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Chapter 1

Introduction

Model Reference Adaptive Control (MRAC) is one of the main approaches to adap-
tive control, where the goal is that of making a system, with uncertain or even
unknown parameters, to follow a time-varying but bounded reference trajectory.
A reference model is designed to generate a desired trajectory which is in general a
�ltered version of the reference signal. The MRAC closed-loop is made of an ordi-
nary feedback control law that contains the plant, a parameterized controller, and
an adjustment mechanism that generates the controller parameter estimates on-
line. This is called a direct adaptive approach as we want to directly estimate the
controller parameters, without estimating the unknown plant parameters. In this
scenario, the reference model basically describes the input-output properties we
want for the closed-loop system. It is guaranteed that, for some classes of systems,
the plant output is able to asymptotically follow the output of the reference model
(which in turn may be able to follow the reference signal). If we perfectly knew
the parameters of the plant, adaptation would not be needed and this problem is
known in the literature as the reference model following problem or Model Refer-
ence Control (MRC): MRAC is indeed the adaptive version of MRC. Speci�cally,
following the so-called certainty equivalence principle, we design ideal gains (from
MRC, as if we knew the parameters of the plant) that could lead the plant to the
desired input-output behaviour and thus reference model tracking. However, since
these gains are unknown in view of the unknown dynamics, we design adaptive
laws for these gains that lead the plant to follow the reference model output.

The problem of Output Regulation (OR) refers to the design of a control system
able to achieve asymptotic tracking of prescribed trajectories and/or asymptotic
rejection of disturbances, in a robust way. The main feature that distinguishes
the output regulation problem from conventional tracking and rejection problems
is the presence of an autonomous system, known as exosystem, that generates the
exogenous inputs, which includes disturbances (to be rejected) and/or references
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Introduction

(to be tracked). The well-known internal model principle states that, in order to
solve the problem in a robust way, a copy of the exosystem must be incorporated in
the feedback controller. Obviously, this in general requires perfect knowledge of the
exosystem dynamics. In this scenario, the problem is solved by �rst augmenting
the plant with an internal model unit, designed to properly incorporate the model
of the exosystem and, then, the cascade of the plant and the internal model unit
is stabilized by properly designing a stabilizer (depending on the location of the
internal model unit we distinguish between pre-processing and post-processing
schemes). A challenging problem arises when the dynamics of the exosystem are
not assumed anymore to be perfectly known: in this case, adaptive techniques are
required and the problem is referred to as the adaptive output regulation problem.

Both in MRAC and OR problem, as well in various control systems, the passiv-
ity property plays an important role in the design of stabilizers. In particular, the
incremental passivity is being studied and applied to more and more cases, rising
interesting points in the design of a stabilizer.

The aim of this work is to study the two di�erent adaptive approaches related
to linear time-invariant systems. In light of the recent advances in the �eld of
adaptive output regulation, the primary contribution of this thesis is that of com-
paring the two aforementioned approaches in terms of control goal, assumptions
and robustness properties, and to show to what extent they are similar. Moreover,
a benchmark problem is carefully crafted so that the two approaches can both
be used to solve the same problem, in order to have a comparison also in terms
of performance. Finally, the possibility to merge the two techniques is evaluated,
discussing what would be the advantages of doing so. Throughout this work, the
stability and convergence analysis is performed via Lyapunov-like techniques, and
numerical examples demonstrate the e�ectiveness of the protocols.

The comparison is focused on two particular cases. For the OR problem, it is
considered the general framework with references and disturbances generated by a
non-autonomous exosystem, where the stability of the system and the convergence
are achieved by decoupling the external input from the regulation error. For the
MRAC problem a variant of the problem shown in [Serrani, 2013] is presented: the
reference model and the plant to be controlled are both driven by a signal generated
by an autonomous exosystem. The stability analysis and the convergence of the
error to zero, are demonstrated by means of the LaSalle-Yoshizawa theorem.

Then the the merging of the OR problem and the adaptive design is done
studying the incremental passivity property. It is shown how to design an output
feedback controller that makes the plant to be controlled incrementally passive.
In the case the plant is perfectly known, it is possible to obtain a nominal value
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for the static feedback by means of a regular storage function and satisfying the
condition of incremental passivity. In presence of uncertainties, an adaptive law is
implemented to estimate the values of the feedback.

Considering the same problem, the estimated value will be di�erent from the
nominal one, relaxing the constrain on the value.

1.1 Thesis outline

The thesis is organized as follows.
Since one of the main topic in control system is stability, in Chapter 2 a review

of the general notions useful for the thesis is presented, as well as an introduction
on the passivity.

In Chapter 3 the Output regulation problem is studied, starting from the anal-
ysis at steady-state, to the special case in which we consider a nonautonomous
exosystem.

Chapter 4 is dedicated to the other problem, Model Reference Adaptive Control;
after an introduction on the simpler cases, the attention is focused on the approach
shown in [Serrani, 2013] and on the special case of the input generated by an
autonomous exosystem.

In Chapter 5 it is presented the incremental passivity property in the OR prob-
lem, with the adaptive design of the controller. It is also provide a numerical
example in order to show the theoretical results.

In the end, in Chapter 6, a comparison between the two approaches of OR and
MRAC is presented, as well as few considerations on the results of the numerical
example on the incremental passivity.

3



Chapter 2

Basic Tools

2.1 Stability

Stability analysis plays a crucial role in system theory. All the results and de�nition
in the following sections can be found in all books of control theory.

2.1.1 Norms and Lp Spaces

In order to measure the size of a signal, is necessary to introduce the norm function
‖x‖, which satisfy the following properties:

� The norm of a signal is strictly positive, except the case where the signal is
identically zero: ‖x‖ ≥ 0 with ‖x‖ = 0 if and only if x = 0 .

� For any positive constant λ and signal x the following relation is valid: ‖λx‖ =
λ‖x‖.

� The triangle inequality ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖ is valid for any signals x1

and x2.

The term ‖ · ‖ is used for the norm of a signal, while | · | for the norm of vectors
and matrices.

It is possible to consider di�erent space of signals, such the space of piecewise
continuous, bounded function, and piecewise continuous, square-integrable func-
tions.

Considering the two spaces of functions, it is possible to show two de�nitions
of norm. In the space of piecewise continuous, bounded function, the space is
denoted by L∞ and the norm is de�ned as

‖x‖∞ , sup
t≥0
|x (t) | <∞ (2.1)
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If the norm ‖x‖∞ exists, then it is possible to say that x ∈ L∞.
The space of piecewise continuous, square-integrable functions is denoted by

Lmp , where the subscript p stand for the type of norm that is used and the super-
script m for the dimension of the signal. The norm is de�ned as

‖x‖Lp ,
(∫ ∞

0

‖x (τ) ‖pdτ
)1/p

<∞ (2.2)

for p ∈ [1,∞), and, as done before, if the norm ‖x‖p exists, then x ∈ Lp.
A particular case of the Lmp norm is the L2 norm, de�ned as follows

‖x‖2 =

√(∫ ∞
0

x (τ)T x (τ) dτ

)
(2.3)

2.1.2 Properties of Function

De�nition 2.1.1 (Continuity). A function f : [0,∞) → R is continuous on
[0,∞) if for any given ε0 > 0 there exists a δ (ε0, t0) such that ∀t0, t ∈ [0,∞) for
which |t− t0| < δ (ε0, t0) we have |f (t)− f (t0) | < ε0.

De�nition 2.1.2 (Uniform Continuity). A function f : [0,∞) → R is uni-

formly continuous on [0,∞) if for any given ε0 > 0 thereexists a δ (ε0) such that
∀t0,t ∈ [0,∞) for which |t− t0| < δ (ε0) we have |f (t)− f (t0) < ε0.

De�nition 2.1.3 (Piecewise Continuity). A function f : [0,∞)→ R is piece-
wise continuous on [0,∞) if, for any �nite interval [t0, t1] ⊂ [0,∞), f is con-
tinuous on [t0, t1] except for a �nite number of points.

De�nition 2.1.4 (Lipschitz). A function f : [a, b]→ R is Lipschitz on [a, b] if
|f (x1)− f (x2) | ≤ k|x1−x2|,∀x1, x2 ∈ [a, b], where k ≥ 0 is a constant referred to
as the Lipschitz constant.

De�nition 2.1.5 (Locally Lipschitz). A function f (x) is said to be locally

Lipschitz on a domain D ⊂ Rn if each point of D has a neighbourhood D0 such
that f satis�es the Lipschitz condition (De�nition 2.1.4) for all points in D0 with
some Lipschitz constant k.

De�nition 2.1.6 (Globally Lipschitz). A function f (x) is said to be globally
Lipschitz if it is Lipschitz on Rn.

Lemma 2.1.1 (Barbalat's Lemma). Consider a function f (t) being a uniformly

continuous function in the interval [0,∞), if the limit limt→∞
∫ t

0
f (τ) dτ exists,

then
f (t)→ 0 as t→∞

5



Basic Tools

De�nition 2.1.7 (Persistency of excitation). A piecewise continuous signal
u (t) is persistently exciting (PE), if ∃α1, α2, T > 0 such that

α1 I ≤
∫ t+T

t

u (τ)u (τ)> dτ ≥ α2 I, ∀t ≥ 0 (2.4)

The property of persistent excitation is fundamental in order to guarantee pa-
rameter convergence in many adaptive schemes.

2.2 Lyapunov's Stability

Consider an autonomous system described by the following di�erential equation

ẋ = f (x) (2.5)

where f : D→ Rn is a locally Lipschitz map from the domain D ⊂ Rn into Rn.

De�nition 2.2.1. x̄ ∈ D is said to be an equilibrium point of (2.5) if

f (x̄) = 0 (2.6)

De�nition 2.2.2. The set of points in the state space generated by the solution is
called the trajectory (or orbit) of the system corresponding to the input signal u (t)
and the initial condition x (0).

Let x (t) be the nominal solution of a system corresponding to given input signal
and initial condition x (0). Let xp (t) be the perturbed solution of the system with
same input signal as before, but di�erent initial condition xp (0) /= x (0).

De�nition 2.2.3. The solution x (t) is stable if ∀ε > 0, ∃δ (ε) > 0 such that

‖x (0)− xp (0) ‖ < δ ⇒ ‖x (t)− xp (t) ‖ < ε, ∀t ≥ 0

De�nition 2.2.4. The solution x (t) is asymptotically stable if it is stable and

lim
t→∞
‖x (t)− xp (t) ‖ = 0

De�nition 2.2.5. The solution x (t) is unstable if it is not stable.

2.2.1 Lyapunov's Direct Method

The Lyapunov's Direct Method is the method analyse stability properties based
on the form of f (x) rather then the solutions.

6
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Let us de�ne a continuously di�erentiable function V : D → R in the domain
D ⊂ Rn, that contains the origin. The time derivative of V along the solutions of
system (2.5) is given by

V̇ (t) =
∂V

∂x
f (x) (2.7)

The Lyapunov's stability theorem is stated as follows

Theorem 2.2.1 (Lyapunov's Stability Theorem). Let x = 0 be an equilibrium
point of (2.5) and D ∈ Rn be a domain containing x = 0. Let V : D → R be a
continuously di�erentiable function such that

V (0) = 0 and V (x) > 0 in D− {0}

Then, x = 0 is stable if
V̇ (x) ≤ 0 in D

Moreover, x = 0 is asymptotically stable if

V̇ (x) < 0 in D− {0}

De�nition 2.2.6 (Lyapunov function). A function V : D→ R is a Lyapunov

function for the system (2.5) if, in some ball BR = x ∈ Rn : ‖x‖ ≤ R ⊂ D,

(i) V is positive de�nite and has continuous partial derivatives.

(ii) V̇ is negative semi-de�nite.

In the case of linear systems, it is possible to write the Lyapunov function in
its quadratic form as follows

V = xT P x (2.8)

where P is a real symmetric positive de�nite matrix P = P> > 0.

De�nition 2.2.7. A function V (x) is said to be positive de�nite if
xT P x > 0, ∀x ∈ Rn − {0}.

Due to the condition V̇ (x) ≤ 0, when the trajectory crosses the surface V (x) =
0, it moves inside the set Ωc = {x ∈ Rn : V (x) ≤ x} and can never come out.

De�nition 2.2.8. A set M is said to be an invariant set with respect to (2.5) if

x (0) ∈M⇒ x (t) ∈M, ∀t ∈ R

This means that if a solution belongs to M at some time instant, then it belongs
to M for all future and past time. The set M is said to be positively invariant

if
x (0) ∈M⇒ x (t) ∈M, ∀t ≥ 0

7
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It is possible to state two important theorem for the study of the stability.
Considering time-invariant system, the LaSalle Invariance Principle is adopted.

Theorem 2.2.2 (LaSalle). Let Ω ⊂ D be a compact set that is positively invariant
with respect to (2.5). Let V : D→ R be a continuously di�erentiable function such
that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0. Let M
be the largest invariant set in E. Then every solution starting in Ω approaches M
as t→∞.

For the study of non-autonomous system, is possible to use the LaSalle-Yoshizawa
theorem, in which di�erently from the LaSalle Invariance Principle, the set can be
variant.

Theorem 2.2.3 (LaSalle-Yoshizawa). Let x̄ = 0 be the equilibrium point of the
nonautonomous system

ẋ = f (t, x) , x (0) = x0 (2.9)

and assume that f (t, x) is locally Lipschitz in x. Let V : [0,∞) × R → R be a
continuously di�erentiable function V (t, x) satisfying

(i) V (t, x) > 0 and V (0) = 0 (positive de�nite).

(ii) V (t, x)→∞ as ‖x‖ → ∞ (radially unbounded).

(iii) V̇ (t, x) =
∂V (t, x)

∂t
+
∂V (t, x)

∂x
f (t, x) ≤ −W (x) ≤ 0

where W (x) is a positive continuous function. Then all solutions x (t) of (2.9) are
uniformly globally bounded and

lim
t→∞

W (x (t)) = 0 (2.10)

and the system (2.9) is uniformly globally stable.

2.3 Passivity

The energy dissipation is a known concept in the study of dynamical system. The
passivity property characterizes the energy consumption of a system. Consider a
dynamical system in the following a�ne form

ẋ = f (t, x) + g (t, u)

y = h (t, x)
(2.11)

where x ∈ Rn, u ∈ Rp and y ∈ Rq.

8
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De�nition 2.3.1 (Passivity). The system (2.11) is said to be passive if there
exists a smooth nonnegative function V : R× Rn → R≥0 (usually called a storage
function) satisfying

∂V

∂t
+
∂V

∂x
f (t, x) ≤ 0

∂V

∂x
g (t, x) = hT (t, x)

for all t ∈ R≤0 and all x ∈ Rn.

It can also be said that the system (2.11) is passive if V satis�es

V̇ ≤ y> u (2.12)

De�nition 2.3.2 (Strict passivity). The system (2.11) is said to be strictly
passive if there exists a smooth positive de�nite storage function V : R×Rn → R≥0,
and a positive de�nite function α (·) (called dissipation rate) satisfying

∂V

∂t
+
∂V

∂x
f (t, x) ≤ −α (x)

∂V

∂x
g (t, x) = hT (t, x)

for all t ∈ R≤0 and all x ∈ Rn.

First let us consider the de�nition of a proper rational transfer function.

De�nition 2.3.3. A proper rational transfer function G (s), where s = σ+ jω, is
called positive real if

(i) G (s) is positive for real values of s.

(ii) Re [G (s)] ≥ 0 for all Re [s] > 0.

Assume that G (s) is not identically zero for all s. Then G (s) is called strictly
positive real if G (s− ε) is positive real for some ε > 0.

De�nition 2.3.4. Consider the system described by

y = k (u) (2.13)

with input u ∈ Rp and output y ∈ Rp. The system (2.13) is passive if the function
k (·)satis�es the following condition

k (u)> u ≥ 0 (2.14)

9



Basic Tools

Figure 2.1: Feedback Interconnections between two passive systems

Lemma 2.3.1. Consider the two system

ẋ1 = f1 (x1, e1) , y1 = h1 (x1, e1)

ẋ2 = f2 (x2, e2) , y2 = h2 (x2, e2)
(2.15)

Both system are passive, and interconnected through e1 = u1−y2 and e2 = u2 +y1.
The interconnected system, shown in Figure 2.1 is passive.

Proof. Each subsystem has its own storage function V1 (x1) and V2 (x2). From
the de�nition of passivity and consider both the subsystems, the inqeuality (2.12)
becomes

V̇1 + V̇2 ≤ y>1 e1 + y>2 e2 = y
|
1top (u1 − y2) + y>2 (u2 + y1) (2.16)

Hence,
V̇1 + V̇2 ≤ y>1 u1 + y>2 u2 (2.17)

Then the interconnected system is passive.

Consider now the case of linear systems. In order to study the passivity proper-
ties and to show the relation between positive realness and passivity, it is necessary
to also highlight the Kalman-Yakubovich-Popov lemma.

Lemma 2.3.2 (Positive Real). Let G (s) = C (s I − A)−1B be a transfer matrix
where (A,B) is controllable and (C,A) is observable[Appendix A]. Then G (s) is
positive real if and only if there exist a symmetric positive de�nite matrix P and
a vector q such that

P A+ AT P = − q qT

P B = CT
(2.18)

Lemma 2.3.3 (Kalman-Yakubovich-Popov). Let G (s) = C (s I − A)−1B be
a transfer matrix where (A,B) is controllable and (C,A) is observable. Then G (s)

10
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is positive real if and only if and only if for any positive de�nite matrix L, there
exist a symmetric positive de�nite matrix P , a scalar ν > 0 and a vector q such
that

P A+ AT P = − q qT − ν L
P B = CT

(2.19)

Consider the system
ẋ = Ax+B u

y = C x
(2.20)

If there exists a symmetric positive de�nite matrix P ∈ Rn×n and a symmetric
positive semi-de�nite matrix Q ∈ Rn×n such that

AT P + P A ≤ −Q
P B = CT

then the above system is passive, and the pair (C,A) is detectable if and only if
the pair (A,B) is stabilizable. In addition, if Q > 0, then the system is strictly
passive.

