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Abstract

Autonomous mobile robots are able to navigate in an environment by

using merely the computing capabilities they have on-board. Among the

aspects of autonomous navigation, localization plays a very important

and challenging role. Without knowing its position the robot would

not be able to perform tasks such as path planning and motion control.

Map-based probabilistic approaches are a widely used solution to the

problem of mobile robots localization. However, they are not efficient

when the robot is deployed outdoors due to the lack of environmental

features. The aim of this document is to experiment an approach where

the localization provided by a map-based SLAM algorithm is fused with

the position computed by a GNSS system by means of an Extended

Kalman Filter to obtain a more robust and accurate estimate. This

work is part of a broader project developed by InnoTech company in

collaboration with California State University, Los Angeles.
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Chapter 1

Autonomous Mobile Robots

Robotics is one of the fastest-growing research fields of engineering. It has built its

success in the industrial manufacturing world with robotic arms, or manipulators,

programmed to perform a variety of repetitive tasks with great accuracy and speed.

Nowadays, thanks to the improvements in technology, robotics has expanded

outside the field of industrial robots and embraced the service robotics sector. The

shortcoming of industrial robots is the lack of mobility, due to the fact that they

have a fixed base. With the introduction of mobility, the landscape of robotics

and its applications has changed. Mobile robots have a mobile base that enables

them to move freely in the environment they are put in. Their motion is limited

by the presence of obstacles and by their ability to overcome them, which in turn

depends on their mechanical structure and their "intelligence". Their ability to

move makes them suitable for a variety of new applications where they can help or

substitute humans in carrying out tasks. Autonomous mobile robots (AMRs) are

a branch of mobile robots that are capable of autonomously moving within their

environment without human intervention. Autonomous navigation is currently

one of the most studied topics in robotics since robots capable of moving without

the need for supervision can produce a large number of new applications in many
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fields. The numbers confirm this trend: according to BusinessWire[1], "The global

autonomous mobile robots market generated $29.3 billion revenue in 2019, which

is expected to reach $220.6 billion in 2030".

The evolution of sensor technologies and artificial intelligence allowed robots

to be employed for more complex tasks. The robot’s ability to better perceive

the surroundings is enhancing the human-robot interaction and the application of

robots in less structured and safe environments. For example, robotic systems are

more and more often being used in robot-assisted surgeries to perform very precise

operations with minimal invasion. Autonomous robots are one of the contributors

of the Industry 4.0[2]. The main factor driving the use of AMRs in the industry

is the increasing demand for solutions to improve the performance of production

systems in terms of costs, productivity, and flexibility. These robots have numerous

sophisticated sensors that enable them to comprehend the surrounding environment,

allowing them to perform tasks in the most efficient way and navigate around

fixed and moving obstacles successfully without human intervention. They provide

flexibility in the organization of the work since they are able to adapt to the

dynamics of the work environment and do not have to follow predefined paths

to perform their tasks. This is the reason why in industrial settings AMRs are

replacing the automated guided vehicles (AGVs), whose motion is restricted to

predefined routes.

Service robotics is also benefiting from the application of AMRs. Service robots

relieve humans of performing tasks that may be dangerous, time-consuming, dull,

or repetitive to let them focus on more cognitive functions. A general definition

given by the ISO 8373 states that a service robot "performs useful tasks for humans

or equipment excluding industrial automation applications". So the service robots

category includes a wide spectrum of applications, ranging from vacuum cleaning

and lawn-mowing robots to robots performing outer space and deep-sea exploration.
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1.1 The interdisciplinarity of autonomous robots

The architecture of an autonomous robot is the result of the integration of different

bodies of knowledge[3]. The foundations of autonomous mobile robotics comprise

the fields of locomotion, perception, localization and navigation. The capability

to move requires robots to have a suitable mechanical structure, whose design

requirements depend on the environment they navigate and the applications they are

utilized for. For example, a ground robot may be wheeled, if the motion is enabled

through wheels, or legged, if it has legs. Wheels are suitable for environments

where the ground is hard and homogeneous, while legged robots are better for

navigating over non-smooth terrain and small obstacles. To design a locomotion

system an evaluation of the motion capabilities of the robot is required, and its

kinematic and dynamic behaviors have to be modeled. Perception is the ability of

the robotic system to acquire information about its surroundings. The environment

is perceived through sensors. Different types of sensors are employed for different

working environments as well as for specific applications. Perception is not just

sensing the environment, but also interpreting the sensor’s measurements. Sensor

data is processed and manipulated to extract relevant features that are fundamental

for the robot’s correct functioning. This is where artificial intelligence plays its

role: signals analysis, computer vision and machine learning techniques are applied

to analyze sensor measurements and retrieve information from them that are

meaningful to the robot’s task. Perception is a vital aspect of autonomous mobile

robots. Without sensors, tasks such as localization and navigation would not be

possible. Sensors are identified in two main categories:

• proprioceptive sensors, which measure variables internal to the robot system,
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such as wheel speed and position, its orientation, joint angles, etc. Examples

of proprioceptive sensors are encoders, gyroscopes, compasses, etc.

• exteroceptive sensors, which measure physical quantities relative to the envi-

ronment that the robot interacts with, like the distance from an obstacle, the

light intensity, and so on. Examples are radars, sonars, cameras, etc.

Autonomous navigation is currently one of the most studied topics of robotics. In

order to autonomously move from one destination to another, the robot needs to

know essentially two things: where it is at the present moment and how it can

reach the goal position. To achieve this it relies on four pillars (depicted in figure

1.1): perception, localization, cognition and motion control. The aspect that is

connected the most to the concept of navigation is cognition. The cognitive part of

a mobile robot is the "brain" of the robot, which is the system in charge of taking

decisions regarding the robot’s motion to reach its destination. Decision-making

involves identifying a trajectory for the robot to follow and computing the control

inputs for the actuators. The problem of determining the optimal collision-free

path from the robot starting position to the goal position is known as path planning.

The challenge of navigation lies in the execution of a motion plan that is successful

in spite of unexpected events that hinder the robot in its intent to reach the

destination. Autonomous robots navigate in environments that are non-static and

that change with time. Based on the knowledge of the surroundings provided by

sensors, the cognition system must be able to react to environment changes and

locally deviate from the robot’s plan to still reach the goal. A motion control

system coordinates the input data for the actuators to keep the robot’s motion

as close as possible to the one planned. Today, much focus is put into research

and development of improved sensors and more intelligent control systems to make

robots more autonomous. Sophisticated sensors can perceive details of reality that
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allow handling more complex scenarios, provided that the intelligence of the robot

is flexible enough to cope and adapt.

The main components constituting the architecture of autonomous mobile robots

have been introduced except for localization, which will be discussed in more detail

in the next section. In the following discussion we are going to consider ground

Figure 1.1: Building blocks of autonomous robots

wheeled mobile robots, since they are subject of this thesis.

1.2 Localization

An entire section is dedicated to localization since it is a topic of major importance

in the development of this work. Localization is the problem of estimating the

robot position and orientation inside an environment. The term estimation is
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purposely used to indicate that the pose (position and orientation) of the robot

cannot be measured directly, but has to be inferred from the sensors readings. To

pursuit the trajectory computed by the path planner it is necessary to know in

real time the configuration (position and orientation) of the robot with respect to

a world-fixed frame. Due to its challenging nature, localization has been subject

to a lot of research in the past decade, which lead to the development of several

methodologies.

Pose estimation techniques can be categorized in several ways, but the most

conventional one is probably to divide them between relative localization methods

and global localization methods[4]. The relative localization approach, also known

as dead reckoning or deduced reckoning, consists in the estimation of the current

pose in relation to a known initial pose. At each time step the current pose is

computed by adding to the previous pose the measured displacement from that

pose. So, starting from an initial point, the pose at a certain time instant is the

result of the integration (or summation in case of discrete time) over time of the

motion increments that the robot performed up to that moment. The weakness

of this localization approach is durability, because, due to the accumulation of

measurement errors, the estimate becomes more and more unreliable over time.

One of the relative navigation methods is Odometry. Odometry uses wheel encoders

to measure the rotations of the wheels, from which the velocity of the robot is

inferred. Wheels and robot velocities are in fact linked by the kinematic model

of the robot. Once the velocity is computed, the movement of the robot between

two consecutive locations is obtained through the relation d = vt, where t is the

time length between successive measurements. If we consider a two dimensional

case, the robot’s pose is determined by three variables: its position coordinates

(x,y) and its heading θ (see figure 1.2). Given the configuration of the robot at

time t− 1, the new configuration (x, y, θ) at the next time instant t is computed
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Figure 1.2: Configuration of a differential drive robot in two dimensions described by
the coordinates (xR, yR, θR).

according to odometry as:

xt = xt−1 + vtcosθt−1

yt = yt−1 + vtsinθt−1

θt = θt−1 + ωt

Another relative localization method is the Inertial Navigation. Inertial navigation

systems directly measure linear acceleration and angular velocity of the robot using

accelerometers and gyroscopes. By double integration of linear acceleration and

single integration of angular velocity, an estimate of the pose can be obtained.

As anticipated before, these methods suffer from errors accumulation which causes

the estimated pose of the robot to drift over time from its true value. Individual

estimates of the robot configuration are inaccurate because measurements are

subject to systematic and non-systematic errors. These errors come from sources

(ie. sensors, environment, etc) which have not been modeled entirely, may be

because of the impossibility to create a model due to the unpredictable nature of

the error, or because of the lack of knowledge about the source. Anyhow, this results

in inaccuracies between the intended motion of the robot, the true one and the
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one inferred from measurements. Systematic errors are usually due to incomplete

kinematic models and sensor measurement unknown biases, while non-deterministic

errors include wheels skidding, ground irregularities, sensor noise, etc. Because the

current pose is obtained by integration of the measured displacements, and hence

of their measurement errors, the pose estimate error accumulates and grows over

time. Therefore, relative localization methods are applicable only for short-term

pose estimation from an initial pose, before becoming too unrealiable.

In order to maintain a meaningful pose estimate in the long run, relative esti-

mation methods are used in combination with absolute localization ones. Absolute

localization methods determine their pose by observing their relative orientation

and position with respect to external references known as landmarks. These "mark-

ers" may be natural if they are part of the environment, or artificial if they are

placed on purpose for localization. Moreover, artificial landmarks may be active

or passive. Active landmarks emit signals to be easily detected by the robot (e.g.

infrared transmitters), while passive landmarks rely on the ability of the robot

sensors to detect and recognise them (e.g. QR-codes). Of course natural markers

are more sustainable since they do not require additional work, while artificial ones

offer more robustness and fast localization but at the price of maintenance and

operational costs. Examples of natural landmarks in the context of mobile robotics

are lines on the ground, doors, ceiling lights, and so on.

In order to estimate the pose of the robot, the position of the landmarks has to

be known a priori. By measuring angles and distances from multiple landmarks,

the robot can determine its pose. The techniques that are used for this kind of

localization are triangulation or trilateration[5]. Both of these methods find an esti-

mate by solving a system of equations where the unknowns are the robot’s position

and orientation coordinates, while they differ in the formulation of the equations.

