
POLITECNICO DI TORINO
Master’s Degree in Embedded Systems

Master’s Degree Thesis

Feasibility study of the Software-Based
Self Test methodology on a Hardware
Accelerator for Neural Networks

Prof. Paolo BERNARDI

Prof. Riccardo CANTORO

Dr. Olivier MONTFORT

Lorenzo ZAIA

December 2020

Summary

The goal of the following thesis is to demonstrate that the Software-Based Self Test
can be adopted on dedicated Multi-Cores architectures for the implementation of
Neural Networks. The first part of the paper will deal with all the theoretical con-
cepts required for the correct understanding of all the theoretical aspects. Notions
will be provided on the topics of Testing and Fault Tolerance, Neural Networks, and
Multi-Processor Systems concluding with an accurate description of the RISC-V
ISA. The latter design was adopted by the company for the implementation of the
VEP Design, an hardware accelerator for DSP and Neural Networks. In the second
part, a description of the entire SoC will follow with an explanation regarding the
organization of the memories, which will be one of the main aspects to consider for
the correct functioning of the test software. Successively, the algorithms and the
workflow used by the test programs to reach an acceptable Fault Coverage value
will be described, concerning the different strategies adopted by the various EDA
Tools to obtain and validate the results. The last part will include an explanation
of the entire software architecture implemented to orchestrate the whole test suite.
Therefore, concluding with the results obtained and further analysis.

ii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

Introduction and Goal 1

1 Testing and Fault Tolerance 2
1.1 The Concept of Dependability . 2

1.1.1 Attributes . 2
1.1.2 Threats . 3
1.1.3 Means . 3

1.2 Failures and Faults . 4
1.2.1 Failures Classification . 4
1.2.2 Faults Classification . 5
1.2.3 Faults Propagation, Lifecycle and Latency 6

1.3 Testing . 7
1.3.1 Test Types . 8

1.4 Test economics . 9
1.4.1 Effects on Design Flow . 10
1.4.2 Technology Evolution . 11

1.5 Design For Testability . 11
1.5.1 Scan Test . 12
1.5.2 Built-in Self-Test . 13

1.6 Faults models . 15
1.6.1 Stuck-At . 15
1.6.2 Short (or Bridge) Open circuit 17
1.6.3 Transistor Stuck-On/Off . 17
1.6.4 Delay Fault . 18

1.7 Test Process . 20

iv

1.7.1 Fault Management . 21
1.7.2 Fault Simulation . 21
1.7.3 ATPG . 22

1.8 Software Based Self Test . 23

2 Neural Networks and Multi-Computer architectures 26
2.1 Multi-Computer Systems . 26

2.1.1 Taxonomy of multi-computers 26
2.1.2 Multi-Core processor . 27
2.1.3 General Purpose Graphical Processor Unit 29
2.1.4 Computer Cluster . 30

2.2 What is a Neural Networks . 30
2.2.1 Neurons and activation functions 32
2.2.2 Architecture of the neural network 33
2.2.3 Learning process of a neural network 34
2.2.4 Matrix Representation . 35
2.2.5 Parallel Computing . 38
2.2.6 Impact on Instruction Set Architecture 39

3 Risc-V 40
3.1 Instruction Set Architecture ISA . 40

3.1.1 Register File . 40
3.2 Instruction Format . 41

3.2.1 Common RISC-V Extensions 42
3.3 PULP RI5CY . 42

3.3.1 Instruction Fetch Stage . 43
3.3.2 Decode Stage . 43
3.3.3 Execute Stage . 43
3.3.4 Load and Store Unit . 46

4 Case of Study - VEP Design 47
4.1 About Dolphin Design . 47
4.2 Overview . 47
4.3 Control Cluster . 49

4.3.1 Fabric Controller . 49
4.3.2 System Interconnect . 50
4.3.3 L2 Memory . 50
4.3.4 uDMA with Interface Peripherals 50
4.3.5 Clock Management . 51
4.3.6 Event Management Unit . 51

4.4 DSP Cluster . 51

v

4.4.1 RISC-V NN ISA . 52
4.4.2 L1 Data Memory . 53
4.4.3 Shared FPU . 53
4.4.4 Instruction Cache . 54
4.4.5 DMA and Bus . 54

4.5 Testing Aspects . 55

5 Testing Software 57
5.1 Test Suite Development . 58

5.1.1 Analysis and Simulation . 58
5.1.2 Pattern Implementation . 59

5.2 Low-Level API . 67
5.2.1 Test Flags . 67
5.2.2 Test Programs Failures Detection 68
5.2.3 Test programs interface . 68
5.2.4 Signature comparison . 69

5.3 High Level API . 70
5.3.1 Test Sets Creations . 70
5.3.2 Multi-Core Addressing . 70
5.3.3 Test Program Launching . 70
5.3.4 Test Result Evaluation . 71

5.4 The study-case software . 71
5.4.1 Test Suite . 71
5.4.2 LLD and HLD Libraries Implementation 73
5.4.3 Software Functioning . 74

6 Results and Analysis 76
6.1 Results on VEP design . 76

6.1.1 Fault Coverage . 76
6.1.2 Simulation Time . 82
6.1.3 Fault Simulation Time . 83
6.1.4 Absolute Time . 83

6.2 Conclusive analysis and considerations 84

Bibliography 86

vi

List of Tables

3.1 Register sets . 41

4.1 Fault summary . 56

5.1 Test programs adopting Pseudo-Random. 71
5.2 Test programs adopting Pseudo-Random and ATPG 72
5.3 Test programs adopting memory algorithm. 72

6.1 DSP Cluster fault coverage . 78
6.2 RISC-V NN Core fault coverage . 79
6.3 Shared FPU fault coverage . 81
6.4 FPU fault coverage . 81
6.5 RTL Waveform Simulation Time 83
6.6 Fault Simulation Time . 83
6.7 Absolute Time . 84

vii

List of Figures

1.1 From fault to failure UML . 3
1.2 Latency and Inertia . 6
1.3 Test Application . 7
1.4 Costs of Development stages for software application (2005, Bell) . 10
1.5 Time delay detection / Fix cost . 10
1.6 Development flow with validation phases 11
1.7 Scan Test . 12
1.8 Scan Test . 12
1.9 BIST Architecture . 14
1.10 Netlist Example . 15
1.11 Netlist Example . 16
1.12 Netlist Example . 16
1.13 Bridge Example . 17
1.14 Stuck-On transistor Example . 18
1.15 Transition fault Example . 19
1.16 Testability Hierarchy . 20
1.17 Test Process phases . 21
1.18 Fault Simulation Phase . 22
1.19 Online Test operation example . 23
1.20 SBST Test Suite development order 24

2.1 Architecture taxonomy . 27
2.2 Multi-Core Architecture . 29
2.3 CPU and GPU comparison . 30
2.4 Scheme of Cluster Computer . 31
2.5 Example of neural network . 31
2.6 Example of node with three inputs 32
2.7 Neural network architecture . 33
2.8 Neural network architecture . 35
2.9 Learning algorithm flow . 36
2.10 Example . 36

viii

2.11 Example . 37

3.1 RISC-V Instruction Format . 42
3.2 RI5CY Architecture . 43
3.3 Control and Status Registers List 45

4.1 VEP Design . 48
4.2 DSP Cluster Scheme . 52
4.3 PULP RISC-NN Scheme . 53
4.4 Instruction Cache Architecture . 54
4.5 Instruction Cache Functioning . 55

5.1 Framework . 57
5.2 SBST Pattern Generation Flow . 59
5.3 ATPG Pattern Generation Flow . 62
5.4 Fault Simulation Flow . 64
5.5 SBST Functioning on VEP Design 75

6.1 Result on DSP Cluster . 77
6.2 Result on DSP Cluster . 80

ix

Acronyms

IP
intellectual property

ATE
Automatic Test Equipment

DfT
Design for Testability

BIST
Built-In Self-Test

UUT
Unit Under Test

DUT
Device Under Test

PIs
Primary Inputs

POs
Primary Outputs

TPG
Test Pattern Generator

ATPG
Test Pattern Generator

xi

LFSR
Linear Feedback Shift Register

ODE
Output Data Evaluator

FC
Fault Coverage

SBST
Software Based Self-Test

OS
Operative System

EABI
Embedded Application Binary Interface

GPU
Graphic Processor Unit

CPU
Core Processor Unit

GPGPU
General Purpose Graphic Processor Unit

ILP
Instruction Level Parallelism

TLP
Thread Level Parallelism

NN
Neural Network

ISA
Instruction Set Architecture

xii

RISC
Reduced Instruction Set Computer

GCC
GNU C Compiler

FPGA
Field Programmable Gate Array

ASIC
Application Specific Integrated Circuit

DMA
Direct Memory Access

SoC
System on Chip

APB
Amba Peripheral Bus

AXI
Amba eXtensible Interface

FLL
Frequency-Locked Loop

DCO
Digital Controlled Oscillator

DSP
Digital Signal Processing

VCD
Value Change Dump

eVCD
Extended Value Change Dump

xiii

Chapter

Introduction and Goal

The following feasibility study aims to demonstrate that the SBST technique can also
be successfully applied on complex multi-core systems used for the implementation of
neural networks and DSP computations. In this place, all the problems encountered
during the experience are highlighted and possible solutions are provided. The
results will be demonstrated through the implementation of a first version of the
test software, explaining in detail the whole workflow adopted for its development.
The study shows how the methodology has heavy limitations due to the demanding
resources to simulate large sequential multi-core circuits proposing, a first solution
able to give an effective indication of the fault coverage on the targeted modules of
the design.

1

Chapter 1

Testing and Fault Tolerance

1.1 Concept of Dependability
It happened to everyone to go to a store to buy an electronic product and be
undecided about which model to take. It has often happened to decide to buy a
more expensive version of the latter in the hope that it will last longer in time.
In general, it’s possible to say that, the durability over time is, therefore, a key
parameter to determine the quality of a product.

The Dependability is the property characterizing a dependable system. It is
defined as "the trustworthiness of a computing system which allows reliance to be
justifiably placed on the service it delivers ".[1] [2]
Three different aspects allow to determine and influence the degree of dependability
of a system:

• Attributes - Reliability, Availability, Safety, Integrity, Confidentiality, Main-
tainability, Testability

• Threats - Faults, Errors, Failures

• Means - Prevention, Tolerance, Removal, Forecasting

1.1.1 Attributes
The probability of a system to provides its functionality correctly at the end of a
defined time is defined as Reliability. In general, the metric used to quantify the
reliability is commonly defined as Mean Time to Failure (MTTF) measured,
obviously, in hours. Another metric, widely used, is the Failure Rate denoted as
number of failures over a period.
Taken a defected system, the probability to fix it within a period of time is called

2

Testing and Fault Tolerance

maintanability. In this case, the metric adopted is the Mean Time to Repair
(MMTR) defined as the average time required to fix the system.
Similarly to the reliability, the availability is the probability of performing the
operation at a generic fixed time T and therefore, without considering time periods.
The integrity defines a system in absence of improper alteration while the con-
fidentiality its related to the absence of unauthorised disclosure of information.
The Safety defines a system capable to behave correctly in presence of a defect
and/or interrupt its operations without causing serious damages. To assesses the
seriousness of possible misbehaviours it’s necessary to perform some preliminary
studies, the Failure Mode and Effect Analysis (FMEA) and the Fault Tree Analysis.
The testability describes the easiness of a system to be tested to detect possible
faults taking into account the possibles effects on Reliability and Availability.

1.1.2 Threats
The threats are phenomena that can affect the system and affect the dependability
of a systems as:

• Fault

• Errors

• Failures

Figure 1.1: From fault to failure UML

A Fault is a defect in the system and its presence can lead or not towards a
failure. An Error is an internal deviation of the behavior of the system. This is
caused by the entering in an illegal state of some modules affected by one or more
faults. Since, an error is an internal discrepancy it could be propagated, generating
a failure, or not. The Misbehaviour (Failure) determines a different function
with respect the designed one. A failure can be masked by the presence of fault
tolerance techniques and in this case the system can be defined as Fault Tolerant.

1.1.3 Means
The industries decided to adopt a standard process for each development phase to
ensure dependable systems.
A common example is the ISO26262 for the automotive industry. This standard

3

Testing and Fault Tolerance

defines a set of clearly guidelines that are required during the whole development
flow, involving hardware and software aspects.
The techniques adopted are normally classified in four categories:

• Fault Prevention

• Fault Removal

• Fault Tolerance

• Fault Forecasting

All the different approaches are complementary of each other.
The Fault Prevention can be performed through an accurate development method-
ology and with a carefully modules integration preventing that the faults will be
incorporated in the system.
The Fault Removal aims to detect and remove many as possible faults from the
system. As said before, this operation is preferable during the development phase
to reduce the fixing costs.
The Fault Tolerance deals to inject mechanism into the defected system in order
to still provide the correct functionalities.
The Fault Forecasting is the faults prediction so that their effect can be masked
or removed.

1.2 Failures and Faults
1.2.1 Failures Classification
Failures can be classified according to the different misbehaves generated.

• Static or Dynamic

• Permanent or Transient

• Consistent or Inconsistent

• Benign, Serious or Catastrophic

A failure is considered as static if the results produced are wrong every time
the operation is performed. Inversely, failures that provide correct results but with
wrong timings are considered as dynamic.
The duration of failure can be permanent, if it is significant concerning the mission
duration, or transient. The third aspect of failure classification regards how they
are perceived. In case the experienced effects are the same for all the users, the

4

Testing and Fault Tolerance

misbehaviour is consistent, contrarily, as inconsistent.
The last perspective permits to identify the failures considering their gravity of
effect. In the case of negligible effects, the failure is considered as benign. More
critical is a serious failure that affects the mission of the system even if it can
continue the latter. Differently, if the mission is interrupted it is classified as
catastrophic.

1.2.2 Faults Classification
As said before, a failure is caused by the presence of faults. It’s possible to classify
them accordingly:

• Fault Origin

– Location
– Development phase
– Cause

• Fault Nature

– Type
– Intentionality
– Duration

A fault can arise by internal defects or by some external perturbations by
functional environment or wrong usages by the user. It can arise during each devel-
opment phase. Considering the latter, if a fault is detected before the operation
phase it is named creation fault. The last aspect to determine the origin of a fault
concerns the causes that generated it. A common example is a fault caused by
technology during the device production phase.

To characterize the nature of a fault is necessary to identify the type. The
different fault type are functional or technological. A functional fault relates to
how the device has been designed, specified, or used. This topology of fault is called
systemic. A technological fault relates to the implementation of the system during
the production phase and, it is identified as disruptive. Sometimes, a defect is
injected in the system to achieve a specific goal, in this case, the fault is intentional
otherwise it is accidental. Also for the faults exist the concept of duration. They
can be temporary or permanent. A temporary fault can be divided into two
subclasses, transient if it disappears after some time or intermittent if it never
disappears completely.

