waypoint tests

The �rst test to be carried out has been a single waypoint at X,Y, Z = 20, 30,−12, starting from
the origin of the reference (0, 0, 0). The trajectory is visible along with its projections in �gure
6.3 and the time history of the simulated variables, namely coordinates, Euler angles, control
inputs and angular rates, are plotted in �gure 6.4.

Figure 6.3: Trajectory for a single-waypoint simulation. The dashed lines are the trajectory
projection on each plane, for ease of viewing.

6.2.2 Large number of points without waypoints enrichment

Figure 6.5 shows a simulation between 102 random points ran without this smoothing routine.
Note how, once at each point, the altitude of the next is reached in a much shorter time compared
to the other coordinates, risking collision with terrain objects. In the absence of a collision
avoidance system, the importance of a thicker, more homogeneous distribution of waypoints is
made evident especially from the last segment, where the trajectory enters the terrain exactly
for this reason.
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(a) The 102-point path projected on the vineyard. Notice how the trajectory often collides with the
ground.

(b) The 102-point trajectory

Figure 6.5: First Complete test with 102 waypoints
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6.2.3 12-waypoint case

The system has been simulated on the same map and waypoints as of chapter 2. What follows
is the 12-point scenario, one waypoint every 5 metres yielded satisfactory results and will be
seen in �gures 6.6 for the trajectory and 6.7 for the simulation parametres as made for the
single-waypoint case.

(a) Trajectory of the 12-waypoints scenario. The dashed lines are the trajectory projection on each plane,
for ease of viewing.

(b) 12-waypoints simulation traced on the vineyard

Figure 6.6: Trajectory and visualisation of the 12-waypoints scenario.

Note how the trajectory is still presenting some ripples due to overshoot and spikes in the an-
gular velocities caused by the derivative actions of the respective controllers. Chapter 7 suggests
some strategies to overcome these imprecisions.
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6.2.4 80-waypoint case

A further simulation has been carried out, as done before, on the second example of cahpter 2.
On the 80-point scenario, again, a secondary waypoint has been added every 5 metres. Results
can be seen in �gures 6.8 for the trajectory and 6.9 for the simulation parametres as made for
the previous cases.

(a) Trajectory of the 80-waypoints scenario. The dashed lines and 3D view have been dropped in favour
of a clearer trajectory top view.

(b) 80-waypoints simulation traced on the vineyard

Figure 6.8: Trajectory and visualisation of the 80-waypoints scenario.

It can be noted how the minimum radius is too large in this case for the system to actually
reach the goal points before being driven to the next, and the 5-metre discretisation is comparable
to the average waypoint distance, causing again some imperfections in the control action. This
calls for a more intelligent way of smoothing the trajectory that can tailor the amount and
distance of secondary waypoints on the situation.
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6.2.5 Double grid test

As a last test, a double grid similar to those traveled for �eld scanning has been built. Each grid
element is 400-by-70 metres and the grid is traveled twice: once forward at 50 metres altitude,
then returning toward the origin at 25 metres. Some overshoot can be seen at the corners, but
the performance overall is satisfactory for the moment.

Figure 6.10: Trajectory of the double grid simulation
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7: Conclusion and Future works

7.1 Path planning

In the �rst part of this work, a way has been devised to take the shortest path through the
sequence of waypoints and to generate feasible path segments while avoiding obstacles. It is
precisely this latter task, the path planning, which requires some careful labor limae both in
terms of precision and of computational requirements: the search through the nodes requires
that the whole �ight domain is memorised, albeit in a simpli�ed and approximate manner, in
the planning tool which most likely will be the ground control station (GCS) of the system.
Not only is this impacting the memory usage, but it also requires a fairly recent, detailed and
up-to-date scanning of the �eld and surroundings which is fortunately already carried out by
the plant-examination platform. Still, the need for a RADAR or LIDAR system is necessary on
board for the avoidance of collision with unpredicted objects.

With regard to path planning algorithms, [10] introduces an interesting philosohpy, called
Kinematic A*, which foresees the implementation of a simpli�ed aircraft model (the same as
for Dubins aircraft) inside the algorithm itself. This allows to replace the grid notation with a
�state� notation: instead of looking for the best node as next move, the object of the search is the
combination of commands on the aircraft, among the possible ones, that will move the system
in the most favourable state. This is done by itegrating the equations of motion from the model
in small, �xed amounts of time, and it is worth noting that due to the inclusion of the �ight
dynamics, wind can also be taken into account, which was impossible with Theta*.

