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Abstract

Nowadays, Deep Neural Networks (DNNs) are employed in many fields to perform
different tasks, such as autonomous driving, always listening, augmented reality,
computer vision and many others. Some of the listed tasks, as the autonomous
driving, are safety-critical. Aware of that, ensuring the reliability of this technology
is very important since, an error of assessment could endanger human lives.

DNNs are known to be intrinsically error resilient [1] since, their topology ex-
ploits data redundancy. Therefore, even if an error occurs the DNNs might be still
capable to correctly predict the result. However, this may change whenever the
DNNs are implemented in Hardware (HW) for the reason that, the target HW have
limited processing resources in which multiple neurons are mapped and potentially
be corruptible by a single fault.

The aim of this master thesis is to study novels Hardware Description Level
(HDL) fault injectors able to reduce the expensive time cost of the state-of-art
HDL fault injectors. The attention was drawn onto permanent and transient fault
models. Indeed, the thesis will provide a pipelined fault injector for permanent
fault and an optimized fault injector for transient fault. Both fault injectors were
tested in fault injections campaign to asses their effectiveness. Such frameworks
make feasible the reliability analysis at the HW level of systems based on neural
network, reducing the required simulation time of at least 60%.
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Introduction

The focal point of the following work is about an important aspect of the Deep
Neural Network technology architecture as their reliability. In particular, the atten-
tion is drawn to the cohesion between the abstract software dimension with the real
hardware world. From a high perspective DNNs are built by many layers of neurons
connected with each other allowing the transmission of the computed information
between a neuron to the others [2]. In such scheme, each neuron is independent and
unique, meaning that if a neuron is damaged the DNN might be still capable to
correctly predict the result and mask the error, thanks to its topology that exploits
data redundancy. However, the issue is not that simple whenever the DNN is
mapped on a hardware equipment. The target hardware may be multiple, FPGAs,
MCUs, GPUs, ASICs and many others. Even if, the target hardware are different
in terms of structures philosophy, performances and target applications, they have
in common the limited processing element (PE)resources that leads to a different
analysis of the DNNs architecture. Under those circumstances the neurons are no
longer independent and unique. A cluster of neurons are evaluated by means of the
same PE, for this reason, it is highly unlikely to have a single or a random group of
damaged neurons. As the trend of shrinking the semiconductor to dimension of
the nanometer order, the probability of physical damage grows to the point that
it cannot be neglected. Furthermore, other potential elements able to corrupt a
DNNs executions are various such as, the aging, electromagnetic radiations and
many others.

Hence, a tool able to assess the error resilience of the hardware and software
co-design is becoming more and more important, also for the reason that this
technology is increasingly used in critical field as the autonomous driving [3], [4].
This tool is a fault injector able to perform fault injections campaign with dif-
ferent approaches at different levels of abstraction, from the application level to
the Register Transfer Level. The main differences between the abstraction levels
are the required time, that is considerably greater for the level strictly bonded to
the HW and the degrees of freedom of the injected faults. For instance, at the
application level it is possible to corrupt weights, biases, input and output data.
At lower level instead, it is possible to have a full control of the signals and bits,
stacking those signals to ‘0’ or to ‘1’ permanently or transiently. As mentioned
before, is fundamental to evaluate the dependability at the HW level since, it is
more accurate. But, the time needed to perform fault injections campaign at RTL
is considerably high. For this reason, the simulations are usually performed at
software level.
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Introduction

The aim of the following thesis is to develop and test novels faults injectors
frameworks for transient and permanent faults. Considering the different nature of
the faults model, two different strategy has been used. For the permanent faults
a pipelined fault injector. In this framework each layer is seen as a pipeline stage
computing its own workload. Those stages need to be synchronized with the each
other. Instead, for the transient fault, a multi-layer fault injector. In this particular
case the framework is divided in different abstraction levels to take advantage of
the higher speed of the software level. The intent is to make those frameworks
optimize as much as possible in terms of simulation time, as described in Chapter
3. Additionally, they need to be capable of automatically injecting faults within
the system and classifying the inferences outputs.

The rest of the thesis is organized as follows. The background knowledge are
described in Chapter 1. The Chapter 2 presents the proposed framework, Chapter
3 describes the case study. The experimental results are provide in Chapter 4.
Finally, Chapter 5 concludes the thesis by outlining some of the possible future
research directions and some consideration arising from the experimental results.
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Chapter 1

Background

1.1 Artificial Neural Networks
Artificial Neural Network(ANN) is the technology architecture on which the Artifi-
cial intelligence (AI) is based. The fundamental idea is to have an artificial model
that mimics the human Neural Network (NN) behaviour preserving its design. Since
we don’t have yet the full comprehension of the NN, the artificial replication is a
simplification but, still it has a great computation power. This technology allows
us to have a powerful alternative way to compute particular tasks, such as the
classification and regression problems.

NNs need to be trained, meaning that they have to learn from data minimizing
a cost function which describes the distance between the input data and the output
result. This specific task is a simple problem already investigated from the data
analyst. Anyhow, there is a problem of those algorithms since, during the minimal
research the algorithm can be stack at an unwanted local minimal lowering the
maximal reachable accuracy of the NN itself [5]. Though, the target of the NN is
to describe into a function the relationship between the input and the output.

