
POLITECNICO DI TORINO

Department of Control and Computer Engineering
Master of Science Degree in
Mechatronic Engineering

Master Thesis

Robotic arm pick-and-place tasks
Implementation and comparison of approaches with and without

machine learning (deep reinforcement learning) techniques

Supervisor
prof. Marcello Chiaberge
Co-supervisors:
Enrico Sutera
Vittorio Mazzia
Francesco Salvetti

Student
Alessandro Aiello

id: 256673

Academic year 2019-2020

Abstract

A robotic arm is nothing more than a mechatronic structure inspired by the conforma-
tion of the human arm and capable of performing various tasks. The ability to perform
tasks, in relation to the “hand” that is given, makes robotic arms very versatile; they
can be programmed to perform any task a human arm can perform, however grasping
objects is certainly the most interesting and requested.

Pick-and-place in general is one of the most complete tasks that can be required of
a robotic arm; although it may seem a trivial and immediate gesture for a man, for a
robot it turns out to be a very complex task, it is not a coincidence that its complexity
makes it a task well suited for studies and research.

The intrinsic multidisciplinary nature of the field of robotics makes it suitable for the
integration of techniques and knowledge from all parts of engineering and science, this
leads to the introduction of one of the most profitable applications in this sector: the
artificial intelligence (AI). The discussion focused on the concept of machine learning
(ML): branch at the base of AI, union of several disciplines such as computer science
and mathematics among all, which allows an entity to learn autonomously.

The techniques for pick-and-place tasks have changed a lot over the decades, the
aim of this thesis is to use a unified presentation of two approaches to deal with these
tasks, first using the state of the art of the legacy of a so-called “classical methodology”
(i.e. not including modern AI techniques), and secondly, instead, the same problem is
addressed by treating the state of the art of the latest ML techniques for these types
of actions.

As regards the first approach, ROS framework with the MoveIt platform, Gazebo
simulator and RViz visualizer were chosen, in order to implement the code and func-
tionalities necessary both to perform a complete simulation of the arm and to allow
integration on a real machine. Concerning the second approach instead, the reinforce-
ment learning (RL) paradigm was exploited, specifically deep RL algorithms have been
used because they are considered the most suitable and efficient based on research in
the field; for this purpose, Gym (with MuJoCo simulator), Stable Baselines and RL
Baselines Zoo toolkits were used to work with the “DDPG + HER” algorithm, which
was in turn implemented through TensorFlow.

The robotic arm used is that of the Fetch Robotics’ Fetch robot.
The author has chosen to organize the work on the basis of a rather widespread

definition of the term “robotics”, that is “intelligent connection between perception
and action”; therefore, with this meaning, it is necessary that the robot perceives,
reasons and acts. Precisely in this vision, the study and the two approaches refer to
the part of the so-called “intelligent connection”, specifically to the implementation of
the reasoning entity: the motion planning system.

The results of the thesis work are the implementation of the two robotic program-
ming approaches described above and the comparison of their peculiar characteristics.

List of Illustrations

Figures
1.1 Closed loop (feedback) control block scheme 13
1.2 Schematic comparison between MCU and SoC 14

3.1 Fetch Robotics Fetch Mobile Manipulator 24

6.1 High level system architecture diagram of MoveIt 38
6.2 MoveIt move_group node architecture diagram 39
6.3 Gazebo starting window with environment model 44

7.1 Pick-and-place phases in Gazebo simulation 46
7.2 Trajectories for left and right fingers joints 48
7.3 Positions and velocities curves for left finger 51

8.1 Machine learning paradigms scheme . 58
8.2 Reinforcement learning general block diagram 60

9.1 Key elements of a Reinforcement Learning problem 62
9.2 Generic fully connected feedforward deep neural network 70

10.1 OpenAI Gym FetchPickAndPlace environment on MuJoCo 77

11.1 Agent execution on MuJoCo FetchPickAndPlace environment 80
11.2 Curves extrapolated from the behavioral analysis of the agent 83

Tables
3.1 Fetch robot arm and gripper specifications 24

11.1 Behavioral analysis of the agent . 81

B.1 Acronyms used in the document . 96

2

Contents

List of Illustrations 2

Thesis Structure 6

Introduction 9

Summary 9

1 Intelligent Connection 11
1.1 Motion Planning . 11

1.1.1 Trajectory Planning . 12
1.1.2 Collision Avoidance . 12

1.2 Motion (and Force) Control . 12
1.3 Model . 12
1.4 Processing System . 13

2 Perception and Action 17
2.1 Sensors . 17
2.2 Vision . 18

2.2.1 Computer Vision . 18
2.2.2 Machine Vision . 18
2.2.3 Robot Vision . 18

2.3 Actuators . 19

3 Common Info to Both Approaches 21
3.1 Pick-and-Place . 21

3.1.1 Grippers . 21
3.1.2 Task Phases . 22

3.2 Fetch Robot Manipulator . 23

3

I Approach Without Machine Learning 25

Summary 27

4 Introduction 29
4.1 Teaching by Showing/Demonstration 29
4.2 Robot-Oriented Programming . 30
4.3 Object-Oriented Programming . 30

5 State of the Art 33
5.1 ROS . 33

5.1.1 RViz . 33
5.1.2 rqt . 34

5.2 Gazebo . 34
5.3 MoveIt . 34

6 Work 37
6.1 Moveit Robot Configuration Package 37

6.1.1 Configuration Folder . 38
6.1.2 Launch Folder . 41

6.2 Fetch Pick-and-Place Package . 42
6.2.1 Launch Folder . 43
6.2.2 Models Folder . 43
6.2.3 Scripts Folder . 43
6.2.4 Source Folder . 44

7 Conlusions 45
7.1 Results . 45
7.2 Future works . 49

II Machine Learning Approach 53

Summary 55

8 Introduction 57
8.1 Supervised Learning . 58
8.2 Unsupervised Learning . 59
8.3 Reinforcement Learning . 59

9 Deep Reinforcement Learning Theory 61
9.1 Key Elements . 61

9.1.1 Environment . 61
9.1.2 Agent . 63

9.2 Methods Classification . 65

4

9.2.1 Tabular or Approximate Solution 65
9.2.2 Value-Based or Policy-Based . 66
9.2.3 On-Policy or Off-Policy . 67
9.2.4 Model-Based or Model-Free . 67

9.3 Deep Learning in Reinforcement Learning 68
9.3.1 Artificial Neural Networks . 68
9.3.2 Deep Learning in Action-Value Methods 70
9.3.3 Deep Learning in Policy Gradient Methods 71

10 State of the Art 73
10.1 Multigoal Reinforcement Learning . 73

10.1.1 Dense and Sparse Rewards . 73
10.2 TensorFlow . 74
10.3 OpenAI . 75

10.3.1 Gym . 75
10.3.2 Goal-Based Environments . 75
10.3.3 Hindset Experience Replay . 76
10.3.4 Baselines . 77

10.4 Stable Baselines and RL Baselines Zoo 78
10.5 MuJoCo . 78

11 Conlusions 79
11.1 Results . 79
11.2 Future works . 84

Conclusions 87

12 Comparison 87

Appendices 93

A Hardware and Software Setup 93

B Acronyms 95

Bibliography 97

5

Thesis Structure

The document is divided into parts.

1 Introduction: in order to have a basis on which to structure the considerations
and topics covered in the following parts, a general introduction on the main con-
cepts of robotics (with specific considerations on manipulators) is made, defining
separately the components that allow the robot to perceive and act, as those that
act as a connection between the two, in particular the motion planning system;
the part ends with other information and knowledge common to both approaches.

2 I - Approach Without Machine Learning: with reference to the “thinking”
system (the motion planning one) of the machine, detailed analyzes are carried
out on the approaches considered standard, the state of the art is described, the
practical work carried out and finally conclusions are given on what has been
done.

3 II - Machine Learning Approach: the topic is treated with a scheme similar to
that described in the previous part but from the point of view of a machine learn-
ing approach, in addition there is also a chapter for a recap on the main notions
useful for the purposes of the thesis, regarding the theory on deep reinforcement
learning.

4 Conclusions: short concluding part to dedicate a specific space to the comparison
between the two approaches previously described.

5 Appendices: used to avoid overloading the reading with extra material and to
insert specific or technical information that does not concern a specific part.

Below it is possible to find a brief description of the appendices present.

A Hardware and Software Setup: a register of the system configuration and software
(versions and installation way) used.

B Acronyms: the Table B.1 with the acronyms used in the document sorted alpha-
betically

In addition, the first three parts show an introductory summary in order to give a gen-
eral presentation, listing the chapters and describing them briefly for a better overview.

6

Introduction

7

Summary

In the literature there are various functional schemes and models that describe the
overall system of a robot (or specifically a manipulator), but later a personal analysis
of the actors involved on the expected needs for the introduction of the work will be
proposed.

A robotic system can be seen as an “intelligent connection between perception and
action”[18], and it is precisely on this principle that the author wants to structure the
work; in this part the subsystems that allow the machine to perceive and act will be
introduced, but even more attention will be given to those that “intelligently” connect
them.

The first part intends to introduce the reader to the methodology chosen for the
entire thesis, showing the entire system with which deal from a broader point of view
(to give a general knowledge of what is “behind” a robot), but highlighting the section
of this whole system that is the protagonist of the work carried out, which as will be
repeated later is the motion planning system.

This because following the state of the art and the evolution of robotics in the field
of programming applied to the latter, the direction taken is that of a modular work
protracted at the high level of the tasks themselves and not at the lower levels of the
subsystems that in practice allow their realization. For this reason, as will be clarified
in detail below, the comparison takes place at the level of pure task programming and
therefore at the level of motion planning.

The above is discussed in the first two chapters, while the third and last chap-
ter shows other information and knowledge common to both approaches, for example
introducing the manipulator chosen or explaing in detail the main characteristics of
pick-and-place (and of tools with which it is carried out), characteristics of the task
and not of the approach used to achieve it.

9

10

Chapter 1

Intelligent Connection

In this first chapter we will start from the components that provide the “intelligence”
to the system, allowing to connect the elements of perception and actuation.

Precisely for the reason described above it was decided to use a top-down approach,
starting from what is the objective required by the programming of a robotic arm,
that is, the completion of a task, this can only be done by making the robot perform
a movement, using a generic term. Consequently, using an essential description, the
purpose, when treating manipulators, turns out to be really the “simple” execution of
a desired movement, all the complexity results in how this movement is carried out.

Before continuing, however, in this introductory chapter it is necessary to make an
essential assumption: controllers are not devices in which there is actual reasoning,
they do nothing but give a signal to make the system follow it; consequently this doc-
ument will conventionally consider the system designed to implement the “intelligent”
connection between perception and action, as divided into two subsystems, that of real
reasoning (i.e. planning) and that of controlling.

Precisely for this reason, as already mentioned previously, the entire work and con-
sequently the approaches studied, are all to be understood at the conceptually highest
level of the robotic system, namely that of the “heart” of the machine: the motion
planning.

1.1 Motion Planning

In order to carry out the desired movement it is essential to introduce the concept
of motion planning. This term can be explained by breaking it down into two parts:
trajectory planning and collision avoidance.

It should be noted that this subdivision is fictitious and is introduced only for
simplicity of explanation, in reality the two subsystems work together and can be
considered a single entity.

11

Intelligent Connection

1.1.1 Trajectory Planning
The trajectory planning process is responsible for generating the reference inputs to the
motion control system which will in turn make the manipulator execute the required
trajectory. Trajectory means not only the path but also the speed and accelerations
with which it is carried out.

The trajectory can be of a point-to-point type or a sequence of points, clearly the
second case is the more complex one and is nothing more than a more complete gen-
eralization of the first, the trajectory thus described serves to define time constraints
necessary for the completion of more complex tasks, or to appropriately avoid collisions.

1.1.2 Collision Avoidance
Collision avoidance, on the other hand, refers to the subsystem which, by means of
information on the external environment and on the structure of the manipulator,
allows to verify and identify collisions between the two and between the last one and
itself, providing the information necessary to avoid them.

1.2 Motion (and Force) Control
As mentioned earlier when talking about trajectory planning, there is a system that
takes care of taking the information on the trajectory as input and generating a signal
that, through appropriate components called actuators, allows the robot to make a
movement; this system is the control system.

The motion control is carried out by means of special devices known as controllers,
which take as input the reference given by the motion planning system and provide in
output, through an appropriate control law, the electrical command signal necessary
to drive the actuators that physically produce movement. The control technique used
is the closed loop one (Fig. 1.1), this because the system output signal is fed back to
the controller input allowing a more stable and dynamic control.

Depending on the task required, the control can be carried out in various ways,
based on what has been said previously regarding the trajectory, the need for a control
system not only of the position, velocity or acceleration but also of force (or torque) is
evident.

1.3 Model
This section does not introduce an “intelligent element” unlike the previous ones, but
clearly, in order for the above to work, it is necessary to introduce a mathematical
model, which models the manipulator in order to be able to describe and predict its
static and dynamic behavior. To do this, we start from the mechanics of the robotic
arm: from a structural point of view, a robotic arm is nothing more than a chain of
alternated links (rigid bodies) and joints (articulations).

12

1.4 – Processing System

Figure 1.1: Closed loop (feedback) control block scheme
[credits: wikipedia.org by Orzetto]

The mathematical models of the manipulators allow us to relate the movement of
the end effector (the last link of the arm) with that of the joints, specifically kinematics
equations relate their positions, while differential kinematics equations do so for the
speed; these equations therefore do not take into account the forces that cause the
movement but are useful (the latter specifically) to describe the relationship between
the forces applied to the end effector and the torques to the joints in a (static) equilib-
rium condition. To relate the accelerations, instead, dynamic equations are used (which
also take into account the physical characteristics of the manipulator), which unlike
the previous ones describe the relationship between the forces on the end effector and
the torques to the joints in precisely dynamic conditions.

Since this thesis is not a treatise on robotic arms, the concepts of statics and dy-
namics will not be explored in depth, however it is necessary to know for the purposes
of the analysis that above all the latter plays a fundamental role, as it is useful both
for the design of control algorithms and for carrying out simulations.

The three equations mentioned can be used in direct or inverse form, the latter
being the most important form, as for the first two specifically it allows, given a desired
trajectory for the end effector, to obtain the constraints on the positions and speed to
the joints to get it; for the last equation, on the other hand, it allows to obtain the
torque required for the joint in order to satisfy constraints regarding accelerations in
the trajectory. Consequently, the inverse forms are also used for the control in order
to respect the respective constraints required on the trajectory.