To explain the two methods we consider a two-dimensional scenario, where the

8



Autonomous Mobile Robots

robot pose is given by the set of coordinates (x, y, θ). The idea of triangulation

is to measure the angles to at least three markers and use trigonometric laws to

connect the position of the robot to the position of the landmarks. Figure 1.3

shows the case when the angles to exactly three landmarks are measured. The

pose estimate can be found by solving the following system of three equations with

three unknowns:

tan(α1 + θ) = ym1 − y

xm1 − x

tan(α2 + θ) = ym2 − y

xm2 − x

tan(α3 + θ) = ym3 − y

xm3 − x

where the angles αj (j = 1,2,3) are the measured angles to landmarks in position

(xmj, ymj). Since these trigonometric equations are nonlinear, the algebraic system

Figure 1.3: Robot localization using triangulation of three landmarks

can be solved either by linearization or by numerical techniques such as the

Newton-Raphson technique. In practice three equations are never enough because

measurements are noisy, and noise introduces further unknowns. In this case more

landmarks are used to obtain an overdetermined system, which can be solved by

iterative techniques like the least-squares method.
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Triangulation is used in scenarios where it is not possible to measure distances

accurately. If that is not the case, trilateration can be applied. Trilateration has

the same working principle of triangulation, but uses distances instead of angles

to relate the position of a marker to the position of the robot. Moreover, with

this method it is only possible to compute the position of the robot. Measuring

the distance di to three different landmarks, we can write the following system of

equations:

d2
1 = (xm1 − x)2 + (ym1 − y)2

d2
2 = (xm2 − x)2 + (ym2 − y)2

d2
3 = (xm3 − x)2 + (ym3 − y)2

This is again a determined non-linear system, graphically shown in figure 1.4. For

Figure 1.4: Robot localization using trilateration of three landmarks

the same reasons we discussed for trilateration approach, in reality this is never
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the case and we will always need to solve an overdetermined system. A well known

trilateration localization system is the Global Navigation Satellite System (GNSS),

where the landmarks are artificial active landmarks such as satellites. GNSS is

discussed in detail in chapter 2.

The last and most used absolute localization method is Map Matching, or Map-

based localization, where the robot determines its pose in relation to a environmental

map. The robot needs to have a global map stored in memory that contains the

parts of the environment that it has already visited. By matching its map with the

measurements coming from its exteroceptive sensors, the robot is able to figure out

its pose. The map can be provided by an user or built by the robot. In the latter

case, the generation of the map can be done either through an offline learning

phase, where the robot is guided manually through the environment, or online

while the robot is autonomously navigating. Autonomous map building is known

as the Simultaneous Localization and Mapping (SLAM) problem, where the robot

builds a map while simultaneously localizing inside it. This is a very challenging

task and has been an intensively studied topic in mobile robotics as it allows the

robot to navigate through an unknown environment while mapping it.

An environment is basically a collection of natural landmarks, or simply objects.

A map is a representation of the environment based on some of its features that

describe the present objects. By scanning the environment through its sensors,

the robot is able to gather a collection of points (or vectors) representing the

position of environmental features. Examples of features are lines (figure 1.5),

segments, corners, or more specific patterns that can be extracted by processing

sensor measurements such as distances and angles. The map is formed by the set

of vectors representing the coordinates of the features detected in the environment

in a global coordinate system. While moving, the robot collects data from its

exteroceptive sensors and creates a local map of the environment. To find its
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(a) (b)

Figure 1.5: Figure (a) depicts the raw measurements acquired by a laser scanner, while
figure (b) shows the extracted lines features.

location, the robot compares the local map to its global map until it finds a suitable

match. In other words, by comparing the features observed and the features of a

known map, the robot pose can be estimated.

Map-based localization is widely used in mobile robotics because, in this context,

localization implies more than knowing the robot absolute pose. Indeed, obtaining

an absolute estimate of the robot pose may not be sufficient for navigation because

the robot needs to find a path to reach its destination, and to do that it requires a

map of the environment. Therefore, the problem of localization becomes not just

the problem of determining the robot absolute pose in space, but of identifying its

pose relative to a map of the environment.

1.2.1 Uncertainty

The difficulties of localization are due to the presence of uncertainty in the robot-

environment system. The robot’s sensors and actuators play a key role in all

the localization techniques. However, they are also the cause of the challenges
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of localization because of their inaccuracy and incompleteness[6]. The working

environment of mobile robots is also affected by uncertainties, which are usually

lower in structured environments and higher in dynamic unstructured ones envi-

ronments. Therefore, the development of the autonomous mobile robots must take

into consideration the issue of uncertainties coming from various sources.

Sensors inaccuracies are due to two phenomena: sensor noise and sensor aliasing.

Sensor noise is an apparently random error introduced in sensor measurements,

caused by environmental features that cannot be observed by the robot. For

example, for a vision system environmental variations like illumination conditions,

blooming, blurring, and so on are a source of noise; in sonar systems, reflective

environments can cause multipath interference effects. Sensor noise limits the

consistency of sensor readings in the same environmental state, and therefore

sensors may at times provide irrelevant information about the measured quantity.

The second source of imprecision of sensors is aliasing, that is the fact that sensor

readings are not unique to a single environmental state. For example, an infrared

range sensor measures the distance of an object in a certain direction, but does not

provide information about the material of the object like color, texture or hardness.

This means that there is not a one-to-one mapping between environmental states

and sensor measurements. In other words, the same sensor values can be triggered

by a multiplicity of environmental states. This implies that the robot is not able

distinguish among these states through a single sensor measurement. Even in

case of noise-free sensors, the available information from a single sensor reading is

generally not sufficient to identify the robot pose. The solution to both problems is

to take multiple readings into account and apply sensor fusion techniques in order

to minimize the effects of noise and aliasing and increase the accuracy of the robot

pose estimate.

Another source of inaccuracy comes from the non-deterministic motion of the

13



Autonomous Mobile Robots

robot. An action performed by the robot may end up with different possible results.

As already introduced in dead-reckoning localization, the act of moving increases

the uncertainty on the pose estimate. This is because the actual motion of the

robot is not exactly the planned one. The reasons lie in the non-idealities of the

actuators, in the incompleteness of the kinematic and dynamic models of the robot,

and in environmental factors that are not taken into account (e.g. slope of the

road). What relative localization methods try to do is to use the information

captured by sensors to compensate for the uncertainty introduced by noisy actions.

Of course also sensors are affected by noise, so at the end the intended motion, the

estimated motion and the actual motion are all slightly different from one another.

1.2.2 Probabilistic localization

The uncertainty associated with sensor measurements and robot motion affect

the accuracy of the pose estimate, making the localization problem more difficult.

The idea of probabilistic localization is to deal with uncertainty by modeling it

through probability[6]. Instead of identifying a single best estimate for the robot

pose, probabilistic approaches use a probability distribution over the space of all

possible poses; in other words, they assign a probability to each possible robot

pose. Therefore the goal of localization becomes not only the estimation of the

robot configuration, but also of the uncertainty associated with the estimate, that

is modeled by means of a probability density function known as Belief. The term

belief indicates precisely that the robot believes to have a certain configuration.

The most probable robot pose corresponds to the highest peak of the probability

distribution.

Probabilistic estimation methods follow an iterative process (shown in figure

1.6) that is composed of two steps:

• Prediction step, where the robot uses relative localization methods to make a
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prediction of its future configuration.

• Measurement update or Correction step, where the robot uses absolute lo-

calization methods to correct the configuration estimated in the prediction

step.

Basically the robot makes use of information from its proprioceptive sensors to

predict its future pose, and from exteroceptive sensors to update the predicted pose.

In general the prediction phase increases the uncertainty of the robot belief about its

pose, since the robot motion is to some extent non-deterministic and measurements

errors are accumulated. On the contrary, the correction phase typically reduces

the uncertainty because an absolute position measurement is provided by sensors.

Figure 1.6: Robot localization process

The localization problem is part of the bigger family of state estimation prob-

lems. The most general probabilistic approach to solve state estimation problems

is given by the Bayes filter. The Bayes filter calculates recursively the probability
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distribution of the state from sensors observations. In the context of mobile robot

localization, the state corresponds to the robot pose and probabilistic state estima-

tion is performed by Markov localization, which is the straightforward application

of the Bayes filter to the localization problem[7]. Probabilistic localization methods

are described in chapter 3.

1.2.3 Sensor fusion

Integration of information coming from various sources, known as sensor fusion or

data fusion, is a key factor for robust localization. Sensors are subject to noise and,

occasionally, failures, which make the problem of perception critical. Employing

multiple sensors provides reliability and redundancy, reducing the effects of noise

and aliasing. Moreover, the use of heterogeneous sensors helps the robot grasp a

more complete view of its surroundings[8]. Different sensors may detect different

features of the environment, resulting in a richer body of information that allows the

robot to detect and recognize objects better. Through the integration of multiple

sensors data, the quality of localization is expected to improve in terms of accuracy

and confidence about the result obtained. A robust sensor fusion technique should

be able to provide consistent data, despite the presence of uncertainties of sensors

and environment. Probabilistic localization techniques previously introduced allow

to perform sensor fusion in the correction step, where data from multiple sensors

can be used to update the prediction estimate. More about this matter is discussed

in chapter 3.
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Chapter 2

Satellite Positioning

Satellite positioning systems (like GPS) allow to easily determine the absolute

location of a receiver anywhere on the earth. The development of this technology

over the years has reached a point where the position can be determined with a high

degree of accuracy, in some cases below the centimeter. Moreover, this localization

method does not need previously acquired knowledge about the local environment,

which makes it easy to use and applicable in any working environment. The use of

a satellite navigation system may seem to be the perfect solution to the problem of

robot localization, given also the fact that satellites nowadays give coverage of the

whole earth’s surface. However, few drawbacks make the use of satellite position

systems alone not sufficient for autonomous navigation. First of all, mobile robots

require a map of the environment in order to perform path planning, and they need

to self-localize on that map. Furthermore, GPS-like technologies do not function

well indoors and in obstructed areas, where the satellite signals are blocked by

obstacles (e.g. buildings, trees, etc). For these reasons, in the framework of mobile

robotics, satellite navigation systems are usually utilized in combination with other

localization techniques. Particularly, they offer an advantage in large environments

where landmarks run low, where they can serve the purpose of giving a measure of

17



Satellite Positioning

the robot position in support of that given by map-based probabilistic algorithms,

which may experience difficulties in converging to a solution.

2.1 Global Navigation Satellite System

When we talk about localization systems that make use satellites we usually

mention the Global Positioning System (GPS). GPS, also known as NAVSTAR

GPS, was the first satellite system launched in space, and it is owned by the United

States government. However, it is not the only satellite navigation (SATNAV)

system operating in the world. Indeed, different countries nowadays have their own

SATNAV system.

The correct term to refer to any SATNAV system is Global Navigation Satellite

System (GNSS). GNSS is used to indicate the collection of all satellite positioning

systems as well as any individual NAVSAT system. Following the second definition,

we can say that GPS was the first operational GNSS system; for this reason, the

two terms are often used interchangeably in the common language. Besides GPS,

GNSS currently includes other satellite navigation systems, such as the Russian

GLONASS, the European Union’s Galileo and China’s Beidou.

2.1.1 GNSS architecture

Each GNSS system is a collection of satellites denominated constellation, which

orbit at around 20,000 km in the atmosphere and are designed to cover specific

regions of earth. Each satellite travels on a specific orbit and broadcasts signals

towards earth which allow to identify it.

GNSS satellites are aware of their orbit ephemerides and clock very accurately.

To manage the satellites’ orbits and send communications to them, a network of

control stations is present on earth. Stations receive the satellites’ signals, analyze
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them and transmit proper orbit and time corrections to the satellites. This is

necessary to adjust their orbit’s parameters and clocks to maintain the best possible

accuracy. Ground stations are equipped with cesium clocks, which are even more

accurate than satellite clocks: they have an accuracy of around ±5 parts in 1012,

that is, they lose or gain 1 second every 100,000 years.