Lemma 2.3.4. The linear-time invariant minimal realization [Appendix A]

ẋ = Ax+B u

y = C x

with G (s) = C (s I − A)−1B is

� passive if G (s) is positive real.

� strictly passive if G (s) is strictly positive real.

2.3.1 Incremental Passivity

Let us give a de�nition of incremental passivity and show some basic results.

De�nition 2.3.5. Consider the system

ẋ = L (x, u, t)

y = G (x, t)
(2.21)

with state x ∈ Rn, input u ∈ Rp and output y ∈ Rq. It is possible to say
that the system (2.21) is incrementally passive if there exists a storage function
V (t, x1, x2) : R+ × R2n → R+ such that for any two inputs u1 (t) and u2 (t) and
any two solutions of system (2.21) x1 (t), x2 (t) corresponding to these inputs, the

11
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respective outputs y1 (t) = G (x1 (t) , t) and y2 (t) = G (x2 (t) , t) satisfy the inequal-
ity

V̇ =
∂V

∂t
+
∂V

∂x1

L (x1, u1, t) +
∂V

∂x2

L (x2, u2, t) ≤ (y1 − y2)T (u1 − u2) (2.22)

De�nition 2.3.6. Consider the system described by

y = k (u, t) (2.23)

with input u ∈ Rp and output y ∈ Rp. The system (2.23) is incrementally stable if
the function k (·, ·) satis�es the following condition

(k (u1, t)− k (u2, t))
T (u1 − u2) ≥ 0 (2.24)

Lemma 2.3.5. Let us consider the two systems

ẋ = Gx (x, ux, t) , yx = Lx (x, t)

ż = Gz (z, uz, t) , yz = Lz (z, t)
(2.25)

Both systems are incrementally passive. They are interconnected through uxi =
α yxi + vxi and uzi = −αT yzi + vzi, where α ∈ Rp×p is a square matrix gain. Then
the interconnected system, shown in Figure 2.2, is incrementally passive with input

v =
(
vTx , v

T
z

)T
and output y =

(
yTx , y

T
z

)T
.

Figure 2.2: Feedback Interconnections between two incrementally passive systems

Proof. Each subsystem has its own storage function Vx (t, x1, x2) and Vz (t, z1, z2):
it is possible to de�ne the common storage function as the sum of the two: W =
Vx + Vz.

From the de�nition of incremental passivity and considering both the subsys-
tem, the inequality (2.22) becomes

Ẇ ≤ (yx1 − yx2)T (ux1 − ux2) + (yz1 − yz2)T (uz1 − uz2) (2.26)

12
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Replacing the interconnections, we obtain

Ẇ ≤ (y1 − y2)T (v1 − v2) (2.27)

where vi =
(
vTxi, v

T
zi

)T
and yi =

(
yTxi, y

T
zi

)T
. Then the interconnected system is

incrementally passive.

De�nition 2.3.7. A storage function V (t, x1, x2) is called regular if for any se-
quence (tk, x1k, x2k), k = 1,2, . . ., such that x2k is bounded, tk tends to in�nity and
|x1k| → +∞, it holds that V (t, x1, x2)→ +∞, as k → +∞.

Lemma 2.3.6. Consider the system described by

ẋ = G (x, u, w (t))

y = L (x,w (t))
(2.28)

Let w (t) and ẇ (t) be bounded on R+.
Suppose that the system (2.28) is incrementally passive with input u and output

y. Suppose that for u = 0 the system has a bounded solution x̄ (t) with zero output
ȳ (t) = 0 for t ≥ t0. Considering a feedback of the type u = −K y, where K is
positive semide�nite, all the solution of the system (2.28) are de�ned and bounded,
and satisfy y (t)T K y (t)→ 0 as t→ +∞.

Proof. Consider the closed loop system (2.28) with u = −K y. From the previous
lemma, there exist a solution x̄ (t) that is bounded with the output ȳ (t) = 0, t ≥ t0.
The input corresponding to this solution is ū (t)−K ȳ (t) = 0.

Considering the inequality expressed in (2.22), and the two solutions, x̄ (t),
ȳ (t) = 0 and ū (t) = 0 for x2 , y2 and u2, and x (t), y (t) and u (t) = −K y for x1,
y1 and u1, the derivative of the storage function becomes

V̇ (t, x (t) , x̄ (t)) ≤ −y (t)T K y (t) (2.29)

By integrating it, it is possible to obtain

V (t, x (t) , x̄ (t))− V (t0, x (t0) , x̄ (t0)) ≤ −
∫ t

t0

y (s)T K y (s) ds ≤ 0 (2.30)

Therefore, V (t, x (t) , x̄ (t)) ≤ V (t0, x (t0) , x̄ (t0)) for all t from the maximal
interval of existence of x (t). From the previous lemma is known that x̄ (t) is
bounded, and since V is regular, these two conditions imply boundedness of x (t)
on its maximal interval of existence. The boundedness on x (t) implies the bound-
edness on ẋ (t) on R+. Together with the conditions on w (t) and ẇ (t), this implies
that ẏ (t) is bounded on R+. Hence, y (t)T K y (t) is uniformly continuous on R+.
From (2.30) ∫ +∞

t0

y (s)T K y (s) ds ≤ V (t0, x (t0) , x̄ (t0)) ≤ +∞ (2.31)

By Barbalat's lemma (Lemma 2.1.1), y (t)T K y (t)→ 0 as t→ 0.
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The properties that have been de�ned for the non-linear systems, are also valid
for the case of linear systems. Furthermore a passive linear system is also incre-
mentally passive.

Lemma 2.3.7. System of the form

τ̇ = Φ τ + αΓ e

v = Γ> τ,
(2.32)

where Φ is a skew-symmetric matrix and α > 0, is incrementally passive.

Proof. Consider the storage function

V (τ1, τ2) =
1

2α
|τ1 − τ2|2 (2.33)

A system is incrementally passive if the following inequalities holds

V̇ (x1, x2) ≤ (y1 − y2)> (u1 − u2)

In the considered case, the inequality becomes

V̇ (τ1, τ2) ≤ (v1 − v2)> (e1 − e2) (2.34)

The time derivative of the storage function can be written as

V̇ (τ1, τ2) =
1

α
(τ1 − τ2)>Φ (τ1 − τ2) + (τ1 − τ2)> Γ (e1 − e2) (2.35)

The �rst element of the time derivative of the storage function can be deleted
because Φ is a skew-symmetric matrix. The inequality (2.34) can be rewritten as

V̇ (τ1, τ2) ≤ (τ1 − τ2)> Γ (e1 − e2) = (v1 − v2)> (e1 − e2) (2.36)

Then the system (2.32) is incrementally passive.

14



Chapter 3

Output Regulation

The Output Regulation problem regards a kind of problems where we want to
achieve simultaneous reference tracking and disturbance rejection. The di�erence
between the conventional tracking and rejection problem is that the signals to be
tracked and/or rejected are generated by a known autonomous system, called ex-
osystem. This kind of framework is referred as problem of asymptotic disturbance
rejection and/or tracking, or just as problem of output regulation. There are three

di�erent approaches, based on the knowledge of the exosystem: tracking by dy-
namic inversion, tracking via internal models, and adaptive tracking. Tracking by
dynamic inversion consists computing precise initial state and a precise control
input; in this case it is necessary the "perfect knowledge" of the entire trajectory
to be tracked and of the model of the plant. This type of approach is not suitable
in presence of uncertainties on the plant parameters as well on the reference sig-
nal. Internal model-based tracking is able to secure asymptotic decay to zero of
the tracking error, in presence of disturbances on both the plant and the reference.
Adaptive tracking consists in tuning the parameters of the control input computed
via dynamic inversion in such a way to guarantee asymptotic convergence to zero
of the tracking error. This method can handle parameter uncertainties, but still
presupposes the knowledge of the trajectory to be tracked. The purpose of this
chapter is to present the design of the internal model-based method.

3.1 Problem formulation

Consider a linear plant written in the following form

ẋ = Ax+B u+ P w

e = Ce x+Qew

ȳ = Cȳ x+Qȳ w

(3.1)
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Figure 3.1: Closed-Loop System [Isidori, 2017].

The �rst equation represents the state x ∈ Rn of the plant, subject to the control
input u ∈ Rp and the exogenous input w ∈ Rd including both the disturbances
to reject and the reference to track. The second equation represents a set of
regulated variables (or regulation errors) e ∈ Rm. The third equation de�nes a set
of measured variables ȳ ∈ Rq.

The exogenous input is part of the family of signals that are solutions of the so-
called exosystem: in general the exogenous signals are generated by an autonomous
linear system described by the following di�erential equation:

ẇ = S w (3.2)

for every initial conditions w (0). In the analysis of the problem it is assumed that
the matrix S is a marginally stable square matrix.

Control Objective The control problem is to design a controller able to make
the close-loop signals bounded and make the regulation error e decay asymptoti-
cally to zero as t→∞ , for any initial condition of the plant and the exosystem,
and for every exogenous input in a prescribed family of functions.

It is considered the following model of the controller, in order to provide a
feedback control action

ẋc = Ac xc +Bc ȳ

u = Cc xc +Dc ȳ
(3.3)

where xc ∈ Rnc is the state and ȳ is the measured information.
The resulting closed-loop system is shown in Figure 3.1 and described by the

following equations

ẋ = (A+BDcCȳ)x+B Cc xc + (P +BDcQȳ)w

ẋc = BcCȳ x+ Ac xc +BcQȳ w

e = Ce x+Qew

(3.4)

in which the input is w and the output e.
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Figure 3.2: Steady-state analysis for an autonomous exosystem.

3.2 Steady-state Analysis

An important tool in the study of the output regulation problem is the steady-
state analysis. Asymptotically stable linear system - driven by an harmonic signal
as input - generates as output an harmonic signal having the same frequency but
di�erent amplitude and phase.

Consider the system shown in Figure 3.2, with the plant described by

ż (t) = F z (t) +Gu (t) (3.5)

where S ∈ Rd×d is critically stable and F ∈ Rn×n is Hurwitz.
The trajectories of the system can be written as

w (t) = eS tw (0)

z (t) = eF tz (0) +

∫ t

0

eF (t−τ)Gw (t) dτ
(3.6)

When t → ∞, the exogenous signal does not decay to zero, due to the matrix
S that is marginally stable. The �rst component of the second equation instead,
due to the fact that F is Hurwitz, goes to zero asymptotically leaving only the
second component.

It is possible to de�ne the steady-state behaviour of the the state z as a linear
combination of ω:

zss (t) = Πw (t) (3.7)

where Π ∈ Rn×d.
Replacing the steady-state (3.7) in (3.5) is possible to rewrite the equation only

in function of w
Π ẇ = F Πw +Gw (3.8)

The resulting relation is the so called Sylvester equation or regulator equation

ΠS = F Π +G (3.9)

Proposition 3.2.1. The state z converges to the steady-state (3.7) if there exists
a matrix Π solution of the Sylvester equation (3.9).
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Proof. De�ne the variable error z̃ as

z̃ = z − Πw

Taking the time derivative, the previous equation becomes

˙̃z = ż − Π ẇ = F (z̃ + Πw) +Gw − ΠS w

The last three terms are essentially the regulator equation, so they can be elimi-
nated, and the previous equation becomes

˙̃z = F z̃ → z̃ (t) = eF t z̃ (0)

Since F is Hurwitz, the value of z̃ goes asymptotically to 0. It is possible to
conclude that at steady-state z converges to

z (t) = Πw (t) (3.10)

The existence of Π is guaranteed if and only if

σ (F ) ∩ σ (S) = 0

that means that the two spectra are disjoint. In this case the condition holds
because S is marginally stable and F is Hurwitz.

3.3 Full Information Problem

Consider the system described by

ẋ = Ax+B u+ P w

e = C x+Qw
(3.11)

with state x ∈ Rn, the input u ∈ Rp, the exogenous signal w ∈ Rd generated by
the exosystem (3.2) and the regulation errors e ∈ Rm.

Assume that both the state x and the exogenous signal w are available for
measurement and we have complete knowledge on the exosystem and in particular
on the matrix S: this is the so called full-information problem.

In order to simplify the solution, instead of (3.3), it is considered the following
form for the control law

u = K x+ Lw (3.12)

The complete control scheme is shown in Figure 3.3.
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Figure 3.3: Full information control scheme.

Proposition 3.3.1. The problem of output regulation in the case of full-information
has a solution if and only if:

(i) (A,B) is stabilizable, due to the fact that the closed-loop trajectory must be
bounded, so a stabilizing control action should exist.

(ii) exists a couple of (Π,Ψ) that is a solution for the Francis's equations

ΠS = AΠ +BΨ + P

0 = C Π +Q
(3.13)

Proof. Similarly to before, the steady-state of x can be expressed as follows

xss (t) = Πw (t) (3.14)

In the case of full-information problem it is possible to derive also the steady-state
of the signal u, replacing (3.14) in the control law (3.12) obtaining

u = K Πw + Lw (3.15)

De�ning

Ψ = K Π + L

the (3.15) can be written as

uss (t) = Ψw (t) (3.16)

The ideal steady-state is de�ned as the target trajectories where the state x
and the input u have to converge in order to have the problem ful�lled.
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The Francis's equations are obtained considering the steady-state of x and u
and replacing them in (3.1) as follows

Πẇ = AΠw +BΨw + P w

e = C Πw +Dw
(3.17)

Considering the second equation, the objective of the control problem is to have
the regulation error go to zero asymptotically. This is only possible if exists a Π
such that C Π +D = 0.

[Su�ciency] Suppose that the pair of matrices (A,B) is stabilizable and exist a
matrix K that is able to make the close-loop system stable. The control law can
be written replacing L = Ψ− ΠK obtaining

u = Ψw +K (x− Πw)

As done before, at steady-state the value of x should be equal to Πw, so it is
possible to make a change of coordinates as follows

x̃ = x− Πw

Deriving and replacing x

˙̃x = (A+BK) x̃+ (AΠ +BΨ + P − ΠS)︸ ︷︷ ︸
=0

w

˙̃x = (A+BK) x̃

Choosing K such that the matrix (A+BK) is Hurwitz, the variable error goes
to 0 asymptotically

lim
t→∞

x̃ (t) = 0

Consider now the regulator equation error and the same change of coordinates
done before:

e = C x̃+ C Πw +Qw

The last two elements represent the second equation of (3.13) and the sum is equal
to zero. The remaining term is function of x̃ that goes to zero asymptotically.
Hence, at steady-state, the regulation error will be equal to zero.

This way we can say that

lim
t→∞

x̃ (t) = 0 lim
t→∞

e (t) = 0 (3.18)
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Remark 3.3.1. If the parameter matrices of the plant are unknown, it is impos-
sible to �nd a solution pair (Π,Ψ) to the Francis' equations (3.13).

Lemma 3.3.1 (Nonresonance condition). The Francis' equation (3.13) have
a solution for any (P Q) if and only if

rank

(
A− λI B
C 0

)
= #rows ∀λ ∈ σ (S) (3.19)

If this is the case and the matrix on the left-hand size of (3.19) is square, then the
solution pair (Γ,Ψ) is unique.

The nonresonance condition is considered as a necessary and su�cient condition
if there exists a solution for any pair of matrices (P,Q).

Robust Output Regulation

Consider the case in which the matrices of the plant are dependent on a vector µ
of uncertain parameters:

ẇ = S w

ẋ = A (µ)x+B (µ)u+ P (µ)w

e = Ce (µ)x+Qe (µ)w

ȳ = Cȳ (µ)x+Qȳ (µ)w

(3.20)

Considering the case in which the control law is obtained with values of the
plant matrices di�erent from the real ones. In this case the regulation error will
never go to zero. Then the control law de�ned in (3.12) is not robust against this
kind of uncertainties.

The regulation error can also grow unbounded due to the fact that, if the
matrices used to design the control law have huge di�erences with the real ones,
the eigenvalues of the close-loop system can also be positive, making the closed-
loop system unstable.

3.4 Measurement Feedback Problem

Consider now the case in which the states are unavailable for feedback, and are
accessible only on measured variables like the regulated output and a supplementary
set of independent measured variables ȳ ∈ Rq.
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Figure 3.4: Measurement feedback control scheme.

The system is modelled as follows:

ẇ = S w

ẋ = Ax+B u+ P w

e = Ce x+Qew

ȳ = Cȳ x+Qȳ w

(3.21)

where we know that x ∈ Rn, e ∈ Rm and w ∈ Rd. In order to solve the problem
of measurement feedback, it is necessary to consider a di�erent control scheme
from the ones used before.

Due to the fact that the states are not available, a post-processor is added after
the plant to be controlled: this element is usually called an internal model unit
(IMU of the exosystem).

It is usually characterized by the following equation

τ̇ = Φ τ + Γ e (3.22)

where τ ∈ Rm·d.
In order to compute the two matrices Φ and Γ of the IMU, let us consider the

minimal polynomial of S:

Ψ (s) = α0 + α1 s+ · · ·+ αd−1s
d−1 + sd = 0

and build the following square matrix

Φ =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
−α0 I −α1 I −α2 I · · · −αd−1 I

 (3.23)
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and the matrix
Γ =

(
0 0 · · · 0 I

)>
(3.24)

All the elements are blocks m×m.

Proposition 3.4.1. Since the matrix Φ embeds the minimal polynomial of the
matrix S that characterizes the exosystem, the post-processor (3.22) is usually
called an internal model (of the exosystem). It has the following properties:

(i) the pair of matrices (Π,Γ) is controllable.

(ii) exists a matrix T that is nonsingular, such that

T ΦT−1 =


S 0 · · · 0
0 S · · · 0
· · · · · ·
0 0 · · · 0


We consider now the augmented system composed by the plant and the internal

model, given by (
ẋ
τ̇

)
=

(
A 0

ΓCe Φ

)(
x
τ

)
+

(
B
0

)
u

ya =

(
C 0
0 I

)(
x
τ

) (3.25)

where C = col (Ce, Cȳ).

