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Summary

Quantum Dots, due to their three-dimensional quantum con�nement, have an electronic
structure comparable to the one of atoms. This allows to have a small set of interband
transitions with well-de�ned characteristic energies. Moreover, due to their small DOS,
inversion is reached at low injections rate, thus making them a viable candidate for
active medium in optoelectronics.

The implementation of multiple – electrically isolated contact regions in a single
SOA has allowed for a �ne tuning of the output power and spectrum, by means of the
gain, in each section.

In this work these two concepts are combined at �rst to show the obtainable spectral
asymmetry (and its tunability) that can be achieved with a single tapered device; at last
the same device is simulated in a double-pass con�guration. For this a self-consistent
time-domain travelling-wave model is developed.
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Chapter 1

Thesis outline

With the continuous progress of epitaxial growth techniques of the last decades, there
has been a growing interest in low-dimensional systems (2D, 1D and 0D), where the de
Broglie wavelength of the electron:

λdB =
h̵

(2mE)1/2 (1.1)

is comparable with the characteristic length of the quantum structure in one or more
directions. These low dimensional systems, in the form of quantum wells (2D), quantum
wires (1D) and quantum dots (0D) cannot be treated with the classical Boltzmann
equation. One of the most notable feature of a low dimensional system comes in its
density of states, which greatly di�ers from their classical 3D counterpart. For a 2D
system we have a constant DOS for every subband, with a value of:

g2D =
m∗

πh̵2 (1.2)

The 1D density of states, instead can be written as:

D1D(E) =
1

2π (
2m∗
h̵2 )

1/2
(E −En)

−1/2 (1.3)

Where En represents the con�ned states of the system (n = 1,2,3, ...). On the other
hand Quantum Dots have a peculiar density of states due to their 3D con�nement. At a
�rst approximation it can be considered as an ensamble of Dirac delta-like density of
states. For this reason quantum dots are usually referred to as arti�cial atoms. Quantum
Dots based optoelectronic devices have shown great capabilities in several applications
([1, 2, 3]) due to their peculiar density of states that allows for fast gain recovery times.
In this thesis an existing TDTW model ([4]) is expanded to allow for the simulation of
chirped QD active materials, using as reference the experimental results obtained for
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Thesis outline 2

Figure 1.1: Simulated Device, courtesy of [5]

the device depicted in Fig. 1.1 and experimentally measured by [5, 6]. The shown device
is a quantum-dot based ampli�er with a tapered shape: this allows for a good beam
quality while granting for an increased active region with respect to a con�guration
with constant width. The active region of the device is made up of three groups of
InAs QDs, for a total of ten layers. Due to the chirped structure each QD group has
a di�erent ground state emission wavelength. The main objective of this work is to
properly model the Double-Pass ampli�cation presented in [6], where the device has
been measured in the two conditions shown in Fig. 1.2.

Figure 1.2: Ampli�er con�gurations, from [6] Fig. 2

In chapter 2 the fundamental theory needed to study QD-based optoelectronic
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devices is presented, then integrated with the implemented Time Domain Travelling
Wave Model in chapter 3. All the model and physical parameters are then presented
in chapter 4 along the with the numerical implementations of speci�c features of the
simulated device. Lastly in chapters 5 and 6 simulation results are presented, along
with their experimental counterparts.



Chapter 2

QD based optoelectronic
devices

The model used to perform simulations on the aforementioned device is the Time
Domain Travelling Wave model. It relies on the direct solution of the travelling wave
equations using a �nite di�erence method. The �rst aspect that has to be de�ned
is the propagation of the �eld in the device, this can be described by the following
second-order di�erential equation [4]:

∂2V⃗

∂z2 −
1
c2
∂2

∂t2
(η2V⃗ ) = µ0

∂2P⃗

∂t2
+ µ0

∂J⃗

∂t
(2.1)

where V (z, T ) refers to the amplitude of the TE guided mode. In this model both
transverse magnetic modes and high order TE modes are not taken into account. This
approximation derives directly from practical applications, since the grand majority of
optoelectronic devices are engineered to only support the �rst guided mode at operating
frequency, while all higher order modes are below cuto� ([7] [8]). The two key factors
that de�ne the behaviour of the medium are:

1. P⃗ : the additional polarization induced by the active material

2. J⃗ : a stochastic current density that models the spontaneous emission noise from
the active medium

In the following sections the main equations used for modelling quantum dot based
optoelectronic devices are discussed.

2.1 Quantum Dot fabrication
The continuous progress in fabrication techniques has allowed the possibility of growing
quantum dots ensambles of III-V semiconductor compounds. These materials (GaAs or

4



QD based optoelectronic devices 5

Figure 2.1: Optical �ber attenuation [11]

InAs, to list two) are key for optoelectronics, due to their emission wavelengths that
span from 1µm to 1.8µm, thus covering most of the window used in telecommunication
applications.

The main technique used for the growth of III-V QDs is molecular beam epitaxy
(MBE) ([9] [10]), combined with a layer-island growth (Stranski-Krastanov (SK) process).
Quantum Dots grown by these means can be tuned in size, shape, dimensions and
density by controlling the growth parameters.

The high tunability of this process, and therefore of the grown structure, highly
impacts the potential pro�le of the quantum dots, and, consequentially, the electronic
and optical properties of the grown quantum dots.

As every growth process, also the SK method is subject to �uctuations that lead to
dispersions in the so grown QD charactheristics. The most notable in�uence of these
�uctuations is found in the density of states of the quantum dots: the Dirac delta-like
shape is in�uenced by an inhomogeneous broadening that directly leads to a gain
spectra with a de�ned bandwidth.

Several compounds have been used in optoelectronic devices as active materials due
to the fact that their emission wavelengths fall in one windows where attenuation is
lower in an optical �ber (Fig. 2.1): for example InAs and InxGa1−xAs ([12], [13]) can be
implemented for the second window while for the third InAs/InP are avaliable ([14]).

Since when grown by the SK process QDs are subjected to variance, it is possible to
de�ne a Gaussian distribution that describes the probability of the i-th QD to have a
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speci�c GS transition energy:

Gi = 1/Z exp(−4 log 2
h̵ωi,GS − h̵ω(N+1)/2,GS

∆E2 ) (2.2)

where the normalization constant Z has been de�ned in order to ensure that ∑iGi = 1.
After reviewing the most common technique used to grow QD, in this section a

distribution has been de�ned to properly model an ensemble of self-assembled quantum
dots; in the next section a proper description of wave propagation in a waveguide will
be given.

2.2 Wave propagation
The fundamental theory of wave propagation in a waveguide has been studied and
developed by Markuvitz and Schwinger ([15, 16]), starting from the Maxwell equations
the Electric and Magnetic �eld in the frequency domain (ω):

∇× E⃗ = −jωµ0H⃗ (2.3a)
∇× H⃗ = jωε0ε(ω, r⃗)E⃗ + jωP⃗ (ω, r⃗) + J⃗(ω, r⃗) (2.3b)

where we can �nd the frequency-domain counterparties of the previously highlighted
terms that de�ne the optical response of the active medium. Starting from this coupled
equations, the travelling wave equations can be de�ned. In order to do so a linear
response of the active material is assumed, thus the polarization term P⃗ can be expressed
as:

P⃗ (ω, r⃗) = ε0χ(ω, r⃗)E⃗(ω, r⃗) (2.4)

where χ(ω, r⃗) is the material electronic susceptibility. From a theoretical point of view
this susceptibility is a non-diagonal matrix, that takes in account the anisotropy of
the optical response of the material, but, as will be shown later, optical transitions for
quantum dots are mainly located along the in plane axis. By expressing all the vectorial
components in terms of their longitudinal and transverse components, A⃗ = A⃗t +Az ẑ,
the Marcuvitz-Schwinger equations are obtained:

∂E⃗t
∂z
= jωµ0[1 +

c2

ω2∇t
1
ε
∇t](H⃗t × ẑ) −∇t

Pz
ε0ε
−∇t

Jz
jωε0ε

(2.5a)

∂H⃗t

∂z
= jωε0[ε1 +

c2

ω2∇t∇t](ẑ × E⃗t) + jω(ẑ × P⃗t) + ẑ × J⃗t (2.5b)

The solutions for this equations are both guided modes and radiation modes, but
as stated before, only the �rst guided mode is considered. By introducing the slowly
varying envelope approximation (SVEA), also referred to as narrow-band approximation,
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due to the fact that it assumes that the envelope of a travelling wave slowly varies
when compared to the wavelength of its central frequency (ω0), the amplitude in the
time-domain can be expressed as:

V (z, t) =

√

2ω0µ0

β0
{V +(z, t)e−jβ0z + V −(z, t)e−jβ0z} ejω0t (2.6)

Where V +(z, t) and V −(z, t) are the forward and backward propagating terms. ω0 is
the reference frequency and β0 is the corresponding propagation constant β0 = β(ω0) =
ω0
c η0 with η0 = η(ω0). In frequency domain expression 2.6 becomes:

V (z,ω0 +Ω) =
√

2ω0µ0

β0
{V +(z,Ω)e−jβ0z + V −(z,Ω)e−jβ0z} (2.7)

with the variable change Ω = ω −ω0. Assuming ∣β0
∂V ±

∂z ∣≫ ∣
∂2V ±

∂z2 ∣ and keeping only �rst
order terms in Ω:

±
∂V ±

∂z
(z,Ω) = −j Ω

vg0
V ±(z,Ω) − j ω0

2cη0
Γxyχ̃(ω0 +Ω, z)V ±(z,Ω)+

+
1
2

√
µ0ω0

2β0
J(ω0 +Ω, z)

(2.8)

where the group velocity has been de�ned as:

1
vg0
=
η0

c
(1 + ω0

η0

∂η

∂ω
∣
ω0
) (2.9)

and Γxy i is the �eld con�nement factor, which represents the overlap between the
guided mode and the active medium, and is de�ned in Eq. 2.10:

Γxy iχ̃(z,ω) =∬ χ(x, y, z, ω)∣V ∣2(x, y)dxdy (2.10)

Antitransforming equations (2.8), two independent �rst order time-domain equations
for the forward and backward propagating amplitudes are obtained:

±
∂V ±

∂z
+

1
vg0

∂V ±

∂t
= −

αi
2 V

± − j
ω0

2cη0ε0
ΓxyP ±(z, t) + F ±(z, t) (2.11)

where slowly varying forward and backward traveling polarization terms P ±(z, t) have
been de�ned as:

P ±(z, t) = ε0χ(t, z)⊗ V
±(t, z) = ε0∫

t

−∞
χ(t − τ, z)V ±(z, τ)dτ (2.12a)

χ(t, z) =
1

2π ∫
+∞

−∞
χ̃(ω0 +Ω, z)ejΩtdΩ = χ̃(t, z)e−jω0t (2.12b)
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Similarly, the spontaneous emission noise sources F ±(z, t) for forward and backward
travelling components can be de�ned:

F ±(z, t) =
1
2

√
µ0ω0

2β0

1
2π ∫

+∞

−∞
J(ω0 +Ω, z)ejΩtdΩ =

=
1
2

√
µ0ω0

2β0
J(t, z)e−jω0t

(2.13)

A key term that will be used to properly model the device treated in this work is
the instrinsic waveguide losses αi, that takes into account for additional losses in the
waveguide. Even though in this derivation this parameter is treated as independent
from the propagation direction (forward or backward) in order to simplify the treatment
of the analyzes device it will be split into a progressive losses term (α+) and a regressive
losses term (α−).