NNs architecture is complex and composed by many components interconnected
with each other. The main component is the neuron which is replicated multiple
times. Each neuron has a series of input connections, dendrites, and an output,
axon. The whole system, dendrite, axon and neuron mould a synapse as is shown
in Figure 1.1

Figure 1.1: Synapse model

4
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The neurons can be considered as a processing elements performing a certain
function and the dendrites as the information stream [2]. All neurons can be
distinguished by the weights in each dendrites, biases and the performed function.
This functions are called activation functions and usually are in the range ’0’ to ’1’.
They can be linear or not. The most widely used is the ReLU function (Rectified
Linear Unit), defined as the positive part of its argument [6], from an electronic
prospective, it behaves like a diode.

NNs are made of layers of neurons interconnected with each other. A single layer
of neurons can only represents simple linear weighted combinational input-output
relationship. Concatenating, one after the other many layers, with different charac-
teristic and functions, enable complex non linear input-output mapping performing
complicated classification tasks.

Three types of NN can be done, Fully Connected Neural Network(FCNN), Con-
volutional Neural Network(CNN) and the mix of the two of them. The difference
between the first two networks lie in the way the neurons of subsequent layers
are connected with each other. In the FCNN the neurons of the previous layer
are all the connected with each neurons of the following layer, instead, the CNN
has only part of those connections. Additionally, this NNs topology have different
performances in terms of train-ability and memory footprint.

Figure 1.2: Convolutional Neural Network example

The NNs have an intrinsic issue originated by the feature extractor that has to
be handcrafted. In this scenario, the feature extractor is not flexible since, is specific
purpose and it is not necessarily the most efficient. Having a trained features
extractor, trained by labeled data as the classifier, is the way for moving from
the NN to the Deep Neural Network(DNN). With this approach, the whole net-
work, composed by many layers, is trained simultaneously, with the same train data.

DNN allows to model high level abstraction in data. When the network is trained
the lower level layers extract simple features, moving towards higher layer, the
features becomes more and more complex. A further important element in the DNN
architecture is the polling layer which has the purpose of downsample the data.

5
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Figure 1.3: Fully connected Neural network example

Since, CNN outputs are sensible to the data location of the Input Feature Map
(IFM), using the polling layer allows to reduce this sensibility, moreover, allows to
reduced the memory usage in the inference process. With this layer the inference
becomes more resilient with respect to data errors. Many techniques are applicable
to this layer but the most used for his simple implementation is the max polling. It
takes the highest values within subsets of the Output Feature Map (OFM) selected
by a kernel that swipe over it[7].

1.2 PULP-NN Library
PULP_NN which was developed by the University of Bologna and the IIS lab of
Zurich. As illustrated in their paper "PULP-NN: Accelerating Quantized Neural
Networks on Parallel Ultra-Low-Power RISC-V Processors", the library is based on
the CMSIS-NN. CMSIS-NN is a library that includes computational kernels needed
for the inference computation, optimizing the DNN execution on a RISC-V core.
Convolutional kernels, Maxpooling kernels and many other kernels are present. The
authors of the above-mentioned paper[8], demonstrated that further optimization
could be done to outperform the previous state of art DNN library in terms of
computational and energy efficiency. This library beyond optimizing every kernel,
improved the parallel computation of the ultra-low power RISC-V processors as
well. Moreover, they optimized the kernels to increase the throughput by handling
the parallel computation in a more efficient way and by taking maximum advantage
from the data reuse of the input data and weights. However, the data reuse is
physically limited by the hardware since the higher the amount of data to be reused,
the bigger the memory footprint needed[8].

Data reuse is exploited using Single Instruction Multiple Data (SIMD) instruc-
tions approach, so that it’s possible to compute multiple OFM data with only one
load at the time of a certain IFM data with the corresponding weights. Therefore,
it is possible to perform more than one MAC per load and store instructions.

The major innovation in PULP_NN is represented by the sets of kernels for

6
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Quantized Neural Network (QNN) inference, targeting byte and sub-byte, from 8
bits to the atomic 1 bit. These sets of kernels were created to keep up with the
general tendency to aggressively quantize data and QNNs are widely used nowadays
for their overall performances[8]. A finite precision fixed point NN, or QNN, has
a lower execution time with respect to an infinite precision floating point NN. In
addition, the employment of a finite precision fixed point QNN brings about signifi-
cant improvements from the low power perspective, which come from the target
HW employ in the two different scenarios. The HW components for the QNN are
simpler and a simple architecture entails a reduced number of components. Thus,
the inference has a lower amount of HW computational steps, resulting in higher
processing speed and greater power efficiency as a lower number of components
have to change their value throughout the computational steps. Ultimately, the
advantages of the fixed point quantized data lay in a faster inference computation
and lower power consumption. The drawback in aggressively quantizing data is the
accuracy drop. Sometimes, this accuracy reduction is insignificant and does not
invalidate the application of the DNN. However, in safety-critical applications such
a lack of accuracy can’t be accepted thus, each case must be evaluated individually
to get the best trade-off possible. The use of quantized fixed-point data is also an
efficient way to reduce the memory footprint.

According to the paper, the RISC-V cluster with multiple parallel cores, with
PULP_NN kernels, can reach 15.5 MAC/cycle on INT-8 data, improving the
performances with respect to the sequential implementation on single core by a
factor up to 63, making the execution considerably faster. The speedup, with
respect to the single core, has a trend close to a linear speedup. Furthermore, they
claim that by running the CIFAR-10 quantized model the inference reach a better
energy efficiency, 14 times better with respect to a energy efficient MCU[8].