Proposition 3.4.2. The augmented system is stabilizable and detectable if the
following properties are valid:

(i) if (C,A) is detectable, then (x, τ) (the augmented system) is detectable.

(ii) if (A,B) is stabilizable and the non resonance condition

rank

(
A− λ I B
Ce 0

)
= #rows(n+m)

then (x, τ) is stabilizable.

Checked the conditions for stabilizability and detectability, [Isidori, 2017], it
is possible to stabilize the system. The design of the controller is based on the
following model:

ξ̇ = Aξ ξ +Hy y +Hτ τ

u = Cξ ξ + Ly y + Lτ τ
(3.26)
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In order to de�ne the closed-loop system, we rewrite the equations of the states
x and τ :

ẋ = Ax+B (Cξ ξ + Ly (C x+Qw)) +B Lτ τ + P w

τ̇ = Φ τ + Γ (Ce x+Qew)

and write the closed loop system in matrix form:
ẇ
ẋ
τ̇

ξ̇

 =


S 0 0 0

P +B LyQ A+B Ly C B Lτ B Cξ
ΓQe ΓCe Φ 0
HyQ Hy C Hτ Aξ




w
x
τ
ξ

 (3.27)

The closed-loop system can be rewritten, for simplicity, in the following form(
ẇ
ż

)
=

(
S 0
G F

)(
w
z

)
(3.28)

with z = col (x, τ, ξ).
We can consider the closed loop system as we have done in the steady-state

analysis, Section (3.2): considering that the augmented system is stabilizable and
detectable, we can choose the elements of F , then:

� σ (S) ∩ σ (F ) = 0;

� exist Π such that is a solution of the Sylvester equation ΠS = F Π +G;

� the closed loop system has a steady-state that is asymptotically stable.

Consider now the solution of the Sylvester equation: we obtained Π =

 Πx

Πτ

Πξ


It is possible to de�ne the relation between the three elements of Π: we de�ne

Πe = Ce Πx +Qe

but due to the fact that we know that at steady-state e → Πew, so in order to
solve the output regulation problem we need Πe = 0. In order to prove it, consider
the following relation, taking into account that Πx and Πτ are the solutions of

Πτ S = Φ Πτ + Γ Πe

Keeping in mind the structure of Φ and G it derives that

Πτ1

[
Sd + αd−1 S

d−1 + · · ·+ αq S + α0 Ip
]

= Πe (3.29)

From the Cayley-Hamilton theorem, the polynomial inside the square brakes is
equal to 0, and then Πe = 0.
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Remarks

Di�erently from the full-information case, in these kind of problems, the solution
obtained is robust with respect to the parameter uncertainties vector µ, due to
the fact that the stabilizing system does not rely on the knowledge of the system
matrices.

3.5 Generalized Output Regulation

Until now it was considered an autonomous exosystem of the following form

ẇ (t) = S w (t) , w (t0) = w0 (3.30)

and the system described by

ż (t) = F z (t) +Gw (t) , z (t0) = z0 (3.31)

where F is Hurwitz. The solutions of system (3.30)-(3.31) can be written as

w (t) = eS(t−t0)w0

z (t) = eF (t−t0)z0 +

∫ t

t0

eF (t−τ)Gw (τ) dτ

= eF (t−t0)z0 +

[∫ t

t0

eF (t−τ)GeS(τ−t0)dτ

]
w0

(3.32)

At steady-state, the state z (t) converge to zss (t), de�ned as

zss (t) = Πw (t) (3.33)

where Π is the unique solution of the Sylvester equation

ΠS = F Π +G

3.5.1 Steady-state Analysis

Consider now a non-autonomous exosystem described by

ẇ (t) = S w (t) +Rr (t) , w (t0) = w0 (3.34)

where r is an external signal, piecewise continuous in time, and the system de-
scribed in Figure 3.5, with the plant

ż = F z +Gw, z (t0) = z0 (3.35)
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Figure 3.5: Steady-State analysis for a non-autonomous exosystem.

As done before it is possible to write the trajectory of the exosystem as

w (t) = eS (t−t0)w0 +

∫ t

t0

eS(t−τ)Rr (τ) dτ (3.36)

and write the steady-state of zss as follows

zss (t) =

∫ t

t0

eF (t−τ)Gw (τ) dτ

=

[∫ t

t0

eF (t−τ)GeS(τ−t0)dτ

]
w0 +

∫ t

t0

eF (t−τ)G

∫ τ

t0

eS(τ−ξ)Rr (ξ) dξdτ

(3.37)

Di�erently from before, it is more complicated to write a steady-state trajectory
of the form (3.33).

Suppose that (3.37) can be rewritten as

zss (t) = Πw (t) + Γ r (t) (3.38)

Theorem 3.5.1. The problem of Output Regulation has a solution if there exists
a pair (Π,Γ) that is a solution of the Sylvester equation

ΠS w + ΠRe+ Γ ṙ = F Πw + F Γ r +Gw (3.39)

Proof. Consider the change of coordinates z̃ = z −Πw − Γ r. Deriving in time, it
is possible to obtain

˙̃z = F z̃ + F Πw + F Γ r − ΠS w − ΠRr − Γ ṙ +Gw︸ ︷︷ ︸
=0

(3.40)

Due to the fact that F is Hurwitz, the variable error goes to zero asymptotically.
This way it is possible to say that

lim
t→∞

z̃ = 0
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Figure 3.6: Output regulation scheme proposed in [Saberi et al., 2001].

3.5.2 Full-Information Problem

Consider now the Full-Information Problem described by the system

ẋ = Ax+B u+ P w

e = C x+Qw
(3.41)

and the exosystem in (3.34). Consider the case in which every information about
the input r are unknown.

In the solution of the problem it is highlighted an obstacle: suppose it is possible
to describe the steady-state of x as xss = Πw+ Γ r and that there is a control law
of the form u = K x+ Lw. The regulator equations can be written as follows

ΠS w + ΠRr + Γ ṙ = AΠw + AΓ r +BK Γ r +BΨw + P w

0 = C Πw + C Γ r +Qw
(3.42)

where Ψ = K Π + L. It is evident, how the knowledge of the input r and its
derivative ṙ are necessary to solve the regulator equations.

A solution to the problem is given in [Saberi et al., 2001], with the control
scheme shown in Figure 3.6.

Theorem 3.5.2. Consider the system

ẇ = S w +Rr

ẋ = Ax+B u+ P w

e = C x+Du+Qw

(3.43)

The problem of output regulation is solvable if:

(i) There exists a pair (Π,Ψ) that solves the regulator equations

ΠS = AΠ +BΨ + P

0 = C Π +DΨ +Q
(3.44)
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(ii) The following property holds

ImΠR ⊆ V− (A,B,C,D) (3.45)

with the following control law

u = K x+ Lw (3.46)

Proof. Consider the second assumption. The idea behind is to decouple the in-
put from the observable part. Consider the system described in (3.35) and the
exosystem in (3.34).

Applying a change of coordinate τ = H z and applying a Kalman decomposi-
tion, the plant can be described as(

τ̇

ξ̇

)
=

(
ψ11 0
ψ21 ψ22

)
︸ ︷︷ ︸

Ψ

(
τ
ξ

)
+

(
G1

G2

)
w (3.47)

Suppose r = 0, the steady-state can be written as

(
τ
ξ

)
= Πw, and there

exist a solution Π to the Sylvester equation

ΠS = Ψ Π +G

Applying the change of coordinate

(
τ̃

ξ̃

)
=

(
τ
ξ

)
−
(

Π1

Π2

)
w the (3.47)

becomes (
˙̃τ
˙̃ξ

)
= Ψ

(
τ̃

ξ̃

)
− ΠRr + Ψ Πw − ΠS w +Gw︸ ︷︷ ︸

=0(
˙̃τ
˙̃ξ

)
=

(
ψ11 0
ψ21 ψ22

)(
τ̃

ξ̃

)
−
(

Π1R
Π2R

)
r (3.48)

In order to have convergence to zero of τ̃ , it is necessary to have Π1R = 0. Writing
the steady-state of the two dynamics,

˙̃τ = ψ11 τ̃ → τ̃ (t) = eψ11(t−t0)τ̃ (t0)

˙̃ξ = ψ22 ξ̃ + ψ21 τ̃ − Π2Rr → ξ̃ (t) = eψ22(t−t0)ξ̃ (t0) +

∫
· · ·

(3.49)

This allows to have an autonomous dynamics for τ , such that it guarantees the
convergence to zero.
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Consider now the system (3.41). Suppose r = 0, in such case, the steady-state
is given by xss (t) = Πw (t) and uss (t) = Ψw (t), and the regulator equations are
the same as in the previous section

ΠS = AΠ +BΨ + P

0 = C Π +Q
(3.50)

with solution pair given by (Π,Ψ).
Let x̃ = x− Πw and ũ = u−Ψw , then the system (3.41) becomes

˙̃x = A x̃+B ũ− ΠRr

e = C x̃
(3.51)

while the control law (3.46) can be rewritten as follows

ũ+ Ψw = K (x̃+ Πw) + Lw

ũ = K x̃ (3.52)

Clearly the tracking error e does not go to zero due to the presence of the term
ΠRr. In order to show this problem, it is possible to replace (3.52) in (3.51) to
obtain

˙̃x = (A+BK) x̃− ΠRr

Choosing K such that matrix A+BK is Hurwitz, is not su�cient to have

lim
t→∞

x̃ (t) = 0

It is then possible to modify system (3.41), adding the term Du to the second
equation

ẋ = Ax+B u+ P w

e = C x+Du+Qw
(3.53)

Considering again r = 0, the regulator equations become

ΠS = AΠ +BΨ + P

0 = C Π +DΨ +Q
(3.54)

Letting x̃ = x − Πw, ũ = u − Ψw , and replacing ũ = K x̃, it is possible to
obtain

˙̃x = A x̃+B ũ− ΠRr

e = C x̃+DK x̃
(3.55)

Due to the second condition of Theorem 3.5.2, K must be chosen in order to
not have any in�uence of the input on the regulation error. This way even if ˙̃x is
not equal to zero at steady-state, K allows to have

lim
t→∞

e (t) = 0 (3.56)
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Chapter 4

Model Reference Adaptive

Control

Adaptive control refers to a dynamic control method used by a controller that must
be able to obtain a robust behaviour in presence of uncertainties on the model.

The Model Reference Adaptive Control (MRAC) is a direct adaptive strategy
with some adjustable controller parameters and an adjusting mechanism able to
update continuously these parameters.

The MRAC is an evolution of a simpler problem, the Model Following Control
or Model Reference Control (MRC). In the MRC problem, the main objective is to
�nd a feedback control law such that the I/O properties of the closed loop function
of the system match with the ones of a given Reference Model. The structure of a
MRC scheme for a LTI, SISO plant is shown in Figure 4.1.

Figure 4.1: Model Reference Control [Ioannou and Sun, 2012].

The output of the Reference Model Wm (s) is ym(t), which is the desired out-
put that we want and that y(t) must follow in order to obtain the desired I/O
properties. The problem is to design a controller C(θ∗c ), such that the closed loop
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Figure 4.2: Direct MRAC [Ioannou and Sun, 2012].

transfer function from r to y is equal to the one of the Reference Model Wm.

This match of the transfer function means that for any given reference input
r (t), the tracking error e1 , y − ym, that represents the di�erence between the
desired value of the output or the state and the real one, goes to zero asymptoti-
cally.

In order to achieve this property, we need to have a minimum phase transfer
function for the plant: the matching condition of the two transfer functions is ob-
tained due to the cancellation of the zeros of the plant transfer function, replacing
them with the zeros of the Reference Model transfer function. The cancellation is
possible only if the zeros are stable, in order to avoid unbounded signals due to the
cancellation of unstable zeros, so the transfer function must be minimum phase.

This means that a good understanding of the plant and the knowledge of the
speci�c θ∗ are mandatory in order to solve this problem.

When we do not have any information on the plant, regarding its parameter
vector θ∗, we cannot use the MRC scheme due to the fact that we cannot calculate
θ∗c . Due to the impossibility to obtain θ∗c , it is possible to use the estimate θ(t)c.
The resulting control scheme is the so called Model Reference Adaptive Control.

It is possible to distinguish between two types of MRAC schemes: the direct
and indirect MRAC. In the indirect adaptive control the plant parameters are
estimated on-line and then are used to obtain the controller parameters. In the
direct adaptive control, the controller parameters are estimated without using the
plant parameter estimates.

This design approach, using θc (t) (for the direct case) or θ (t) (for the indirect
case) as if they are the true parameters, is called certainty equivalence. The idea
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Figure 4.3: Indirect MRAC [Ioannou and Sun, 2012].

behind the certain equivalence approach is that as the estimates converge to the
true value of the parameters, the performances of the adaptive controller C (θc)
tends to be equal to the ones of the controller C (θ) in the case of known parame-
ters. In reality the values of the estimates will never be equal to the real one, and
the convergence to the real values is no more a requirements for the convergence
of the tracking error.

We have talked about on-line estimates in the adaptive control: the use of on-
line estimators is necessary in the cases where there are parameters that change
with time or that are unknown. In the simple case of stable linear system with
parameters �xed, is possible to use o�-line estimators in order to compute the
parameters. The on-line estimator can be used in either stable and unstable plants.

4.1 Model Reference Control

In order to understand better the framework, we start the study of the Model
Reference Adaptive Control considering the simpler case of the Model Reference
Control for a scalar case and for a vector case.
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4.1.1 MRC: Scalar example

We consider the following scalar plant:

ẋ = a x+ b u, x (0) = x0 (4.1)

where a, b ∈ R are constant and known, and the reference model given by:

ẋm = am xm + bm r (4.2)

where am < 0, bm are known and xm,r are measured at each time t. The signal r
is a bounded piecewise continuous signal and u is the control input.

Control Objective The control objective is to �nd a control law u such that all
signals in the closed-loop plant are bounded, x tracks the desired state xm and the
tracking error e = x− xm goes to zero. To achieve this we consider the following
control law:

u = −k∗ x+ l∗ r (4.3)

We can rewrite the (4.1) and (4.2) as follows:

ẋ = a x+ b (−k∗ x+ l∗ r) = (a− b k∗)x+ b l∗ r

ẋm = am xm + bm r

and in order to have the same behaviour, we calculate k∗ and l∗ as

k∗ =
a− am
b

l∗ =
bm
b

(4.4)

We consider b /= 0 in order to have a plant that is controllable. These two de�nition
of k∗ and l∗ guarantees that{

x = xm,∀t ≥ 0 whenx (0) = xm (0)

|x− xm| → 0 exponentially fast when x (0) /= xm (0)
(4.5)

Numerical example

We consider now an example considering the plant model (4.1) and the reference
model (4.2), where we have a = 1, b = 3, am = −2 and bm = 4. The Simulink
model is shown in Figure (4.4).

The plant is controllable due to the fact that b /= 0 and using (4.4) we obtain
k∗ = 1 and l∗ = 1.33. We simulate the system considering the two cases: one
where we have the same initial condition for the plant and the reference model
and one where are di�erent.
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Figure 4.4: Simulink model for MRC example (4.1), (4.2), (4.4).

Looking at the simulations in Figure 4.5, the relations in (4.5) are guaranteed
and the error tends to zero exponentially fast.

4.1.2 MRC: Full-state measurement example

Let now consider the case where we have a n-th order plant, given by:

ẋ = Ax+B u (4.6)

where A ∈ Rn×n, B ∈ Rn×p and the state x ∈ Rn. The reference model is de�ned
as follows:

ẋm = Am xm +Bm r (4.7)

where Am ∈ Rn×n is a stable matrix, Bm ∈ Rn×p and, as before, r ∈ Rp is a
bounded vector reference signal.

Control Objective As before, the control objective is to �nd a control law u
such that the all the signals are bounded, x tracks xm, and the tracking error e
goes to zero. Considering the case where the matrices A and B are known, we can
use the following control law:

u = −K∗> x+ L∗ r (4.8)

where K∗ ∈ Rn×p and L∗ ∈ Rp×p and rewrite the equation (4.6) obtaining the
close-loop equation:

ẋ =
(
A−BK∗>

)
x+B L∗ r

Hence, due to the fact that the close-loop transfer function must be equal to
the transfer function of the reference model (4.7), and being the plant model
controllable, we can write

A−BK∗> = Am B L∗ = Bm (4.9)
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(a)

(b)

Figure 4.5: Simulations for di�erent initial conditions in the scalar case: (a) x (0) =
xm (0) = 0; (b) x (0) = −2 and xm (0) = 0.

This way we can choose K∗> and L∗ in order to satisfy (4.9). The chosen matrices
allow to obtain an exponential convergence of x to xm for any bounded reference
signal and the convergence to zero of the error e = x− xm.
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Numerical example

Consider the following transfer function representation for the plant

yp =
s+ 1.5

s2 + 0.75s+ 2.5
up (4.10)

and the following transfer function representation for the reference model

ym =
s+ 50

s2 + 15s+ 50
r (4.11)

It is possible to transform the two transfer function representations in state-
space representation in the so called controllable canonical form; due to the fact
that both the transfer functions are strictly proper it is possible to write them in
order to reveal all the coe�cients in both the numerator and denominator

G (s) =
n1 s

3 + n2 s
2 + n3 s+ n4

s4 + d1 s3 + d2 s2 + d3 s+ d4

(4.12)

and then insert the coe�cients directly into the state-space model as follows

ẋ (t) =


0 1 0 0
0 0 1 0
0 0 0 1
−d4 −d3 −d2 −d1

x (t) +


0
0
0
1

u (t)

y (t) =
[
n4 n3 n2 n1

]
x (t)

(4.13)

This way it is possible to obtain the state-space representation for the plant
with

A =

[
0 1
−2.5 −0.75

]
B =

[
0
1

]
C =

[
1.5 1

]
D = 0

(4.14)

and for the reference model with

Am =

[
0 1
−50 −15

]
Bm =

[
0
1

]
Cm =

[
50 1

]
Dm = 0

(4.15)

In order to respect the (4.9) we choose

K∗> =
[

47.5 14.25
]

L∗ = 1 (4.16)

Considering as initial condition

x (0) =

[
1
−0.5

]
xm (0) =

[
−0.2

1

]
the resulting behaviour is shown in Figure 4.6.