The user equipment is in charge of capturing the signals, process them, and derive

the location information. The two components that make the job are antennas and

receivers. An antenna receives the signals transmitted from a satellite and passes

them on to the receiver. They come in different sizes and varying performance

depending on the applications they are used for. The receiver analyzes the signal

to compute its own position. Since every GNSS satellite uses a specific unique code

to modulate the signal sent, receivers must know the code of every satellite they

are interested in in order to understand their signals.

2.1.2 GNSS signals

GNSS systems use radio signals at frequencies between 1 and 2 GHz. The frequency

band used by GNSS systems is called L-band; in particular L1 refers to 1 GHz

and L2 to 2 GHz. GNSS signals are sinusoidal EM waves, called carriers, which

are subject to a complex modulation that allows them to carry information. By

definition, modulation is the variation of one or more properties of the carrier wave

(frequency, amplitude and phase) through a modulating signal, which contains the

information data to be transmitted. Since all constellations use the same frequency

spectrum, the signals must not interfere with one another in order to be recognizable

by the receiver. To do so, GNSS signals use a transmission scheme called CDMA

(Code-division Multiple Access). This technique allows several transmitters to

send informations simultaneously on the same band of frequencies without causing

interference. To distinguish between signals of different satellites, carriers are
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modulated by a pseudorandom code. This code is a binary code that repeats every

millisecond and is composed of 1,023 bits, so has a transmission rate of 1.023 Mbps.

The pseudorandom code, also known as Coarse Acquisition (C/A) code or Pseudo

random noise (PRN) code, looks random but it is actually a deterministic sequence

of bits. It is unique of each satellite, and allows receivers to distinguish between

signals sent by different satellites.

A receiver must know the PRN of a satellite in order to understand the data

it transmits. Receivers synchronize with the signal to be able to recover the

information it contains through correlation of pseudorandom codes. Codes are

created in such a way that they have very little cross correlation, and high auto-

correlation. Thus, different codes will have low correlation, while same codes have

very high correlation. This helps the receiver identify the satellite from which the

signal was originated. The receiver creates locally a replica of the codes of the

satellites it wants to track, and by comparing it with a received signal it finds the

sender satellite. Obviously the receiver has to know in advance the codes of the

tracked satellites in order to reproduce them.

Being carried on the carrier wave we have also the navigation data. This is

the binary code that contains satellite information necessary to determine the

position of the receiver. In particular, the time, orbit and status information of the

transmitting satellite are encoded in a binary message which further modulates the

carrier wave. A navigation message is composed of 1500 bit that are transmitted

at a rate of 50 bps, so every bit takes a period of 20 milliseconds. This means that,

for every navigation bit, 20 pseudorandom codes are transmitted.

Modulation of the carrier wave is produced using the Binary Phase-Shift Keying

(BPSK) modulation, which associates to the binary values 1 and 0 two different

phases of the carrier waves, separated by 180°. Since the pseudorandom noise is

a binary code, the carrier wave is flipped by 180° every time there is a transition
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between a 1 and a 0.

Figures 2.1 and 2.2 show the two modulations applied on the carried wave, one

by the C/A code and one by the navigation data.

Figure 2.1: Structure of a GNSS signal

Figure 2.2: Block diagram of GNSS signal generation
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2.1.3 Position computation

GNSS positioning is based on a technique called Trilateration. The position of the

receiver is determined using the distance from known points in space. A minimum

number of four satellites’ signals is required by the receiver to determine its position

(also know as fix). A higher number of tracked satellites will improve the fix

solution. To explain the concept of trilateration we make a simple example in the

2-dimensional space. If we can measure the distance of the receiver from a satellite

1, of which we know the position in the reference coordinate frame, we can conclude

that the receiver is somewhere on the circle with center in satellite A and radius

equal to the measured distance. If we take a second measurement from a satellite

2, we now know that the receiver is somewhere on the circle centered in 2. But

since the receiver has to be in points common to both circles, then it is in either of

the two points where the circles intersect. Getting a third measurement from a

satellite 3 we get a third circle. Supposing we are in an ideal error free situation,

the three circle intersect in a single point (see figure 2.3). We have in this way

identified the position of the receiver. Actually, even with only two measurements

we could identify the correct position of the receiver, since one of the two points

of intersection the circles can usually be discarded because we know it is not a

feasible solution.

If we consider the real 3-dimensional case, we would need at least three satellites

in an ideal error free setting. This is because, with three dimensions, a distance

from a satellite generates a sphere of possible locations of the receiver. Two spheres

intersect in a circle, and three spheres in two points, one of which can be discarded

by making an heuristic reasoning. So, if we know the distance (which is referred

to as range) from three satellites and we know their position, we can determine

the position of the receiver anywhere on earth. However, we are not in an ideal

world, and the taken measurements contain errors. For this reason, the number of
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Figure 2.3: 2-dimensional trilateration

satellites a receiver needs to track is at least four, as shown in figure 2.4.

To understand why, we first need to understand how we measure the distance

from a satellite, and how we know the position of the satellites. The computation of

the range from a satellite is done by the receiver using a simple dynamic principle:

space = velocity × time. The idea behind it is to compute the propagation time

of the signal, that is the time that the signal takes to travel from the satellite to

the receiver, and multiply it by the speed of light to obtain the distance travelled.

Recall in fact that, since the signal is an EM wave, it moves at the speed of light.

The propagation time is computed by taking the difference between the time the

signal reached the receiver and the time it left from the satellite. The departure

time is encoded inside the signal, and it is very accurate thanks to the high precision

clocks onboard the satellite. Once the receiver captures a signal, it registers the

time of arrival and computes the propagation time. The position of the satellite at

the time of transmission is also carried in the signal.
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Figure 2.4: GNSS positioning trilateration

The arrival time is computed through correlation of PRN signals (see figure 2.5).

For every signal the receiver captures, a correlation process takes place. The

receiver knows the PRN code of a collection of satellites, and for each of them

generates a replica. These codes are then shifted in time until one of them reaches

the maximum correlation with the processed signal. Since the PRN signal is unique

of a satellite, we have identified the transmitter. Now that we know the source, we

can reconstruct the navigation message encoded in the signal. Moreover, the time

shift of the PRN code replica that the receiver applied for the correlation procedure

is used to calculate the arrival time of the signal. So the PRN code purpose is not

only to identify the satellite from which the signal was generated, but also to allow

the receiver to compute the travel time.
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Figure 2.5: Correlation process of PRN codes

2.1.4 Pseudorange

As previously stated, the GNSS signal is subject to different sources of errors:

atmospheric delays, clocks imprecision, multipath. For this reason the computed

range from a satellite is not the true range, and is referred to as pseudorange. The

fix computed through the trilateration procedure contains an error proportional

to all the errors affecting the pseudorange. From a visual point of view, the three

spheres computed do not intersect in the true position. This is easily visible

in 2-dimensions: the position where two circles intersect is wrong by a quantity

proportional to the pseudoranges errors with respect to the true ranges. If we now

draw a third circle, we expect it to intersect the computed position, but it won’t

because both the position and the third pseudorange contain an error. Instead, the

three circumferences determine an area of points where the true location lies, as

shown in figure 2.6.
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Figure 2.6: 2-dimensional pseudorange trilateration

A simple solution is to take into consideration only the error common to all pseu-

doranges, which is the time error coming from the non-synchronized satellite and

receiver clocks, and neglect all other sources of error. Time has a key role in

SATNAV systems. A universal timing reference is provided by the Universal Coor-

dinated Time (UTC). Moreover, every SATNAV system has an internal time scale

denoted as system time. The clocks onboard satellites of a particular constellation

are synchronized with the system time of the SATNAV system they belong to.

Even though satellites’ clocks are very precise, they still may contain an error from

the system time. For this reason, control stations continuously monitor satellites’

clocks to correct them and keep them synchronized to the system time. On the

other hand, the receiver clock is not synchronized with the system time.

System time is the reference time used by receivers tracking satellites of a certain

SATNAV system to compute range measurements. Both receiver’s time and satel-

lite’s time have a bias error from system time. For the following development,
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however, we consider the satellite clocks’ offsets compensated for by the correction

sent by the SATNAV systems monitoring stations, so the only clock error we

consider is the receiver’s clock offset. Since this offset is the same for all the pseu-

dorange measurements, we can introduce this error as unknown variable along with

the three Cartesian coordinates of position. To solve the system of four unknowns

we need four equations, therefore a fourth pseudorange measurement from another

satellite. In such way, we obtain the following system of four unknowns and four

equations:

d1 =
ñ

(x1 − xp)2 + (y1 − yp)2 + (z1 − zp)2 + c · tp

d2 =
ñ

(x2 − xp)2 + (y2 − yp)2 + (z2 − zp)2 + c · tp

d3 =
ñ

(x3 − xp)2 + (y3 − yp)2 + (z3 − zp)2 + c · tp

d4 =
ñ

(x4 − xp)2 + (y4 − yp)2 + (z4 − zp)2 + c · tp

The equations of the system are non-linear, since they are quadratic functions of

the unknown coordinates xp, yp, zp. One way to solve the system is to linearize

it around a point that we know to be close to the real solution. We denote the

approximate position as (x̂p, ŷp, ẑp) and we expand the four equations around this

position with the first order Taylor expansion. What we obtain is a linear system

in function of the coordinates position offset ∆xp, ∆yp and ∆zp:

∆d1 = ax1∆xp + ay1∆yp + az1∆zp + c · tp

∆d2 = ax2∆xp + ay2∆yp + az2∆zp + c · tp

∆d3 = ax3∆xp + ay3∆yp + az3∆zp + c · tp

∆d4 = ax4∆xp + ay4∆yp + az4∆zp + c · tp
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Once we compute the unknowns, the real position’s coordinates are computed as:

xp = x̂p + ∆xp

yp = ŷp + ∆yp

zp = ẑp + ∆zp

This solution is of course applicable in case we measure exactly four pseudoranges.

If we are tracking more than four satellites, the solution can be found with the

Least Squares (LS) method. LS finds the optimal solution by minimizing the sum

of the squares of the residuals.

2.2 Errors

The propagation time is affected by environmental factors as well as system factors.

Among the system errors are the satellite errors, which include clock and orbit.

Even if these errors are very small, their effect on the position computation can

be substantial: recall that EM waves travel at the speed of light, therefore an

error of 1 nanosecond in the satellite clock corresponds to a 30 centimeters error

in the pseudorange. The same reasoning can be done for orbit drifts. For this

reason, control stations continuously monitor and correct the satellites clocks and

ephemerides in order to keep the informations send by satellites very accurate

thanks to the fact that they have more reliable information. In fact, ground stations

have more accurate clocks, and know the exact orbits of satellites.

Other errors come from the signal crossing the layers of the atmosphere (figure 2.7).

The non-homogeneous nature of the atmosphere causes the carrier waves to be

refracted and take more time to arrive to the receiver. The layers of the atmosphere

that influence the signal propagation are the Ionosphere and the Troposphere.

The Ionosphere is the furthest layer from earth. Sun ray ionize gas molecules

accumulated in this layer, creating electrically charged ions and free electrons
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that delay the propagation time of the EM waves. The delay depends on the

carrier frequency, so L1 and L2 GNSS signal will experience different errors. In the

troposphere, instead, L-band signals are equally delayed. Their propagation time

depends on the refraction index, which in turn varies according to pressure and

temperature.