1.3 Fault Injection Methodologies
As discussed before, NNs are increasingly used in safety-critical fields and for
this reason the reliability is an fundamental parameter of a NN that needs to be
analysed and evaluated case-by-case for ensuring its dependability. Many approach
at different abstraction levels can be employ, from the silicon level to the software
level. This estimation is done by a fault injection campaign, that is the injections
of several faults in the system one after the other. Afterwards, the results are then
collected and classified to settle the overall NN reliability. As asserted in the paper
"A Pipelined Multi-Level Fault Injector for Deep Neural Networks" The state-of-
the-art faults injections methodologies can be classified in three main category as
follow[9]:

1) Simulation-based

2) Emulation-based

3) Platform-based

7
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The simulation-based is an effective methodology for evaluating the error re-
silience of a system, restoring accurate results. However, it may requires a prelimi-
nary investigation of the hardware and software design in order to define the right
inputs parameters to supply as faults[10]. As mentioned in [9], the simulation-based
can be further subdivided based on which abstraction level the faults injections are
performed: Software or Hardware level.

The emulation-based methodology can be perform at different abstraction levels
too. It is employed a prototype that it could be based on different hardware architec-
ture (FPGAs, MCUs, etc...) and emulates the actual implementation. Supervising
the injected faults can provide interesting information about the implementation
robustness and dependability.

The platform-based methodology is perform in the actual platform with actual
data. In this scenario would be more precise to speak of radiation injection rather
than fault injection. The results can contain more information with respect to
the software methodology since, it simulate the DNN deployed on the actual HW
allowing a better understanding of the errors. Nevertheless, it is quite impossible
to maintain time invariant the field conditions thus, there are some doubts about
the validity of the results[10].

Additionally, taking as reference the paper "Fault and Error Tolerance in Neural
Networks: A Review", the Fault Injectors are able to inject faults, errors and
failures. The difference among them is the abstraction level that are going to
compromise. Faults affects the physical level, errors the behavioral level and failures
the application level. In this work the attention is focused on the hardware level
then, towards faults. Even if, they are injected at low level, they may also affects
and propagate toward higher levels thus, from the physical to the application
level. Depending on the criticism of the fault, the DNN may be capable to masked
it, restoring the correct results or the confidence levels of the predictions may change.

Faults can be divide into major blocks permanent fault and transient fault,
both of them enclose different type of faults, as illustrated in the Table1.1 [11]:

FAULTS TYPE
Permanent Transient

Stack at Short Open line Bridging Delay Intremittent Timing
Wearout Bit-flip Pulse Delay

Table 1.1: Faults type

8
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• Stack at: Simulates a signal line fixed to a logical level

• Short: Simulates the short circuit of two signals lines

• Open line: Simulates the division of a line

• Bridging: Simulates a open line short circuited

• delay: Simulates the permanent signal delay

• Wearout: Simulates the false contact

• Bit-flip: Simulates the signal state reversion

• Pulse: Simulates the spikes in the line

• Delay: Simulates the transitory signal delay

9



Chapter 2

Fault injection frameworks

2.1 Permanent fault injectors
Fault injector frameworks are constitute by all those commercial software that
are able to mimic faults in the system under test. Despite such software are very
powerful, they are only optimized to work with the regular architectures. For this
reason, when it comes to the NNs architectures is going to be waste time during
their simulations.

The architecture of the proposed fault injectors are divided in three main layers
one on top of each other. The HW level is the lowest one in which the target
hardware and the Fault Injector Unit (FIU) are describe in a Hardware Description
language (HDL). FIU is the module that holds the faults to be injected and is the
one that whenever it receives a signal from the synchronization level, inject the
new faults. The application level is the intermediate level that has to communicate
with the sync and the HW levels. This area is usually implemented in high-level
language such as C or Python and it is where the NN executes the inferences. The
sync level is responsible of the coordination of the inferences by starting the process
describing the NN with the right timing. Additionally, this level has the Fault
Classifier Unit (FCU), which has the task to gather the inferences results, classify
them in such a way that it is possible to carry out statistics.

Figure 2.1: Sequential Fault Injector scheme

10



2.1 – Permanent fault injectors

The state-of-art of the fault injector frameworks look at the NN system as a
unique sequential big computational chunk even though, it is possible to subdivided
this chunk in little blocks. As represented in Figure 2.1, even if each block represents
a layer of the NN and they could be disjoint, the input image has to pass trough
every single layer before starting a new inference with a new image. The sequential
framework needs a Sync level to make the simulation starts right after it has finished
the previous one and an application level directly connected to the hardware that
allows the hardware simulator to emulate the behavior of the system.

Investigating how the computation flows in the NNs architecture, from a higher
abstraction level, is clear that each layer can be seen as an independent, disjoint
processing thread. Assuming this assessment correct, the pipeline technique is ap-
plicable to speed-up the simulation throughput at the cost of a higher latency. The
general idea of pipelining is to make each block process its input data independently
from a common starting point in time, stored the output in sync-registers, wait till
all blocks are finished computing and then restart the subsequent computation. The
data of the new computation step are taken from the sync-register to guarantee the
natural data stream. A quick overview of the computational advantage is presented
in the Figure 2.3

11



Fault injection frameworks

Figure 2.2: Permanent Fault Injector scheme

The Figure 2.2 illustrates the scheme of the novel architecture of a pipelined
fault injector. It needs a Sync level to keep the system synchronized, storing and
delivering the right data at the right time to the exact layer. As for the sequential
framework the application level and the HW level are strictly bonded together but,
in this case each layer is represented by an independent process.With this architec-
ture the quicker blocks are penalized since they have to wait in order to start the new
computation causing an increment of the latency.A further optimization would be
reducing the total latency gathering more blocks together but, taking into account
that the simulation time of this unification has to be comparable to the other blocks.