Using the same initial conditions instead, allows to have a perfect tracking and
the error e remains zero during the simulation.
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Figure 4.6: Full-state measurement case.

4.2 Model Reference Adaptive Control

The implementation of the MRAC is mandatory when we do not have informations
about the plant to be controlled. In this case, it is necessary to design a dynamical
update mechanism in order to obtain the parameters of the control law: we talk
about the Adaptive Law. Again, as done before in the case of the MRC, we
consider a scalar case and a vector case.

4.2.1 MRAC: Scalar example

We consider the following plant model

ẋ = a x+ b u, x (0) = x0 (4.17)

In this case the parameters a, b ∈ R are unknown and we assume the the sgn (b)
to be known. The reference model is described by

ẋm = am xm + bm r (4.18)

where am < 0,bm are known and we assume that the state xm and the bounded
piecewise continuous signal r are available for measurements at each time t. In
order to track the desired state xm for any reference signal r, we need to have the
same transfer function for the reference model and the plant to control.
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Control Objective Again, we want the state x to track the state xm and the
exponential convergence of the error e to zero. We choose as a control law the
following expression

u = −k∗x+ l∗r

The two parameters k∗ and l∗ can not be computed as done in the MRC case (4.4)
due to unknown parameters a and b. It is necessary to use another control law

u = −k (t)x+ l (t) r (4.19)

where k (t) and (t) are respectively the estimate of k∗ and l∗ at time t. In order to
generate k (t) and l (t) on-line it is necessary to implement an adaptive law. The
knowledge of the sign of b means that also the sign of l∗ is known.

Adaptive Law The on-line estimation of the parameters is given by the two
following di�erential equation{

k̇ (t) = f1 (e, x, r, u)

l̇ (t) = f2 (e, x, r, u)
(4.20)

For a better understanding, the tracking error and the parameters errors are de-
�ned as follows

e = x− xm
k̃ = k (t)− k∗

l̃ = l (t)− l∗
(4.21)

The use of the SPR-Lyapunov approach allows us to design the two adaptive
laws. We consider the following candidate Lyapunov function

V
(
e, k̃, l̃

)
=

e2

2︸︷︷︸
V1

+
k̃2

2 γ1 |l∗|︸ ︷︷ ︸
V2

+
l̃2

2 γ2 |l∗|︸ ︷︷ ︸
V3

(4.22)

where γ1 > 0 and γ2 > 0 are the adaptive gains to be tuned. The time derivative
of the Lyapunov function is given by

V̇
(
e, k̃, l̃

)
= e ė︸︷︷︸

V̇1

+
k̃

γ1 |l∗|
˙̃k︸ ︷︷ ︸

V̇2

+
l̃

γ2 |l∗|
˙̃l︸ ︷︷ ︸

V̇3

(4.23)

From the (4.21) we compute the time derivative of the tracking error

ė = ẋ− ẋm (4.24)
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where, taking into account the de�nition of the parameter errors, we obtain

ẋ = a x+ b u = a x+ (−k x+ l r)

= a x− b k∗ x− b k̃ x+ b l∗ r + b l̃ r

= (a− b k∗)︸ ︷︷ ︸
am

x+ b l∗︸︷︷︸
bm

r − b k̃ x+ b l̃ r

so we have
ẋ = am x+ bm r − b k̃ x+ b l̃ r

ẋm = am xm + bm r.
(4.25)

(4.24) can be rewritten as

ė = am x+ bm r − b k̃ x+ b l̃ r − am xm − bm r
= am e− b k̃ x+ b l̃ r.

(4.26)

De�ned the time derivative of the tracking error e, it is possible to rewrite the �rst
component of the time derivative of the Lyapunov function

V̇1 = e ė = am e
2 − e b k̃ x+ e b l̃ r. (4.27)

In order to have V (4.22) decreasing, we have to follow the Lyapunov's sta-
bility theorem exploited in (2.2.1): so it must be positive de�nite (in order to
have asymptotic stability) or positive semi-de�nite (stability). In order to satisfy
the Lyapunov's stability theorem, for simplicity we can say that the desired time
derivative is

V̇
(
e, k̃, l̃

)
= am e

2. (4.28)

The stability is proved also by the Barbalat's Lemma. This way we can write the
other two component of V̇ as follows

V̇2 =
k̃

γ1 |l∗|
˙̃k = e b k̃ x

V̇3 =
l̃

γ2 |l∗|
˙̃l = −e b l̃ x.

(4.29)

Exploting the following relation |l∗| = sgn (l∗) l∗ the two previous equations allow
to obtain the adaptive laws

k̇ = +sgn (l∗) γ1 e bm x

l̇ = −sgn (l∗) γ2 e bm r.
(4.30)
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Figure 4.7: Simulink model for the MRAC example, (4.17), (4.18), (4.19), (4.30).

It is used the previous notation with just k and not k̃ due to the fact that the time
derivative of the parameter error is

˙̃k = k̇

since k∗ is a scalar. This is also valid for l. This way is possible to obtain bound-
edness for all signals in the closed-loop system. Moreover the state x (t) tracks
asymptotically the reference model state xm. It is important to notice that the
estimated values of k (t) and l (t) do not converge to the values k∗ and l∗ as t→∞.

Numerical example

Let us consider the same example studied in Section 4.1.1 with the same values
of the parameters, but considering only the case where both the plant and the
reference model have the same initial condition x (0) = xm (0) = 0.

The Simulink model is shown in Figure (4.7).
Simulating the system is possible to see the convergence of the state x to the

state xm in Figure 4.8. It is also clear how the values of the estimated parameters
are di�erent from the ones obtained in the MRC example.

4.2.2 MRAC: Full-state measurement example

Consider the n-th order plant

ẋ = Ax+B u (4.31)

where A ∈ Rn×n, B ∈ Rn×p and the state x ∈ Rn. The two matrices A and B are
unknown, but the pair (A,B) is controllable. The reference model is de�ned as
follows:

ẋm = Am xm +Bm r (4.32)
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Figure 4.8: State behaviours in the scalar case of the MRAC.

Figure 4.9: Error behaviours in the scalar case of the MRAC.

where Am ∈ Rn×n is a stable matrix, Bm ∈ Rn×p and, as before, r ∈ Rp is a
bounded vector reference signal.
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Control Objective As in the scalar case, the control objective is to �nd a
control law such as

u = −K∗> x+ L∗ r (4.33)

in order to have tracking by x of the state xm and asymptotic convergens of e to
zero, where K∗ ∈ Rn×p and L∗ ∈ Rp×p. If the matrices A and B were known it
would be possible to obtain K∗ and L∗ as in (4.9). The parameters of the control
law are unknown, then it is necessary to use a similar approach to the one used in
the scalar case. The control law is modi�ed with the estimate of the parameters
as follows

u = −K (t)x+ L (t) r (4.34)

The two estimates are computed used an appropriate adaptive law.

Adaptive Law We choose the following Lyapunov's candidate function

V
(
e, K̃, L̃

)
= e> P e︸ ︷︷ ︸

V1

+
K̃> K̃

γ1|L∗|︸ ︷︷ ︸
V2

+
L̃2

γ2|L∗|︸ ︷︷ ︸
V3

(4.35)

with {
K̃ (t) = K (t)−K∗

L̃ (t) = L (t)− L∗
(4.36)

and where P ∈ Rnp×np is a symmetric positive de�nite matrix that satis�es the
Lyapunov equation

P Am + Am
> P = −Q (4.37)

for some Q = Q> > 0 ∈ Rnp×np . The choice of the matrix Q is arbitrary and it
will not a�ect the asymptotic behaviour but just the transient response. As done
before, the time derivative of the Lyapunov's candidate function is

V̇
(
e, K̃, L̃

)
= 2 e> P ė︸ ︷︷ ︸

V̇1

+
2 K̃>

γ1|L∗|
˙̃K︸ ︷︷ ︸

V̇2

+
2 L̃>

γ2|L∗|
˙̃L︸ ︷︷ ︸

V̇3

(4.38)

As in (4.24) we obtain the time derivative of the tracking error e

ė = Am e+B K̃ x+B L̃ r (4.39)

Consider now only the �rst component of (4.38), it can be rewritten as follows

V̇1 = 2 e> P ė = 2 e> P Am e− 2 e> P B K̃ x+ 2 e> P B L̃ r

= e> P Am e+ e>Am
> P e− 2 e> P B K̃ x+ 2 e> P B L̃ r

= −e>Qe− 2 e> P B K̃ x+ 2 e> P B L̃ r

(4.40)
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We again can rewrite the other two components of (4.38) as

V̇2 =
2 K̃>

γ1|L∗|
˙̃K = −2 e> P B K̃ x

V̇3 =
2 L̃>

γ2|L∗|
˙̃L = 2 e> P B L̃ r

(4.41)

and remembering that |L∗| = sgn (L∗)L∗ it is possible to obtain the following
update law

K̇> = +sgn (L∗) γ1 e
> P Bm x

>

L̇ = −sgn (L∗) γ2 e
> P Bm r

(4.42)

4.3 Output feedback

Let us consider the SISO LTI system

ẋ = A (µ)x+B (µ)u

y = C (µ)x
(4.43)

with the state x ∈ Rn, the control input u ∈ R and the output y ∈ R. The ma-
trices A (·), B (·) and C (·), are considered dependent on a vector µ of uncertainty
parameters, that ranges in a compact set Kµ ⊂ Rp. As shown in [Serrani, 2013]
and in [Serrani, 2018] is it is possible to describe the system (4.43) in a state-space
setting, making certain assumptions:

Assumption 4.3.1. The pair (A (µ) , B (µ)) is controllable, and the pair
(C (µ) , A (µ)) is observable for any µ ∈ Kµ.

Assumption 4.3.2. The system in (4.43) has relative degree equal to one for any
µ ∈ Kµ.

Assumption 4.3.3. The sign of the high-frequency gain b (µ) = C (µ)B (µ) is
known and constant for any µ ∈ Kµ.

These three assumptions are much stronger than needed, due to the fact that
in order to solve this problem, the stabilizability and detectability are su�cient.
As shown in (A.2) it is better to change the coordinates of the system in order to
easily exploit the similarities with the output regulation problem.

Due to the fact that the system has a relative degree equal to one, from As-
sumption 4.3.2, after the change of coordinates, the system can be described in its
normal form:

ż = A11 (µ) z + A12 (µ) y

ẏ = A21 (µ) z + a22 (µ) y + b (µ)u
(4.44)

43



Model Reference Adaptive Control

where z ∈ Rn−1; it is assumed that b (µ) ≥ b0, for a given constant b0 > 0, for all
µ ∈ K. b (µ) is the so-called high-frequency gain.

As in all the MRAC problem, we have a reference model given by a minimum-
phase and internally stable system, that describes the desired input/output be-
haviour of the system (4.43)

ẋm = Am xm +Bm r

ym = Cm xm
(4.45)

with the state xm ∈ Rm and r as a bounded piecewise di�erentiable function.
Due to the dependency of the system on the uncertainty parameter µ, it is

necessary to look for a certainty-equivalence adaptive controller of the form

ξ̇ = Fc (θ̂) ξ +Gc (θ̂)y

u = Hc (θ̂) ξ +Kc (θ̂)y
(4.46)

with state ξ ∈ Rν and input y = col (xm, r, e). For the parameter θ̂ a suitable
update law is de�ned by

˙̂
θ = φ (θ̂, ξ,y) (4.47)

with θ̂ ∈ Rp̄.
It is known that in order to solve the classic problem of MRC, the plant (4.43)

needs to be minimum phase, for all µ ∈ Kµ. This means that we can consider the
following assumption.

Assumption 4.3.4. There exist a continuous, symmetric and positive de�nite
matrix-valued function P : Rp → R(n−1)×(n−1), and positive constants a1, a2 satis-
fying

a1 I ≤ P (µ) ≤ a2 I

P (µ)A11 (µ) + A11
> (µ)P (µ) ≤ −I

for all µ ∈ Kµ.

4.3.1 Certainty-Equivalence controller

The design of the controller is done under the certainty-equivalence paradigm. Un-
der certain assumptions the controller is derived: the knowledge of the uncertainty
parameter µ and the availability of the state z for feedback.

In order to design the certainty-equivalence controller, the problem must be
shifted from a tracking problem to a regulation one. This is done introducing the
tracking error e = y − ym. Deriving it in time and replacing the derivatives of the
outputs y and ym the equation of the tracking error becomes

ė = ẏ − ẏm = A21 (µ) z + a22 (µ) y + b (µ)u− Cm (Am xm +Bm r)

44



Model Reference Adaptive Control

Adding and subtracting am e, where am is a desired gain parameter, the previous
equation becomes

ė = −am e+ A21 (µ) z + (a22 (µ) + am) y − ȳr + b (µ)u

where ȳr = (CmAm + amCm)xm + CmBm r, with am > 0. From the equation
above it is possible to de�ne the control law that allows to have convergence of the
tracking error

u = − 1

b (µ)
[A21 (µ) z + (a22 (µ) + am) y − ȳr] (4.48)

The resulting closed-loop system, replacing y, can be described as follows

ẋm = Am xm +Bm r

ż = A11 (µ) z + A12 (µ)Cm xm + A12 (µ) e

ė = −am e
(4.49)

Considering this closed-loop system, it is possible to highlight that the trajecto-
ries of the last subsystem converge asymptotically if all the other trajectories are
bounded, and this is guaranteed if r ∈ L∞.

Remark 4.3.1. The (4.48) can be shown as the sum of two contributions u =
uzd + ust, de�ned as

uzd = − 1

b (µ)
[A21 (µ) z + A22 (µ)xm − CmBm r] , ust = − 1

b (µ)
(a22 (µ) + am) e

(4.50)
where A22 (µ) = a22 (µ)Cm − CmAm.

The �rst component of the control action uzd makes invariant the zero dynamics
of the augmented system (4.43)-(4.45). The forced trajectories are given by

ẋm = Am xm +Bm r

ż = A11 (µ) z + A12 (µ)Cm xm
(4.51)

The second component of the control action ust allows to make the subspace
of the zero dynamics, globally attractive. The fact that the trajectories are forced
on the zero dynamics explains why it is necessary for the system (4.45) to be
minimum-phase.

Remark 4.3.2. The second component of the control action can be de�ned in a
di�erent way, with just a simple high-gain feedback of the form u = −k e, with
k > 0. There exists a k? > 0 such that a22 (µ)− b (µ) k < 0 for any k ≥ k?.
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Until now we considered the availability of z (·) for feedback. Consider now the
case in which the state z (·) is not available for feedback. In order to design the
controller, it is necessary to modify the control law (4.48), previously obtained,
introducing a reduced-order observer for z (·). The chosen observer can be describe
by the following relation

ξ̇ = Fo (µ) ξ +Go1 (µ) y +Go2 (µ)u (4.52)

with state ξ ∈ Rn−1, and the matrices Fo and Go =
(
Go,1 Go,2

)
directly depen-

dent on µ. The introduction of the reduced-order observer implies the de�nition
of the observation error as follows

χ = z − ξ − L (µ) y (4.53)

where L (µ) ∈ R(n−1)×1 is an output-injection gain, arbitrarily chosen.
Replacing z with the available signals ξ+L (µ) y, the control law (4.48) becomes

u = − 1

b (µ)
[A21 (µ) ξ + (a22 (µ) + am + A21 (µ)L (µ)) y − ȳr] (4.54)

Since the pair (C (µ) , A (µ)) is assumed to be observable, for any µ ∈ Kµ, apply-
ing a simple PHB test (A.3.3), is possible to say that also the pair (A21 (µ) , A11 (µ))
is observable, for any µ ∈ Kµ. Now it is possible to de�ne the matrix L (µ): given
any Hurwitz polynomial

pd (λ) = λn−1 + dn−2 λ
n−2 + · · ·+ d1 λ+ d0

exist a matrix L (µ), such that the following relation is valid

det (A11 (µ)− L (µ)A21 (µ)− λI) = pd (λ)

Deriving the (4.53) and replacing z it is possible to obtain (omitting the pa-
rameter µ to simplify the notation)

χ̇ = ż − ξ̇ − L ẏ = A11 z + A12 y − Fo ξ
−Go1 y −Go2 u− L [A21 z + a22 y + b u]

= [A11 − LA21]χ+ [A11 − Fo − LA21] ξ

+ [A11 L+ A12 −Go1 − LA21 L− La22] y − [Go2 + L b ]u

In order to have an internally stable system for describing the observation error,
the matrices of the reduced-order observer are selected as follows

Fo (µ) = A11 (µ)− L (µ)A21 (µ)

Go1 (µ) = A12 (µ) + Fo (µ)L (µ)− a22 (µ)L (µ)

Go2 (µ) = −b (µ)L (µ)

(4.55)
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The closed-loop system (4.49) can be rewritten, using the coordinates χ for the
observer instead of ξ and adding the parameter A21 (µ)χ to the tracking error, as
follows

ẋm = Am xm +Bm r

ż = A11 (µ) z + A12 (µ)Cm xm + A12 (µ) e

χ̇ = Fo (µ)χ

ė = A21 (µ)χ− am e

(4.56)

The �rst term of the tracking error goes to zero when the observer reaches the real
values of z (·), leaving only −am e.