The instantaneous optical power in a given section z of the waveguide can be written
as:

S(z, t) = S+(z, t) − S−(z, t) = ∣V +∣2(z, t) − ∣V −∣2(z, t) (2.14)

and the corresponding optical power per unit bandwidth as:

S(z,ω) = S+(z,ω) − S−(z,ω)

= ∣V +∣2(z,ω − ω0) − ∣V
−∣2(z,ω − ω0)

(2.15)

A di�erential equation for S±(z,ω) can be obtained by multiplying (2.8) by V ±∗ and
adding the complex conjugate of the same resulting equation, obtaining:

∂S±(z,ω)

∂z
= (Γxyg(z, ω) − αi)S±(z,ω) + ∣F ±(z,ω − ω0)∣

2 (2.16)

where g(z,ω) represents the gain induced by the active medium:

g(z,ω) =
ω0

cη0
Im{χ̃(z,ω)} (2.17)

In this section the fundamental theory of wave propagation in a waveguide has been
de�ned, in the next one the rate equations that govern the carrier dynamics in the
active medium will be de�ned in order to obtain a complete description of quantum
dot-based optoelectronic devices.

2.3 Rate equations
In order to properly model the carriers dynamics scattering rates deriving from the
density matrix theory. Two types of scattering rates can be de�ned:
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• In and out scattering rates

• Recombination rates

The �rst one, since it must take into account the Pauli exclusion principle, can be
written as:

Rλ,k′→k (f
i
λ,k, f

i
λ,k′) =

f iλ,k′(z, t) (1 − f iλ,k(z, t))
τk′→k

(2.18)

where τk′→k describes the strength of the scattering process. Since without external
perturbation the carriers would tend to a quasi-equilibrium distribution, a relation be-
tween Rλ,k′→k (f iλ,k, f

i
λ,k′) and its reverse process Rλ,k→k′ (f iλ,k′ , f

i
λ,k) must be imposed.

This is done by imposing the following relation between the time constants:

τk→k′

τk′→k
= exp(

εiλ,k′ − ε
i
λ,k

kBT
) (2.19)

In this treatment three recombination rates are considered: spontaneous emission,
non-radiative recombination and Auger recombination. The �rst one can be de�ned as:

Rsp
k (f

i
e,k, f

i
h,k) =

1
τsp,k

f ie,kf
i
h,k (2.20)

similarly, the non-radiative process can be written as:

Rnr
λ,k =

f iλ,k
τnr,k

(2.21)

Auger recombination rates usually require a more in depth analysis, as shown in [17],
and in this work they will be de�ned as shown in (2.22):

RAug
e,k =

1
τAug,k

(f ie,k)
2f ih,k +

1
2

1
τAug,k

(f ih,k)
2f ie,k

RAug
h,k =

1
τAug,k

(f ih,k)
2f ie,k +

1
2

1
τAug,k

(f ie,k)
2f ih,k

(2.22)

Now that all the scattering mechanism have been de�ned the rate equations for SCH,
WL, ES2, ES1 and GS can be written:

∂nλ,SCH
∂t

= ηi
J

e
W −

nλ,SCH
τλSCH→QW

+
nλ,QW

τλQW→SCH

−
BSCH

W ⋅ hSCH
ne,SCHnh,SCH −

nλ,SCH
τλnr,SCH

(2.23)
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∂nλ,QW
∂t

=
nλ,SCH
τλSCH→QW

−
nλ,QW

τλQW→SCH
−
BQW

W ⋅ hw
ne,QWnh,QW −

nλ,QW
τλnr,QW

+
N

∑
i=1

Gi

τλQW→ES2

nQW (1 − f̃ iλ,ES2
) +

N

∑
i=1

niλ,ES2

τλ,iES2→QW

(2.24)

∂niλ,ES2

∂t
=

Gi

τλQW→ES2

nQW (1 − f̃ iλ,ES2
) −

niλ,ES2

τλ,iES2→QW

−
niλ,ES2

τλES2→ES1

(1 − f̃ iλ,ES1
) +

niλ,ES1

τλES1→ES2

(1 − f̃ iλ,ES2
)

−
nie,ES2

f̃ ih,ES2

τsp,ES2

−
f̃ ie,ES2

f̃ ih,ES2

τAug,ES2

(niλ,ES2
+

1
2n

i
λ′≠λ,ES2

)

−
niλ,ES2

τλnr,ES2

−Ri
st,ES2

(2.25)

∂niλ,ES1

∂t
=

niλ,ES2

τλES2→ES1

(1 − f̃ iλ,ES1
) −

niλ,ES1

τλES1→ES2

(1 − f̃ iλ,ES2
)

−
niλ,ES1

τλES1→GS
(1 − f̃ iλ,GS) +

niλ,GS
τλGS→ES1

(1 − f̃ iλ,ES1
)

−
nie,ES1

f̃ ih,ES1

τsp,ES1

−
f̃ ie,ES1

f̃ ih,ES1

τAug,ES1

(niλ,ES1
+

1
2n

i
λ′≠λ,ES1

)

−
niλ,ES1

τλnr,ES1

−Ri
st,ES1

(2.26)

∂niλ,GS
∂t

=
niλ,ES1

τλES1→GS
(1 − f̃ iλ,GS) −

niλ,GS
τλGS→ES1

(1 − f̃ iλ,ES1
)

−
nie,GS f̃

i
h,GS

τsp,GS
−
f̃ ie,GS f̃

i
h,GS

τAug,GS
(niλ,GS +

1
2n

i
λ′≠λ,GS)

−
niλ,GS
τλnr,GS

−Ri
st,GS

(2.27)
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the only term that is not de�ned is the stimulated emission rate that will be de�ned in
the following section, since it relies on an approximation that has not been introduced
yet. In (2.23) and (2.24), coe�cients BSCH and BQW represent the strength of the
spontaneous emission from the SCH and QW states. The applied current density is
represented by J in 2.23 whereas ηi is the internal quantum e�ciency. A common
approximation ([18, 19, 20, 21]) is the excitonic one, where charge neutrality is assumed
in every QD state, as well as in the SCH and in the quantum well. This allows to further
simplify the rate equations, that in the excitonic approach are the following:

∂nSCH
∂t

= ηi
J

e
W −

nSCH
τSCH→QW

+
nQW

τQW→SCH

−
BSCH

W ⋅ hSCH
n2
SCH −

nSCH
τnr,SCH

(2.28)

∂nQW
∂t

=
nSCH

τSCH→QW
−

nQW
τQW→SCH

−
BQW

W ⋅ hw
n2
QW −

nQW
τnr,QW

+
N

∑
i=1

Gi

τQW→ES2

nQW (1 − f̃ iES2
) +

N

∑
i=1

niES2

τ iES2→QW

(2.29)

∂niES2

∂t
=

Gi

τQW→ES2

nQW (1 − f̃ iES2
) −

niES2

τ iES2→QW

−
niES2

τES2→ES1

(1 − f̃ iES1
) +

niES1

τES1→ES2

(1 − f̃ iES2
)

−
niES2

τsp,ES2

−
niES2

f̃ iES2

τAug,ES2

−
niES2

τnr,ES2

−Ri
st,ES2

(2.30)

∂niES1

∂t
=

niES2

τES2→ES1

(1 − f̃ iES1
) −

niES1

τES1→ES2

(1 − f̃ iES2
)

−
niES1

τES1→GS
(1 − f̃ iGS) +

niGS
τGS→ES1

(1 − f̃ iES1
)

−
niES1

τsp,ES1

−
niES1

f̃ iES1

τAug,ES1

−
niλ,ES1

τnr,ES1

−Ri
st,ES1

(2.31)
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∂niGS
∂t
=

niES1

τES1→GS
(1 − f̃ iGS) −

niGS
τGS→ES1

(1 − f̃ iES1
)

−
niGS
τsp,GS

−
niGS f̃

i
h,GS

τAug,GS
−
niGS
τnr,GS

−Ri
st,GS

(2.32)

In this section the rate equations that have been implemented in the model have been
de�ned, in the next one a proper description of the stimulated emission rate will be given
and from that the optical response of the QD-based active material will be determined.