The drawback of this novel fault injector is given by the required system resources.
The number of process go from one to the number of blocks in which the DNN has
been divided. for this reasons, for complicated DNN the memory and CPU usage
needs to be evaluated in order to make the fault injector works properly.

(a) Pipelining principle (b) Sequential principle

Figure 2.3: Simulation strategy comparison

12
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2.2 Transient fault injectors
The state of art Fault injector frameworks for the transient fault are the same as
for the Permanent Fault. For this simulation the time penalty is even worst with
respect to the permanent fault case.

The state of art of the fault injector frameworks for the transient faults scenario
treats the faults as if they were permanent fault settling a time constraints on the
injected fault. As consequence the overall injection campaign time the same as the
previous case. The major idea to optimize this particular framework is to move the
portion of the NN not affected by the faults to the sync level decoupling those layer
to the HW. Therefore, the highest and quicker level has to compute the information
of all those unaffected layers, feed up and extract the right information to and from
the "faulty" layer located in the application level. The sync level simulation takes
no time compared with the simulation time at the HW level resulting in an overall
simulation time equal to the execution time of the faulty layer. Hence, the pipeline
technique for this framework is useless.

Figure 2.4: Transient Fault Injector scheme

Figure 2.4 shows the scheme of the transient fault injector framework. It is
possible to observed that all the layers except one are placed in the Sync level and
there is the presence of only one process that links to the hardware platform, the
only one that can be affected by a Hardware fault.

Unlike the Permanent fault injector framework, the Transient Fault Injector
Framework requires minimum resources. It needs one thread for the HW simulator
and one thread for the higher abstraction level software per inference regardless of
the DNN depth.

13



Chapter 3

Case study

3.1 NN with CIFAR-10 and MNIST
I have used a NN available in the GitHub repository1 already trained with the
CIFAR-10 dataset. All the weights and biases values were 8-bits signed data format.
This NN is composed by 7 different layers with their own characteristic as detailed
in the following table 3.1:

Layers features Kernel

NN kernel Input data Output data
Activation

function
dimension stride padding

Convolutional_1 32x32x4 32x32x32 ReLU 5x5x4 1 2
Maxpooling_1 32x32x32 16x16x32 None 3x3 2 0
Convolutional_2 16x16x32 16x16x16 RelU 5x5x32 1 2
Maxpooling_2 16x16x16 8x8x16 None 3x3 2 0
Convolutional_3 8x8x16 8x8x32 ReLU 5x5x16 1 2
Maxpooling_3 8x8x32 4x4x32 None 3x3 2 0
Fully connected 1x512 10 None 1x512 0 0

Table 3.1: CIFAR-10 Neural Network architecture

As presented from the Table 3.1 and the Table 3.2, the NN employed is a mixed
classifier since, it has both convolutional and fully connected layers. To be specific,
three convolutional layers and one fully connected. As activation function it is only
used ReLU. The architecture envisages three maxpolling layers, each of which are
put it right after the convolutional layers.

CIFAR-10 dataset consists in 60,000 RGB images 32x32 pixels in 10 different
classes and is a subset of 80 million images dataset. The classes are mutually
exclusive so there is no overlap between them. 50,000 images have been used to
trained the network while 10,000 are used to test the accuracy of the training
procedure.
Each images are characterized by a single byte label, followed by 1024 bytes

1https://github.com/pulp-platform/pulp-nn
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3.1 – NN with CIFAR-10 and MNIST

corresponding to the red component of each pixel, 1024 bytes for the blue and 1024
for the green with a total of 3073 bytes.
The images of this dataset are low resolution images and sometimes they can be
hardly recognizable by a human observer as is shown in figure 3.1[12]. The image
3.1 fall down to the boat class, at first sight this image is not easily identifiable.

Figure 3.1: Example of cifar10 image1

The accuracy results of this trained network with the CIFAR-10 dataset were
awful, roughly 35%. For the purpose of testing the error resilience of the NN in an
embedded HW it is not an adequate starting point since, without an high precision
network is not possible to discriminates the errors coming from the injected fault
or by the net itself. The network has been re-trained several times, however, the
results didn’t change significantly.

The solution of the accuracy problem comes out moving from the CIFAR-10
dataset to a simpler dataset as MNIST 2 is. This dataset consists in 70,000 of
handwritten digits images 28x28 in grayscale in 10 different classes, from the digit
zero to nine. Even here the classes are mutually exclusive so there is no overlap
between them. 10,000 are available to test the accuracy of the the trained network.
Each images are characterized by a label, in the range 0 to 9, describing the affinity
of a specific class.

2http://yann.lecun.com/exdb/mnist
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Figure 3.2: Example of images in the dataset2

Having changed the dataset, the NN has to be re-trained. Has been useful
Python with the open-source Pytorch framework[13] since, it has been used to
develop and train from scratch a prototype of the Neural Network running on PULP.
After the development of the prototype two different approaches could have been
chosen to train the NN. The first approach, is to make use of the 32 bit floating
point, train the network and afterwards quantize everything to 8 bit fixed point
data precision. The second approach, is to set up everything from the begging
to work with the right data format. With the last approach would it be possible
to get the highest accuracy possible, unfortunately it is under development right
now. Then, I had to choose the first method employing 32 bits floating point data
precision. The prototype trained with the MNIST dataset obtained a very successful
result in term of loss or in other words, the distance between the input images with
respect to the predicted images. The NN achieved approximately 99% of accuracy,
with the 32 bits floating point data. However, being that PULP HW can work
with 8 bits fixed point data precision, weights and biases have been quantized.
This step slightly affect the accuracy of the network that still remains very good,
98.5%, allowing to export the prototype model, without any variation, to PULP
framework making possible to perform meaningfull fault injections campaign in RTL.