In the design phase, the mathematical models of the arm are already defined, be-
cause it is through these models (the static and dynamic ones mentioned previously)
that, based on the purpose of the arm, its parameters and physical characteristics such
as materials for the links and for joints (friction, etc.), mass of components, actuators
to be used, etc. are determined.

1.4 Processing System
Even this system, as was the case in the previous section, does not identify an entity
that is part of “intelligence” from a conceptual point of view, but rather shows how to

13

https://en.wikipedia.org/wiki/File:Feedback_loop_with_descriptions.svg
https://commons.wikimedia.org/w/index.php?title=User_talk:Orzetto~commonswiki&oldid=158157641

Intelligent Connection

implement the above in practice. The entity in question on which the due considera-
tions will be made is the processing system: that is the computers (to use a generic
term) that perform both the normal computational operations of the software, for mo-
tion planning in general but also other specific algorithms for its correct functioning
(such as those for vision for example), and those of the control system.

To this end, every type of computer can obviously be used, from workstations to
main frames, from PCs to smartphones, based on the purpose, however, it is necessary
to find the best trade off between performances, costs, computer size, required energy,
and take into account of other factors such as dissipated heat, weight (in any type
of robotic system, and manipulators are no exception, in variable percentages and
according to needs, the processing system can be distributed partly on the machine or
partly distant from it), etc.

Given the technological development since the advent of the first manipulators,
one of the main choices on which the calculation system has fallen has been that of
embedded systems.

The types of embedded systems used are mainly two (without analyzing their advan-
tages and disadvantages) (Fig. 1.2): microcontroller (MCU - Micro Controller Unit)
and system on chip (SoC), both derive from the microprocessor, but while the former
refers to a single monolithic device that integrates CPU (or in this case microcontroller
unit), RAM, I/O peripherals and other components depending on the purpose (Ar-
duino for example is a hardware platform equipped with a microcontroller), the second
refers to a board on which the necessary components are discreetly soldered and only
some of them are integrated into the CPU (in this case: actual microprocessor) (Rasp-
berry PI for example is a single board computer whose microprocessor is mounted on
a system-on-chip).

Figure 1.2: Schematic comparison between microcontroller and system-on-chip
[source: slides of PoliTo Model-Based Software Design course by Massimo Violante]

So as far as the control system is concerned, microcontrollers are the cheapest device
and have sufficient resources to implement an ad hoc controller, for these devices special
OSs (Operating Systems) have also been developed to meet the need for particularly
reliable real-time control, their small size and the reduced amount of energy required
allow direct integration on the machine. It is important to specify that the above
applies to almost all fields of applications except for industrial robotics, in which,

14

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01OUZQW&p_a_acc=2019&p_header=S&p_lang=
https://didattica.polito.it/portal/pls/portal/sviluppo.scheda_pers_swas.show?m=03605

1.4 – Processing System

given the needs, the most successful device so far remains the PLC (Programmable
Logic Controller).

Initially they were programmed with low-level languages, nowadays a controller
can be comfortably designed with special software such as MATLAB, also capable of
converting the project into high-level code for testing and direct integration.

As for everything else, i.e. the thinking part on which all the other algorithms run,
microcontrollers do not lend themselves to the purpose and it is necessary to opt for
systems with more performing microprocessors. Historically every type of computer
has been used for this purpose, with the first technologies we found ourselves in situ-
ations where the computer was even larger than the robot to which it was connected;
currently with the great technological development both in terms of computer size
and computational performances, but also with regard to the power of wireless and
non-wireless communications, the possible approaches are practically infinite.

Currently with regard to this aspect of the processing system, the embedded systems
of the type of system on chip lend themselves well to this purpose, being equipped with
operating systems comparable or even the same as those present on personal computers,
they allow to have in all respects a real on-board computer mounted on the machine.

15

16

Chapter 2

Perception and Action

In this chapter, instead, the second part of the statement “intelligent connection be-
tween perception and action” will be treated, so the sensors (with particular attention
to the vision system) that deal with perception and the actuators that perform the
actions will be introduced.

2.1 Sensors

In addition to the actuators, there are other components that play a fundamental role
in the success of the movement: the sensors.

According to the type of control, the output signal that is reported to the input
can be the same position, velocity or acceleration of the joints obtained through classic
sensors, or the respective data referring to the end effector obtained through kinematic
algorithms or, according to the applications, always via sensors.

In the second case, always respecting application constraints, it is also possible
to use cameras which, also operating thanks to sensors (interchangeably called vision
sensors or image sensors), provide information (visual feedback) on the actual action
performed by the actuation system in response to the command given by controllers;
this topic will later be resumed by talking about the vision system, specifically visual
servoing.

In all cases, however, a sensor known as transducer is further required which ade-
quately converts the output signal so that it can be reused at the controller input.

Sensors that can be proprioceptive (on joints): position, speed, acceleration/torque
to name a few, or exteroceptive: force and tactile (e.g. useful for grasping), proximity,
range, vision, etc., are of importance primary in the field of robotics and automation in
general, so much so that despite the hundreds of typologies already conceived, research
is still very active in the field.

17

Perception and Action

2.2 Vision
As will be explained later, in the work it will be assumed to be aware of the pose
and shape of the object and therefore the whole phase concerning obtaining this in-
formation is not considered, however it is appropriate to summarize the way in which
it is obtained, process which passes through the use of cameras (and therefore vision
sensors).

Although this topic would concern sensors in a certain sense, the author has chosen
to dedicate a special section for greater completeness, and to be able to introduce and
justify some machine learning techniques that have applications in this area and that
will be treated in the specific Part II.

Although this system can be considered of secondary importance, as in fact not
essential, unlike the others, for an operation that can be defined as sufficient of a
robotic system, it certainly completes its functionality by showing one of the aspects
that most distinguish the simple “stupid” automation from actual robotics.

While the computer vision describes a more scientific than engineering concept,
terms that will be presented after refer to specific technical applications of the generic
field of it.

2.2.1 Computer Vision
Computer vision (CV), with which term refers precisely to vision systems, is a field
that groups several subdomains such as object recognition, 3D pose estimation, motion
estimation, visual servoing, etc.; it deals with obtaining information from 2D or 3D
images and videos in the most generic possible conception.

OpenCV is currently the main library for the implementation of CV algorithms.

2.2.2 Machine Vision
Machine vision (MV) exploits CV paradigms to obtain information from images, in
order to implement specific applications in the industrial field for inspection, process
control, and robot guidance, and refers to both software and hardware technologies.

2.2.3 Robot Vision
Robot vision (RV), although as a similar term and sometimes usable interchangeably
with MV, refers to the use of images to output not so much information as actual
actions, concerns the specific field of robotics and visual servoing is an example of it.

Visual Servoing

Visual Servoing (VS, also known as vision-based robot control) is responsible for con-
trolling the movement of a machine through a feedback system based on “visual”
information (visual feedback), it is the same concept already introduced when talk-
ing about sensors, the feedback can take place through the information on the actual

18

2.3 – Actuators

action carried out by the actuation system compared to the command given by the
controllers.

The VS can be implemented through different approaches based on the arrangement
between the robot end effector (hand) and the camera, the following are the two main
ones:[3]

• Eye-to-hand (or end-point open-loop control): fixed camera in the environment
that observe target and hand;

• Eye-in-hand (or end-point closed-loop control): the camera, attached to the hand,
observe the relative position of the target.

ViSP (Visual Servoing Platform) is the best library for visual tracking and visual
servoing that can also exploit OpenCV.

2.3 Actuators
The term actuators usually refers to motors as components that conceptually act di-
rectly on the joints, it should however be noted that these are part of a broader system
called actuating system, which although always referring to the joints is composed of
other elements also not directly connected to them, but essential for the functioning of
the overall system.

There is no unambiguous definition on what specifically this system may contain
beyond the motors, generally some standard components are power supplies, power
amplifiers and transmission systems.

Motors are referred to with the term servomotors, which indicates actuators with
certain characteristics that make them suitable for use in a closed-loop control system;
they can be electric, hydraulic or pneumatic but the most used are undoubtedly the
electric ones.

The discussion will be carried out at a higher level than the actuators so no mention
will be made about the electric drives and the topic will not be further treated.

19

20

Chapter 3

Common Info to Both
Approaches

In this chapter information and knowledge, concerning the task required specifically
and in practice, common to both approaches, will be collected.

3.1 Pick-and-Place
Since this discussion is focused on pick-and-place, a brief specific introduction will also
be reserved for this topic.

3.1.1 Grippers
Grippers are none other than the end effectors used for pick-and-place tasks and specif-
ically for grasping (other end effectors can be different types of tools depending on the
task to be performed); they can be classified into four classes:[13]

• impactive: jaws or fingers (two-fingers or multi-fingered grippers) which physically
grasp by direct impact, a mechanical force is directly applied on two (or more)
opposite points on the surface of the object;

• astrictive: attractive forces applied only on one point or on the surface of the
object (for example by vacuum, magnetoadhesion or electroadhesion);

• ingressive: pins or needles are used to physically penetrate, deforme or permeate
the surface of the object;

• contigutive: after direct contact adhesion force takes place (for example with glue,
freezing or surface tension).

It is anticipated that the discussion, as will be shown in Part I of the work, fore-
sees the use of grippers belonging to the first class, namely impactive gripper, and
specifically two-fingered gripper will be used.

21

Common Info to Both Approaches

3.1.2 Task Phases
Then 4 phases will be shown in which the task can be divided: pre-grasp manipulation
(preparation), grasp acquisition (pick or grasping), post-grasp transport (holding) and
goal (place or releasing); in brackets are indicated names from the point of view of the
grasp.

Based on the dynamism of the environment, the pick-and-place can be statically
predefined by the motion planning system a priori, or be adapted in real-time on the
basis of information obtained from appropriate sensors.

Pre-Grasp Manipulation

The gripper of the manipulator from an initial pose (by pose means position and
orientation) is placed in a suitable pose to prepare to pick up the object, the pose
depends on the pose and shape of the object, the type of gripper, the presence of any
obstacles or even the need to respect any constraints.

The variables just described lead to the definition of appropriate points of contact
between the gripper and the object, which on the basis of what has been said can be
classified as follows[13]:

• point contact

• line contact

• surface contact

• spherical contact

• two-line contact

Grasp Acquisition (Pick)

It is actually the phase in which the gripper engages the target, it is the most important
phase, as well as the most delicate and complicated one; for example, with regard to
force control, its importance in this phase should be emphasized. In general, real
objects are not rigid non-deformable bodies, so necessary attention must be paid to
controlling the joints in order to preserve the structure of the object to be gripped
without damaging it.

With reference to the type of gripper treated, this phase involves the sufficient
opening of the gripper fingers to be able to grasp, and their closure to be able to
consider the object grasped.

In the literature, two main requirements for the containment of the object in the
grasp have been conventionally identified and defined: form closure (or form-fit) and
force closure (or force-fit)[17].

The first occurs when the closure is due to the respective geometries of the gripper
and object, in this case a casing condition occurs for the object which is immovable; this
closure reduces the force required for grasping because, as mentioned, it is guaranteed

22

3.2 – Fetch Robot Manipulator

more by the geometry than by the force applied. As an example, it is possible to
imagine to grasp an apple using the whole hand with the fingers that wrap the apple
to form a cage that holds it totally firm.

The second case refers to the situation in which the forces applied, through friction,
allow to maintain the grip on the object. In this case, to get an idea of the concept,
you can imagine holding a pen with a firm grip with two fingers.

Clearly the first case implies the second but not vice versa.
In the discussion we will use a two-finger gripper that grasp in the most general

way, i.e. in force closure and not in form closure.

Post-Grasp Transport

Basically the grasping task is not an end in itself but has the purpose of varying the
pose of an object from the initial one to a final one and then finally accomplish a goal.

This phase does not require additional explanation as it is a simple movement of the
gripper (with the object gripped) from the point of view of the action to be performed.

Goal (Place)

By goal we mean the achievement of the goal, which for a task of this type involves the
controlled placement of the object to be released, bringing the gripper into an “open”
pose, and the possible repositioning of the arm in a predetermined pose.

In other cases, i.e. in cases where the task is not only the pick-and-place, but the
object to be taken is considered a tool with which the arm must perform an action, we
can mean an action goal more or less complex based on what is precisely the ultimate
goal of the task.

3.2 Fetch Robot Manipulator
The manipulator chosen is that of the Fetch Mobile Manipulator[20] (Fig. 3.1) from
Fetch Robotics, having 7 DOF (Degrees Of Freedom) and a two-fingered parallel grip-
per (with compatibility with external grippers).

The technical specifications of the arm and gripper of the Fetch robot are summa-
rized in the Table 3.1

Given the characteristics of the Fetch robot, the author of this thesis considers it as
the best robotic system for research and service robotics, the manufacturing company
has invested in ROS support as the main factor and it enjoys excellent integration with
MoveIt (the ROS library used in this work), as well as possessing valid documentation,
furthermore, its functions, of which the arm is only a part, make this same work suitable
for various integrations with future projects.

23

Common Info to Both Approaches

Figure 3.1: Fetch Robotics Fetch Mobile Manipulator [credits: fetchrobotics.com]

Table 3.1: Fetch robot arm and gripper specifications [source: fetchrobotics.com]

7-DOF arm
Payload (at full extension) 6 kg (13.23 lbs), 5 kg (11.02 lbs) with gripper installed
Arm length to gripper mount 940.5 mm (37.25 in)
Max end effector speed 1.0 m/s (2.23 mph)

Gripper
Max grasp force 245 N
Max gripper opening 100 mm (3.94 in)
Wrist max pickup 6 kg (13.27 lbs)
Grip weight 1kg (2.20 lbs)

24

https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator/
https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator/

Part I

Approach Without Machine
Learning

25

Summary

In this second part a “standard” approach (so without considering modern machine
learning techniques) in carrying out robotic tasks will be dealt with, and specifically, as
regards the chapters dealing with the work performed, pick-and-place tasks performed
by manipulators.

A first introductory chapter, reconfirming in detail the concepts seen previously,
shows the evolution of programming techniques to explain the more modern one to
which development in the robotics field is leading.