5

Testing and Fault Tolerance

1.2.3 Faults Propagation, Lifecycle and Latency
When a fault arises inside in the system it may affect others modules causing errors
and/or misbehaviour over the whole system. The analysis of the propagation
path is a crucial aspect to take into account to assess the dependability of the
product.
The life-cycle of a fault across three possible phases:

• Phase I: it is present in the system but it never produces any effect. In this
case, the fault is defined as dormant or textitpassive

• Phase II: it is active and it’s possible to detect some error in the system

• Phase III: it produces failures so, it is propagated

Before to see failures, due to a fault propagation, some time occurs. This time is
defined as latency. To characterize the latency it’s fundamental to evaluate the
module containing the fault, the time of occurrence, the usage and the observation
level. The frequency at which a module is used permits to clarify better which is
the latency as it is the usage of its results.

Furthermore, it’s reasonable to determine the propagation of a failure for what
concern the consequences on the mission, the metric is called inertia. Higher is
the value of inertia better is visible the fault propagation and so, its detection.
This means that it is correlated to a lower value of latency. The worst case is when
the latency is high and the inertia is low; in this situation, the fault detection is
difficult since it is "hidden" inside the system. The figure 1.3 explains better the
concepts of Latency and Inertia.

Figure 1.2: Latency and Inertia

6

Testing and Fault Tolerance

1.3 Testing
The test is a process aiming to identify as much as possible the defects of a system.
This procedure is employed to distinguish faulty products between good products.
An overview of the test application phase is in figure 1.4. During this phase,
the responses provided by the DUT are compared with those expected from a
faulty-free device. The test application is executed in different ways according to

Figure 1.3: Test Application

the development phase. The test is performed through specific inputs aimed at
highlighting discrepancies in the results when there is a defect in the system, the
latter are specifically identified before the production phase. The metric adopted to
assess the quality of a test is the defect level. This parameter gives the percentage
of the faulty product and it is usually expressed as part per million (ppm) or part
per billion (ppb). After the manufacturing process, the test application permits the
assessment of the product quality. In some cases, faulty products can be labeled
as good and, unfortunately, they are delivered to the customers. Contrarily, some
good products can be classified as faulty and discarded even if they are good, this
issue is defined as overtesting. Analytically, the defect level can be expressed by
the equation 1.1.

DL = 1− Y (1−T) (1.1)
where:

• DL is the defect level

• Y is the manufacturing process Yield

• T is the fault coverage

Identifying the correct Fault Coverage (FC) is a key aspect of all the application
domains. The yield is the percentage of the products that have passed all the

7

Testing and Fault Tolerance

manufacturing processes. It’s important to highlight that the yield can be improved
during all the life cycle of the product because the manufacturing process can be
tuned and optimized.

1.3.1 Test Types
During the development is possible to apply several type of testing methodologies.
Each type of test is aimed at validating each different stage of development. The
common techniques widely used are the following:

• Verification Testing

• Production Testing

• Burn-In

• System Level Test

• Incoming Inspection

• On-line Testing

Verification Testing

The verification testing aims to validate the correctness and compliance concerning
the device specifications. It is involved to find also the operating limits of the
circuit in terms of voltage, temperature maximum frequency. This type of test is
performed before the mass production of the system and it is also called design
debug.

Production Testing

The goal of this kind of test is to guarantee the correct behavior of the produced
devices. Normally is composed by two phases, the parametric test and functional
test. The parametric test is performed to the circuit applying different frequencies
and current values. Doing this procedure is possible to highlight if some technical
parameters fall into unexpected intervals by the presence (or not) of physical
defects. It’s mandatory to repeat this test every time a new technology is adopted.
The functional test is used to check the functionalities of the system applying
stimuli that are used during the normal functioning of the system. It can include
some patterns used during the verification testing and this procedure is technology
independent.

8

Testing and Fault Tolerance

Burn-In

The idea is to stress the circuit under extreme conditions in terms of temperature,
voltages, etc. In this context, the circuit ages in a way similar to that produced by
time. Often, this test is applied to all newly printed circuits identifying the possible
subjects to infant mortality. Furthermore, this stress test permits to evaluate the
reliability of a restricted number of printed circuits. This practice is applied for
those circuits designated for particular applications as space missions and nuclear
power plants.

System Level Test

This methodology is performed including all the system modules under operative
conditions. In this phase, newly defects can arise and, consequently, generate
unexpected behaviours.

Incoming Inspection

This check is performed by the buyer and it aims to evaluate that the circuit works
correctly before mounting it on another board. Sometimes, the buyer doesn’t know
all the internal design since it could be an intellectual property (IP).

On-line Test

This practice is widely adopted when the circuit is used in critical missions and it
requires, continuously, testing operations aimed to evaluate the reliability of the
circuit. In general, it is done through specific software able to activate dedicated
test modules inside the circuit keeping the circuit under its operational environment.
The On-line test is also called in-field test. The test can be executed concurrently
during the normal operations or non-concurrently. The interesting aspect of this
methodology is to decide when it’s better to perform the test. In many applications
the system cannot be powered off therefore, the idea is to guarantee the Fault
Coverage inside a defined time interval evaluating, for instance, possibles idle times
of the operative system.

1.4 Test economics
Even thought, the cost per transistor is reduced scaling the technology, its test-
ing costs are rising since that they became more complex and sophisticated.[3]
Nowadays, a net percentage of development costs is determined by the presence
of different testing methodologies. As it possible to see in figure 1.4 the testing

9

Testing and Fault Tolerance

phase, of a software application, has the same impact of all the other development
phases (excluding maintenance).

Figure 1.4: Costs of Development stages for software application (2005, Bell)

1.4.1 Effects on Design Flow
During the development of an electronic device it is necessary to pay attention to the
testing procedures adopted especially during the very first stages of development.As
shown in Figure 1.5, the costs of fixing any defects increase exponentially in the
subsequent development phases.

Figure 1.5: Time delay detection / Fix cost

For this reason the development flow has been highly modified introducing
validation phases after each development stage. These modifications are shown in
Figure 1.6.

10

Testing and Fault Tolerance

Figure 1.6: Development flow with validation phases

1.4.2 Technology Evolution
As said before, the technology scaling has increased a lot the cost of the testing
procedures. The complexity of the test procedures are affected by three main
parameters:

• Working Frequency

• Density

• Analog and Digital modules integration

Rising the working frequency of a system implies an increase in the difficulty to
perform at-speed tests. Moreover, for operative frequency higher than 1 GHz the
electromagnetic interference becomes an important effect to take into account since,
it can enhance the number of possible defects. A higher density of gates inside the
circuit provokes a reduction of accessible testing points while, for the same reason,
the possibility to generate defects due to power and temperature dissipation is
increased. A complex device that mixes analog and digital devices can be harder
to test due to different testing methodologies.
All those aspect are reflected in the cost for the Automatic Test Equipment (ATE).
The cost of this kind of device is highly dependent on the working frequency, number
of test pins and in the amount of memory required by the testing application.

1.5 Design For Testability
As anticipated in section 1.4.1, sometimes is convenient and necessary to modify
the intern structure of the circuit to increase the testability of the circuit. This
approach is called Design for Testability (DfT) and it is used in practice by all
the designers of digital devices. In general, two techniques are widely adopted:

11

Testing and Fault Tolerance

• Scan Test

• Built-in Self-Test (BIST)

1.5.1 Scan Test
The basic idea is to generate a sequence of patterns, this can be easily done for
combinational circuits but is impractically impossible for the sequential ones. To
solve the issue, the basic idea is to adopt a new type of flip-flop called scan flip-flop
that adds the possibility to scan-in and scan-out its value when the test is enable.
In this way, all the sequential blocks are separated into small combinational ones.
The modification is visible in Figure 1.7. The structure of a scan-FF is shown in

Figure 1.7: Scan Test

Figure 1.8.

Figure 1.8: Scan Test

Typically, the test operation is performed in four steps:

12

Testing and Fault Tolerance

1. Upload Scan-FF serially with known values

2. Apply the known values to the combinational logic

3. Store the output into the scan-FF

4. Shift out the captured value

In a real system the scan FF are organized in scan-chains and their length its a
crucial aspect to take into account, since, they directly affect the duration of the
scan-in and scan-out phases. For technical reasons, sometimes, the two scan phases
are performed at different clock speed with respect to the operational one of the
circuit. This means that the handle of the signals overhead could be a problem
especially in presence of another clock. This technique can provide optimal results
in terms of fault coverage but, due to the application of not functional patterns, it
can produce overtesting. Another aspect to consider, it’s the necessity to reproduce
a safe context during the scan phases because, during those operations, the system
is fed with random values that can damage the circuit permanently.
In a real board with many modules developed by different companies the scan
signals are integrated leveraging the capabilities provided by the JTAG interface
and its TAP Port.

1.5.2 Built-in Self-Test
The BIST technique leverage the concept of built-in ATEs. The goal is to perform
at-speed test guaranteeing a good fault coverage giving also the possibility to test
modules that are embedded in the circuit. The basic scheme of the BIST circuitry
is in Figure 1.9.

The basic blocks of the BIST architecture are:

• The Unit Under Test (UUT) is the part of the circuitry tested by the BIST.
It could be a sequential or a combinational block. Sometimes, the UUT is
also memory or an analog circuit. The observable points of the UUT are its
respective PIs and POs.

• The Test Pattern Generator (TPG) is a dedicate circuit dedicated to
generating the test stimuli for the UUT. Those patterns can be generated
randomically, through an LFSR, or deterministically.

• The Multiplexer is in charge to select the normal UUT inputs with the ones
generated by the TPG.

• The Output Data Evaluator (ODE) compares the POs responses, obtained
in test mode, with the expected ones.

13

Testing and Fault Tolerance

Figure 1.9: BIST Architecture

• The BIST Controller is the logic unit that controls the execution of the test
managing the TPG, the ODE, the MUX and the UUT. It is controlled by the
normal/test signal and drives the go/nogo signal.

The Normal/Test signal is in charge to activate enable the test for the UUT.
In test mode the reconfigure signal is asserted to enable some features, if present,
within the UUT to increase its testability. The Go/Nogo signal is used to declare
the result of the test outside the module.

The test procedure across several phases.

1. The Normal/Test signal is switched on test mode. This action is performed
internally, in the same board, by another module or externally, by an ATE or
from the Boundary Scan Interface (JTAG).

2. The BIST controller sets the multiplexer and enables the TPG to generate
the test stimuli feeding the UUT.

3. The BIST controller activates the ODE to analyze the POs.

4. The responses, provided by the ODE, are compared with respect to the
gold machine. At this point, the BIST controller performs some decisions to
evaluate the result of the test and asserts the Pass/failure flag.

5. The BIST controller, according to the internal flag, drives the GO/Nogo signal.

From the external point of view, the whole test session is observed using specific
protocols, in a way quite similar to a UART protocol. In this case, the signals

14

Testing and Fault Tolerance

that regulate the protocol are Normal/Test and Go/Nogo. Thanks to the use of
more advanced protocols it is also possible to identify possible faults on the BIST
controller.
In conclusion, this technique is optimal and widely used, especially inside the
memories. Some critical aspects arise due to the area overhead and, consequently,
by the power consumption that can cause radical changes in the circuit design.

1.6 Faults Models
A product can be affected by a large number of possibly defects of different nature.
For this reason, its useful to model all the faults with share the same properties.
The commons used models are:

• Stuck-At

• Short (or Bridge) Open circuit

• Transistor Stuck-on/off

• Delay Fault

• Single Event effect

Those models permit to describe, with a high level of accuracy, a large scale
of possible physical defects. In this way, the physical defect is translated into
logical faults which are more meaningful under the point of view of the system
functionality.

1.6.1 Stuck-At
The stuck-at model is widely adopted in almost all domains due to its simplicity.
In many situations is the first model used to develop testing techniques. It consists
to represent a signal to a fixed value at a high o low level. Considering the gate
netlist in figure 1.10.

Figure 1.10: Netlist Example

15

Testing and Fault Tolerance

A possible fault, can affect the wire D "stucking" its value at 1 as shown in
figure 1.11

Figure 1.11: Netlist Example

To detect this kind of logic fault it’s necessary to find some inputs combination
(pattern) able to excite and propagate the defect to, at least, one output ports.
Sometimes, find an input pattern is not trivial and it is highly related to the
netlist structure. The presence of reconvergent fanout could make it difficult to
find the pattern since the fault effect could be masked. A high-level example of
a reconvergent network is shown in figure 1.12. In this example, the fault effect
propagation is masked by the result of the combinational logic C.

Figure 1.12: Netlist Example

The stuck-at can be used also to detect faults in sequential circuit even if is
more complex. For this goal is necessary to apply a sequence of input vectors.
The worst situation, in terms of pattern generation is when the memory elements
belong to a cycle.
In conclusion, for what concerns the stuck-at model, it’s feasible to classify it as
a very effective one. It permits to enumerate the number of faults and, thanks
to its simplicity, it is supported by almost all testing tools. Unfortunately, some
physical defects are not covered by its modelization, this implies to adopt and take
in consideration also other faults models.

16

Testing and Fault Tolerance

1.6.2 Short (or Bridge) Open circuit
The Short (or Bridge) Model consider the effects of a bad connection between
two nodes in the circuit. Often this defect is caused by electromigration phenomena.
The electromigration is caused by the currents that flow inside a conductor. The
electrons transfer their momentum to the metal atoms moving them. By this
phenomena, the metal elementary structure is altered evolving, in the worst case,
into short or open circuit. The value assumed by the nodes coupling may be
depending by the technology and the circuit generated after the short-open defect.
As instance, in case of a dominant 0-logic the behaviour of bridge-defect is equivalent
to an AND-gate. Inversely, in a 1-dominant logic the presence of two bridged
signals is equivalent to an OR-gate. both the examples are illustrated in figure
1.13.

Figure 1.13: Bridge Example

The number of all possible faults in a circuit is given by the following formula:

#Faults = n(n− 1)/2 (1.2)

where n is the number of nodes. It’s straightforward to notify that, for a large circuit
handle this fault model is impossible and meaningless. The practical approach is
to consider restricted circuit areas where their occurrence probability is higher,
evaluating topological design aspects. For these reasons, this fault model is widely
adopted to perform circuit analysis at board level.

1.6.3 Transistor Stuck-On/Off
This model operates on the transistor description level of the circuit. This kind
of interpretation highlight the possibility to have a transistor continuously in
conduction or interdiction independent by the value of the drain-source voltage.
An example of stuck-on transistor is in figure 1.14

17

Testing and Fault Tolerance

Figure 1.14: Stuck-On transistor Example

This abstraction overcomes some of the limitations of the stuck-at models. Since
that it required very low-level circuit description the number of possible faults is,
also in this case, too high. Moreover, the access to this kind of circuit description
is not trivial especially for big SoCs that count hundreds millions of transistors.

1.6.4 Delay Fault
The delay fault model identifies defects that afflict the inputs and outputs tran-
sitions of the gates present in the design. The delay that affects the transitions
causes an incorrect signal propagation and, consecutively, an incorrect result sample
under specific clock constraints. From a technological point of view this kind of
faults can be caused by a combination between parasitic capacitance with a wrong
wire/interconnection sizing that affects the value of resistivity and so, the circuit
timing.

From this assumptions two fault model are commonly used.