The architecture of the NN with the MNIST dataset has been slightly modified
compared with that described in the table 3.2 as follow:

Layers features Kernel

NN kernel Input data Output data
Activation

function
dimension stride padding

Convolutional_1 28x28x4 32x32x32 ReLU 5x5x4 1 4
Maxpooling_1 32x32x32 16x16x32 None 3x3 2 0
Convolutional_2 16x16x32 16x16x16 RelU 5x5x32 1 2
Maxpooling_2 16x16x16 8x8x16 None 3x3 2 0
Convolutional_3 8x8x16 8x8x32 None 5x5x16 1 2
Maxpooling_3 8x8x32 4x4x32 None 3x3 2 0
Fully connected 1x512 10 None 1x512 0 0

Table 3.2: CIFAR-10 Neural Network architecture
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It is necessary to be highlighted that PULPs kernel works only with depth
channel of multiples of four. Hence, the images from both MNIST and CIFAR-10
dataset requires to be pre-processed in order to fit in the PULPs kernel adding the
right amount of "ghost" channels.

The following Figure 3.3 display a graphical block scheme view of the NN used
by referring to the CIFAR-10 case:

Figure 3.3: Neural Network block scheme[14]

The computation workload has been analyzed in order to understand how the
evaluation of the neurons in the system is spread over the eight Core within the
cluster. It was found that the neurons are mapped into the HW in a deterministic
manner. Hence, the Cores are in charge of compute the same neurons every inference.
From the image prospective it means that a pre-determined portion of the image is
going to be process by a specific Core. For instance the next Figure 3.4 shows the
Core0 image distribution workload.

Figure 3.4: Core0 workload distribution [14]

The gray areas in Figure 3.4 represents the portion of the IFM computed by
the other cores within the cluster. Every core has a similar deterministic workload
distribution.

3.2 Pulp gap8
The SoC, PULP (Parallel Ultra Low Power), is a processing platform which is an
open-source platform implementing an expanded version of the open-source RISC-V
ISA think up for the NNs need. PULP lends itself to the development of intelligence
devices employing an AI algorithm, such as autonomous driving, always listening,
augmented reality, computer vision and many others.
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Case study

The RISC-V hardware architecture is based on GAP8 SoC and is illustrated in
his main building blocks in figures 3.5 and 3.6 .

Figure 3.5: GAP8 overview[14](a)

Figure 3.6: GAP8 overview[15](b)

In the figure 3.6 it’s possible to observe the presence of 8 cores in the cluster
and one outside of it, for a total of 9 cores. The 8 cluster’s cores have the task
to carry out the parallel workload required by the inference steps of the DNNs,
while the core outside the cluster, the so-called fabric controller, has to fulfill the
communications and security functions. Each core can employ the DVFS (Dynamic
Voltage Frequency Scaling), a low power technique that allows to operate at dif-
ferent voltage and frequency adapting quickly to the workload resources requirement.

There are two different memory levels, L2 and L1. L2 is the biggest memory
in the system, accessible from every peripheral and elements within the processor.
This memory level can transfer the data to the L1 memory with the DMA unit
that allows fast data transmission without making use of the cores. Instead, L1
memory is smaller, it’s shared among the 8 cores in the cluster and it’s made up of
many banks of memory interconnected via logarithmic interconnections.

Both FC core and the cluster’s cores have their own instruction caches, re-
spectively 1kB and 4kB. Generally, the cluster cores execute in parallel the same
instructions on different data, working as an SIMD processor.

Another important unit is the uDMA that enables the data transfer from the
different peripherals to the L2 memory without resorting to the FC core or with
a limited need thereof, so that the FC core can perform its task in the meantime[15].

The Fiigure 3.7 illustrates the internal block of a RISC-V core. This core
supports the standard RISC-V library as well as other specific instructions and it
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3.2 – Pulp gap8

Figure 3.7: RISC-V Processor Block diagram[16]

has peculiar features, such as the HW loop and post-increment load and store[16].
The added instructions enable to work with vectors which are defined as groupings
of sub-data. For instance, a vector of 32 bits can be defined as a group of four 8 bits
data. This expedient helps exploiting the data parallelism, fundamental for making
the computation for NNs efficient. Most of these functions are executed by the
DotP Unit[16] which is essentially another ALU specialized to compute particular
types of data. These data are usually sub-byte grouped in one single vector of 32
bits and computed simultaneously making the fixed point arithmetic encoding even
more efficient. All OFM elements of every layer are calculated by means of a MAC
operation done by the DOTP unit. Therefore, it’s clear how important this unit is
and how often it’s employed during the inference.
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Chapter 4

Experimental results

4.1 Framework for Permanent Faults
The dataset and NN described in Section 3.1 has been used. Moreover, the novel
fault injector framework design has been employed with Modelsim as HW simulator.
As mentioned in Section 3.1, the employed DNN is splitable in 7 sub-blocks each of
which is different one by the other and characterized by its own execution time,
as detailed in the Table 4.1. The times were obtained by simulating each layer
independently. The different execution time are a consequence of the different
amount of workload they have each layer has to fulfill.

