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Abstract

In this work, we modelled Coulomb blockade and Coulomb staircase phenomena starting from first-principles
and taking advantage of Schrödinger-like problems knowledge.

Coulomb blockade and staircase phenomena are physical effects related to the quantization of levels in a
nanoparticle. In the past, experimental results concerning these phenomena have been modelled with either
semiclassical or circuit-like models, which derive electrical parameters such as capacitances and resistances
in order to reproduce the measured currents trends.

Our approach, as quoted above, originates in the framework of quantum mechanics. As a first step, we
studied a simplified model, which is often used to describe a similar quantum structure, in which discretized
energy levels exist in the region enclosed between two one-dimensional potential energy barriers. In this
model, when electrons are forced to drift across the system under the effect of a bias voltage, they are able
to tunnel across the first energy barrier to move to one of the available energy levels, eventually leaving the
system by tunneling across the other barrier.

When dealing with coherent electron transport collisions are not phase-breaking and quantization of the
available conducting channels emerges either as a staircase-like or an oscillating resonant current-voltage
characteristics, depending on the nanoparticle size.

Literature provides analytic expressions for quantum tunneling across one, two or multiple barriers when
no external bias is applied to the system. However, as our goal was to model the effect of bias voltage
we were forced to revert to a numerical approach. To this purpose, we implemented the solution of the
out-of-equilibrium Schrödinger equation using Finite Element Method (FEM) and Non-Equilibrium Green’s
Functions (NEGF) approaches.

The FEM solution, although computationally less expensive than the NEGF algorithm, proves to be
viable only at equilibrium and small-bias conditions, while the NEGF solution provides reliable results over a
wider bias voltage range. Hence, we focused on a NEGF approach. The obtained results have been analyzed
in order to identify the role that each geometrical parameter plays in determining the current-voltage curve
shape.

Once the first step completed, as our target was to apply the model to the simulation and design of
nanoparticle-enhanced electrochemical biosensors, we modified the geometrical structure in order to emulate
a nanoparticle with an attached molecule. Now, quantum tunneling can only occur when an energy level
within the nanoparticle sits at an energy close enough to that of an unoccupied energy level of the molecule,
or vice versa. Current-voltage characteristics obtained for these kind of systems have been found to be very
similar both in shape and order of magnitude to those available in literature.

As the problem to tackle is rather challenging, the present work, although leading to satisfactory results,
represents a first critical step in the direction of a comprehensive tool for the simulation and design of
nanoparticle-enhanced electrochemical biosensors. Improvements can be made in optimizing the solving
algorithm, making it more efficient and less time-consuming, as well as including other relevant physical
phenomena in order to obtain a more complete description of the electron transfer. An example could be
the inclusion of the hopping phenomenon, which plays a role most probably as relevant as tunneling, but for
incoherent electron transport.
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1.2 Landauer-Büttiker formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Numerical implementation 9
2.1 FEM solution of the Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Lagrange polynomials as basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Weak formulation of Schrödinger’s equation . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Pseudocode of the FEM solving algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Model testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 Simulations with bias voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 NEGF formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Retarded and advanced Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 The infinitesimal η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Matrix formulation for the numerical solution . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Matrix truncation and self-energy term . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Transmission function and current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Density matrix, spectral function and local density of states . . . . . . . . . . . . . . . 22
2.2.7 A more rigorous definition of the one-particle Green’s functions . . . . . . . . . . . . . 23
2.2.8 Single-particle Green’s function of many-body systems . . . . . . . . . . . . . . . . . . 24
2.2.9 Current density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.10 Current operator and relation to the Landauer-Büttiker formula . . . . . . . . . . . . 27
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Introduction

Molecular-scale electronic components, such as nanoparticles or quantum dots, are of growing interest
due to their potential to become part of future nanoscale devices.

Advancements in experimental techniques made it possible to fabricate molecular-scale devices, as well
as junctions between such components and two, or more, electrodes. From an applied point of view, it
is desirable to control the way electrodes and nanoparticle are coupled, and eventually connect individual
devices into a working circuit; on the other hand, it is also important to understand and model electron
transport at the nanoscale.

Molecules and nanoparticles alike can be described as a set of discrete energy levels, and coupling with
the contacts is usually assumed to be weak so that the discrete energy levels can be considered isolated from
the contacts by potential energy barriers.

Under the effect of an applied bias voltage a current flows through the system; however, the number of
electrons that are able to tunnel across the barriers depends on the energetically available confined energy
levels. This phenomenon is known as Coulomb blockade of electrons, in which the discretization of conducting
channels reflects onto the current-voltage characteristics that shows a unique staircase-like or oscillatory trend.

The Coulomb blockade is mostly visible at low temperatures conditions, that cause the thermal energy
of electrons kBT to be lower than the energy required to add a new electron to the quantum dot; however,
with sufficient spacing between energy levels, this phenomenon is observable even at room temperature.

Among the many approaches that have been applied to the Coulomb blockade, many rely on the definition
of circuit-like electrical parameters, such as resistances and capacitances, to generate an equivalent circuit
that is able to reproduce the current of the analysed system.

In this work, the Coulomb blockade phenomenon has been modelled by numerical solution of first-principle,
Schrödinger-like problems.

Organization of this work

Analytic tunneling formulas that can be derived from Schrödinger’s equation are presented in chapter 1.
These formulas are commonly available in literature, and the starting point is the tunneling across a single
barrier: incoming electrons, represented as plane waves, are partially reflected and partially transmitted
through the barrier.

It is possible to generalize this concept to as many barriers as needed by combining single-barrier scattering
matrices.

The Landauer-Büttiker formula is also introduced in this chapter with a simple approach based on balance
equations of inflows and outflows of current. This formula allows to derive a current from the tunneling, or
transmission, probability of the system under analysis; however, it applies to a system subject to a bias
voltage.

Since the analytic tunneling expression presented in chapter 1 are strictly valid for a system in equilibrium
condition, the Schrödinger equation outside of equilibrium is solved numerically in chapter 2. Two solution
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methods are presented in this chapter: the first and simpler one is a direct solution of Schrödinger’s equation
by Finite Element Method (FEM) which proves to be effective only at near-equilibrium conditions, while the
second one is based on the more sophisticated Non-Equilibrium Green’s Functions (NEGF) approach. In
general, the concept of Green’s functions is applicable whenever the response of a system is related to the
excitation through a differential operator; hence, it can be used to solve Schrödinger’s equation.

The NEGF approach proves to be viable over a wider range of bias voltages than the FEM; therefore, it
is the method of choice in the remaining chapters.

The effect of geometrical parameters on the confined energy levels is analysed in chapter 3. For this
analysis, parameters have been varied independently from one another to determine which one affects the
most the distribution of energy levels.

In addition, by allowing only one energy level to conduct at each time, it is possible to highlight the
gap between two consecutive conducting channels through the current, and observe the contribution of each
conducting channel individually.

Finally, chapter 4 turns towards more realistic system, by simulating a three-barrier system that aims to
represent a molecule bound to a nanoparticle.

The aim of this work is to represent a first step in the direction of comprehensive modelling and designing
of nanoparticle-enhanced electrochemical biosensors. To this purpose, the voltage drop has been modified
so that the junction of the nanoparticle with the contacts is more closely reminding to a metal junction,
similarly to many experimental setups.

Moreover, the importance of aligning molecular energy levels with the nanoparticle ones is verified, and
allows the formation of conducting channels through the whole system; thus yielding a better current signal
via sequential tunneling of electrons.

The advantage of using a nanoparticle to enhance the current signal produced by a single molecule is
proven with respect to an individual molecule bound directly to the metal contact.

Finally, this work concludes with an attempt at reproducing a current-voltage curve from experimental
measurements on a real system.

2



Chapter 1

Tunneling models

The theoretical model is based on the solution of the time-independent Schrödinger equation for an
arbitrary potential [1], [2].

The stationary Schrödinger equation can be expressed as

H(r)ψn(r) = Enψn(r), H(r) = − ~2

2m

d2

dr2
+ U(r) (1.1)

in which the quantum number n is used to label the different energy levels En and their corresponding
eigenfunctions ψn(x).
As a consequence, stationary states are characterized by a time-dependent wavefunction

Ψn(r, t) = ψn(r) · exp

{
− iEnt

~

}
(1.2)

and, since equation (1.1) is linear, the most general solution is given by a linear combination of Ψn(r, t):

Ψ(r, t) =
∑
n

CnΨn(r, t) (1.3)

where Cn are complex coefficients.

In the analysis performed in this work, systems are one-dimensional and the potential U(r) = U(x) is a
function that generates abrupt discontinuities along the x direction.

1.1 Equilibrium analytic models

According to [3], a nanoparticle can be modelled as a double potential barrier, with energy levels confined
in-between, and a current signal can be measured as a consequence of transmission, or tunneling, of incoming
electrons through the system.

An analytic expression describing this phenomenon can be derived from equation (1.1), starting with a
single potential barrier [1], and then combining the effect of two barriers via the scattering matrix formalism
presented in [4].
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1.1.1 Single-barrier tunneling

Figure 1.1: Single potential barrier; image taken from [1].

The system is shown in figure 1.1. In order to avoid misinterpretations, despite the notation used in the
image, U will be used to refer to the potential energy; while V will be reserved when referring to the bias
voltage in the next sections.

The derivation performed in [1] at first assumes the particle energy E to be such as E > U0; and, by
assuming the particle is arriving from x = −∞, it avoids reflections in region III. As a consequence, there is
only one wavevector associated to the particle in that specific region.

Assuming quantum effects to be present only along the x -direction, the stationary solution of Schrödinger’s
equation (1.1) can be factorized in a transverse envelope χ(y, z) and a longitudinal wavefunction ψ(x), such
as in [5]:

ψn(r) = ψn(x, y, z) =
1√
Lx

χ(y, z)ψ(x) (1.4)

in which Lx is a normalization length of the system regarding the x direction.
Then, assuming normal incidence of electrons, the transverse components of the electron wavevector are

equal to zero and the longitudinal wavefunction ψ(x) in regions I to III can be expressed as:

ψI(x) = Aeik1x +Be−ik1x

ψII(x) = Ceik2x +De−ik2x (1.5)

ψIII(x) = Feik1x

Relations among complex coefficients A to F are determined by imposing the continuity boundary conditions
on ψ(x) and its first derivative at x = 0 and x = L.

The aim of this procedure is to obtain an analytic expression for the tunneling probability, or transmission
coefficient, which describes the probability of the incident wave to pass through the barrier as a function
of its energy. By definition, the tunneling probability is the squared modulus of the transmission Fresnel
coefficient, or transmission amplitude t = F/A:

T = |t|2 = t · t∗ =
F

A
· F
∗

A∗

An extended derivation of the final expression is performed in appendix A, section A.1; here, only the final
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result is reported:

T (E) =



4E(U0 − E)

4E(U0 − E) + U2
0 sinh2

(√
2m(U0 − E)

~2
L

) , E < U0

4E(E − U0)

4E(E − U0) + U2
0 sin2

(√
2m(E − U0)

~2
L

) , E ≥ U0

(1.6)

Equation (1.6) is case-defined in order to maintain a real argument in the square root at denominator.
In addition, when E � U0 the expression reduces to a decaying exponential function of the barrier

thickness L:

T ∝ exp

{
−2

√
2m(U0 − E)

~2
L

}
, E � V0 (1.7)

which is the simplified expression used in [3] for each barrier.

Finally, since there are no losses, the reflection probability is complementary to the transmission probability:
R+ T = 1.

These probabilities constitute the scattering matrix of the system, relating outgoing wave amplitudes to
incoming wave amplitudes. Using an equivalent notation to [4], it is possible to write(

B
F

)
=

[
S11 S12

S21 S22

]
·
(
A
0

)
; S =

[
S11 S12

S21 S22

]
(1.8)

for the system under analysis. Expanding the product, it is easily proven that S11 = B/A = r, reflection
amplitude, and S21 = F/A = t, transmission amplitude. The scattering matrix is shown in [4] to be unitary
to ensure current conservation; while the reciprocity relation is satisfied for coherent transport, in which no
phase-breaking collisions occur.

This means that the final form of the scattering matrix is:

S =

[
S11 S12

S21 S22

]
=

[
r t
t r

]
(1.9)

in which |r|2 = R.

1.1.2 Double-barrier tunneling

Figure 1.2: Double potential barrier, image taken from [6].
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Also in case of a double potential barrier the tunneling probability could in principle be determined
from the Schrödinger equation; however, the scattering matrix formalism is a more common approach to the
problem which allows to divide the system in sections, and combine their individual scattering matrices to
obtain a composite scattering matrix for the whole system, such as in [4] and [7].

Since the scattering matrix for a single potential barrier is known, the transmission probability of a
double-barrier system is more easily determined from the single-barrier one.

For a general system of two barriers different from each other, and characterized by scattering matrices
respectively

S1 =

[
r1 t1
t1 r1

]
, S2 =

[
r2 t2
t2 r2

]
(1.10)

applying the rules for coherent combination of scattering matrices listed in [4], the resulting transmission
amplitude is:

t =
t1t2

1− r1r2
(1.11)

which translates into a tunneling probability equal to:

T (E) = |t|2 = t · t∗ =
T1T2

1− 2
√
R1R2 cos (θ) +R1R2

(1.12)

where the argument θ = 2k(L+a) is the sum of the reflection amplitudes’ arguments: it represents the phase
shift acquired during a round-trip between the barriers.

Here again, only the final result is reported; but a more detailed derivation is found in appendix A, section
A.2.

1.2 Landauer-Büttiker formula

The current evaluation relies on the assumption that the contacts through which the current is injected
into the system are “reflectionless”, i.e. electrons are able to leave the system and enter them without
any reflection. This is a reasonable assumption when transmitting from a narrow conductor, such as a
nanoparticle, to a wide contact [8], [9].

Starting with a single contact, the current can be evaluated for each transverse conducting mode separately
and then all contributions can be added up together, as in [4].

A uniform electron gas constituted of n electrons per unit length moving at velocity v carries a current
density equal to:

I = env(k) = en
1

~
∂E(k)

∂k
, v(k) =

1

~
∂E(k)

∂k
(1.13)

Conducting transverse modes in the contacts are determined by the applied voltage difference at the system’s
ends, which translates into a difference in the contacts’ chemical potentials µ1 and µ2. At a temperature
higher than zero Kelvin degrees, a reasonable assumption is that transverse modes inside the contacts are
occupied according to a Fermi-Dirac distribution:

f (E − µ) =
1

1 + exp

{
E − µ
kBT

} (1.14)

With an electron density equal to (1/L), associated with a single transverse k -mode in a conductor of length
L, the current becomes:

I =
e

L

∑
k

1

~
∂E(k)

∂k
f(E − µ) (1.15)
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summing over all k values. Assuming periodic boundary conditions, and a sufficiently high number of k
values, the summation can be converted into an integral:∑

k

→ 2 × L

2π

∫
dk (1.16)

in which the factor 2 accounts for the spin multiplicity. Then,

I =
2e

L

L

2π~

∫
f(E − µ)dE =

2e

h

∫
f(E − µ)dE (1.17)

This result can be extended to include several conducting modes:

I =
2e

h

∫
f(E − µ)M(E)dE (1.18)

where M(E) is the number of transverse modes above the cut-off energy.

Figure 1.3: Graphical representation for the Landauer-Büttiker formula derivation; image taken from [4].