The second chapter shows the current state of the art by describing the main frame-
works and softwares that have widely established themselves; furthermore, through the
latter, it highlights the main points of the workflow that has become standardized in
the sector and which will later be shown in the work carried out.

The work done is described in chapter three, which explains not only the workflow
carried out by the author but also the relevant functioning of the entities shown in the
previous chapter.

In the final chapter the results of the work completed will be shown and due con-
siderations will be made, while a special section is reserved for ideas and advice on
possible future work and/or improvements.

27

28

Chapter 4

Introduction

Starting from the model and thus obtaining a manipulator that works on paper, it is
necessary to take care of its programming in order to implement its reasoning system,
i.e. the one that through the information obtained from the appropriate entities, given
an assigned task, is capable of providing the information necessary for its completion
to all the entities underlying: the motion planning system.

As already said, this thesis will show the difference between two approaches from
the point of view of robot programming, where programming refers precisely to the
reasoning part and therefore to all the code that decides the actions and how they must
be carried out (not so much from the point of view of the components that actually
perform them), to this end we can define three types of programming techniques that
have marked the history of robotics; later they will be briefly described (without going
into detailed comparisons on the advantages and disadvantages of each) in order to
show the changes from the first methodologies, focusing specifically on the evolution
of the latest techniques[18]:

• teaching by showing (demonstration)

• robot-oriented programming

• object-oriented programming

4.1 Teaching by Showing/Demonstration
Having the arm physically available, an operator guides its movements according to
the task to be performed, in this way the sensors read the data on the joints during the
movement and they can be used several times to perform the movement again inde-
pendently (without the presence of the operator) to perform the given task repeatedly.

The disadvantages of this technique, which lends itself only to the programming
of a “stupid” automaton, capable only of repeating the same movements that it has
been taught, are evident, bringing this methodology to be outclassed and supplanted
by the two following; this at least up to the most recent research, where (as will be

29

Introduction

mentioned in more detail in the introduction on the Part III) with machine learning
(ML) techniques it has been possible to discover new potentialities of this technology
making it interesting and competitive for many purposes (leading to define it, in a
more appropriate way, learning by showing/demonstration).

Furthermore, in modern times, both with but also without the use of ML techniques,
new approaches have been developed that involve the use of simulations (through
special simulators) and gestures in order to program the movements of the machine in
a more efficient way that what was done before.

It should be emphasized with this approach that part of the concept of motion
planning fails, it is a limit situation from simple pure automation to true robotics,
apart from reading from sensors, saving these data and sending them to the control
system when necessary, all the little computational load resides in the microcontrollers,
which perform their inevitable essential function of supplying the command signal to
the actuators.

4.2 Robot-Oriented Programming
This is the first real form of programming introduced (before the “programmer” was
nothing more than an operator, now the programmer must have computer skills and
knowledges in the field of programming languages), both from the conceptual point of
view of the approach and from what regards the programming languages actually used,
this methodology tries to tackle the problem at ever higher levels in order to abstract
the hardware as much as possible.

In this context, a real writing of functional software takes place, where in several
programs every function required by the machine is coded in addition to the control
ones alone. However, knowledge of the hardware is partly necessary, programming is
generally entrusted to the arm manufacturers themselves or to other companies that
tackle the problem on behalf of the former, based on the same hardware documentation
provided by the manufacturers.

In most cases, ad hoc languages are developed, often proprietary, with the conse-
quent writing of non-free code suitable to work only for that specific arm or for the
arms of that given manufacturer.

Simulators began to spread, software also often written by the same manufacturers
companies (for internal purposes), which emulate real-world physics through appropri-
ate mathematical models, and which through models of the arm can test its functioning
without actually having the physical manipulator.

4.3 Object-Oriented Programming
Abstraction is one of the basic concepts of object-oriented programming, well-structured
languages of this type allow you to write programs and real environments (frameworks)
that give the programmer the ability to work in the most efficient way directly at the
task level and no longer at the level of single actions or elementary movements; the

30

4.3 – Object-Oriented Programming

purpose is to minimize the necessary knowledge of hardware, favoring the reuse of code
and developing modular libraries that allow the code not to be dependent on it.

This clearly describes a new programming paradigm, but does not exclude the
previous approaches, in which the writing of proprietary software continues to be the
first choice for many companies.

Not so much object-oriented programming, but the evolution of the world of robotics
itself which occurred at the same time, has led to the affirmation and spread of a
large number of simulators, both proprietary but above all open source, dynamic and
versatile, which lend themselves to use for various robotic systems to support research
and design.

31

32

Chapter 5

State of the Art

In this specific field of discussion, the state of the art does not translate into theoretical
research work but rather into the practical development of well-structured platforms,
frameworks and various softwares; consequently the focus is placed on actual program-
ming.

Based of the above, the main protagonists of the ecosystem of modern robotics will
be presented below.

5.1 ROS
ROS (Robot Operating System)[15] is an open source collection of frameworks for
robots development and programming, where the term “framework” refers to a struc-
ture that represents a support architecture for the design and implementation of soft-
ware, this structure takes shape in libraries and tools.

ROS provides an infinite and ever-growing quantity of packages to program robots
from every point of view, making an absolutely non-exhaustive example, one of the
most important is the ros_control[5] set of packages that allow interfacing with lower
level controllers.

Some of the most important aspects, as well as among the main ones that have led
to the affirmation of ROS, are the excellent documentation it enjoys, the frequent work
of maintaining and updating the official libraries, and not least the active community,
which in primis translates into forums and support spaces for users.

RViz and rqt are two of the main general purpose packages widely used in any
advanced ROS-based project.

5.1.1 RViz
RViz[9] is a 3D visualization tool with GUI (Graphic User Interface) natively supported
by ROS, it not only allows to view and analyze in detail any model of robotic system
or environment in which the latter is inserted, but also allows to acquire and reproduce

33

State of the Art

the data obtained from any sensor for which a specific module has been implemented
in ROS.

It is also highly modular as it allows the integration of any functionality simply by
adding the appropriate plugin, for example among these there is also one of MoveIt (Sec.
5.3), allowing operations and commands directly from the plugin interface, making RViz
a software with functionality that go far beyond just visualization.

5.1.2 rqt
rqt is a simple and lightweight ROS framework implemented in both Python and
C++ which acts as a graphical wrapper for a multitude of plugins; its purpose is to
facilitate as much as possible the development of complex projects by providing specific
functionalities (implemented through the appropriate plugins) through a GUI, and
performing functions that sometimes would be much more complicated and complex
through classic terminal commands.

5.2 Gazebo
Gazebo[10] is an open source 3D robotics simulator natively supported by ROS, it is
probably the most popular robotics simulator together with MuJoCo (discussed later
in the next part of this thesis) and certainly the most widespread and used of the open
source ones.

It is a complete simulator equipped with any necessary functionality, just to name
a few: it has its own format (the SDF - Simulation Description Format) for the de-
scription of robot models or environments, for which a large number of them are freely
available; it has a wide variety of plugins available and also allows the use of custom
developed ad hoc; it is equipped with several efficient physics engines according to your
needs.

In summary, Gazebo allows to all intents and purposes to simulate every aspect
of the real world in detail, from gravity to wind as regards the environments, from
the dynamics of the controllers to the behavior of the sensors (taking into account the
noises) as regards the robots, and from the distribution of inertias to friction for any
model in general, and these are just a few examples.

Such as for ROS, also Gazebo enjoys the characteristics of open source products,
having at its disposal a rich community and efficient support forums, as well as an
increasingly active development.

5.3 MoveIt
The state of the art regarding robot programming and specifically the implementation
of motion planning features is definitely MoveIt[6, 4]: “Easy-to-use open source robotics
manipulation platform for developing commercial applications, prototyping designs,
and benchmarking algorithms.” [source: moveit.ros.org].

34

https://moveit.ros.org/

5.3 – MoveIt

Although born for manipulators, now MoveIt is used by big brands such as Google,
NASA, Microsoft (just to name a few) for an ever-increasing number of robotic systems,
becoming a de facto standard. It consists of a series of ROS libraries and implements
functions perfectly integrated with the rest of the framework, it uses RViz visualization
software and Gazebo simulation software, the same ones natively supported by ROS; it
also has modules for the definition of tasks and a module entirely dedicated to grasping.

MoveIt essentially allows you to implement every functionality described above, from
trajectory planning to collision avoidance and sensor functionality (for 3D perception),
it also implements functionality for a further abstraction of the controllers, passing
from the one already provided by ROS (ros_control) by virtualizing a control to high
level based not on strength or position but on the trajectory itself.

35

36

Chapter 6

Work

Before starting it is necessary to make an assumption: as already mentioned, for sim-
plicity and to focus on the main purpose of the work, it is assumed of being aware of
the pose and shape of the object and therefore not consider the whole phase concern-
ing obtaining this information; furthermore, since the shape of the object is relevant
for grasping, it will be limited to objects of known geometric shape (parallelepipeds,
cylinders, etc.), specifically a cube was used.

The main focus of all the work is on MoveIt, consequently with Fig. 6.1 and Fig.
6.2 (on page 39) an introduction is made on its main concepts regarding its system
architecture and the central component of the whole framework: the move_group node;
in them you can find some of the notions discussed previously, and in the following
sections the main elements will be explained.

6.1 Moveit Robot Configuration Package
The use of a robot via MoveIt takes place by means of a configuration package that
follows the convention <robot_name>_moveit_config in the name.

Regarding the robotic arms with which MoveIt has already officially been used, on
the official website it is possible to have an updated list, however it should be empha-
sized that the framework has a package called Setup Assistant which allows, through
a practical GUI, to generate the standard configuration package for any robotic arm.
This is possible starting from the simple URDF (Unified Robot Description Format:
an XML file that describe all the elements of a robotic system in ROS) of the same
or from an eventual xacro (XML Macros: an XML macro language used to construct
more readable and modular URDF files) file which will be parsed automatically.

Later it is described the structure of this package to briefly analyze its components
in order to better understand the functionality of this environment; specifically, in a
standard version, there are two folders inside the package:

• config folder

• launch folder

37

Work

Figure 6.1: High level system architecture diagram of MoveIt [credits: moveit.ros.org]

6.1.1 Configuration Folder

This folder contains the actual robot configuration .yaml files, the only exception is the
SRDF (Semantic Robot Description Format) file which complements the information
provided by the URDF by adding tags for semantic (and functional for application

38

https://moveit.ros.org/documentation/concepts/

6.1 – Moveit Robot Configuration Package

Figure 6.2: High level system architecture diagram of the MoveIt move_group node
[credits: moveit.ros.org]

purposes) definitions besides purely physical ones.
Below are presented the configuration files in question referring to them on the basis

of the entity they configure.

Controllers

It lists the controllers and specifies their configurations for the robot, usually two sets,
one for the arm and the other for the hand (gripper); as explained above, working
MoveIt with trajectories, the first set describes controllers that perform actions of the
FollowJointTrajectory type, while the second generally presents controls with actions
of the GripperCommand type.

Fake Controllers

It lists fictitious trajectory controllers and specifies their configurations, these con-
trollers are used to carry out tests and display the behavior of the robot on RViz.
However, since they are not real, they cannot be used neither for an implementation
on the actual robot nor in simulation with Gazebo, this is because both the simulator

39

https://moveit.ros.org/documentation/concepts/

Work

and the arm model also emulate the controls by treating the entire system as a real
system.

They are listed here for completeness but for the reasons explained they are not be
used.

Joint Limits

For each joint it describes any possible constraints on minimum and maximum velocities
and accelerations.

Kinematics

Configure the kinematics for the robot, specifically it indicates the solver (the plu-
gin) to be used for the execution of the inverse kinematics algorithms and defines the
parameters, such as resolution and time constraints.

There are three solver plugins currently available:

• KDL (Kinematics and Dynamics Library) Kinematics Plugin

• LMA (Levenberg-Marquardt) Kinematics Plugin

• Trac-IK Kinematics Plugin

The latter is not yet fully integrated into the MoveIt system and requires separate
installation, of the first two the first has been selected as it is best supported, default
plugin used for MoveIt and indicated in the case of arms with more than 6 DOF.

Planner

It configure the motion planning planner.
MoveIt is equipped with various types of planners for motion planning:

• OMPL (Open Motion Planning Library)

• CHOMP (Covariant Hamiltonian Optimization for Motion Planning)

• STOMP (Stochastic Trajectory Optimization for Motion Planning)

• SBPL (Search-Based Planning Library) (full integration work in progress)

We will use the first with its default configuration, as it is the default in MoveIt,
complete, and which is suitable for most situations.

Sensors

Included for completeness but not used: vision sensor configuration file that uses Mi-
crosoft well-known Kinect as sensor.

40

6.1 – Moveit Robot Configuration Package

6.1.2 Launch Folder
This folder contains the essential launch files and some examples for starting the es-
sential features of the package.

Launch files are XML format files that, using the roslaunch tool, allow you to start
the master node (necessary for ROS 1 to work) and multiple nodes at the same time,
they can also manage the passing of arguments and the loading of parameters, possibly
also by calling additional launch files and thus generating a launch-tree.

Demo

It acts as a root for the tree of launch files that are called up in succession to start all
the necessary features (implemented in ROS nodes) in a modular manner and upload
all the necessary parameters to the ROS server. Examples of launch files it starts are
move_group.launch and moveit_rviz.launch.

Move Group

Main launch of the entire MoveIt system, starts the move_group node and, by recall-
ing the appropriate subsequent launch files, all the functionality (planning, trajectory
execution, and so controllers, and sensors) necessary for it.

Planning Context

It loads all generic configuration utility files such as URDF, SRDF and those on joint
limits and kinematics.

RViz

It starts the RViz software node by loading the moveit.rviz configuration file in which
to set the minimum basic settings for use with moveit.

Planning Pipeline

Two launch files: the first one is of service, with the only purpose of separately calling
up the launch file of the planning pipeline of the specific planner (in this case OMPL)
in a modular way; the second one loads all the parameters proper of the planner useful
for planning and the respective configuration file.

Trajectory

Load parameters such as trajectory constraints and call the controller manager (or
the fake controller manager) launch file to load the configuration file of the controllers
based on the one chosen.

41

Work

By default via the argument fake_execution in the demo launch file it starts the
fake controllers, but for this project this behavior is changed starting the launch file
that loads the configuration file for the real ones.

Controller Manager

It loads the controller configuration file to the parameter server.