Block Kernel type Execution time unit
[[min]]

1 Convolutional 10:11
2 Maxpolling 4:00
3 Convolutional 9:39
4 Maxpooling 1:19
5 Convolutional 4:23
6 Maxpooling 1:07
7 Fullyconnected 1:39

Table 4.1: Layers execution time

The novel framework for permanent fault requires to have every blocks syn-
chronized with each other, as consequence, the latency is no more the sum of the
execution time of each blocks but, the multiplication of the greater execution time
(Tmax) times the number of layers. Hence, in this case the latency goes from about
25 minutes (Tseq) to about 70 minutes. Although the latency growth, from the
moment when the pipelined is filled with functional data every Tmax we have a new
output instead of every Tseq. Therefore, the throughput is dramatically reduced,
from 25 minutes to 10 minutes. A speed up close to 60%.

As described in Section 2.1, the last 4 blocks have been added together. Indeed,
their execution time was still comparable to the others. In this way, the latency has
been optimized by 40 minutes. A quick analytic comparison between the sequential
framework, the pipelined framework and the optimized pipelined framework is
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shown in the Table 4.2.

Sequential Pipeline Optimized
pipeline

latency
[min] 25 70 40

Throughput
[min] 25 10 10

Single fault
[min] 25 70 40

2 fault
[min] 50 80 50

100 fault
[min] 2500 1060 1030

Table 4.2: Fault injectors summary

The the following Figure 4.1 is a graphical representation of the Table 4.2.

(a) Simulation time comparison (b) 100 faults simulation time

Figure 4.1: Frameworks simulation time comparison

From the above Figures and Table is clear how this novel pipelined framework
is an efficient solution for fault injections campaign of system based on NN. The
advantage with respect the sequential framework comes after only a couple of faults.
As long as the fault injection campaign expect to inject thousands of faults, the
novel framework for a fault injections purpose is a straightforward choice.
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The drawbacks of this novel fault injector are the required system resources.
Right now to process the inferences the system has to run five process, four for
the 4 blocks and one for the synchronization of them. For instance, with respect
to the sequential case the memory usage goes from approximately 4.7G to 18.3G
and as well the CPU has a heavier workload to fulfil. Optimizing the latency
implicates the elimination of 3 process hence, the latency optimization as well as
reducing the simulation time may helps to mitigate the resources problem. The
previously mentioned data are relevant in relations of the size of the DNN used for
this work. Despite the DNN is tiny and simple the memory usage is quite high. For
this reasons, for more complicated DNN the memory and CPU usage needs to be
evaluated in order to make the fault injector works properly.

A purpose of this master thesis was to investigate the reliability of the NNs
mapped onto the HW and prove wrong the general idea of error resilience of this
technology due to their redundant structure. To this end, the framework previously
described was used with the well-trained Neural Network defined in the Section
3.1. As a starting point, it was essential to analyze the workload of each processing
element as well as the most used units. Examining every single assembly instruction,
I came up with the following result embody in the Charts 4.2

(a) Core0 Instructions distributions (b) Core1 Instructions distributions

(c) Core2 Instructions distributions (d) Core3 Instructions distributions
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(e) Core4 Instructions distributions (f) Core5 Instructions distributions

(g) Core6 Instructions distributions (h) Core7 Instructions distributions

Figure 4.2: Instructions distribution from Core0 to core7

Figure 4.2 shows the units utilisation’s analysis throughout the inference. As
evidenced, the multiplier results to be the most used. This result was await since,
the inference steps are based on MAC operations. Consequently, it has been decided
to carried out a fault injection campaign on the multiplier of the Core 0 within
the cluster, by relying on the faults classification proposed by [17] and [18]. The
fault is said to be masked if the outcome of the inference does not change. In the
opposite situation, the fault is detected. Whenever the fault is detected multiple
scenarios are possible:

• SDC-1: Silent Data Corruption (SDC) occurs when the confidence level of
the prediction deviates from the golden reference leading to a wrong image
classification

• SDC-10%: Occurs when the confidence level of the prediction deviates from
the golden reference within a range of +/- 10% but it is still correct

• SDC-20%: Occurs when the confidence level of the prediction deviates from
the golden reference within a range of +/- 10% but it is still correct

• hang: Occurs when the fault makes the DNN execution looping in a certain
state forever

• crash: Occurs when the fault makes the DNN execution stop

The permanent fault injections campaign has been conducted against the bits
of the multiplier output of the Core 0. The bits have been individually stacked
at ’0’ and at ’1’. The dataset under test were a subset of MNIST composed by 21
different images. Therefore, the amount of injected faults were 1,344.

The following Figure reports the the results of the overall permanent fault
injection campaign:

23



Experimental results

(a) Faults distribution (b) Stack at comparison

Figure 4.3: Permanent fault injection faults distribution

The Figure 4.3a shows the comprehensive outcome displaying the predominance
of SDC faults and Hang faults. the Figure 4.3b shows the stack at ‘0’ and ‘1’
inference outcome. Is interesting how the stack at ’0’ and ’1’ produces a completely
different outcome.

The following Table 4.3 illustrates the time required to extract the above results
providing also a comparison with the time that it would be needed with the
sequential framework.