Figure 2.7: Refraction of a GNSS signal that causes a delay in propagation time

Another source of error is the multipath effect, shown in figure 2.8. This

phenomenon is caused by reflection of GNSS signals off objects, such as buildings,

resulting in a delayed arrival of the signal at the receiver. Multipath effects may be

more or less mitigated depending on if the direct path signal is also received or not.

Anyway, unless it is very large and thus is can be easily detected and neglected,

the multipath delay introduces errors in the pseudorange measurements. Its effect

on range errors also depends on the power of the reflected signal: the higher is its

power, the larger is the error produced. Shadowing of the direct path can weaken

the direct signal so severely that the multipath signal has a bigger influence on the

pseudorange computation. It is important that the receiver has a clear view of the
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Figure 2.8: Shadowing of direct path signal and multipath occurrence

satellites and is far from possible sources of reflection. Table 2.1 shows a summary

of the GNSS systems errors.

Source Error Range
Satellite clocks ±2 m
Orbit errors ±2.5 m
Ionospheric delays ±5 m
Tropospheric delays ±0.5 m
Receiver noise ±0.3 m
Multipath ±1 m

Table 2.1: GNSS systems errors

2.2.1 Dilution of Precision

The satellites’ geometry changes the way measurement errors propagate to the

error in the position computation. This is known as the concept of Dilution of

Precision (DOP). As we said before, the errors in the range measurements cause

the pseudorange to not intersect in a point, but to determine an area of possible

locations of the receiver. This area grows with the range inaccuracies, but also

with the position of the tracked satellites. To visualize this, we again suppose a

2-dimensional setting. In figure 2.9a we see that two true ranges intersect in a point

which is the correct location of the receiver. However, we do not actually know the
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true ranges but only the pseudoranges, which are affected by an error. Supposing

we can estimate an error bound, we can determine an area where the receiver

might be. In figure 2.9b we can see another representation of the positioning

computation where the two satellites that are being tracked have a different relative

geometry with respect to the previous case. Their position in space creates a

different intersection of pseudoranges, that ultimately highlights a bigger area of

receiver position. Despite the fact that the pseudorange errors are the same, the

two situations depict different error bounds in the GNSS solution. The factor that

expresses the relationship between range errors and GNSS fix error is the DOP,

and its value depends on the satellites’ spacial geometry. The bigger the DOP, the

higher the error in the computed position.

(a) low DOP (b) high DOP

Figure 2.9: Satellite geometry and dilution of precision

Estimating errors and reducing their effect on the computed position is fun-

damental to obtain a higher level of accuracy. One way to resolve errors is to

model the phenomena that cause the error and predict a correction value. Another

method is to use redundancy: take many measurements, use signals of different

frequencies and exploit multiple constellations. Using multi-frequency GNSS signals
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is a way for removing ionospheric errors, since they depend on the frequency of

the signal. By comparing the delays of an L1 signal and an L2 signal, the receiver

can mitigate the error. Multi-constellations GNSS receivers are able to reduce

multipath and shadowing problems, and also obtain a better DOP. Usually this

solutions result in obtaining an accuracy of few meters. Some applications, however,

need higher levels of accuracy. For this purpose techniques that use augmentation

are employed. Augmentation means to integrate other sources of information in

the position calculation process. Until know we have discussed positioning of

a standalone GNSS receiver, meaning that the receiver determines its position

without the help of any other device. GNSS augmentation consists in using other

systems that provide additional information that can be used to achieve a better

position accuracy. Depending on how and what information they share with the

receiver, there are different augmentation systems.

2.3 Differential GNSS

Differential GNSS (DGNSS) exploits auxiliary information to reduce the positioning

errors introduced in the pseudorange computation. To do that, it uses so called

base stations. A base station is simply a receiver whose position is fixed and known:

through surveying techniques, its position can determined very accurately. As

any receiver, it can calculate the pseudorange from satellites. Since its position is

known, the base station can determine the exact distance from a tracking satellite.

Once it computes the pseudorange, it can use it to derive the error introduced

by the propagation of the signal by taking the difference with the true range. If

the receiver and base station are close enough, we can consider the propagation

error introduced in the pseudorange similar since satellite signals go though similar

athmospheric conditions. Multipath errors and receiver noise are an exception,

as they cannot be predicted to be similar. As a consequence, any receiver in
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an area close eough to the base station can use that error information to adjust

its computed pseudoranges. The concept of Differential GNSS is the following:

base stations send pseudorange corrections for the visible satellites to the receiver

requesting them (see figure 2.10). In this context, the receiver is called rover and

the estimated errors are called corrections. This method allows the receiver to

Figure 2.10: Differential GNSS correction mechanism

reach decimeter accuracy. Differencial GNSS requires base stations and rovers to

communicate through a data link. The correlation between errors of two receivers

is obviously higher for shorter distances: for this reason position accuracy improves

with the vicinity of station and rover.

2.4 Real-time Kinematics

Another augmentation system is the Real-time Kinematic (RTK). The working

principles of RTK are similar to Differential GNSS, as both make use of corrections

sent by base stations to compute the GNSS fix. The advantage of RTK is that it

uses a different technique for pseudorange computation that, in the end, provides
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an accuracy of millimeter. RTK uses a technique called carrier-phase ranging.

Until know we have talked about pseudorange calculation through correlation of

PRN codes of a received GNSS signal and the receiver generated replica. This

method is know as code-phase positioning. The difference between the two methods

lies in the correlation procedure. The code-phase technique synchronizes the GNSS

signal PRN code and its replica to compute the propagation time. Carrier-phase

instead does correlation of carrier waves, which travel at a much faster rate, and

so a good synchornization results in a very high accuracy. However, solving the

carrier-phase the ambiguity problem is not trivial and requires more time.

As the name suggests, the code-phase technique evaluates the phase of the

C/A code of the satellite signal by shifting the replica code in time until the

two codes reach maximum correlation. The carrier-phase, instead, measures the

phase of the carrier wave of the signal, which is the phase difference between the

receiver-generated carrier signal and the one received from a satellite. Carrier-phase

measurements are much more precise simply because the wavelength of the carrier

is approximately 19 centimeters, which is much smaller than the 293 meters of

pseudorandom code’s wavelength (see figure 2.11). The bits of the C/A code are too

wide to be perfectly synchronized, and the error we have in the phase measurement

is of the meter level. Since the pulses of the carrier wave are much closer, the

error we get from the synchronization of the signal and its replica is precise to the

millimeter. The downside of the carrier-phase measurement method is that, unlike

the code-phase, the measurement of the signal travel time is ambiguous, because

the total number of cycles of the carrier between the satellite and the receiver is

unknown, and resolving this ambiguity takes time.
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Figure 2.11: C/A code signal and carrier wave signal

2.5 Coordinate Systems

Before moving onto the next subject of this thesis, a brief introduction on coordinates

systems is done to clarify how the different localization information can be merged

into the same frame. In mobile robotics, the objects inside the robot environment

are mapped into a two-dimensional frame denoted as world frame. This frame is the

reference for localization data, where the map and the robot pose are expressed in.

A GNSS system provides coordinates in Geodetic form, that is latitude, longitude

and altitude, which is nothing else than spherical coordinates. In order to be useful

for the localization process, these coordinates have to be converted into the world

frame; this requires passing through different coordinate systems:

• the Geodetic coordinate system (or datum), which locates points on earth

using Spherical coordinates, namely latitude, longitude and altitude.

• the ECEF (earth-centered, earth fixed) system, which has origin at the center

of the earth (also named Geocentric system).

• a LTP (Local tangent plane) system, which is a family of Cartesian coordinate

systems having the x-y plane tangent to the earth surface. One example is the

ENU (east,north,up) frame, which has the y-axis is along the direction of a

meridian and the z-axiz perperndicular to earth surface.
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The world frame is an instance of an LTP system, since we can assume the robot

environment to be small enough with respect to the earth surface to be considered

as a flat two-dimensional tangent plane. Figure 2.12 shows the ECEF and ENU

coordinate systems.

Figure 2.12: ENU and ECEF coordinate systems

2.6 Conclusions

GNSS systems can be used together with other sensors to provide robust navigation

of a robot. As already discussed, GNSS performance is affected by signal obstruction,

which makes the GNSS not reliable at all times for positioning. The use of other

localization systems improves the localization process robustness against failures

of the single positing devices, allowing a mobile robot to always have at least one

functioning device. For this reason sensor fusion is applied: an accurate solution is

available in all conditions by fusing the position estimates that each technology

computed.
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Chapter 3

Probabilistic robotics

The uncertainty present in robot perception and motion actions is the foundation of

probabilistic robotics. In order to accommodate uncertainty explicitly, probabilistic

algorithms represent the pose of the robot through probability distributions over

the space of all possible poses[9]. Probability allows to represent the ambiguity that

uncertainty introduces in the localization process, giving a sense of degree of belief

about the pose of the robot. The goal of this chapter is to introduce the probabilistic

framework on which localization algorithms are based. However, before delving

into the details of probability, a general introduction to robot localization is done.

3.1 Robot localization

Mobile robot localization, also know as tracking, is the problem of determining the

pose of a robot relative to a map of the environment. Since sensors for measuring

the pose directly do not exist, the pose has to be recovered from sensor data. In

state estimation, the non-observability of the pose is the reason why it is referred to

as a hidden state. Localization algorithms make use of measurements (sometimes

called observations) of measurable quantities to find the value of the pose that fits
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them the most. Depending on the held knowledge about the robot pose, three

types of localization problems are identified:

• Position tracking

The robot current pose is computed based on the knowledge of its previous pose,

and it is therefore assumed that the initial configuration is known. Position

tracking is a local problem, meaning that the current pose of the robot will be

somewhere around the previous pose, since the uncertainty is confined near

the robot’s true pose.

• Global localization

In global localization the robot initial pose is unknown, so the robot could be

anywhere in the environment.

• Kidnapped robot problem

This problem is a version of the global localization where the robot is kidnapped

and moved to another location. This problem is more difficult than the global

localization because the robot does not know that it has been moved, and it

keeps believing to have a certain pose. One might argue that robots are rarely

kidnapped in practice, so solving this problem is not useful. However, the

ability to solve the robot kidnapping problem is a measure of robustness of a

localization algorithm.

Depending on the type of problem, different localization algorithms are applied.

The basic working principles behind probabilistic localization methods are the

same, and they all derive from the Bayesian filtering method, while they differ in

the way pose distributions are modeled.
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3.2 Concepts of probability

In probabilistic terms, quantities that are affected by uncertainty such as sensor

readings, control actions, and robot and environment states can be modeled through

random variables. A random variable is a variable that can assume multiple values

as a result of an experiment (e.g. a measurement) according to a certain probability

distribution. In this context, the robot pose can be defined as a random variable

whose domain is the space of all possible poses. Since this space is continuous, the

state (pose) is characterized by a probability density function (PDF) that defines

with what likelihood the pose assumes any of the values in the space. In the context

of mobile robotics, the robot control system will have to compute the estimate

of the position in real time. This means that algorithms have to converge to a

solution in a limited time frame. For this reason, assumptions and simplifications

are often made to improve the speed of convergence at the cost of an approximate

solution. Moreover, since computational systems are digital, they cannot take into

account an infinite range of values, whatever is the context. These practical limits

force the localization process to consider the robot state space as discrete and not

continuous, so it is supposed that only a finite number of possible poses in the map

can be assumed by the robot. The pose is thereby described by a discrete random

variable.