In equation (1.18), it is assumed that transport only occurs from one contact to the other; however, in
general, current can flow also in the opposite direction and the energy of injected electrons is dictated by the
applied bias voltage µ1 − µ2 = e · V via the number of conducting modes each contact has available in that
range.

Therefore, contacts are characterized by a certain transmission efficiency T(1,2) of electrons inside the
system, and by a certain number M(1,2) of conducting transverse modes, respectively.

Figure 1.3 can be used as a reference, imagining two contacts at the left- and right-hand sides of the
system, whose Fermi-Dirac distribution functions of electrons are represented. Current flows entering and
leaving the left contact can be expressed as:

i+1 =
2e

~
f(E − µ1)

∂E(k)

∂k
M1

i−1 = (1− T1) i+1 + T2i
−
2

(1.19)

Similarly, for the right contact: 
i−2 =

2e

~
f(E − µ2)

∂E(k)

∂k
M2

i+2 = T1i
+
1 + (1− T2) i−2

(1.20)
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in which the plus and minus signs at apex indicate an electron flow towards the right and left, respectively.
The total current density flowing from one contact to the other is given by the balance:

i = i+1 − i
−
1 = i+2 − i

−
2 = T1i

+
1 − T2i

−
2 =

2e

~
∂E(k)

∂k
[T1M1f(E − µ1)− T2M2f(E − µ2)] (1.21)

In the absence of inelastic scattering events inside the system, as stated in [4], it can be proven that T1M1 =
T2M2 = T (E) at all temperatures, T (E) being the transmission probability of the system.

Finally, the total current can be evaluated accounting for the contribution of all existing k values within
the contacts through an integral, such as in equations (1.16) and (1.17):

I =

∫
i
dk

2π
=

2e

h

∫
T (E) [f(E − µ1)− f(E − µ2)]

∂E(k)

∂k
dk (1.22)

Changing the integration variable from the wavevector k to the energy E, the Landauer-Büttiker formula is
obtained:

I =
2e

h

∫
T (E) [f(E − µ1)− f(E − µ2)] dE (1.23)

The integral can be allowed to span over all energies since only the energy range in which the difference
between Fermi distributions is different from zero is responsible for conduction.

A more rigorous derivation, based on quantum mechanics, of equation (1.23) is given in chapter 2, section
2.2, with the introduction of the current and current density operators.
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Chapter 2

Numerical implementation

In order to calculate the current across the double-barrier system according to equation (1.23) the
tunneling probability has to be evaluated at each intermediate bias voltage value between V = 0 and
V = Vmax. In order to do so, equation (1.12) is no longer valid because it has been obtained in an equilibrium
condition, in which the left- and right-hand side chemical potentials coincide.

Two methods have been compared to evaluate T (E) outside of equilibrium, the Finite Element Method
(FEM ) and the Non-Equilibrium Green’s Functions (NEGF ) approaches.

2.1 FEM solution of the Schrödinger equation

This approach aims to numerically solve the Schrödinger equation by deriving an approximate wavefunction
in terms of a linear combination of some appropriate basis functions. The bias voltage enters Schrödinger’s
equation directly, by “tilting” the equilibrium potential energy profile.

Injecting electrons from one contact, the tunneling probability is then evaluated as the squared absolute
value of the approximate solving wavefunction at the opposite contact.

2.1.1 Lagrange polynomials as basis functions

As explained in [10], the FEM approach needs the domain, in this case a segment [0, L] of the x -axis,
to be discretized into a finite number of elements. The problem is defined into N mesh nodes and N − 1
sub-intervals. Then, a set of N basis functions is defined to approximate the solution; in particular, first-order
Lagrange polynomials have been used:

N1(x) =
x2 − x
x2 − x1

, x2 ≤ x < x1

Nj(x) =


x− xj−1
xj − xj−1

, xj−1 ≤ x < xj

xj+1 − x
xj+1 − xj

, xj ≤ x < xj+1

j = 2, . . . , N − 1

NN (x) =
x− xN−1
xN − xN−1

, xN−1 ≤ x ≤ xN

(2.1)

These functions are triangle-shaped and their support is limited only up to their left- and right-hand side
adjacent nodes; figure 2.1 shows a simple case with 5 nodes and 4 sub-intervals for a domain x ∈ [0, 1].
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Figure 2.1: First-order Lagrange polynomials with N = 5; nodes are shown as black circles on the x -axis.

The electron wavefunction which is the unknown of the problem, is expressed as a linear combination of
basis functions, according to Galërkin’s procedure:

ψ(x) =

N∑
j=1

cjNj(x) =

N∑
j=1

ψjNj(x) , ψj = ψ(x = xj) (2.2)

A property of Lagrange polynomials (2.1) is that they are interpolating functions; therefore, the coefficients
cj are exactly equal to the value of the wavefunction at node xj .

The limited support of each basis function is an advantage since the inner product between two basis
functions Ni, Nj and that of their first derivatives N ′i and N ′j will be zero for almost all i, j pairs. Hence,
the integrands in the weak formulation of a problem will be identically equal to zero whenever |i− j| > 1.

2.1.2 Weak formulation of Schrödinger’s equation

The Schrödinger equation for the one-dimensional system writes:[
− ~2

2m

d2

dx2
+ U(x)

]
ψ(x) = Eψ(x) (2.3)

Each term of the equation is multiplied by a weighting function, which is chosen to be equal to the Lagrange
polynomial (2.1) used as basis function, and integrated over the whole domain to obtain

− ~2

2m

∫ L

0

Ni(x)
d2

dx2
ψ(x)dx+

∫ L

0

Ni(x)U(x)ψ(x)dx = E

∫ L

0

Ni(x)ψ(x)dx (2.4)

then, Green’s theorem (integration by parts in 1D) is used on the first integral on the left-hand side to reduce
by one order the derivative of the wavefunction in the integrand; thus obtaining the weak formulation of
Schrödinger’s equation:

~2

2m

∫ L

0

dNi
dx

dψ

dx
dx+

∫ L

0

Ni(x)U(x)ψ(x)dx = E

∫ L

0

Ni(x)ψ(x)dx+
~2

2m
Ni(x)

dψ

dx

∣∣∣∣L
0

(2.5)
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substituting (2.2) into equation (2.5), applying proper boundary conditions, and taking advantage of the
integral’s linearity, it is possible to write

~2

2m

N∑
j=1

ψj

∫ L

0

dNi
dx

dNj
dx

dx︸ ︷︷ ︸
Kij

+

N∑
j=1

ψjUj

∫ L

0

Ni(x)Nj(x)dx︸ ︷︷ ︸
Mij

= E

N∑
j=1

ψj

∫ L

0

Ni(x)Nj(x)dx︸ ︷︷ ︸
Mij

, (2.6)

i = 2, . . . , N − 1

for a single mesh point; Uj = U(x = xj) is equal to a constant at each mesh point and thus it can be moved
out of the integral. Due to how Lagrange polynomials are defined, these integrals will be identically equal to
zero whenever |i− j| > 1. In matrix form:(

~2

2m
[K]j + Uj [M ]j

)
{ψ}j = E[M ]j {ψ}j (2.7)

Then, summing over all mesh points, a generalized eigenvalue equation is obtained:∑
j

(
~2

2m
[K]j + Uj [M ]j

)
{ψ} = E

∑
j

[M ]j {ψ} (2.8)

Equation (2.8) is the discrete weak formulation of Schrödinger’s equation with respect to first-order Lagrange
polynomials; the unknown is the set of coefficients {ψ} of the expansion (2.2).

Matrices [K] and [M ] are commonly referred to as stiffness matrix and mass matrix, respectively. Since
first-order Lagrange polynomials are linear functions, the matrix elements can be computed analytically;
their calculation is performed in appendix B.

2.1.3 Boundary conditions

In this model, contacts or electron reservoirs are not an actual part of the domain; but they occupy the
regions x < x1 and x > xN and are defined as fully absorbing elements. Considering electrons to be injected
from the left- and right-hand contacts with known wavevectors kL and kR, respectively; and allowing them
the possibility to be partially reflected inside the contacts, it is possible to write:

kL =

√
2m (E − U1)

~2
,ψL(x) = ψ+

L e
ikLx + re−ikLx

kR =

√
2m (E − UN )

~2
,ψR(x) = teikRx + ψ−Re

−ikRx

(2.9)

assuming +x to be the positive propagation direction.

Evaluating (2.9) and their first derivative at the domain’s boundaries x = x1 and x = xN , respectively,
it is possible to eliminate the reflection and transmission amplitudes r and t, obtaining the mixed boundary
conditions:

dψL(x)

dx

∣∣∣∣
x1

= −ikLψL (x1) + 2ikLψ
+
L e

ikLx1

dψR(x)

dx

∣∣∣∣
xN

= ikRψR (xN )− 2ikRψ
−
Re
−ikRxN

(2.10)

Now, continuity of the wavefunctions and of their first derivatives across the device-contact interface can be
enforced by using equations (2.10) as the finite-element equations corresponding to the first and last node,
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respectively.

Thus, the value of the electron energy is determined by the boundary conditions and the eigenvalue
problem (2.8) can be rewritten including them as equations. Starting from a more compact notation for
equation (2.8):

[H] {ψ} = E [M ] {ψ} (2.11)

with

[H] =
∑
j

(
~2

2m
[K]j + Uj [M ]j

)

[M ] =
∑
j

[M ]j

(2.12)

the system which includes the boundary conditions becomes inhomogeneous and linear:

[A] {ψ} = {b} (2.13)

where
[A] = E [M ]− [H] (2.14)

is the matrix incorporating the boundary conditions (2.10). {b} is the known vector whose elements are all
equal to zero, except for the first one which acts as a stimulus for the system according to the boundary
conditions. The aim is obtaining the system’s transmission probability; for this purpose, incoming electrons
are assumed to be coming from the left contact, hence ψ+

L = 1 and ψ−L = 0.
Finally, the system of equations (2.13) can be solved by direct approaches for linear systems. A schematic

pseudocode of the solving algorithm is shown in the following section.
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2.1.4 Pseudocode of the FEM solving algorithm

Algorithm 1: Solution procedure by FEM

Data: x, Energy, Bias, Ueq
Result: Current I
Initialization;
for Bias do

U = Ueq + q ·Bias;
µ1 = EF + q ·Bias/2;
µ2 = EF − q ·Bias/2;
for x do

Define FEM matrices;
H = stiffness matrix;
M = mass matrix;

end
for Energy do

A = Energy ·M −H;

A(1, 1) = A(1, 1) + boundary conditions of the left-hand contact;
A(end, end) = A(end, end) + boundary conditions of the right-hand contact;

b = known vector whose elements are equal to zero;
b(1) = stilumus to the system according to the boundary conditions;

ψ = A \ b;
T (Energy) = abs (ψ(end))

2
;

end

I(Bias) =
2e

h

∫
T (Energy) [f(Energy − µ1)− f(Energy − µ2)] dE;

end

2.1.5 Model testing

Analytic equations (1.6) for tunneling across a single barrier and (1.12) for a double barrier are valid for
a system in equilibrium conditions, in which no bias voltage is applied that would tilt the potential energy
profile in one direction; therefore, in order to validate the numerical solution of Schrödinger’s equation, and
compare it to the analytic formulas presented in chapter 1, the finite element model has been used to solve
Schrödinger’s equation for a fixed potential energy profile. The incident electron kinetic energy has been
modified like an independent variable in order to evaluate the tunneling probability as a function of the
particle energy. At each iteration, the whole procedure is repeated after updating the potential energy profile
according to the applied bias voltage.

As a reminder, the FEM model approximates the wavefunction solution of the Schrödinger equation using
a set of basis functions, equations (2.1) in this particular case. Then, the FEM tunneling probability can be
derived from the squared absolute value of the approximate wavefunction evaluated at the opposite end of the
domain with respect to the electron injection point. The process is repeated to build a tunneling probability
as a function of the incident electron energy:

T (E) = |ψ(x = xN , E)|2 = |ψN (E)|2 (2.15)

The software used for all the simulations and numerical computations is MATLAB 2020a build.

Figures 2.2 and 2.3 show the comparison between FEM solution and the analytic equations (1.6) and
(1.12), respectively; together with the potential energy profile provided to the Schrödinger equation.
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In the single-barrier case the agreement between the results is nearly perfect, so that no difference is
noticeable to the naked eye and the difference between curves is found to be of the same order of magnitude
as MATLAB’s machine precision, which is 10−16. At first, the tunneling probability increases exponentially
with the electron energy, then it stabilizes to values close to unity for E > U0.

The double-barrier case shows also a good agreement with the analytic expression, especially in the lower
energy range where the curves nearly coincide, until E slightly exceeds U0. This range is the most relevant
in terms of Coulomb blockade because it is the range in which confinement effects can be observed.

In particular, two peaks of transmission are present for electron energies such as E < U0. This suggests the
presence of two confined energy levels between the barriers which allow electrons whose energy is compatible
to transit across them with probability nearly equal to one. As E becomes larger than U0, the tunneling
probability quickly stabilizes to values close to unity, with a few oscillations.

For E ' 0.75 eV the analytic and FEM curves start to slightly differentiate from each other; however, this
should not be a cause of concern for this work because Coulomb blockade phenomenon is mainly observed
for energies such that confined levels are present in between the barriers.

Figure 2.2: Single-barrier tunneling probability comparison, analytic and FEM.
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Figure 2.3: Double-barrier tunneling probability comparison, analytic and FEM.

2.1.6 Simulations with bias voltage

Since preliminary tests and comparisons with the analytic equilibrium formulas produced satisfactory
results, the FEM model has been generalized to include the presence of a progressively increasing bias
voltage between the two contacts.

The voltage drop between the them is assumed to be linearly distributed across the system, such as
shown in figure 2.4, which is an example taken from the simulation of the system in figure 2.3, and applies
a 1V-bias across the barriers. The effect of a bias voltage is included inside the solving algorithm directly in
Schrödinger’s equation, as it can be summed to the potential energy, thus “tilting” the energy profile of the
system in one direction along the x -axis.

Figure 2.4: 1V, linear voltage between the contacts.

Therefore, for each iteration on the bias voltage a FEM system of equations in the form (2.13) is solved
and a new transmission probability is derived via equation (2.15); then, the Landauer-Büttiker formula (1.23)
is used to obtain a current value, corresponding to the static current flowing through the system for that
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particular value of applied voltage. At the end of the procedure, an I-V characteristics is constructed.

Unfortunately, the implementation which was expected to work even outside of equilibrium proved to be
inadequate for bias voltages higher than approximately 0.1 V , independently of the simulated system. This
issue has been at first spotted in the current I-V characteristics: although it showed an overall exponential
trend as expected, it also presented neither steps nor negative differential conductance regions which are
features of the Coulomb blockade phenomenon.

After a more careful analysis, the issue has been identified in the tunneling probability derived by the
FEM model; as a reminder, the transmission probability is here calculated via equation (2.15).

By definition of a particle’s wavefunction, its squared absolute value should have a maximum value of
one, since it represents a probability; instead, as shown in figure 2.5, which is the same case presented in
figure 2.3, the first tunneling peak reaches above one for bias voltages higher than approximately 0.1 V and,
as the applied voltage further increases, this trend becomes more and more prevalent. Moreover, the other
peaks follow soon after in this physically meaningless behaviour.

As it has already been stated, the breaking point seems to be around 0.1 V , which is when the decreasing
trend of the first peak starts to invert. As a consequence, the integral in the Landauer-Büttiker formula
(1.23) starts to increase and the current soon diverges to senseless values.