• Transition Fault model

• Path Delay Fault model

Transition Fault model

This representation assumes that the delay caused by the faults is large enough to
doesn’t permit the transition within the observation time. The two possible faults
are slow-to-rise and slow-to-fall. The possible number of fault present in design is
given by the following equation:

#Faults = 2n+ k (1.3)

where n is the number of gates and k the number of inputs.
To detect this faults the following procedure is adopted:

1. Find a pattern to force the output value of the target gate to 0 or 1

18

Testing and Fault Tolerance

2. Find a second pattern to force the gate output transition and propagate this
transition to the POs

Thus, this methodology requires a pair of vectors applied at circuit speed clock.
The figure 1.15 shows an example of the procedure.

Figure 1.15: Transition fault Example

This technique is widely used by its simplicity being an extension of the stuck-at
model. Some limitations are due to the presence of reconvercenge paths that mask
the transition. Anyway, its reduced fault list and the possibility to identify a large
number of physical defects it makes the assumption of this model very useful when
developing test procedures.

Path Delay Fault model

This model considers the differences in the path delay caused by the presence of
defects that afflict the slow-to-rise and slow-to-fall transitions. The number of
possible faults is given by :

#Faults = 2m (1.4)
where m is the number of paths. The strategy to test the path delay between an
input A and an output B is the following:

1. Activate the transition on input A

2. Find the input pattern to propagate the transition along all the target path
up to B

A major issue is the large number of paths present in a real circuit. For a circuit
with n gates, the complexity magnitude order is O(N2). Due to this fact, are
taken into consideration only a subset of all the paths. A ranking mechanism, that
considers the path length, is adopted to classify and determine the path subset.

19

Testing and Fault Tolerance

The metric to properly identify the paths leverages the concept of slack. The
slack specifies the time quantity remaining between the clock period and the delay
caused by the path. This means that less is the value of slack longer is the path.
Therefore, a possible fault can add a quantity of time higher than the value of the
slack generating a defect.

The detection of the Delay fault is highly dependent on the structure of the
circuit. Some faults can be defined as structurally untestable when they are not
detectable by the layout of the paths. Sometimes, applying a sequence of specific
input patterns is impossible due to functional limitations reducing the list of testable
faults. The latter topology of untestable fault is called functionally untestable
faults. The figure 1.16 gives an overview of the testability hierarchy for delay
faults.

Figure 1.16: Testability Hierarchy

1.7 Test Process
Nowadays, in the market many EDA tools are designed to give a flow to develop the
requested testing methodology. The goal of this Test Process is to provide a valid
test set able to detect the faults inside the DUT, displaying the Fault Coverage
score and the undetected fault list. When the required FC is satisfied, the test is
ready to be applied, on the real circuit, leveraging ATE and/or DfT techniques.

The test process is summarized in figure 1.17.
The first phase is the Test Generation and it is organized mainly in three

steps:

• Fault Management

• Fault Simulation

• ATPG

20

Testing and Fault Tolerance

Figure 1.17: Test Process phases

1.7.1 Fault Management
The Fault manager is properly configurated to work with the correctly fault model.
Successively, it is involved during the fault management phase analyzing the circuit
netlist and providing the fault list. According to the fault equivalence classes
the list can be collapsed into a smaller one to improve the effort required by the
simulation.

During fault list generation phase, some faults can be marked as untestable due
to circuit analyses on the gates that are:

• Not reachable by PIs

• Not connected to the POs

• Connected to lines stucked at fixed values

1.7.2 Fault Simulation
The fault simulation phase permits to reach different purposes in order to evaluate
the effectiveness of a test set. In general, this phase aims to perform:

• Testability analysis

• Fault Coverage Computation

• Analysis of Faulty circuit Behaviour

The testability analysis permits to identify all the circuit areas that are lack in
terms of controllability and testability. In addition, the fault simulation is often

21

Testing and Fault Tolerance

used to verify the behavior of a circuit affected by defects. This procedure allows
to classify the possible failures and to assess the risks. These operations can be
done using a physical fault injection or using a dedicated software named Fault
Simulator. The full software environment is summarized in figure 1.18

Figure 1.18: Fault Simulation Phase

The fault simulator, normally, is a SW capable to simulate the test set on a
circuit netlist analyzing the fault list generated and the previous step. This tool
permits to simulate the circuit behaviour injecting the fault into it. By the way,
the results obtained from the faulty circuit are compared with the original one and,
in case of differences on the POs, the tool marks the fault as tested or not.

1.7.3 ATPG
The automatic test pattern generator is a dedicated software module used to
create test patterns. Due to a large number of inputs and/or to the high complexity
of DUT, in many application is not easy to create the test pattern manually. This
tool identifies the fault list and creates the patterns consecutively. The approach,
to generate the stimuli, follows some specific algorithms. By the way, a fault can
be ATPG untestable when the algorithm proves that is not it’s not identifiable, due
to the presence of inputs constraints and/or output masks. Nowadays, the ATPG
constrained approach is a research field aiming about the distinguish between
Functional Faults and Non-functional faults, reducing as much as possible the
possibility of overtesting. For what concern the sequential circuit the test pattern
generation through ATPG is a research field since that the computational cost, to
find a pattern sequence with a deep of many clock cycles, is very high. Commonly,
the ATPG is used in combination with the DfT techniques where a big sequential
circuit is split by scan chains or bist modules. In this applications, the ATPG is

22

Testing and Fault Tolerance

very effective because it deals with reduced combinational regions having, in theory,
fewer inputs.

1.8 Software Based Self Test
The SBST is a different testing approach. The basic idea is to exercise the DUT
performing a series of coded operations able to excite and propagates the fault
inside the internal modules. This method has many advantages compared with
classical DfT techniques. It doesn’t require any hardware modification avoiding to
perform adjustments in the design. An important aspect of this technique is related
with the test suite organized in several test programs targeting all the internal
modules. This aspects permits to develop a log system which can provide some
diagnosis analysis. Since that the test procedure is simply a program, it can be
performed at-speed clock and it can be launched autonomously, during the mission,
leveraging the free time slots available by the OS or at the power-on/off as shown
in figure 1.19. This methodology is widely used to identify the functional faults

Figure 1.19: Online Test operation example

since the test programs are executed during the online context of the module. The
test procedure is organized in several test programs where each of them aims to
exercise a specific internal module as ALU, multiplier and so on. Each program
is composed of an algorithm that awakes all the internal circuitry doing specific
operations using different operands. To find the test algorithms may adopt several
strategies:

• ATPG Based

• Manually or Deterministic Approach

23

Testing and Fault Tolerance

The ATPG Based strategy permits to leverage the automatic pattern gener-
ation feature to find the stimuli for the fault detection. To achieve this goal, it
is required an accurate constraints selection in order to generate only functional
patterns that are feasible to reconstruct through a software. An alternative strategy
is the Manually Approach, it aims to identify a dedicated algorithm to exercise
the module analyzing the RTL description.

Each test program must be compliant with all the software environment support-
ing the Embedded Application Binary Interface (EABI) used to perform correctly
the context switching.
During the development of the Test Suite is a good strategy to target the modules
following a specific order based on the architecture of the module. In this way,
reach a good Fault Coverage is easier since many faults are detected by side-effect.
A possible order is in Figure 1.20.

Figure 1.20: SBST Test Suite development order

Each Test program can be evaluated using a dedicated EDA Tool to perform
the fault simulation. The effectiveness of a test program is given by looking at the
POs involved to store the test result in memory. This is done because each test
program will provide a signature mechanism to evaluate by software the presence of
a fault inside the module. The idea is to accumulate the fault effect into a variable
that will be compared with gold signature stored in memory. In this direction, it’s
crucial to ensure the signature stability in case of changes in the code size/location
during the compilation process. After the development of all the test programs

24

Testing and Fault Tolerance

it’s mandatory to develop software to handle the test suite and initialize the test
environment. By the way, a classical initialization regards the interrupt routines
for the illegal instruction detection and a watchdog timer to measure the length of
the test covering the possibility to have a defect in the decoding stage.

The SBST technique is a very effective technique providing fault coverages, for
a single core, higher than 80% for Stuck-AT fault model. Even without hardware
modifications to the design, the development of the SBST could be expensive in
some contexts by the need of large computational efforts to perform the fault
simulation of big sequential blocks, requiring the purchase of many licences of the
testing tool to run parallel simulations.[4]

25

Chapter 2

Neural Networks and
Multi-Computer
architectures

2.1 Multi-Computer Systems
In this section we will introduce the most common multi-computer system archi-
tectures useful to allow an efficient implementation of neural networks.

2.1.1 Taxonomy of multi-computers
It is possible to classify a computer architecture according to Flynn’s taxonomy. It
distinguishes four different types of systems:

• Single instruction stream, single data stream (SISD)

• Single instruction stream, multiple data streams (SIMD)

• Multiple instruction streams, single data stream (MISD)

• Multiple instruction streams, multiple data streams (MIMD)

Starting from the SISD, it consists of a single control unit that fetches a single
instruction at a time, addressing the processing unit to a single data stream. A
common example of this architecture are uniprocessors systems.
The SIMD architecture operates a single instruction stream on a multiple data
stream. Computer clusters and graphics processors (GPUs), widely used to manip-
ulate neural networks, belong to this type.
The MISD architecture uses separated streams of instructions operating on a

26

Neural Networks and Multi-Computer architectures

single data stream. This type is very particular and is often used for fault tolerance
reasons where it is necessary to verify that distinct systems and, therefore, distinct
instructions always provide the same result.
The last architecture is MIMD and operates on different streams of instructions
and data. Superscalar computers fall into this category. The latter can, in turn, be
distinguished on the basis of the organization of the memory that can be shared or
distributed. [5] All the different architectures are summarized in figure 2.1

Figure 2.1: Architecture taxonomy

2.1.2 Multi-Core processor
With the reduction of the technological process, the physical limitations of semi-
conductor based microelectronic have become one of the most problematic aspects
of design. These limitations lead to the creation of heat hotspots and data synchro-
nization problems. New methods have been adopted to increase CPU performance
as the Instruction Level Parallelism (ILP) and Thread-level Parallelism
(TLP).

27

Neural Networks and Multi-Computer architectures

Instruction Level Parallelism

The ILP is a measurement, performed by CPUs to quantify the amount of code
that can be executed in parallel without generating hazards. In modern CPUs,
due to the presence of multiple computing units and the pipeline structure, the
identification and exploitation of the instructions executable in parallel allows to
significantly increase the performances. An example:

1) h = a + b
2) f = c + d
3) g = h ∗ f

Instruction 1) and instruction 2) can be executed in parallel since they require
data (a, b, c, d) independent of other instructions and therefore are free. Instead,
instruction 3, which requires the data h and f, must wait for the first two to be
completed to be executed. Assuming there exists, at least two independent ALUs,
it is possible to execute instructions 1) and 2) in parallel, while 3) must wait for
the other two. At this point, if all the operations are carried out in one clock cycle
the code can be executed in just two clock cycles instead of three obtaining an
improvement of 33%. In summary, the effectiveness of the ILP is strongly influenced
by the following factors.

• Number of functional units

• Data dependency

• Control dependency

Considering having a complex program, respecting and optimizing the code to
maximize the benefits of the ILP is very complex and highly infeasible. [6]

Thread-level Parallelism

Given the difficulty in solving the limitations of ILP, it was decided to adopt the
TLP strategy adopting multi independent CPUs. In a multiprocessor system, task
parallelism is achieved when each processor executes a different process on the
same or different data. Each thread can execute the same or different code. In
the general case, different execution threads can communicate among them. The
communication usually takes place by passing data from one thread to others. An
example:

program :
. . .

28

Neural Networks and Multi-Computer architectures

i f CPU = " a " then
do task "A"

e l s e i f CPU="b" then
do task "B"

end i f
. . .
end program

Both Cores start execution from the same memory address (program:) but the
presence of the if statement allows differentiating tasks between them by running
distinct programs at the same time.
This approach has made it possible to significantly improve the performances by
driving the research towards multi-core systems. [7]

Figure 2.2: Multi-Core Architecture

The general structure of a multi-core is in figure 2.2. Each core is provided
with all the essential hardware modules and, in general, it communicates with
an external memory accessing a dedicated bus. The memory is shared among all
the cores and it can be distributed or not. The data consistency is ensured by
dedicated policies. [8]
The advantages of a multi-core architecture are not only determined by the perfor-
mances but also for what concerns the power density. A better distribution of the
power permits to dissipate easily the heat avoiding the probability of temperature
hotspots all over the chip.

2.1.3 General Purpose Graphical Processor Unit
A General-Purpose Graphics Processing Unit (GPGPU) is a graphics processing unit
(GPU) that is programmed for purposes beyond graphics processing, performing
operations that are generally performed by normal CPUs. [9] Currently, all GPUs
on the market are GPGPUs. The GPU is a system that uses multiple cores to
exploit massive parallelism on a large scale. This type of system was mainly used

29

Neural Networks and Multi-Computer architectures

for visual rendering. The possibility of making these GPUs more general-purpose
has made it possible to use these systems also for scientific purposes, as in the
case of neural networks. The key advantage of this architecture is the capability to
delegate portions of computationally high-cost code to the GPU, leaving the CPU
free to perform other sequential operations. This highly parallel approach allows
for significant performance improvements. In figure 2.3 is shown the differences
between a CPU and GPU in terms of architecture. [10] In 2007, Nvidia released

Figure 2.3: CPU and GPU comparison

CUDA, a platform completely dedicated to parallel computing compatible with all
subsequent models of GPUs developed by the company. In coupled, dedicated APIs
were also made available, compatible with the C, C ++, and Fortran languages,
that are currently used in the development of neural networks.[11]

2.1.4 Computer Cluster
The Cluster computer is a series of computers connected to work together one
powerful machine. Each connected computer is called a node and, unlike grid
computers, each of them performs the same operations. Generally, the connection of
the various nodes is carried out through high-speed local area networks. Each node
can be identified as a separate computer with a dedicated operating system. From a
functional point of view, cluster computers allow for excellent performances, larger
storage capacity, better data integrity, greater reliability and a wider availability of
resources. Compared to mainframes, cluster computers allow for a more distributed
structure and better performance at the same cost. figure 2.4 shows the structure
of the computer cluster. As it is possible to observe, the system includes a central
server that performs the scheduling functions by orchestrating all the nodes. [12]

2.2 What is a Neural Networks
In recent years the continuous research on artificial intelligence has made many
steps forward trying to replicate and predict the way of thinking of the human

30

Neural Networks and Multi-Computer architectures

Figure 2.4: Scheme of Cluster Computer

being. This development inspired the search for a mathematical model that draws
inspiration from the very structure of the human brain. The main idea is to
replicate the neuron-synapse structure through the use of mathematical functions.
In a completely analogous way to the human brain, the constituent element is
defined as neuron connected with other ones through edges, making a network, as
shown in figure 2.5. [13] Each artificial neuron receives a signal that is processed

Figure 2.5: Example of neural network

31

Neural Networks and Multi-Computer architectures

through a non-linear function providing a result which, in turn, will be addressed
as input to the following nodes. Each signal is a real number whose value, as we
will see later, is determined by some parameters defined according to the operating
specifications of the neural network. The purpose of a neural network is to create
a computer structure capable of learning and self-regulating to perform prediction
functions or, in the most common use, digital recognition. The main concepts of
the neural networks will be discussed in the following paragraphs.