Replacing (4.54) in (4.52) we obtain the controller in the desired form (4.46),
with the matrices

Fc (θ̂) = A11 (θ̂), Gc (θ̂) =
(
Gc,1 (θ̂) Gc,2 (θ̂) Gc,3 (θ̂)

)
Hc (θ̂) = −A21 (θ̂)

b (θ̂)
, Kc (θ̂) =

(
Kc,1 (θ̂) Kc,2 (θ̂) Kc,3 (θ̂)

) (4.57)

where the submatrices Gci (·) and Kci (·) are given by

Gc,1 (θ̂) = A11 (θ̂)L (θ̂)Cm + A12 (θ̂)Cm − L (θ̂)CmAm

Gc,2 (θ̂) = −L (θ̂)CmBm

Gc,3 (θ̂) = A11 (θ̂)L (θ̂) + A12 (θ̂) + am L (θ̂)

Kc,1 (θ̂) = − 1

b (θ̂)

(
A21 (θ̂)L (θ̂)Cm + a22 (θ̂)Cm − CmAm

)
Kc,2 (θ̂) =

1

b (θ̂)
(CmBm)

Kc,3 (θ̂) = − 1

b (θ̂)

(
A21 (θ̂)L (θ̂) + a22 (θ̂) + am

)
(4.58)

where θ̂ is the tunable vector. The 'true value' of the parameter is given by the
identity θ (µ) = µ.

Remark 4.3.3. Due to the fact that A11 (µ) is Hurwitz for all µ ∈ Kµ, the con-
troller described in (4.46) is internally stable.

4.3.2 Controller Parametrization and System Immersion

The choice of the controller in (4.46) is not suitable for the design of the update

law (4.47), due to the dependency on the tunable parameter θ̂. The design of the
control law is much more complicated due to the dependency of the dynamics on
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the tunable parameter. In order to solve this problem, a solution is to con�ne the
dependency on the tunable parameter to the output map of the controller.

In the classic MRAC problem, this is solved by using the nonminimal realization
of the certainty-equivalence controller.

Internal model property

Let us consider x̄m (t) = (L1 r) (t) and z̄ (t) = (L2 x̄m) (t), where L1 and L2 are
linear mappings, L1 : R→ R and L2 : Rm → Rn−1 , de�ned as follows

(L1 η1) (t) =

∫ t

−∞
eAm(t−τ)Bm η1 (τ) dτ

(L2 η2) (t) =

∫ t

−∞
eA11(µ)(t−τ)A12 (µ)Cm η2 (τ) dτ

Consider the extended exosystem

ẇ = S (µ)w + P r (4.59)

where w (t) = col (x̄m (t) , z̄ (t)) ∈ Rq and the matrices are de�ned as follows

S (µ) =

(
Am 0

A12 (µ)Cm A11 (µ)

)
, P =

(
Bm

0

)
(4.60)

Letting x̃m = xm−x̄m and z̃ = z− z̄ it is possible to rewrite the (4.49) obtaining
the augmented error system

ẇ = S (µ)w + P (µ) r

˙̃xm = Am x̃m
˙̃z = A11 (µ) z̃ + A12 (µ)Cm x̃m + A12 (µ) e

ė = A21 (µ) z̃ + A22 (µ) x̃m + a22 (µ) e+ b (µ) [u−Q (µ)w −R (µ) r]

(4.61)

where

Q (µ) =
(
Q1 (µ) Q2 (µ)

)
=

(
− 1

b (µ)
A22 (µ) − 1

b (µ)
A21 (µ)

)
R (µ) =

1

b (µ)
CmBm

It is possible to de�ne a control law that solves the MRC problem as u =
uff + ust, where we have stabilization thanks to ust and the error that became
invariant thanks to the feedforward control uff = Q (µ)w + R (µ) r. Due to the
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fact that it is not possible to measure the signal w (·), it is necessary to embed a
suitable internal model of the system

ẇ = S (µ)w + P (µ) r

uff = Q (µ)w +R (µ) r
(4.62)

in the controller that provides regulation. It is interesting to note that the con-
troller, designed in the previous section, is characterized by the internal model
property when θ̂ = µ.

Consider the system and the control law de�ned in (4.45) and (4.46). It is
possible to rewrite the system, considering e = 0, as follows(

ẋm
ξ̇

)
=

(
Am 0m×(n−1)

Gc,1 (µ) Fc (µ)

)(
xm
ξ

)
+

(
Bm

Gc,2 (µ)

)
r

u =
(
Kc,1 (µ) Hc (µ)

)( xm
ξ

)
+Kc,2 (µ) r

(4.63)

it is evident the similarity with (4.62). It is possible to de�ne a parametrized of
mappings Σ (µ) : Rq → Rq, where

Σ (µ) =

(
Im 0m×(n−1)

−L (µ)Cm In−1

)
Throw easy calculation the following relations are shown

Φ (µ) Σ (µ) = Σ (µ)S (µ) , Γ (µ) = Σ (µ)P

Ψ (µ) Σ (µ) = Q (µ) , Kc,2 (µ) = R (µ)

where

Φ (µ) =

(
Am 0m×(n−1)

Gc,1 (µ) Fc (µ)

)
, Γ (µ) =

(
Bm

Gc,2 (µ)

)
Ψ (µ) =

(
Kc,1 (µ) Hc (µ)

)
Result 4.3.1. Considering the certain-equivalence controller de�ned in (4.46), set-

ting θ̂ = µ, when e = 0, the trajectories of (4.45) and (4.46), are di�eomorphic
to those of the exosystem (4.62). The controller is a di�eomorphic copy of the
exosystem.

Remark 4.3.4. This is valid also for the control law described by (4.52) and
(4.54).
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It is evident how the internal model design has an explicit dependence on the
uncertain parameter µ. The ideal situation is when it is possible to have a system,
independent from µ, able to reproduce the output trajectories of (4.62).

The solution to this problem is the so called system immersion.

De�nition 4.3.1. A system, de�ned by the matrices (S, P,Q,R), with (X1,U ,Y)
as state space, input space and output space, is said to be immersed in the system
de�ned by the matrices (Φ,Γ,Ψ,Υ), with (X2,U ,Y) as state space, input space and
output space, if there exist a mapping Π : X1 → X2 such that

ΠS = Φ Π, ΠP = Γ, Q = Ψ Π, R = Υ

The immersion is regular if the pair (Ψ,Φ) is observable and weak if it is detectable
but not observable.

De�nition 4.3.2. Given a parametrized family of systems
(S (µ) , P (µ) , Q (µ) , R (µ)) with parameter space P1, the parametrized family of
systems (Φ (θ) ,Γ,Ψ (θ) ,Υ (θ)) with parameter space P2 is said to be an internal
model of (S (µ) , P (µ) , Q (µ) , R (µ)) with canonical parametrization in feedback
form if

(i) There exists a Hurwitz matrix F such that Φ (θ) = F + Γ Ψ (θ)

(ii) Ψ (θ) and Υ (θ) are a�ne functions of the parameter vector θ

(iii) There exists a continuous mapping P1 → P2, µ → θ (µ), and a parametrized
family of immersion mappings Π (θ) such that the identities

Π (θ (µ))S (µ) = Φ (θ (µ)) Π (θ (µ)) , Π (θ (µ))P (µ) = Γ

Q (µ) = Ψ (θ (µ)) Π (θ (µ)) , R (µ) = Υ (θ (µ))
(4.64)

hold for every µ ∈ P1.

Weak immersion

Let us consider the certainty-equivalence controller based on the observer, consid-
ering (4.52) and (4.54), as follows

ẋm = Am xm +Bm r

ξ̇ = Fo (µ) ξ +Go,1 (µ) y +Go,2 (µ)u

u = Ho (µ) ξ +Ko,1 (µ) y +Ko,2 (µ) ȳr

(4.65)
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where Fo, Go,1 and Go,2 are de�ned in (4.55), and Ho, Ko,1 and Ko,2 are

Ho (µ) = − 1

b (µ)
A21 (µ)

Ko,1 (µ) = − 1

b (µ)
[a22 (µ) + am + A21 (µ)L (µ)]

Ko,2 (µ) =
1

b (µ)

(4.66)

Let W (s, µ) = (W1 (s, µ) ,W2 (s, µ)) be the transfer function of the triplet
(Ho, Fo, Go), where

W1 (s, µ) = Ho (µ) (s I − Fo (µ))−1Go,1 (µ)

W2 (s, µ) = Ho (µ) (s I − Fo (µ))−1Go,2 (µ)

Lemma 4.3.1. Assume that pd (λ) and the characteristic polynomial of A11 (µ)
are coprime for all µ ∈ Kµ, then the triplet (Ho (µ) , Fo (µ) , Go,2 (µ)) is a minimal
realization of W2 (s, µ)

The pair (Fo, Go,2) is controllable, and consequently, also the pair (Fo, Go) it is
controllable. Together with Lemma 4.3.1, it is possible to say that (Ho, Fo, Go) is
a minimal realization of W (s, µ). The minimal realization of a transfer function
can be rewritten using the controller canonical form, as follows

Φ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1
−d0 −d1 −d2 · · · −dn−2

 , Γ =


0
0
...
0
1


The transfer function are modi�ed considering the parametrized families of vectors
θ1 (µ) ∈ Rn−1 and θ2 (µ) ∈ Rn−1 becoming

W1 (s, µ) = θ1 (µ)> (s I − Φ)−1 Γ, W2 (s, µ) = θ2 (µ)> (s I − Φ)−1 Γ

such that the resulting realization of W (s, µ) can be written as a 2 (n− 1) dimen-
sional system

ζ̇1 = Φ ζ1 + Γ y

ζ̇2 = Φ ζ2 + Γu

u1 = θ1 (µ)> ζ1 + θ2 (µ)> ζ2

(4.67)

De�ning
θ3 (µ) = Ko,1 (µ) , θ4 (µ) = Ko,2 (µ) (4.68)
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it is possible to derive the certainty-equivalence controller where the dynamic is
free from the uncertainty parameter µ

ẋm = Am xm +Bm r

ζ̇1 = Φ ζ1 + Γ y

ζ̇2 = Φ ζ2 + Γu

u = θ̂>1 ζ1 + θ̂>2 ζ2 + θ̂3 y + θ̂4 ȳr

(4.69)

The true value of the estimate of the parameter vector θ̂ = col
(
θ̂1, θ̂2, θ̂3, θ̂4

)
is

θ (µ) = col (θ1 (µ) , θ2 (µ) , θ3 (µ) , θ4 (µ)).
The knowledge of the two matrices Φ and Γ allows to make some assumptions.

Due to the fact that the pair(
Φ 0
0 Φ

)
,

(
Γ 0
0 Γ

)
is completely controllable, the pair(

θ>1 θ>2
)
,

(
Φ 0
0 Φ

)
is necessarily completely unobservable. It is possible to de�ne the unobservable
subspace Vno, that has the same dimension of the minimal realization W (s, µ),
that is n− 1. The unobservable subspace can be written as

Vno = im

(
I

X (µ)

)
where X (µ) ∈ R(n−1)×(n−1) is a matrix that satisfy the condition in which Vno is
the largest invariant subset of (4.67)(

Φ 0
0 Φ

)(
I

X (µ)

)
=

(
I

X (µ)

)
V,

(
θ>1 θ>2

) (
I X (µ)

)
= 0

where the matrix V is a generic matrix such that V ∈ R(n−1)×(n−1). In order to
satisfy the previous relations, it is necessary that V = Φ, and that X (µ) is the
solution of

ΦX (µ) = X (µ) Φ

θ>2 X (µ) = −θ>1
By means of a change of coordinates ζ̄2 = ζ2−X (µ) ζ1, it is possible put the (4.67)
in its Kalman canonical form(

ζ̇1

˙̄ζ2

)
=

(
Φ 0
0 Φ

)(
ζ1

ζ̄2

)
+

(
Γ 0

Γ̄ (µ) Γ

)(
y
u

)
u1 =

(
0 θ>2

)( ζ1

ζ̄2

) (4.70)
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where Γ̄ (µ) = −X (µ) Γ.
Due to the fact that the previous subsystem is a minimal realization ofW (s, µ),

means that it is related to the matrices (Ho, Fo, Go) through an invertible matrix
Y (µ) ∈ R(n−1)×(n−1), that satis�es the following relations

Y (µ)−1 ΦY (µ) = Fo (µ) , Y (µ)−1 Γ̄ = Go,1 (µ)

Y (µ)−1 Γ = Go,2 (µ) , θ>2 Y (µ) = Ho (µ)

and applying the following change coordinates
η = ζ1, η2 = Y (µ)−1 ζ2 − Y (µ)−1X (µ) ζ1, the system (4.69) becomes

ẋm = Am xm +Bm ur

η̇1 = Φ η1 + Γ y

η̇2 = Fo (µ) η2 +Go,1 (µ) y +Go,2 (µ)u

u = Ho (µ) η2 +Ko,1 (µ) y +Ko,2 (µ) ȳr

(4.71)

Theorem 4.3.1. In the case in which θ̂ = θ (µ), the new controller embeds a
di�eomorphic copy of the original controller.

Let us consider the mapping L3 : C0 (Rm)→ C1 (Rn−1) described by

(L3 η3) (t) =

∫ t

−∞
eΦ(t−τ)ΓCm η3 (τ) dτ

Considering ζ̄1 (t) = (L3 η3) (t), and writing the dynamics

˙̄ζ1 = Φ ζ̄1 + ΓCm x̄m

it is possible to do the following change of coordinates

ζ1 → χ1 := ζ1 − ζ̄1

ζ2 → χ2 := z̄ − L (µ)Cm x̄m − Y (µ)−1 ζ2 − Y (µ)−1X (µ) ζ1 + z̃ − L (µ) e

The resulting augmented error system is described by

ẇ = S (µ)w + P r

˙̃xm = Am x̃m
˙̃z = A11 (µ) z̃ + A12 (µ)Cm x̃m + A12 (µ) e

χ̇1 = Φχ1 + ΓCm x̃m + Γ e

χ̇2 = Fo (µ)χ2

ė = A21 (µ)χ2 − am e

(4.72)
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It is evident how the extended exosystem and the augmented error system are
decoupled; it is possible then, let e = col (x̃m, z̃, χ1, χ2, e), the autonomous subsys-
tem

ė = A (µ) e (4.73)

where A (µ) is a Hurwitz matrix for all µ ∈ Kµ. A (µ) is de�ned as follows

A (µ) =


Am 0 0 0 0

A12 (µ)Cm A11 (µ) 0 0 A12 (µ)
ΓCm 0 Φ 0 Γ

0 0 0 Fo (µ) 0
0 0 0 A21 (µ) −am

 (4.74)

4.3.3 Adaptive design

In order to simplify the problem, it is possible to denote with φ (ζ, y, xm) the
regressor

φ (ζ, y, xm) =
(
ζ>1 ζ>2 y ȳ

)>
and rewrite the control law in the following form

u = φ> (ζ, y, xm) θ̂

Introducing the "parameter estimation error" θ̃ = θ̂ − θ, and the two matrices

B (µ) =
(

0 0 0 0 b (µ)
)>
, C =

(
0 0 0 0 1

)
it is possible to rewrite the error dynamics as follows

ė = A (µ) e+ B (µ)φ> (ζ, y, xm) θ̃

e = C e
(4.75)

The pair (A (µ)) is stabilizable and, consequently, the pair (C,A (µ)) is de-
tectable. The triplet is strictly passive and there exists a matrix function Q (µ)
and positive constant parameters c1 and c2 such that the following relations hold

c1 I ≤ Q (µ) ≤ c2 I

A> (µ)Q (µ) +Q (µ)A (µ) ≤ −I
B> (µ)Q (µ) = C

Then the triplet (A (µ) ,B (µ) , C) is strictly passive for all µ ∈ Kµ.
The candidate Lyapunov function is the following

V ( θ̃, e ) = e>Q (µ) e+
θ̃> θ̃

γ
(4.76)
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The time derivative of the candidate Lyapunov function is the following

V̇ ( θ̃, e ) = 2 e>Q (µ) ė+
2 θ̃>

γ
˙̃θ =

= −e> I e+ 2 θ̃> φ (ξ, y, xm)B> (µ)Q (µ) e+ 2
θ̃>

γ
˙̃θ

(4.77)

For the update law is possible to use a gradient-based adaptive law

˙̂
θ = −γ φ (ζ, y, xm) e

Then the system can be described by

ẇ = S (µ)w + P r

ė = A (µ) e+ B (µ)φ> (ζ, y, xm) θ̃

˙̃θ = −γ φ (ζ, y, xm) C e

(4.78)

The origin is an uniformly stable equilibrium of (4.78) due to the LaSalle-
Yoshizawa theorem (2.2.3) and the error decays to zero.

4.4 MRAC with Autonomous Exosystem

Consider the SISO LTI system

ẋ = A (µ)x+B (µ)u

y = C (µ)x
(4.79)

where the state is x ∈ Rn, the control input is u ∈ R and the related output is
y ∈ R. The matrices of the system are dependent on a vector µ of uncertainty
parameters, that ranges in a compact set Kµ ⊂ Rp. The analysis of the problem
is done similarly to the theory shown in the previous section.

In order to solve the problem it is su�cient that the system is stabilizable and
detectable, but a number of assumptions are made:

Assumption 4.4.1. The pair (A (µ) , B (µ)) is controllable, and the pair
(C (µ) , A (µ)) is observable, for any µ ∈ Kµ.

Assumption 4.4.2. The system (4.79) has relative degree equal to one for any
µ ∈ Kµ.

Assumption 4.4.3. The sign of the high-frequency gain b (µ) = C (µ)B (µ) is
known and constant for any µ ∈ Kµ.
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The relative degree equal to one allows to rewrite the system in its normal form

ż = A11 (µ) z + A12 (µ) y

ẏ = A21 (µ) z + a22 (µ) y + b (µ)u
(4.80)

where z ∈ Rn−1; it is assumed that b (µ) > 0, for all µ ∈ Kµ.
As in all MRAC problem, it is given a reference model that is minimum phase

and internally stable, that describe the desired input/output behaviour

ẋm = Am xm +Bm r

ym = Cm xm
(4.81)

where the state is xm ∈ Rm.
Di�erently from the previous case, the reference signal is generated by an ex-

osystem described as follows
ẇ (t) = S w (t)

r (t) = Rw (t)
(4.82)

where w ∈ Rp.