For these reasons, a more sophisticated but also much more computationally expensive model has been
experimented with, which is the Non-Equilibrium Green’s Functions approach, often shortened to NEGF.
This model is presented in section 2.2.
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Figure 2.5: FEM transmission probability, evolution with increasing bias.
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2.2 NEGF formalism

An introduction to Green’s functions can be found in [11]. For non-interacting transport this approach
is closely related to the scattering matrix concept presented in section 1.1 for the tunneling across a double
potential barrier.

However, the NEGF formalism provides a microscopic theory of quantum transport beyond the ballistic
limit considered here: interactions such as electron-phonon ones give rise to excitations inside the conductor
that cannot be modelled by simple scattering matrices.

Using the notation found in [4], the concept of Green’s function appears in many physical contexts and,
in general, it is applicable whenever the response R of a system is related to the excitation S through a
differential operator Dop:

DopR = S (2.16)

Defining a Green’s function, the response can be expressed as:

R = D−1op S , G ≡ D−1op (2.17)

In particular, a one-particle Schrödinger-like problem can be formulated as:

[E −H]ψ(r) = S (2.18)

so that

G(r, E) = [E −H]
−1

=

(
E − U(r) +

~2

2m
∇2

)−1
(2.19)

in which H is the Hamiltonian operator and E the energy eigenvalue.

2.2.1 Retarded and advanced Green’s functions

Since the inverse of a differential operator is not uniquely defined until the boundary conditions are
specified, it is common to define two different Green’s functions; they are usually referred to as retarded and
advanced Green’s functions, respectively.

The difference can be highlighted with a simple example. Considering a one-dimensional system, and
using equation (2.19) it is possible to write(

E − U(x) +
~2

2m

d2

dx2

)
G(x, x′) = δ(x− x′) (2.20)

which resembles a Schrödinger equation for the Green’s function, except for the excitation source term
δ(x− x′) on the right-hand side of the equation.

Therefore, the Green’s function can be seen as the wavefunction evaluated at x due to a point-like source
placed at x′. This excitation is expected to give rise to two propagating waves outgoing from the point x′:
one directed towards the positive x -direction, and one directed towards the negative x -direction.

In order to satisfy equation (2.20), the two solutions must be continuous at x = x′ while their first
derivative must be discontinuous at the same point. This allows to obtain an expression for the Green’s
function:

GR(x, x′) = − i

~v
exp{ik |x− x′|} , v =

~k
m

, k =

√
2m(E − U(x))

~2
(2.21)

which is commonly named retarded Green’s function; however, there is also another viable solution that
satisfies (2.20):

GA(x, x′) =
i

~v
exp{−ik |x− x′|} , v =

~k
m

, k =

√
2m(E − U(x))

~2
(2.22)
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which is called advanced Green’s function. In both equations (2.21) and (2.22) v is the particle velocity, and
k its wavenumber.

Both these solutions satisfy equation (2.20), but they correspond to different boundary conditions: GR

corresponds to outgoing waves originating at x′; while GA corresponds to incoming waves originating far
away from the source.

In addition, knowing that GR and GA are both bounded linear operator, it is possible to deduce that the
retarded and advanced Green’s functions are one the Hermitian conjugate of the other. In formula, it can be
written as: (

GA
)

=
(
GR
)†

(2.23)

2.2.2 The infinitesimal η

One method to incorporate the boundary conditions into equation (2.20) is to add an infinitesimal
imaginary part to the energy. Writing the equation for the retarded Green’s function:(

E − U(x) +
~2

2m

d2

dx2
+ iη

)
GR(x, x′) = δ(x− x′) , η > 0 (2.24)

the imaginary part iη introduces a positive imaginary component to the wavenumber k, which makes the
solution grow indefinitely far away from the excitation point x′:

k′ =

√
2m(E − U(x) + iη)

~2
≈
√

2m(E − U(x))

~2

[
1 +

iη

2(E − U(x))

]
= k(1 + iδ) (2.25)

As a consequence, GR is the only solution that remains bounded and is considered acceptable.
Similarly, the equation for the advanced Green’s function is:(

E − U(x) +
~2

2m

d2

dx2
− iη

)
GR(x, x′) = δ(x− x′) , η > 0 (2.26)

Therefore, in general, the definition of Green’s functions (2.19) is split into two: GR and GA are defined as

GR = [E −H + iη]
−1

(2.27)

and
GA = [E −H − iη]

−1
(2.28)

respectively, with η → 0+.

2.2.3 Matrix formulation for the numerical solution

The procedure to derive the Green’s functions involves the solution of equation (2.20), and a common
approach to solve this kind of differential equations is to discretize the spatial coordinate so that the Green’s
functions become matrices. Taking the retarded Green’s function as an example:

GR(x, x′) → GR(i, j) (2.29)

and the differential equation (2.20) becomes a matrix equation. According to [12], the same matrices [H]
and [M ] derived in section 2.1 for the FEM solution of Schrödiner’s equation can be used for this purpose;
dropping the square brackets when referring to them to simplify the notation, equation (2.20) becomes:

[(E + iη)M −H]
[
GR
]

= [I] (2.30)
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in which [I] is the identity matrix.
The retarded Green’s function can be obtained inverting equation (2.30) numerically:[

GR
]

= [(E + iη)M −H]
−1

(2.31)

At this point, boundary conditions are yet to be explicitly derived: they are not introduced by substituting
the first and last elements of matrices [H] and [M ], such as in section 2.1, but they are implicitly contained
in the infinitesimal η. An explicit expression will be derived shortly.

2.2.4 Matrix truncation and self-energy term

In principle, equation (2.20) spans over the entire x -axis; thus, its matrix form (2.30) should deal with
infinite-dimensional matrices since the system is open and connected to leads that stretch out to infinity.

However, the system must have a finite number of equations in order to be solved by a calculator; therefore,
matrices have to be truncated at some point along the x -axis.

The truncation has to be performed with particular care since simply truncating the matrices would result
into the system being transformed into a close one with fully reflecting boundaries. Thus, the truncations
must be done in a way that maintains the system open and with non-reflecting boundary conditions, such as
in section 2.1 for the FEM implementation.

The solution provided by [4] and [11] involves the partition of the overall Green’s function into sub-matrices:

GR =

[
GRD GRDR

GRRD GRR

]
=

[
(E + iη)MD −HD −τ

−τ † (E + iη)MR −HR

]−1
(2.32)

in which τ = HDR is the coupling Hamiltonian between lead and conductor. In this format, GRD represents the
isolated lead and GRR the isolated conductor. Off-diagonal terms are different from zero only for nodes in the
conductor which are adjacent to the leads; hence, in a two-terminal device, only the first one and the last one.

The sub-matrix GRR is the most relevant part since it is the part describing the system under analysis and
is the only part that needs solving.

Starting from the partition (2.32) and using matrix identities such as (2.30), it is possible to write: [(E + iη)MD −HD]GRDR − τGRR = 0 (2.33)

[(E + iη)MR −HR]GRR − τ †GRDR = I (2.34)

Then,
GRDR = [(E + iη)MD −HD]

−1
τ GRR , [(E + iη)MD −HD]

−1
= gRR (2.35)

derives from equation (2.33), and by substituting it into equation (2.34) an expression for the system Green’s
function is obtained:

[(E + iη)MR −HR]GRR − τ †gRRτ GRR = I ⇒

⇒
[
(E + iη)MR −HR − τ †gRRτ

]
GRR = I

(2.36)

Finally, naming τ †gRRτ = ΣR, the truncated matrix equation to be solved is:

GRR =
[
EMR −HR − ΣR

]−1
(2.37)

Equation (2.37) is also known as Dyson’s equation; it shows that the effect of the infinite leads is taken
into account in the term ΣR, also called self-energy. This means that the contacts Hamiltonian is “folded”
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into the device Hamiltonian; this concept allows to eliminate the infinite leads and work only in the device
sub-space whose dimensions are substantially smaller.

The self-energy can be viewed as an effective Hamiltonian arising from the interaction of the conductor
with the contacts. A similar term is often used to account for the interaction between electrons with phonons
in systems that require these kinds of interactions; hence, by analogy, ΣR is the self-energy due to the leads.

The presence of infinite leads is taken into account exactly through the term τ †gRRτ , in which gRR represents
the Green’s function for an isolated contact and can usually be derived analytically.

Unlike η, ΣR is not necessarily an infinitesimal; that is why η has been neglected in equation (2.37).

Finally, assuming different leads to be independent of one another, their effects are additive and a total
self-energy can be obtained as a summation of the individual ones of each lead:

ΣR =
∑
p

ΣRp (2.38)

This assumption is reasonable due to the starting hypothesis on lead-conductor coupling terms being different
from zero only for nodes which are adjacent to the leads.

From here on, GR will be used to denote GRR since it is the only Green’s function containing relevant
information on the system under analysis. An equivalent notation will be used when referring to the FEM
stiffness and mass matrices, [HR] and [MR], that will be simply denoted as [H] and [M ], respectively.

2.2.5 Transmission function and current

It is shown in [4] that having an expression for the Green’s function, the individual scattering matrix
elements of the system can be derived through the Fisher-Lee relation and, with those, the transmission
function of electrons across the system. Scattering matrix and the Green’s functions-based methods are
proven to be exactly equivalent in [13].

The Fisher-Lee relation writes:

snm = −δnm + i~
√
vnvm

∫∫
χn (yq)

[
GRqp (yq; yp)

]
χm (yp) dyqdyp (2.39)

in which v is the electron velocity, and χ(y) its transverse component of the electron wavefunction, according
to the factorization (1.4).

Finally, the transmission function for a two-terminal device can be expressed in compact form as:

T (E) = Tr[Γ1G
RΓ2G

A] (2.40)

in which Tr stands for trace operator, and the elements of matrices Γ(1,2) can be expressed in terms of the
self-energies due to individual leads:

Γ(1,2) = i
[
ΣR(1,2) − ΣA(1,2)

]
(2.41)

in which the advanced self-energy ΣA is the Hermitian conjugate of the retarded self-energy ΣR. Γ(1,2) are
called broadening functions and represent the coupling between conductor and leads.

Having a way to derive the transmission function of the system from Green’s functions and self-energies
such as in equation (2.40), the current can be calculated via the Landauer-Büttiker formula (1.23) presented
in section 1.2.

In order to prove equation (2.40) and the validity of the Landauer-Büttiker formula to derive the total
current, a few more quantities need to be defined; namely, the spectral function and lesser and greater Green’s
functions, which will be discussed in the following sections.

21



2.2.6 Density matrix, spectral function and local density of states

In the simplified description presented in [11], the attention is focused on the coherent transport in
steady-state regime. Under these assumptions, at equilibrium, the electron concentration is obtained by
filling up the eigenstates ψj(x) of Schrödinger’s equation according to the Fermi-Dirac distribution (1.14):

n(x) =
∑
α

[
|ψα(x)|2 f(Eα − µ)

]
(2.42)

When a bias voltage is applied, contacts are at a different chemical potential µ such as depicted in section 1.2
when discussing the Landauer-Büttier formula: the left-hand lead is assumed to inject a thermal equilibrium
flux of electrons into the device; some are reflected and some transmitted to the right-hand lead. An analogous
argument applies to the right-hand lead, and leads are assumed to be perfect absorbers.

At the leads the solution is a known Fermi function; however, inside the device states α, β are occupied
in a correlated manner which is described by a density matrix:

ρ(r, r′) =
∑
α,β

[ψα(x)ρ̃αβψβ(x′)] (2.43)

In the eigenstate representation, the equilibrium density matrix for k// = 0, such as in this description,
assumes the form:

[ρ̃] =


f (E1 − µ) 0 0 . . .

0 f (E2 − µ) 0 . . .
0 0 f (E3 − µ) . . .
. . . . . . . . . . . .

 (2.44)

in which Ej are the eigenvalues of the Hamiltonian H.
To obtain the diagonal density matrix [ρ] in real space coordinates a unitary transformation is required:

[ρ] = [V ] [ρ̃] [V ]
†

(2.45)

in which [V ] are matrices whose column vectors are the eigenvectors of M−1/2HM−1/2; H and M are the
FEM stiffness and mass matrices, respectively, as derived in section 2.1.

Hence, equation (2.45) can be written in compact form as:

[ρ] =

∫
f(E − µ)δ([EM −H]) dE (2.46)

in which δ denotes a Kronecker delta; substituting the expression:

2πδ(x) = lim
ε→η

(
2ε

x2 + ε2

)
=

i

x+ iη
− i

x− iη
, η → 0+ (2.47)

into equation (2.46), is possible to write:

[ρ] =

∫
f(E − µ)

i

2π

(
[(E + iη)M −H]

−1 − [(E − iη)M −H]
−1
)
dE =

=

∫
f(E − µ) [A(E)]

dE

2π
(2.48)

in which the retarded and advanced Green’s functions can be recognized, expressed in their matrix form
with respect to equations (2.27) and (2.28), respectively. Finally, it is possible to define the spectral function
[A(E)] as:

[A(E)] = i
(

[(E + iη)M −H]
−1 − [(E − iη)M −H]

−1
)

= i
([
GR(E)

]
−
[
GA(E)

])
(2.49)
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In particular, [A(E)] /2π is the real-space representation of the local density of states.
In general, mesoscopic conductors often display significant spatial variations in the local density of states

which, in turn, translates into a unique nature of conduction through the sample.

2.2.7 A more rigorous definition of the one-particle Green’s functions

A more rigorous definition of the one-particle Green’s functions can be found in [9], [12] and [14]. However,
in many-bodies theory a Green’s functions describes the quantum statistical ensemble average associated to
a pair of creation-annihilation operators, and they are useful in solving perturbation theory problems [15].
For non-interacting systems of particles the many-bodies Green’s functions are equivalent to the one-particle
Green’s functions; this will be used to justify equation (2.40) and the Landauer-Büttiker (1.23) formula for
the current calculation [9], [12].

The addition of a perturbation to the time-independent one-particle Schödinger equation (1.1) can be
written as:

[H0(r) +W (r)]ψn(r) = Enψn(r) (2.50)

in which H0(r) is the unperturbed Hamiltonian, simply denoted as H(r) in equation (1.1), and W (r) is the
perturbation for the system.

The differential equation for the Green’s function is written as in equation (2.20); substituting it into
(2.50), Schrödinger’s equation can be rewritten as:[

G−10 (r, E)−W (r)
]
ψn(r) = 0 (2.51)

in which the zero at subscript of the Green’s function is specified to highlight this is the Green’s function of
the unperturbed system.

The solution of equation (2.51) is found by inspection; it takes the form:

ψn(r) = ψ0
n(r) +

∫
G0(r, r′, E)W (r′)ψn(r′) dr′ (2.52)

and can be verified by inserting ψn(r) into equation (2.51), and then using (2.20). The integral in equation
(2.52) can be solved by iteration and, up to first order in W, the solution is:

ψn(r) = ψ0
n(r) +

∫
G0(r, r′, E)W (r′)ψ0

n(r′) dr′ +O
(
W 2
)

(2.53)

in which ψ0
n is an eigenfunction of H0, with energy En. This iterative procedure is just the solution method

for the ordinary, non-degenerate perturbation theory.