Fake Controller Manager

Unused: it loads the fake controller configuration file to the parameter server.

Sensor Manager

As for the respective configuration file, this is also inserted only for completeness; it
starts and loads the sensor functionality by means of two launch files in a modular way.

6.2 Fetch Pick-and-Place Package
fetch_pick_place is the package that implements all the entities needed for the specific
task execution. It will be treated on the basis of the same hierarchical organization
used for the MoveIt configuration package, so for this purpose the folders contained in
it are listed below:

• launch

• models

• scripts

• src

Each of them will be explained below with attention to the functionality it provides.
It is only anticipated that the actual program, or rather, the programs that actually

perform the task, are contained in the scripts and src folders, this because the complete-
ness and versatility of MoveIt provide two interfaces (three if we also consider the RViz
plug-in) to control the robot: move_group_interface in C++ and moveit_commander
in Python; consequently the author, to show the approach in its entirety and evalu-
ate the different possibilities, has chosen to implement the task in both programming
languages.

In practice, the use of this package involves the launch through the launch-tree of all
the functionalities useful for the simulation (or possibly even the actual integration):
Gazebo, MoveIt, etcetera; while on another terminal the program (Python or C++) is
executed for the actual implementation and execution of the task.

42

6.2 – Fetch Pick-and-Place Package

6.2.1 Launch Folder
In this folder the launch files useful for the project are inserted, they are specifically
two: the first acts as the root of the launch-tree calling the launchers move_group and
rviz (if required) mentioned above, it also starts the second launch file present.

The latter is useful in order to simulate and control the real robot, it starts Gazebo
and all the models (robot and environment) necessary for the simulation, prepares the
robot for the execution of the task and loads the configuration file of the controllers to
the purpose of interfacing with the simulated/real ones.

Regarding this controller configuration file, a clarification must be made, it is not
the same one that refers to the controllers for MoveIt mentioned in the previous section,
but it’s the default configuration file used by ros_control, and that it was written to
interface with real controllers, regardless of the use of MoveIt, on the basis of the
interfaces included in the URDF for the purpose of integration with Gazebo.

What has been said about the interfaces included in the URDF is generally valid in
the vast majority of cases but it is not an absolute rule, in fact in the specific case of
the Fetch robot the URDF does not present any adaptation for the use of the model
in Gazebo, and the role performed by these components is implemented through an
appropriate script that configures the interfaces and takes care of making the simulation
consistent with a real execution.

6.2.2 Models Folder
This folder simply contains the models useful for simulating the task, the standard
conventionally provides that it refers only to the models of the environment and there-
fore does not contain the robot model which, when defined in the form of URDF, is
present in packages marked with syntaxes like <robot>_description provided in ROS
support repositories by manufacturers.

The standard format for models in Gazebo is the SDF, an XML type format that
already natively supports the complete modeling for the simulator in question without
the need for adaptations as for the URDF (for example via the <gazebo> tag), in fact
unlike the latter which is capable of describing in detail only entities at the “robot
level”, the SDF is much broader and allows description of models at the “world level”.

In the package in question the model SDF represents a parallelepiped that acts as
a table and a cubic block (with 5 cm long edges) placed above it (Fig. 6.3), both are
then placed in front of the robot when the simulation starts and then when all models
are loaded; in writing the file all the physical characteristics of the objects have been
implemented to simulate the task making it possible in a realistic way.

6.2.3 Scripts Folder
This is one of the two folders that contain the heart of the task execution, conventionally
programs written in scripting languages that do not need to be compiled are placed in
the scripts folders, for example in ROS projects in fact nodes and general codes written
in Python are present here.

43

Work

Figure 6.3: Gazebo standard starting window with environment model spawned

In the case of this specific package, the Python script py_pickplace.py implements
the task using the interface (moveit_commander) of the same programming language to
interface to the manipulator through the modules provided by MoveIt for the language
itself.

6.2.4 Source Folder
For this folder exactly what has been said for the scripts folder is valid (but with
the move_group_interface), with the only note that it is conventionally used for the
sources, and therefore for the programs that must be compiled, such as in this case for
the C++ code.

An interesting fact is that for this implementation of the task the author has chosen
to use, for demonstration purposes, particular definitions of ROS messages introduced
by MoveIt, namely Grasp msg and PlaceLocation msg. It codes inside, in a single block,
all the characteristics of the grasping and the placing, and allows the completion of the
task through these two single message which contain all the necessary information.

44

Chapter 7

Conlusions

7.1 Results
The simulation tests show that the arm is able to carry out the task correctly, grasping
the object, performing a post-grasp transport and then repositioning it in the same
previous point. To be exact this is what happens with the task implemented in Python,
as far as C++ is concerned, a bug with the PlaceLocation message for the placing phase
does not allow to complete the last phase and therefore the task in its entirety; this is
a MoveIt bug that the developers are aware of and for which a fix is planned.

The various phases of the pick-and-place task are shown on Figure 7.1: starting
from the initial position of the arm (a) up to a possible post-place retreat (f) following
the goal achievement. Furthermore, as a last action, after moving away from the object
the arm is programmed to return to its initial position.

The anomalous color of the robot textures is due to the fact that the manufacturer
of the arm have made available COLLADA (COLLAborative Design Activity, an in-
terchange file in XML format for 3D softwares) files generated for a previous version
of Gazebo.

In conclusion, through the rqt tool, it is possible to view the graphs of the joint
trajectories, both as regards the FollowJointTrajectory actions produced by the motion
planner and with which the controllers are controlled via the FollowJointTrajectory
interfaces, but also all the trajectories in general planned by the move_group node,
consequently, also the gripper actions of type GripperCommand for gripper control.

By way of example, the plots of the trajectories of the gripper joints have been
produced, having a more representative reading, so a qualitative analysis is made.

In figure 7.2 on pages 47 and 48 it is possible to see the four graphs representing
the trajectories of both fingers in both the actions they perform (picking and placing),
the abscissas show the time scaled to the duration of the action, the ordinates instead
the units of measurement based on the curve that is taken into account in the graph,
and therefore for position, velocity, acceleration and effort they are respectively meters,
meters per second, meters per second square and newton.

To understand the graphs it is necessary to keep in mind that the versor with

45

Conlusions

(a) Initial position (b) Pre-grasp manipulation

(c) Pick (d) Post-grasp transport

(e) Place (f) Post-place retreat

Figure 7.1: Pick-and-place phases in Gazebo simulation
46

7.1 – Results

(a) Trajectory of the gripper left finger joint during picking

(b) Trajectory of the gripper right finger joint during picking

47

Conlusions

(c) Trajectory of the gripper left finger joint during placing

(d) Trajectory of the gripper left finger joint during placing

Figure 7.2: Trajectories for left and right fingers joints during picking and placing
(x → s ; y → m, m

s ,
m
s2 , N)

48

7.2 – Future works

respect to which the quantities are defined has a direction that goes from the center
of the gripper (position taken by the fingers when the latter is closed) to the outside
(position taken by the fingers when it is open instead).

Being a planning of the exclusive trajectory, and issuing a command in order to
control only the latter, the effort is always null for the entire duration of the actions in
both types.

The most appreciable variation in these images is that of the acceleration, which,
in the picking phase, in (a) and (b), rapidly decreases from a zero value to a modulus
peak of almost 1 m

s2 , to produce a coherent sign velocity which causes the value of the
joint position to decrease (joint approaching the center of the gripper); the acceleration
immediately returns to zero to make the finger move at a constant speed, until it is
about to reach the correct position to lock the object, almost a tenth of a second before
it reaches the expected position, the acceleration increases with the opposite sign to
that of the velocity causing a deceleration and consequently the stop of the finger.

Once the desired position has been reached, the action is completed and the move-
ment stops without the necessary return to zero of the acceleration.

In the placing phase, in (c) and (d), the same process takes place but in reverse,
as the fingers move in opposite directions due to the opposite directions of speed and
acceleration.

In Figure 7.3, on the other hand, the focus is on the position and velocity parameters
that were difficult to analyze in detail from the previous graphs, and the left finger was
chosen as example.

In this figure it is possible to verify what has been said above in terms of posi-
tions and velocity, and observe the classic linear and trapezoidal trend of the two,
respectively, characterized by similar impulsive acceleration behaviors like those seen
above.

Furthermore, in these graphs it is easier to verify the actual movement of the fingers
starting from the maximum opening position, both 5 cm from the center (therefore total
opening of the gripper equal to 10 cm), and approaching up to a distance of 2.5 cm
from the center, which added together give the actual size of the cube grasped, ie 5
cm. The speed instead reaches the constant peak of modulus equal to 0.05 m

s , that is
5 cm

s ; in fact the action is completed in about half a second.

7.2 Future works
This section lists ideas, proposals or advice relating to the approach described in this
part of the script, for future works of various kinds, whether they are additions, mod-
ifications or improvements.

• Wait for the fix of the bug with the PlaceLocation msg in the place phase of the
pick-and-place pipeline in order to verify the complete task with the C++ interface,
or possibly help the developers in the resolution.

• Test the implementation of the task with the Task Constructor library of the
development version of MoveIt (not the stable one).

49

Conlusions

(a) Position for the gripper left finger during picking

(b) Velocity for the gripper left finger during picking

50

7.2 – Future works

(c) Position for the gripper left finger during placing

(d) Velocity for the gripper left finger during placing

Figure 7.3: Positions and velocities curves for left finger during picking and placing
(x → s ; y → m, m

s)

51

Conlusions

• Test the implementation of the task through the Grasps library of the development
version of MoveIt (not the stable one).

• Integration of sensor modules for RV in order to automatically estimate the pose,
shape and size of the object; consistent updating of the code to take advantage of
this data and not have to enter it manually.

• Use of the entire robotic system (the entire Fetch Mobile Manipulator) for the
execution of more complex pick-and-place tasks that involve moving the arm base.

• Implementation of real-time functionality for task execution in environments with
more complex dynamics, such as pick-and-place of moving objects.

52

Part II

Machine Learning Approach

53

Summary

In this third part of the script, a non-standard approach will be considered, one that
makes use of more modern techniques such as machine learning or specifically rein-
forcement learning.

The subdivision into chapters is structured with a general introduction to chapter
8, a summary of the useful theory in chapter 9, a detailed description of the state of
the art in chapter 10 and final conclusions in chapter 11.

The introduction shows and describes the main paradigms of machine learning, their
main applications and implementations on the basis of current techniques, and exposes
an overview on other modern methodologies that are beyond the scope of this thesis.

The chapter on theory presents the basic concepts and knowledge for understanding
the work of the thesis, starting logically first from reinforcement learning in general
and finally showing the transition to deep reinforcement learning techniques.

The tenth chapter talks about the state of the art in the field of deep reinforcement
learning applied to pick-and-place tasks, presenting theoretical and practical research
works.

Finally, a conclusion is presented in the last chapter in order to show, as in the
previous part, results and final conclusions, followed also in this case by ideas and
advice for future developments.

55

56

Chapter 8

Introduction

This part of the thesis will deal with the topic of AI (Artificial Intelligence) applied to
robots, specifically to manipulators.

It should be emphasized right away that the field of AI, and specifically of ML, is a
sector in strong and continuous growth, the literature is not always clear in terms and
conventions, especially as regards a clear and schematic classification of paradigms,
approaches, algorithms, models or methodologies. In this discussion the author avoids
purely semantic disquisitions in order to present rigorous classifications that in fact do
not exist, but he focuses on the main key concepts, also for this reason it is important
to remember that there are no written and precise rules and that often the distinctions
among the various entities of this area are more nuanced than one might think.

The most common idea at the moment is to conventionally divide the approaches
to ML on the basis of three main paradigms on which algorithms and methodologies
are based (Fig. 8.1):

• Supervised learning

• Unsupervised learning

• Reinforcement larning

At the same time, an exhaustive collection of approaches to ML will be presented
for a better understanding of the background.

Other modern applications of ML (which however will not be dealt with) besides
those mentioned below can be found in the BMI (Brain-Machine Interface) which ex-
ploit EEG (electroencephalogram), HMI (Human-Machine Interface) in general that
uses EMG (electromyography) or ENG (electroneurography), or in the control through
gesture, which in turn can be used to give a simple command or to teach through
a learning by demonstration approach. Regarding the learning-by-demonstration (or
learning-by-showing), as mentioned in 4.1, through the ML it receives a considerable
enhancement, for example there is an entire class of reinforcement learning methodolo-
gies known as IRL (Inverse RL) that has precisely this among its fields of application.

57

Introduction

Figure 8.1: Machine learning paradigms scheme [credits: Rashidi et al. (2019)]

8.1 Supervised Learning
The entity that has to learn is presented with an input data set and an output data
set, the task is to learn the mapping function (i.e. the relationship) between the
two by building the mathematical model that binds them, in this way by providing a
new input never seen before, the algorithm must be able to autonomously return the
corresponding output.

The main application is the implementation of classification and regression algo-
rithms.

The entity in question is the model and takes different names based on the one
that implements the algorithm, examples of models that have relevance in the field
of robotics are SVMs (Support Vector Machines), ANNs (Artificial Neural Networks)
or more simply NNs (Neural Netowrks) and also decision trees and random forests
(models composed of several decision trees).

NNs are certainly the most used model in the field of ML as a very powerful and
versatile tool, lending themselves to multiple applications, they are present in every
ML paradigm and advanced uses can lead to the implementation of even more complex
models that make use of them, such as in EML (Extreme Machine Learning, i.e. feed-
forward NNs in which the node parameters are also set), SOMs (Self-Organized Maps)
which are widely used in the field of CV, or CMACs (Cerebellar Model Arithmetic
Controllers) which also with the use of simple NNs can be exploited for kinematics and
inverse dynamics algorithms.

An interesting application with SOM-type algorithms allows the system to “learn”
(even if it is an intelligent management and organization of data rather than real learn-
ing) through movements in the workspace, so that given a point it knows autonomously
what joint movements to make to achieve it.