The reason why the mobile robot localization problem is also known as the

tracking problem is that the robot moves while performing its tasks, therefore the

aim of the estimation process it to track the robot configuration over time. Given

the stochastic nature of the robot pose at any moment in time, the evolution of

the state is best described in probability by a stochastic process. Even though

in reality the pose changes continuously, localization algorithms are only able to

give estimates at specific time instants. As in any computational system, time is

discretized and we indicate a generic time step as t. The goal of a localization
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algorithm is to compute the pose at any discrete time instant t from the sensor

measurements. As already discussed, sensors provide two types of information:

proprioceptive, that regards the internal state of the robot, and exteroceptive, that

regards the surroundings of the robot. The robot pose can be estimated from either

of the two types of information, and probabilistic algorithm actually consider both.

In the following discussion we will denote with xt the pose of the robot at a

generic time instant t. Since it has some uncertainty, xt is described by a probability

distribution that in robotics is referred to as belief. To estimate the belief we are

going to use the concept of conditional probability, which defines the probability of

an event to happen conditioned on the fact that the outcome of another event is

already known. We could say that the future robot pose xt is conditioned on the

values of all the previous poses x0→t−1, inputs u0→t−1 and measurements z0→t−1.

In other words, the history of the robot may influence the stochastic evolution of

its pose. For simplicity reasons, we assume that the pose at the next time step xt

depends only on the current pose xt−1 and, of course, on the future input ut and

measurement zt. This assumption is known as the Markovian assumption, and a

random process that satisfies this condition is called a Markov chain.

3.2.1 Motion model

The goal of localization is to estimate the robot pose xt at a generic time step

t. Between two consecutive time steps the robot performs the motion actuated

by the input command. By knowing the input command ut, the pose xt can be

found from the previous pose xt−1 through the kinematic model of the robot, which

can be seen as a function f(xt−1, ut). Ideally, if we knew the exact pose at time

t− 1, then we would find the exact pose at time t. However, the robot motion is

not deterministic as it is affected by uncertainty (see figure 3.1), so the kinematic

model can only give an estimate of the most likely future pose xt. This uncertainty
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Figure 3.1: Growth of the pose uncertainty over time for a straight movement.

is caused by different factors, which may include environmental reasons, model

approximation and motion actions. One could argue that the input itself is not

carried out exactly due to the non-ideality of the actuators, and therefore it would

be better to measure the motion of the robot using proprioceptive sensors instead

of deriving it from the input. However, also measurements are affected by noise and

are not exact, therefore they may not give reliable information about the motion.

Thus, we will consider a generic input ut without making any distinction between

the source of this value. In practice ut could be a sensor measurement like the

reading of the robot’s wheel encoders, or a control input like the one given to the

motors (e.g. velocity). Since the motion is uncertain, the evolution of the pose

needs to be modelled through a probability distribution which defines the motion

model. This distribution gives the probability that, given a state xt−1 and an input

ut, the robot pose assumes at the next time step a certain pose xt (see figure 3.2).

The probability just described is known as state transition probability and, since it

depends on the present input and the previous state, it is a conditional probability

and is therefore indicated as p(xt|xt−1, ut).

3.2.2 Measurement model

Proprioceptive sensors measurements are used in the motion model to predict how

the pose xt−1 evolves into xt as function of the control input. While motion data

gives information about the degree of change of the pose between consecutive time

steps, measurements from exteroceptive sensors provide information about the
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Figure 3.2: Example of transition probability of moving from a state xt−1 to xt in one
dimension

pose at given time instants. Given a specific state xt, we would expect a certain

measurements zt coming from the exteroceptive sensors according to a function

g(xt). However, because measurements are noisy, a sensor may provide a variety

of different values which are not the one predicted. To take into account this

uncertainty we need to build a measurement (or observation) model that defines the

probability distribution of having a sensor reading zt from a pose xt. This model

is derived directly from the error model of the sensor, which gives a description

of the reliability of a measurement. Once a measurement is taken, we are able to

select the corresponding measurement probability p(zt|xt) and use it to update the

probability of the estimate xt, as we will see later.

3.2.3 Belief distribution

The belief of a robot is represented by a conditional probability distribution

conditioned on the available information. Supposing to be at time t − 1, the

probability to be in a state xt−1 is given by p(xt−1|ut−1, zt−1), which is conditioned

on the data ut−1 and zt−1. To simplify the notation, we will simply denote this

probability as p(xt−1). The goal is to estimate the pose belief at time instant t

using the information given by the control input ut and the measurement zt; in
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other words, we want to find the probability p(xt|ut, zt). To distinguish between

the beliefs before and after taking into account the collected data, we denote the

belief of p(xt−1) as prior and the belief of p(xt|ut, zt) as posterior. A common

notation used in robotics to denote the posterior belief probability is bel(xt), and

correspondingly for the prior is bel(xt−1). We also make a further distinction by

denoting the probability p(xt|ut) to indicate a posterior after applying the motion

input ut but before including the measurement zt. This belief probability is also

denoted as bel(xt), and for reasons that will be explained later it is often referred

to as prediction.

3.3 Bayes filter

The Bayes filter is the most general probabilistic algorithm for the computation

of the probability density function of a system state. In the context of robotics

it can be used to estimate the belief in the presence of system and measurement

uncertainties. The Bayes filter is an iterative algorithm which computes the belief

bel(xt) at time t from the belief bel(xt−1) at the previous instant t− 1 using the

most recent control action ut and the most recent measurement zt. The information

needed at each new iteration includes:

• prior probability p(xt−1) (or bel(xt−1))

• motion model probability p(xt|xt−1, ut)

• observation model probability p(zt|xt)

• the observation zt and control input ut

• an initial belief bel(x0)

The idea of the filter is first to predict the future pose xt based on the knowledge

of the previous pose xt−1 and the control input, and then to adjust the obtained

pose by combining it with the sensor measurement. The two steps just described
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make up one cycle of the Bayes filter (figure 3.3), and are denoted respectively as

prediction step and correction step.

Figure 3.3: Estimation cycle of the Bayes filter

Prediction

In the prediction step, the robot calculates the probability p(xt|ut) to end up in

a state xt after a motion command has been issued. To do that it exploits the

motion model, which gives the probability p(xt|xt−1, ut) that the control action ut

generates a transition from pose xt−1 to xt. The belief p(xt|ut) is calculated using

the law of total probability:

p(xt|ut) =
Ú

p(xt|xt−1, ut)p(xt−1) dxt−1 (3.1)

This equation has an intuitive explanation: to compute the probability that the

pose at time t assumes a value xt we have to consider all the possible ways in which

the robot can reach that pose, that is, we have to sum the probabilities to reach xt

from any possible previous pose xt−1. In mathematical terms, we have to compute

the integral (or sum in case of discrete state) over every possible prior pose of the

product between the probability p(xt−1) of being in a certain previous pose and

the probability p(xt|xt−1, ut) of transitioning from that pose to xt.
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Correction

The correction step starts from the knowledge of the posterior belief given by the

prediction step. At time t a new measurement zt is taken by the robot sensors and

it has to be incorporated in the belief estimation to update the predicted belief

p(xt|ut). The updated probability is computed according to the Bayes rule:

p(xt|zt, ut) = p(zt|xt, ut)p(xt|ut)
p(zt|ut)

(3.2)

Actually, zt does not depend on ut, therefore the formula could be re-written as:

p(xt|zt, ut) = p(zt|xt)p(xt|ut)
p(zt)

(3.3)

The idea of the correction step is to update the probability to be in a certain state

xt predicted by the motion model using the sensor measurement and the probability

of observing that measurement. The Bayes rule is a convenient tool to compute

the corrected posterior probability from the inverse probability p(zt|xt), which is

given by the measurement model. The measurement model defines the likelihood

of observing any measurement zt from a pose xt. When the actual measurement is

observed, the corresponding probability p(zt|xt) is selected and it is applied for the

correction. If the sensor measurement value is close to the one expected by the

measurement model, then the probability of being in the pose xt increases since

the validity of that estimate is somehow confirmed by the sensor reading. On the

other hand, if the measurement is far from the expected value, the probability of

being in state xt given by the prediction step decreases. The denominator p(zt)

does not depend on the state xt, therefore it is usually assumed as a normalization

factor η determined knowing that the integral of the probability distribution of xt

given the measurement zt has to sum up to one. The Bayes filter in this case can
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be re-written as:

p(xt|zt, ut) = η · p(zt|xt)p(xt|ut) (3.4)

Recalling that the prediction probability p(xt|ut) is denoted as bel(xt), and that

the posterior probability p(xt|zt, ut) is denoted as bel(xt), and also putting together

the prediction step and the correction step, we obtain a final general formula of

the Bayes filter:

bel(xt) = ηp(zt|xt)bel(xt)

= ηp(zt|xt)
Ú

p(xt|xt−1, ut)bel(xt−1) dxt−1

(3.5)

The pseudocode for the Bayes filter is shown in table 3.1.

1: Bayes Filter (bel(xt−1), zt, ut):
2: for all xt do
3: bel(xt) =

s
p(xt|xt−1, ut)bel(xt−1) dxt−1

4: bel(xt) = ηp(zt|xt)bel(xt)
5: end for
6: return bel(xt)

Table 3.1: Bayes filter algorithm pseudocode

3.3.1 Bayes filter for localization

In the context of mobile robot localization, the implementation of the Bayes filter

for pose estimation is called Markov localization. Markov localization addresses the

problems of global localization, position tracking and the kidnapped robot problem

in static environments. Recall that, since robots require a map to navigate, the

Markov localization algorithm uses also the knowledge of a map to estimate the

posterior. The pseudocode of Markov localization (see table 3.2) slightly differs from
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the Bayes code as the observation model takes into account the features of a map

m to compute the measurement probability, which thereby becomes p(zt|xt, m). A

1: Markov localization (bel(xt−1), zt, ut):
2: for all xt do
3: bel(xt) =

s
p(xt|xt−1, ut)bel(xt−1) dxt−1

4: bel(xt) = ηp(zt|xt, m)bel(xt)
5: end for
6: return bel(xt)

Table 3.2: Markov localization algorithm pseudocode

simple one-dimensional example of the Markov localization algorithm is depicted in

figure 3.4. The robot starts from an unknown pose, thus it is reasonable to assume

that the initial belief bel(x0) is described by a uniform distribution over all possible

poses in the map. Supposing that the sensors detect a door in front of the robot

(figure 3.4b), the belief can be updated according to the Bayes rule multiplying

bel(x0) by the measurement probability p(zt|xt, m). Since a door has been observed,

the belief distribution grows in density around the position of the three present

doors: this comes directly from the fact that the probability p(zt|xt, m) is higher

when xt is close to a door. Then at the next time step (figure 3.4c) the robot

moves to the right. The new belief is obtained as result of the convolution (as in

the law of total probability) of the robot’s previous belief with the motion model

probability p(xt|xt−1, ut), which, due to the uncertainty that introduces, causes the

belief distribution to flatten out. At this point the distribution function has gained

uncertainty from the previous belief. After observing the next measurement, the

correction step is executed again. Finally, as another door is detected, the product

of the prediction with the perceptual probability p(zt|xt, m) determines a new belief

(illustrated in figure 3.4d) that has a distinguishable peak near the correct pose of

the robot. As the robot keeps moving and observing the environment, its belief

should improve giving a quite confident estimate of its pose.
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Figure 3.4: Illustration of the belief computation in Markov localization algorithm

Markov localization, and implicitly also the Bayes filter, represents the robot’s

belief through an arbitrary probability density function, thus it constitutes the

most generic form of probabilistic localization algorithm. In practice, however, all

Markov localization derived systems use simplified belief representations in order

to ease the computational load. This comes at the cost of an approximate solution,

given the fact that the assumed distribution may not represent accurately the pose.