2.2.1 Neurons and activation functions
As previously anticipated, a neuron is a structure capable of receiving input
parameters and delivering an output value. In figure 2.6, the node receives three
inputs x1, x2, x3 where, each of them is associated with a weight.

Figure 2.6: Example of node with three inputs

The output is determined by the weighted sum of the inputs compared with a
threshold value. Mathematically everything is described by the following equation.

output =

0

nØ
i=1

wixi − b ≤ 0

1
nØ

i=1
wixi − b > 1

(2.1)

Where:

• w is the weight

• x is the input

• n is the number of inputs

• b is the threshold named as bias

In short, each input represents an influencing factor on the node’s decision while
the weight determines the importance of each of them. For example, assuming you
have to make the choice to go to a place or not, the factors could be the weather,

32

Neural Networks and Multi-Computer architectures

the place and the time. These three factors could have a different effect on the
final choice, thus associating a weight.
At this point, the goal is to "train" the network applying learning algorithms capable
of making slight variations to the weights and biases of each neuron in order to
instruct the neural network to perform the desired function. Due to the strong
linearity of relation (2.1) a small variation in the bias and weights does not lead to
a variation on the output. To solve this problem, the concept of sigmoind neuron is
introduced. The peculiarity of this model is given by the following sigmoid function
2.2

σ(z) = 1
1 + e−z

(2.2)

and substituting z with
nØ

i=1
wixi − b

σ(z) = 1

1 + exp(−
nØ

i=1
wixi − b)

(2.3)

Formula 2.3 allows to obtain inputs and outputs in the range of 0 and 1 and it is
defined as activation function.

2.2.2 Architecture of the neural network
Structurally, the neural network is organized on different layers. The first layer
is defined as the input layer while the output layer is defined as the output layer.
In the middle are the hidden layers. The organization is shown in figure 2.7. In

Figure 2.7: Neural network architecture

general, the design of a neural network is often intuitive. For example, supposing

33

Neural Networks and Multi-Computer architectures

you have an image of 64 by 64 gray scale you can imagine 4096 = 64x64 input
neurons with intensity between 0 and 1. Inside this image there is a handwritten
number to identify. Therefore, it is possible to have 10 output neurons representing
the numbers between 0 and 9. Unlike the hidden layers don’t have a thumbs rule
and their design is still a field of research. In this direction, some heuristic methods
are available to identify the correct design of the internal layers using the time
required to train the neurons as constraints. By analyzing the layer outputs it is
possible to identify two different types of architectures. It is defined feedforward
when the direction of the output is always directed to the following layers. On the
contrary, an architecture can contain feedbacks and in this case the neural network
is defined as recurrent neural networks.

2.2.3 Learning process of a neural network
The learning process of a neural network is the phase in which the weights and biases
of neurons are defined. This process is carried out through numerous iterations
based on the idea of "going and return". [14] The "going" is a forwardpropagation of
the result and the "return” is a backpropagation of the latter. During the forward
propagation phase, the system is exposed to specific training data that cross all
the layers up to the output nodes. Each neuron applies its own transformations
with the starting parameters and sends them to the next layer. Once the output
layer is reached, it provides a result that will be analyzed by specific loss functions.
At this point, the loss function will provide a result of the comparison between the
output obtained and the correct one providing a measure of the error obtained.
This difference, in turn, will allow to adjust the parameters of each neuron in order
to reduce the error on the next iterate.
The backpropagation phase will provide information on the loss starting from the
layers closest to the outputs and then proceeding to adjust the parameters. The
innermost layers will then undergo lighter variations based on their contribution to
the output layers. Everything is carried out until the desired result is achieved by
progressing more and more internally on the layers. The process is summarized in
the figure 2.8 The adjustment of the parameters takes place through the gradient
descent technique. The approach is to calculate the derivative of the loss function
to evaluate the "descent" of the error towards the global minimum. Obviously, it is
necessary to provide a valid dataset in order to make the prediction error convergent
at each iteration. Currently there are some specially designed datasets such as the
Modified National Institute of Standards and Technology database (MINST) useful
for recognizing handwritten numbers. An epoch is when entire dataset is passed
forward and backward through the neural network only once. In case the dataset,
constituting an epoch, is too big it is divided in subsets and the training process is
performed in parallel as will be explained in the next paragraph.

34

Neural Networks and Multi-Computer architectures

Figure 2.8: Neural network architecture

In summary, the training phase is summarized in figure 2.9 in the following
steps:

1. Begin with values (usually random) for the network weight and bias parameters

2. Pass the dataset to the network and predict the result

3. The prediction are compared with the correct ones and the loss is calculated

4. Through the backpropagation the loss is spread to each node that make up
the model of the neural network.

5. Adjust the parameters using the gradient descent approach to rework the
precision of the network

6. Continue iteratively until the loss reach the minimum value acceptable

2.2.4 Matrix Representation
From a mathematical point of view, managing neural networks through activation
functions is clunky and complicated. For this purpose, a matrix representation is
more functional guaranteeing, further, an easier software implementation. Starting
again from the weights and the biases represented by 2.4 and the activation function
2.5.

35

Neural Networks and Multi-Computer architectures

Figure 2.9: Learning algorithm flow

Figure 2.10: Example

z(x) =
nØ

i=1
wixi − b (2.4)

g(z) = 1
1 + e−z

(2.5)

Considering the network in figure 2.10, The matrix representation is 2.6.

w1 w2 w3 w4
w1 w2 w3 w4
w1 w2 w3 w4

x1
x2
x3
x4

 +

bb
b

 =

w1x1 + w2x2 + w3x3 + w4x4 + b
w1x1 + w2x2 + w3x3 + w4x4 + b
w1x1 + w2x2 + w3x3 + w4x4 + b

 g()−→

a1
a2
a3

(2.6)

36

Neural Networks and Multi-Computer architectures

The next step is to write the weight as vector wi where, i is the output neuron,
and similarly for the biases.

w1 =

w1
w2
w3
w4

w2 =

w1
w2
w3
w4

w3 =

w1
w2
w3
w4

 (2.7)

w1 w2 w3 w4
w1 w2 w3 w4
w1 w2 w3 w4

 becomes
←− wT

1 −→
←− wT

2 −→
←− wT

3 −→

 = W (2.8)

The benefits of this notation occur when the goal is to calculate the values of
the activation functions in presence of a network composed by hidden layers, as in
figure 2.11. For example, supposing that it is required to compute the activation

Figure 2.11: Example

function for the second neuron in the first hidden layer. It is given by 2.9 and 2.10.

z
[1]
2 = w

[1]T
2 a[0] + b2 (2.9)

a
[2]
2 = g(z[2]

2) (2.10)

37

Neural Networks and Multi-Computer architectures

In general, using as subscript [l] that represents the lth hidden layer and i for the
ith neuron.

z
[l]
i = wi + 1[l]Ta[l−1] + bi (2.11)

a
[l]
i = g(z[l]

i) (2.12)

Through the weights and biases matrix, it’s possible to obtains all the activation
functions.

Z [l] = W + 1[l]TA[l−1] + bi (2.13)

A[l] = g(Z [l]) (2.14)

This last equation demonstrates that the neural networks outputs can be evaluated
through an efficient matrix representation.

2.2.5 Parallel Computing
The process of training and evaluating each node in the neural network is a
procedure that is commonly referred to as embarrassingly parallel. This type of task
is strongly aimed at dividing the problem into a number of parallel processes which
are all highly independent and without the need to share the results among them.
Observing the structure of the neural networks, it is possible to understand how
each step of the training phase carries out independent computations in parallel.The
need to execute concurrent operations implies the use of multi-computer systems
in order to speed up their execution.

There are, therefore, some common strategies specifically designed to parallelize
the neural network efficiently.

• Training Session Parallelism

• Exemplar Parallelism

• Node Parallelism

The Training Session Parallelism splits the training dataset into a subset
and each node of the cluster computer is trained in parallel and, independently,
seeking for the best result.
The Exemplar Parallelism used a divided subset combining the errors and
updating all the weights for each epoch in the cluster. The main difference with
the previous parallelism is that the nodes are able to communicate during the
process by the combination of their results. The Node Parallelism consists to
assign each neuron of the network to each node of the cluster and compute their
respective activation functions. This approach is not feasible and impractical, for

38

Neural Networks and Multi-Computer architectures

computer cluster, since the number of neurons is not comparable with the lower
number of nodes. [15]

2.2.6 Impact on Instruction Set Architecture
The strong need for data parallelism and the practical matrix representation of
neural networks required the addition of new instructions to the classic ISA in order
to improve the performance. By the way, multiply and accumulation instructions
have been added in almost all the ISA. Furthermore, to speed up the new extensions
many CPU architectures have been slightly modified to speed up the data location
update related with weight and biases. An example of this will be discussed in
chapter 4. [16]

39

Chapter 3

Risc-V

In this section we will describe the RISC-V Instruction Set, which was used
throughout the entire project, showing the design and its principles in terms of ISA
and expandability.

3.1 Instruction Set Architecture ISA
The RISC-V is an open-source hardware Instruction Set Architecture based on
the principles of reduced instruction set computer (RISC). The project developed
at Berkeley by the University of California for research and education purposes
currently aims to establish itself as the standard for industrial implementations. One
of the advantages of Risc-V is the high degree of extensibility of the standard ISA
which in turn implies an increase in the complexity of the hardware architecture. [17]
It is therefore possible to implement a CPU that best suits the needs. A standard
base integer ISA is defined, on 32 bit and 64 bit marked as "I" extensions. From
this starting point, it is possible to extend ISA by adding instructions dedicated to
operations between vectors, floating points, multiplications and divisions, and so on.
All extensions are compatible with the GCC (GNU C Compiler), furthermore, the
RISC-V Linux Kernel is fully supported by the Linux Foundation thus guaranteeing
the ability to run Linux increasing the industry interest.

3.1.1 Register File
The Risc-v includes a register file made up of 32 integer registers to which can
be added the possibility of being used as floating point register in the presence
of the "F" and "Zfinx" extensions. Given the "Load and Store" nature, except
for read/write memory instructions, the instructions can only be executed only
through the registers or by immediate values. In table 3.1 there is the complete

40

Risc-V

list of the registers.

Register
name

Symbolic
name Description

32 integer registers
x0 Zero Always Zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary
x6-7 t1-t2 Temporary

x8 s0/fp Saved register
Frame pointer

x9 s1 Saved register
x10-11 a0-1 Function argument/ return value
x12-17 a2-7 Function argument
x18-27 s2-11 Saved register
x28-31 t3-6 Temporary

32 floating-point extension registers
f0-7 ft0-7 Floating-point temporaries
f8-9 fs0-1 Floating-point saved registers
f10-11 fa0-1 Floating-point arguments/ return values
f12-17 fa2-7 Floating-point arguments
f18-27 fs2-11 Floating-point saved registers
f28-31 ft8-11 Floating point temporaries

Table 3.1: Register sets

3.2 Instruction Format
The integer standard ISA is a simple set which comprises less than fifty instructions,
capable of satisfying all the requirements required by modern applications. The
instructions are structured in four different formats as sown in figure 3.1.

• R-Type

• I-Type

• S-Type

41

Risc-V

• U-Type

All these formats share the same structure keeping the source registers RS1,RS2
and the destination register RD in the same position. This is done to reduce the
complex of the decoding hardware. Similarly, the immediate operands Imm start
always on the leftmost significant bit and the sign position is always placed in the
31 bit.

Figure 3.1: RISC-V Instruction Format

3.2.1 Common RISC-V Extensions
As previously mentioned, one of the goals of the RISC-V design is to keep ISA as
simple as possible. Some extensions have been standardized and will not change in
the future.

• M : Standard Extension for Integer Multiplication and Division

• A : Standard Extension for Atomic Instructions

• F : Standard Extension for Single-Precision Floating-Point

• D : Standard Extension for Double-Precision Floating-Point

• Q : Standard Extension for Quad-Precision Floating-Point

• C : Standard Extension for Compressed Instructions

3.3 PULP RI5CY
The RI5CY is a 4-stage in-order 32-bit RISC-V processor core, that implements the
RV32-IMC extended with additional instructions as hardware loops, post-increment
load and store instructions and additional ALU instructions. Optionally, the RI5CY
can include support for single-floating-point operations and SIMD instructions.
The general architecture is in figure 3.2.

42

Risc-V

Figure 3.2: RI5CY Architecture

3.3.1 Instruction Fetch Stage
The Instruction Fetcher is capable of delivering one instruction for each clock cycle.
The instructions are half word aligned as compressed instructions are also supported
thanks to the "C" extension. Due to performance and timing reasons the IF stage
is composed by a prefetcher that is available in two distinct implementations.

• 32 Bit Word Prefetcher - It stores three instructions in a FIFO memory

• 128 Bit Cache line Prefetcher - It stores the entire cache line.

3.3.2 Decode Stage
The Decode stage is composed by the Register File and several controllers in charge
to decode the instruction. This stage is able to handle jumps and exceptions. The
register file is fully compliant with the RISC-V standards having 32 registers and
it is available in two different flavours, Flip-Flops and Latches based. The first is
recommended for FPGA synthesis while the second one for ASIC.

3.3.3 Execute Stage
The Execute Stage is composed by many elements dedicated to compute the
operation. The common elements are:

• Algebraic Logic Unit ALU

43

Risc-V

• Multiply and Accumulate Unit MULT

• Control and Status Registers CSR

• Optional Floating Point Unit FPU

• Hardware Loop Controller HWLOOP

Algebraic Logic Unit ALU

The ALU is one of the main building blocks of the Core. The unit covers a wide
range of operations not only used for pure mathematical calculations. It is involved
in:

• General ALU operations

• Bit Manipulation

• Jump Addresses computations

• Branching Decisions

This module is compatible with the full standard "I" extension.

Multiply and Accumulate Unit MULT

The MULT unit is a 32bit unit dedicated to perform multiplication, division and
accumulation operations. This module is highly involved during the training process
of the neural networks. While the multiplication is performed in single clock cycle,
the division can take between 2 to 32 cycles. The unit supports all the instructions
of the "M" extension.

Control and Status Registers CSR

The RI5CY implementation does not include all the registers specified in the
RISC-V privileged manual but only the ones required to properly configure the
system. [18] This is done to reduce as many as possible the footprint of the Core
once synthetized. The list of the CSR is in figure 3.3.

Floating Point Unit FPU

The FPU is capable of performing all the instruction included inside the "F"
extension. It is implementation is completely optional. Obviously, the latency of
the instructions are different according to the complexity. The FPU is organized in
three parts:

44

Risc-V

Figure 3.3: Control and Status Registers List

• A simple FPU which computes FP-ADD, FP-SUB and FP-casts

• An iterative FP-DIV/SQRT unit which in charge to perform FP-DIV/SQRT
operations

• An FP-FMA unit which takes care of all combined operations

Adding the FPU, there are accessible also some dedicated CSR used to handle the
rounding mode, precision, exception and to check the status of the unit. As said
before, the register file can be implemented in a separate manner or shared with
the integer one.