It is intuitive how a NN lends itself well to the control (as well as the identification)
of systems, a network does nothing but, given input-output pairs, generate a model
that relates them, a controller does the same thing, given a reference input it must

58

https://www.researchgate.net/figure/Overview-diagram-of-machine-learning-algorithms-Machine-learning-is-a-subset-of_fig1_335604816

8.2 – Unsupervised Learning

ensure that the output of the overall system is consistent with that input.
Concerning NNs, a class of them introduces a subfield of ML known as deep learning

(DL), for DL we mean that sector of ML that makes use of particular NN models
called DNN (Deep Neural Network); this term basically refers to multilevel NN, this
class includes for example RNN (Recurrent Neural Network) and CNN (Convolutional
Neural Network). A recent alternative approach to the always more common DNNs
makes use of structures known as deep forest, a model obtained from the use of decision
trees (not to be confused with random forest).

8.2 Unsupervised Learning
The entity that has to learn is presented with a set of inputs without any label, learning
consists in finding a structure in these inputs based on common characteristics in order
to be able to analyze subsequent inputs.

The main application is the implementation of clustering algorithms in the first
place, but also of association and dimensionality reduction.

It is the type of learning that sees the greatest application in the CV.

8.3 Reinforcement Learning
Reinforcement learning is the paradigm that comes closest to the concept of true AI, in
this case the entity (generally known as agent, or in some specific areas, not surprisingly,
also “controller”) interacts with a dynamic environment on which it must learn to
perform a task.

The basic principle is the following (Fig. 8.2): the agent acquires the state of the
environment, on the basis of the latter and his experience it evaluates the action to be
taken to achieve its goal, according to the result of its action on the environment it
receives a reward in order to let it understand if that action on that state was positive
or not for the achievement of its goal, until the goal is reached the agent resumes
acquiring the system state (modified each time by the last action of the agent itself)
and repeats the cycle until its behavior progressively improves and learn how to reach
the goal.

RL applications range from every sector: navigation (for example self-driving vehi-
cles), control, computer vision, games, chemistry, medicine, etc., and new applications
are thought up continuously every day.

It seems clear that a multidisciplinary field such as robotics is one of the sectors that
has most benefited from this technology, in this context the agent can be practically
anything: the controller, a model that learns to perform inverse kinematics/dynamics
operations, or the robot itself which as a complete system exchanges data (for example
through exteroceptive sensors) with the external environment, carrying out actions on
it in order to complete a given task (for example the pick-and-place).

The algorithms for the implementation of an agent in the RL are various and their
choice depends on the needs, but also in this case the NNs lend themselves as a powerful

59

Introduction

tool for the implementation of some of them, in a general view they are useful for
example to map states-values or states/actions-values, learn to predict how valuable
an action will be for the achievement of the goal or recognize a state when the input
is visual.

Also in this case, the use of deep learning leads to a class of reinforcement learning
known as deep reinforcement learning (DRL).

The RL (but specifically the DRL) is the paradigm selected by the author for
completeness, research interest and usefulness for the purpose of the thesis.

Figure 8.2: Reinforcement learning general block diagram
[credits: Amiri et al. (2018)]

60

https://www.researchgate.net/figure/Reinforcement-Learning-Agent-and-Environment_fig2_323867253

Chapter 9

Deep Reinforcement Learning
Theory

The chapter in question does not aim to replace a theoretical book on RL or specifically
on DRL, however it wants to present itself as a tool to better understand the concepts
covered in the thesis, defining the necessary basis for those who do not have them, or
acting from recap for those who already have knowledge on the subject.

The theory discussed concerns RL learning in general, while DRL specifically will
be treated in the final section.

For a better understanding it is also specified that in this context the term “method”
is equivalent and interchangeable with that of “algorithm”, consequently the different
types of methods presented from here to the end of the chapter, refer to the same
different types of algorithms.

9.1 Key Elements
In this section the key elements (Fig. 9.1) of a RL problem will be presented starting
from the two basic ones: agent and environment; although we can intuitively think that
it is more logical to start the discussion from the concept of agent (already mentioned
in the introductory chapter) as the main element, that of environment will be presented
first, having some characteristics that make an explanation of the agent itself clearer.

In the various subsections, hints will be given to different methods that describe
different approaches to a RL problem, they will not be explored in this section but will
have references to the next one (9.2) in which they will be treated in more detail in
view of an adequate classification.

9.1.1 Environment
The environment is all that is outside the agent, the element with which the latter
interacts and in which it must achieve is goal.

61

Deep Reinforcement Learning Theory

Figure 9.1: Key elements of a Reinforcement Learning problem
[credits: mathworks.com]

In a general view it represents the implementation of the RL problem that one wants
to face: it defines the goal both indirectly through reward signals only and directly in
the cases of Multigoal RL (goal-based environments); it defines a state space for its
description and an action space for interactions with it; according to the problem it
implements it can also be described by a mathematical model.

States Spaces

In the literature it is sometimes possible to find distinctions between state and obser-
vation, if we want to make this subdivision, state means the set of data that describe
the complete configuration of the entire system environment, while observation refers
only to the parameters of the state that indicate characteristics useful for the purposes
of the problem and observable by the agent, in fact there may be factors relevant to
the problem but which are not observable by the agent, they are not included in the
state and are considered noise. However, both the observation and state concepts refer
to instantaneous information about the environment.

Subsequently, the common choice to conventionally refer to observation with the
term “state” will be made.

The set of possible states defines a state space; on the basis of the complexity of
the problem, and consequently the complexity of the environment, this space can be
more or less large (potentially infinite) as regards its size, and be defined discrete or
continuous as regards the variation of the states themselves.

The size of the states space (together with that of the actions) determines the
methodology for dealing with the problem: tabular solution methods or approximate
solution methods (Subsec. 9.2.1).

62

https://www.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html

9.1 – Key Elements

Actions Spaces

Although the actions are interactions performed by the agent on the environment, they
are defined on the basis of the problem and consequently it is the environment that
defines them.

For example, in a “chessboard” environment that implements the problem of a chess
game, it is the environment itself that defines the possible actions for the agent, the
latter cannot act through actions that are not foreseen and accepted by the environment
(such as actions that can range from a simple illegal move to any other imaginable
action that has nothing to do with chess).

As regards the concept of actions space, the same considerations made for that of
states apply; also concerning its size, that one of the actions space (as mentioned for
the state space) determines the methodology for dealing with the problem (Subsec.
9.2.1).

Reward Signal

Through this signal the environment defines the goal (required by the problem) of the
agent. Whenever the agent carries out an action on the environment, the latter returns
him a reward through which the agent himself understands whether a given action in
a given state was positive or negative for the purpose of achieving its goal.

Based on what has been said, the reward is a function of both state and action, as
it evaluates a given action in relation to a given state.

Model

The model is a mathematical representation of the environment that describes its di-
namics, and behavior in general, based on how accurate it is; the knowledge or not
of the model depends on the problem being treated, it therefore represents more in-
formation that is not always possessed, the more complex the problem is, the more
articulated the environment will be, and consequently even more difficult its mathe-
matical modeling.

The presence of a model greatly facilitates the learning of an agent and therefore
the resolution of the problem, it can be used to obtain precise predictions (and not
approximate estimates), for example on the next state of the environment given the
current state and the action performed on it.

Two classes of methods have been introduced with their respective algorithms, to
manage cases in which the model is present (even generated by the agent itself) or not:
model-based methods and model-free methods (Subsec. 9.2.4).

9.1.2 Agent
The agent, as already summarized in the introductory chapter, is the entity that acts
over time on an environment in order to achieve a goal. The agent initially does not
have any information on how to perform its task, therefore it needs a learning phase

63

Deep Reinforcement Learning Theory

(training) in which, based on the experience that matures over time, it can learn how
to do it.

For this purpose the agent acts according to two different behaviors, both of which
are necessary for complete learning: exploitation and exploration; the first behavior is
necessary to exploit the most of what it has already learned, but consequently also the
second is essential to learn new things without being “tied” only to what it already
knows; it goes without saying that it is necessary to obtain the best trade-off between
the two behaviors.

The agent observes the state of the environment and takes an action chosen on the
basis of rules defined by a policy; in turn these rules are (or rather, can be) perfected
thanks to functions that evaluate them: the value functions.

Policy

It defines how the agent should behave, mapping the observed states of the environment
with the action to be taken in them. In a nutshell, it is a rule by which the agent selects
the actions according to the states, it can be deterministic if it assigns a precise action
to each state, or stochastic if given a state/action pair it returns the probability of
carrying out the given action in the given state.

Each RL problem has one or more (if they are qualitatively equivalent) better
solutions than all the others, this in practical terms translates into the concept of
optimal policy, which refers to the policy (or to more policies if there are more than
one) which maximizes the agent overall reward.

The different use of policies has led to the distinction of two types of methods
(or algorithms), those on-policy and those off-policy (Subsec. 9.2.3), in addition the
different implementation of synergistic approaches between policy and value function
allow a further methodological classification between value-based methods or policy-
based methods (Subsec. 9.2.2).

Value Function

A further element that helps the agent to learn is the value function, its usefulness is
to be discovered in the agent intention to maximize his overall return, in fact, while
the reward represents an immediate feedback, return refers to a long-term reward. On
the basis of what has been said, a function that predicts this expected return is useful,
making an estimate of the “quality” of a state or a state/action pair.

It is called state-value function if it estimates the value of states or action-value
function if it estimates the values of state/action pairs. The value function is not an
absolute function, but is defined with respect to a given policy, it is estimated from
experience and allows to evaluate which policy is better than others.

With reference to what has been said for the policy, for each RL problem there is
one and only one optimal value function that refers to the optimal policy (or to the
entire set if there are more than one).

Various methodologies revolve around the concept of value function to approach
RL problems. The first and the greatest classification is that, already mentioned,

64

9.2 – Methods Classification

between tabular solution methods and approximate solution methods (Subsec. 9.2.1);
moreover, as mentioned talking about the policy, the value function is also linked to a
classification based on its use (or possible use) with the policy itself (Subsec. 9.2.2).

9.2 Methods Classification
This section is essential to frame, in a more possible general vision, the entire back-
ground on RL, as it shows all the classification terms of each method that deals with
RL problems.

According to the problem to be faced, there are an ever increasing variety of algo-
rithms, they can also differ greatly from each other.

Subsequently, the methods present in the same subsection are obviously mutually
exclusive, however for each subsection each algorithm will always present one of the
two methods shown; the different methods used in different combinations for the im-
plementation of an algorithm, define the overall approach that has been chosen to use
for the given problem.

9.2.1 Tabular or Approximate Solution
This is the largest classification of approaches to RL, it directly depends on the im-
plementation of the approximate value functions (approximated because of complex
mathematical and computational tractability), and therefore indirectly on the dimen-
sion of the states and actions spaces, since as mentioned previously, these latter define
the complexity of the problem, and depending on their size it is possible to represent
the value functions in simple data structures (tables) or or it may be necessary to
approximation further by means of more complex structures (parameterization).

The concept of approximation is however relative, and this depends on the fact
that regardless of the method used, the approximations are equally necessary (whether
they are for value functions, for policies or even for the models themselves), even if a
complete model of the environment is available, other constraints such as computational
or memory constraints in any case force an approach based on approximations, so often
the optimal solution cannot be found but must be approximated.

Tabular Solution Methods

These are methods indicated in cases where spaces of actions and states are contained
(tendentially but not necessarily discretes), in these favorable conditions the value
functions can be represented by means of simple data structures such as tables, or
even vectors.

This approach is used to tackle the simplest problems, tend to be useful for research
purposes, applications with agents in exclusively simulated environments or for agents
implemented in playful environments, it is therefore not very suitable for facing real
problems.

65

Deep Reinforcement Learning Theory

Due to the simplicity of the problem, these methods are the only ones that in theory
can lead to obtaining the optimal solution, that is, the optimal policy achieved by means
of the optimal value function; however, as already explained, technical constraints can
present an obstacle also in this case.

Approximate Solution Methods

The methods described here are suitable for problems with large spaces of states and
actions (generally but not necessarily continues); the value functions are more complex
and their representation is not possible through simple data structures, consequently
their parameterized representation is necessary.

These methods are used to deal with the most relevant types of problems and above
all with real applications, as it is difficult in the real world to face environments with
a small number of states and available actions, but the combinatorial space of them
tends to be very vast; on the other hand, with these problems it is not possible to find
the optimal solution, so we must aim to obtain the best possible one.

The key concept in this type of approach is that of generalization (by virtue of
the enormous quantity of different data that cannot be treated individually) which,
in combination with the known RL concepts, allows the implementation of techniques
suitable for the most complex problems. The concept of generalization is implemented
by introducing another paradigm of ML, namely supervised learning: through models
(for example NN) and knowledge belonging to this sector that allow to implement
approximations of functions in an adequate manner.

9.2.2 Value-Based or Policy-Based
The difference in these two methods lies in the use of the value function and in the
different implementation and management of the policy, in the event that an approach
that does not use the first is chosen.

Value-Based Methods

The algorithms belonging to this category are those that necessarily require the value
function, through it they estimate the value of the actions in order to improve the
policy; without the value function the policy (for the most part deterministic) would
not even exist.

This approach is the one used in the tabular solution methods, but it is also present
in the less complex algorithms belonging to the approximate solution methods.

The action-value method is the most widespread of this class, working with value
functions of state/action pairs.

Policy-Based Methods

This type of methods allows the agent to learn a parameterized (mostly stochastic)
policy that selects actions without consulting a value function, the latter can be used

66

9.2 – Methods Classification

to learn the parameters of the policy but does not play an essential role in the choice
of actions.

This approach is used exclusively with approximate solution methods.
The policy gradient methods are the most widespread policy-based methods and base

their operation on the concept of policy gradient (PG), used to define the “direction”
in which to vary the parameters of the policy in order to improve it, as the gradient
of a function shows how the function varies as its variables change. In turn they
are divided into stochastic policy gradient methods and deterministic policy gradient
methods (9.3.3).

9.2.3 On-Policy or Off-Policy
These methods concern the implementation approach for obtaining the trade-off be-
tween exploitation and exploration.

On-Policy Methods

This type of algorithm evaluates and improves the policy used to make decisions, thus
learning the values of the actions not for the optimal policy but for one close to the
optimal that always allows at least a minimum of exploration.

Off-Policy Methods

Algorithms of this type evaluate and improve a policy different from the one used to
make decisions, consequently they present two policies: one that learns and tends to
the optimal one (deterministic), and another one used to make decisions and therefore
allow exploration (stochastic).

9.2.4 Model-Based or Model-Free
A subdivision, based on the use or not of a mathematical model (Subsec. 9.1.1) that
describes the environment, distinguishes two different methods.