One of the most efficient and used algorithms for estimation is the Kalman filter,

which represents the belief through a Gaussian function. Another approach to
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simplify the belief representation is to discretize or decompose the state space and

approximate the pose distribution using a discrete number of values. This approach

is adopted by a family of Bayes-derived methods called non-parametric filters.

Some of them decompose the state space into regions and assign to each region a

single probability value that represents the cumulative probability to assume any

of the poses of that region; no information on the probability distribution within

a region is kept. An example is the Histogram filter, which represents the belief

with a piecewise constant PDF where a uniform probability is assigned to each

pose within a region. Others instead approximate the pose space through a finite

number of samples, therefore considering only a discrete number of poses in the

map; this is the case of the Particle filter. The quality of these non-parametric

techniques depends on the number of parameters used to approximate the belief

distribution: the higher this number, the more reliable the posterior approximation.

Grid localization is an alternative to Markov localization that uses a histogram

filter (figure 3.5) to represent the belief over a grid decomposition of the space,

shown in figure 3.6. Another popular localization algorithm in robotics is the

Figure 3.5: One-dimensional grid-based localization: the belief is represented by a
histogram over a grid.

Monte Carlo localization, that uses a particle filter to estimate the belief over the

robot possible poses (figure 3.7). In the following two sections, the Kalman filter

and the particle filter are discussed, since they are an important part of this work.
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Figure 3.6: Fixed grid representation of the 2-dimensional pose (x, y, θ). Each grid
represents a robot pose in the environment. The orientation is represented on the z-axis,
and each layer represents all the possible poses with the same orientation.

Figure 3.7: Monte Carlo localization applied to the one-dimensional case. The belief is
represented by a finite number of possible positions.

3.4 Kalman filter

The Kalman filter is an implementation of the Bayes filter for continuous state spaces

where the robot’s belief is represented by a single Gaussian probability density

function. The advantage of using this representation is that it simplifies significantly

the computations, resulting in a very efficient algorithm in comparison to Markov

localization. This simplification comes from the fact that a multivariate normal

distribution is uniquely determined by its mean vector µ and its covariance matrix

Σ, therefore at runtime the algorithm needs to update only these two parameters.
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Gaussian functions are unimodal, that is they have a single maximum. The

advantage of having a single-hypothesis belief is that there is no pose ambiguity: the

most probable pose corresponds to the mean of the distribution. Such distributions

depict the scenario of many localization problems, where we approximately know

where the true pose is but with some uncertainty. However, the assumption of

a single hypothesis belief, such as the one made by using a normal distribution,

implies that the initial belief bel(x0) must be a Gaussian, thus the robot initial

pose must be known with a certain degree of uncertainty. This makes the Kalman

filter not suitable for localization problems in which multiple pose hypotheses exist,

as the global localization problem and the kidnapped robot problem, and useful

only for tracking problems.

The Kalman filter starts from the assumption that the robot initial belief bel(x0),

the motion model and the measurement model can be represented by normal

distributions: this guarantees that the posterior belief bel(xt) computed by the

algorithm remains always a Gaussian function. Moreover, it assumes that the

overall system is linear, thus both state transitions and measurements are linear

functions of their variables. In particular:

• the motion model f(xt−1, ut) is linear, so the prediction of xt is based on a

linear function of the previous belief xt−1 and of the input ut, and it is affected

by white Gaussian noise (known as process noise), which introduces uncertainty

in the motion, represented by a random variable Ôt:

xt = At xt−1 + Bt ut + Ôt (3.6)

This equation defines the transition probability p(xt|xt−1, ut), which has a

Gaussian PDF N (Atxt−1 + Btut, Rt) with mean Atxt−1 + Btut and covariance

Rt (that is exactly the covariance of the distribution of Ôt).
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• the measurement model g(xt) is also a linear function affected by a Gaussian

measurement noise δt, which comes from the sensor error model:

zt = Ct xt + δt (3.7)

The measurement probability p(zt|xt) is determined by a normal distribution

N (Ctxt, Qt) with mean Ctxt and covariance Qt, where Qt is the covariance

matrix of δt’s probability distribution.

1: Kalman Filter (µt−1, Σt−1, zt, ut):
2: µt = At µt−1 + Bt ut
3: Σt = At Σt−1 AT

t + Rt

4: K = Σt CT
t (Ct Σt CT

t + Qt)−1

5: µt = µt + Kt (zt − Ct µt)
6: Σt = (I −Kt Ct) Σt

7: return µt, Σt

Table 3.3: Kalman filter algorithm pseudocode

Table 3.3 shows the pseudocode of the Kalman filter. It is an iterative algorithm

that computes at each time step the mean µt and its covariance Σt of the pose

belief. As any Bayes-like filter, the Kalman algorithm is a two-step process that

comprises a prediction and a correction, as shown in figure 3.8. The prediction step

computes the belief belt before incorporating the measurement zt. From equation

3.6 we can compute this belief by making the following reasoning: the value of xt−1

is represented, according to the Kalman filter assumptions, by a Gaussian function

N (µt−1, Σt−1); if we consider Ôt to be the noise of the input product Btut, we can

represent also the input as a normal distribution N (Btut, Rt). Then, according to

the motion equation, the distribution bel(xt) is obtained by a linear combination

of the two Gaussian distributions of bel(xt−1) and ut. Considering the input and
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Figure 3.8: Kalman filter cycle

the belief of xt−1 independent, the result is still a Gaussian distribution with mean

and covariance shown in lines 2-3 of the algorithm. As depicted in figure 3.9,

the uncertainty on the robot pose after the motion is larger, and this is a direct

consequence of the stochasticity of the pose transition.

Figure 3.9: Propagation of the robot’s belief in one dimension
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The correction step is done applying the Bayes rule. Once the measurement zt is

returned by the sensors, the distribution of the probability p(zt|xt) is known. As

stated by Bayes rule, bel(xt) is given by the product of the probabilities bel(xt)

and p(zt|xt), which are both represented by normal distributions. The resulting

probability density function of p(xt|zt, ut) is still a Gaussian with the mean and

covariance shown is lines 5-6 of the Kalman algorithm. The updated mean pose is

obtained by adding to the predicted mean µt a quantity proportional to the error

between the expected measurement and the actual one. This trade-off is given by

the matrix Kt, which is known as the Kalman gain. An intuitive interpretation of

the correction update can be easily observed from the application of the Kalman

filter in one-dimension, where the covariance matrix is substituted with a variance

and the multiplication matrices are substituted with scalars. By unfolding the

equation in line 5 of the algorithm, we can re-write it as:

µt =
µt

σ2
c

c2 + zt

c
(σt)2

σ2
c

c2 + (σt)2
(3.8)

From this form of the equation it is clear that the mean pose of the posterior belief

is a weighted average of two quantities: zt

c
and µt. The latter is the mean of the

predicted distribution, while the former is the mean of the pose guess retrieved from

the sensor measurement. Moreover, the weights are represented by the variances

of the two quantities just described. This cannot be seen directly from line 5 of

the algorithm because the weights are hidden inside the kalman filter. Thus, the

kalman filter performs a trade-off of importance to give between the prediction

and the pose guessed from the measurement, based on the respective variances. In

particular, the lower is the uncertainty on one of the two quantities, the more it

contributes to the posterior mean. As a result of the correction step, the posterior

mean lies in between the predicted mean and the mean of pose guessed from
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the measurement, and the overall uncertainty is smaller than the one of the two

contributing Gaussians (see figure 3.10). This is a consequence of the mathematics

Figure 3.10: Pose distribution curves in a one-dimensional Kalman filter cycle

describing operations between Gaussians.

Figure 3.11 shows an example of position tracking with a Kalman filter in a two-

dimensional scenario. The figure shows one iteration of the algorithm, starting

with the robot having a belief (represented by a circle) about its position. After the

robot moves, the prediction step makes the position estimate mean shift in space

and the uncertainty grow (the circle is wider). Afterwards, a measurement is taken

which suggests that the position has an offset from the mean of the prediction and

has a lower covariance. Performing the correction step, the new posterior belief

has a mean which is somewhere between the mean of the prediction and the mean

of the measured position, and has a covariance which is significantly reduced.

Figure 3.11: Evolution of position belief computed in one Kalman filter cycle in a
two-dimensional scenario

The limit of the Kalman filter is that it can be applied only when the assumptions
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on linear state transitions, linear measurements and Gaussian representation hold.

This is rarely the case in practice, indeed the robot is likely to move on trajectories

that are non-linear, for example on circular paths. A solution is offered by the

Extended Kalman Filter (EKF), which is a version of the standard Kalman filter for

the non-linear case. Moreover, the unimodal belief representation only works when

the robot initial pose is approximately known. In all other cases, other algorithms

like the particle filter are preferred.

3.5 Particle filter

Particle filters represent the posterior belief using a finite set of pose samples called

particles instead of a continuous distribution, as depicted in figure 3.12. This is

Figure 3.12: Distribution of particles in particle filter belief representation

very powerful because it does not limit the use of this estimation technique to

particular analytic distributions, like Kalman filters do. The probability density of

the belief is represented by the particles distribution, thus the probability that the

pose assumes some value xt is given by the probability to draw out the particle

closest to that value. In other words, the more are particles that populate a region

of the space, the more likely it is that the true pose belongs to that region.
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The particle filter, like the Bayes filter, is an iterative algorithm that builds the belief

bel(xt) from the previous belief bel(xt−1). However, since it describes distributions

using particles, what it really does is to estimate a posterior particle set Xt from

the previous set Xt−1. As shown by the pseudocode in table 3.4, in each cycle the

algorithm starts from a set Xt−1 of N particles which all have the same weight.

Even though a prediction and a correction step can be recognized, the algorithm is

better visualized through three steps:

1. For each particle x
[i]
t−1 in the set Xt−1, a prediction about its pose at the next

time instant is made based on the control input ut. Since the motion model is

stochastic, from a single particle we obtain a distribution of possible poses xt.

Thus, the transition probability distribution p(xt|xt−1, ut) has to be sampled

in order to obtain only one predicted particle.

2. Once the predicted set of particles X̄t has been computed, the particles are

weighted using the measurement likelihood model and the measurement zt.

Weighting allows to update the probability of a particle to represent the real

pose according to the sensor readings values.

3. Since the goal is to obtain a set of unweighted particles Xt from which to start

another cycle of the particle filter, a re-sampling step is performed: particles

are drawn with replacement from the weighted set X̄t with a probability

proportional to their weight, and then they are placed without weight in the

posterior set Xt.

Step 1 and step 2 are performed in lines 4-6, while step three in lines 9-10. With

this method the posterior accumulates duplicates of the same particles, since the

re-sampling process is done with replacement. The presence of duplicates indicates

that the probability density is higher around those particles. An alternative is to

consider only the first two steps of the algorithm, which implement the prediction
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1: Particle Filter (Xt−1, zt, ut):
2: X̄t = Xt = 0
3: for i = 1 to N do
4: sample x

[i]
t ∼ p(xt|x[i]

t−1, ut)
5: ω

[i]
t = p(zt|x[i]

t )
6: X̄t = X̄t +

e
x

[i]
t , ω

[i]
t

f
7: end for
8: for i = 1 to N do
9: draw x

[i]
t from X̄t with probability ∝ ω

[i]
t

10: add x
[i]
t to Xt

11: end for
12: return Xt

Table 3.4: Particle filter algorithm pseudocode

and the correction update. Let alone they would be enough, since we could choose

to represent the probability of a particle through its weight instead of through its

multiplicity. However, the power of re-sampling is to discard low-probability poses

and maintain high-probability ones. If the algorithm would not re-sample, the

particle set would contain poses with very low probability which are not useful to

the pose estimation process. Instead, it would be better if those less likely particles

were discarded (not drawn), so that the N present particles always represent the

most probable locations. With re-sampling, the less realistic particles will eventually

go away because they are inconsistent with the measurements, therefore they are

weighted less and during the re-sampling step they have less chance to be drawn.