Hardware Loop Controller HWLOOP

The HWLOOP controller is a dedicated module in charge to handle the loops
guaranteeing a lower code density. This module permits to repeat a section of
code without updating counter and using branch instructions. It involves zero stall
cycles for perform the jump. The controller is configurated through some dedicated
CSRs that define the start and end addresses plus the number of loop repetitions.
Using two configuration levels there is the possibility to configure nested loops. [18]

45

Risc-V

3.3.4 Load and Store Unit
The LSU allows to communicate with the memory through dedicated load and
store operations. Accesses in memory can also be performed in a misaligned way
through specific instructions available in the ISA. In this stage there is a Memory
Protection Unit in charge of blocking some accesses in memory according to the
Privileged Modes. The last important aspect of this module is the capability to
Post-Increment the Memory Pointer reducing the length of code required for this
operations. [18]

46

Chapter 4

Case of Study - VEP Design

In the next chapter will be introduced the hardware accelerator on which the whole
experience has taken place describing, in part, its characteristics.

4.1 About Dolphin Design
Dolphin Design is a company headquartered at Meylan near Grenoble, France,
since 1985.

They participate in the design industry for microelectronics, leveraging the
dynamics of the semiconductor industry. Focusing on CMOS Virtual Components
of Silicon IP, the company aims at enabling low-consumption System-on-Chip (SoC)
based on digital libraries of standard cells and memories. Another research field is
focused on the development of digital-to-analog converters for audio applications
with their power regulators. [19]

4.2 Overview
The VEP is designed to demonstrate the effectiveness of the entire Dolphin
GF22FDX Platform in a real application. The GF22FDX Platform is a set of
pre-configured and validated custom IPs aiming to provide smart solutions to
reduce the energy efficiency guaranteeing an improved design time cycle and im-
plementation. [19] The targets of the design cover both application and power
consumption aspects. The main applications are tasks executable through the
implementation of Neural Networks as:

• Speech recognition

• Natural Language Processing

47

Case of Study - VEP Design

• Object detection

• Image classification

From the point of view of the Power consumption the design ensures the following
specifications:

• Ultra-Low power Deep Sleep Power < 20uW

• Best Class Energy Efficiency with 0.5V operating Mode (>15 TOPs/W)

[20]
The SoC is composed of several Clusters connected to each other through a low

latency interconnection and orchestrated by the main core named Fabric Con-
troller (FC-CORE). Each Cluster is composed of several dedicated computing
units in order to parallelize as much as possible the operations. The power side
is managed through Always On Safe-Domain containing several IPs developed by
Dolphin Design. The scheme is shown in figure 4.1. The SoC is organized in

Figure 4.1: VEP Design

distinct operational regions:

• Control Cluster

• DSP Cluster

48

Case of Study - VEP Design

• NPU Cluster

With reference to chapter two, the structure of this SoC can be classified as a
multicore system classified as SIMD. From the programming point of view, the code
executed by the different cores of each task is executed and orchestrated through
the TLP model explained in section 2.1.2. In this experience, the Control Cluster
and only one of the DSP-Clusters have been considered.

4.3 Control Cluster
The Control Cluster allows to manage all the interfaces of the chip. Therefore,
it allows to orchestrate all clusters and configure the power domain through the
PMU. The main features are the following:

• Fabric Controller

• System Interconnect

• L2 Memory

• uDMA subsystem with interface peripherals

• Clock Management

• Event Unit

4.3.1 Fabric Controller
The Fabric Controller implements a PULP RI5CY core optimized for DSP pre-
processing. It supports the RV32IMFC ISA with additional extensions to improve
digital signal processing performances. The implementation include optimized
settings for:

• Vectorial Instructions

• Fixed Point Instructions

• Complex Number Operations

In addition, it’s present an LP Timer configurable to generate interrupts or work
as System Clock.

49

Case of Study - VEP Design

4.3.2 System Interconnect

The interconnection is organized through three different types of BUS. The APB
is used to communicate with the uDMA and the AON Domain. The AXI bus
with a data size equal to 64bit communicates with the different Clusters presents
inside the SoC. Successively, there is a multi master/slave low-latency crossbar
(XBAR) which communicates with the internal memory L2, the FC-CORE and the
remaining internal modules such as HWPE, JTAG Debug unit and the TX and
RX ports of uDMA. Inside the XBAR, it’s present a dedicated Arbitration Tree to
handle the policy adopted for the multi master/slave communications.

4.3.3 L2 Memory

Memory is structured according to two different types: shared and private. The
larger shared memory is divided into four different blocks all of them accessible by
the cluster regions albeit, with a lower priority with respect to the control cluster .
To ensure the simultaneous access each block has dedicated ports communicating
with the XBAR. The shared memory is implemented using SRAM. The private
memory is composed by two blocks dedicated for Control Cluster and implemented
with SRAM and SCM. Standard cell memories (SCMs) are becoming a common
alternative to SRAM IPs due to their design flexibility, ease of implementation,
and robust operation at low supply voltages. Exclusively composed of standard
cells, these memory arrays are implemented as part of the standard digital design
flow.From the functional point of view the L2 memory contains the code of the
program and it is fetched by the DSP Cluster Instruction Cache.

4.3.4 uDMA with Interface Peripherals

The uDMA subsystem is dedicated to move the data from the L2 memory toward
the external peripheral modules and viceversa through the XBAR. It ensure an
high-bandwidth of data with a low-power consumption. The data transfer is
triggered by the event unit. The external interfaces are:

• Serial interfaces (UART, I2C, SPI)

• Memory interfaces (QSPI/Hyperbus)

• Camera interfaces (CPI/DVS)

• Audio interfaces (ADC, I2S)

50

Case of Study - VEP Design

4.3.5 Clock Management
The clock Management is handle by four FLL fed by two oscillators operating at
32 KHz and 12 Mhz. The FLL modules generate the clock for all the regions of
the SoC.

• Cluster FLL : generates the clock of the DSP cluster

• NPU FLL: generates the clock of the NPU cluster

• SOC FLL: generates the clock of the control cluster

• Peripheral FLL: generates the clock of interface peripherals

All the FLL can operate in two modes Normal and Standalone. In normal mode
the frequency is determined by configuring two specific registers used to set the
multiplication factor M and the division factor Dout. The output frequency is given
by 4.1.

Fout,normal = Fref ·
M

Dout

(4.1)

In Standalone mode the control loop is unregulated and not operational. This
permits to generate the frequency by the input word of the DCO without requiring
any reference clock.

4.3.6 Event Management Unit
The Event Management Unit is in charge to collect all the event coming from
the SoC and dispatch them towards one of the three destinations the FC-Core,
uDMA and DSP Cluster. The latter is provided of a dedicated Event Unit directly
connected with the main one. The events generated can be handled by a priority
mechanism.

4.4 DSP Cluster
The DSP cluster has been designed to accelerate and parallelize operations as much
as possible with the aim of facilitating the implementation of neural networks. The
schematic is summarized in figure 4.2.

The cluster is composed by several blocks.

• 16 x PULP RI5CY with Neural network extension

• Dedicated L1 Data Memory

• Shared FPU

51

Case of Study - VEP Design

Figure 4.2: DSP Cluster Scheme

• Instruction Cache

• DMA

• Cluster Bus.

4.4.1 RISC-V NN ISA
The NN extension includes a new instructions library for parallel ultra-low-power
tightly coupled cluster of RISC-V processors. The key innovation in PULP-NN is a
set of dedicated operations for quantized neural network inference, targeting byte
and sub-byte data types, tuned for the recent trend toward aggressive quantization
in deep neural network inference. The proposed library leverages both the digital
signal processing extensions available in the PULP RISC-V processors and the clus-
ter’s parallelism improving performance by up to 63× with respect to a sequential
implementation on a single RISC-V core using the baseline RV32IMC ISA. [16] An
example of new instruction is the pl.sdotsp.h.0 rd,rA,rB and pl.sdotsp.h.1rd,rA,rB .
Each of these two VLIW instructions combine the post increment load word (lw!)

52

Case of Study - VEP Design

and the pl.sdotsp.h operation improving, further, the code density.

From the Hardware point of view, some Special Purpose Registers have been
added in the decode stage in order to avoid pipeline stalls caused by the new VLIW
instructions. The hardware modifications are shown in figure 4.3.

Figure 4.3: PULP RISC-NN Scheme

4.4.2 L1 Data Memory

The DSP Cluster includes 128KB of Data memory organized in 32 Banks. the
whole memory is shared between all the cores accessible by the crossbar. Each
bank has its interface dedicated with the crossbar, this is done to ensure concurrent
accesses to the memory. The crossbar supports up to 32 slaves (all memory banks).

4.4.3 Shared FPU

Inside the DSP cluster the FPU is shared among all the cores. This approach
permits to save area and costs since the FPU operations are less frequent with
respect the integer ones. The shared FPU is made up by:

• Multiplexer logic to route the operands towards the targeted FPU unit

• 8x FPU unit dedicated for additions, multiplications, comparisons and conver-
sions. Each unit is shared between two cores

• One FPU dedicated for divisions and root square operations

53

Case of Study - VEP Design

4.4.4 Instruction Cache

The solution adopted for the instruction cache exploits the benefits brought by
SCMs by combining a two-level architecture capable of providing a larger "virtual"
cache capability. The L1 level is private for each core, while the L 1.5 level includes
a larger and shared low latency cache (one clock cycle). From a functional point of
view, the assumption of a shared cache is especially advantageous for the execution
of parallel code as it avoids replicating large portions of code in each private
cache.[21] The general structure is shown in Figure 4.4. The two caches are

Figure 4.4: Instruction Cache Architecture

connected together with a low latency interconnect. The shared cache is organized
in several blocks each of them is accessible by the core. The functioning of the
cache is summarized in the flow chart in figure 4.5

A Round-Robin policy regulates the contention when two or more cores are
accessing to the same shared cache block. Furthermore, the presence of a buffer
between the L1 and L 1.5 ensures a shorter critical path improving the architecture
scalability towards high-end clusters.

4.4.5 DMA and Bus

The DMA module is in charge to move the data from the L1 Memory towards the
L2. The operation is performed through the dedicated cluster bus which leveraging
an AXI interfaces. The Data Bus is 64-bit wide.

54

Case of Study - VEP Design

Figure 4.5: Instruction Cache Functioning

4.5 Testing Aspects
The main goal of the developed software is to detected as much as possible the faults
related with the computational block of the DSP-Cluster providing in addition
a safe environment to perform in field test. In this section, will be shown the
hierarchy organization of the faults and which of them have been considered during
the experience. The table 4.1 shows the complete fault hierarchy list for the
Stuck-At model.

The software that will be explained targets the SA faults inside all the core
regions and the shared FPU. Other side-effect faults can be detected even without
an ad-hoc test program.

55

Case of Study - VEP Design

11688826 Top Module
51040 /Cluster Bus
28836 /AXI to Memory Bus
13188 /AXI to Peripheral Bus
566 /Peripheral Demux

105172 /Peripheral to AXI Bus
1077114 /Cluster Interconnect Bus
477070 /DMA
506974 /Cluster Peripherals
226924 /Core 0 Region
226124 /Core 1 Region
226732 /Core 2 Region
226192 /Core 3 Region
225392 /Core 4 Region
225346 /Core 5 Region
225636 /Core 6 Region
226008 /Core 7 Region
225400 /Core 8 Region
225968 /Core 9 Region
226732 /Core 10 Region
225226 /Core 11 Region
225888 /Core 12 Region
226226 /Core 13 Region
225952 /Core 14 Region
226184 /Core 15 Region
1447620 /Shared FPU Cluster
2774690 /Hardware Peripheral Subsystem
1361710 /Instruction Cache
103684 /L1 Memory Banks
118890 /Other Modules

Table 4.1: Fault summary

56

Chapter 5

Testing Software

The following chapter will provide a detailed overview of the workflow used to
develop the SBST, starting from the development of the several test programs
up to the software interface for their execution. This is an explanation about a
possible solution and it is not definitive but, it tries to give a starting point for a
more complex and efficient implementation.
Another software designer could implement different flows, tools and perform others
considerations. The software architecture is structured on three layers as shown in
figure 5.1.

Figure 5.1: Framework

At the bottom, there are all the test programs ordered within a Test Suite.
Each program allows exercising a specific functionality of the DSP Cluster. In the
middle, there is a layer of functions (Low Level API) to initialize the system for
testing. The higher level (High Level API) of functions allows organizing the
test programs by test sets taking into account, further, some aspects concerning
the multi-core architecture of the system.

The development starts after the completion of a stable and functioning simula-
tion environment providing the possibility to write programs, in C or Assembler,

57

Testing Software

which can be executed on one or more cores. Once a program is written, it is
possible to follow its flow through an RTL simulation of the circuit using QUESTA
SIM. This feature, combined with the access of the complete System Verilog de-
scription, permits to understand the functionalities of the hardware involved in the
operations.

5.1 Test Suite Development
Each test program is coded through a C function containing within it the code
written in Assembler leveraging the possibilities provided by the ASM Extended
library.

The development of each program follows a well-defined workflow summarized
in figure 5.2.

The flow is composed by the following step list that will be explained in the
next sections.

• Analysis and Simulation

• Pattern Generation

• Fault simulation without output Masks

• Fault list managing

• Signature implementation

• Context Saving

• Fault Simulation including output Masks

5.1.1 Analysis and Simulation

As previously mentioned, the first step is characterized by an in-depth study of
the target module. This process requires careful reading of the RTL description
and running some "hello world" programs to identify the behaviour of the different
control signals. As instance, in the case of the multiplier, all the distinct assembler
functions provided by the ISA are tested and analyzed, identifying all the signals
commutations to distinguish the type of multiplications. This procedure allows to
decide which is the best approach to develop the test program patterns.

58

Testing Software

Figure 5.2: SBST Pattern Generation Flow

5.1.2 Pattern Implementation
The implementation phase of the patterns is the main part of the development
allowing to reach the targeted fault coverage value. Once, understanding the
functioning of the hardware in the first step, it is possible to start defining which
strategy is more convenient to use. As anticipated in section 1.1.8, the designing of

59

Testing Software

the patterns can be performed through a Pseudo-Random approach or by exploiting
the patterns created by the ATPG.

Pseudo-Random Approach

The pseudo deterministic approach is based on the remarkable effectiveness of
"chessboard" patterns. This type of pattern is especially effective for the computa-
tional units of the core because the switching of the operand bits greatly stresses
the internal circuitry. An example of a very effective and widely used set pattern
in this experience is the (5.1).

set patterns = {0x00000000, 0x11111111, 0x22222222, ...,0xFFFFFFFF}
(5.1)

By the way, an algorithm frequently used for the computational blocks is to switch
the operands using all the possible combination of all the patterns above on all the
available instructions leveraging loop mechanisms. Even though this approach is
very effective, it has a considerable impact on the test duration length, since, the
number of operation can be estimated by the (5.2) equation.

#Operations = S1 · S2 · I (5.2)

Where, S1 and S2 are the number of patterns of the set while I is the number of
all possible operations for the target block.