Including the time dependence into Schrödinger’s equation as well as a perturbationW (r) to the Hamiltonian
H0(r), it is possible to write: [

i
∂

∂t
−H0(r)−W (r)

]
ψn(r, t) = 0 (2.54)

Analogously to equation (2.20), the differential equations for the Green’s functions are:[
i
∂

∂t
−H0(r)

]
G0(r, r′; t, t′) = δ(r − r′)δ(t− t′) (2.55)

[
i
∂

∂t
−H0(r)−W (r)

]
G(r, r′; t, t′) = δ(r − r′)δ(t− t′) (2.56)

for the unperturbed and perturbed cases, respectively.
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Proceeding as in the time-independent case, equation (2.55) is substituted into the time-dependent
Schrödinger equation (2.54) and the solution is found by inspection; in particular, the wavefunction can
be equivalently expressed either in terms of G0 or G as:

ψn(r, t) = ψ0
n(r, t) +

∫
dr′
∫
dt′G0(r, r′; t, t′)W (r′)ψn(r′, t′) (2.57)

ψn(r, t) = ψ0
n(r, t) +

∫
dr′
∫
dt′G(r, r′; t, t′)W (r′)ψ0

n(r′, t′) (2.58)

As for the static case, the solution can be iterated up to any order in W.
The time-dependent Green’s function G(r, r′; t, t′) is often also called a propagator : if the wavefunction

is known at some time t′, then the wavefunction at later times can be derived as:

ψn(r, t) =

∫
dr′
∫
dt′G(r, r′; t, t′)ψn(r′, t′) (2.59)

which can be verified by substituting equation (2.59) into Schrödinger’s equation (2.54), and then using
(2.56). An equivalent way to express the Green’s function, which better demonstrates it is indeed a quantum
mechanical propagator, is:

G(r, r′; t, t′) = −iθ (t− t′) 〈r| e−iH(t−t′) |r′〉 (2.60)

which is also solution of (2.56). Equation (2.60) expresses the amplitude for the particle to be in state |r〉 at
time t, given that it was in state |r′〉 at time t′.

2.2.8 Single-particle Green’s function of many-body systems

When defining the Green’s functions of many-body systems, it is not immediately clear that they are
solutions to differential equations such as for the one-particle Green’s functions defined starting from the
Schrödinger equation.

Furthermore, in many-body systems it is convenient to define additional Green’s functions rather than
working only with the retarded and advanced ones.

The retarded Green’s function takes the form:

GR(r, r′; t, t′) = −iθ (t− t′)
〈[

Ψ(r, t),Ψ†(r′, t′)
]
(B,F )

〉
(2.61)

in which Ψ(r, t) is used to denote the field operator that generates a particle in position r and time t, θ is a
Heaviside step function, and the anti-commutator is defined as

[A,B]B = AB −BA

[A,B]F = AB +BA
(2.62)

and B, F stand for bosons and fermions, respectively. Equation (2.61) is indeed identical to equation (2.60)
for non-interacting systems of particles, and equation (2.23) continues to hold between retarded and advanced
Green’s functions.

It is convenient to define two more Green’s functions, named greater and lesser Green’s functions:

G>(r, r′; t, t′) =− i
〈
Ψ(r, t) ·Ψ†(r′, t′)

〉
(2.63)

G<(r, r′; t, t′) =− i (±1)
〈
Ψ†(r′, t′) ·Ψ(r, t)

〉
(2.64)
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so that the retarded and advanced Green’s functions can be expressed also as:

GR(r, r′; t, t′) = θ(t− t′)
[
G>(r, r′; t, t′)−G<(r, r′; t, t′)

]
(2.65)

GA(r, r′; t, t′) = θ(t′ − t)
[
G<(r, r′; t, t′)−G>(r, r′; t, t′)

]
(2.66)

It is straightforward to show that GR − GA = G> − G<; moreover, equation (2.23) holds between GR and
GA, while a similar one holds between G> and G<:

G> = −
(
G<
)†

(2.67)

which reduces the number of independent Green’s functions to two.

In particular, the lesser Green’s function is also referred to as correlation function for electrons; similarly
to the density matrix, which generalizes the concept of a distribution function, such as the Fermi-Dirac
distribution, including additional information on the phase correlation, the lesser Green’s function generalizes
the concept of density matrix adding information on the correlation between the amplitude of a particle’s
wavefunction in state |r〉 at time t and that in state |r′〉 at time t′. The density matrix ρ(r, r′; t) can be seen
as a subset of the lesser Green’s function for t′ = t:

ρ(r, r′; t) =
[
G<(r, r′; t, t′)

]
t′=t

(2.68)

Assuming the particles to be in thermal equilibrium, and focusing on stationary states within the systems,
it is possible to express the Green’s functions in terms of the time difference t− t′ rather than the individual
times t and t′. This allows to more conveniently express the Green’s functions in the energy domain rather
than in time, which can be achieved with a Fourier transform of the Green’s functions:

Gα(r, r′;E) =

∫
Gα(r, r′; t)eiEt/~ dt (2.69)

in which α can stand for any of R, A, > or <.
In the energy representation, relation (2.68) becomes an integral over the energy variable:

ρ(r, r′; t) =
[
G<(r, r′; t, t′)

]
t′=t

=

∫
1

2π
G<(r, r′;E) dE (2.70)

Thus, diagonal elements of the lesser Green’s function represent the number of electrons occupying a particular
state, such as in (2.44), and equation (2.70) can be used to write the electron density as:

n(r) =
[
G<(r, r′; t, t′)

]
r′=r,t′=t

=

∫
1

2π
G<(r, r;E) dE (2.71)

Relation (2.71) is valid also for the electron density per unit energy:

2πn(r;E) = G<(r, r;E) (2.72)

In general, lesser and greater Green’s functions can be derived from the retarded and advanced ones via
Keldysh equation:

G≶(r, r′;E) =

∫
dr1

∫
dr2 G

R(r, r1;E)Σ≶(r1, r2;E)GA(r2, r
′;E) (2.73)

However, at thermal equilibrium, they are related by the simpler fluctuation-dissipation theorem [14], [16]:

G<(r, r′;E) = if (E − µ)A(r, r′;E) (2.74)

G>(r, r′;E) = i [f (E − µ)− 1]A(r, r′;E) (2.75)
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in which f (E − µ) is the Fermi-Dirac distribution of electrons, and A is the spectral function defined in
(2.49). Similarly, the lesser and greater self-energies can be expresses as:

Σ<(r, r′;E) = if(E − µ)Γ(r, r′;E) (2.76)

Σ>(r, r′;E) = i [f(E − µ)− 1] Γ(r, r′;E) (2.77)

in which Γ is the broadening function, as defined in equation (2.41).

2.2.9 Current density operator

Having defined the four Green’s functions with their corresponding self-energies, it is now possible to
derive the formula for the total current flowing through the system when a bias voltage is applied, and verify
it is indeed the same as the Landauer-Büttiker formula (1.23), with transmission probability given by (2.40);
but first, the current density operator needs to be defined.

The general expression for calculating the current density from the wavefunction is given by [17]:

J =
e

2m

(
Ψ [(p− eA) Ψ]

∗
+ Ψ∗ [(p− eA) Ψ]

)
(2.78)

in which p = −i~∇ is the momentum operator, and A a generic vector potential. The wavefunction is in
general composed of both an incident and a reflected component, respectively:

Ψi =
1√
Lx

χ+(y)eik
+x (2.79)

Ψr =
1√
Lx

rχ−(y)e−ik
−x (2.80)

Equation (2.78) can be also written as:

J(r;E) =
e

2m
[(p− p′) Ψ(r)Ψ∗(r′)]r′=r −

e2

m
A(r) [Ψ(r)Ψ∗(r′)]r′=r (2.81)

in which momentum operators p and p′ operate on r and r′, respectively. Writing the electron density in
terms of the wavefunction as:

n(r;E) = Ψ(r)Ψ∗(r) =
G<(r, r;E)

2π
(2.82)

as in (2.72), is is possible to express equation (2.81) in terms of the lesser Green’s function:

2πJ(r;E) =

[
− ie~

2m
(∇−∇′)G<(r, r′;E)− e2

m
A(r)G<(r, r′;E)

]
r′=r

(2.83)

and the terminal current per unit energy can be obtained integrating (2.83) over the cross section of the
corresponding contact:

ip(E) =

∫
Sp

J(r;E) · dS (2.84)

in which Sp is the surface separating the conductor from contact p.
In addition, equation (2.83) can be integrated over the energy variable to obtain the current flow pattern

across the device:

J(r) = 2 ×
∫

J(r;E) dE (2.85)

in which a factor two is required to account for the spin multiplicity.

This approach is better suited if the interest is on the current flow pattern inside the conductor; however,
the terminal current can also be derived directly without calculating the current density as in [4],[12], [18],
by defining a current operator whose diagonal elements are equal to the divergence of the current density
operator defined in this section.
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2.2.10 Current operator and relation to the Landauer-Büttiker formula

Knowing that, in general, given the current density J(r;E), the total current can be obtained from its
divergence:

I(E) = ∇ · J(r;E) (2.86)

If the focus is on the total current flowing through the conductor, it is convenient to define a current operator
in such a way that its diagonal elements satisfy (2.86) rather than working with the current density operator.

To derive an explicit expression for the divergence of the current density operator some observations have
to be made. Starting from the matrix formulation (2.37), and expressing it in position representation, an
equation equivalent to (2.26) is obtained:

[E −H]GR(r, r′)−
∫

ΣR(r, r1)GR(r1, r
′) dr1 = δ(r − r′) (2.87)

As stated when introducing the retarded Green’s function, GR(r, r′) can be visualized as the wavefunction
evaluated at point r due to an excitation at point r′; leaving the excitation term on the right-hand side
of (2.87) out of the equation a Schrödinger-like equation is obtained, which describes the dynamics of an
electron inside the system:

HΨ(r) +

∫
ΣR(r, r1)Ψ(r1) dr1 = EΨ(r) (2.88)

In the general current density formulation (2.78), the momentum operator p = −i~∇ is equal to zero as long
as the wavefunction Ψ obeys the time-independent Schrödinger equation; however, if the wavefunction obeys
the modified Schrödinger’s equation (2.88) then the divergence of the current density operator is non-zero,
and can be expressed in terms of the wavefunction as:

i~∇ · J = e
(
[HΨ]

∗
Ψ−Ψ∗ [HΨ]

)
(2.89)

and rewritten in an equivalent form to introduce the lesser Green’s function instead of the wavefunction:

i~∇ · J(r;E) = e ([H(r)−H∗(r′)] Ψ(r)Ψ∗(r′))r′=r (2.90)

Using again the identity (2.82), equation (2.90) becomes:

i2π~∇ · J(r;E) = −e
(
[H(r)−H∗(r′)]G<(r, r′)

)
r′=r

(2.91)

Then, the current operator can be defined an in [4], [12] and [18]:

Iop(r, r
′;E) =

e

h

[
H(r)G<(r, r′;E)−G<(r′, r;E)H(r′)

]
(2.92)

whose diagonal elements satisfy (2.86). The total current is evaluated over a surface S enclosing the system:

I(E) =

∫
dE

∮
S

dS · J(r;E) =

=

∫
dE

∫
dr Iop(r, r

′;E) =

=
e

h

∫
dE

∫
dr
∑
ij

[
H(r)G<ij(E)φi(r)φ∗j (r)−G<ij(E)φ(r)φ∗(r)H(r)

]
=

=
e

h

∫
dE
∑
ij

[
HijG

<
ij(E)−G<ij(E)Hij

]
=
e

h

∫
dE Tr

[
HG<(E)−G<(E)H

]
(2.93)
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In equation (2.93), the flux integral across the closed surface S has been turned into a volume integral using
the divergence theorem together with equation (2.86), and the integral over real space coordinates has been
transformed into the matrix equation involving the Hamiltonian and lesser Green’s function matrices, such
as in [12] and [19].

Finally, taking into account only the coherent component of the current, it is possible to make use of
equalities granted by the fluctuation-dissipation theorem (2.74)-(2.77) and the Keldysh equation (2.73), that
in matrix form writes:

G≶ = GRΣ≶GA (2.94)

and makes it is possible to obtain:

I(E) = 2 × e

h

∫
dE Tr

{
Γ1

[
f(E − µ1)A(E) + iG<(E)

]}
(2.95)

in which A(E) is the spectral function matrix defined in (2.49), and a factor two is added to account for the
spin multiplicity. Finally, equation (2.95) can be rewritten as:

I(E) =
2e

h

∫
Tr
[
Γ1G

RΓ2G
A
]

[f(E − µ1)− f(E − µ2)] dE =

=
2e

h

∫
T (E) [f(E − µ1)− f(E − µ2)] dE (2.96)

which is the Landauer-Büttiker formula (1.23), with transmission function T (E) given by (2.40), and broadening
functions Γ(1,2) defined as in (2.41).

2.2.11 Summary of the solution procedure

The NEGF algorithm is much more computationally expensive than the FEM algorithm presented in
section 2.1; therefore, the adopted resolution can really affect the speed of simulation and, in some cases,
using a more refined mesh was not the correct choice when trying to improve the results quality.

First, discretization mesh for the real space variable x and the energy variable have to be defined before
implementing the FEM algorithm of section 2.1.

Since in the implemented model the potential energy profile U(x) that appears in the Schrödinger equation
presents abrupt discontinuities and is piece-wise constant, such as in figures 1.1 or 1.2, the x -axis mesh does
not need to be particularly refined. A value of 53 mesh points was used in single-barrier simulations and
a value of 105 was used in most of double-barrier simulations, with some adjustments in some problematic
cases. These values were found after several attempts at reducing the complexity of algorithm, in an attempt
to make the code as fast as possible at performing the required calculations.

On the other hand, the energy axis needs to be sufficiently refined to produce a reliable transmission
probability T (E), to be integrated according to equation (2.96) in order to derive the total current. The
required number of energy mesh points proved to be extremely high with a lot of variability, depending on
the complexity of the system to simulate. In particular, double-barrier systems with a lot of confined energy
levels required an order of magnitude of 105 energy mesh points or higher because the lower-energy levels
contributed to T (E) with extremely narrow transmission peaks that were difficult to resolve. In such cases,
the higher the number of confined levels, the more the system resembles an ideal one with infinite barriers, in
which transmission is only allowed for those specific energy values corresponding to the position of confined
levels between the barriers.

After defining the x and energy axes, the bias voltage can be initialized such as in section 2.1: the voltage
drop is distributed linearly across the system, and contacts with the reservoirs are assumed to be ideal; hence,
the voltage profile remains flat at the beginning and at the end of the simulation domain. The bias voltage

28



enters Schrödinger’s equation together with the potential energy profile, progressively “tilting” the system’s
equilibrium potential energy in one direction as the bias increases.

Having defined these quantities, the loop over the bias voltage can start. At each iteration, the algorithm
adds the equilibrium potential energy to the bias voltage profile and derives the FEM stiffness and mass
matrices for Schrödinger’s equation, H and M, respectively, as in section 2.1; the only difference is that this
time boundary conditions are not introduced yet.

Matrices H and M are used to derive the retarded Green’s function according to Dyson’s equation (2.37):

GR =
[
EM −H − ΣR

]−1
(2.97)

in which ΣR is the total self-energy due to the leads in matrix form and, as in (2.38) it only contains the
effects of the two contacts as first and last elements, which are the same as the boundary conditions of the
FEM model.