2.4 QD Optical Response
From a rigorous description of the QD polarization one could de�ne the polarization as:

ΓxyP ±(z, t) =Γxy
N

∑
i=1
∑
k

DkGiNd

hw

j∣diy,k∣
2

h̵Γ ⋅

Lik(t)⊗ [(f̃
i
e,k + f̃

i
h,k − 1)V ±(z, t)]

(2.33)

where
Lik(t)⊗ [(f̃

i
e,k + f̃

i
h,k − 1)V ±(z, t)] =

= Γ∫
t

−∞
ej(ω

i
k−ω0)(t−τ)e−Γ(t−τ) (f̃ ie,k(z, τ) + f̃

i
h,k(z, τ) − 1)V ±(z, τ)dτ

(2.34)

but by introducing the adiabatic approximation (which states that a quantum mechanical
system that is subjected to perturbations faster than its response time does not respond
immediately) it is possible to simplify the convolution integral, and the following
expression is obtained for the susceptibility:

χ(t, z) =
N

∑
i=1
∑
k

DkGiNd

hwε0

j∣diy,k∣
2

h̵Γ ⋅ (f̃ ie,k(z, t) + f̃
i
h,k(z, t) − 1)Lik(t) (2.35)

Equivalently it can be written in the frequency domain as:

χ(z, t,Ω) =
N

∑
i=1
∑
k

DkGiNd

hwε0

j∣diy,k∣
2

h̵Γ ⋅ (f̃ ie,k(z, t) + f̃
i
h,k(z, t) − 1)Lik(Ω) (2.36)

this allows to de�ne the QD gain and the refractive index variation as:

g(z, t,Ω) = ω0

cη0
Im{χ(z, t,Ω)} =

=
N

∑
i=1
∑
k

gi0,k (f̃
i
e,k(z, t) + f̃

i
h,k(z, t) − 1)Re{Lik(Ω)}

(2.37)
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∆η(z, t,Ω) = 1
2η0

Re{χ(z, t,Ω)} =

=
N

∑
i=1
∑
k

c

ω0
gi0,k ⋅ (f̃

i
e,k(z, t) + f̃

i
h,k(z, t) − 1) Im{Lik(Ω)}

(2.38)

where gi0,k is de�ned as:

gi0,k =
ω0DkGiNd

cη0hwε0

∣diy,k∣
2

h̵Γ (2.39)

What equations 2.36, 2.37 and 2.38 state is that, in the adiabatic approximation,
the optical response of the QD-based active material can be modeled by �ltering the
electromagnetic �eld through various Lorentzian �lters associated to every interband
transition of every QD group. These �lters have di�erent weights accordingly to the
occupation probabilities of each state. This broadening mechanism is referred to as
homogeneous broadening. Thanks to these equations it is now possible to express the
stimulated emission rate as:

Ri
st,k =

Γxy
h̵ω0

gi0,k (f̃
i
e,k(z, t) + f̃

i
h,k(z, t) − 1) ⋅

Re{V +(z, t) [Lik(t)⊗ V +(z, t)]
∗
+ V −(z, t) [Lik(t)⊗ V

−(z, t)]
∗
}

(2.40)

thus now we can complete 2.16 by having de�ned 2.37. By combining 2.40 and 2.14
Ri
st,k can be �nally written as:

Ri
st,k =

Γxy
h̵ω0

gi0,k (f̃
i
e,k(z) + f̃

i
h,k(z) − 1) ⋅

∫

+∞

−∞
Re{Lik(ω − ω0)} [S

+(z,ω) + S−(z,ω)]dω

(2.41)

where S±(z, ω) represents the forward and backward propagating power in the fre-
quency domain de�ned in 2.15.

2.4.1 Spontaneous emission noise

The quantum description of spontaneous emission noise in semiconductors has been
developed extensively in several works ([22] and [23]), but for this work it will be
obtained by making use of the Einstein theory ([24]). Thanks to the aforementioned
theory it is possible to obtain an expression for the spontaneous emitted power per unit
length, per unit bandwidth, that is generated from the active material starting from the
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gain spectrum of the quantum dot ensemble de�ned in (2.37):

∣F ±(z,Ω)∣2 = βsp2 NdWNlay

N

∑
i=1
∑
k

GiDk

Γh̵ωik
π

Ri
sp,k(z, t)Re{Lik(Ω)} =

=
βsp
2 NdWNlay

N

∑
i=1
∑
k

GiDk
Γ
π

h̵ωikR
i
sp,k(z, t)

1 + (Ω−ωi
k
+ω0

Γ )
2

(2.42)

where Ri
sp,k is the spontaneous emission rate from state k of the ith QD group. In order

to e�ectively model the coupling between the spontaneous emission radiation and the
guided mode the coe�cient βsp is introduced. The characteristic spontaneous emission
time τsp,k can be related to the QD gain via the following expression:

(τsp,k)
−1
=

hw
NdDkGiNlay

η2
0ω

i 2
k Γ

πc2 gi0,k =

=
∣diy,k∣

2η0ωi 3
k

πc3ε0h̵

(2.43)

Having de�ned all the main equations used for modelling quantum dot based optoelec-
tronic devices in this chapter, in the next one an overview of the time domain travelling
wave model will be given.



Chapter 3

TDTW description

The TDTW model consists in the solution of the travelling wave equation at each time
step, by means of a �nite di�erence method: at each time step the optical response of
the quantum dots is evaluated. For clarity the key steps used in the numerical model
are hereby reported. The set of travelling wave equations that has to be solved can be
represented by:

±
∂V ±

∂z
+

1
vg0

∂V ±

∂t
= −

α±i
2 V ± − j

ω0

2cη0ε0
ΓxyP ±(z, t) + F ±(z, t) (3.1)

in (3.1) the polarization term is evaluated only for the GS, the �rst excited state (ES1) and
the second excited state (ES2). The term P ±(z, t) represents the forward and backward
traveling polarization and can be written as:

ΓxyP ±(z, t) =Γxy
N

∑
i=1

∑
k=GS,ES1,ES2

DkGiNd

hw

j∣diy,k∣
2

h̵Γ ⋅

(2f̃ ik(z, t) − 1) [Lik(t)⊗ V ±(z, t)]
(3.2)

where the lorentzian �lter is needed in order to properly represent the broadening of
the interband transitions. F ±(z, t) represents the spontaneous emission noise source,
and its power spectral density can be expressed as follows:

∣F ±(z,Ω)∣2 = βsp2 NdWNlay

N

∑
i=1
∑
k

GiDk

Γh̵ωik
π

Ri
sp,k(z, t)Re{Lik(Ω)} =

=
βsp
2 NdWNlay

N

∑
i=1
∑
k

GiDk
Γ
π

f isp,k(z, t)

τsp,k

h̵ωik

1 + (Ω−ωi
k
+ω0

Γ )
2

(3.3)

All of these equations must then be coupled with the excitonic rate equations 2.28-2.32.
These can be generally expressed as:

∂nik
∂t
(z, t) = Ri

in,k(z, t) −R
i
out,k(z, t) −R

i
rec,k(z, t) −R

i
st,k(z, t) (3.4)

15
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where the intraband processes are collected in theRi
in,k andRi

out,k terms, the recombina-
tion termRi

rec,k collects all the recombinations e�ects (both radiative and non-radiative)
and Ri

st,k represents the stimulated emission. The latter can be expressed as 2.40:

Ri
st,k =

Γxy
h̵ω0

gi0,k (2f̃ ik(z, t) − 1) ⋅

Re{V +(z, t) [Lik(t)⊗ V +(z, t)]
∗
+ V −(z, t) [Lik(t)⊗ V

−(z, t)]
∗
}

(3.5)

All of the equations presented in this paragraph have to be solved by a �nite di�erence
scheme.

3.1 Time stepped solution
The travelling wave equation (3.1) can now be solved. starting from 3.2 and 3.1, it is
possible to write:

±
∂V ±

∂z
+ j

Ω
vg0

V ± =
⎡
⎢
⎢
⎢
⎣
−
αi
2 + Γxy

N

∑
i=1

∑
k=GS,ES1,ES2

1
2g

i
0,k (2f̃ ik(z,Ω) − 1)⊗Lik(Ω)

⎤
⎥
⎥
⎥
⎦
⋅

V ±(z,Ω) + F ±(z,Ω) = κ(z,Ω)V ±(z,Ω) + F ±(z,Ω)

the general solution can be found by �rst taking the homogeneous solution and then
combine it with a particular solution for this non-homogeneous equation. So it is
possible to write:

V ±(z,Ω) = V ±(zj,Ω)e
±j Ω

vg0
(z−zj)

e
± ∫ z

zj
κ(z′,Ω)dz′

⋅ [1 +∫
z

zj

F ±(z′,Ω)e∓j
Ω

vg0
(z′−zj)

e
∓ ∫ z′

zj
κ(z′′,Ω)dz′′

dz′]

where zj is a �xed spatial coordinate. By discretizing the longitudinal coordinate z, the
mode amplitude can be written as:

V ±(zj±,∆z,Ω) ≃ V ±(zj,Ω)e
±j Ω

vg0
∆z
eκ(zj ,Ω)∆z + F ±(zj,Ω)∆z =

= F ±(zj,Ω)∆z + V ±(zj,Ω)e
±j Ω

vg0
∆z exp [ − αi2 ∆z+

Γxy
N

∑
i=1

∑
k=GS,ES1,ES2

1
2g

i
0,k (2f̃ ik(z,Ω) − 1)⊗Lik(Ω)∆z]

≃ F ±(zj,Ω)∆z + V ±(zj,Ω)e
±j Ω

vg0
∆z
[1 − αi2 ∆z+

Γxy
N

∑
i=1

∑
k=GS,ES1,ES2

1
2g

i
0,k (2f̃ ik(z,Ω) − 1)⊗Lik(Ω)∆z]
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by de�ning a time step ∆t as ∆t = ∆z
vg0

the equation can be written in the time domain
as:

V ±(zj ±∆z, t) = F ±(zj, t)∆z + [V ±(zj, t −∆t) − αi2 V
±(zj, t −∆t)∆z+

Γxy
N

∑
i=1

∑
k=GS,ES1,ES2

1
2g

i
0,k (2f̃ ik(zj, t −∆t) − 1) I±,ik (zj, t −∆t)∆z]

(3.6)

where I±,ik (zj, t) = L
i
k ⊗ V

±(zj, t). The �eld at each time step can be computed from its
values in the previous time step by computing the values of I±,ik (zj, t), which represents
the �eld (both forward and backward) �ltered by the lorentzian �lters. From 2.34, it is
possible to write:

I±,ik (zj, t) = e
j(ωi

k−ω0)∆te−Γ∆tI±,ik (zj, t −∆t)