The possibility of modeling the environment depends on the complexity of the en-
vironment itself, and therefore on that of the RL problem.

With a model, state values alone are usually sufficient to determine a policy, while
without a model it is also necessary to estimate action values.

Model-Based Methods

Model-based methods refer to problems in which modeling the environment is possible,
and consequently, to the use of algorithms that either make use of this information if
it is available, or generate the model themselves (the agent learns the model such as it
does with the policy); they are complex algorithm that use a planning approach.

67

Deep Reinforcement Learning Theory

One of the advantages of this approach is the reduced dependence on the environ-
ment, which, in the case of a complete and accurate model, can even become super-
fluous; another advantage is the versatility of the agent, small changes on the required
goal result in small changes of the model, and an agent trained on the previous model
needs less retraining to be efficient on the new one.

Having an accurate model of the environment, which describes all the dynamics,
is certainly an advantage to obtain the optimal solution, but it must nevertheless be
remembered that it is not sufficient in the case of problems with a large number of
data, due to computational and memroy constraints.

Model-Free Methods

These methods deal with complex problems in which the environment cannot be mod-
eled or, if it were, the approach would not be convenient anyway; they tend to be
characterized by a trial-and-error approach, precisely for this reason, although the
absence of the model represents something less, algorithms of this type are simpler.

9.3 Deep Learning in Reinforcement Learning
This final section of the chapter deals with the conceptual leap between traditional RL
and DRL: first it shows a fundamental element of ML in general, the ANN; then it is
understood how this element evolves to cope with more complex problems, developing
a new sector of ML, the DL; analyzing the improvements that the DL brings in the
unsupervised and supervised paradigms, the latter is finally introduced as a support
to the RL.

In summary, the DRL arises from the need to exploit the supervised paradigm
together with the traditional approaches to RL to tackle complex problems through
the approach described by the approximate solution methods, specifically the modeling
complexities require an additional effort to the supervised paradigm, requiring more
than the its standard approach, than that of the DL.

9.3.1 Artificial Neural Networks
Artificial neural networks (which will later be referred to simply as NN) are nothing
more than generic computational models based on the real biological neural networks
of the brain in the animal kingdom, they model entities called neurons which have the
purpose of emulating in a greatly simplified manner the tasks of biological neurons.

The operating principle of a NN is very simple (the complexity lies in the adaptation
of this principle to each application case): the network is divided into layers composed
of several neurons, the first is called input layer, and consists of the first level of neurons
that takes the data as input, then there is an intermediate hidden layer and finally an
output layer represented by the last level of neurons.

Each neuron of each level can be connected to one or more neurons of the next level
(obviously with the exception of those present on the output layer), and in turn by one

68

9.3 – Deep Learning in Reinforcement Learning

or more neurons of the previous level (except those of the input layer); a network in
which each neuron is connected with each neuron of the previous level and each neuron
of the next level is called fully connected network.

A neuron can have multiple inputs but the output is always only one, even if it is
eventually sent to multiple neurons; each connection has an assigned weight, through a
function called propagation function, each neuron calculates its output as the weighted
sum of each of its inputs (based on the weight of the connection) plus a bias term.

However, as described so far, the neural network is only capable of modeling linear
behaviors, as expressed as combinations of linear functions (the propagation functions),
for this reason each neuron also has an activation function, to which the result of the
propagation function passes before it is output. Activation functions in short are none
other than non-linear functions belonging to certain classes of functions that allow the
network to learn non-linear relations.

On the basis of what has been said, the intrinsic nature of function approximator of
a NN is evident, and this is one of the basic principles of supervised learning, as well
as the basic principle on which RL approximate solution methods are based.

Unlike traditional programming, in which inputs and functions are possessed in
order to obtain outputs, machine learning is an approach that aims to identify mathe-
matical models, consequently, as regards supervised learning, network inputs and out-
puts are known but not the “function”, ie the mathematical model that binds them,
the purpose of the network is in fact, following a training phase, to return a mapping
function between inputs and outputs.

The training phase, in the supervised paradigm, having the purpose of identifying
the model that binds inputs and outputs, translates into the learning of the network
parameters, ie weights of connections and bias terms; starting from prefixed parame-
ters, the network adapts them to each iteration on the samples, calculating the errors
between the output of the samples and the output obtained and, in turn, tuning the
parameters through back propagation processes so that they suit the optimal ones.

The clarifications on supervised learning, in the two previous paragraphs, are to
be found in the fact that in unsupervised learning, as mentioned in the introductory
chapter, the outputs are not given and network learning consists precisely in modeling
the relationships between the inputs, rather than approximating a function that binds
two distinct sets of data.

So far we have only talked about three-level networks, however NNs of this type
are not capable of implement any complex mathematical model, for this purpose it is
necessary to design multi-level structures, called multilayers NNs, with varying numbers
of hidden layers. The discussion made up to this point also applies to this type of
networks, however their management and their application field falls within that of
deep learning; indeed, DNNs are used in the most complex supervised learning and
unsupervised learning algorithms, but only the first ones have direct applications to
RL, in this case DRL.

Regarding deep learning: so far it has been assumed that in the connections between
neurons there are no loops, a network of this type is defined as feedforward neural
network, however there are also networks in which this is not true and the output of a

69

Deep Reinforcement Learning Theory

neuron can become input for itself or for neurons of previous layers, in this case it is
called recurrent neural network.

Figure 9.2 below shows a general fully connected feedforward deep neural network
with three hidden layers.

Feedforward NNs are the main topic, as well as the tool, in the whole discussion on
the DL applied to the policy gradient methods (Subsec. 9.3.3).

As mentioned in the introductory chapter, there is another type of DNN, known as
CNN, unlike the standard NNs these are specifically inspired by the human’s visual
cortex, in fact, it is no coincidence that they see their main application field in image
processing; an example of an algorithm that makes use of this powerful tool is discussed
in Par. 9.3.2.

Figure 9.2: Generic fully connected feedforward deep neural network
[source: Bre et al. (2017)]

9.3.2 Deep Learning in Action-Value Methods

Action-value methods have already been dealt with talking about value-based methods,
and as already anticipated, they are used both with tabular solution and approximate
solution.

In this part of the section on deep learning, an action-value method belonging the
approximate solution methods, and which therefore exploits the supervised paradigm
through a “deep” approach, is explored: the DQN (Deep Q-Network).

70

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051

9.3 – Deep Learning in Reinforcement Learning

DQN The DQN is an off-policy algorithm that has established itself in the RL sector
applied to the videogame field, in fact, the use of a CNN network to model the Q
function (an approximate estimate of the action-value function) is due to the inputs
purely visual it receives. With this algorithm it is faced the problem of using non-
linear function approximators that cause instability, the latter is due to the fact that
small changes in Q determine considerable changes in the policy; to solve this problem,
the concept of experience replay is introduced for the first time, a technique that re-
evaluates past actions in a random way rather than relying solely on the “best” ones
at the moment.

9.3.3 Deep Learning in Policy Gradient Methods
This part of the section on deep learning initially deals with SPG (Stochastic PG)
methods, which present stochastic policies and are also on-policy, giving some exam-
ples (the REINFORCE and the family of Actor-Critic methods); their evolution is then
shown in DPG (Deterministic PG) methods, with deterministic policies and the char-
acteristic of being on-policy, which are more suitable for continuous control (vanilla
DPG and in conclusion the DDPG are treated).

Each of the algorithms mentioned has various variants with which they have been
improved, but in this theoretical summary, wanting only to describe their basic char-
acteristics, they are only described in their vanilla form, i.e. the original one.

Stochastic Policy Gradient

SPG methods are on-policy policy-based methods with stochastic policy, they are
treated as a starting point for DPG algorithms, historically the first algorithm of this
type is the REINFORCE; its evolution in the use of the value function has led to
the Actor-Critic family of methods, “family” as there are more variants (A2C is the
basic one) and some DPG algorithms such as DDPG also derive from this family of
algorithms.

REINFORCE REINFORCE is an on-policy algorithm characterized by a single
DNN used to learn the policy, its simplicity consists precisely in this, in fact it is the
most “pure” example of a policy-based algorithm, as it exclusively exploits the concept
of gradient to update the network and consequently the policy based on its experience,
without making any form of estimation or prediction on the values of its acrions, in
other words without using any value-function.

Actor-Critic Actor-Critic (A2C) methods learn both the approximation of the pol-
icy and that of the value function and to this end are implemented through two neural
networks, one known as the actor that determines the learned (stochastic) policy and
the other called critic that implements the learning of the value function (generally
state-value). These methods are PG methods, consequently the critic is an element
that improves performance but is not essential for learning, without the implementation

71

Deep Reinforcement Learning Theory

of the critic we would have the simpler REINFORCE algorithm, in fact conceptually
the A2C is nothing more than a REINFORCE combined with DQN which has the
characteristic of having a value estimator. Despite the validity of the A2C algorithms,
they are not born to face continuous problems, but rather discrete problems, and it is
for this reason that alternative methods such as DPG and DDPG have been studied.

Deterministic Policy Gradient

DPG methods unlike A2C and SPG in general, are a class of methods that, as the name
implies, use a deterministic and non-stochastic PG, the main difference with the latter
in fact consists in being off-policy algorithms with the actor that learn a deterministic
policy. The main limitation of the vanilla DPG turns out to be the linear function
approximator, in fact its improvement consists precisely in combining this standard
method with the DQN, equipped with a non-linear function approximator based on a
DNN, and obtaining the DDPG.

Deep Deterministic Policy Gradient DDPG[11] is one of the main examples of
application of the DL to the RL, and therefore of the DRL, as well as the main one
when dealing with complex tasks such as continuous control with huge states and
actions spaces: it is an algorithm belonging to the classes of approximate solution,
policy-based (specifically PG and, more, DPG), off-policy and model-free methods and
derives from the A2C (Actor-Critic) family of methods as a union of two different
algorithms, the DPG and the DQN. Unlike the A2C predecessors, this method has two
other networks besides the actor and the critic, two target networks that converge to
the first two in a delayed manner, increasing the stability of the algorithm, and also,
like DQN, it uses experience replay.

72

Chapter 10

State of the Art

Beyond the state of the art described in the introduction, here we talk about the
specific one for this work, and in this case, unlike the previous part, it describes an
approach that is a combination of theoretical research and, in practice, implementation
of algorithms, development of environments and toolkits as well as use of specific
softwares.

10.1 Multigoal Reinforcement Learning
By multigoal RL we mean those frameworks that describe problems in which an agent
is required to learn more goals, consequently, in addition to the state, the goal is also
an input for the agent; the difference with single-goal case is evident.

An example, to make the difference easy to understand, may be to compare an
agent who represents a robot who must learn how to travel a complex path made up
of several obstacles by doing as much road as possible, in this case the goal is unique;
using the work of this thesis as an example, a multigoal environment can be one in
which a robotic arm has to pick-and-place an object in which, however, the position
in which to place it can be any random, so the goal is not always the same, because it
changes according to the desired position for the object.

10.1.1 Dense and Sparse Rewards
Although the first type of the previous example is very useful for research purposes,
the second type is the one that more faithfully represents most of the real scenarios,
in which an agent is required to reach more similar goals and in which each attempt
returns an affirmative or negative result on the achievement.

What has just been said leads to distinguish two of the main types of reward signals:
dense (or shaped) rewards and sparse rewards.

While dense rewards require rather complex reward engineering work, to describe
a signal that numerically indicates how valid a given action was, in a given state, in
order to reach the goal, the rewards that by nature apply well to multigoal contexts

73

State of the Art

and how the latter follow the logic of real scenarios (especially in robotic applications)
are the sparse ones.

Sparse rewards are mostly non-positive or negative rewards depending on the case,
where the value is “positive” (from a semantic point of view, not numerical) only if
you are close enough to consider the task performed on the basis of a threshold pre-
established; the most widespread example in the literature, also as regards practical
utility, is that of binary sparse rewards (-1 if the goal has not been reached and 0
otherwise).

The type of reward, for what has been said, turns out to be a natural consequence
of the type of problem to be faced, however sometimes the choice of a reward signal
for a given problem can be forced for implementation reasons or as a workaround.

Dense rewards can often be complex to implement but they are easy to deal with,
as the agent, after each action, through the reward has significant information on how
well (or badly) it has acted, consequently they can be used as workarounds (but this is
not always feasible and requires a shift in complexity in the problem) to circumvent the
difficult treatability of problems that are naturally described by a sparse reward logic,
this is because through them the agent has no direct information about the “quality”
of its action, as it can only understand if the goal has been reached or not.

10.2 TensorFlow
From the implementation point of view, TensorFlow (TF)[12] is certainly the state of
the art not only for RL but for ML in general; it is much more than a software library,
but rather a complete platform (moreover open source) for ML, developed entirely by
the Google Brain section of Google.

Through TF it is possible to implement, develop and train different ML models in
order to build and deploy complete ML applications through a single tool.

Among the advantages of TF we find:

• be cross-platform (including the Android OS);

• hardware support for CPU, GPU and the TPU (Tensor Processing Unit) designed
by Google specifically for TF;

• an active community;

• constant development and updates;

• availability of official APIs for various programming languages (Python primarily
for completeness and ease of use, but also C++, Java, JavaScript, etc.) and third-
party APIs (for many other languages);

• different specific application sectors such as mobile, IoT or manufacturing;

• being the main choice made in research.

74

10.3 – OpenAI

TF also has the agent library, a very young library (still not widely used but des-
tined to become the new standard) structured to favor the development of models and
algorithms for RL

10.3 OpenAI
OpenAI, which boasts the well-known face of Elon Musk among the founders and
investors, is the world’s leading organization (moreover non-profit) on research and
development in the field of artificial intelligence.

All the analysis on the approach to the task treated in this document through ma-
chine learning algorithms, as well as the comparison, objective of the thesis, have been
made possible thanks to the work and research of this company that has revolutionized
the state of the art in the field.

As for the state of the art referred to, there are two papers that have made it possible
to solve complex problems that were previously unsolvable: Marcin Andrychowicz et al.
Hindsight Experience Replay. 2018. arXiv: 1707.01495 [cs.LG] and Matthias Plap-
pert et al. Multi-Goal Reinforcement Learning: Challenging Robotics Environments
and Request for Research. 2018. arXiv: 1802.09464 [cs.LG].