Finally, it is possible to obtain the advanced Green’s function as the Hermitian conjugate of the retarded
Green’s function with (2.33), and the broadening functions with (2.41):[

GA
]

=
[
GR
]†

(2.98)[
ΣA
]

=
[
ΣR
]†

(2.99)

Γ(1,2) = i
[
ΣR(1,2) − ΣA(1,2)

]
(2.100)

Matrices (2.97) and (2.98) are then used to derive the spectral function A(E) according to (2.49) and, dividing
it by 2π, the real-space representation of the local density of states:

[A(E)] = i
([
GR(E)

]
−
[
GA(E)

])
(2.101)

while matrices (2.98) and (2.100) are used to calculate the transmission probability T (E) as in (2.40):

T (E) = Tr
[
Γ1G

RΓ2G
A
]

(2.102)

Finally, the current is obtained via Landauer-Büttiker formula (2.102), in which µ1 − µ2 = e · V , and V is
the applied bias voltage:

I(E) =
2e

h

∫
T (E) [f(E − µ1)− f(E − µ2)] dE (2.103)

Lesser and greater Green’s functions, together with their corresponding self-energies, are required to prove
some implemented equations, namely (2.102) and (2.103); however, they do not appear directly in the final
expressions of those equations, so they do not appear in the solving algorithm either. A schematic pseudocode
of the solving algorithm is shown in the next section.
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2.2.12 Pseudocode of the NEGF solving algorithm

Algorithm 2: Solution procedure by NEGF

Data: x, Energy, Bias, Ueq
Result: Current I, Local Density of States LDOS
Initialization;
for Bias do

U = Ueq + q ·Bias;
µ1 = EF + q ·Bias/2;
µ2 = EF − q ·Bias/2;
for x do

Define FEM matrices;
H = stiffness matrix;
M = mass matrix;

end
for Energy do

A = Energy ·M −H;

kLeft =

√
2m(Energy − U(1))

~2
;

kRight =

√
2m(Energy − U(end))

~2
;

Σ1(1, 1) = interaction with the left contact (boundary condition);

Σ2(end, end) = interaction with the right contact (boundary condition);

Σ = Σ1 + Σ2;

GR = inv(A− Σ);

GA =
(
GR
)†

;

Γ1 = i
(

Σ1 − Σ†1

)
;

Γ2 = i
(

Σ2 − Σ†2

)
;

A = i
(
GR −GA

)
;

LDOS(Energy) =
diag(A)

2π
;

T (Energy) = Re
[
Tr
(
Γ1G

RΓ2G
A
)]

;

end

I(Bias) =
2e

h

∫
T (Energy) [f(Energy − µ1)− f(Energy − µ2)] dE;

end
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2.2.13 Model testing and validation

Before trying to simulate resonant tunneling devices in an attempt to observe the Coulomb blockade
effects on the total current, the model was tested with simple, known systems in order to prove its validity
by reproducing expected results such as an Ohmic current behaviour with a flat U(x) emulating a ballistic
device, and an exponential current trend in case of a single-barrier tunneling device. All simulations have
been performed at ambient temperature: T = 300 K

The ballistic device is shown in figure 2.6. The potential energy profile at equilibrium is represented by
the black line labelled U(x), and the blue line is the equilibrium chemical potential which is unique across
the system when no bias voltage is applied.

The progressively increasing voltage drop between the contacts is implemented exactly as in the FEM
model, and an example is shown in figure 2.4.

The red map represents the local density of states on a logarithmic scale, from here on shortened to
LDOS, evaluated from the spectral function (2.101); the density is nearly uniform for all energies and equally
distributed along the x -axis, which is expected from a ballistic device in which electrons are free to drift from
one contact to the other without encountering any obstacles or interactions.

Figure 2.6: Ballistic device, equilibrium LDOS.

Figure 2.7 shows on the left the transmission probability (2.102) as a function of the electron energy in the
same equilibrium condition as in figure 2.6 and, as it is clearly visible from the plot, it reflects the previous
statement about incoming electrons being free to drift across the ballistic device, since they are transmitted
with probability equal to one independently of their energy.
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Figure 2.7: Ballistic device, equilibrium transmission probability and total current.

On the right of figure 2.7, as well as in figure 2.8, is the total current plotted on a linear and logarithmic
axis, respectively. Both plots show a current which is a linear function of the bias voltage as long as
e · V / EF = 0.1eV ; as the bias voltage increases further, the device saturates and the current starts to
slowly decrease.

Figure 2.8: Ballistic device, total current.

The slope of the linear portion of the total current on the right in figure 2.7 is directly related to the
conductance of the contacts, since the device is ballistic [4].

The quantum of conductance is defined as:

G0 =
2e2

h
≈ 77.481 µS (2.104)

and in terms of electrical resistance it becomes:

R0 = G−10 =
h

2e2
≈ 12.906 kΩ (2.105)
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The conductance of the simulated system has been evaluated through the slope obtained interpolating the
linear portion of the total current; the derived value and its corresponding electrical resistance are:

G ≈ 36.262 µS (2.106)

R ≈ 27.577 kΩ (2.107)

The extrapolated G value can be lower than the quantum of conductance G0 due to there being a left-hand
and right-hand contact which are connected in series through the ballistic device which is the system under
analysis. This is confirmed by both simulations and experiments, such as in [20].

The ratio R/R0 ≈ 2.1; thus, the two contacts introduce an overall electrical resistance which is nearly
double the inverse of the quantum of conductance; the G and R values are temperature-dependent and, as
the temperature decreases, they modify so that the ratio R/R0 → 2

The test single-barrier tunneling device is the same one employed in section 2.1 for the FEM implementation
and shown for reference in figure 2.2.

A comparison has been made among the equilibrium transmission probabilities derived from the analytic
expression (1.6), the FEM solution, and the NEGF solution; the result is reported in figure 2.9. Analytic
and FEM solutions have already been compared in figure 2.2 and shown to be exactly coincident with each
other; the same two curves have been plotted in 2.9, together with the transmission probability derived with
the NEGF approach according to equation (2.102), and all three solutions are in nearly perfect agreement
with one another. The transmission probability rises exponentially as long as the electron energy is inferior
to the barrier’s; while it stabilizes near unity for electron energies which are superior to the barrier’s.

Figure 2.9: Single-barrier tunneling device, equilibrium transmission probability comparison.

Differences between the FEM and NEGF implementations arise again when a bias voltage is applied to
the system: the FEM transmission probability, such as the one shown for the double-barrier system in figure
2.5, evolves with bias in a physically incorrect way, without going to zero in the low-energy range when the
increasing bias voltage rises the potential energy profile near the left-hand contact.

This kind of incorrect behaviour is not present in the NEGF transmission probability, which evolves with
bias in a physically meaningful way. This is reflected in the total current derived from the NEGF transmission
probability, which is reported in figure 2.10 for an equilibrium chemical potential equal to 0.1 eV .

The same current is shown in both linear and logarithmic axis in figures 2.10a and 2.10b, respectively.
Both plots clearly show the exponential current trend which is characteristic of a single-barrier tunneling
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device; in particular, the logarithmic plot in figure 2.10b presents a linear trend, with a well-defined slope
which again proves the exponential nature of the total current.

At first sight, the current in the low-bias region presents an anomalous behaviour for V < 0.1 V , being
more similar to an Ohmic I-V characteristics rather than an exponential function; however, also textbook
examples, such as those found in [11], show this kind of trend in the low-bias region.

(a) Linear axis. (b) Logarithmic axis.

Figure 2.10: Single-barrier tunneling device total current.

Finally, the same double-barrier resonant tunneling system used as a test in the FEM model and presented
in section 2.1, figure 2.3 has been simulated with the NEGF algorithm. The system is reported again in figure
2.11, together with the LDOS derived from the NEGF matrices according to (2.101) exactly as in the previous
test device.

Again, the LDOS has been plotted on a logarithmic colour scale so that the reference colour scale near the
plot refers to the orders of magnitude of the local density of states, instead of its exact values; this choice has
been made in order to better enhance the colour contrast and highlight the presence of high-density regions
within the barriers that otherwise would have been barely visible on a linear scale. This functional choice
has become the new standard in this work for the visualization of double-barrier systems’ LDOS due to it
being a practical solution to clearly portrait the confined energy levels.

Figure 2.11: Double-barrier resonant tunneling device, equilibrium LDOS.
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The LDOS in figure 2.11 serves also the purpose of verifying the numbering of confined energy levels since
high-density regions reflect the number of nodes the confined wavefunction presents. In this case, the lowest
confined state does not present any node just as its corresponding wavefunction; while the second confined
state presents one node around x = 0 in figure 2.11 similarly to the corresponding wavefunction.

An outline of a third energy level is hinted at by the three higher-density regions around 0.4 eV , slightly
above the barriers; however, that energy region sits outside the barriers and it only resemble an energy level.
This is also confirmed by the transmission probability in figure 2.12 which presents two narrow tunneling
peaks for energies within the barriers and a wider, incomplete peak around E = 0.4 eV .

Figure 2.12 shows a comparison of the equilibrium tunneling probability derived according to the analytic
expression (1.12) together with the FEM and NEGF solutions. At equilibrium, FEM and NEGF results are
nearly indistinguishable from each other, and they are in overall good agreement with the analytic formula;
this is particularly true in the confinement region, for energies inferior to 0.3 eV of the barriers, which is the
most relevant portion. Instead, as already observed when dealing with the FEM solution, at higher energies
both of them differentiate slightly from the analytic expression. However, that should not be a cause of
concern since, in such devices, conduction is usually made to occur due to confined levels, in order to better
visualize the current steps and oscillations characteristic of the coulomb blockade phenomenon.

Figure 2.12: Double-barrier resonant tunneling device, equilibrium transmission probability comparison.

Figure 2.13 shows the evolution of the NEGF model transmission probability after a few initial voltage
steps; similarly to how figure 2.5 does for the FEM model.

The NEGF solution is more consistent than the FEM one regarding how the transmission probability
should intuitively change with an applied bias voltage: as the energy at the left-hand contact progressively
rises, transmission through the lower-energy level becomes gradually less likely, until it is no longer possible
due to there being no more electrons with such energies incoming from the contact.

In addition, the NEGF transmission probability does not suffer from the incorrect trend the FEM one
assumes for bias voltages higher than approximately 0.1 V , in which peaks start to reach above unity. Instead,
the NEGF transmission probability always remains in the range [0, 1] for all energies, independently of the
applied bias voltage.

The resulting current for the double-barrier resonant tunneling device, obtained integrating the NEGF
tunneling probability (2.101) according to (2.102), is shown in figure 2.14.

The current in figure 2.14a presents two clear oscillations which are one of the signature characteristics
of the Coulomb blockade phenomenon, together with the staircase current behaviour. Each oscillation in the
current can be related to one of the two confined levels, since the information contained in the transmission
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probability states that when incoming electrons have a kinetic energy sufficiently near to the position of a
confined level they are transmitted through the system with probability equal to unity. In this situation, the
current reaches a maximum.

At the same time, the overall trend of the current is still exponential with the bias voltage, and is shown
in figure 2.14b. The limited bias range does not make it very clear; however, this is evident from figure 2.15
which is a simulation of the same system under a higher bias voltage.

The distance between barriers is equal to 2 nm as shown in figure 2.11 and, as stated in [3], a nanoparticle
of this size presents negative differential resistance dV/dI within its I-V characteristics. Such regions are
present in this case as well, corresponding to a decreasing current right after a peak is reached.
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Figure 2.13: NEGF transmission probability, evolution with increasing bias.
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(a) Linear axis. (b) Logarithmic axis.

Figure 2.14: Double-barrier resonant tunneling device, total current.

Figure 2.15: Higher bias total current, logarithmic axis.
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Chapter 3

The influence of geometrical
parameters on the Coulomb blockade

As a first analysis, the effect of varying geometrical parameters, such as the thickness of tunneling barriers,
energy discontinuity and distance between barriers, has been studied on progressively more complex systems
with an increasing amount of confined energy levels within the barriers, in order to observe their effects on
the total current.

The bias voltage has been applied in a similar manner as in figure 2.4. This choice allows to selectively
include within the bias window one energy level at a time, starting from the lowest-energy one, while at the
same time all the others are not able to contribute to conduction.

With this approach, the effect of each energy level on the total current can be separated from the others.

Figure 3.1: Graphical representation of a bias voltage such that only one energy level is conducting at a time.

As shown in figure 3.1, applying a similar bias voltage, electronic states are allowed to exist only for
energies higher than U(x) and the local density of states rapidly decays to zero as E < U(x), represented
by the white colour in the local density of states map. This means that there cannot be electrons with such
energies since there are no states to be occupied by them; this is unrealistic for a metal contact and is the
approach rather used for semiconductor heterostructures in which U(x) would represent the conduction band
edge.

Nonetheless, this proves to be useful when trying to highlight the effect of each individual energy level on
the total current.

As a reminder, all density of states are plotted on a logarithmic axis; therefore, the colour scale denotes its
order of magnitude rather than its actual value. For a better representation, values whose order of magnitude
is 6 or higher have been assigned the black colour, while all the values whose order of magnitude is −1 or
lower are represented in white.
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3.1 Effect of the barriers thickness

The effect of varying barriers thickness has been observed by fixing the tunneling barriers and the distance
between them. This parameter is associated with the thickness of the shell enclosing the nanoparticle metallic
core; it is usually constituted by either a metal oxide, such as in [21], or an organic compound such as a thiol,
as in [22]. [23] and [24]. In general, the purpose of the shell is to stabilize the core during the nanoparticle
synthesis, and limit its growth in size.

The barriers have been fixed to an energy value equal to 0.2 eV , and the distance between them is 2 nm.
These parameters allow the presence of two confined energy levels in all analysed cases. Then, the system
has been simulated for different thicknesses of barriers.

Even slight variations in the barriers thickness produce highly noticeable changes in the current intensity,
which is expected since the tunneling current is a decreasing exponential function of the barriers thickness,
as stated by equation (1.7) and proven in appendix A by equation (A.16).

Figure 3.2 presents the simulated system with thickness of barriers equal to 1 nm, here used as a graphical
example, together with different transmission functions derived for three analysed systems with different
barriers thickness. It is possible to notice that, as the barriers become thicker, tunneling peaks become
narrower; this means confinement becomes stronger and more similar to an ideal scenario in which energy
levels are defined by one exact energy value. At the same time, the tunneling probability of electrons decreases
significantly for energy values that lie in the gap between two consecutive energy levels.

(a) Double-barrier system with t = 1 nm. (b) Transmission function for different barriers thicknesses.

Figure 3.2: Reference simulated system for barriers thickness comparison and transmission functions.

The total currents are reported in figure 3.3, both on a linear and a logarithmic axis. Two resonances,
corresponding to the confined energy levels, are observable in the low-bias region; then, the current profile
stabilizes and starts increasing in every system.

Although the barriers thickness has a significant influence on the average current, it does not affect the
shape of resonant oscillations. The logarithmic plot in figure 3.3b shows that the amplitude of the resonant
oscillations, relatively to the average current value, is not much affected by different values of thickness: even
if, on a linear axis, the oscillations seems to dampen as the thickness of barriers increases, as shown in figure
3.3a, they are indeed scaled proportionally to their average current curve.

The overall current trend is exponential for thickness values around 1 nm; however, when increasing it
to around 2 nm and above, tunneling becomes negligible, and the resulting current becomes more and more
linear with the voltage, which is characteristic of an electrical resistance. This means that electrons are not
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able to drift across the system by tunneling across the barriers, but they need to have sufficient energy to
overcome them.

Nonetheless, for thickness values which are significant as far as tunneling is concerned, the currents have
always been found to be similar to figure 3.3; therefore, since the amplitude of resonances is scaled accordingly
to the average current profile, the thickness is not one of the main factors in determining whether the total
current presents resonant oscillations rather than a staircase behaviour.

(a) Linear current axis. (b) Logarithmic current axis.