Only the samples that are consistent with the measurements survive. After a while

that the algorithm is running, the remaining particles may be grouped in clusters

distant from each other: this is the case when there is an ambiguity in the position

and the robot cannot find features of the environment that uniquely determine its

location. This, though, is another advantage of the particles filter which makes it

suitable for global localization and kidnapped robot problems.

A graphical illustration of the particle filter is shown in figure 3.13. The
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Figure 3.13: Particle filter cycle

example starts from step 3 of the algorithm, where re-sampling occurs and particles

with higher weights are likely to be drawn more than once, while the ones with

lower weights may not be drawn at all. Then, drift and diffusion are applied in

accordance to the motion model and a new set of particles X̄t is defined. Finally

the measurement zt is taken and the particles are weighted accordingly, so to give a

better chance to be re-sampled to the particles that reflect the most the measured

value.

As already discussed, the particle filter is widely used in map-based robot

localization problems, where it is known as Monte Carlo Localization[10] (MCL), as

it is simple to implement and it works across a broad range of localization problems.

In figure 3.14 we can see how in MCL localization the particles distribution evolves

over time from subfigure 3.14a, where they are uniformly distributed over the

entire map, to subfigure 3.14d, where they are clustered in a small area that clearly
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identifies the robot position.

(a) (b)

(c) (d)

Figure 3.14: Monte Carlo Localization
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Chapter 4

Project development

4.1 Project overview

This project has been developed under the supervision of the InnoTech Systems

company in collaboration with the California State University of Los Angeles.

InnoTech Systems was founded in 2018 with the purpose of providing new solutions

in the field of Service Robotics. In 2019 the company started a new project

involving the development of an autonomous mobile robot that provides assistance

and services in various ways to airports and other transportation centers. The use

of robotic platforms allows to significantly reduce operational costs and increase the

efficiency of the workplace. The work carried out in this thesis aims at enriching

the robot’s capabilities to localize inside an environment. The robot is equipped

with Simultaneous Localization and Mapping (SLAM) technology that allows for

autonomous navigation in either known or unknown environments. As discussed in

the next subsection, SLAM has some limitations that hinder the efficiency of robot

navigation. The focus is on the topic of robot localization, that is an essential step

for path planning and monitoring of the trajectory. To improve the accuracy and

robustness of localization, a GNSS system can be added to support the SLAM
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algorithm in those situations in which it is the most vulnerable. Most of the

focus in the development of this work has been dedicated to searching for and

understanding the working principles of localization methods and of data fusion

techniques that would provide a more robust localization outcome.

4.1.1 The problem of SLAM

The goal of autonomous navigation is to move from a starting point to a target

point inside an environment. In order to generate a motion path, the robot needs

an environment map and at the same time its current location. When the map is

not known a priori, the robot needs to build it by itself. The autonomous creation

of a map involves the use of on-board sensors to perceive the environment and of

techniques for place recognition and data association[11]. Of course sensors have a

limited range and resolution, so the robot must explore the environment to build

a map. This problem is known as Simultaneous Localization and Mapping, and

involves the construction of a map of the environment while trying to localize inside

it. Localization, as previously discussed, is the problem of estimating the robot pose

(and implicitly its path) inside a map. On the other hand, Mapping aims at building

a map of the environment knowing the position of the robot in the map. Thus, it is

clear that SLAM is a chicken-and-egg problem, since to perform mapping the robot

requires localization and vice versa. One of the approaches to solve this problem is

represented by probabilistic algorithms based on Bayesian filtering theory, like the

Kalman filter or the Particle filter, which are the same methods used for the problem

of localization. These techniques estimate both the map and the position of the

robot exploiting two main sensor technologies: vision sensors (cameras) and laser

range sensors (LiDAR)[12]. The power of SLAM algorithms is to allow the robot to

move autonomously in unknown and unstructured environments, therefore making

a robot truly autonomous; it provides an alternative to user-built maps, showing
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that robot operation is possible in the absence of any type of previously built

localization infrastructure[13]. However, few downsides limit the application and

efficiency of SLAM-based navigation. First of all, the technologies used have their

limitations, for example a 2D-LiDAR that uses laser pulses to detect obstacles may

encounter objects that do not reflect laser scans very well. Laser scanners are still

widely employed for SLAM, however cameras are becoming more appealing because

they are cheaper and provide much richer data, which facilitates the recognition of

loop closures. On the other hand cameras do not provide depth information, which

instead is provided by LiDAR. Regardless of the technology, the complex nature of

the problem makes the implementation of a SLAM algorithm very time consuming

and computationally expensive. In autonomous robot navigation, Simultaneous

Localization and Mapping can be used in two ways: the robot could first use SLAM

to build a map of its surroundings which then uses for autonomous navigation, or it

could use SLAM directly for navigation in the environment while constructing the

map. In the first case, building a map beforehand could be a huge task depending

on the dimension of the environment. In contrast, planning in an unknown and not

yet mapped environment would mean planning using a local and incomplete map,

which implies not finding the optimal trajectory. This represents one downside.

Another problem is that map-based probabilistic algorithms used for implementing

localization may encounter an ambiguity in the estimated pose due to the inability

to recognize the differences between two or more similar areas, and therefore the

robot may get lost. Moreover, in outdoor environments and open areas where the

presence of landmarks is scarce, feature-based localization is more difficult.

4.1.2 Solution

A step towards the improvement of SLAM localization can be obtained by inte-

grating a GNSS system. The strength of GNSS is that it does not need any prior
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knowledge about the navigated environment to provide a position estimate. This

allows to avoid mapping before being able to localize efficiently, plus the position

estimate given by the GNSS can aid the mapping process. As discussed in chapter

2, satellite positioning does not work in indoor environments because the signals

are obstructed, but it is the perfect solution outdoors. It is thus complementary

to map-based probabilistic localization, which functions well indoors where the

environment is usually relatively small and rich of features that allow fast localiza-

tion, while it suffers in open areas because of the lack of landmarks. Moreover, it

can prevent the kidnapped robot problem. By fusing the pose computed by the

SLAM algorithm and the one provided by the GNSS module, a more accurate and

reliable estimate can be obtained. Recall that autonomous navigation requires a

very accurate pose estimate, around few centimeters. Regular GNSS is not able

to provide such precision as it averages an error of 1-5 meters, therefore the RTK

(real-time kinematics) functionality or Differential GNSS must be used.

4.2 GNSS technology

After evaluating various options for RTK-capable GNSS systems, we chose to

use for this project the ArduSimple simpleRTK2B board (depicted in figure 4.1),

which contains a U-Blox ZED-F9P GNSS module. This module supports the RTK

functionality and can reach an accuracy of 1 centimeter. Recall that in order to use

the RTK feature, a base station that transmits coordinates corrections is required.

Some companies offer a subscription correction service, but to avoid extra costs

we decided to use our own base station. This was simply achieved by buying two

sets of GNSS receiver and antenna, and using one set as base station. Through a

survey-in procedure, the receiver placed in a stationary position can determine with

high precision its location, which then uses to compute the correction data. This

process involves a minimum observation time during which a number of fixes are
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Figure 4.1: SimpleRTK2B board from ArduSimple

accumulated and then combined through a weighted average to obtain an estimate

of the receiver position. The protocol used to send correction information is called

RTCM. In order to compute the RTK position, both receivers need to have visibility

on at least one common GNSS constellation. For this reason the RTCM corrections

are only valid up to a certain distance from the Base Station. For units which are

very close to each other, corrections can be send through a cable connecting them.

This is obviously not applicable in case of mobile robots, therefore radio-frequency

wireless communication is commonly used. The peculiarity of using radio links is

that a direct line of sight between base and rover is needed in order to work, and

this might be a problem depending on the environment. A different solution would

be to send RTK corrections over the IP network, which however would require an

internet connection. For the time being, we decided to use a radio communication

to send the corrections.

Once the base station is set up, it starts to send RTCM corrections to the rover,

which is placed on the robot. If we put the base station in a position such that there

is a direct line connecting the rover receiver to the stationary receiver, then the robot

is able to get the corrections and compute the position with a centimeter accuracy.
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As explained in section 2.4, RTK positioning needs to resolve an ambiguity related

to the carrier-phase of the satellite signal. The F9P GNSS module has two RTK

modes available:

• RTK float, in which the rover will estimate the ambiguities as float but will

make not try to fix them.

• RTK fixed, where the rover will attempt to fix ambiguities.

The fixed ambiguity solution has a much higher precision than the float solution,

but the convergence time is worse[14]. The ZED-F9P receiver will attempt to

provide the best positioning accuracy depending on the received correction data.

As soon as it receives an input stream of RTCM corrections, it enters the RTK

float mode. Once the rover resolves the carrier-phase ambiguities, it enters RTK

fixed mode. In this mode, the relative position accuracy between base and rover

can be expected to be correct to the centimeter level; therefore, if the base station

surveyed position is accurate to the centimeter, also the position computed by the

rover will have an uncertainty of few centimeters.

After reading the F9P module manual, the rover board has been configured to

output the computed position coordinates on the USB port through a NMEA

message. The NMEA protocol is a textual serial communication protocol used to

output satellite data. The output NMEA message we are interested in is the GGA

message type, which outputs the geodetic coordinates (latitude, longitude, altitude)

computed by the receiver. The message is processed by the robot’s software that

transforms the geodetic data in coordinates local to the robot’s world frame (see

section 2.5), so that the GNSS position estimate can be used together with the

data from other localization sources.
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4.3 Data fusion

Recall that the objective of this project is to combine the pose estimate of the

SLAM algorithm with the estimate given by the GNSS. After reviewing the state

of the art about data fusion techniques[15], we have opted for the application of an

Extended Kalman Filter. Indeed, fusion of absolute poses can be done through

standard Bayesian filters considering measurements from multiple sensors in the

measurement update step, as for example has been carried out in some scientific

papers [16, 17, 18]. These probabilistic estimation methods exploit uncertainty to

obtain a more reliable estimate, so they benefit from the use of multiple observations,

since probability theory proves that the uncertainty of the fusion estimate can only

be smaller than the original values. Recall that the Kalman filter assumes that the

pose can be approximated by a Gaussian probability distribution. In our case this

assumption is reasonable since the GNSS gives one position estimate, which we can

assume to have a normal error distribution, and the SLAM’s pose distribution can

be assumed to be a single-hypothesis Gaussian function around the algorithm’s

best guess.

Since the SLAM algorithm and the GNSS device might output the estimated

positions asynchronously and at different frequencies, they cannot be fused together

at the same time instant; instead, they have to be integrated over time. To do

so, we have implemented a Kalman filter that updates its current estimate every

time a new pose is provided by either SLAM or GNSS, regardless of their order.

The working of the filter, shown in figure 4.2, is fairly simple: when a new pose

zt is measured, the filter makes a prediction x̂t starting from the previous fusion

pose xt−1 based on the time interval between the two values, and then updates it

with the measured pose. Thus, the fusion of GNSS and SLAM estimates occurs

over time, as a Kalman filter cycle is run for each measured pose, regardless of

the source. The implementation of the used filter, described in [19], assumes an
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omni-directional motion model derived from Newtonian mechanics, which uses

the velocity measurements to compute the prediction. The measurement model,

instead, assumes that sensors provide measurements directly of the pose, therefore

there is no transform function between state and measurement space.