In full “open style”, as well as for publications, the company freely makes the fruits
of its work available, specifically it has updated two of its previous products with
the addition of what was developed and produced in the context of the aforementioned
papers: the Gym toolkit (the main historical contribution of OpenAI) in which the new
types of environments implemented were introduced, and the Baselines repository, in
which the new developed algorithm was added in addition to the rest of the code used
in these works.

10.3.1 Gym
Gym[2] is the first product with which OpenAI has established itself to the public in
the field of RL research, it is a real gym that has the purpose of training agents to
facilitate their development and comparison.

It consists of a library that, in addition to providing a variety of official or third-
party environments, covering fields from videogames to robotics or from classic to
continuous control, also provides support through classes, modules and functionalities,
for development of own environments ad hoc for own needs.

10.3.2 Goal-Based Environments
In order to deal with multigoal problems (but also to more easily manage sparse re-
wards) OpenAI has released an update for the Gym toolkit with the aim of introducing
support for goal-based environments[14], already including the eight environments de-
veloped by them for their latest research (four with the Fetch Robot platform and four
with the Shadow Robot Hand platform).

75

https://arxiv.org/abs/1707.01495
https://arxiv.org/abs/1802.09464

State of the Art

The characteristic of these environments is that the concept of goal is already en-
coded within them, in order to provide this data to the agent in view of a multigoal
problem; as for the reward, it follows the same principle of a classic binary reward
described above.

The environment used in this thesis is the FetchPickAndPlace one, belonging to the
4 environments using the Fetch platform among the eight distributed by OpenAI; like
the others it uses the physical simulator MuJoCo.

FetchPickAndPlace Environment

The Fetch environment in general presents the Fetch robot which was widely discussed
in the introductory part, using its arm as a manipulator in order to carry out the
operations required for the specific environment.

The rewards, as already explained, are of the sparse and binary type, specifically
the goal is considered achieved, obtaining a reward equal to 0, when the object (or the
end effector in the case of the Reach environment) reaches the goal with a tolerance of
5 cm. By goal we mean the desired position expressed in three dimensions.

On the other hand, regarding the PickAndPlace environment (Fig. 10.1) specifically,
its own characteristics concern spaces of states and actions. The former include linear
positions and velocities of the gripper relative to its state and in relation to the arm,
and in the case in which the object is taken, also its Cartesian positions, rotations via
Euler angles and linear and angular velocities absolute and relative to the gripper. The
second ones are 4-dimensional: three parameters to specify the Cartesian position of
the gripper (its rotation is also present in the code, but it is always kept fixed as it
is superfluous for the achievement of the task) and the last one to control its opening
and closing.

The goal of the environment is to bring a cube (with 5 cm long edges) from a
random position to a desired one (indicated by a red dot), both obviously within the
manipulator workspace.

10.3.3 Hindset Experience Replay
Hindset experience replay (HER)[1] is a technique presented in the paper of the same
name through which, in combination with off-policy algorithms, it is possible for an
agent to learn in the presence of sparse rewards, specifically binaries.

The basic principle of HER is to allow learning from errors and therefore from the
early stages of training, phases in which traditional RL algorithms would not obtain
any useful information. This is possible through a goal substitution process in which
when the desired goal is not reached, it is considered to have reached a different goal,
a fictitious one, from which to obtain a significant learning signal; through repeated
attempts the agent will then be able to reach any different goal arbitrarily.

As said initially HER is designed to be used in a complementary way to other
off-policy algorithms, so in this thesis we will consider the same combination used in
OpenAI researches, that is the “DDPG+HER” which has proved to be the most efficient

76

10.3 – OpenAI

Figure 10.1: OpenAI Gym FetchPickAndPlace goal-based environment on MuJoCo
[credits: openai.com]

by virtue of the excellent skills demonstrated by the DDPG algorithm in these types
of tasks (continuous control).

10.3.4 Baselines

Baselines[7] is another contribution from OpenAI, also made available in an “open”
way; it is a GitHub repository that serves as a collection of RL algorithm implementa-
tions and also provides support for managing agents.

Like Gym, it is updated following new research too, and as regards the two treated
in this thesis, an implementation of the HER algorithm as well as a coherent DDPG
implementation has been added to the collection for joint use.

Baselines fully supports TensorFlow from version 1.4 to 1.14, while support for
version 2 is still under development, so some more modern implementations such as
HER are not yet available in the latest version.

77

https://openai.com/blog/ingredients-for-robotics-research/

State of the Art

10.4 Stable Baselines and RL Baselines Zoo
Stable Baselines[8] is a fork of the Baselines project that presents some improvements
and more frequent updates compared to the previous one, it is also compatible with
the RL Baselines Zoo[16] toolkit which has the convenience of providing, in addition to
pre-trained agents with hyperparameters already tuned, also more intuitive interfaces
for managing agents themselves.

These two toolkits are used by the author of the thesis; as for the original project
also these do not yet fully support TensorFlow 2, but versions from 1.8.0 to 1.14.0, so
TensorFlow 1.14.0 was used.

10.5 MuJoCo
MuJoCo (Multi-Joint dynamics with Contact)[19] is a physics engine that allows you
to quickly and accurately model, simulate and visualize contact dynamics of multi-joint
systems.

Born for the design of controllers and with a main focus on high performance, one
of the fundamental characteristics of MuJoCo is its ability to manage very onerous
operations from the computational point of view, especially in dynamic and complex
systems with a high number of contacts, systems for which the simulation is optimized.

In fact, in addition to being a traditional simulator, it can be used for model-based
calculations, its preferential use by the field of research and development for ML and
specifically RL is due to this, it is not by chance that it is the simulator selected by
OpenAI for the implementation of 3D environments designed for continuous control in
the Gym toolkit.

MuJoCo is written in C and is cross-platform, furthermore the models are written
in the MJCF format which is an efficient XML format, however URDF models used
by ROS can also be loaded.

The main components are:

• simulation module

• XML parser and model compiler

• interactive OpenGL viewer

78

Chapter 11

Conlusions

11.1 Results
The agent execution is divided into episodes, an episode represents an attempt by the
agent to perform the task, at the end of an episode, an episode_reward equal to 1 if the
task has been completed, or 0 otherwise, is returned; this reward is a “utility” return
(provided by RL Baselines Zoo) that refers to the episode and is not to be confused
with the reward (0 or -1) that has been extensively described above and that refers to
the return of each single action.

The episode in turn evolves into incremental timesteps and ends either when the
agent reaches the goal (episode_reward = 1) or when the max_episode_steps value, set
at 50 for the FetchPickAndPlace environment, is reached (episode_reward = 0).

Each environment timestep is divided into several MuJoCo steps, these steps that
do not concern the environment itself as much as its simulation, are decided by a
parameter called n_substeps (also visible in the simulator window, below on the right
in Figure 11.1) and represent the sampling substeps that the MuJoCo solver executes
at each timestep and consequently at each call of the step function.

The step function is the function that in the Gym environments allows the interac-
tion between agent and environment to proceed, consequently it is the function to be
recalled so that in a given timestep the agent carries out his action and receives the
reward and observation of the new state, passing in a later timestep of its execution.

The n_substeps is a parameter decided in the code that implements the class of the
specific Gym environment and which in turn is passed to MuJoCo when the simulated
environment is initialized, each substep has a duration expressed in seconds and defined
by the XML model of the environment with the timestep variable (not to be confused
with the timestep intended as a step, and not as a time, which has been mentioned
previously), which has the same reference by the simulator and is also shown in the
simulation window.

To clarify, this time interval refers to the simulator steps (the substeps) and not to
the execution steps (the timesteps), and it is a parameter of MuJoCo that determines
the accuracy and stability of the simulation.

79

Conlusions

(a) Free camera view on entire environment

(b) Fixed camera view on table

Figure 11.1: Agent execution on MuJoCo FetchPickAndPlace environment

For the PickAndPlace environment, n_substeps and timestep are respectively 20 and
0.002 s.

The simulator window shows the simulation, consequently the parameters shown
inside must refer to the MuJoCo parameters, the third datum not yet treated, in the
same box as the previous two in the Figure 11.1, is called Step and shows the step of
the simulation that is currently being performed.

80

11.1 – Results

The execution proceeds in terms of timesteps but the solver samples in terms of
substeps, consequently, at each action of the agent, the steps counter have an increment
equal to n_substeps until the end of the episode; if the agent fails to reach the goal,
being the episode fixed with a maximum length of 50 timesteps, the steps counter ends
at an overall value of steps equal to 50 · 20 = 1000.

However, the steps counter in the simulation does not start from 0 to get to 1000
(always in case of not reaching the goal), but starts from 200 to get to 1200, this is
because in the environment setup ten timesteps are dedicated (through as many calls
of the step function) to bring the arm to a pre-fixed position, therefore ten calls of the
step function require 10 · 20 = 200 simulation steps in total.

Regarding the timestep parameter, it indicates the actual simulation time, as a
result, under the conditions of having lower processing times and coherent dynamics
of actuators, simulation timing may be the timing of the task running on a physical
robot, this parameter can be tuned in the testing phase to obtain simulation times
perfectly consistent with the real ones; based on the simulation alone, the maximum
time per episode is 50 · 20 · 0.002 s = 2 s

All the other named parameters can also be modified and adapted for different
needs.

Another parameter that concerns the RL Baselines Zoo tool is n-timesteps, which
refers to the total timesteps of the entire simulation and in a certain sense determines
the number of episodes of the same, in a certain sense because the episodes contain a
different number of timesteps based on when the agent reaches the goal, in the case of
episodes of maximum length, their number is equal to n-timesteps

max_episode_steps .
As mentioned at the beginning, the execution of an agent returns information on the

episodes in form of a reward, furthermore, together with this data, for each concluded
episode, its length is also obtained, represented by the number of timesteps passed
within it; if the goal is not reached, the length is obviously 50.

In the tests it was chosen to leave all the parameters of the environment at their
default settings, and to vary only n-timesteps to show the variation of the statistics on
the behavior of the agent from a few episodes up to large numbers (Table 11.1).

Table 11.1: Behavioral analysis of the agent

No. of timesteps No. of episodes Success rate Mean episode length (± SD)
50 3 100 % 12.67 (± 0.94)
100 4 75 % 22.00 (± 16.19)
200 13 92.31 % 15.15 (± 10.42)
500 30 93.33 % 16.53 (± 10.18)
1000 57 91.23 % 17.39 (± 12.43)
2000 122 93.44 % 16.28 (± 11.72)
5000 309 94.17 % 16.16 (± 11.01)

Later, instead, in the graphs in Figure 11.2, it is possible to see the curves that

81

Conlusions

describe the trend of the data extrapolated from Table 11.1 above, on the basis of
the information resulting from the tests; it can be easily seen that, as expected, the
number of episodes has a linear trend (except for the very first data of course) with the
variation of the simulation timesteps, success rate and length of the episodes instead,
after short fluctuations they settle to converge respectively at about 94 % and at 16.2.

A final significant note on the results of the tests concerns the behavior that the
agent learns, in fact it has no awareness of what a pick-and-place task is, but reasons
only in terms of rewards, therefore in the learning phase, in a completely autonomous
way, it realizes that it can make the object reach the desired position even by moving
it in other ways other than a standard pick-and-place, for example by pushing it or
almost throwing it at the target point.

This obviously happens only when the desired final position is at the level of the
table and not in the air, furthermore the coefficients of friction and the flat surfaces of
a cube do not make this a big problem as far as the final result is concerned; however,
it is reasonable to consider changes in learning, or rather limitations in the granting of
rewards, regarding the use of objects with curved surfaces such as cylinders or spheres.

In any case, the one just mentioned is an excellent food for thought, showing the
potential of artificial intelligence and the total logic and rationality of an entity pro-
grammed to achieve a specific goal, a goal that it could often achieve in a way that
had not been predicted, or previously considered, by the programmers themselves.

0 5 10 15 20 25 30 35 40 45 50
·102

0

3

6

9

12

15

18

21

24

27

30

33
·10

timesteps

eps

(a) Number of episodes performed as a function of the total number of timesteps

82

11.1 – Results

0 5 10 15 20 25 30 35 40 45 50
·102

73

76

79

82

85

88

91

94

97

100

timesteps

SR
(%)

(b) Success rate as a percentage in function of the total number of timesteps

0 5 10 15 20 25 30 35 40 45 50
·102

12

14

16

18

20

22

timesteps

eps
len

(c) Average length of episodes based on the total number of timesteps

Figure 11.2: Curves extrapolated from the behavioral analysis of the agent

83

Conlusions

11.2 Future works
This section lists ideas, proposals or advice relating to the approach described in this
part of the script, for future works of various kinds, whether they are additions, mod-
ifications or improvements.

• Satisfy the “Request for Research” in Plappert et al. (2018) useful for the im-
provement of pick-and-place tasks.

• Implement the code via the recent TF-Agents library for RL.

• Modify the environment so that the training presents, in addition to a random
initial position of the object, also its random shape and size.

• Modify the environment so that the task is not completed as soon as the object
reaches the predetermined position, but make it necessary to wait a margin of
time to verify that the object has remained there and has not moved (this is
useful in cases where the cube passes from the desired position without being left
precisely there, and in the case of objects with a partially spherical surface).

• Make the agent more efficient in achieving the goal with tighter tolerance values.

• Carry out an estimate of the pose and shape of the object using CV methods
equipped with ML techniques, for example with unsupervised learning algorithms
using CNN, so as not to have to provide these data in a predetermined manner
and thus making the arm more autonomous.

• Implement a “bridge” (valid and modern unlike the low quality offer currently
available in the sector) between the Gym environment simulated with MuJoCo
and a ROS environment simulated through Gazebo, which makes practical to
integrate the code on physical systems.

84

Conclusions

85

Chapter 12

Comparison

All the treatment carried out so far, composed of the descriptions of the two approaches
considered in this thesis, already expresses in itself all the implementation and exec-
utive differences that can distinguish them. However, later on, precise parameters of
comparison on which to make any considerations, or to analyze in a more explicit way
concepts already easily deducible from the text, are listed.

Finally, a personal conclusion are given on what emerged from the comparison.
In the following, for convenience of notation, the approach without ML is referred

to as the approach 1 or first approach, and consequently the approach that instead
makes use of ML is referred to as with the approach 2 or second approach.