SEQUANTIAL
FRAMEWORK

Total
Injectios

T_latency
[min]

T_througput
[min] images Duration

[h]
1344 ∼25 ∼25 21 ∼560

PIPELINED
FRAMEWORK

Total
Injectios

T_latency
[min]

T_througput
[min] images Duration

[h]
1344 ∼40 ∼10 21 ∼186

Table 4.3: Permanent time simulation

The last column of the Table 4.3 highlights the time efficiency of the new frame-
work. As it is possible to deduce, the overall simulation speed up is around 68%.
Previously, it was claimed that the overall speed up of the novel architecture is
roughly around 60%. However, it is worth noting that it is the minimum advantage
that you can achieve. Indeed, this is due to how the hang detection system has been
adopted. The hangs are detected by means of a sort of watchdog which wipe the
pipeline and starts a new inference if the DNN does not give a result in a certain
amount of time.

From the fault injection campaign It would have been expecting to have a regular
pattern of SDC depending on the position of the faulty bit. However, as we can
appreciate from the figure 4.4 and figure 4.5 apparently there is no correlation.
This unexpected fault distributions behaviour is largely for the reason that the
multiplier does not only calculates the neurons values but, it is also in charge to
evaluate the instructions and data location. Consequently, an error in the results
of the multiplier may have a huge impact in the system bringing it up to critical
condition.
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(a) stack at ’0’ SDC_1 faults (b) stack at ’0’ SDC_10 faults

(c) stack at ’0’ SDC_20 faults (d) stack at ’0’ hang faults

(e) stack at ’0’ crash faults

Figure 4.4: Stack at ’0’ faults distribution

(a) stack at ’1’ hang faults (b) stack at ’1’ crash faults

Figure 4.5: Stack at ’1’ faults distribution

The faults for which there is not the graph, is due to they not occur for any bit.
Is interesting to highlights the different outcomes when the bit is stack at ‘0’ and
when is stack at ‘1’, figure 4.3b. In the first case the faults almost always create a
miss-prediction or in other words an SDC faults. For the stack at ’1’ case the faults
create a critical condition such as a hang or crash. Another thing to highlight is
the fact that there is not a single masked error so, the network is not able to be
unaffected by this type of fault. Then, considering the randomically nature of the
errors, there is a 50% chance that a single permanent error in one of the multiplier
unit inside the embedded HW can create a critical condition completely corrupting
the NN functionalities. These results therefore, confirm the preliminary hypothesis
of a low error resiliences of a NN mapped onto an embedded HW.
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4.2 Framework for Transient Faults
The transient fault framework makes use of the same environment as the permanent
fault framework. The only difference lies on the utilization of the higher abstraction
level software represented by Python, as described in Section 2.2. For the permanent
case Python is used for the synchronization purpose instead, for the transient case
is used to perform the inferences of those NN’s layers that are not going to be
affected by the injected fault. Instead, the faulty layer belongs in the application
level. As for the permanent framework case, the layers in the application level are
those affected by the faults injection.

With this framework, the throughput corresponds to the latency and the fault
injection simulation time is pretty much the execution time of the faulty layer under
test. The execution time is illustrate in the Table 4.1. The insignificant overhead
time is originated by the Python execution whose takes a few milliseconds. For the
transient faults modes the NN described in Section3.1 compared to the sequential
framework is very efficient. It is possible to reach an improvement that goes from
about 60% to 95% . However, the hang detection strategy makes use of a pre-set
countdown timer. The pre-set value has a positive slack compared to the execution
time of the layer under test. Meaning that if the executions go in hang condition
the time required to the fault injection campaign will be slightly higher.

This framework doesn’t make use of the pipelining technique. Conceptually, it
operates as the sequential framework since, to start a new inference with a new
fault, the previous faulty inference has to be finished and classified. The simulations
required only two threads at the time and the size of this threads depends on the
faulty layer under test. Higher is the layer workload, higher will be the thread size.
Anyway, the resources requisite are less severe and more affordable compared to
the permanent faults mode.

As mentioned before, a purpose of the thesis is to investigate the reliability of the
NNs mapped onto the HW. In the previous section, Section 4.1, the fault injection
campaign has been done with the permanent fault. However, it is not unlikely to
have a transient fault affecting the system so, is important to complete the system
reliability analysis taking into account the transient faults.

In this case the permanent fault injections campaign has been conducted against
the first five bits of the multiplier output of the Core0 but, taking into consideration
a computational layer at the time. The bits have been individually stacked at ’0’
and at ’1’ within the time range of the Modelsim layer execution time. The dataset
under test were a subset of MNIST composed by 20 different images. Therefore,
the amount of injected faults were 1,400.

The following Figure 4.6, shows the faults distribution per layer of the transient
faults.
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(a) Layer 1 stack at ’0’ faults (b) Layer 1 stack at ’1’ faults

(c) Layer 2 stack at ’0’ faults (d) Layer 2 stack at ’1’ faults

(e) Layer 3 stack at ’0’ faults (f) Layer 3 stack at ’1’ faults

(g) Layer 4 stack at ’0’ faults (h) Layer 4 stack at ’1’ faults

(i) Layer 5 stack at ’0’ faults (j) Layer 5 stack at ’1’ faults
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(k) Layer 6 stack at ’0’ faults (l) Layer 6 stack at ’1’ faults

(m) Layer 7 stack at ’0’ faults (n) Layer 7 stack at ’1’ faults

Figure 4.6: Transient faults distribution

The subfigures in pair represent the faults distribution of one layer. At the
left the stack at ’0’ instead, at the right the stack at ’1’. The way the Figure
4.6 displays the results highlights the radical behaviour differences of the system
against the two types of faults. It is possible to appreciate that the SDC, for the
stack at ’0’ and the hang, for the stack at ’1’ are practically the totality of the errors.