Figure 3.3: Total current comparison for different barriers thicknesses.

3.2 Effect of the “barriers height”: the U0 value

Another parameter that can be varied is the “height” of tunneling barriers, i.e the energy discontinuity
between the reference zero energy, which corresponds to the equilibrium chemical potential of the contacts,
and the edge of the quantum well region encompassed by the barriers.

This parameters is the value labelled as U0 in equation (A.1), and it directly affects the number of confined
energy levels, thus the number of oscillations and steps in the I-V characteristics.

In this analysis, the thickness of barriers has been fixed to 1 nm, while the particle dimension to 2 nm,
which are the parameters of the system in figure 3.2a; then, the value U0 has been progressively increased.

Similarly to the analysis performed in section 3.1 for different barriers thicknesses, initially there are two
confined energy levels; however, in this case, increasing U0 a third peak of the transmission function in figure
3.4a assumes more and more the features characteristic of a confined energy level: it becomes progressively
narrower and the tunneling probability for nearby energies tends to zero. However, an actual third confined
energy level is observed for the first time with U0 = 0.45 eV , as in figure 3.4b.

For the purpose of controlling the energy levels positions, changing U0 is more effective than working on
the barriers thickness. Figure 3.4a shows that as U0 increases, the levels positions also shift to slightly higher
energies, and the shift becomes more visible as the energy level is closer to the barriers edge. However, the
lower-energy level is barely affected by the increase of U0 and its shift is minimal; thus, it is reasonable to
assume that in a more complex system, with many confined energy levels, only those that are closer to the
barriers edge will be affected by a change in U0.

This means that U0 is not the crucial parameter in determining the energy levels positions.
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(a) Transmission function for different U0 values. (b) First instance of a third confined energy level.

Figure 3.4: Transmission analysis for different U0 values.

The total currents derived for the different U0 values are reported in figure 3.5. As for the analysis with
varying barriers thickness, an increase in U0 causes the current to be reduced quite significantly; however,
despite the slight shift to higher voltages due to the energy levels repositioning, the shape of the current
oscillations is not particularly affected, which is better highlighted by the logarithmic plot in figure 3.5b.

Therefore, similarly to the case analysed in section 3.1, it is reasonable to assume that the U0 value is not
the main parameter determining the current shape, even though it has a more relevant role than the barriers
thickness.

(a) Linear current axis. (b) Logarithmic current axis.

Figure 3.5: Total current for different U0 values.
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3.3 Effect of the distance between barriers

Finally, the last parameter that can be modified is the nanoparticle size, i.e the distance between energy
barriers.

As in the previous sections, the other parameters have been kept unchanged in order to identify the role
of the nanoparticle size only. In particular, the barriers thickness has been fixed to 1 nm and U0 = 0.2 eV .

Figure 3.6: Transmission function for different nanoparticle sizes.

In sections 3.1 and 3.2 it has been proven that, respectively, barriers thickness and height only play a
minor role in determining the distribution of energy levels within the nanoparticle; as a result, tunneling
peaks were slightly affected by a variation in those parameters, and so the current.

Conversely, figure 3.6 appears much more chaotic with respect to the corresponding figures 3.2b and 3.4a
obtained by varying the thickness of barriers and the U0 value; however, it shows how varying the nanoparticle
size by a few nanometres drastically affects the number and distribution of confined energy levels, which is
also proved by [3]. In particular, as the distance between barriers increases, the energy levels shift towards
lower energies, and are allowed to sit closer to one another; starting with two confined levels at 2 nm, this
trend allows the inclusion of a third level in the 3.5 nm and 4 nm systems.

As a result of the energy levels repositioning, oscillations in the current-voltage characteristics are also
highly dependent on the nanoparticle size, as shown by figure 3.7.

Figure 3.7a confirms the addition of a third energy level within the barriers in the 3.5 nm and 4 nm
systems, which emerges as a third current oscillation.

Furthermore, figure 3.7b offers a closer look at the evolution of the first oscillation as the nanoparticle
increases in size: due to energy levels being allowed to sit closer to one another in larger particles, the
negative differential resistance portion of the oscillation becomes more and more narrow until it ceases to
exist in the two larger systems which present a current step rather than an oscillation. This is caused by
the second energy level that, being closer to the first one in a larger particle, becomes more easily available
for conduction than in smaller particles. Therefore, a smaller bias is required to make its tunneling peak
enter the bias window dictated by the difference between the contacts chemical potentials, according to the
Landauer-Büttiker formula (2.103) for the current. This results in the first and second energy levels being
able to conduct simultaneously, rather than individually such as in the 2 nm- to 3 nm-large systems.
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(a) Total current, linear axis. (b) Detail of the first oscillation.

Figure 3.7: Total current for different nanoparticle sizes.

Thus, in this section, it has been proved that the most effective method of controlling the energy levels
distribution inside the nanoparticle is changing its size. In turn, it allows to state that, as the energy levels
become more and more densely packed within the nanoparticle, the current trend transitions from resonant
oscillations with negative differential resistance to a staircase-like behaviour.

In this particular case, the transition is fully completed as far as the first oscillation is concerned; however,
the same pattern can already been observed in the second oscillation, which is severely dampened in the 4 nm
system with respect to the 2 nm system.

3.4 Relation between transmission and current peaks

Transmission and current peaks - or steps - are related through the Landauer-Büttiker formula (2.103),
and each current oscillation derives from a transmission peak which, in turn, corresponds to a confined energy
level.

These relations have been further investigated considering a slightly more complex system such as the
one shown in figure 3.8a, which is characterized by five confined energy levels. In this system U0 = 0.3 eV ,
the barriers are 1 nm-thick and 5 nm-distant from each other.

As the number of confined energy levels within the barriers increases, the lower-energy levels gets more
and more reminiscent of an ideal quantum well with infinite barriers: their transmission peaks in figure 3.8b
become more narrow and centered around the energy value associated to each level.

This trend is also noticeable in the local density of states shown in figure 3.8a, which drastically reduces
in the region between consecutive energy levels far away from the barriers edge. As a reminder, the colour
scale in each and every LDOS plot is logarithmic; thus, it is a representation of the order of magnitude of
the LDOS, rather than its actual value.

Observations regarding the effect of each geometrical parameter analysed in sections 3.1 to 3.3 have been
confirmed to be valid also in more complex systems such as the one under study in this section, and the
correlation between transmission and current peaks has been found to be independent of them.
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(a) Local density of states. (b) Equilibrium transmission function.

Figure 3.8: Five-levels system used for the peaks analysis.

The resulting current is reported in figure 3.9. Due to there being five confined energy levels, the total
current presents one narrow step and four oscillations of increasing amplitude as the bias voltage rises.

The low-bias current step, which is barely noticeable in the complete curve of figure 3.9a, is shown in
detail in figure 3.9b.

(a) Total current. (b) Closer look on the first step.

Figure 3.9: Simulation results of the system used for the peaks analysis.

Contributions of first and second energy levels to the total current are barely distinguishable from each
other; the reason is that simulations are performed at room temperature, in particular T = 300 K, and the
Fermi-Dirac functions of electrons in the contacts present a smooth step centered around each contact chemical
potential, similar to the graphical representation in figure 1.3, not an abrupt one such as at temperatures near
the absolute zero. For this reason, a few electrons are allowed to have energy above the contacts chemical
potential up to a limit which is generally considered to be in the range of a few integer multiples of kBT above
the chemical potential; kB ≈ 1.38 · 10−23 JK−1 is the Boltzmann constant, and T the absolute temperature.
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At a temperature equal to 300 K, the product kBT is equal to:

kBT ≈ 25.8 meV (3.1)

while the gap between first and second energy levels, measured from the transmission peaks in figure 3.8b,
is approximately equal to 34.7 meV , which is less than a factor of two away from kBT . This justifies the
contributions of the first two levels being nearly indistinguishable from each other.

Peaks positions have been measured from the transmission function in figure 3.8b, and similarly the gap
between consecutive peaks. For these purposes, only the central value of each peak has been taken into
consideration, which correspond to a tunneling probability identically equal to unity. These measurements
for the system in figure 3.8a have been reported in tables 3.1a and 3.1b, respectively.

Peak number Energy, eV Voltage, V
1 0.0117 0.0227
2 0.0464 0.0857
3 0.1036 0.1814
4 0.1814 0.3286
5 0.2770 0.5159

(a) Peaks positions, U0 = 0.3 eV , t = 1 nm.

Peak distance Energy, eV Voltage, V
2-1 0.0374 0.0630
3-2 0.0572 0.0957
4-3 0.0778 0.1472
5-4 0.0956 0.1873

(b) Gap between peaks, U0 = 0.3 eV , t = 1 nm.

Table 3.1: Analysis of position and gap between consecutive current-transmission peaks.

Figure 3.10 is a graphical representation of the data in table 3.1a. Data regarding two other systems have
been included to further prove the above stated independence of the current-transmission peaks relation from
other geometrical parameters; in particular, figure 3.10 shows two other systems which share every feature
with the reference system of figure 3.8a, except for the U0 value. The only difference between these systems
is the number of confined energy levels, which is four instead of five in those with lower U0.

The plot shows the data placing on a straight line with linear coefficient approximately equal to two; this
means that, through the relation between potential energy and voltage E = q · V , it is possible for electrons
subject to a bias voltage V to access and tunnel across the system if there is an energy level placed at
E ≈ q · V/2.

As the energy levels approach the barriers edge, they progressively drift from the linear relation; however,
the lowest energy levels, which are more effectively confined, follow it closely.

Figure 3.10: Relation of the current peaks position with respect to tunneling peaks position. Different U0

values, constant thickness of barriers t = 1 nm.
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A similar relation emerges from the plot in figure 3.11, which represents the data in table 3.1b. The gap
between two consecutive current peaks follows a linear relation with the gap between two consecutive energy
levels, and the slope is again approximately equal to two.

In this plot, two systems with different barriers thickness have been compared to again show that this
analysis is mostly independent of geometrical parameters: differences mainly start to emerge near the barriers
edge, as the confinement of levels slightly loses effectiveness compared to deeper levels.

Figure 3.11: Relation of the gap between current peaks with respect to the gap between tunneling peaks.
Different thicknesses of barriers, constant U0 = 0.3 eV .

Thus far, in this analysis, only the peak of each oscillation has been considered; however, current
oscillations present a non negligible width which means that, by a certain degree, electrons are able to
access the energy levels even though the chemical potential of the injection contact is not perfectly aligned
with them. For the same reasons stated above, this phenomenon is more pronounced at room temperature
than at low temperatures due to the Fermi-Dirac distribution behaviour.

Nonetheless, the relation E ≈ q · V/2 which holds between transmission and current peaks, can be better
explained when considering that the bias voltage drops linearly across the system, such as shown in the
introductory figure 3.1, and more in detail in figure 3.12b.

Since the voltage drop is linearly distributed across the system, the factor two in the relation

2E ≈ q · V (3.2)

can be justified with the plot 3.12b, which shows that with an applied voltage equal to 0.2 V , the chemical
potential of the left-hand contact is nearly aligned with the third confined energy level of the system, which
is placed at around 0.1 eV in both figures 3.12a and 3.12b.

In summary, since the voltage drop is not point-like, but rather distributed uniformly across the system,
figure 3.12b illustrates that an alignment between the chemical potential of the injection contact and a
confined energy level is indeed approximately obtained according to equation (3.2). Exact positions of
transmission and current peaks for the reference system 3.12a are reported in table 3.1a.
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(a) Reference system in equilibrium conditions. (b) Reference system under the effect of a 0.2 V -bias.

Figure 3.12: Graphical representation of the effect of the total voltage.
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Chapter 4

Three-barrier systems: a molecule
bound to the nanoparticle

Finally, after the analysis of the contribution of individual energy levels to the total current across a
nanoparticle, the NEGF algorithm has been tested in reproducing results similar to a real case scenario, in
which the nanoparticle is used to enhance the current signal in an electrochemical biosensor by acting as an
intermediate between a metal electrode and the detected molecule.

In this very simplified model, the molecule has been implemented as a double-barrier system, similarly
to the nanoparticle. Although this is far from a real case scenario, the attention has been focused on having
electrons tunneling across the nanoparticle come from, or move to, another set of discrete energy levels rather
than a continuum of available states such as a metal contact could be represented as.

To this purpose, another double-barrier system is a simple but effective solution which allows to observe
the desired phenomena and produce meaningful results.

4.1 The metal contact

Since the experimental setup functions with the nanoparticles attached onto a metal contact, the previously
implemented bias voltage profile is not reasonable any longer, since it results in a zero local density of states
for energies below U(x) at the left-hand injection contact, such as shown in figure 4.1, while in a metal all
states below the chemical potential are occupied by electrons.

To address this issue, the new implementation forces the horizontal band edge on the injection side to be
equal to

UL = −q |Vmax|
2

(4.1)

while, at the same time, maintaining the contact chemical potential unchanged. The result is represented in
figure 4.2, in which states are allowed to exist below the contact chemical potential.

The value chosen in equation (4.1) is dynamically adjusted depending on the simulation parameters in
order to define only the relevant energy range for conduction, according to the maximum bias voltage applied
to the system.

With this solution, it is always possible to ensure there are electrons incoming from a contact with energy
matching the confined energy levels below the contact chemical potential, even when the barriers are tilted
due to the applied bias voltage. For this reason, energy levels of the simulation in figure 4.2 are allowed to
act as conducting channels simultaneously if their energy is in the range [µ1, µ2]. This is the main difference
with respect to the case in figure 4.1, which has been used through all chapter 3 to analyse individually the
contribution of each energy level to the total current.
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Figure 4.1: Bias voltage profile used in chapter 3 simulations, which includes one energy level at a time in
the bias window.

Figure 4.2: Modified bias voltage profile for a metal contact.

4.2 Simulations with a metal contact

A few preliminary tests on a simple double barrier system, such as the reference one in figure 4.2, confirmed
again that when the energy levels are only a few multiples of kBT far away from each other the Coulomb
blockade phenomenon is not noticeable at room temperature.

This is clear when considering the system in figure 4.2 under a 0.15 V -bias at room temperature; the
derived total current, obtained under the assumption of a metal contact, is shown in figure 4.3b. In this
case, the total current does not present any feature of the Coulomb blockade, even more so than the system
analysed in figures 3.8 and 3.9 of section 3.4.

In this system, the two lowest energy levels are separated by a 46 meV -wide gap, that has been measured
from the corresponding tunneling peaks in the system’s equilibrium transmission function, such as in section
3.4.

Although in this system the two lowest energy levels are separated by a larger gap than in the system
in figure 3.8, the metal-like contact employed in the current simulation allows these two levels to conduct
simultaneously with a 0.15 V bias voltage, rather than trying to highlight the contribution of each level
individually such as in section 3.4.

This results into a monotonically increasing current in which the Coulomb blockade phenomenon is hidden
behind the conduction by thermal energy of electrons.
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(a) LDOS at V = 0.15 V . (b) Total current.

Figure 4.3: Test system; conduction with a metal contact at T = 300 K.

To prove this point, several simulations of the same system have been performed at different temperatures.
By lowering the temperature, the typical features of the Coulomb blockade phenomenon are restored, as
illustrated by figure 4.4.

Figure 4.4: Current comparison at different temperatures. For T < 200 K the Coulomb staircase is restored.

By reducing the distance between barriers, or the nanoparticle size, it is possible to force the energy levels
further apart from each other; thus increasing the gap between them.