+
1
2Γ∆tej(ωi

k−ω0)∆te−Γ∆tV ±(zj, t −∆t) + 1
2Γ∆tV ±(zj, t)

(3.7)

this allows to evaluate the convolution integral at a de�ned time step from the mode
amplitude and its value in the previous time step. From this the stimulated emission
rate can be derived as:

Ri
st,k(zj, t) =

Γxy
h̵ω0

gi0,k (2f̃ ik(zj, t) − 1) ⋅

Re{V +(zj, t)I±,i∗k (zj, t) + V
−(zj, t)I

±,i∗
k (zj, t)}

(3.8)

3.2 Numericalmodelling of the spontaneous emission
noise

The spontaneous emission noise can be easily modeled due to its random nature. In
each slice of the waveguide there has to be zero correlation with all the other slices,
thus a set of random processes ϕ±,ik (zj, t) can be used, having a uniform distribution
between 0 and 2π. This can be obtained by using a pseudo-random number generator.
The �eld can be written as:

F ±(zj, t)∆z =
N

∑
i=1
∑
k

¿
Á
ÁÀβsph̵ω0vg0nik(zj, t)

2πΓτsp
I±,isp,k(zj, t) (3.9)

and I±,isp,k(zj, t) can be evaluated in the same fashion as I±,ik (zj, t):

I±,isp,k(zj, t) = e
j(ωi

k−ω0)∆te−Γ∆t (I±,isp,k(zj, t −∆t) + 1
2Γ∆tejϕ

±,i
k
(zj ,t−∆t))

+
1
2Γ∆tejϕ

±,i
k
(zj ,t)

(3.10)
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3.3 Summary
Having de�ned the numerical details, in this section the overall procedure is reported.
At the beginning of the simulation a unit time step ∆t is de�ned; this directly determines
the longitudinal discretization ∆z as ∆z =∆t × vg0, de�ning the device structure. At
this point the model variables are initialized and the following steps are iteratively
repeated:

• Rate equations are solved in each slice thanks to the �nite di�erence approach,
obtaining the occupation probabilities of each QD state

• The convolution integrals are evaluated from 3.7 and 3.10

• The spontaneous emission noise is generated thanks to 3.9

• The overall forward and backward components of the �eld at the subsequent time
step are computer in each slice by means of 3.6



Chapter 4

Model implementation

In this chapter the physical parameters used in the simulations of the device are pre-
sented, along with a speci�c implementation of an external feedback mechanism needed
for the simulation of the double pass con�guration presented in Fig. 1.2. The code im-
plementations can be observed in Appendix A. The composition of the active region of
the ampli�er is shown in Fig. 4.1. The epitaxial structure is composed by three di�erent
types of QD, each of them with a specif number of layers associated. Starting from the
p-contact a group of 3 layers with GS emission of 1211nm is found, followed by another
triplet of layers with a central emission of 1243nm; lastly, at the n-contact, a four-layer
group with central GS emission of 1285nm is found. Each layer belonging to a group
of QD is supposed as identical to the other layers of the same group, thus allowing
to de�ne the characteristic of only a single layer of each set and then replicating its

Figure 4.1: Schematic representation of the epitaxial structure, courtesy of [5]
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de�nition. The tapered shape of the device is implemented by assigning to each slice z
a di�erent width, following the schema below:
⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

w(z) = 14µm z < 500µm
w(z) = 14µm + 2 ∗ (z − 500µm)tg(3○

2 ) 500µm < z < 1000µm
w(z) = 14µm + 2 ∗ (500µm)tg(3○

2 ) + 2 ∗ (z − 1000µm)tg(0.8○
2 ) z > 1000µm

One thing that must be noticed is the fact that in the developed code the optical
power is injected from z = 0, thus in the double pass setup this description has to
be reversed, putting the front section at z = 0. This is simply done by de�ning the
structure using the same schema, and then �ipping it thanks to the MATLAB command
flip(z). A key feature of the double pass con�guration is the external feedback
mechanism: the signal after being emitted from the rear section travels for an additional
1 mm in air; after this free �ight, the ampli�ed signal is re�ected by a mirror to be
ampli�ed again by the SOA during a second pass. This was implemented thanks to two
circular bu�ers, one that describes the travelling of the �eld before the re�ection of the
external mirror and one describes the travelling of the optical �eld after the re�ection.
The last di�erence that has to be taken into account when comparing the single pass
and the double pass con�guration is the fact that the propagation losses (α), introduced
in 2.11 are di�erent when the �eld travels from the front section to the rear one and
vice versa, for this reason two di�erent values are assigned to this parameter.

4.1 Reference frequency and time step
In the description of the model, since the introduction of the slowly varying envelope
approach, a reference frequency ω0 has been de�ned. This parameter must be carefully
picked since it must guarantee the validity of the aforementioned approximation.
Moreover is necessary to de�ne a reference frequency that allows to properly resolve
the interband transitions of the con�ned states. In the developed code the reference
frequency is evaluated from the reference energy. Three choices are available:

• GS: the reference energy is chosen as the average between the GS transition
energies;

• ES1: the reference energy is chosen as the average between the GS and ES1
transition energies;

• ES2: the reference energy is chosen as the average between the GS and ES2
transition energies;

Thanks to experimental results previously obtained for this device ([6, 5]) it was possible
to choose a priori the reference energy as the average between the GS and ES1 transition
energies, being these the two main contributions to the stimulated emission. Having
chosen the reference frequency the time step ∆t is chosen in order to avoid aliasing by
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ensuring that the central frequency of the Lorentzian �lters ωik − ω0 is much smaller
than the Nyquist frequency π

∆t . A lower bound of this simulation step is given by the
computation time and by the limited numerical precision of the simulating system. For
these reasons a time step of 15 fs was chosen.

4.2 Physical parameters
The main parameters used in the simulations are reported in 4.1: Having de�ned

Symbol Meaning Value
nl Number of quantum dot layers 4,3,3
El
GS Interband transition for GS 1.0239-0.9976-0.9650 eV

El
ES1 Interband transition for ES1 1.0500-1.0265-0.9960 eV

El
ES2 Interband transition for ES2 1.0690-1.0508-1.0333 eV

EWL Wetting layer transition energy 1.1 eV
gi Maximum gain for GS, ES1 and ES2 690-750-700 cm−1

α Propagation losses 1.35 (R → F), 3.60 (F → R) cm−1

Kp Plasma losses coe�cient 10−17 cm2

τc,i Capture times from ES1, ES2 and WL 5-5-12 ps
τnr,i Non-radiative times 10 ns
τA,i Auger times for GS, ES1, ES2 0.44-2.2-3.3 ns
η Injection e�ciency 0.65

Table 4.1: Physical parameters

everything needed for the numerical implementation of the model, in the next two
chapters simulation results are presented.



Chapter 5

Tunable spectral asymmetry

The output characteristics of tapered devices has been acquired and analyzed in several
conditions ([25]), in this chapter, by using the developed model, will be shown the
tunable spectral asymmetry of the aforementioned device. In order to do so, apart from
previously discussed parameters, it must be noticed that the device is simulated without
any kind of feedback mechanism (meaning that no re�ectivity is imposed on both the
rear and the front facet).

The analysis will mainly focus on two speci�c conditions:

1. IR = 0.1A IF = 1A

2. IR = 0.1A IF = 3.5A

One of the key values to look during the analysis is the occupation probability of
both the rear and front sections, since, by implementation, the gain has a direct relation
with them:

GainES2(:,:,pp)=0.5*(GainES2_mod.*(RhocbES2+RhovbES2-1)-DalfaiES2);
GainES1(:,:,pp)=0.5*(GainES1_mod.*(RhocbES1+RhovbES1-1)-DalfaiES1);
GainGS(:,:,pp)=0.5*(GainGS_mod.*(RhocbGS+RhovbGS-1))./(1+GainCompressionGS);

thus, before considering losses, the values of the occupation probabilities will have a di-
rect impact on the gain spectra. For the �rst setup the obtained occupation probabilities
are reported in 5.2 and 5.1, a graphical depiction of the two is shown in Fig. 5.1.
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GS ES1 ES2
G1 0.85 0.51 0.18
G2 0.67 0.22 0.07
G3 0.57 0.09 0.01

Table 5.1: Occupation probability of the 3 considered QD groups in the rear section
for the 0.1/1 A setup.

GS ES1 ES2
G1 0.90 0.53 0.23
G2 0.74 0.24 0.08
G3 0.60 0.10 0.01

Table 5.2: Occupation probability of the 3 considered QD groups in the front section
for the 0.1/1 A setup.

(a) (b)

Figure 5.1: Occupation probability in the rear (a) and front (b) section for the 0.1/1 A
setup

What can be noticed is the similarity in occupation probability between the two.
Due to the low injected current only the GS can ensure values that allow for an actual
optical ampli�cation. By looking at both gain spectra reported in Fig. 5.2, it can be
noticed how the absorption induced by the excited states allows for a positive peak only
around the 1270nm wavelength, and an overall low gain for wavelengths above 1250nm.
This shape is coherent with the simulation results obtained in [5] and reported in Fig.
5.3. In Fig. 5.4 the output spectra from both facets have been plotted and normalized
with respect to one another, in order to properly show the relative di�erence between
the two.
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Figure 5.2: Gain spectra in the rear and front section for the 0.1/1 A setup

Figure 5.3: Simulation results for the 0.1/1 A setup, courtesy of [5]
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Figure 5.4: Output spectra in the rear and front section for the 0.1/1 A setup

The e�ects of the aforementioned gain spectra are clearly visible, with peaks in
correspondence of the Ground States with an occupation probability that allow for an
actual gain.

The values of the occupation probabilities for the second setup are reported in 5.3
and 5.4, and shown in Fig. 5.5. The e�ect of the higher injection current can be clearly
noticed on the front section, where all the GS have an occupation probability close to 1
and several excited states now contribute to the gain, that can be observed in Fig. 5.6.

GS ES1 ES2
G1 0.77 0.48 0.18
G2 0.69 0.21 0.07
G3 0.45 0.09 0.01

Table 5.3: Occupation probability of the 3 considered QD groups in the rear section
for the 0.1/3.5 A setup.
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GS ES1 ES2
G1 0.96 0.87 0.68
G2 0.98 0.78 0.48
G3 0.95 0.60 0.25

Table 5.4: Occupation probability of the 3 considered QD groups in the front section
for the 0.1/3.5 A setup.