A possible implementation of the basic algorithm is shown in the following
pseudo-code:

stim_A [] ={0x00000000 , 0 x11111111 , 0 x22222222 , . . . , 0xFFFFFFFF }
stim_B [] ={0x00000000 , 0 x11111111 , 0 x22222222 , . . . , 0xFFFFFFFF }

f o r (i =0; i<s i z e (stim_A) ; i++){
f o r (k=0; k<s i z e (stim_B) ; k++){

r e s u l t = stim_A [i] op1 stim_B [k] ;
s t o r e (r e s u l t) ;
r e s u l t = stim_A [i] op2 stim_B [k] ;
s t o r e (r e s u l t) ;
. . .
so on
. . .

}
}

Furthermore, the application of the test set in (5.2) can find important test
applications on all the memory based modules. In general, for this type of circuit
the application of a Memory Test algorithm is a good approach to achieve high

60

Testing Software

values in terms of fault coverage. The classical March algorithms exploit the
potentialities given by this pattern set, since, it grants the detection of possible
faults present inside the address logic of the memories as well as in the memory
cells. [2] An example pseudo-code of a basic Memory Test algorithm that provide
a good fault coverage for Stuck-AT is:

stim_A [] ={0x00000000 , 0 x11111111 , 0 x22222222 , . . . , 0xFFFFFFFF }

f o r (k=0; k<s i z e (stim_A) ; k++){
f o r (l ; l<s i z e (memory) ; l++){

s t o r e (stim_A , address [l]) ;
r e s u l t = read (address [l]) ;
i f (r e s u l t != stim_A)

Error () ;

c_resu l t = complement (r e s u l t)
s t o r e (c_resu l t) ;
r e s u l t= read (address [l]) ;
i f (r e s u l t != c_stim_A)

Error () ;
}
. . .
so on
. . .

}

To apply further stress to the module and finalize some test programs it’s
reasonable to use, besides, the instructions containing immediate fields. Flipping
all the bits of those fields it’s possible to exercise all the circuitry involved to
decode and compute this type of operations. For the control blocks, the random
approach is not always applicable since there are restrictions for the input patterns.
In general, many control blocks are tested by side effects due to the applications
of the other test programs as mentioned in section 1.18. Anyway, to improve the
coverage of the control blocks it’s a good strategy to apply all the possible control
instructions available by the ISA for that block. Fortunately, the control blocks
have a less quantity of faults concerning the computational blocks placing them in
background.

ATPG Based Approach

The ATPG based approach needs a very deep knowledge regarding the functional
aspects of the module taken into account. The idea is to constrain the ATPG to

61

Testing Software

create only functional patterns and reproducible via software. A very interesting
aspect of the ATPG approach is the ability to generate sequential patterns with
variable depth, allowing the fault identification through specific sequences of
patterns. Once the test vectors have been generated, it will be necessary to
"translate" them into assembler instructions through a text parsing script. The flow
is shown in figure 5.3.

Figure 5.3: ATPG Pattern Generation Flow

The STIL format is an IEEE approved standard for the Test Vector format.
This format mainly comprises four distinct sections:

• Signals Block - Defines all the pins of the module

• Timing Block and Waveform Table - Defines the waveform formatting
and signal timings

• DCLevels Block - Defines the DC Signal Levels applied to and expected
from the device under test

• Pattern Block - Defines the Test Vectors

[22]
The most complex part of the procedure is the translation of the different

patterns into instructions, requiring complex parsing algorithms in situations of a
large number of instructions and control signals,. Each pattern requires the use of
multiple ASM instructions to be properly translated as shown below. This example
could be the basic translation for a pattern generated for the ALU where, before
to perform the operation, it is needed to load the two operands

62

Testing Software

///// asm . s /////
l i t0 , (operandA) ;
l i t1 , (operandB) ;

add t2 , t0 , t1 ; // operator de f ined by c o n t r o l s i g n a l
sw t2 , 4 (sp) ; //show the r e s u l t on the output port

}

The ATPG approach is very effective but difficult to apply. It is convenient to
use it in a complementary way to the pseudo-random by taking into account reduced
fault lists and a considerable number of constraints to minimize the complexity
of the parser algorithm. The main advantages of the technique concern the speed
of program execution (w.r.t the loop structure example of pseudo-random) and
the identification of hardly observable faults. If everything is done correctly, the
coverage obtained by the test program is close to that obtained by the ATPG. In
case of a high number of patterns, it is necessary to structure the program within
loops by saving the patterns in dedicated pools, thus allowing to obtain a reduced
code length and so, save the memory occupation.

Fault simulation without output Masks

Once the input patterns have been created, it is possible to proceed with the Fault
Simulation step to verify their effectiveness. The methodologies adopted depend on
the capabilities of the simulation tool. In this experience, it was adopted the method
based on the registration of the eVCD file. The Extended Value Change Dump
(eVCD) is a type of file that records all the input and output signals through a
well-defined format compatible with a large number of verification tools. This file
can be used as input to carry out circuit simulations or it can be recorded through
a simulation performed with another testbench. By running the RTL simulation
of the implemented patterns, it is possible to obtain the eVCD file and use it as
a testbench for the Fault Simulator, thus obtaining the fault-free "Gold Machine"
simulation. At this point, the Fault Simulator proceeds with the fault injection
comparing the result with the Gold machine. If the result shows discrepancies,
this means that the fault has been identified. In a completely automatic way, this
procedure is repeated fault by fault, providing the final Fault Coverage value. The
steps are summarized in figure 5.4.

This first fault simulation aims to roughly evaluate the effectiveness of the test
program by observing the results on all the POs including all the control signals
of the module. As explained below, the results obtained in this step cannot be
considered valid but indicate the methodology used for creating the patterns.

63

Testing Software

Figure 5.4: Fault Simulation Flow

Fault list managing

If the algorithms adopted to create the patterns are not sufficient to satisfy the
required Fault Coverage requirement, it is necessary to proceed with managing
the fault list. This step is very important to avoid re-simulating faults already
identified by other test programs in case it is necessary to add new ones. The
reduction in the number of tested faults has a significant impact on the time needed
to complete the Fault Simulation. In real circuits, performing the fault simulation
from the beginning can take a long time even more than a week. Obviously, if the
patterns do not give satisfactory results, it is necessary to rework (or delete!) the
latter, simulating all the faults in the initial fault list.

Signature implementation

As will be explained later. The test software makes a comparison of an "accumulated"
result from the various operations included in the test programs. In order to make

64

Testing Software

as few comparisons as possible it is necessary to develop a signature related to the
results of all the operations carried out. For this purpose, dedicated procedures
must be introduced within the different tests. Starting from the pseudo example
code:

test_program () {
stim_A [] ={0x00000000 , 0 x11111111 , 0 x22222222 , . . . , 0xFFFFFFFF }
stim_B [] ={0x00000000 , 0 x11111111 , 0 x22222222 , . . . , 0xFFFFFFFF }

f o r (i =0; i<s i z e (stim_A) ; i++){
f o r (k=0; k<s i z e (stim_B) ; k++){

r e s u l t = stim_A [i] op1 stim_B [k] ;
s t o r e (r e s u l t) ;
r e s u l t = stim_A [i] op2 stim_B [k] ;
s t o r e (r e s u l t) ;
. . .
so on
. . .

}
}

}

Instead of carrying out the store operations after each instruction, it is necessary
to "jump" into a procedure capable of accumulating a signature, as shown below.

test_program () {
stim_A [] ={0x00000000 , 0 x11111111 , 0 x22222222 , . . . , 0xFFFFFFFF }
stim_B [] ={0x00000000 , 0 x11111111 , 0 x22222222 , . . . , 0xFFFFFFFF }
f o r (i =0; i<s i z e (stim_A) ; i++){

f o r (k=0; k<s i z e (stim_B) ; k++){
r e s u l t = stim_A [i] op1 stim_B [k] ;
f i n a l _ r e s u l t = s ignature_fun (r e s u l t) ;
r e s u l t = stim_A [i] op2 stim_B [k] ;
f i n a l _ r e s u l t = s ignature_fun (r e s u l t) ;
. . .
so on
. . .

}
}
re turn f i n a l _ r e s u l t ;

}

s ignature_fun (r e s u l t) {
mask_1=0xFFFFFFFF,
mask_2=0x5EED5EED;
mask_3=0xCAFECAFE,

65

Testing Software

r e s u l t = r e s u l t XOR mask_1 ;
r e s u l t = r e s u l t XOR mask_2 ;
r e s u l t = r e s u l t XOR mask_3 ;

}
re turn r e s u l t ;

Using this strategy, only one result that keeps track of all the previous ones will
be compared. Given that, in most cases, the length is maintained between the
intermediate and final results, the implementation of a signature algorithm is not
too complex. It is recommended to use "transparent" operations (XOR) to bits
changing in order to avoid the presence of aliasing and therefore the loss of Fault
Coverage. At this point, each test programs will provide a unique signature which
will be saved in a reserved memory space. Therefore, the presence of a fault will
cause a discrepancy between the expected signature and the one calculated by
notifying the identification of the latter.

Context Saving

Since test programs are run through a function call it is very important to consider
the possible loss of specific return addresses saved in the register file by the ABI
interface. The latter ensures that the function calls are executed in a "conventional"
way using a strategy aimed at correctly saving the context. The procedure is
completely automated by the C compiler but the latter is "unaware" of the presence
of an ASM code that could overwrite the special registers that contain, for example,
the stack pointer and return addresses. With reference to table 3.1 it is possible
to identify some of these registers used by the ABI. Temporary registers can be
modified at will and are best suited for manipulation by test instructions. Sometimes
in order to obtain an acceptable coverage value, it is necessary to have a number
of registers higher than the temporary ones, overwriting some registers used by the
ABI. In this situation there is a risk of corrupting the expected flow of instructions,
creating stalls in the program. To solve the problem it is recommended to introduce
a "prologue" and an "epilogue" to each test program, capable of capturing the initial
state of the register file and restoring it at the end of the test procedure. The
solution, if applied at the right time, can be used to save the context even in entry
and exit from the test routines, thus ensuring the operating system an exact restore
of the initial conditions. [3]

Fault Simulation including output Masks

The final step of the implementation of the test program takes place through a
fault simulation by placing masks on all outputs where the signature is not visible
to evaluate the presence of aliasing caused by the following reasons:

66

Testing Software

• Signature Algorithm

• Faults that affect the control signals

A bad implementation of the signature algorithm may affect the trace-ability of
the fault detected masking its effects on the signature. A fault that is propagated
to an output control signal is not trivial to see via software since it could not
creates differences in the signature. As will be explained in the next sections, the
software needs to be initialized in order to activate some specific functionalities to
support the possible "failures" caused by this type of fault. In some cases, this fault
simulation will reduce the score of the Fault Coverage but permits an evaluation of
the effectiveness of the test program from the signature comparison point of view.

5.2 Low-Level API
The first level of functions provides the system with support to successfully run
test programs. Previously the fault detection was performed through a dedicated
tool (Fault simulator) that directly observed the values scoping the POs. In this
phase, however, the software must be able to cover the role of the tool by detecting
inconsistencies in the signature but, at the same time, ensuring the program flow
compatible with the presence of any OS.

It mainly takes into account the following aspects.

• Test flags

• Failures caused by test programs

• Test programs interface

• Signature comparison

5.2.1 Test Flags
For correct coordination at multi-core level, the software needs to set some flags
relating to the execution of the test. These flags can be saved in a dedicated
memory area and must be unique for each core. Mainly, flags must take into
account the following aspects:

• Running Flag - Notify if the core is in test mode

• Illegal Instruction Detection - Check if all the instructions have been
decoded correctly

• Test Result - Analyze the test outcome

67

Testing Software

Obviously the flags shown are only indicative, for more advanced implementations
the number of the latter may be higher in order to cover the needs of software
designers.

5.2.2 Test Programs Failures Detection
As previously mentioned, the observation of the signature is not able to cover the
effects caused by all possible faults. During the execution of the test some faults
could create problems with the correct flow of the program, generating issues in
the signature computation. For example, a possible fault inside the Decode Stage
could trigger an exception that would lead to the execution of different instructions
rather than those expected. For this purpose, it is necessary to think about all the
possible failures generated by the faults reflected on the system control logic. Some
solutions could be the following:

• Modified Illegal Instruction Exception Routines

• Add Watchdog Timer

The first solution aims to solve possible faults in the IF-ID stages providing a
modified handler for the illegal instruction exception which set the flag in the
correct memory location. Furthermore, the handler needs to support a correct
return to the program "skipping" the faulty instruction in order to conclude the
test. If well implemented the exception handler can use a set of variables able
to keep trace of the faulty instructions in order to have diagnosis features. The
second solution take into account the occurrence of some failures which can cause
unexpected looping behaviour causing infinite loop of execution time out of the
fixed boundaries. This can be implemented through a watchdog timer properly
configured in the initialization phase of the test.

5.2.3 Test programs interface
A possible solution for interfacing, between the Low-Level API and the test program,
is proposed by exploiting the ASM Extended libraries. This library allows you
to use C variables as input and output within the ASM code snippet. With this
solution, it is easy to save and restore the Register File backup using a pointer to
the memory location. Furthermore, the same approach facilitates the return of the
signature by allowing saving in an easy-to-use C variable. The use of the ASM
Extended is shown by the following pseudo-code:

i n t test_program_i (i n t ∗ r e g_ f i l e_po in t e r) {
i n t s i gna tu r e = 0 ;

68

Testing Software

asm extended (

/// PROLOGUE ///////////////////////
sw r0 ,%[rf_backup_loc]
sw r1 , (%[rf_backup_loc] + 4)
.
.
.
sw r31 , (%[rf_backup_loc] + 4∗32)

///////////////////////
// Test program HERE //
///////////////////////

/// EPILOGUE ///////////////////////

lw r0 ,%[rf_backup_loc]
lw r1 , (%[rf_backup_loc] + 4)
.
. // sk ip the load in the r e g i s t e r which conta in s the

s i gna tu r e
.
lw r31 , (%[rf_backup_loc] + 4∗32)

/// STORE SIGNATURE ////////////////
sw r5 , %[address_mem_sign]

: [address_mem_sign] "=m" (s i gna tu r e)
: [rf_backup_loc] "m" (r eg_ f i l e_po in t e r)

) ;
}
re turn s i gna tu r e ;

}

The library has numerous features that must be used with care because, during
the compilation phase, the program could assume an unexpected flow.

5.2.4 Signature comparison
This step is very intuitive and involves the comparison between the calculated
signature and the "gold" signature. The software will need a pool of pre-calculated
signatures saved in an appropriate memory location that can easily be Read-Only.
For some test programs, whose signature stabilization is complicated due to the
strong dependence on the context in which the test program is launched, it might

69

Testing Software

be useful to adopt a "dynamic" signature system thus allowing access to the pool.
The result of the comparison will be reflected on the result flag allowing other cores
to evaluate the test outcome.

5.3 High Level API
The purpose of the high level API is to allow the correct execution of one or more
test programs on the different cores. Mainly its functions are:

• Test Sets Creations

• Multi-Core Addressing

• Test Program Launching

• Test Result Evaluation

5.3.1 Test Sets Creations
The possibility to decide which and how many test programs can be executed in
sequence allows to optimize the use of the time intervals left free by the OS. For
this reason, it is necessary to provide an interface for creating test sets. A possible
solution is to create dedicated data structures containing enable flags that allow to
orchestrate the different test programs.