By keeping the other geometrical parameters unchanged with respect to the system in figure 4.3a, the
modified double-barrier system is presented in figure 4.5a: due to the energy levels being forced further apart,
only two of them remain confined and the gap between them has been measured to be equal to:

E2 − E1 ≈ 139 meV � kBT ≈ 25.8 meV (4.2)

from the gap between transmission peaks.
The total current for the system is shown in figure 4.5b and, due to an increased gap between the two

energy levels, the Coulomb blockade features have been restored even at room temperature.
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(a) Equilibrium LDOS. (b) Total current at T = 300 K.

Figure 4.5: Restoring the Coulomb blockade at room temperature by increasing the gap between energy
levels.

4.3 Nanoparticle-molecule bound system

This analysis is based on the concept of sequential tunneling of electrons from a molecular energy level
to the metal contact, through the nanoparticle, or vice versa according to the applied bias voltage.

It has already been observed in several occasions in the previous sections that when an electron incoming
from a contact has an energy comparable with a confined energy level of the nanoparticle, it is able to tunnel
through the system with probability equal to unity; thus reaching the other contact.

Then, by binding a molecule to the nanoparticle, electrons should be able to tunnel through the whole
system if there is at least one pair composed of a molecular and a nanoparticle energy level with matching
energy; thus ensuring the existence of a conducting channel that traverses both molecule and nanoparticle.

If such a conducing channel exists, incoming electrons that match its energy are able to tunnel through
both systems with probability equal to unity.

4.3.1 Individual systems

As already quoted during the introduction to this chapter, the molecule has been modelled as a double-barrier
system, similarly to the nanoparticle. This solution is simple, yet effective, in providing another set of discrete
energy levels communicating with the nanoparticle ones.

Individual systems, each with its own set of energy levels are shown in figures 4.6 and 4.7, and their
individual energy levels, measured from the transmission functions in figures 4.6b and 4.7b, are listed in table
4.1.

Level number Nanoparticle, eV Molecule, eV
1 0.016 0.043
2 0.063 0.163
3 0.139 //

Table 4.1: Individual nanoparticle and molecule energy levels.
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(a) LDOS. (b) Transmission function.

Figure 4.6: Nanoparticle, U0 = 0.2 eV , size 4 nm and thickness of barriers 1 nm.

(a) LDOS. (b) Transmission function.

Figure 4.7: Molecule, U0 = 0.2 eV , length 2 nm and thickness of barriers 1 nm.

The nanoparticle’s parameters of size and thickness of barriers have been chosen according to reasonable
values found in literature for gold nanoparticles, such as [21], [22], [23] and [24].

Instead, the molecule length of 2 nm has been chosen to place its energy levels close enough to the
nanoparticle ones, in order to easily align them by means of a rigid translation of either system to higher or
lower energies, or through an applied bias voltage that tilts the energy barriers.

4.3.2 The bound system

When connecting together the two systems, one of the barriers enclosing the molecular energy levels can
be removed: this is reasonable because these barriers are only necessary to generate a set of discrete molecular
levels, and the barrier representing the nanoparticle shell can fulfil this purpose as well.

Moreover, since the molecule presumably binds directly onto the nanoparticle shell, this is also more
reasonable than having a thicker barrier on the binding side of the nanoparticle.
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The compound system is shown in figure 4.8 together with its transmission function. At equilibrium,
the tunneling probability depends on individual energy levels of both structures as they all have different
energies; for this reason, the transmission function presents one peak corresponding to each energy level and
none of them reach unity since a unique conducting channel made of two aligned levels is not present.

(a) LDOS highlighting the energy levels of the two systems. (b) Transmission function.

Figure 4.8: Nanoparticle-molecule bound system; small tunneling peaks are distinguishable in the
transmission function for each energy level.

Instead, by applying a bias voltage to the system, it is possible to tilt the barriers; thus achieving an
alignment between nanoparticle and molecular energy levels. At first, the voltage drop has been applied only
to the nanoparticle because the molecule was considered short enough not to be affected by it; however, this
assumption has been relaxed at a later time.

In this particular system, two different alignment conditions can be achieved: the first one between level
1 of the nanoparticle and level 1 of the molecule, and the second one between level 2 of the nanoparticle and
level 2 of the molecule, according to the enumeration in table 4.1. The first case is shown in figure 4.9, while
the second one in figure 4.10.

The conducting channel formed by level 3 of the nanoparticle and level 2 of the molecule can be glimpsed
at in figure 4.9a even if the levels are not perfectly aligned with a 0.05 V -bias voltage; however, it does not
affect the total current since it is placed at an energy outside of the bias window determined by [µ1, µ2].

As shown in figures 4.9b and 4.10b, when two energy levels are aligned by the effect of the bias voltage, the
tunneling probability reaches values close to unity for electron energies that match the conducting channel.
This proves the theoretical expectation about electrons being able to tunnel through both systems when two
energy levels have equal or comparable energy.
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(a) LDOS showing the first pair of energy levels aligning. (b) Transmission function.

Figure 4.9: Bound system under a 0.05 V -bias.

(a) LDOS showing the second pair of energy levels aligning. (b) Transmission function.

Figure 4.10: Bound system under a 0.15 V -bias.

The current resulting from the analysed system is reported in figure 4.11. It is possible to notice that,
as the first pair of energy levels closes in to each other, the current increases exponentially; then, when the
first conducting channel is formed around V = 0.05 V , the current stops increasing until the second pair of
energy levels enters the bias window determined by [µ1, µ2]. Finally, as the second conducting channel begins
to form, the current slows again its rise.
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Figure 4.11: Bound system, total current.

4.3.3 Voltage drop across the molecule

In the previous section, the third barrier enclosing the molecular energy levels has been excluded from
the voltage drop. This choice has been made because a molecule is in general short enough that the bias
voltage can be considered constant at its ends.

Nonetheless, it is reasonable to assume that a voltage drop could be present even at the molecule ends.
Therefore, in this analysis, the voltage drop has been extended to include the molecule and, for the sake of
simplicity, the slope of the linear voltage drop has been assumed to be the same across the whole system.

(a) 0.05 V bias voltage.

(b) 0.15 V bias voltage.

Figure 4.12: Bias voltage comparison with and without extending the voltage drop to the third barrier.
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Figure 4.12 compares the same system analysed in the previous section with and without the extension
of the voltage drop to the third barrier.

It is possible to observe that the transmission functions of the two cases start to differentiate as the bias
voltage increases, even though they used to coincide perfectly in equilibrium conditions. This is due to the
different gradient of the voltage between the two cases, as the figures illustrate.

This difference is reflected onto the total current: although the conducting channels originate from the
same pair of energy levels, the alignment conditions is obtained for slightly different values of the bias voltage;
moreover, the more realistic case, in which the voltage drop is extended across the three barriers, produces
a more pronounced current step than the other case.

Figure 4.13: Current comparison with and without extending the voltage drop to the third barrier.

4.3.4 The importance of levels alignment

As a further proof of the crucial role played by the conducting channels originating from aligned energy
levels, the system analysed in the previous sections has been compared with a similar one in which energy
levels align outside of the bias window.

A similar condition can be achieved recalling that the total current is obtained from the Landauer-Büttiker
formula, which is reported here for clarity:

I(E) =

∫
T (E) [f(E − µ1)− f(E − µ2)] dE (4.3)

As observed in the previous sections, an alignment between a nanoparticle and a molecular energy level
gives rise to a sharp peak that can reach unity in the transmission function T (E). However, since T (E)
is multiplied by the difference between the Fermi-Dirac distributions of the contacts in equation (4.3), the
contribution of a conducting channel can be excluded from the total current if it is placed at an energy E
such that

f(E − µ1)− f(E − µ2) = 0 (4.4)

The system used to achieve such a condition is reported in figure 4.14; in this system, the nanoparticle size
has been reduced to 2 nm, and the molecule length to 1.5 nm to redistribute the energy levels of both systems
to different energies.

At equilibrium there are no conducting channels; however, with a bias voltage approximately equal to
0.06 V the lowest energy levels of both systems align and a tunneling peak is obtained in figure 4.14d.
Nonetheless, figure 4.14c shows that this conducting channel is not included in the bias window determined
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by the chemical potentials of the contacts, and a further tilting of the barriers originating from a higher
voltage drop would cause the energy levels to enter the bias window misaligned from each other.

(a) LDOS, equilibrium conditions. (b) Transmission function, equilibrium conditions.

(c) LDOS, V = 0.06 V . (d) Transmission function, V = 0.06 V .

Figure 4.14: System with conducting channel outside the bias window.

The total current derived from the system in figures 4.14 has been compared with that of the system in
figure 4.12a, in which the voltage drops across the three barriers, and the energy levels align, thus forming a
conducting channel, inside the bias window.

The two curves are plotted in figure 4.15, and clearly the current produced by the misaligned energy levels
of the system in figure 4.14 is significantly lower than the current originating from a pair of aligned energy
levels.

Nonetheless, it is still possible to notice a small resonance even in the case with misaligned levels: this
resonance occurs for a bias voltage approximately equal to 0.06 V , which is the value that causes the energy
levels to align outside the bias window in figure 4.14c.

It has already been observed that at a temperature higher than the absolute zero the Fermi-Dirac
distributions of electrons in the contacts are not actually equal to zero for E > µ, but they gradually
decrease to zero in the range of a few integer multiples of kBT above µ. In this case, the gap between the
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conducting channel and the chemical potential of the left-hand contact is approximately equal to

37.9 meV ≈ kBT = 25.8 meV (4.5)

measured by difference between the tunneling peak in figure 4.14d, and µ1 = 0.03 eV . This justifies the
presence of a few electrons with energy matching that of the conducting channel even if it is placed outside
the bias window; those electrons are able to tunnel through the whole system with ease, thus causing a slight
increase in current as long as the energy levels remain aligned.

Figure 4.15: Current comparison of aligned and misaligned energy levels inside the bias window.

4.3.5 Crossing over of energy levels

Thus far, all the reported systems have shown energy levels crossing over from the nanoparticle to the
molecule, and vice versa. This is particularly evident when comparing the nanoparticle and molecule taken
individually as in figures 4.6a and 4.7a, respectively, with the bound system shown in figure 4.8a and reported
in figure 4.16 to highlight two instances of this phenomenon.

Figure 4.16: Energy levels crossing over in the bound system.
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There are already studies accounting for this phenomenon concerning semiconductor heterostructures,
such as [25], in which wavefunctions confined in a sequential quantum well structure often cross over to the
neighbouring quantum wells. However, other similar studies have presented results in which this phenomenon
is missing, such as [26].

The main difference between these two examples is the order of magnitude of the investigated quantum
systems: layers in the GaN/AlGaN sequential quantum well studied in [25] are comparable in thickness with
the lengths used along the x -axis in figure 4.16, while layers reach up to tenths of nanometers in thickness in
the AlGaAs/GaAs triple-barrier diode analysed in [26].

To prove this assumption, all the lengths in the system in figure 4.16 have been doubled, while maintaining
the same U0. The resulting system is reported in figure 4.17.

(a) Misaligned energy levels. (b) Transmission function, no tunneling peaks.

(c) Aligned energy levels. (d) Transmission function with a conducting channel.

Figure 4.17: Larger system with no crossing over of energy levels.

It is possible to notice that the deeper energy levels in figure 4.17a do not cross over between the two
structures, while the crossing over starts again to appear near the barriers edges, where energy levels are
more affected by the non-ideality and the finite barriers of the system.

Furthermore, an alignment between two energy levels has been obtained in figure 4.17c by rigid translation
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of the third barrier to slightly lower energies. This allows the formation of a conducting channel even without
applying a bias voltage, thus resulting in the sharp tunneling peak highlighted in figure 4.17d. Hence, the
crossing over of energy levels does not affect the formation of a conducting channel.

4.3.6 Conduction of an individual molecule

To prove the utility of a nanoparticle in enhancing the current signal produced by a molecule, a comparison
has been made between the systems in figure 4.18.

Figure 4.18a shows the system already used in the analysis of the previous sections, while the system
in figure 4.18b has been obtained simply removing the double barrier representing the nanoparticle, and
substituting it with a unique barrier of equal thickness so that the nanoparticle energy levels are removed
from the simulation and the thick barrier represents the distance between the molecule and the contact.

(a) Nanoparticle-molecule bound system. (b) System obtained removing the nanoparticle.

Figure 4.18: Systems with and without the nanoparticle energy levels.

Such a large distance distance between the contact and the molecule causes the transmission function to
be flat and equal to zero until the electron energy matches that of the barriers, such as shown in figure 4.19a.

However, figure 4.19b presents a detail of the transmission function for energies lower than 0.1 eV . Small
tunneling peaks are still present, and the one represented arises in correspondence to the lowest energy level
in figure 4.18b.

Although very small compared to unity, these tunneling peaks allow to calculate a total current according
to the Landauer-Büttiker formula (4.3).

The current resulting from the system in figure 4.18b is plotted in figure 4.20. The current-voltage
relationship of the system closely reminds that of an electrical resistance; therefore, this proves that the thick
barrier prevails over the discrete molecular energy levels in determining the current shape.
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(a) Equilibrium conditions T (E). (b) Detail for 0 eV < E < 0.1 eV .

Figure 4.19: Transmission function of the system in figure 4.18b without nanoparticle.

Figure 4.20: Resistance-like I-V characteristics without nanoparticle.

In a more realistic scenario, when the nanoparticle is not present the molecule can be allowed to bind
directly to the metal contact and the thickness of the tunneling barrier separating them would be lower than
the nanoparticle size.

Figure 4.21 shows the evolution of the current signal of an individual molecule as its distance from the
contact progressively reduces. It is possible to notice that for distances larger than 3 nm the current trend
is mostly linear, with slight deviations. Conversely, the Coulomb blockade trend emerges again for distances
equal to 2 nm or lower.

Finally, although at a distance of 1.5 nm from the contact the current signal shows a trend that can be
attributed to the Coulomb blockade inside the molecule, figure 4.22 illustrates the clear advantage in having
a nanoparticle enhancing the current. Even if the presence of the nanoparticle puts the molecule further
away from the contact, the current signal is drastically enhanced by the nanoparticle, and the current step
is much more visible than without it.

Furthermore, comparing figures 4.15 and 4.21, it can be observed that the alignment of nanoparticle and
molecular energy level is a crucial point in obtaining a detectable current signal: when the energy levels
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are misaligned, instead of enhancing the signal, the nanoparticle yields a current even lower than that of an
individual molecule.

(a) Linear I-V characteristics. (b) Restoring a glimpse of the Coulomb blockade.

Figure 4.21: Current of an individual molecule with decreasing distance from the contact.

Figure 4.22: Current of an individual molecule and a molecule enhanced by a nanoparticle.

4.4 Simulation of a real system

Finally, the NEGF model has been put to the test in reproducing a current-voltage characteristics from an
experimental measurement. The reference experimental setup is a cyclic voltammetry of cytochrome P450scc
on gold nanoparticles, which is outlined in [27].

On average, in this experiment, gold nanoparticles have been measured to be 12 nm in diameter by Atomic
Force Microscopy (AFM), while measurements also performed by AFM on single-molecule cytochrome P450
state that, on average, the molecule is 3.5 nm-long, with a quite relevant standard deviation equal to 0.9 nm
[28].
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For the purposes of this simulations only the average values have been used, namely a 12 nm-diameter
gold nanoparticle and a 3.5 nm-long cytochrome P450 molecule.

Since it treats a real system, many parameters required for the simulation were not specified in [27], such
as the thickness of the tunneling barriers, the U0 value, or the availability of energy levels; therefore, they
were found by trial and error in search of a current trend reminding of the curve in figure 4.23, which is taken
from the paper.