Injectios
per layer

Layer1

[min]

Layer2

[min]

Layer3

[min]

Layer4

[min]

Layer5

[min]

Layer6

[min]

Layer7

[min]

Duration

[h]
Seq.
F. 200 ∼5000 ∼5000 [min] ∼5000 ∼5000 ∼5000 ∼5000 ∼583

Opt.
F. 200 ∼2020 ∼800 ∼1878 ∼238 ∼843 ∼214 ∼278 ∼104

Table 4.4: Transient time simulation

The Above Table 4.4 illustrates the time required to extract fault injections
results providing also a comparison with the time that it would be needed with the
sequential framework. Each columns describes the time required per layer. It is
possible to observed a great time reduction thanks to the novel framework. The
last column of the Table 4.4 highlights the time efficiency of the new framework.
As it is possible to evaluate, the overall simulation speed up is around 82%, a value
perfectly inside of the speed up range expectation. The saved time in terms of
simulation days is about 20 days.
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Chapter 5

Conclusion

5.1 Future work
The thesis presents two different software faults injector frameworks, one for the
permanent faults and the other one for the transient faults. As discussed previously
the novel fault injector framework are able to asses the dependability of the system
injecting faults at the HW level. They have to take into consideration the system
parameters as, weights, biases and other data. Furthermore, they take into account
the target HW equipment as well.

The main purpose of this master thesis was to re-design the fault injector frame-
work to optimally perform with the DNNs architectures. It has been exploited
the injections of permanent faults and transients faults. The obtained results are
extremely great in terms of frameworks optimization. The overall simulation time
speed up is greater than two times than the old framework for the permanent fault
simulation instead, the transient fault simulation time is correlated with the HW
layer under test. The only drawback lies on the permanent fault injector which
requires a huge amount of memory and computational power depending on the
DNN size.

The experimental results shown two important aspects: The effectiveness of
the novel fault injector frameworks and the incapability of the embedded HW,
bonded with the DNN software design, to be in most of the cases immune with
respect to the faults. Indeed, more than 80% of the cases results to be a Silent
Data Corruption faults and hang faults. Moreover, there are not masked faults.
Therefore, the system with the injected faults wasn’t able to exploit it’s peculiarity
of data redundancy and masked the error. Besides, transient faults were expected
to be less critical since, only one layer at the time was hit by the faults. Instead,
the transient faults have more or less a similar faults distribution compared with
the permanent faults.
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Conclusion

As specified, this technology would be use in safety-critical fields application.
However, even if has been conducted non-exhaustive simulations, the experimental
results are not promising. From the obtained results it possible to say that: the
system based on the NN needs only a fault, permanent or transient, to be untrust-
worthy and endanger human beings. For this reason, the HW and SW co-design
needs to be improve or change.

Since, the faults injectors haven’t been used extensively, an immediate future
work can be a detailed faults injection of all the units within the SoC. The muliplier
of the Core 0 has been the target of the fault injection campaign because it is the
most used unit. Anyway, other units are largely use during the inference, as the
ALU and the DOTP unit. So, with the new faults injectors framework, it will be
possible to error-wise characterize the system behavior of the system inferences
identifying the most critical units. This type of analysis can help the engineering
designer to choose the most error resilient HW, or try to improve the the HW and
SW co-design.
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Appendix A

Code: How to use

PERMANENT FAULT FRAMEWORK

The NN’s layers are divided in 7 folders: test1, test2, test3, test4, test5, test6,
test7. Each folder corresponds to a layer of the NN.

The framework is composed by the following files:

• Principal file: python_inference.py

• Functions file: function.py

• Binary Dataset file: t10k-images-idx3-ubyte

The framework make use of the following files to load the information of the NN
and to extract the computed data from layers output:

• Conv*_weight.txt

• Conv*_Weight.txt

• Fullyconnected_weight.txt

• Fullyconnected_Weight.txt

• Conv*_mem8.txt

• Maxpool*_mem8.txt

• test1/build/pulp/tcl_files/inj_bak.txt

The file inj_bak.it contains the faults to be injected. The framework starts
whenever the Python file python_inference.py is launch. The principal parameters
to set are the following:

• Number of images to compute: Number_of_inference

• Number of faults to injects: Number_of_faults
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TRANSIENT FAULT FRAMEWORK

The NN’s layers are divided in 7 folders: test1, test2, test3, test4, test5, test6,
test7. Each folder corresponds to a layer of the NN.

The framework is composed by the following files:

• Principal file: Transient_NN_MNIST.py

• Functions file: function.py

• NN structure file: mnist_net.pth

• Dataset file for pythorch: MNIST

• Binary Dataset file: t10k-images-idx3-ubyte

The framework make use of the following files to load the information of the NN
and to extract the computed data from layers output:

• Conv*_weight.txt

• Conv*_Weight.txt

• Fullyconnected_weight.txt

• Fullyconnected_Weight.txt

• Conv*_mem8.txt

• Maxpool*_mem8.txt

• test1/build/pulp/tcl_files/inj_bak.txt

The file inj_bak.it contains the faults to be injected. The framework starts
whenever the Python file Transient_NN_MNIST.py is launch and conda enviroment
is set. The principal parameters to set are the following:

• Faulty layer under test: faulty_layer

• Number of images to compute: Inference_vector

• Number of faults to injects: Number_of_faults
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