Control Objective The control objective is to design an adaptive controller of
the form

ξ̇ = Fc (θ̂) ξ +Gc (θ̂)y

u = Hc (θ̂) ξ +Kc (θ̂)y
(4.83)

where ξ ∈ Rv and y = col (xm, w, e). The suitable adaptive law is de�ned as

˙̂
θ = φ (θ̂, ξ,y) (4.84)

4.4.1 Certainty-Equivalence controller

In order to design the certainty-equivalence controller, it is necessary �rst to de�ne
the tracking error e = y − yr and its derivative in time

ė = ẏ − ẏm

In the same way as it was done in the previous section, adding and subtracting
am e, the tracking error can be written as

ė = −am e+ A21 (µ) z + (a22 (µ) + am) y − ȳr + b (µ)u

where ȳr = (CmAm + amCm)xm + CmBm r, with am > 0. In order to achieve
convergence of the tracking error, the following input is chosen

u = − 1

b (µ)
[A21 (µ) z + (a22 (µ) + am) y − ȳr] (4.85)
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The resulting closed-loop system is described by

ẇ = S w

r = Rw

ẋm = Am xm +Bm r

ż = A11 (µ) z + A12 (µ)Cm xm + A12 (µ) e

ė = −am e

(4.86)

As before, considering the state z not available for feedback, it is necessary to
modify the control law (4.85) introducing the reduced-order observer

ξ̇ = Fo (µ) ξ +Go,1 (µ) y +Go,2 (µ)u (4.87)

where ξ ∈ Rn−1. We introduce, then, the observation error χ = z − ξ − L (µ) y.
Replacing z with ξ + L (µ) y, the control law (4.85) becomes

u = − 1

b (µ)
[A21 (µ) ξ + (a22 (µ) + am + A21 (µ)L (µ)) y − ȳr] (4.88)

Deriving the observation error, it is possible to de�ne the matrices of the observer
as follows

Fo (µ) = A11 (µ)− L (µ)A21 (µ)

Go,1 (µ) = A12 (µ) + Fo (µ)L (µ)− a22 (µ)L (µ)

Go,2 (µ) = −b (µ)L (µ)

(4.89)

The observation error is described by the following autonomous asymptotically
stable system

χ̇ = (A11 (µ)− L (µ)A21 (µ))χ (4.90)

The closed-loop system can be rewritten again as follows

ẇ = S w

r = Rw

ẋm = Am xm +Bm r

ż = A11 (µ) z + A12 (µ)Cm xm + A12 (µ) e

χ̇ = Fo (µ)χ

ė = A21 (µ)χ− am e

(4.91)

Naturally, the controller expressed in the desired form (4.83) is the same de-
scribed in (4.57) and (4.58).
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4.4.2 Controller parametrization

Consider the controller described in (4.85), and write it in the following form

ξ̇ = Fo (µ) ξ +Go,1 (µ) y +Go,2 (µ)u

u = Ho (µ) ξ +Ko,1 (µ) y +Ko,2 (µ) ȳr
(4.92)

where Fo, Go,1 and Go,2 are de�ned in (4.89), and

Ho (µ) = − 1

b (µ)
A21 (µ)

Ko,1 (µ) = − 1

b (µ)
[a22 (µ) + am + A21 (µ)L (µ)]

Ko,2 (µ) =
1

b (µ)

(4.93)

As done in the Section (4.3.2), it is possible to �nd a realization of W (s) =
(W1 (s)W2 (s)) such that it is possible to rewrite the certainty equivalence con-
troller as

ζ̇1 = Φ ζ1 + Γ y

ζ̇2 = Φ ζ2 + Γu

u = θ>1 ζ1 + θ>2 ζ2 + θ3 y + θ4 ȳr

(4.94)

Considering the change of coordinates

η1 = ζ1, η2 = Y −1 ζ2 − Y −1X ζ1 (4.95)

with the considerations done in the previous section, the closed-loop system can
be rewritten as

ẇ = S w

r = Rw

ẋm = Am xm +Bm r

η̇1 = Φ η1 + Γ y

η̇2 = Fo (µ) η2 +Go,1 (µ) y +Go,2 (µ) [Ho (µ) η2 +Ko,1 (µ) y +Ko,2 (µ) ȳr]

ż = A11 (µ) z + A12 (µ)Cm xm + A12 (µ) e

ẏ = A21 (µ) z + a22 (µ) y + b (µ) [Ho (µ) η2 +Ko,1 (µ) y +Ko,2 (µ) ȳr]

(4.96)

Applying the change of coordinates

χ1 = η1, χ2 = z − η2 − Ly, e = y − ym
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the previous system can be written as

ẇ = S w

r = Rw

ẋm = Am xm +Bm r

ż = A11 (µ) z + A12 (µ)Cm xm + A12 (µ) e

χ̇1 = Φχ1 + ΓCm xm + Γ e

χ̇2 = Fo (µ)χ2

ė = A21 (µ)χ2 − am e

(4.97)

Introducing the deviations from the steady-state as new state variables

x̃m = xm − x̄m (t) , z̃ = z − z̄ (t) , χ̃1 = χ1 − χ̄1 (t)

where x̄m (t), z̄ (t) and χ̄1 (t) are the steady-state of the signals de�ned as follows:

x̄m = Πw (4.98)

where Π is a matrix that satis�es

ΠS = Am Π +BmR (4.99)

For z̄ and χ̄1 let us consider, at steady state, e = 0 and the vector v = col (z̄, χ̄1).
It is possible to rewrite

ż = A11 (µ) z + A12 (µ)Cm Πw

χ̇1 = Φχ1 + ΓCm Πw
(4.100)

as follows

v̇ =

(
A11 (µ) 0

0 Φ

)
︸ ︷︷ ︸

Av

v +

(
A12 (µ)Cm Π

ΓCm Π

)
︸ ︷︷ ︸

Bv

w (4.101)

The steady state of v can be expressed as

v = Qw (4.102)

with Q such that is valid the following relation

QS = AvQ+Bv (4.103)
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It is possible to rewrite the previous system as

ẇ = S w

r = Rw

˙̃xm = Am x̃m
˙̃z = A11 (µ) z̃ + A12 (µ)Cm x̃m + A12 (µ) e

˙̃χ1 = Φ χ̃1 + ΓCm x̃m + Γ e

χ̇2 = Fo (µ)χ2

ė = A21 (µ)χ2 − am e

(4.104)

Considering e = col(x̃m, z̃, χ̃1, χ2, e), it is possible to see that the exosystem is
decoupled from the rest, and the matrix

A (µ) =


Am 0 0 0 0

A12 (µ)Cm A11 (µ) 0 0 A12 (µ)
ΓCm 0 Φ 0 Γ

0 0 0 Fo (µ) 0
0 0 0 A21 (µ) −am

 (4.105)

is Hurwitz for all µ ∈ Kµ

4.4.3 Adaptive design

The design of the adaptive law follows the same rules as the previous section. In
the end the system is described by the following equations

ẇ = S w

r = Rw

ẋm = Am xm +Bm r

ė = A (µ) e+ B (µ)φ> (ζ, y, xm) θ̃

˙̃θ = −γ φ (ζ, y, xm) C e

(4.106)

Consider the following candidate Lyapunov equation

V ( θ̃, e ) = e>Q (µ) e+
θ̃> θ̃

γ
(4.107)

the time derivative is given by

V̇ ( θ̃, e ) = −|e|2 (4.108)
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The trajectories of the error dynamics converge to the invariant set in which
the time derivative of the Lyapunov function assume value equal to 0. Taking into
account the previous formulation, the only case in which the time derivative is
equal to zero, is when the vector e is zero (e = 0).

Replacing the value of e inside (4.106), the resulting error dynamics become

ẇ = S w

xm = Πw

ė = 0

˙̃θ = 0

(4.109)

The fact that ˙̃θ = 0 and θ̃ is uniformly continuous means that θ̃ is a constant.
At each time instant t the constant θ̃ belongs to ker

(
φ> (t)

)
. Due to the fact

that φ (t) is not constant in time, we are interested in studying the conditions such
that

B (µ)φ> (ζ, y, xm) θ̃ = 0, ∀t ≥ 0 (4.110)

yields θ̃ = 0.
Studying the behaviour of φ (t) in a time interval of length T , for all t ≥ 0∫ t+T

t

|φ> (s) θ̃|2ds = 0 (4.111)

it is possible to see that θ̃ can be taken out of the integral due to the fact that
it is constant. Consequently, in order to obtain θ̃ = 0, equation (4.111) yields a
condition of persistent excitation of the form∫ t+T

t

φ (s)φ> (s) ds ≥ c (4.112)

for a positive scalar c. In the previous relation there is no upper bound due to the
fact that w is bounded.

In order to verify the PE property on the exogenous signal it is possible to
de�ne the relation

φ = M w (4.113)

in order to map a PE condition for φ into a PE condition for w.
Replacing (4.113) in (4.112), the integral becomes∫ t+T

t

M w (s)w> (s)M>ds ≥ c > 0 (4.114)
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At steady state, considering e = 0, is possible to write

xm = Πw

y = ym = Cm Πw

ζ1 = χ1

ζ2 = Y (z − Ly) +X χ1

(4.115)

The last two equation can be rewritten as follows

ζ1 = χ̄1

ζ2 = Y z̄ − Y LCm Πw +X χ̄1

(4.116)

Considering the regressor in the following form

φ (ζ, y, xm) =
(
ζ>1 ζ>2 y ȳr

)>
(4.117)

is possible to write it the product between the matrix M and the exogenous signal
w

φ (ζ, y, xm) =


ζ1

ζ2

y
ȳr

 =


ξ̄1

Y (z̄ − LCm Πw) +X χ̄1

Cm Πw
(CmAm + amCm) Πw + CmBmRw

 (4.118)

Recalling (4.102), and considering Q = col (Q1, Q2), the matrix M can be
written as

M =


Q2

Y (Q1 − LCm Π) +X Q2

Cm Π
(CmAm + amCm) Π + CmBmR

 (4.119)

Consequently the conditions in order to have the (4.114) positive de�nite and
to guarantee the PE on the exogenous signal are:

(i) It holds ∫ t+T

t

w (s)w> (s) ds ≥ c > 0 (4.120)

(ii) rank (M) = dim(θ̃): this means that the input w must be su�ciently rich in
order, greater than or equal to the dimension of θ̃.
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Chapter 5

Passivity

Passivity is a property of dynamical system, well di�used in thermal and electric
systems. Is possible to de�ne the passivity as the energy consumption of the
system.

The study of incrementally passive system is strictly related to the analysis of
passivity.

The tool of incremental passivity is useful in the study of the OR problem, in
order to design an internal model-based regulator. The regulator has the task to
make the plant to be controlled incrementally passive. Together with an internal
model that is incrementally passive, is possible to show how the interconnected
system is incrementally passive and the problem is solvable.

The aim of the chapter is to de�ne the main steps in the design of the stabilizer
aforementioned, in a general case and when the parameters of the plant are a�ected
by uncertainties. In this case, the implementation of a suitable adaptive law, allows
to estimate the parameters of the stabilizer and make the plant incrementally
passive.

In the end a numerical example is carried out in order to prove the results
obtained.

5.1 The output regulation problem

Consider the system described by

ẋ = Ax+B u+ P w

e = C x+Qw
(5.1)

where the state x ∈ Rn, input u ∈ R and the regulation error e ∈ R. The exogenous
input is generated by the exosystem described by

ẇ = S w, w (0) ∈ W (5.2)

63



Passivity

where w ∈ Rm andW is a positively invariant set of initial conditions. In order to
solve the classic problem of output regulation, it is necessary to �nd a stabilizer
of the following form

ζ̇s = Ac ζs +Bc e

us = Cc ζs +Dc e
(5.3)

with ζ ∈ Rq, such that all trajectories starting in (x (0) , ζ (0)) ∈ Rn+q and w (0) ∈
W are bounded and e (t)→ 0 as t→ 0. In order to solve the problem are necessary
the following assumptions.

Assumption 5.1.1. There exist a solution pair (Π,Ψ) to the regulator equations

ΠS = AΠ +BΨ + P

0 = C Π +Q
(5.4)

and such that the steady state of the state x and input u can be described respectively
as

xss = Πw

uss = Ψw
(5.5)

In order to prove the incremental passivity of the system, it is necessary to have
the plant (5.1) incrementally passive, or to design a stabilizer (5.3) able to make
the interconnected system incrementally stable.

Due to the fact that we are studying the OR problem, we have an internal
model-based stabilizer. Then consider the following assumption.

Assumption 5.1.2. There exists an internal model unit that is a copy of the
exosystem, in the following form

τ̇ = Φ τ + αΓ ẽ

ṽ = Γ> τ
(5.6)

that is incrementally passive.

The incremental passivity property of such IMU is proven in Section 2.3.1. It
is also shown how di�erent incrementally passive systems, through proper inter-
connections, make the overall interconnected system incrementally passive.

So the main problem in the study of the OR framework is to �nd the stabilizer.
Consider the system described by (5.1), (5.3) and (5.6), and suppose that the

stabilizer (5.3) makes the plant (5.1) incrementally passive.
The plant and the stabilizer are interconnected by

u = us + v (5.7)
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Figure 5.1: Augmented System with control law.

Figure 5.2: Augmented System with IMU.

and the overall system is shown in Figure 5.1, with input v and output e. This
system is incrementally passive with a regular storage function.

Next is necessary to interconnect the previous system with the internal model
(5.6) through

v = ṽ + v̂s

ẽ = −e+ v̂IM
(5.8)

The resulting system, with input v̂ :=
(
v̂>s , v̂

>
IM

)>
and output ê :=

(
e>, ṽ>

)>
,

is the one shown in Figure 5.2.
The overall system shown in Figure 5.2, with these interconnections, is incre-

mentally passive with a regular storage function.
In the end is possible to complete the scheme and closed the external loop, by
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Figure 5.3: Augmented System with all the interconnections.

means of a simple feedback of the form v̂s = −K e. The interconnected system is
shown in Figure 5.3. The static feedback can be rewritten, considering the input

v̂, as v̂ = −K̂ ê, where K̂ =

[
K 0
0 0

]
≥ 0.

The de�nition of the matrix K̂ ≥ 0, means that the system described in Figure
5.2 can be already incrementally passive and the feedback to close the loop is not
necessary.

Thanks to Assumption 5.1.1 and Assumption 5.1.2, for v̂ = 0, the system has
a solution which is bounded and in which e (t) = 0. With Lemma 2.3.6 it is also
possible to say that thanks to the static feedback, all the solutions are bounded
and ê> (t)K ê (t) → 0 as t → +∞. Consequently e> (t)K e (t) → 0 as t → +∞,
and since K is positive de�nite, e→ 0 as t→ +∞.

Then, in order to have an overall system incrementally passive, there are two
conditions that have to be satis�ed: the �rst one is that the internal model has to
be incrementally passive, and it was demonstrate in Section 2.3.1; the second one
is to design a stabilizer that makes (5.1) incrementally passive.

5.2 How to make a system incrementally passive

Consider the system described by

ẋ = Ax+B u+Rw

e = C x+Qw
(5.9)

where the state x ∈ Rn, input u ∈ R, the regulation error e ∈ R and w (t) ∈ W ⊂
Rm.
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Lemma 5.2.1. System (5.9) is incrementally passive with a regular storage func-
tion if there exist P = P> > 0 such that

P A+ A> P ≤ −αI
P B = C>

(5.10)

with α > 0.

Proof. Considering the regular storage function

V (x1, x2) := 1/2 (x1 − x2)> P (x1 − x2)

The derivative along any two solution x1 (t) and x2 (t), corresponding to the inputs
u1 (t) and u2 (t), is

V̇ = (x1 − x2)> P (Ax1 − Ax2) + (x1 − x2)> P (B u1 −B u2) (5.11)

The second term becomes

(x1 − x2)> P B (u1 − u2) = (C x1 − C x2)> (u1 − u2) = (e1 − e2)> (u1 − u2)
(5.12)

The �rst term can be rewritten as follows

(x1 − x2)> P A (x1 − x2) =
1

2
(x1 − x2)> J (x1 − x2) (5.13)

where J := P A+ A> P .
Considering Lemma 5.2.1, (x1 − x2)> P (Ax1 − Ax2) ≤ −αI. Consequently it

is possible to write that V̇ ≤ (e1 − e2)> (u1 − u2), that means that the system
(5.9) is incrementally passive.

Suppose that the following assumption holds for the system (5.9).

Assumption 5.2.1. The system (5.9) is minimum phase and has relative degree
equal to one.

It is possible to apply a change of coordinates and write (5.9) in its normal form

ż = A11 z + A12 e+R1w

ė = A21 z + A22 e+ b u+R2w
(5.14)

where e,u ∈ R, z ∈ Rn−1 and w ∈ W ⊂ Rm.
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Theorem 5.2.1. Consider the system (5.14). Suppose that there exists a constant
matrix Q = Q> > 0 and the constant values α1, α2, α3 and α4, where α1 > 0, and
the following inequalities hold

QA11 + A>11Q ≤ −α1 In−1 (5.15)

‖A12‖ ≤ α2, ‖A21‖ ≤ α3, ‖A22‖ ≤ α4 (5.16)

Then there exists a static output feedback of the form u = b−1 (−Le), such that
the system (5.14) is incrementally passive.

Proof. Consider the following control law

u = b−1 (−Le+ ṽ) (5.17)

Together with (5.14), it is possible to rewrite the closed loop system as (5.9), where

x =
(
z>, e>

)>
, C = (0, 1), B = (0, 1)>, Q = 0 and A =

[
A11 A12

A21 A22

]
. Replacing

u, the matrix A becomes A =

[
A11 A12

A21 A22 − L

]
.

Considering the matrix P described by P =

[
Q 0
0 1

]
. Notice that the choice

of P in this form, allows to satisfy the second condition of (5.10). The resulting
Jacobian is

J =

[
QA11 + A>11Q QA12 + A>21

A21 + A>12Q A22 + A>22 − L− L>
]

= −
[

F M
M> N

]
(5.18)

The Jacobian must be negative de�nite for all (z, e) ∈ Rn, and all w ∈ W . In
order to guarantee this result, it is studied the Schur complement of the second
block of (5.18).