Figure 4.2: Fusion diagram: when at time t a new measurement pose zt is observed, a
prediction x̂t is made from the previous fusion estimate xt−1 based on the time interval
between time t and time t− 1, and on the robot’s previous velocity. Then the pose zt is
used to update the prediction and produce the current fusion estimate xt.

4.4 Development framework

The code for this project was developed in order to work on the Robot Operating

System[20] (ROS). ROS is an open-source framework running on Unix-like platforms

that is widely adopted for robotic applications. It is a collection of software libraries

and tools that aims at simplifying the development of robotic systems. Similar

to what an operating system does, it implements an inter-process communication

infrastructure based on a publish-subscribe message-passing model. ROS executa-

bles, called nodes, communicate publishing predefined messages and subscribing to

communication channels named topics. Thus, ROS serves as an interface to help the

various subsystems of a robot to communicate easily according to known schemes,

and greatly simplifies the construction of a robotic system, which in general is a
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hard process. Moreover, ROS tools are language and platform independent, even

though the vast majority of open-source code and the main client libraries are

implemented in C++ and Python. As a result, it allows to integrate software

developed by other programmers into a robot system with little effort. For this

reason, ROS-based code has been developed and, as mentioned in chapter 4.6, many

open-source ROS packages have been used for the simulation of the localization

solution.

4.5 Hardware and software schematics

The hardware components needed for localization include the GNSS device and the

camera or LiDAR sensor used by the SLAM algorithm. The developed software

is run on a NVIDIA Jetson Nano[21] board, to which the localization devices are

attached. The small dimensions of the board and its computational power are the

reasons behind the choice of employing this board on the mobile robot.

From the software point of view, other than the already present SLAM module,

two other modules have been developed:

• a GNSS localization module, which is in charge of reading the GNSS data

output by the receiver on a USB port of the Jetson Nano, transforming the

coordinates into the robot’s frame and publishing the result on the designated

ROS topic.

• a fusion module, which waits for new pose data from either SLAM or GNSS

software components to be published on the corresponding ROS topics, and

then performs an EKF cycle to produce the fusion estimate.

Figures 4.3 and 4.4 show the software and hardware schematics regarding

localization.

70



Project development

Figure 4.3: Hardware schematics

Figure 4.4: Software architecture of the components utilized for localization. The
modules with the blue background are the novel components introduced in the robot
system, while the grey module (SLAM) was already present.

4.6 Testing

4.6.1 Simulation setup

To test the effectiveness of the proposed approach, a software simulation has been

carried out. For this purpose the Gazebo simulator[22] and the Rviz[23] tool have

been used. Gazebo allows to create virtual 3D worlds, with robots, obstacles

and many other objects, where physical laws gravity, inertia, etc are adhered. It

offers an alternative to test the developed software on a model of the robot before

proceeding to the actual implementation on the robot hardware. Rviz, instead, is
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a visualization software for ROS that allows to visualize either simulated data (like

sensor readings) or real data coming from a robot hardware. For this project both

tools have been used. In particular, two simulations have been carried out:

• a simulation in Gazebo was done using models of the robot and the environment.

The goal was to test the autonomous navigation exploiting the pose estimate

provided by the fusion approach.

• a simulation using real data was run to test the operation of the localization

provided by the fusion algorithm in a real-life scenario. In this case only Rviz

was used to visualize the results on the environment map.

For the sake of the first simulation, a world has been created in gazebo (shown in

picture 4.5) with relatively enough obstacles so that the map-based localization

software always has a good estimate of the pose. The modeled robot is a differential

Figure 4.5: Gazebo world created for the first simulation

drive robot with two castor wheels that keep it in balance. For the simulation
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few assumptions about the robot sensors and software have been made. First of

all, we supposed that the robot already has a map of the environment, previously

built using a laser-based SLAM algorithm called gmapping[24],[25]. This algorithm

produces a grid map of the environment (see figure 4.6) which is used by the robot

to autonomously navigate. In order to provide localization we used a laser-based

Figure 4.6: Grid map of the Gazebo world: black lines represent occupied areas, while
white spaces are free.

Adaptive Monte Carlo Localization[26],[27] (AMCL) method, which estimates the

path of the robot using a particle filter, as gmapping does. This choice was made for

simplicity reasons: the only ROS implementation of the gmapping algorithm found

did not output an estimate of the pose, but only of the map, therefore it could not

be used for navigation. Obviously, since the environment is already mapped, at the

start of the simulation the AMCL is more effective than the localization provided

by a laser-based SLAM, however in open environments with few map features its

accuracy decreases too. The choice of using a laser sensor to provide observations

was encouraged by the fact that implementing a visual SLAM, as the one used

on the real robot, was too complicated and was not necessary to the objective of

this work, which is to demonstrate that GNSS can aid a map-based localization
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method (like a SLAM algorithm) in the navigation task. In addition to the laser

sensor, AMCL exploits an Inertial Measurement Unit (IMU) to have additional

orientation data and wheel encoders to predict the robot motion. To reproduce

GNSS data in the Gazebo environment we employed a plugin[28]. While in the

simulation the GNSS coordinates are directly output on a ROS topic by the plugin,

in reality this job is done by a software module that reads the coordinates from

the USB port connected to the GNSS device and then publishes the read data on

the corresponding ROS topic. As specified in section 4.2 of this chapter, the GNSS

position estimate is given in geodetic coordinates and has to be converted into

the robot’s world frame. To perform the coordinates transformation we used the

ROS robot_localization[29] package, which is the same package used to implement

the EKF for the pose fusion. The last component for the autonomous navigation

simulation is provided by the ROS Navigation Stack[30] package. The Navigation

Stack takes as input the pose estimate from the EKF fusion and performs path

planning using the map of the environment. For this purpose it constructs two

costmaps (see figure 4.7), that is it assigns a cost to each grid of the map based on

the presence of obstacles. A global costmap is used to compute the optimal cost

collision-free path to destination, while a local costmap serves for local planning

and obstacle avoidance. On the basis of the planned motion, it sends the velocity

commands to the wheels controller.

In the second simulation the fusion method was tested using the KITTI

Dataset[31]. This dataset contains raw data recordings captured in real-world

driving situations, which include 3D point clouds, GPS, IMU and cameras infor-

mation. Since this simulation takes real data, we do not need any other software

other than the localization modules. For our application, we used the data acquired

from navigation in a residential area, where the GNSS signal is accurate, whose

map is shown in figure 4.8. As was done in [32], the ground truth position was
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Figure 4.7: Global costmap: each cell of the map is assigned a cost value, represented
in the picture by different colors. In this map the black areas are are free, while colored
ones are either occupied by a real obstacle or close to it.

assumed to be the one provided by the high precision GPS module used in the

recorded driving session. In order to simulate GNSS data, we added white Gaussian

noise to the ground truth values. As we have done for the Gazebo simulation,

the SLAM pose estimate is provided by an AMCL algorithm. The 2D laser scan

measurements, used by AMCL, are obtained from the 3D point cloud raw data

using the pointcloud_to_laserscan[33] ROS package.

4.6.2 Results

The first simulation involved autonomous navigation of the robot in a virtual world

created in Gazebo using as input the fusion pose. The created environment is

small (the dimension of the map is 10x10 meters), so the AMCL always has a

good estimate of the robot pose and can quickly compute it. The purpose of this

simulation was to test the functioning of the used EKF in a situation where GNSS

and AMCL estimates have similar values; in this way we can really observe how

the fusion result changes in dependence of the fused positions uncertainties. In
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Figure 4.8: Map generated from one of the KITTI scenarios

particular, several consecutive tests have been run, making the robot autonomously

move around to the same destinations in the map (see figure 4.9), while changing

the position variance of the GNSS fix for each test. As expected from the Kalman

Figure 4.9: Predefined destinations for the robot navigation in test 1. The robot starts
from and returns to position (0) passing through (1),(2) and (3) in order.
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filter functioning, by increasing the variance from 0.001 to 0.1 m2 we observed a

decrease in error between the fusion pose and the AMCL estimate, which averages

a position variance of 0.03 m2 along the predefined path. This means that fusion

pose shifts towards the AMCL estimate and movs away from the GNSS value,

which we are confident to be less accurate since we increased its variance. In

figure 4.10 are shown the observed average errors between the fusion result and the

AMCL estimate as well as between the fusion value and the GNSS fix, where each

dot represents the error obtained in a certain test. The size of the errors is small

(around centimeter) because the map itself is small, thus allowing the AMCL to be

very accurate.

Figure 4.10: Comparison in term of position error with respect to the fusion result
between AMCL estimate and GNSS estimate

Figure 4.11 shows a sequence of screenshots of the localization process taken

during the second simulation. As previously mentioned, map-based probabilistic

localization methods, like AMCL, compute the pose estimate by comparing and

matching the map with the laser readings. The test carried out demonstrates that

this kind of algorithms have difficulties in estimating accurately the pose in open

environments where map features are scarce, sometimes resulting in a total loss

of the robot position. At the beginning of the test, depicted in figure 4.11a, the
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map contains enough obstacles to allow the AMCL algorithm to produce a reliable

estimate. At this point of the simulation the current AMCL best guess (the blue

arrow) and the fusion pose (the yellow arrow) are relatively close to each other

compared to the dimension of the map, which is much bigger than the map used

for the first simulation: the two estimates differ of about half a meter. As the

simulation goes on, the robot enters an area where natural landmarks are very few

and not easily distinguishable. This causes the AMCL particle cloud to consider

a bigger area of possible poses, eventually loosing completely the robot true pose

as shown in 4.11c. On the contrary, the fusion pose is still near the ground truth,

thus proving that the fusion method provides a robust localization even when the

AMCL does not work properly. The following result is obtained thanks to the

logic of the Kalman filter. In fact, as discussed in section 3.4, the Kalman filter

performs a trade-off among the fused values based on their uncertainty: the smaller

the uncertainty, the higher a value’s influence on the fusion result. Being the

uncertainty of the AMCL much higher than the uncertainty of the GNSS solution

(as can be see in figure 4.11c), the AMCL pose is basically not considered in the

fusion; therefore, the final pose is just the result of the fusion of motion prediction

and GNSS fix.

4.7 Conclusions

In the presented work we have introduced the state of the art of localization

methods adopted in mobile robotics, with a special regard towards autonomous

navigation. Among the various methods, much focus has been given to probabilistic

techniques and to satellite navigation systems (GNSS) due to their importance in

this work. Finally, it has been presented a simple solution to the problem of mobile

robot localization with SLAM in featureless environments like outdoor spaces using

a GNSS receiver. The implemented fusion method based on Kalman filtering has
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(a) (b)

(c)

Figure 4.11: Localization sequence in test 2. The robot true position is represented by
its x and y axis (red and green in the figures), the AMCL estimate is given by the blue
arrow and the fusion pose by the yellow arrow. The GNSS fix is not visible in the figures
because it has a negative z value, therefore it is hidden. In red are depicted both the
AMCL particle cloud and the laser sensor data.

been tested using the KITTI dataset, which contains sensor data gathered in the

real world, as well as in a software simulation run using the Gazebo tool. The results

obtained from the simulations are satifying since we reached the goal of being able

to localize the robot in case the SLAM alogorithm (implemented through AMCL

in the simulation) is inaccurate. Future steps involve integrating the proposed

solution with the present visual-SLAM algorithm and testing it together with the

F9P GNSS module on the physical robot in scenarios typical to its application.
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