The curve corresponding to the cytochrome plus nanoparticle is the one plotted with a solid line; the
dashed and dotted ones represent the bare electrode and the electrode with nanoparticles only, respectively.
Measurements are performed under aerobic conditions with a 100 nM phosphate buffer solution.

The crucial point in figure 4.23 is the presence of a peak in current due to the oxidation of the electrochemically
reduced cytochrome molecule reacting with the oxygen in the environment, and the charge flow is mediated
by the nanoparticle channelling the electron transport through its energy levels.

Figure 4.23: Experimental voltammogram, image taken from [27].

The different experimental conditions, such as the aerobic environment and the presence of a buffer
solution are not conceived by the algorithm, since it only receives as input the potential energy profile.
Moreover, due to the many missing parameters and the large dimensions of the system that entail a
significantly higher number of confined energy levels compared to the cases shown in the previous sections,
the time required for the simulation increases drastically and it becomes very challenging to analyse this
system with the current implementation of the algorithm.

Nonetheless, the system that allows to obtain the most similar curve is shown in figure 4.24a, in which the
molecule has been translated to lower energies with respect to the nanoparticle and, in particular below the
equilibrium chemical potential of the contacts, which is chosen to be equal to 0.2 eV , in an attempt to emulate
the electrochemically-reduced condition by ensuring its energy levels are all occupied. The nanoparticle also
presents a few energy levels below the equilibrium chemical potential, to emulate a more realistic condition
in which a few are occupied but there are still many available for conduction; the molecule is placed so that,
at equilibrium, the two set of molecular and nanoparticle energy levels cannot communicate and exchange
charge. In addition, the zero-current condition is achieved in the experiment for V = 0.4 V , as well as the
current is different than zero with a null bias voltage; for these reasons, the equilibrium condition of the
simulation, in which the chemical potentials of contacts coincide, is achieved for a 0.4 V voltage drop across
the system too.
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The current derived from the simulation of the system is reported in figure 4.24b, with the exception of
the second portion of the curve concerning the cyclic voltammogram. The voltage axis is also inverted to
match figure 4.23.

There are still many differences between the experimental data and the reproduced one, the most
noticeable being the difference of approximately one order of magnitude in the signal intensity. This result is
not completely satisfactory yet: the current peak is wider than the experimental one, as well as the current
presents a steady increasing trend that starts from positive bias voltage values, instead of remaining nearly
constant until V ≈ −0.1 V , such as in figure 4.23.

The simulation does not exactly match the experiment; nonetheless, even with the few simple considerations
stated above and despite the many limitations of the current model, a similar current trend is achievable in
which the current reaches a maximum in correspondence of the oxidation peak of the cytochrome molecule.

(a) LDOS with bias voltage equal to 0 V . (b) Current-Voltage characteristic.

Figure 4.24: System used for the simulation of the experimental setup.
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Conclusions and outlook

To summarize and conclude, this work aims to be a first step in the direction of a comprehensive tool in
the design and modelling of nanoparticle-enhanced electrochemical biosensors.

The analysis is focused on the understanding of the mechanisms underlying the electron transport across
a nanoparticle starting from first-principles quantum mechanics and knowledge regarding Schrödinger-like
problems, instead of relying on a parametric approach to fit experimental data.

Since this is only the first step in achieving that objective, a viable model for the numerical solution of the
problem is presented in the NEGF, and effectively applied to relatively simple systems consisting of either a
single nanoparticle or a nanoparticle-molecule bound system.

Nonetheless, even simple systems like these allow to understand the relations between tunneling of
electrons through discrete channels and the resulting current, as well as the importance of the nanoparticle
in enhancing the measured signal.

However, given the overall complexity of the problem at hand, the results are quite satisfactory although
the description is incomplete as far as the current is concerned, since only the coherent component is
considered. A complete description would require the inclusion of other phenomena that complement the
coherent tunneling of electrons; the hopping phenomenon is an example which presumably plays a role
as important as tunneling when dealing with organic molecules, but relatively to incoherent transport of
electrons. A natural continuation to this work could be the inclusions of such phenomena in the model.

Regardless, the first step should be the optimization of the algorithm, making it more efficient and
less time-consuming on simple systems such as the ones analysed in this work. This limitation becomes
particularly clear when trying to reproduce the experimental results in section 4.4, which entails the simulation
of a more complex system.

Loops are particularly inefficient in the MATLAB environment and they should be, if possible, substituted
by either array-wide operations or recursive functions. Moreover, the accuracy of the algorithm strongly
depends on the refinement of the energy mesh and, in the current implementation, a uniform mesh is used.
This is not ideal, since some parts in the energy mesh might require a higher accuracy, while others might
not benefit from it. Such is the case for localized states which manifest themselves as sharp peaks in the
transmission probability of electrons.
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Appendix A

Analytic derivation for single- and
double-barrier transmission
probabilities

In this appendix, explicit derivation for the single- and double-barrier transmission probabilities will be
provided, expanding on section 1.1.

A.1 Single barrier

Following the derivation in [1] and with figure 1.1 as a reference, naming the potential energy U instead
of V to avoid misunderstanding it for the bias voltage, the Hamiltonian of the system can be written as

H = − ~2

2m

d2

dx2
+ U(x) , U(x) =


0 x < 0

U0 0 ≤ x < L

0 x ≥ L
(A.1)

and the stationary eigenvalue Schrödinger equation reduces to a Helmholtz-like equation for the eigenfunctions:

Hψ(x) = Eψ(x) ⇒
[
d2

dx2
+

2m

~2
(E − U(x))

]
ψ(x) = 0 ⇒ ψ′′(x) + k2ψ(x) = 0 (A.2)

The general harmonic solution, under the hypotheses presented in section 1.1 is:

k1 = k3 =

√
2mE

~2
, k2 =

√
2m(E − U0)

~2
⇒ ψ(x) :


ψI(x) = Aeik1x +Be−ik1x

ψII(x) = Ceik2x +De−ik2x

ψIII(x) = Feik1x
(A.3)
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where A, B, C, D, F are complex coefficients to be determined through the continuity boundary conditions
of ψ(x) and its first derivative at the points where the potential changes definition:

ψI(x = 0) = ψII(x = 0)

dψI(x)

dx

∣∣∣∣
x=0−

=
dψII(x)

dx

∣∣∣∣
x=0+

ψII(x = L) = ψIII(x = L)

dψII(x)

dx

∣∣∣∣
x=L−

=
dψIII(x)

dx

∣∣∣∣
x=L+

⇒



A+B = C +D (A.4)

k1A− k1B = k2C − k2D (A.5)

Ceik2L +De−ik2L = Feik1L (A.6)

k2Ce
ik2L − k2De−ik2L = k1Fe

ik1L (A.7)

Multiplying (A.6) by k2, then summing (A.6) and (A.7), the ratio C/F can be expressed as:

C

F
=
k1 + k2

2k2
ei(k1−k2)L (A.8)

Instead, by subtracting the same two equations D/F is obtained:

D

F
=
k2 − k1

2k2
ei(k1+k2)L (A.9)

Multiplying (A.4) by k1, then summing (A.4) and (A.5) and dividing both members of the resulting equation
by F , the Fresnel coefficient t is obtained:

t−1 =
A

F
=
k1 + k2

2k1

C

F
+
k1 − k2

2k1

D

F
(A.10)

Substituting (A.8) and (A.9) into (A.10):

t−1 =
A

F
=

(k1 + k2)2

4k1k2
eik1Le−ik2L − (k1 − k2)2

4k1k2
eik1Leik2L =

= eik1L
[
k21 + k22
4k1k2

(
e−ik2L − eik2L

)
+

4k1k2
4k1k2

(
e−ik2L + eik2L

)]
⇒

⇒ t−1 = eik1L
[
cos (k2L)− ik

2
1 + k22
2k1k2

sin (k2L)

]
(A.11)
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Finally, the transmission probability:

T = |t|2 = t · t∗ =

=
e−ik1L

cos (k2L)− ik
2
1 + k22
2k1k2

sin (k2L)

· eik1L

cos (k2L) + i
k21 + k22
2k1k2

sin (k2L)

=

=
1

cos2 (k2L) +

(
k21 + k22
2k1k2

)2

sin2 (k2L)

=

=
1

1− sin2 (k2L) +

(
k21 + k22
2k1k2

)2

sin2 (k2L)

=

=
1

1 +

[(
k21 + k22
2k1k2

)2

− 1

]
sin2 (k2L)

=

=
1

1 +

(
k21 − k22
2k1k2

)2

sin2 (k2L)

(A.12)

Substituting k1 =

√
2mE

~2
and k2 =

√
2m(E − U0)

~2
:

T (E) =
4E(E − U0)

4E(E − U0) + U2
0 sin2

(√
2m(E − U0)

~2
L

) , E > V0 (A.13)

If E < U0, the equality sin (ix) = i sinh (x) can be used:

sin2

(√
2m(E − U0)

~2
L

)
= sin2

(
i

√
2m(U0 − E)

~2
L

)
= − sinh2

(√
2m(U0 − E)

~2
L

)
(A.14)

Finally,

T (E) =



4E(U0 − E)

4E(U0 − E) + U2
0 sinh2

(√
2m(U0 − E)

~2
L

) , E < U0

4E(E − U0)

4E(E − U0) + U2
0 sin2

(√
2m(E − U0)

~2
L

) , E ≥ U0

(A.15)

In case

√
2m(U0 − E)

~2
L � 0, the positive-argument exponential prevails and sinh (x) =

ex − e−x

2
≈ ex

2
;

therefore, if E � U0, the first term in the sum at denominator in T (E) is much smaller than the second one.
In these conditions, the first term can be neglected and the transmission probability can be approximated as
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a decaying exponential function of the barrier thickness L:

T (E) ≈ 4E(U0 − E)

U2
0

4
exp

{
2

√
2m(U0 − E)

~2
L

} =
16E(U0 − E)

U2
0

exp

{
−2

√
2m(U0 − E)

~2
L

}

⇒ T (E) ∝ exp

{
−2

√
2m(U0 − E)

~2
L

}
, E � U0

(A.16)

A.2 Double barrier

With figure 1.2 as a reference and the coherent combined transmission amplitude

t =
t1t2

1− r1r2
(A.17)

recalling that t(1,2) and r(1,2) are complex numbers; therefore characterized by an absolute value and an
argument, it is possible to express them in exponential form as:

t(1,2) =
∣∣t(1,2)∣∣ exp

{
iφ(1,2)

}
, r(1,2) =

∣∣r(1,2)∣∣ exp
{
iθ(1,2)

}
(A.18)

Hence,

t =
|t1| |t2| exp{iφ}

1− |r1| |r2| exp{iθ}
, φ = φ1 + φ2 , θ = θ1 + θ2 (A.19)

Now, to obtain the tunneling probability t must be multiplied by its complex conjugate t∗:

t∗ =
|t1| |t2| exp{−iφ}

1− |r1| |r2| exp{−iθ}
(A.20)

Thus,

T (E) = |t|2 = t · t∗ =

=
|t1|2 |t2|2

1− |r1| |r2| exp{iθ} − |r1| |r2| exp{−iθ}+ |r1|2 |r2|2
=

=
|t1|2 |t2|2

1− 2 |r1| |r2| cos (θ) + |r1|2 |r2|2
(A.21)

It is possible to recognize
∣∣t(1,2)∣∣2 = T 2

(1,2) and
∣∣r(1,2)∣∣2 = R2

(1,2) as the transmission and reflection probabilities
of the individual barriers, respectively. Finally,

T (E) = |t|2 =
T1T2

1− 2
√
R1R2 cos (θ) +R1R2

(A.22)

which is equation (1.12).
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Appendix B

Explicit expression of the FEM
matrix elements

In this appendix, explicit calculation of the matrix elements is performed; they can be derived analytically
starting from equation (2.5), inserting the definition of Lagrange polynomials (2.1). The j -th basis function
is different from zero only in the two elements adjacent to node j ; for this reason, each integral is non-null
for i = j and i = ±j.

B.1 Stiffness matrix elements

The first-order derivative of equation (2.1) is:

dNj(x)

dx
=


1

xj − xj−1
, xj−1 ≤ x < xj

−1

xj+1 − xj
, xj ≤ x < xj+1

j = 2, . . . , N − 1 (B.1)

Diagonal elements are obtained for j = i:

Kjj =

∫ L

0

dNj(x)

dx

dNi(x)

dx
dx =

∫ xj

xj−1

1

(xj − xj−1)
2 dx+

∫ xj+1

xj

1

(xj+1 − xj)2
dx =

=
1

xj+1 − xj
+

1

xj − xj−1
(B.2)

In off-diagonal elements, only half of each basis function overlaps with another one,as shown by figure 2.1:

Kj,j+1 =

∫ xj+1

xj

−1

(xj+1 − xj)2
dx = − 1

xj+1 − xj
(B.3)

Kj,j−1 =

∫ xj

xj−1

−1

(xj − xj−1)
2 dx = − 1

xj − xj−1
(B.4)
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B.2 Mass matrix elements

Again, diagonal elements are obtained for j = i:

Mjj =

∫ L

0

Nj(x)Nj(x) dx =

∫ xj

xj−1

(
x− xj−1
xj − xj−1

)2

dx+

∫ xj+1

xj

(
xj+1 − x
xj+1 − xj

)2

dx =

=
1

(xj − xj−1)
2

∫ xj

xj−1

(x− xj−1)
2
dx+

1

(xj+1 − xj)2
∫ xj+1

xj

(xj+1 − x)
2
dx =

=
xj − xj−1

3
+
xj+1 − xj

3
(B.5)

and in off-diagonal cases, only half of each basis function’s support overlaps with a neighbouring one:

Mj,j−1 =

∫ L

0

Nj−1(x)Nj(x) dx =

∫ xj

xj−1

(
x− xj−1
xj − xj−1

)(
xj − x

xj − xj−1

)
dx =

=
1

(xj − xj−1)
2

∫ xj

xj−1

(x− xj−1) (xj − x) dx =

=
1

(xj − xj−1)
2

∫ xj

xj−1

(
xxj − x2 − xj−1xj + xxj−1

)
dx =

=
1

(xj − xj−1)
2

[
x2xj

2
− x3

3
− xj−1xjx+

x2

2
xj−1

]xj

xj−1

=

=
1

(xj − xj−1)
2

(
x3j
6
−
xj−1x

2
j

2
+
x2j−1xj

2
−
x3j−1

6

)
=

=
(xj − xj−1)

3

6 (xj − xj−1)
2 =

xj − xj−1
6

(B.6)

Similarly, the other off-diagonal element:

Mj,j+1 =
xj+1 − xj

6
(B.7)

B.3 Matrix assembling

Finally, it is now possible to assemble the matrix form of Schrödinger’s equation to be solved by the
calculator.

For each node j of the domain mesh, the (2 × 2) matrices

[K]j =

[
K11 K12

K21 K22

]
, [M ]j =

[
M11 M12

M21 M22

]
(B.8)

can be defined with the stiffness and mass matrix elements obtained in sections B.1 and B.2, respectively.
Then, summing over all mesh points, the matrix form of Schrödinger’s equation is obtained as:

[H] {ψ} = E [M ] {ψ} (B.9)
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which is equation (2.8); in particular:

[H] =
∑
j

(
~2

2m
[K]j + Uj [M ]j

)
(B.10)

[M ] =
∑
j

[M ]j (B.11)
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