The Jacobian is negative de�nite if F > 0 and N −M> F−1M > 0.
The �rst condition is satis�ed by (5.15). In order to satisfy the second condition,

it is necessary to replace the elements with the Jacobian, obtaining

L+ L> >
(
A22 + A>22

)
−
((
A21 + A>12Q

) (
QA11 + A>11Q

)−1 (
QA12 + A>21

)) (5.19)

The inequality can be written in the "worst case", considering the norms of each
element, as follows

L+ L> >

(
‖A22 + A>22‖+

1

α1

‖A21 + A>12Q‖ ‖QA12 + A>21‖
)

(5.20)

If the previous relations are satis�ed, then the chosen static output feedback
ensure the incremental passivity of the plant.
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5.3 Passivity and Adaptive control

In case the parameters of the plant are a�ected by uncertainties, is not possible
to compute a nominal value of L, and it is possible to implement an adaptive law.
The study of this case is analogue to the one done in the previous section.

Consider the system

ẋ = A (µ)x+B (µ)u+R (µ)

e = C (µ)x+Q (µ)w
(5.21)

with state x ∈ Rn, input u ∈ R, regulation error e ∈ R and w (t) ∈ W ⊂ Rm.
The matrices describing the system are considered dependent on a vector µ of
uncertainty parameters, with µ ∈ Kµ.

It is possible to rewrite Lemma 5.2.1, for this speci�c case.

Lemma 5.3.1. If there exists a matrix P (µ) = P (µ)> > 0 such that

P (µ)A (µ) + A> (µ)P (µ) ≤ −I
P (µ)B (µ) = C> (µ)

(5.22)

then the system (5.21) is incrementally passive with a regular storage function.

Proof. Consider the storage function V (x1, x2) = 1/2 (x1 − x2)> P (µ) (x1 − x2).
Its derivative along any two solutions x1 (t) and x2 (t), corresponding to the inputs
u1 (t) and u2 (t) is

V̇ = (x1 − x2)> P (µ)A (µ) (x1 − x2) + (x1 − x2)> P (µ)B (µ) (u1 − u2) (5.23)

The �rst component can be written as follows

(x1 − x2)> P (µ)A (µ) (x1 − x2) =
1

2
(x1 − x2)> J (µ) (x1 − x2) (5.24)

where J (µ) = P (µ)A (µ) + A> (µ)P (µ)
Considering Lemma 5.3.1, then is possible to say that the �rst component of

(5.23) is lower that zero, and the second component can be rewritten as

(x1 − x2)> P (µ)B (µ) (u1 − u2) = (C (µ)x1 − C (µ)x2)> (u1 − u2)

= (e1 − e2)> (u1 − u2)
(5.25)

Then we obtain V̇ ≤ (e1 − e2)> (u1 − u2), i.e. the system (5.21) is incrementally
passive.

Consider the system (5.21) and the following assumptions
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Assumption 5.3.1. The system described in (5.21) is minimum phase for any
µ ∈ Kµ.

Assumption 5.3.2. The sign of the high-frequency gain de�ned by
b (µ) = C (µ)B (µ) is known and constant for any µ ∈ Kµ and b (µ) /= 0.

It is possible to apply a change of coordinates and described the system (5.21)
in its normal form

ż = A11 (µ) z + A12 (µ) e+R1 (µ) w

ė = A21 (µ) z + A22 (µ) e+ b (µ) u+R2 (µ) w
(5.26)

where e,u ∈ R, z ∈ Rn−1 and w ∈ W ⊂ Rm, and to consider the IMU describe in
(5.6).

Suppose that the system described in (5.26) is not incrementally passive, then
there exists a stabilizer that is able to make it incrementally passive. Consider
the control input described in (5.7): it can be rewritten, considering the change of
coordiantes, as follows

u = b−1 (−L∗ e+ ṽ −K e) (5.27)

where L∗ is the nominal value of the matrix L shown in (5.17), that makes the
system (5.26) incrementally passive, ṽ is the output of the internal model and −Ke
is the interconnection that close the external loop in Figure 5.3, where K ≥ 0.

In the case of the presence of uncertainties in the plant to be controlled, it is
possible to implement an adaptive law in order to compute the estimate of the
matrix L̂. We choose an adaptive law of the form

˙̂
L = ϕ (e) (5.28)

with the control law rewritten as

u = b−1 (µ)
(
−L̂ e+ ṽ −K e

)
(5.29)

where L̂ is de�ned as L̂ = L̃+ L∗.
The demonstration of incremental passivity is similar to the one done in the

previous section.

The system (5.26) can be rewritten in the form of (5.21), where x =
(
z>, e>

)>
,

C = (0, 1), B = (0, 1)>, Q = 0 and

A (µ) =

[
A11 (µ) A12 (µ)
A21 (µ) A22 (µ)

]
Replacing (5.27), the matrix A (µ) becomes

A (µ) =

[
A11 (µ) A12 (µ)
A21 (µ) A22 (µ)− L∗

]
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Consider the matrix P as

P (µ) =

[
Q (µ) 0

0 1

]
(5.30)

where Q (µ) = Q> (µ) > 0. Choosing P of this form satis�es the second condition
of (5.22).

In order to satisfy the �rst condition of (5.22), it is necessary to compute the
Jacobian and it must be negative de�nite (omitting the parameter vector µ to
simplify the notation)

J =

[
QA11 + A>11Q QA12 + A>21

A21 + A>12Q A22 + A>22 − L∗ − L∗>
]

= −
[

F M
M> N

] (5.31)

Thank to the Schur complement, we can say that the Jacobian is negative de�nite
if F > 0 and N −M> F−1M > 0. For the �rst condition is su�cient that the
following relation holds

QA11 + A>11Q ≤ −α1 In−1 (5.32)

For the second condition, as done before, it is possible to write

L∗ + L∗> >
(
A22 + A>22

)
−
((
A21 + A>12Q

) (
QA11 + A>11Q

)−1 (
QA12 + A>21

)) (5.33)

or

L∗ + L∗> > ‖A22 + A>22‖+
1

α1

‖A21 + A>12Q‖ ‖QA12 + A>21‖ (5.34)

Due to the fact that it is not possible to compute L∗, the adaptive controller
is introduced. The aim is to study the storage function in order to �nd a suitable
adaptive law and guarantee the incremental passivity property.

Consider the storage function

V
(
x1, x2, L̃1, L̃2

)
=

1

2
(x1 − x2)> P (µ) (x1 − x2) +

(
L̃1 − L̃2

)2

2 γ
(5.35)

The time derivative is

V̇
(
x1, x2, L̃1, L̃2

)
= (x1 − x2)> P (µ) (ẋ1 − ẋ2) +

(
L̃1 − L̃2

)
γ

(
˙̃L1 − ˙̃L2

)
(5.36)
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The �rst component can be rewritten, remembering that x =
(
z>, e>

)>
and

P (µ) =

[
Q (µ) 0

0 1

]
as follows

(x1 − x2)> P (µ) (ẋ1 − ẋ2) = (z1 − z2)>Q (µ) (ż1 − ż2)

+ (e1 − e2) (ė1 − ė2)
(5.37)

Replacing (5.26) and (5.29) in the previous equation, the �rst component becomes

(z1 − z2)>Q (µ) (ż1 − ż2) = (z1 − z2)>Q (µ)A11 (µ) (z1 − z2)

+ (z1 − z2)>Q (µ)A12 (µ) (e1 − e2)
(5.38)

and the second

(e1 − e2) (ė1 − ė2) = (e1 − e2)A21 (µ) (z1 − z2)

+ (e1 − e2)A22 (µ) (e1 − e2)

− (e1 − e2) L̂1 e1 + (e1 − e2) L̂2 e2

The second component can be rewritten remembering that L̂ = L∗ + L̃, and that
L∗1 = L∗2, as follows

(e1 − e2) (ė1 − ė2) = (e1 − e2)A21 (µ) (z1 − z2)

+ (e1 − e2)A22 (µ) (µ) (e1 − e2)

− (e1 − e2)L∗ (e1 − e2)

− (e1 − e2) L̃1 e1 + (e1 − e2) L̃2 e2

(5.39)

The resulting time derivative of the storage function is given by (omitting µ)

V̇
(
x1, x2, L̃1, L̃2

)
=

[
(z1 − z2)
(e1 − e2)

]> [
QA11 QA12

A21 A22 − L∗
] [

(z1 − z2)
(e1 − e2)

]
− (e1 − e2) L̃1 e1 + (e1 − e2) L̃2 e2

+

(
L̃1 − L̃2

)
γ

(
˙̃L1 − ˙̃L2

) (5.40)

Considering the following relations

ẽ = e1 − e2

e1 = ẽ+ e2

e2 = e1 − ẽ
(5.41)
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is possible to rewrite the second component of (5.40) as follows

− (e1 − e2)L̃1 e1 + (e1 − e2) L̃2 e2 = −ẽ L̃1 e1 + ẽ L̃2 e2

= −1

2
ẽ e1

(
L̃1 − L̃2

)
− 1

2
ẽ e2

(
L̃1 − L̃2

)
− 1

2
ẽ2
(
L̃1 + L̃2

) (5.42)

Suppose the following adaptive law

˙̃L =
˙̂
L = γ e2 (5.43)

with γ > 0. Replacing it in (5.40), the last component can be written as(
L̃1 − L̃2

)
γ

(
˙̃L1 − ˙̃L2

)
=
(
L̃1 − L̃2

) (
e2

1 − e2
2

)
(5.44)

Replacing (5.41) in the previous equation

L̃1 e
2
1 − L̃1 e

2
2 − L̃2 e

2
1 + L̃2 e

2
2 =

= L̃1 ẽ e1 + L̃1 ẽ e2 − L̃2 ẽ e1 − L̃2 ẽ e2

= ẽ e1

(
L̃1 − L̃2

)
+ ẽ e2

(
L̃1 − L̃2

)
=

1

2
ẽ e1

(
L̃1 − L̃2

)
+

1

2
ẽ e2

(
L̃1 − L̃2

)
+

1

2
ẽ e1

(
L̃1 − L̃2

)
+

1

2
ẽ e2

(
L̃1 − L̃2

)
(5.45)

Then, the last two terms in (5.45) can be rewritten as

1

2
ẽ e1

(
L̃1 − L̃2

)
+

1

2
ẽ e2

(
L̃1 − L̃2

)
=

1

2
ẽ
(
L̃1 − L̃2

)
(e1 − e2) + ẽ e2

(
L̃1 − L̃2

) (5.46)

The last component of (5.40), considering (5.43), can be then written as(
L̃1 − L̃2

)
γ

(
˙̃L1 − ˙̃L2

)
=

+
1

2
ẽ e1

(
L̃1 − L̃2

)
+

1

2
ẽ e2

(
L̃1 − L̃2

)
+

1

2
ẽ2
(
L̃1 − L̃2

)
+ ẽ e2

(
L̃1 − L̃2

)
(5.47)

Replacing (5.42) and (5.47) in (5.40)
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V̇
(
x1, x2, L̃1, L̃2

)
=

[
(z1 − z2)
(e1 − e2)

]> [
QA11 QA12

A21 A22 − L∗
] [

(z1 − z2)
(e1 − e2)

]
− 1

2
ẽ e1

(
L̃1 − L̃2

)
− 1

2
ẽ e2

(
L̃1 − L̃2

)
− 1

2
ẽ2
(
L̃1 + L̃2

)
+

1

2
ẽ e1

(
L̃1 − L̃2

)
+

1

2
ẽ e2

(
L̃1 − L̃2

)
+

1

2
ẽ2
(
L̃1 − L̃2

)
+ ẽ e2

(
L̃1 − L̃2

)
(5.48)

The resulting storage function is

V̇
(
x1, x2, L̃1, L̃2

)
=

[
(z1 − z2)
(e1 − e2)

]> [
QA11 QA12

A21 A22 − L∗ − L̃2

] [
(z1 − z2)
(e1 − e2)

]
+ ẽ e2

(
L̃1 − L̃2

)
(5.49)

It is shown how the time derivative of the storage function has inside the variable
errors of L̃1 and L̃2, and it is shown how it was not possible to eliminate these
terms from the function.

5.4 Numerical Examples

In order to demonstrate the previous conclusions on the design of the stabilizer
and the the design of an adaptive law, a numerical example is taken into account.
We consider a system of three rooms: in the �rst room we have the control action
and the interested temperature, in the third we have the in�uence of the external
temperature.

5.4.1 Case 1

Consider the system described in Figure 5.4.

Figure 5.4: Thermal system.
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The equations describing the system are the following

qin︸︷︷︸
Heat in

= C1
dT1

dt︸ ︷︷ ︸
Heat stored

+
T1 − T2

R1︸ ︷︷ ︸
Heat out

T1 − T2

R1

= C2
dT2

dt
+
T2 − T3

R2

T2 − T3

R2

= C3
dT3

dt
+
T3 − TA
R3

(5.50)

and can be rewritten as follows

dT1

dt
=
qin
C1

− T1

R1C1

+
T2

R1C1

dT2

dt
=

T1

R1C2

− T2

R1C2

− T2

R2C2

+
T3

R2C2

dT3

dt
=

T2

R2C3

− T3

R2C3

− T3

R3C3

+
TA
R3C3

(5.51)

The desired temperature and the external temperature, are respectively the
reference and the disturbance generated by an exosystem

ẇ = S w (5.52)

where S is a block diagonal matrix of the form

S =



0 ω1 0 0 0 0 0
−ω1 0 0 0 0 0 0

0 0 0 ω2 0 0 0
0 0 −ω2 0 0 0 0
0 0 0 0 0 ω3 0
0 0 0 0 −ω3 0 0
0 0 0 0 0 0 0


(5.53)

with initial conditions w0 =
[

1 0 1 0 1 0 1
]>
, and

ω1 = 0.000218rad/s

ω2 = 0.000436rad/s

ω3 = 0.0000727rad/s

(5.54)

The frequencies are chosen in order to study a realistic case, considering an entire
day as time of simulation.
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Choosing the states x =

 T3

T2

T1

, the state space representation can be written

as
ẋ = Ax+B u+ P w

e = C x+Qw
(5.55)

where

A =


− 1

R2C3

− 1

R3C3

1

R2C3

0

1

R2C2

− 1

R1C2

− 1

R2C2

1

R1C2

0
1

R1C1

− 1

R1C1

 (5.56)

B =

 0
0
1

C1

 , P =

 0 0 0 0 −2.5 0 12.5
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 1

R3C3

(5.57)

and u = qin.
The values of the capacitances and resistances are chosen as follows

R1 = 1.5 C1 = 10
R2 = 0.72 C2 = 50
R3 = 0.60 C3 = 45

and the resulting matrices A, B and P become

A =

 −0.0679 0.0309 0
0.0278 −0.0411 0.0133

0 0.0667 −0.0667

 (5.58)

B =

 0
0

0.1

 , P =

 0 0 0 0 −0.0926 0 0.463
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 (5.59)

We are interested in the state T1, so in order to have the regulation error on
the variable of interest, C and Q are de�ned as follows

C =
[

0 0 1
]
, Q =

[
2.5 0 0.6 0 0 0 −18

]
(5.60)

The two matrices P and Q are built in order to have as reference and distur-
bance, the waveforms in Figure 5.5.
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Figure 5.5: Reference signals generated by the exosystem.

The matrix A is stable and its eigenvalues are

λ1 = −0.0104

λ2 = −0.0673

λ3 = −0.0980

(5.61)

One of the condition for the solvability of the OR problem is that the pair
matrices (A,B) is stabilizable. So it is computed the controllability matrix and it
is shown that is full rank.

Mc =
[
B AB A2B

]
=

 0 0 0.00004
0 0.0013 −0.00014

0.1 −0.0067 0.0005

 (5.62)

In order to verify if the system is incrementally passive, consider the storage

function V (x1, x2) =
1

2
(x1 − x2)>P (x1 − x2), and the matrix P de�ned as

P =

 25 0 0
0 45 0
0 0 10

 (5.63)

The inequality (2.22) and the conditions (5.10) are satis�ed, i.e. the plant is
incrementally passive.
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Figure 5.6: Overall block diagram.

As shown in the precious Section, it is chosen a control law of the form

u = b−1 (−Le+ ṽ −K e) (5.64)

where e is the regulation error and ṽ is the output of the internal model

τ̇ = Φ τ + αΓ e

ṽ = Γ> τ
(5.65)

where Φ = S , Γ =
[

1 0 1 0 1 0 1
]
, α = 1 and initial condition τ0 =[

0 0 0 0 0 0 0
]>
. The reachability matrix related to the IMU

Mr =
[

Γ Φ Γ Φ2 Γ Φ3 Γ Φ4 Γ Φ5 Γ Φ6 Γ
]

(5.66)

is full rank.
The block scheme of the system is shown in Figure 5.6.
Applying a change of coordinates, it is possible to rewrite the system (5.55) as

follows
ż = A11 z + A12 e+ P1w

ė = A21 z + A22 e+ b u+ P2w
(5.67)

where b = 10 and

A11 =

[
−0.0679 0.0309
0.0278 −0.0411

]
, A12 =

[
0

0.0133

]
A21 =

[
0 0.0667

]
, A22 =

[
−0.0677

]
The system (5.67) is in normal form, so it is possible to apply Theorem 5.2.1.
The �rst condition (5.15) is satis�ed considering a lower and upper bound to the
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resistance R1 = [0.01, 100]. The matrix A11 at lower and upper bound can be
written as

A1 =

[
−0.0679 0.0309
0.0278 −2.0278

]
, A2 =

[
−0.0679 0.0309
0.0278 −0.0280

]
(5.68)

and remembering that the matrix P is

P =

[
P1 02×1

01×2 P2

]
=

 25 0 0
0 45 0
0 0 10

 (5.69)

the following inequalities hold

P1A1 + A>1 P1 < 0, P1A2 + A>2 P1 < 0 (5.70)

and the condition (5.15) is satis�ed for P1.
Taking into account the matrix A with the nominal value of R1 and replacing

the control law (5.64), it is possible to evaluate L able to satisfy condition (5.2.1).
The Jacobian can be written as follows

J =

[
P1A11 + A>11P1 P1A12 + A>21P2

P2A21 + A>12P1 2P2 (A22 − L)

]
= −

[
F M
M> N

]
(5.71)

In order to have the Jacobian negative de�nite, it is necessary to satisfy the two
inequalities: F > 0 and N −M> F−1M > 0.