(a) (b)

Figure 5.5: Occupation probability in the rear (a) and front (b) section for the 0.1/3.5 A
setup

Also for this setup the gain spectra obtained with the developed TDTW model are
in agreement with the results of [5], reported in Fig. 5.7
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Figure 5.6: Gain spectra in the rear and front section for the 0.1/3.5 A setup

Figure 5.7: Simulation results for the 0.1/3.5 A setup, courtesy of [5]

In the output spectra reported in Fig. 5.8 the in�uence of the gain asymmetry is
clear: in the front section two peaks can be observed around the 1240nm and 1210nm
wavelengths, where the majority of the states that contribute to the gain are present,
namely the GS for the second and third group, and the �rst excited states for the �rst
and second group of QDs.
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Figure 5.8: Output spectra in the rear and front section for the 0.1/3.5 A setup



Chapter 6

Double-Pass ampli�cation

In this chapter the comparison between the single-pass and the double-pass con�gu-
ration is reported. At �rst the Single Pass con�guration was simulated, with an input
power of 1 mW. The simulations are performed in the following conditions: rear section
current of [0.1 A,0.3 A,0.5 A] and front section current of [1.5 A,2 A,2.5 A,3 A,3.5 A,4 A,4.5 A,5 A].
For the 0.1 A/1.5 A con�guration results are not shown since losses overcame the gain,
showing no particular behaviour of interest.

Figure 6.1: Output power for the single pass con�guration
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Figure 6.2: Gain for the single pass con�guration

Figure 6.3: Experimental gain for the single pass con�guration, courtesy of [6]

The increase in rear section current directly in�uences its gain pro�le, thus increasing
the output power. The gain values are in good agreement with the experimental results
of [6], reported in Fig. 6.3, thus proving the validity of the model for the single-pass
con�guration.

Results for the double pass con�guration can be observed in Fig.s 6.4 and 6.5. The
setup conditions for the 0.1 A front section current con�guration replicates the one of
the single pass con�guration to allow for a clear comparison, while higher front section
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current con�gurations ([0.3 A,0.5 A]) are simulated at lower front section currents.

Figure 6.4: Output power for the double pass con�guration

Figure 6.5: Gain for the double pass con�guration
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Figure 6.6: Experimental gain for the double pass con�guration, courtesy of [6]

Once again the gain values are in good agreement with the experimental results of [6],
reported in Fig. 6.6. In Fig.s 6.7 and 6.8 the comparison between the two con�gurations
can be observed. The double pass con�guration provides, as expected, an higher output
power, mainly due to the fact that the signal has to pass through the active region twice,
and even tough the signal must sustain more losses, especially due to the fact that in
the round trip it has to go from the front section to the rear one �rst, in the double pass
con�guration we can clearly observe a higher gain.

Figure 6.7: Output power for both con�gurations at �xed rear current of 0.1A
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Figure 6.8: Gain for both con�gurations at �xed rear current of 0.1A

Between the two con�gurations in the same conditions a steady gain di�erence
of at least 2.6 dB can be observed with a peak di�erence of approximately 8 dB at the
0.1 A/4 A rear/front section current point. At higher currents the gain in the double pass
con�gurations starts to �atten, leading to lower gain di�erences. Further proofs of the
e�ects of the active region can be observed in Fig. 6.9, in which are plotted the output
spectra for both the single and double pass con�gurations. Both output spectra have
been normalized in order to allow for a spectral comparison between the two. While
all of them present a peak around the 1240nm wavelength, the di�erence between the
two con�gurations can be observed by looking at the 1210nm peak, where in every
simulation the double pass con�guration shows an higher peak. This is due to the fact
that the 1210nm peak, as shown in Fig. 5.6 is in�uenced by the gain pro�le of the front
section when an high enough injection current is injected.
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Figure 6.9: Output power spectra of both con�gurations at increasing front current

The obtained results are in good agreement with the experimental ones obtained
for this device, showing both the high tunability that can be obtained with the imple-
mentation of two electrodes, and showing the undoubtable advantages of the double
pass con�guration with respect to the single pass one, providing a cheap and e�cient
technique to improve the optical gain of the SOA.



Chapter 7

Conclusions

In this work the modeling of chirped quantum dot based optoelectronic devices has
been developed by working on an exsisting TDTW model. To allow for reasonable
simulation time, all the QDs with central GS emission at the same wavelength were
regrouped, and the di�erent groups were weighted according to number of similar
active layers.

Simulation results were compared with simulations obtained with di�erent models,
showing an high level of �delity, while also presenting the limitations induced by
the use of a single population approach, mainly in the presence of too well de�ned
emission peaks. Moreover, thanks to a collaboration with the Institute of Photonics
and Quantum Sciences of the Heriot-Watt University in Edinburgh, simulation results
for the single and double pass ampli�cation con�guration have been compared with
their experimental counterparts. In this framework simulation results were in good
agreement with the experimental ones, showing a discrepancy of no more than 10%,
being able to replicate the measured advantages of the double pass con�guration.

Multi-population approaches have been developed for this model, but due to their
high computational times they have not been tested against experimental results. For
simplicity similar states of di�erent groups are treated as a unique set in all the imple-
mentations (all GS are accessible by all ES1, and similar), thus further development of
this model could include a three dimensional treatment in which the states of a group
are only capable of interacting with states of the same group.
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Appendix A

Code implementations

In this appendix all of the implementations made for this work are shown and discussed,
along with other solutions that have been implemented but not used to obtain the
results of Chapters 5 and 6.

A.1 Modelling chirped QD

When modeling an ensemble of self-assembled quantum dots the following distribution
has been de�ned to properly take into account the variance of the growth process:

Gi = 1/Z exp(−4 log 2
h̵ωi,GS − h̵ω(N+1)/2,GS

∆E2 ) (A.1)

In order to properly model chirped quantum dots, since in the implemented model all
the characteristic interband transition energies for the QD populations belong to one
vector depending on the state (one vector for the GS, one for ES1, and so on) three
di�erent solutions have been implemented. Starting from the characteristic interband
transition energy (expressed in eV):

1 EnergyGapQDCentralPop = [ . . .
2 1 . 0 6 9 0 , 1 . 0 5 0 8 , 1 . 0 3 3 3 ;
3 1 . 0 5 0 0 , 1 . 0 2 6 5 , 0 . 9 9 6 0 ;
4 1 . 0 2 3 9 , 0 . 9 9 7 6 , 0 . 9 6 5 0
5 ] ;

the main objective is to obtain the distribution of the existence probability of each QD
population. The previous implementation, that works only if one group of QD has to
be simulated, is hereby reported:
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Listing A.1: Previously developed distribution of the existence probability of each QD
population

1 % [ 1 , 1 ] ( Always odd ) number o f QD p o p u l a t i o n c r e a t e d i n EnergyGapQD [ ]
2 NumQDPopulations = 5 1 ;
3 %[ NumStates , 1 ] FWHM−>sigma o f inhomogeneous broaden ing o f the QD

ensemble ( ES2 , ES1 , GS ) [ eV ]
4 InhomDeltaE = [ 0 . 0 3 5 ; 0 . 0 3 5 ; 0 . 0 3 5 ] / s q r t ( 8 ∗ l o g ( 2 ) ) ;
5 %[ NumStates , NumPops ] C h a r a c t e r i s t i c i n t e r b a n d t r a n s i t i o n e n e r g i e s f o r

the QD p o p u l a t i o n s ( ES2 ; ES1 ; GS ) [ eV ]
6 EnergyGapQD = [ . . .
7 l i n s p a c e ( EnergyGapQDCentralPop ( 1 ) +3 ∗ InhomDeltaE ( 1 ) ,

EnergyGapQDCentralPop ( 1 ) −3∗ InhomDeltaE ( 1 ) , NumQDPopulations ) ;
8 l i n s p a c e ( EnergyGapQDCentralPop ( 2 ) +3 ∗ InhomDeltaE ( 2 ) ,

EnergyGapQDCentralPop ( 2 ) −3∗ InhomDeltaE ( 2 ) , NumQDPopulations ) ;
9 l i n s p a c e ( EnergyGapQDCentralPop ( 3 ) +3 ∗ InhomDeltaE ( 3 ) ,

EnergyGapQDCentralPop ( 3 ) −3∗ InhomDeltaE ( 3 ) , NumQDPopulations ) ;
10 ] ;
11 %[ NumStates , NumPops ] Gauss ian d i s t r i b u t i o n o f the e x i s t e n c e prob . o f

each QD p o p u l a t i o n [ >=0]
12 I n h o m o g _ d i s t r i b u t i o n = . . .
13 exp ( − ( EnergyGapQD− repmat ( EnergyGapQDCentralPop , 1 , NumQDPopulations

) ) . ^ 2 . / ( 2 ∗ repmat ( InhomDeltaE , 1 , NumQDPopulations ) . ^ 2 ) ) ;
14 %[ NumStates , NumPops ] Normal i zed d i s t r i b u t i o n o f the e x i s t e n c e prob .

o f each QD p o p u l a t i o n . The sum ( per rows ) i s 1 [ >=0]
15 I n h o m o g _ d i s t r i b u t i o n = . . .
16 I n h o m o g _ d i s t r i b u t i o n . / repmat ( sum ( I n h o m o g _ d i s t r i b u t i o n , 2 ) , 1 ,

NumQDPopulations ) ;

But this implementation does not guarantee a valid method for modelling chirped
quantum dots. The �rst solution that one could use is to consider only one population
per QD group, thus de�ning it in the following way:

Listing A.2: Single population approach
1 %[ NumStates , NumPops ] C h a r a c t e r i s t i c i n t e r b a n d t r a n s i t i o n e n e r g i e s f o r

the QD p o p u l a t i o n s ( ES2 ; ES1 ; GS ) [ eV ]
2 EnergyGapQD=EnergyGapQDCentralPop ;
3 % F a c t o r t h a t t a k e s i n t o account the weight o f d i f f e r e n t QD groups
4 Mult = [ 4 , 3 , 3 ] ;
5 %Number o f QD groups
6 NumDiffDots = s i z e ( EnergyGapQDCentralPop , 2 ) ;
7 %[ NumStates , NumPops ] D i s t r i b u t i o n o f the e x i s t e n c e prob . o f each QD

p o p u l a t i o n [ >=0]
8 I n h o m o g _ d i s t r i b u t i o n = z e r o s ( 3 , NumDiffDots ) ;
9 f o r i i = 1 : NumDiffDots

10 I n h o m o g _ d i s t r i b u t i o n ( : , i i ) = Mult ( i i ) ;
11 end
12 %[ NumStates , NumPops ] Normal i zed d i s t r i b u t i o n o f the e x i s t e n c e prob .

o f each QD p o p u l a t i o n . The sum ( per rows ) i s 1 [ >=0]
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13 I n h o m o g _ d i s t r i b u t i o n = . . .
14 I n h o m o g _ d i s t r i b u t i o n . / repmat ( sum ( I n h o m o g _ d i s t r i b u t i o n , 2 ) , 1 ,

NumQDPopulations ) ;

This represents the easiest solution, and also the one that requires less computational
time between all of them, since only one population per energy state per group is
considered. The other two implemented solutions keep the Gaussian distribution of the
�rst implementation and rely on the following de�nition of the Characteristic interband
transition energies for the QD populations:

Listing A.3: Multiple populations de�nition of the Characteristic interband transition
energies

1 f u n c t i o n EGQD = FuncEnergyGapQD ( EnergyGapQDCentralPop , InhomDeltaE ,
NumLevPop , NumDiffDots )

2 EGQD = [ ] ;
3 d i s t = abs ( d i f f ( EnergyGapQDCentralPop ’ ) ) / 2 ∗ 0 . 9 8 ;
4

5 f o r i i = 1 : NumDiffDots
6 i f i i == NumDiffDots
7 Lim = d i s t ( i i − 1 , : ) ;
8 e l s e i f i i == 1
9 Lim = d i s t ( 1 , : ) ;

10 e l s e
11 Lim = min ( d i s t ( i i , : ) , d i s t ( i i − 1 , : ) ) ;
12 end
13

14 vec = [ . . .
15 l i n s p a c e ( EnergyGapQDCentralPop ( 1 , i i ) +Lim ( 1 ) ,

EnergyGapQDCentralPop ( 1 , i i ) −Lim ( 1 ) , NumLevPop ) ;
16 l i n s p a c e ( EnergyGapQDCentralPop ( 2 , i i ) +Lim ( 2 ) ,

EnergyGapQDCentralPop ( 2 , i i ) −Lim ( 2 ) , NumLevPop ) ;
17 l i n s p a c e ( EnergyGapQDCentralPop ( 3 , i i ) +Lim ( 3 ) ,

EnergyGapQDCentralPop ( 3 , i i ) −Lim ( 3 ) , NumLevPop ) ;
18 ] ;
19

20 EGQD = [EGQD vec ] ;
21

22 end
23 upExt = [ . . .
24 l i n s p a c e ( EnergyGapQDCentralPop ( 1 , 1 ) +3 ∗ InhomDeltaE ( 1 ) , EGQD ( 1 , 1 ) ,

NumLevPop +1 ) ;
25 l i n s p a c e ( EnergyGapQDCentralPop ( 2 , 1 ) +3 ∗ InhomDeltaE ( 2 ) , EGQD ( 2 , 1 ) ,

NumLevPop +1 ) ;
26 l i n s p a c e ( EnergyGapQDCentralPop ( 3 , 1 ) +3 ∗ InhomDeltaE ( 3 ) , EGQD ( 3 , 1 ) ,

NumLevPop +1 ) ;
27 ] ;
28 upExt = upExt ( : , 1 : end −1 ) ;
29
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30 dwExt = [ . . .
31 l i n s p a c e (EGQD( 1 , end ) , EnergyGapQDCentralPop ( 1 , end ) −3∗ InhomDeltaE

( 1 ) , NumLevPop +1 ) ;
32 l i n s p a c e (EGQD( 2 , end ) , EnergyGapQDCentralPop ( 2 , end ) −3∗ InhomDeltaE

( 2 ) , NumLevPop +1 ) ;
33 l i n s p a c e (EGQD( 3 , end ) , EnergyGapQDCentralPop ( 3 , end ) −3∗ InhomDeltaE

( 3 ) , NumLevPop +1 ) ;
34 ] ;
35 dwExt = dwExt ( : , 2 : end ) ;
36 EGQD = [ upExt EGQD dwExt ] ;
37 end

What the previous code does is to at �rst evaluate the distances (dist) between the
energy levels, reduces it to 98% of their value in order to avoid the overlap between
two neighbour, then, using half the distances, creates symmetrical intervals across
each transition energy with a de�ned number of populations (NumLevPop) equal
for all the transition energies and merges them. Lastly, to take into account the tails
of the Gaussian distribution, two extensions are added. Having de�ned the vector of
transition energies, the distribution of the existence probability can be de�ned in two
di�erent manners, depending on the use case:

Listing A.4: Approach 1 for the distribution of the existence probability
1 f u n c t i o n ID = F u n c I n h o m g _ d i s t r i b u t i o n ( EnergyGapQDCentralPop ,

InhomDeltaE , EnergyGapQD , NumQDPop , NumDiffDots , Mult )
2 ID = z e r o s ( 3 , NumQDPop ) ;
3 f o r i i = 1 : NumDiffDots
4 vec = Mult ( i i ) ∗ exp ( − ( EnergyGapQD− repmat ( EnergyGapQDCentralPop ( : ,

i i ) , 1 , NumQDPop ) ) . ^ 2 . / ( 2 ∗ repmat ( InhomDeltaE , 1 , NumQDPop ) . ^ 2 ) ) ;
5 ID = ID+ vec ;
6 end
7 end

With this approach the a Gaussian distribution for each transition energy is de�ned
and added together per state. The resulting distribution can be observed in Fig. A.1:
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Figure A.1: Distribution of the existence probability obtained with A.4

This approach correctly de�nes the distribution for each quantum dot group, but
when all of them are added together, the uniqueness of each quantum dot is lost. For
this reason the third solution has been developed:

Listing A.5: Approach 1 for the distribution of the existence probability
1 f u n c t i o n ID = F u n c I n h o m g _ d i s t r i b u t i o n ( EnergyGapQDCentralPop ,

InhomDeltaE , EnergyGapQD , NumDiffDots , Mult , NumLevPop )
2 ID = [ ] ;
3

4 f o r i i = 1 : NumDiffDots
5 i f i i == 1
6 NumPops = 2 ∗NumLevPop ;
7 s t I d x = 1 ;
8 e l s e i f i i == NumDiffDots
9 NumPops = 2 ∗NumLevPop ;

10 s t I d x = ( i i ) ∗NumLevPop + 1 ;
11 e l s e
12 NumPops = NumLevPop ;
13 s t I d x = ( i i ) ∗NumLevPop + 1 ;
14 end
15

16 en Idx = s t I d x +NumPops −1 ;
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17 vec = Mult ( i i ) ∗ exp ( − ( EnergyGapQD ( : , s t I d x : en Idx ) − repmat (
EnergyGapQDCentralPop ( : , i i ) , 1 , NumPops ) ) . ^ 2 . / ( 2 ∗ repmat ( InhomDeltaE
, 1 , NumPops ) . ^ 2 ) ) ;

18 ID = [ ID vec ] ;
19 end
20 end

This function de�nes a Gaussian distribution for each transition energy and assigns each
distribution only to the segments on which that speci�c transition energy is de�ned.
The overall distribution can be observed in Fig. A.2.

Figure A.2: Distribution of the existence probability obtained with A.5

With the latter approach the uniqueness of each quantum dot group is preserved.
One thing that must be noticed is the fact that, by increasing the overall number of
populations with these two implementations also the computational time is increased:
for a simulation time of 40 ns the single population approach (3 populations per con-
�ned state) takes approximately 24 hours, while the multi-populations approaches the
computational times reaches one week when considering 11 populations per level (55
populations per con�ned state).
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A.2 Modeling tapered structures

In order to model the tapered structure the following function has been de�ned:

1 f u n c t i o n w=Width ( z )
2 %Waveguide width as a f u n c t i o n o f the l o n g i t u d i n a l p o s i t i o n
3 %I n p u t :
4 % z : [ 1 , NumSl ices ] s l i c e s p o s i t i o n s [um]
5 %Output :
6 % w: [ 1 , NumSl ices ] waveguide wid ths [um]
7 % I n t e r n a l i n p u t s :
8 % − i n i t i a l width : W0 [um]
9 % − t i l t a n g l e t e t a 1 s t a r t i n g a t l e n g t h z1

10 % − t i l t a n g l e t e t a 2 s t a r t i n g a t l e n g t h z2 ( o v e r r i d i n g t e t a 1 )
11 w = ones ( s i z e ( z ) ) ;
12 W0 = 1 4 ;
13 z1 = 5 0 0 ; z2 = 1 0 0 0 ;
14 t e t a 1 = 3 ∗ p i / 1 8 0 ; %[ d e g r e e −> rad ]
15 t e t a 2 = 0 . 8 ∗ p i / 1 8 0 ; %[ d e g r e e −> rad ]
16 w( z < z1 ) = W0;
17 w( z < z2 & z >= z1 ) = W0+ 2 ∗ ( z ( z < z2 & z >= z1 ) −z1 ) ∗ t an ( t e t a 1 / 2 ) ;
18 w( z >= z2 ) = W0+ 2 ∗ ( z2 − z1 ) ∗ t an ( t e t a 1 / 2 ) + 2 ∗ ( z ( z >= z2 ) −z2 ) ∗ t an ( t e t a 2 / 2 ) ;

With this parametric approach one could easily change structure as needed, and the
introduction of subsequent tapered section could be easily implemented. The obtained
width as a function of the longitudinal position z can be observed in Fig. A.3:
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Figure A.3: Width as a function of the longitudinal position z