Implementation and Integration Considerations

Before going into a more schematic list, the author want to highlight a significant note
from the implementation point of view: the first approach makes use of a tool (MoveIt)
which is already part of an environment (ROS) created ad hoc for programming, man-
agement and integration of robotic systems. By its nature the approach 1 allows to
provide the robot, at the time of programming, with all the necessary information on
the environment with which it will interact, thus making simulation superfluous in view
of real application.

On the other hand, the second approach, to implement an agent and obtain a
software that works, does not need as the first an ad hoc environment for a direct
interaction with the robotic system. Consequently while the first approach implements,
as a direct consequence, the problem from a complete robotic point of view (motion
planning system, control system, actuating system and sensor system), the second does
it only from the point of view of motion planning, and despite achieving its purpose,
it needs a further step for a real implementation.

In fact, to implement the approach 2 on a real system, it remains necessary to
switch between intermediary systems, such as ROS, but also proprietary software, or
in any case any framework or application that allows interfacing to the machine at a
lower level. Also with regard to the environment, the close dependence on it in this
approach, as shown in this work, makes it equally necessary even in the execution

87

Comparison

phase on the physical arm, as even without an actual rendering (graphic visualization
of the simulation) there is always the need to implement an entity that exchanges data
directly with the agent.

Adaptability

Using this as yardstick, the approach 2 is certainly better.
While an agent, if adequately trained, is able to dynamically adapt to new situa-

tions (specially if online learning is implemented, and therefore it continues also in the
execution phase), an arm not equipped with RL algorithms will always be bound to its
programming limits, and will be good at dealing with only situations for which it has
been programmed and which have therefore been taken into consideration a priori.

Repeatability

As far as repeatability is concerned, there is no real winner as it is not a characteristic
that determines the quality of the action (in the end, however, cases where this is not
true are considered).

Analyzing this characteristic in the pure sense of the term, surely the arm pro-
grammed through the first approach is more likely to be able to execute a task several
times in the same way. However, there are possibilities (albeit low) that the motion
planner, as a result of its internal calculations, in the case of complex trajectories that
require difficult elaborations to avoid collisions, for reasons of speed or time constraints,
may select one solution rather than another when it finds a valid one even if others are
available.

An arm programmed with RL will hardly perform the same action to perform the
same task, even in this case the result depends on the complexity of the task, and
certainly this can be taken for granted in the case of complex tasks such as pick-
and-place. Furthermore, this statement is even more true in the case of agents who
implement stochastic policies or who seek solutions through approximations, cases in
which the stochastic variable is always present.

However, it should be added that while in the first case it is easy to insert constraints
that prohibit certain practices and therefore force repeatability, in the second case this
can be even impossible; so even if this feature is not important in standard cases, in
situations in which there is a need to know as much as possible the actions of the
system with the greatest possible determination, the first approach is certainly to be
preferred.

Accuracy

For what regards accuracy, the best approach is always doubtful the first, this is because
with standard programming it is possible to implement a task at any level of precision
required, as long as the actuators can act consistently with those degrees of sensitivity.

Even using algorithms that foresee learning, it is possible to potentially reach any
desired level of precision, however the computational complexity increases consistently

88

Comparison

with the increase of the required accuracy, thus making a certain sensitivity in facing
the task impossible in practice. This also, like everything, depends on the complexity
of the task, elaborated tasks such as pick-and-place require high precision both in the
phase of picking and in that of placing, therefore training the agent to perform this
task with too high precision can be prohibitive.

Reliability

Reliability could be seen as a parameter dependent on repeatability and precision and
closely related to safety, it could trivially be summed up with the question “Which of
the two is more likely to go wrong?”; on the basis of what has been said, for what is
the current state of the art, surely an arm programmed with the approach 1 is more
reliable.

Autonomy

Autonomy is the ability to “make on its own”; two actions performed by the arm can
be distinguished: planning and execution.

As far as planning is concerned, both approaches allow the arm, once programmed,
to plan the movement autonomously; even if with the approach 2, at the beginning, a
training phase which may require continuous interventions is necessary, however, that
phase can be considered as prior to the actual termination of programming.

As for the execution, in this case the second approach is better, in the analysis
carried out in this thesis it may not be immediately visible, but in the case in which a
more complex pick-and-place is implemented, a task that forces the arm to learn differ-
ent positions with which to approach the object to be taken, and not the simpler ones
that can be defined by normal Cartesian movements, it is possible also the situation in
which, in turn, with the first approach it is not possible to carry out the task knowing
only pose and form of the object, but it may be necessary for the programmer himself
to code how the arm must approach the pick phase (and the same can apply to the
place phase).

Responsiveness and Speed

Concerning the execution of more generic tasks, there is not much difference for the
two approaches, but if it is a question of optimizing a specific task in detail, through
the first approach there is certainly a possibility of intervening in a more fine manner
at a lower level, possibility denied instead with the second one. Furthermore, it is a
fact that no matter how valid an RL algorithm may be, an arm that has learned “a
good way” to do something, cannot aspire to the quality of action of an arm that has
already encoded “the best way” to do it.

89

Comparison

Complexity

On the basis of what has been covered from the beginning of the thesis to now, it
is evident that an approach of the second type is more complex than the first. This
complexity does not refer only to the code and the problem to be faced from the logical
point of view, but also a complexity from the computational point of view, since ML
algorithms are much more expensive, especially in the learning phase, than those of
the motion planner can be in the first approach.

Times/costs

It is chosen to put together the times and costs as it is a fact that the cost of a project
increases in proportion to the time needed to complete it, consequently the approach
2 is to be considered more onerous both in terms of time that costs; the design of an
optimal algorithm for solving a complex problem can require an indefinite amount of
time, and despite this, the training factor should not be underestimated, as this phase
can take several days of code execution.

Conclusion

Although artificial intelligence is a fascinating field, with infinite possibilities, and of
indescribable importance for research, and although technology is continuously mak-
ing great strides in this field, based on what has emerged, at the state of the art,
undoubtedly an approach of the the first type, and which therefore does not rely on
ML techniques, is still more robust and therefore to be preferred in real applications
where reliability is a fundamental discriminant.

90

Appendices

91

Appendix A

Hardware and Software Setup

The hardware and software configuration with which the entire thesis project was car-
ried out is described below, in order to reproduce as closely as possible the results
described in the document. Furthermore, for each software, in addition to the version,
the installation method is also indicated.

Notebook:

• CPU: Intel® Core™ i7-9750H CPU @ 2.60GHz (12 MB of cache, until 4,5 GHz,
hexa-core) × 12

• RAM: 16 GB

• Graphic card: NVIDIA® GeForce® GTX 1660 Ti with 6 GB di GDDR6

• OS: Ubuntu 18.04.5 LTS 64-bit

Software:

• ROS Melodic (from binary)

• Gazebo 9.0.0 (gazebo_ros package from ROS)

• RViz 1.13.13 (from ROS)

• rqt 0.5.2 (from ROS)

• MoveIt 1 for ROS Melodic and Ubuntu 18.04 (from binary)

• Gym 0.17.2 (with pip3)

• MuJoCo Pro 1.50 (with pip3)

• Stable Baselines 2.10.0 (with pip3)

• RL Baselines Zoo (from repo)

93

Hardware and Software Setup

• TensorFlow-GPU 1.14.0 (with pip3)

Extra tools used:

• Eclipse 2019-12 (from binary)

• git (from binary)

• python3-pip (from binary)

• virtualenv (with pip3)

94

Appendix B

Acronyms

On the next page (Table B.1) it is possible to view the alphabetical list of all acronyms
used in this thesis.

95

Acronyms

Table B.1: Acronyms used in the document

Acronym Meaning Acronym Meaning
A2C Actor-Critic MJCF MuJoCo Format
AI Artificial Inteligence ML Machine Learning

ANN Artificial Neural Network MV Machine Vision
API Application Programming

Interface
NN Neural Network

BMI Brain-Machine Interface OS Operating System
CMAC Cerebellar Model Arith-

metic Controller
PC Personal Computer

CNN Convolutional Neural Net-
work

PG Policy Gradient

COLLADA COLLAborative Design
Activity

PLC Programmable Logic Con-
troller

CPU Central Processing Unit RAM Random Access Memory
CV Computer Vision RNN Recurrent Neural Network

DDPG Deep Deterministic Policy
Gradient

RL Reinforcement Learning

DL Deep Learning ROS Robot Operating System
DNN Deep Neural Network RV Robot Vision
DOF Degrees Of Freedom SD Standard Deviation
DPG Deterministic Policy Gra-

dient
SDF Simulation Description

Format
DQN Deep Q-Network SoC System on Chip
DRL Deep Reinforcement

Learning
SOM Self-Organized Map

EEG ElectroEncephaloGraphy SPG Stochastic Policy Gradient
EMG ElectroMyoGraphy SR Success Rate
EML Extreme Machine Learn-

ing
SRDF Semantic Robot Descrip-

tion Format
ENG ElectroNeuroGraphy SVM Support Vector Machine
GPU Graphics Processing Unit TF TensorFlow
GUI Graphical User Interface TPU Tensor Processing Unit
HER Hindsight Experience Re-

play
URDF Unified Robot Description

Format
HMI Human-Machine Interface ViSP Visual Servoing Platform
IoT Internet of Things VS Visual Servoing
IRL Inverse Reinforcement

Learning
XACRO XML Macros

MCU MicroController Unit XML eXtensible Markup Lan-
guage

96

Bibliography

[1] Marcin Andrychowicz et al. Hindsight Experience Replay. 2018. arXiv: 1707.
01495 [cs.LG].

[2] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].
[3] F. Chaumette and S. Hutchinson. “Visual servo control, Part II: Advanced ap-

proaches”. In: IEEE Robotics and Automation Magazine 14.1 (Mar. 2007), pp. 109–
118.

[4] Sachin Chitta, Ioan Sucan, and Steve Cousins. “Moveit![ROS topics]”. In: IEEE
Robotics & Automation Magazine - IEEE ROBOT AUTOMAT 19 (Mar. 2012),
pp. 18–19. doi: 10.1109/MRA.2011.2181749.

[5] Sachin Chitta et al. “ros_control: A generic and simple control framework for
ROS”. In: The Journal of Open Source Software 2 (Dec. 2017), p. 456. doi:
10.21105/joss.00456.

[6] David Coleman et al. “Reducing the Barrier to Entry of Complex Robotic Soft-
ware: a MoveIt! Case Study”. In: (Apr. 2014).

[7] Prafulla Dhariwal et al. OpenAI Baselines. https://github.com/openai/baselines.
2017.

[8] Ashley Hill et al. Stable Baselines. https://github.com/hill-a/stable-baselines.
2018.

[9] HyeongRyeol Kam et al. “RViz: a toolkit for real domain data visualization”. In:
Telecommunication Systems 60 (Oct. 2015), pp. 1–9. doi: 10.1007/s11235-015-
0034-5.

[10] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-
source multi-robot simulator”. In: 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3. 2004,
2149–2154 vol.3. doi: 10.1109/IROS.2004.1389727.

[11] Timothy P. Lillicrap et al. Continuous control with deep reinforcement learning.
2019. arXiv: 1509.02971 [cs.LG].

[12] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015. url: https://www.
tensorflow.org/.

97

https://arxiv.org/abs/1707.01495
https://arxiv.org/abs/1707.01495
https://arxiv.org/abs/1606.01540
https://doi.org/10.1109/MRA.2011.2181749
https://doi.org/10.21105/joss.00456
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1109/IROS.2004.1389727
https://arxiv.org/abs/1509.02971
https://www.tensorflow.org/
https://www.tensorflow.org/

BIBLIOGRAPHY

[13] G.J. Monkman et al. Robot Grippers. Wiley Interscience. Wiley, 2007. isbn:
9783527406197. url: https://books.google.it/books?id=EDpSAAAAMAAJ.

[14] Matthias Plappert et al.Multi-Goal Reinforcement Learning: Challenging Robotics
Environments and Request for Research. 2018. arXiv: 1802.09464 [cs.LG].

[15] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: vol. 3.
Jan. 2009.

[16] Antonin Raffin. RL Baselines Zoo. https://github.com/araffin/rl-baselines-zoo.
2018.

[17] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. 2nd. Springer
Publishing Company, Incorporated, 2016. isbn: 3319325507.

[18] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. 1st. Springer
Publishing Company, Incorporated, 2008. isbn: 1846286417.

[19] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for model-based
control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

[20] M. Wise et al. “Fetch & Freight: Standard Platforms for Service Robot Applica-
tions”. In: 2016.

98

https://books.google.it/books?id=EDpSAAAAMAAJ
https://arxiv.org/abs/1802.09464
https://doi.org/10.1109/IROS.2012.6386109

	List of Illustrations
	Thesis Structure
	Introduction
	Summary
	Intelligent Connection
	Motion Planning
	Trajectory Planning
	Collision Avoidance

	Motion (and Force) Control
	Model
	Processing System

	Perception and Action
	Sensors
	Vision
	Computer Vision
	Machine Vision
	Robot Vision

	Actuators

	Common Info to Both Approaches
	Pick-and-Place
	Grippers
	Task Phases

	Fetch Robot Manipulator

	I Approach Without Machine Learning
	Summary
	Introduction
	Teaching by Showing/Demonstration
	Robot-Oriented Programming
	Object-Oriented Programming

	State of the Art
	ROS
	RViz
	rqt

	Gazebo
	MoveIt

	Work
	Moveit Robot Configuration Package
	Configuration Folder
	Launch Folder

	Fetch Pick-and-Place Package
	Launch Folder
	Models Folder
	Scripts Folder
	Source Folder

	Conlusions
	Results
	Future works

	II Machine Learning Approach
	Summary
	Introduction
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Deep Reinforcement Learning Theory
	Key Elements
	Environment
	Agent

	Methods Classification
	Tabular or Approximate Solution
	Value-Based or Policy-Based
	On-Policy or Off-Policy
	Model-Based or Model-Free

	Deep Learning in Reinforcement Learning
	Artificial Neural Networks
	Deep Learning in Action-Value Methods
	Deep Learning in Policy Gradient Methods

	State of the Art
	Multigoal Reinforcement Learning
	Dense and Sparse Rewards

	TensorFlow
	OpenAI
	Gym
	Goal-Based Environments
	Hindset Experience Replay
	Baselines

	Stable Baselines and RL Baselines Zoo
	MuJoCo

	Conlusions
	Results
	Future works

	Conclusions
	Comparison

	Appendices
	Hardware and Software Setup
	Acronyms
	Bibliography