The �rst condition is satis�ed with P1 de�ned before. The second one is satis�ed
for L > −0.0355. This means that even if L = 0 the system is incrementally passive
and the regulation error will decay to zero.

Simulating the system on Simulink, we highlight the comparison between the
state and the reference, the behaviour of ṽ, the input u and the regulation error
that goes to zero.
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Figure 5.7: Case 1 - Comparison between the state and the reference.

Figure 5.8: Case 1 - Output of the Internal Model Unit.

For each images a zoom of the transient is done, in order to shown the high
oscillating behaviour of the signals.
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Figure 5.9: Case 1 - Control input.

Figure 5.10: Case 1 - Regulation error.
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5.4.2 Case 2

It was shown how the previous system does not require the presence of the matrix
L in order to make the plant incrementally passive and to obtain regulation of the
error to zero. For academical purpose we consider again the same general system,
replacing R1 = −10. The resulting matrix A is the following

A =

 −0.0679 0.0309 0
0.0278 −0.0144 −0.0133

0 −0.0667 0.0667

 (5.72)

All the other matrices are the same as before. Consider again the change of
coordinates in (5.67), where b = 10 and

A11 =

[
−0.0679 0.0309
0.0278 −0.0144

]
, A12 =

[
0

−0.0133

]
A21 =

[
0 −0.0667

]
, A22 =

[
0.0677

]
The problem is solvable if and only if the plant is minimum phase: this means

that the zero dynamic is stable and the eigenvalues of A11 have negative real part.
In the case the plant is not minimum phase, then is not possible to obtain a
stabilizer able to solve the OR problem and make the plant incrementally passive.

The eigenvalues of A11 are
λ1 = −0.0808

λ2 = −0.0015

The eigenvalue of A22 is instead positive and its value is λ3 = 0.0667. The plant
described by these matrices is not incrementally passive, so di�erently from before,
we known that a stabilizer is necessary to make the plant incrementally passive
and that L /= 0.

As before, the condition of Theorem 5.2.1 must be always satis�ed, in case of
bounds on parameters.

Consider the matrix P as

P =

[
P1 02×1

01×2 P2

]
=

 45 0 0
0 25 0
0 0 10

 (5.73)

Again we consider a lower and upper bound on R1 as R1 = [−100,−2], obtaining
the matrices

A1 =

[
−0.0679 0.0309
0.0278 −2.0276

]
, A2 =

[
−0.0679 0.0309
0.0278 −0.0178

]
(5.74)
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and is veri�ed that the following inequalities hold

P1A1 + A>1 P1 < 0, P1A2 + A>2 P1 < 0 (5.75)

In order to make the plant incrementally passive, we compute the nominal value
of L∗ by solving the inequality (5.33).

The closed-loop system is incrementally passive for L∗ > 4.2341.
Considering only the plant and the stabilizer, with L = 4.5, it is possible to

verify that for the matrix A written as

A =

[
A11 A12

A21 A22 − L

]
and the matrix P , the conditions (5.10) are satis�ed and the system (plant +
stabilizer) is incrementally passive.

The same simulation done in the previous case are done, considerint L = 4.5,
and are shown in the following �gures.

Figure 5.11: Case 2 - Comparison between the state and the reference.

Again a zoom is done in order to highlight the transient.
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Figure 5.12: Case 2 - Output of the Internal Model Unit.

Figure 5.13: Case 2 - Control input.

Adaptive approach

The matrix L∗ is the nominal value of the matrix in the case we know everything
about the plant. In the presence of uncertainties in the parameters of the system,
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Figure 5.14: Case 2 - Regulation error.

solving (5.33) is not possible. For this problem it is necessary to implement an
adaptive law as shown in Section 5.3. The chosen adaptive law has the form

˙̂
L = γ e2 (5.76)

where γ > 0, with initial condition L̂0 = 0.0001.
The simulations are carried out considering K = 0.001 and γ = 0.1.
The comparison between the state and the reference and the resulting input are

shown in Figure 5.15 and Figure 5.16.
In Figure 5.17 it is shown the comparison between the nominal value of L∗ found

in the case we do not have uncertainties on the parameters and the estimated value
L̂ obtained by the adaptive law (5.76).

It is evident how the estimate L̂ reach a value that is lower then L∗ = 4.2341.
This means that the system can be made incrementally passive with a lower value,
e.g. L∗ = 1.62. It is shown also the transient of the regulation error e and the
output of the IMU ṽ.
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Figure 5.15: Adaptive case - Comparison between the state and the reference.

Figure 5.16: Adaptive case - Control input.
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Figure 5.17: Adaptive case - Comparison between the nominal value L∗ and the
estimated one L̂.

Figure 5.18: Adaptive case - Regulation error.
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Figure 5.19: Adaptive case - Output of the Internal Model Unit.
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Chapter 6

Conclusion

6.1 Comparison between OR and MRAC

The two problems were studied in order to highlight the common points and as-
sumption, and the di�erences between them. For the comparison the two cases
taken into account are: the Error-Feedback problem for the Output Regulation
and the Model Reference Adaptive Control shown in Section 4.3.

The main characteristics of the Output Regulation problem can be summarized
as follows:

� The main objective of the OR problem is to completely reject the disturbances
of a speci�c family of signals, while tracking the desired reference. In partic-
ular the main objective is to have the regulation error going asymptotically
to zero.

� The family of signals, including both disturbances and references, is generated
by an autonomous system called exosystem.

� There is the internal model unit inside the controller: due to the unavailability
of the signals generated by the exosystem and the state of the plant, it is
necessary to embed a copy of the exosystem in a suitable post-processor.

� The OR problem is robust against uncertainties due to the fact that the stabi-
lizer does not rely on the knowledge of the matrices a�ected by uncertainties.

For the Model Reference Adaptive Control the main features are:

� The main problem is to make the closed-loop system behave as the reference
model in terms of input-output behaviour, and not to follow precisely the
reference.
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� The input is assumed to be a bounded piecewise di�erentiable function.

� The system can be considered driven by a non-autonomous exosystem: in the
stabilizer there is a copy of the exosystem.

� As the OR problem, the solution given in Section (4.3) is robust against
uncertainties: the adaptive control is e�ective even if the parameters of the
plant are unknown.

6.2 Incremental Passivity

In the analysis of the thermal system in Section 5.4 it was proven how the de�nition
and lemmas regarding the incremental passivity for non-linear are satis�ed in the
case of linear system. It was also shown how the interconnection between di�erent
incrementally passive systems makes the closed-loop system incrementally passive.
In the second case a stabilizer for the plant was designed, in order to make the
plant passive.

The hypothesis in which are considered the plant matrices a�ected by uncer-
tainties has shown how the property of incremental passivity can be guaranteed
even with values of L di�erent from the computer nominal value L∗.

Further researches can be done considering the exosystem a�ected by uncer-
tainties and implement and adaptive law in order to estimate the parameters of
the internal model.
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Appendix A

A.1 System representation

It is possible to use di�erent formulations in order to represent a system; one of
the most used is the State-Space representation:

ẋ (t) = Ax (t) +B u (t)

y (t) = C x (t) +Du (t)
(A.1)

with
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m

where x (t), u (t) and y (t) are vectors de�ned as

x (t) =


x1 (t)
x2 (t)
...

xn (t)

 ∈ Rn u (t) =


u1 (t)
u2 (t)
...

un (t)

 ∈ Rm y (t) =


y1 (t)
y2 (t)
...

yn (t)

 ∈ Rp (A.2)

The system is proper if D /= 0 and strictly proper if D = 0: this means that
the input does not a�ect the output directly but through the state.

Another representation is the ARMA one (auto regressive moving average: in
this case we have only one equation but with an higher derivative.

y(n) + α1 y
(n−1) + · · ·+ αn y = β0 u

(n) + β1 u
(n−1) + · · ·+ β u (A.3)

The equation can be rewritten as

D (p) y (t) = N (p)u (t)

with D (p) = pn + α1 p
n−1 + · · ·+ αn and N (p) = β0 p

n + β1 p
n−1 + · · ·+ βn, with

the operator pk y =
dy(k)

dt(k)

Given any transfer function H (s), any state-space model that is both control-
lable and observable and has the same input-output behaviour as the transfer
function, is said to be a minimal realization of the transfer function.
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A.2 Coordinate change

Given the following SISO system

ẋ = Ax+B u

y = C x
(A.4)

with A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Let denote with r the so called relative
degree, that is the least integer for which C Ar−1B /= 0.

Proposition A.2.1. The r rows of the r × n matrix

T1 =


C
CA
· · ·

CAr−1

 (A.5)

are linearly independent. As a consequence, r ≤ n.

In the case where r is strictly less than n, there exists a matrix T0 ∈ R(n−r)×n

such that

T =

(
T0

T1

)
=


T0

C
CA
· · ·

CAr−1

 (A.6)

is nonsingular.

Proposition A.2.2. It is always possible to pick T0 in such a way that the matrix
(A.6) is non singular and T0B = 0.

Through the matrix T is possible to de�ne a change of variable as follows

z = T0 x, ξ̇ =


ξ1

ξ2

· · ·
ξr

 =


C
CA
· · ·

CAr−1

x

Deriving in time the two previous equation, the resulting equations describing
the system are

ż = T0 ẋ = T0 (Ax+B u) = T0Ax+ T0B u

ξ̇ = Â ξ + B̂
(
C Ar x+ C Ar−1B u

)
y = C x = ξ1 = Ĉ ξ

(A.7)
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The previous equation are still function of the variable x, so it is necessary to
express x as a (linear) function of the new variables z and ξ

x = M0 z +M1 ξ

where M0 and M1 are partition of the inverse of T(
M0 M1

)( T0

T1

)
= I

Setting
A00 = T0AM0, A01 = T0AM1, B0 = T0B

A10 = C ArM0, A11 = C ArM1, b = C Ar−1B

the equations in (A.7) becomes

ż = A00 z + A01 ξ +B0 u

ξ̇ = Â ξ + B̂ (A10 z + A11 ξ + b u)

y = Ĉ ξ

(A.8)

The equations written in (A.8) are referred to as the normal form of the system.
The term B0 can be made equal to 0 if is valid the Proposition A.2.2, and the
normal form is said to be strict. The term b, di�erently, is always nonzero, and it
is referred as the high-frequency gain of the system.

A.2.1 Minimum-Phase

Consider now the system described by

ẋ = A (µ)x+B (µ)u

y = C (µ)x
(A.9)

where µ is a vector of uncertain parameters, assumed to be constant and to range
over a �xed, and known, compact set M.

Assumption A.2.1. A (µ),B (µ) and C (µ) are matrices function of the uncertain
parameter µ. For every µ ∈ M, the pair (A (µ) , B (µ)) is reachable and the pair
(A (µ) , C (µ)) is observable. Moreover:

(i) The relative degree of the system is the same for all µ ∈M.

(ii) The zeros of the transfer function C (µ) (s I − A (µ))−1B (µ) have negative
real part for all µ ∈M.
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Generally, if the second point of Assumption A.2.1 is valid for a system, the
system is referred as a minimum-phase system. As before, by means of a change
of coordinates

x̃ =

(
z
ξ

)
=

(
T0 (µ)
T1 (µ)

)
x

where

T1 (µ) =


C (µ)

C (µ)A (µ)
· · ·

C (µ)Ar−1 (µ)


The matrix T0 (µ) is chosen to satisfy T0 (µ)B (µ) = 0. The system (A.8) becomes

ż = A00 (µ) z + A01 (µ) ξ

ξ̇ = Â ξ + B̂ [A10 (µ) z + A11 (µ) ξ + b (µ)u]

y = Ĉξ

(A.10)

In the end there are two consequences to the Assumption A.2.1:

(i) The high-frequency gain b (µ) will be always nonzero for all µ ∈M.

(ii) Thanks to the converse Lyapunov Theorem, the eigenvalues of A00 (µ) have
negative real part for all µ ∈ M. The theorem tells that exists a positive
de�nite symmetric matrix P (µ), such that

P (µ)A00 (µ) + A00
T (µ)P (µ) = −I for all µ ∈M (A.11)

Relative degree 1

In the case in which r = 1 and the system is minimum phase, the (A.8) can be
written as follows

ż = A00 (µ) z + A10 (µ) ξ

ξ̇ = A10 (µ) z + A11 (µ) ξ + b (µ)u

y = ξ

(A.12)

A.3 Reachability and Controllability

A.3.1 Reachability

Let consider the system

ẋ (t) = Ax (t) +B u (t) (A.13)
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and recall the notation

x (t) = Φ (t)x (0) + Ψ (t)u[0,t) (·) (A.14)

where the �rst element can be considerate equal to zero.

De�nition A.3.1. The reachability set is the set of points ( states in Rn ) that is
possible to reach modifying the input in a certain time t.

R+ (t) = {x ∈ Rn : x = Ψ (t)u[0,t) (·) for some u[0,t) (·) ∈ Rp} (A.15)

with R+ ⊆ Rn, ∀t ≥ 0, where R+ = ∪t≥0R+ (t).

De�nition A.3.2. The system described by the pair (A,B) is completely reachable
if R+ = Rn. The set R+ is de�ned as

R+ = Im [R] (A.16)

where R is the reachability matrix

R =
[
B AB A2B · · · An−1B

]
(A.17)

In order to check the complete reachability , without computing the reachability
matrix R, is possible to use the PHB test (Popov-Belevitch-Hautus).

De�nition A.3.3 (PHB test). The system described by the pair (A,B) is com-
pletely reachable if and only if

rank
[
A− λI B

]
= #rows n, ∀λ ∈ σ (A) (A.18)

A.3.2 Controllability

Considering the same system of (A.13), it is possible to de�ne the controllability
set as follows

De�nition A.3.4. The controllability set is the set of points (states in Rn) that
can be controlled to the origin in [0, t).

R− (t) = {x ∈ Rn : Φ (t)x+ Ψ (t)u[0,t) (·) = 0 for some u[0,t) (·)} (A.19)

with R− ⊆ Rn, ∀t ≥ 0, where R− = ∪t≥0R− (t).

De�nition A.3.5. The system is completely controllable if R− = Rn. The com-
plete reachability implies the complete controllability, but not the inverse.
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Consider the reachability matrix (A.17), and apply a coordinate change

z = T x→
(
Ã, B̃

)
=
(
T AT−1, T B

)
(A.20)

obtaining
R̃ = T R (A.21)

where rankR̃ = rankR, ∀T not singular.

De�nition A.3.6 (Controllability canonical form). The system (A,B) is
completely reachable if and only if ∃Tc ∈ Rn×m, not singular, such that

Ac = TcAT
−1
c =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αn −αn−1 −αn−2 · · · −α1

 Bc = TcB =


0
0
...
0
1


(A.22)

where the parameters in the last row of Ac are obtained from

det (λI − A) = λn + α1 λ
n−1 + · · ·+ αn (A.23)

The (A.22) is referred to as the controllability canonical form.

A.4 Observability

A.4.1 Observers

Consider the system
ẋ = Ax

y = C x
(A.24)

with state x ∈ Rn and output y ∈ Rp. The idea behind the observability is to how
obtain information on the system from the output. De�ning the observable set as

ε+ =
(
ε+NO

)
⊥

where εNO is the not-observable set de�ned as follows

ε+NO (t1) = {x ∈ Rn : cΦ (t)x ≡ 0, ∀t ∈ [0, t1)} (A.25)

The not-observable set is the set of state such that simulating the system from
that initial state, the observed output in the interval [0, t1) is identically 0.
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De�nition A.4.1. The system described by the pair (A,C) is completely observ-
able if and only

rankO = n (A.26)

where O is the observability matrix described by

O =


C
C A
...

C An−1

 (A.27)

Reduced-order Observer

Consider the following system:

ẋ = Ax+B u

y = C x
(A.28)

where x ∈ Rn and y ∈ Rp. In the case of the Luemberger observer, we have the
dimension of the observer equal to n. In this case we can measure the output
y; due to the fact that y is a linear combination of the state, we have at least
p information about it. Considering C =

[
Ip 0

]
it means that y1, . . . ,yp are

coincident with the �rst p state variables x1, . . . ,xp. This allows to design an
observer with a reduced-order given by n − p. It is possible to rewrite the state
equation as follows:

ẋ =

(
ẏ
ẋ2

)
=

(
A11 A12

A21 A22

)(
y
x2

)
+

(
B1

B2

)
u (A.29)

It is possible to rewrite the state equations as

ẏ = A11 y + A12 x2 +B1 u

ẋ2 = A21 y + A22 x2 +B2 u

and then from the �rst one de�ne:

ẏ − A11 y −B1 u = A12 x2 := ȳ (A.30)

We can that write the equation of the observer equation as

˙̂x2 = A21 y + A22 x̂2 +B2 u+ L (ȳ − A12 x̂2) (A.31)

The error dynamics is de�ned:

e = x2 − x̂2
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ė = (A22 − LA12) e (A.32)

if the matrix inside the parenthesis is Hurwitz, then the error goes to zero and the
estimate of the state goes to the real value:

e (t)→t→∞= 0 ⇒ x̂2 (t)→ x2 (t) (A.33)

In order to have this matrix Hurwitz we need to have the pair (A22, A12) observable
and detectable: this is valid only if the pair (A,C) is observable and detectable.

This kind of result is obtainable only if ẏ is known; in the case we can not
measure the value, we need to do a change of variable of the following type:

ẑ = x̂2 − Ly
˙̂z = f (ẑ, u, y)

(A.34)
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