While satisfactory for the moment, the implemented iteration of Theta* has another drawback
bound to LOS checking, as remarked in the dedicated section 3.3.1: some of the nodes can be
�agged as free of objects, and thence �yable, while actually obstructed, depending on how much
they are crossed by the line connecting the two nodes. A stricter checking routine has to be
employied, either with a �ner grid which would in fact collide with the memory requirements, or
with a channel-drawing routine making use of many iterations of Bresenham to draw (or check),
instead of a simple line, a minimum-clearance-radius tube that would account for a safe distance
from obstacles and for the size of the system itself.

Also, still according to [10], obstacle separation and command optimization are directly
embedded by this procedure, enabling them in a simpler manner that would otherwise require
post-processing.

One of the potential spino�s of this methos is that also the heading at each waypoint can be
prescribed more easily, as is done with the constrained heading problem introduced in [6], which
is also about Dubins vehicles: in case of wind on the �eld, the correct heading can be selected
not just to prevent the uncontrolled scattering of the spray by the wind, but to exploit the wind
itself to direct the spray on the target correctly.

Finally, the use of Dubins paths can also avoid the need for path smoothing routines to be
executed as post-processing on the results of Theta*.
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7.2 Guidance and Control

In the second part of the work, a satisfactory model of the quadrotor UAS has been implemented
and simulated in di�erent situations before building and simulating the control architecture.
Some ideas and extensions have been left out due to time constraints, but are documented in
the following for the sake of further development.

Sensor dynamics & Navigation The modelisation of sensor dynamics yields a more realistic
model, where electrical noise and external disturbances picked up by the sensors can make
the game a little harder for the control system and direct its development toward a more
�eld-ready software. The usual sensor package for a UAS is made of:

� a satnav system for navigation;

� an Inertial Measurement Unit (IMU) comprising gyroscopes and linear accelerometers
for the precise determination of attitude and velocities;

� a barometer for altitude estimation;

� a magnetometet for magnetic North determination;

� laser/radio sensors for the determination of ground clearance and obstacle avoidance.

Discrete control The control structure runs on phisical hardware and is therefore constrained
to run discretely at some submultiple of the hardware clock. This is not necessary a dis-
advantage, as running each control loop at an increasingly high frequency (proceeding
inwards) allows the progressive augmentation of the system without the overall perfor-
mance becoming too �nervous�. The frequent update of the outer loops risks to feed highly
oscillating commands that could undermine the performance of the downstream controllers
(think about how the derivative action responds to an error signal changing even slightly
in a short time). It is probably su�cient for the current application to have the position
loop run at 10 Hz, the attitue at 100 Hz and the angular velocity at 1 kHz.

PID upgrades The classical PID can be improved in some aspects. As stated above, the con-
trollers always produce a peak in the command when either the setpoint or the measurement
changes suddenly, due to the nature of the derivative action. This can be limited by limit-
ing the derivative output (either a saturation or a rate limiter in Simulink, for example) or
by having it act only on the measurement. This improvement is called Derivative on Mea-
surement (DoM) and was found along with interesting others in Brett Beauregard's Project
Blog1. While not yet tested on the system, some of these modi�cations look promising and
worthy of a deeper analysis.

Velocity limitation Limiting the movement speed of any robotic system in populated envi-
ronments is important in terms of safety and comfort of the bystanding operators. Once
some kind of speed sensor has been implemented (it could also be simply reading the state
derivatives during the simulation), the limitations can be enforced at the controller level
with di�erent strategies, whose envisioning has not been object of the present work.

Heading guidance This topic has been introduced in section 5.3.3 and will render the �ight
performance more like that of a �xed-wing UAV, with smoother control actions at the
advantage of energy consumption.

Investigate other control strategies Other control strategies, chie�y for high-level position
control , can be enforrced and might allow for online trajectory modi�cation in situations
of need such as potential collisions. An example could be Model Predictive Control [12],
but again during the span of the present work no further strategies have been examinated.

1http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/

G&C strategies for UAS applications for Precision Agriculture
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