A.3 Modeling multiple electrodes
Since in the performed simulations it was needed to apply di�erent injection currents
in di�erent regions of the device an Electrode index was assigned to each slice of the
device. This code also allows to identify reversely polarized regions by assigning a
negative index. Snippets of code used for the single pass con�guration in the 0.1/3.5 A
are reported in A.6

Listing A.6: Multi code electrode example
1 f u n c t i o n E= E l e c t r o d e ( z )
2 E= ones ( s i z e ( z ) ) ;
3 f _ e = @( z ) 1+ ( z > 1 8 7 5 ) ;
4 E= f _ e ( z ) ;
5 end
6

7 [ . . . ]
8

9 Sim . P i l o t = @( e ) 1 0 0 ∗ ( e ==1) + 3 5 0 0 ∗ ( e ==2) ;
10

11 [ . . . ]
12

13 P i l o t =Sim . P i l o t ( E l e c t r o d e ) ;
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A.4 Modeling the external feedback
The double circular bu�er implementation for the external feedback mechanism is
hereby reported. At �rst is necessary to de�ne the characteristics of the feedback path:

1 Data . rF = 1 ;
2 Data . LF = 1 0 0 0 ;

where rF represents the mirror feedback re�ectivity and LF the length of the external
feedback. Starting from this all the other parameters are evaluated and variables are
allocated:

1 % [ 1 , 1 ] F i e l d t r a n s m i t t i v i t y o f the e x t e r n a l c a v i t y [ i n modulus : >=0 ,
<=1]

2 t F = s q r t (1 − rF ^ 2 ) ;
3 % [ 1 , 1 ] Number o f s l i c e s i n the e x t e r n a l path [ # ]
4 NumSl icesF =2 ∗ f l o o r ( LF / dz ) ;
5 % [ 1 , NumSlicesF , COMPLEX] F i e l d j u s t b e f o r e the r e f l e c t i o n by the

e x t e r n a l m i r r o r
6 EFeedback = Al loca teComplex ( 1 , NumSl icesF ) ;
7 % [ 1 , NumSlicesF , COMPLEX] F i e l d j u s t a f t e r the r e f l e c t i o n by the

e x t e r n a l m i r r o r
8 E F i l t e r e d F e e d b a c k = Al loca teComplex ( 1 , NumSl icesF ) ;
9 % [ 1 , 1 ] p o s i t i o n o f the l a s t i t em i n s e r t e d i n E F i l t e r e d f e e d b a c k and

EFeedback [ # ]
10 kFeedback = i n t 3 2 ( 1 ) ;

Having de�ned all the variables, in the main time loop at each time step the progressive
�eld S+ at z = L gets in part re�ected and in part transmitted, being moved in the �rst
bu�er, while the �eld re�ected by the external mirror is injected in the regressive �eld
S− of the device at z = L.

1 E F i l t e r e d F e e d b a c k ( kFeedback ) = . . .
2 EFeedback ( kFeedback ) ∗ rF ;
3 S r e g r ( pp , end ) = S r e g r ( pp , end ) + . . .
4 E F i l t e r e d F e e d b a c k ( kFeedback ) ∗ F e e d b a c k P r o p a g a t i o n S i n g l e ∗ tL ;
5 EFeedback ( kFeedback ) = ( Sprog ( pp , end ) ∗ tL + . . .
6 E F i l t e r e d F e e d b a c k ( kFeedback ) ∗ F e e d b a c k P r o p a g a t i o n S i n g l e ∗ ( − rL ) ) ∗

F e e d b a c k P r o p a g a t i o n S i n g l e ;
7

8 i f kFeedback == NumSl icesF
9 kFeedback = 1 ;

10 e l s e
11 kFeedback = kFeedback + 1 ;
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12 end

A.5 Carriers variation
In this section the code that governs the carriers variation, reproducing the rate equa-
tions presented in chapter 2 are shown. For clarity the corresponding rate equations are
reported. At �rst the variation of carriers in the separate con�nement heterostructure
are evaluated. In this, apart from the non radiative recombination process, present in
every state, the capture and escape rates from the wetting layer have to be considered.
Moreover if reversely biased regions were present, the tunneling from the con�ned
states of these regions should be considered.

∂nSCH
∂t

= ηi
J

e
W −

nSCH
τSCH→WL

+
nWL

τWL→SCH

−
BSCH

W ⋅ hSCH
n2
SCH −

nSCH
τnr,SCH

(A.2)

1 %%%%% V a r i a t i o n o f SCH c a r r i e r s i n each s l i c e i n d t %%%%%
2 % [ 1 , NumSl ices ] Convers ion c o e f f i c i e n t from c u r r e n t [mA] t o c a r r i e r s

i n each s l i c e [mA^−1 ns ^ −1]
3 N e t C u r r e n t C o e f f =Data . E t a i / 1 0 0 0 / 1 e9 . ∗ F r a z i o n e A r e a E l e t t r o d i / C o n s t a n t s . e

;
4 % [ 1 , NumSl ices ] Net Curren t i n cb [ ns ^ −1]
5 NetCurrentCB= I . ∗ N e t C u r r e n t C o e f f +NcbSCH . ∗ NetCurrentCBCoef f2 ;
6

7 % [ 1 , NumSl ices ] Non r a d i a t i v e r e c o m b i n a t i o n i n SCH [ ns ^ −1]
8 NonRadia t iveRecombinat ionSCH = s q r t ( NcbvbSCH ) . ∗ OneOverTauNRcbSCH ;
9

10 % [ 1 , NumSl ices ] Capture from SCH t o WL [ ns ^ −1]
11 CaptureFromSCH2WL = . . .
12 NcbSCH . ∗ ( 1 −NcbWL . ∗ Number2ProbWLcb ) . ∗ OneOverTauCapcbSCH2WL ;
13 % [ 1 , NumSl ices ] Escape from WL t o SCH [ ns ^ −1]
14 EscapeFromWL2SCH = . . .
15 NcbWL . ∗ OneOverTauEsccbSCH2WL . ∗ ThermEsc_Bar r i e r_ reduc t ionSCH ;
16

17 % [ 1 , NumSl ices ] Tunne l ing p r o c e s s e s from WL t o SCH i n r e v e r s e l y b i a s e d
s l i c e s [ ns ^ −1]

18 TunnelingFromWL2SCH= Tunnel ing_esc_ra teWELL_cb . ∗ NcbWL ;
19 %[ NumPops , NumSl ices ] Tunne l ing p r o c e s s e s from ES2 t o WL i n r e v e r s e l y

b i a s e d s l i c e s [ ns ^ −1]
20 TunnelingFromES22SCH= Tunn e l in gEsca peRa tecb ES2 . ∗ NcbES2 ;
21 %[ NumPops , NumSl ices ] Tunne l ing p r o c e s s e s from ES1 t o ES2 i n

r e v e r s e l y b i a s e d s l i c e s [ ns ^ −1]
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22 TunnelingFromES12SCH= Tunn e l in gEsca peRa tecb ES1 . ∗ NcbES1 ;
23 %[ NumPops , NumSl ices ] Tunne l ing p r o c e s s e s from GS t o ES1 i n r e v e r s e l y

b i a s e d s l i c e s [ ns ^ −1]
24 TunnelingFromGS2SCH= Tunne l ingEscapeRatecbGS . ∗ NcbGS ;
25

26 % [ 1 , NumSl ices ] V a r i a t i o n o f c a r r i e r s i n the cb SCH [ ns ^ −1]
27 dNcbSCH= . . .
28 NetCurrentCB . . .
29 −NonRadia t iveRecombinat ionSCH . . .
30 −CaptureFromSCH2WL . . .
31 +EscapeFromWL2SCH . . .
32 +TunnelingFromWL2SCH . . .
33 +sum ( TunnelingFromGS2SCH . . .
34 +TunnelingFromES12SCH . . .
35 +TunnelingFromES22SCH ) ;

After the SCH, the wetting layer carriers are evaluated. For this state the Auger recom-
bination process has to be considered. As stated when deriving the rate equations, only
the neighbouring states are considered for the capture/escape processes, thus for the
WL these processes refer to the second excited state (ES2).

∂nWL

∂t
=

nSCH
τSCH→WL

−
nWL

τWL→SCH
−
BWL

W ⋅ hw
n2
WL −

nWL

τnr,WL

+
N

∑
i=1

Gi

τWL→ES2

nWL (1 − f̃ iES2
) +

N

∑
i=1

niES2

τ iES2→WL

(A.3)

1 %%%%% V a r i a t i o n o f WL c a r r i e r s %%%%%
2 NcbvbWL=NcbWL . ∗NvbWL ;
3 % [ 1 , NumSl ices ] r a t e o f non r a d i a t i v e recomb . i n WL [ ns ^ −1]
4 NonRadiat iveRecombinat ionWL = s q r t ( NcbvbWL ) . ∗ OneOverTauNRcbWL ;
5 % [ 1 , NumSl ices ] r a t e o f spontaneous e m i s s i o n i n WL [ ns ^ −1]
6 SpontaneousEmissionWL=Bsp . ∗ NcbvbWL ;
7 % [ 1 , NumSl ices ] r a t e o f Auger recomb . i n WL [ ns ^ −1]
8 AugerRecombinationWL=NcbWL . ^ 3 . ∗ OneOverTauAugerWL ;
9 %[ NumPops , NumSl ices ] r a t e o f c a p t u r e from ES2 t o WL [ ns ^ −1]

10 CaptureFromES22WL = . . .
11 ( ( 1 − RhocbES2 ) . ∗ OneOverTauCapcbWL2ES2 ) . ∗ ( InhomDensi tyES2 ∗NcbWL ) ;
12 %[ NumPops , NumSl ices ] r a t e o f e s c a p e from ES2 t o WL [ ns ^ −1]
13 EscapeFromES22WL = . . .
14 NcbES2 . ∗ OneOverTauEsccbES22WL . ∗ ThermEsc_Barr i e r_reduc t ionWL ;
15

16 % [ 1 , NumSl ices ] r a t e o f r e c o m b i n a t i o n s i n the WL [ ns ^ −1]
17 RecombinationWL = . . .
18 NonRadiat iveRecombinat ionWL + . . .
19 SpontaneousEmissionWL + . . .
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20 AugerRecombinationWL ;
21

22 % [ 1 , NumSl ices ] V a r i a t i o n o f c a r r i e r s i n the cb WL [ ns ^ −1]
23 dNcbWL = . . .
24 CaptureFromSCH2WL . . .
25 −EscapeFromWL2SCH . . .
26 −RecombinationWL . . .
27 +sum ( EscapeFromES22WL . . .
28 −CaptureFromES22WL ) . . .
29 −TunnelingFromWL2SCH ;

ES2 and ES1 carriers variation are subjected to the same processes, but while the �rst
one interacts with the WL and with ES1, the latter interacts with ES2 and the ground
state (GS).