5.3.2 Multi-Core Addressing
Once the test set is ready it is possible to launch it on the different cores using
the solution mentioned in section 3.1.2 (TLP). The methodology to carry out this
task is highly dependent on the availability in terms of Kernel functions, therefore
different approaches may be required. The test software must ensure that it is
possible to run simultaneously on multiple cores test sets without creating conflicts.
For this reason, it is recommended to allocate memory spaces reserved for each
core, in which, store the different test flags seen in the previous section. Similarly,
it is suggested to allocate a dedicated location, for each core, to backup the register
file. A careful analysis of the linker file is therefore crucial to understand exactly
in which memory sections to save the information as well as the correct addressing
of the latter through C structures.

5.3.3 Test Program Launching
The high-level APIs must allow the correct execution of the tests selected within
the set. The software will be in charge of performing all the initialization functions

70

Testing Software

implemented in the lower level. Once the system is ready it will be possible to
execute each test program in sequence. A solution proposed leverages the use of
loops where the index points to a specific function pointer.

5.3.4 Test Result Evaluation
Once all the cores reach the synchronization barrier, the test result evaluation can
be performed simply reading all the memory area dedicated to the performance
flags.

5.4 The study-case software
The SBST developed for the VEP design was developed following the guidelines
shown in the previous section.
As previously mentioned, due to the high complexity of the VEP design, only the
DSP Cluster was taken into consideration. In turn, it was not possible to develop a
program covering all modules. The modules tested and analyzed are the RISC-V
Cores and the Shared FPU unit with the implementation of the software interface
required for concurrent multi-core testing.

5.4.1 Test Suite
The following tables show all the test programs divided according to the type of
approach used during development.

• Pseudo-Random (Table 5.1)

• Pseudo-Random + ATPG (Table 5.2)

• Memory Algorithm (Table 5.3)

Table 5.1: Test programs adopting Pseudo-Random.

Test Program Label Main Module Targeted
TEST_ALU_ADD_CMP ALU
TEST_ALU_DIV ALU and DIVISOR
TEST_ALU_IMM_VAL ALU
TEST_ALU_NN_PV ALU
TES_CMPLX_OPS ALU and Multiplier
TEST_MUL_OPS Multiplier

71

Testing Software

TEST_MUL_IMM_VALUES Multiplier
TEST_MUL_NN_PV Multiplier
TEST_MUL_RNN Multiplier
TEST_CMPRSS_DEC_A Decode stage
TEST_CMPRSS_DEC_B Decode stage
TEST_LOAD_STORE LS Unit
TEST_BRANCH_UNIT Branch Unit
TEST_HWLOOP HW Loop Controller
TEST_FPU_LITE Decode stage and FPU
TEST_HWLOOP HW Loop Controller

Table 5.2: Test programs adopting Pseudo-Random and ATPG .

Test Program Label Main Module Targeted
TEST_FPU_FMA HW Loop Controller
TEST_FPU_FMASP FPU FMA
TEST_FPU_FMA FPU FMA
TEST_FPU_FDIVSQRT FPU DIV
TEST_FPU_FCMP FPU CMP
TEST_FPU_FCVT FPU CVT
TEST_FPU_FCVT_SP FPU CMP
TEST_FPU_FCVT FPU CVT

Table 5.3: Test programs adopting memory algorithm.

Test Program Label Main Module Targeted
TEST_REG_FILE Decode stage and FPU
TEST_TCDM_XBAR_CTRL TCDM interconnection
TEST_TCDM_XBAR_DATA TCDM interconnection

As it is possible to see, all the programs were implemented using the pseudo-
random approach because it guaranteed good results in terms of fault coverage.
The ATPG approach was used as a "refinement" by applying it on reduced fault lists
and with a high number of input constraints in order to reduce as much as possible

72

Testing Software

the difficulty of translating the vector tests generated in the STIL file. Furthermore,
the ATPG has been effective identifying some "special" patterns dedicated to the
FPU. Each test program interface as been implemented as the example in section
6.2.3.

5.4.2 LLD and HLD Libraries Implementation
The LLD and HLD C libraries have been implemented just after a first version
of the test suite. The two libraries comprise all the considerations explained in
section 6.2 and 6.3.

It should be noted that, during the development, some problems were en-
countered by launching some test programs in sequence. As previously said, the
implementation adopted in this context is far from a real version dedicated to
business purposes. According to some analyzes, the use of the ASM Extended
library and the test program interface must be reworked in order to ensure a correct
and stable version of the software. However, the results that will be shown in the
next chapter have been obtained in multiple merges of mutually compatible test
sets.

L2 Memory Organization

The L2 memory contains the performance flags and the signatures pool. The
performance flags location takes 192 bytes accordingly with the following equation:

Size = 32bit ·N_CORES ·N_FLAGS (5.3)

The choice to allocate the space inside the L2 memory is due to the fact that it is
a memory "closer" to the FC Core which is in charge to checks the test results at
the end of the test procedure. Furthermore, this memory is not involved during
the DSP Cluster operations as data memory, thus, it is fetched only to load the
instructions into the DSP Instruction Cache.

The signature pool has also been allocated in L2 memory within a Read-Only
space using the Constant directive. The reserved space is 100 Bytes calculated
through the following equation:

Size = 32bit ·N_TEST (5.4)

For both, the space has been allocated in the .data memory section.

L1 Memory Organization

In VEP design the L1 memory is inside the DSP cluster and it is in charge to save
the data of the operations performed on all the sixteen cores in their respective stack

73

Testing Software

locations. The software developed reserves dedicated spaces for the backup of the
register files in the specific section .data. With this solution all computations remain
inside the DSP Cluster in order to minimize contentions to use the external memory
L2. The Cores will then use the L2 memory exclusively to load performance flags
and gold signatures, minimizing communications and therefore possibles contentions
and stalls.

Illegal Instruction Handler Modifications

The Illegal Instruction Handler has been modified to support the writing of the
appropriate flag for the identification of illegal opcodes caused by possible faults
within the modules involved in fetching and decoding instructions. The illegal
instruction flag is set only when the Running Flag is active which means that the
test mode is activated.

5.4.3 Software Functioning
The following steps summarize the operations perfomed by the software. In figure
6.5 it’s possible to identify how the software is structured on the hardware resources.

1. Initialize Illegal instruction Detection and set running flag

(a) Call Init Function
(b) Set running flag and initialize illegal flag to initial value 0

2. Run Test and compute signature

3. Compare signatures and check presence of illegal instructions

(a) Check Illegal instruction flag
(b) Load Signature
(c) Compare signature

4. Write test Result

5. FC CORE checks the results

74

Testing Software

Figure 5.5: SBST Functioning on VEP Design

75

Chapter 6

Results and Analysis

In the following conclusive chapter are analyzed all the results obtained through
the SBST software highlighting the limitations and problems faced during the
development. Furthermore, showing the results, many considerations are collected
to expand and finalize the test suite leading towards the conclusions regarding the
effectiveness of the method.

6.1 Results on VEP design
The following metrics were used to evaluate the feasibility of the method obtained
on VEP design:

• Fault Coverage

• Simulation Time

• Fault Simulation Time

• Absolute Time

6.1.1 Fault Coverage
As mentioned above, the effectiveness of the test programs has been evaluated
through local simulations of the different modules of the DSP Cluster by observing
only the POs involved in the signature propagation. Initially, the idea was to
simulate the entire cluster running the entire software recording the PIs and POs.
Due to factors inherent to computational resources, module complexity and some
parts still under development, this simulation turned out to be too ambitious.
In order to obviate to this problem it has been tried to replace the "sleeping"
modules with the respective "stubs". The solution for a first moment has been

76

Results and Analysis

found effective for the RTL simulations, while, numerous discrepancies have been
found in the Gate-Level simulations. Moreover, the clock-gating manages the
generations of simulation events on all the circuitry through the Clock Enable
signal. This consideration led to abandoning the idea of stubs because it would not
bring tangible benefits in terms of simulation time since the not used circuitry is
not evaluated. Additionally, the develop of a fully functional stub can take weeks
of development. Reasoning on how to improve the times required by the fault
simulation the only feasible solution was to use described circuits mixing Gate-Level
components with RTL components. Unfortunately, the supplied testing tool did
not support the description of the components in SystemVerilog and therefore
it was not possible to verify the effectiveness of the solution. The choice of the
masks on the POs allows to obtain an estimate of the Fault Coverage able to better
approach the "ideal" one of the complete cluster but, at the same time, to stay
away from the overestimation of the fault simulation obtained considering also
the faults propagated on the control output signals. The results in figure 6.1 are
reproducible by running all the test suite on all the cores concurrently.

Figure 6.1: Result on DSP Cluster

77

Results and Analysis

The white boxes, in the right corner of figure 6.1, without a label are written in
boldface in table 6.1.

11688826 Top Module Fault Coverage %
51040 /Cluster Bus N.C.
28836 /AXI to Memory Bus N.C.
13188 /AXI to Peripheral Bus N.C.

566 /Peripheral Demux N.C.
105172 /Peripheral to AXI Bus N.C.
1077114 /Cluster Interconnect Bus 19%
477070 /DMA N.C.
506974 /Cluster Peripherals N.C.
226924 /Core 0 Region 73.75%
226124 /Core 1 Region 73.75%
226732 /Core 2 Region 73.75%
226192 /Core 3 Region 73.75%
225392 /Core 4 Region 73.75%
225346 /Core 5 Region 73.75%
225636 /Core 6 Region 73.75%
226008 /Core 7 Region 73.75%
225400 /Core 8 Region 73.75%
225968 /Core 9 Region 73.75%
226732 /Core 10 Region 73.75%
225226 /Core 11 Region 73.75%
225888 /Core 12 Region 73.75%
226226 /Core 13 Region 73.75%
225952 /Core 14 Region 73.75%
226184 /Core 15 Region 73.75%
1447620 /Shared FPU Cluster 75%
2774690 /Hardware Peripheral Subsystem N.C.
1361710 /Instruction Cache N.C.
103684 /L1 Memory Banks N.C.
118890 /Other Modules N.C.

Table 6.1: DSP Cluster fault coverage

RISC-V NN Core

RISC-V has been covered with a percentage of 73.75%. The maximum coverage
achieved was 88% without stabilization of signatures and use of masks on POs.
The overview of the coverage is in table 6.2 .

78

Results and Analysis

#faults Instance name Fault Coverage %
221710 /top_Module 73.75
18212 /if_stage_i/ 64.06
13188 /if_stage_i/prefetch_128_buffer_i 65.86
1576 /if_stage_i/hwloop_controller_i 56.85
1616 /if_stage_i/compressed_decoder_i 85.27
84750 /id_stage_i 72.41
41910 /id_stage_i/register_file 77.55
6670 /id_stage_i/decoder_i 55.02
2268 /id_stage_i/controller_i 37.80
184 /id_stage_i/int_controller_i 0.00
4648 /id_stage_i/hwloop_regs_i 78.73
96184 /ex_stage_i 85.17
38824 /ex_stage_i/alu_i 84.43
48676 /ex_stage_i/mult_i 95.73
1740 /ex_stage_i/apu_disp_i 19.71
6290 /load_store_unit_i 82.90
14922 /cs_registers_i 16.67

Table 6.2: RISC-V NN Core fault coverage

One of the main sources of aliasing was caused by the lack of dedicated programs
for the Control and Status Registers due to difficulties in the signature stabilization,
which, guaranteed an increase of 3-4% of the RISC-V NN coverage. The results
obtained exclude the addition of the program dedicated to the MAC operations
circuitry for neural networks due to some recent changes to the ISA of the RNN
extension. With the previous version of ISA the execution of this test program
guaranteed an increase in the order of 3-4% of the total. Additionally, test programs
for the FPU that could detect faults in the APU, Fetch and Decode stages were
omitted with a 1-2% reduction in global coverage. It is therefore clear that with the
necessary optimizations and some additions it is very feasible to obtain a coverage
between 80 and 85%, which is an acceptable result for in-field testing practices in
many application domains.

Shared FPU Cluster

The shared FPU is one of the macroblocks that make up the DSP Cluster. The test
programs have allowed to obtain a good total coverage value of 75%. The figure
6.1 shows a general view of the results obtained divided by regions. In table 6.3,
the summary of the coverages.

The FPU_Unit was tested by dedicated test programs in charge to exercise

79

Results and Analysis

Figure 6.2: Result on DSP Cluster

each operational group. The results are summarized in table 6.4.
The use of the pseudo-random approach has proved to be less effective on this

type of circuit because, the format of the IEEE 754 operands for floating point
operations requires a more in-depth study on the latter. A choice of more "functional"
patterns would guarantee to better exercise all the lines within each operational
group. This type of approach requires an in-depth study of the architecture but
could improve overall coverage by 8-10%, with significant improvements in execution
time. Some of the tests used have been developed using the ATPG-based approach
in a complementary way, ensuring significant improvements especially to group 2,
involved in the floating comparison operations bringing the coverage from around
30% to the actual value of 64.93% using only not sequential patterns.

The FP_DIVSQRT Unit follows the same speech made previously, although
the choice of patterns could be even more complex due to the high sequentiality of
the module. Even with an in-depth study it is feasible to improve its coverage to a

80

Results and Analysis

#faults Instance name Fault Coverage %
~1417000 /top_module ~75.00
~162000 FPunit_0 72.88
~162000 FPunit_1 72.88
~162000 FPunit_2 72.88
~162000 FPunit_3 72.88
~162000 FPunit_4 72.88
~162000 FPunit_5 72.88
~162000 FPunit_6 72.88
~162000 FPunit_7 72.88

58961 FPDIV/SQRT 72.88
~55000 Mux_logic 90.00

Table 6.3: Shared FPU fault coverage

#faults Instance name Fault Coverage %
171314 /top_module 72.88
89962 /gen_operation_groups_0_i_opgroup_block 81.45
1338 /gen_operation_groups_1_i_opgroup_block 9.46
30208 /gen_operation_groups_2_i_opgroup_block 64.93
47282 /gen_operation_groups_3_i_opgroup_block 62.23
1846 /i_arbiter 54.90

Table 6.4: FPU fault coverage

higher value than the current 49%.
The MUX logic has been effectively covered simply by launching test programs

on all the cores simultaneously. Almost all multiplexers achieved a coverage of
between 87% and 92%.

Summarizing, obtaining a global coverage of 85% on the whole block dedicated
to floating point operations is a feasible operation provided that accurate circuit
analysis is carried out in order to identify the correct patterns. From the point of
view of signature stability no noteworthy difficulties have been encountered.

Cluster Interconnection

The Cluster Interconnection is a TCDM XBAR which orchestrates the communica-
tion among all the internal modules of the cluster. During the experience some
simulations were made with simple programs involving communications between
the cores and memory banks. Through two simple programs a coverage of about
20% was obtained. The result, although very low, may indicate that to detect a

81

Results and Analysis

good number of faults in the XBAR it is necessary to involve all the modules that
it interfaces. One hypothesis is that the module can be tested for side-effect once
dedicated test programs have been developed for all modules in the cluster.

Instruction Cache

The instruction cache is a very complex module to test with the SBST technique
because of several reasons as:

• Generate a stable signature

• Difficult to handle its content (TAG and DATA) since it contains only instruc-
tions

• Not easy implement an algortithm able to exercise the control logic related
with the memory address.

During the experience it was not possible to implement a valid strategy in order
to derive a value due to limitations to perform a fault simulation that could give
significant results. However, some strategies have been designed taking advantage
of the possibility to target not-cacheable memory areas. [23]

DMA

DMA is a block dedicated to transferring entire areas of memory from outside or
inside the DSP cluster completely independently of the cores. Although it was not
possible to implement a dedicated module for reasons of time, it is reasonable to
test it using the SBST technique. A possible idea involves the transfer of entire
areas of memory preloaded with specific patterns. It might be more problematic to
effectively stimulate the control part concerning address management as it might
not be feasible to use DMA on all available memory due to design limitations.
Some techniques are currently under development and research.

Hwpe subsystem, Cluster Peripherals and other modules

Due to time issues and limitations due to the simulative capabilities of the test
software it was not possible to consider the remaining blocks in the DSP Cluster.
For this purpose, the idea is to return to these modules once you have obtained
the possibility to simulate the entire DSP cluster in a reasonable time.

6.1.2 Simulation Time
During the development it was necessary to simulate the entire suite several times
through RTL and Gate-Level simulations of the programs in order to verify their

82

Results and Analysis

operation. In this section, the idea is to give an indication on the times required
to simulate the waveforms of the entire test suite with the simulation tool. The
analysis is in table 6.5

Module Simulated Test Programs Level Simulation Time (min)
DSP CLUSTER RISC-V SET+FPU LITE RTL 5 min
DSP CLUSTER RISC-V SET+FPU LITE GATE 20-25 min
DSP CLUSTER All FPU Tests RTL 7-8 min
DSP CLUSTER All FPU Tests GATE 25 min

Table 6.5: RTL Waveform Simulation Time

As is possible to notify, The time of simulation demanded from the Gate level
turns out multiplied of a factor equal to 4-5 times regarding the simulation RTL.

6.1.3 Fault Simulation Time
Below, in table 6.6 are reported the times required to perform the fault simulation
of the blocks examined with the respective test sets considering the complete
fault lists. To fault simulate the shared FPU in a reasonable period of time it is

Module Simulated Test Programs Simulation Time (hours)
DSP CLUSTER RISC-V SET+FPU LITE Not Defined

RISC-V RISC-V SET+FPU LITE 16-20
Shared FPU All FPU Tests on all the cores 20-24

FP Unit All FPU Tests 2

Table 6.6: Fault Simulation Time

mandatory remove from the list all the faults coming from the different FP units.
In this way the complete fault list counts around 150k faults and it is possible to
test them in less than one day. The complete simulation of the cluster beyond to
demand fault simulation times too much long, it has shown some issues during
the logical simulation performed by the testing tool due to the presence of some
hardware aspects still in phase of development.

6.1.4 Absolute Time
In this paragraph are summarized in the table the times required by the test
programs to be performed by SoC. The results have been obtained using the value
obtained at the end of the RTL simulation.

83

Results and Analysis

Module Simulated Test Programs Simulation Time
DSP CLUSTER RISC-V SET+FPU LITE single core 10 ms
DSP CLUSTER FPU Test Set on single Core 12 ms
DSP CLUSTER FPU Test Set on all cores 16 ms

Table 6.7: Absolute Time

It was not possible to measure the time of each of the test programs because it
would have required an excessive number of simulations and since these versions
were not definitive it would have had less meaning. However, it is clear that the
duration of the test program is "relatively low" demonstrating the effectiveness
of the method for in-field testing purposes. Obviously it is necessary to evaluate
the application domain and all the limits that it involves. Comparing with DfT
techniques such as BIST or Scan-Chains it is clear that, the time for testing
operations can be on average one order of magnitude shorter because the SBST
does not require Shift-In and Shift-Out phases.

6.2 Conclusive analysis and considerations
The SBST method has proven once again effective for testing all computational
parts of the SoC. As expected, the big limitations concern the high computation
required to perform sequential fault simulations of very large circuits that count
millions of faults. To solve the problem the solutions, as anticipated, concerning
the use of hybrid circuits between the Gate and RTL level. Anyway, in order to
make this kind of description completely effective, it could be necessary to spend
a lot of time to solve possible discrepancies. Another alternative to solve the
problem is to use multiple licenses of the testing tool that allow running the fault
simulation in parallel and on multiple cores. Obviously, this solution requires a
considerable economic effort. From the point of view of fault coverage, it could be
very useful to develop an algorithm capable of "capturing" the state of the SoC
allowing later to calculate "dynamic" signatures. This addition could guarantee a
substantial increase in coverage for control units and CS registers. The technique
can be defined feasible on multi-core systems providing software able to correctly
orchestrate the testing operations avoiding possible conflicts, mainly, due to shared
memory areas. Considering this last aspect the software will have to reduce the
possible contentions between the data buses in order to reduce possible "stalls"
slowing down the testing procedure. With regard to the circuitry "around" the
cores, it is necessary to carry out a further study once the environment is ready
to perform big fault simulations. This preliminary study did not reveal any other
problems that do not allow the use of the SBST technique on multi-core circuits.

84

Results and Analysis

85

Bibliography

[1] J.C. Laprie. Dependability: Basic Concepts and Terminology. SpringerVerlag,
1992 (cit. on p. 2).

[2] Matteo Sonza Reorda, Paolo Bernardi, Michelangelo Grosso, and Ernesto
Sanchez. Slide course: Testing and Fault Tolerance. Politecnico di Torino.
2020 (cit. on pp. 2, 61).

[3] Seifedine Kadry. «A New Proposed Technique to Improve Software Regression
Testing Cost». In: International Journal of Security and its Applications (Nov.
2011) (cit. on pp. 9, 66).

[4] Paolo Bernardi, Riccardo Cantoro, Sergio De Luca, Ernesto Sànchez, and
Alessandro Sansonetti. «Development Flow for On-Line Core Self-Test of
Automotive Microcontrollers». In: TRANSACTIONS ON COMPUTERS n65
(Mar. 2016) (cit. on p. 25).

[5] Wikipedia contributors. Flynn’s taxonomy — Wikipedia, The Free Encyclope-
dia. [Online; accessed 6-December-2020]. 2020. url: https://en.wikipedia.
org/w/index.php?title=Flynn%5C%27s_taxonomy&oldid=992186057
(cit. on p. 27).

[6] Wikipedia. Instruction level parallelism — Wikipedia, L’enciclopedia libera.
[Online; in data 6-dicembre-2020]. 2019. url: http://it.wikipedia.org/
w/index.php?title=Instruction_level_parallelism&oldid=109183493
(cit. on p. 28).

[7] Wikipedia contributors. Task parallelism — Wikipedia, The Free Encyclopedia.
[Online; accessed 6-December-2020]. 2020. url: https://en.wikipedia.
org/w/index.php?title=Task_parallelism&oldid=960925335 (cit. on
p. 29).

[8] Wikipedia contributors. Multi-core processor — Wikipedia, The Free En-
cyclopedia. [Online; accessed 6-December-2020]. 2020. url: https://en.
wikipedia.org/w/index.php?title=Multi- core_processor&oldid=
989274864 (cit. on p. 29).

86

https://en.wikipedia.org/w/index.php?title=Flynn%5C%27s_taxonomy&oldid=992186057
https://en.wikipedia.org/w/index.php?title=Flynn%5C%27s_taxonomy&oldid=992186057
http://it.wikipedia.org/w/index.php?title=Instruction_level_parallelism&oldid=109183493
http://it.wikipedia.org/w/index.php?title=Instruction_level_parallelism&oldid=109183493
https://en.wikipedia.org/w/index.php?title=Task_parallelism&oldid=960925335
https://en.wikipedia.org/w/index.php?title=Task_parallelism&oldid=960925335
https://en.wikipedia.org/w/index.php?title=Multi-core_processor&oldid=989274864
https://en.wikipedia.org/w/index.php?title=Multi-core_processor&oldid=989274864
https://en.wikipedia.org/w/index.php?title=Multi-core_processor&oldid=989274864

BIBLIOGRAPHY

[9] OmniSci. GPGPU Definition. Available on line. url: https://www.omnisci.
com/technical-glossary/gpgpu (cit. on p. 29).

[10] Mingzhe Wang, Bo Wang, Qiu He, Xiuxiu Liu, and Kunshuai Zhu. «Analysis
of GPU Parallel Computing based on Matlab». In: (2020) (cit. on p. 30).

[11] Wikipedia. CUDA — Wikipedia, L’enciclopedia libera. [Online; in data 6-
dicembre-2020]. 2020. url: http://it.wikipedia.org/w/index.php?
title=CUDA&oldid=116820339 (cit. on p. 30).

[12] SUSE. Definition Computer Cluster. Available on line. url: https://sused
efines.suse.com/definition/computer-cluster/ (cit. on p. 30).

[13] Michael Nielsen. Using neural nets to recognize handwritten digits. Available
on line. Dec 2019. url: http://neuralnetworksanddeeplearning.com/
chap1.html (cit. on p. 31).

[14] Jordi Torres.ai. Learning process of a neural network. Available on line. Sept.
2018. url: https : / / towardsdatascience . com / how - do - artificial -
neural-networks-learn-773e46399fc7 (cit. on p. 34).

[15] Md. Haidar Sharif and Osman Gursoy. «Parallel Computing for Artificial
Neural Network Training using Java Native Socket Programming». In: 6.1
(Feb. 2020) (cit. on p. 39).

[16] R. Andri, T. Henriksson, and L. Benini. «Extending the RISC-V ISA for
Efficient RNN-based 5G Radio Resource Management». In: (2020), pp. 1–6.
doi: 10.1109/DAC18072.2020.9218496 (cit. on pp. 39, 52).

[17] Andrew Waterman and Krste Asanovi. The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA. Available on line. Dec 2019 (cit. on p. 40).

[18] Andreas Traber, Michael Gautschi, and Pasquale Davide Schiavone. Ri5CY
User Manual, Rev.4. Available on line. 2019. url: https://pulp-platform.
org/docs/ri5cy_user_manual.pdf (cit. on pp. 44–46).

[19] Dolphin Design. platform-solutions. Available on line. url: https://www.
dolphin-design.fr/ (cit. on p. 47).

[20] Dolphin Design. VEP specifications. Reserved. url: https://www.dolphin-
design.fr/ (cit. on p. 48).

[21] C. Jie, I. Loi, L. Benini, and D. Rossi. «Energy-Efficient Two-level Instruc-
tion Cache Design for an Ultra-Low-Power Multi-core Cluster». In: (2020),
pp. 1734–1739. doi: 10.23919/DATE48585.2020.9116212 (cit. on p. 54).

[22] Dean Cracknell and Micross Components. STIL Language Test Vector Format
(Simplified). Available on line. url: https://shop.micross.com/pdf/Micro
ss_Technical_Paper-STIL_Language_Test_Vector_Format_Simplified.
pdf (cit. on p. 62).

87

https://www.omnisci.com/technical-glossary/gpgpu
https://www.omnisci.com/technical-glossary/gpgpu
http://it.wikipedia.org/w/index.php?title=CUDA&oldid=116820339
http://it.wikipedia.org/w/index.php?title=CUDA&oldid=116820339
https://susedefines.suse.com/definition/computer-cluster/
https://susedefines.suse.com/definition/computer-cluster/
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
https://towardsdatascience.com/how-do-artificial-neural-networks-learn-773e46399fc7
https://towardsdatascience.com/how-do-artificial-neural-networks-learn-773e46399fc7
https://doi.org/10.1109/DAC18072.2020.9218496
https://pulp-platform.org/docs/ri5cy_user_manual.pdf
https://pulp-platform.org/docs/ri5cy_user_manual.pdf
https://www.dolphin-design.fr/
https://www.dolphin-design.fr/
https://www.dolphin-design.fr/
https://www.dolphin-design.fr/
https://doi.org/10.23919/DATE48585.2020.9116212
https://shop.micross.com/pdf/Micross_Technical_Paper-STIL_Language_Test_Vector_Format_Simplified.pdf
https://shop.micross.com/pdf/Micross_Technical_Paper-STIL_Language_Test_Vector_Format_Simplified.pdf
https://shop.micross.com/pdf/Micross_Technical_Paper-STIL_Language_Test_Vector_Format_Simplified.pdf

BIBLIOGRAPHY

[23] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos. «A software-
based self-test methodology for in-system testing of processor cache tag
arrays». In: 2010 IEEE 16th International On-Line Testing Symposium. 2010,
pp. 159–164. doi: 10.1109/IOLTS.2010.5560214 (cit. on p. 82).

88

https://doi.org/10.1109/IOLTS.2010.5560214

	List of Tables
	List of Figures
	Acronyms
	Introduction and Goal
	Testing and Fault Tolerance
	The Concept of Dependability
	Attributes
	Threats
	Means

	Failures and Faults
	Failures Classification
	Faults Classification
	Faults Propagation, Lifecycle and Latency

	Testing
	Test Types

	Test economics
	Effects on Design Flow
	Technology Evolution

	Design For Testability
	Scan Test
	Built-in Self-Test

	Faults models
	Stuck-At
	Short (or Bridge) Open circuit
	Transistor Stuck-On/Off
	Delay Fault

	Test Process
	Fault Management
	Fault Simulation
	ATPG

	Software Based Self Test

	Neural Networks and Multi-Computer architectures
	Multi-Computer Systems
	Taxonomy of multi-computers
	Multi-Core processor
	General Purpose Graphical Processor Unit
	Computer Cluster

	What is a Neural Networks
	Neurons and activation functions
	Architecture of the neural network
	Learning process of a neural network
	Matrix Representation
	Parallel Computing
	Impact on Instruction Set Architecture

	Risc-V
	Instruction Set Architecture ISA
	Register File

	Instruction Format
	Common RISC-V Extensions

	PULP RI5CY
	Instruction Fetch Stage
	Decode Stage
	Execute Stage
	Load and Store Unit

	Case of Study - VEP Design
	About Dolphin Design
	Overview
	Control Cluster
	Fabric Controller
	System Interconnect
	L2 Memory
	uDMA with Interface Peripherals
	Clock Management
	Event Management Unit

	DSP Cluster
	RISC-V NN ISA
	L1 Data Memory
	Shared FPU
	Instruction Cache
	DMA and Bus

	Testing Aspects

	Testing Software
	Test Suite Development
	Analysis and Simulation
	Pattern Implementation

	Low-Level API
	Test Flags
	Test Programs Failures Detection
	Test programs interface
	Signature comparison

	High Level API
	Test Sets Creations
	Multi-Core Addressing
	Test Program Launching
	Test Result Evaluation

	The study-case software
	Test Suite
	LLD and HLD Libraries Implementation
	Software Functioning

	Results and Analysis
	Results on VEP design
	Fault Coverage
	Simulation Time
	Fault Simulation Time
	Absolute Time

	Conclusive analysis and considerations

	Bibliography