∂niES2

∂t
=

Gi

τWL→ES2

nWL (1 − f̃ iES2
) −

niES2
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−
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−Ri
st,ES2

(A.4)

1 %%%%% V a r i a t i o n ES2 c a r r i e r s %%%%%
2 %[ NumPops , NumSl ices ] r a t e o f Auger r e c o m b i n a t i o n i n ES2 [ ns ^ −1]
3 AugerRecombES2 = . . .
4 RhovbES2 . ∗ RhocbES2 . ∗ ( DotNumberTimesDegOverTauAugercbES2 ) ;
5

6 %[ NumPops , NumSl ices ] r a t e o f spontaneous e m i s s i o n i n ES2 [ ns ^ −1]
7 SpontaneousEmiss ionES2 =NcbES2 ∗ OneOverTauSpontES2 ;
8

9 %[ NumPops , NumSl ices ] Non r a d i a t i v e recomb . from ES2 [ ns ^ −1]
10 NonRadiat iveRecombES2 =NcbES2 . ∗ OneOverTauNRcbES2 ;
11

12 %[ NumPops , NumSl ices ] r a t e o f e s c a p e from ES1 t o ES2 [ ns ^ −1]
13 EscapeFromES12ES2=NcbES1 . ∗ ( 1 − RhocbES2 ) . ∗ OneOverTauEsccbES12ES2 ;
14 %[ NumPops , NumSl ices ] c a p t u r e r a t e from ES2 t o ES1 [ ns ^ −1]
15 CaptureFromES22ES1=NcbES2 . ∗ ( 1 − RhocbES1 ) . ∗ OneOverTauCapcbES22ES1 ;
16

17 %[ NumPops , NumSl ices ] S t i m u l a t e d e m i s s i o n from ES2 [ ns ^ −1]
18 S t i m u l a t e d E m i s s i o n E S 2 = . . .
19 S t i m u l a t e d E m i s s i o n C o e f f E S 2 X Y . ∗ GainES2 ( : , : , c c ) . ∗ Del taEnergyES2 ;
20

21 %[ NumPops , NumSl ices ] r a t e o f r e c o m b i n a t i o n s i n the ES2 [ ns ^ −1]
22 Recombina t ionsES2 = . . .
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23 NonRadiat iveRecombES2 + SpontaneousEmiss ionES2 +AugerRecombES2+
S t i m u l a t e d E m i s s i o n E S 2 ;

24

25 %[ NumPops , NumSl ices ] V a r i a t i o n o f c a r r i e r s i n the cb ES2 [ ns ^ −1]
26 dNcbES2= . . .
27 CaptureFromES22WL . . .
28 −Recombina t ionsES2 . . .
29 −EscapeFromES22WL . . .
30 +EscapeFromES12ES2 . . .
31 −CaptureFromES22ES1 . . .
32 −TunnelingFromES22SCH ;
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(A.5)

1 %%%%% V a r i a t i o n ES1 c a r r i e r s %%%%%
2 %[ NumPops , NumSl ices ] r a t e o f Auger r e c o m b i n a t i o n i n ES1 [ ns ^ −1]
3 AugerRecombES1 = . . .
4 RhovbES1 . ∗ RhocbES1 . ∗ DotNumberTimesDegOverTauAugercbES1 ;
5

6 %[ NumPops , NumSl ices ] r a t e o f spontaneous e m i s s i o n i n ES1 [ ns ^ −1]
7 SpontaneousEmiss ionES1 =NcbES1 ∗ OneOverTauSpontES1 ;
8

9 %[ NumPops , NumSl ices ] r a t e o f e s c a p e from GS t o ES1 [ ns ^ −1]
10 EscapeFromGS2ES1=NcbGS . ∗ ( 1 − RhocbES1 ) . ∗ OneOverTauEsccbGS2ES1 ;
11 %[ NumPops , NumSl ices ] c a p t u r e r a t e from ES1 t o GS [ ns ^ −1]
12 CaptureFromES12GS=NcbES1 . ∗ ( 1 − RhocbGS ) . ∗ OneOverTauCapcbES12GS ;
13

14 %[ NumPops , NumSl ices ] Non r a d i a t i v e recomb . from ES1 [ ns ^ −1]
15 NonRadiat iveRecombES1 =NcbES1 ∗ OneOverTauNRcbES1 ;
16

17 %[ NumPops , NumSl ices ] S t i m u l a t e d e m i s s i o n from ES1 [ ns ^ −1]
18 S t i m u l a t e d E m i s s i o n E S 1 = . . .
19 S t i m u l a t e d E m i s s i o n C o e f f E S 1 X Y . ∗ GainES1 ( : , : , c c ) . ∗ Del taEnergyES1 ;
20

21 %%[1 , NumSl ices ] r a t e o f r e c o m b i n a t i o n s i n the ES1 [ ns ^ −1]
22 Recombina t ionsES1 = . . .
23 NonRadiat iveRecombES1 +AugerRecombES1+ SpontaneousEmiss ionES1 +

S t i m u l a t e d E m i s s i o n E S 1 ;
24

25 %[ NumPops , NumSl ices ] V a r i a t i o n o f c a r r i e r s i n the cb ES1 [ ns ^ −1]



Code implementations 49

26 dNcbES1= . . .
27 CaptureFromES22ES1 . . .
28 −Recombina t ionsES1 . . .
29 −EscapeFromES12ES2 . . .
30 +EscapeFromGS2ES1 . . .
31 −CaptureFromES12GS . . .
32 −TunnelingFromES12SCH ;

Lastly the variation of carriers for the GS (dNcbGS) is evaluated.
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(A.6)

1 %%%%% V a r i a t i o n GS c a r r i e r s %%%%%
2 %[ NumPops , NumSl ices ] r a t e o f Auger r e c o m b i n a t i o n i n GS [ ns ^ −1]
3 AugerRecombGS = . . .
4 RhovbGS . ∗ RhocbGS . ∗ DotNumberTimesDegOverTauAugercbGS ;
5

6 %[ NumPops , NumSl ices ] r a t e o f spontaneous e m i s s i o n i n WL [ ns ^ −1]
7 SpontaneousEmiss ionGS =NcbGS ∗ OneOverTauSpontGS ;
8

9 %[ NumPops , NumSl ices ] S t i m u l a t e d e m i s s i o n from GS [ ns ^ −1]
10 S t i m u l a t e d E m i s s i o n G S = . . .
11 S t imu la t edEmis s ionCoe f fGSXY . ∗ GainGS ( : , : , c c ) . ∗ DeltaEnergyGS ;
12

13 %[ NumPops , NumSl ices ] Non r a d i a t i v e recomb . from GS [ ns ^ −1]
14 NonRadiat iveRecombGS1=NcbGS ∗OneOverTauNRcbGS ;
15

16 %[ NumPops , NumSl ices ] r a t e o f r e c o m b i n a t i o n s i n the GS [ ns ^ −1]
17 Recombinat ionsGS = . . .
18 NonRadiat iveRecombGS1+ SpontaneousEmiss ionGS + S t i m u l a t e d E m i s s i o n G S +

AugerRecombGS ;
19

20 %[ NumPops , NumSl ices ] v a r i a t i o n o f GS c a r r i e r s [ − ]
21 dNcbGS = . . .
22 CaptureFromES12GS . . .
23 −Recombinat ionsGS . . .
24 −EscapeFromGS2ES1 . . .
25 −TunnelingFromGS2SCH ;

After the evaluation of the variation of carriers has been completed, the total number
of carriers is computed, and the occupation probabilities are re-evaluated.
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1 % [ 1 , NumSl ices ] Number o f c a r r i e r s f o r SCH i n cb [ − ]
2 NcbSCH=NcbSCH+Sim . subsampleRE ∗ Sim . d t ∗ dNcbSCH ;
3 % [ 1 , NumSl ices ] Number o f c a r r i e r s f o r WL i n cb [ − ]
4 NcbWL=NcbWL+Sim . subsampleRE ∗ Sim . d t ∗dNcbWL ; NcbWL ( NcbWL<0) = 0 ;
5 %[ NumPops , NumSl ices ] Number o f c a r r i e r s f o r ES2 i n cb [ − ]
6 NcbES2=NcbES2+Sim . subsampleRE ∗ Sim . d t ∗ dNcbES2 ;
7 %[ NumPops , NumSl ices ] Number o f c a r r i e r s f o r ES1 i n cb [ − ]
8 NcbES1=NcbES1+Sim . subsampleRE ∗ Sim . d t ∗ dNcbES1 ;
9 %[ NumPops , NumSl ices ] Number o f c a r r i e r s f o r GS i n cb [ − ]

10 NcbGS=NcbGS+Sim . subsampleRE ∗ Sim . d t ∗ dNcbGS ;
11

12 %[ NumPops , NumSl ices ] Occupat ion p r o b a b i l i t y f o r ES2 i n vb [ − ]
13 RhocbES2=NcbES2 . / DotNumberByDegeneracyES2 ;
14 %[ NumPops , NumSl ices ] Occupat ion p r o b a b i l i t y f o r ES1 i n vb [ − ]
15 RhocbES1=NcbES1 . / DotNumberByDegeneracyES1 ;
16 %[ NumPops , NumSl ices ] Occupat ion p r o b a b i l i t y f o r GS i n vb [ − ]
17 RhocbGS=NcbGS . / DotNumberByDegeneracyGS ;

Since the implemented model is excitonic, all the values obtained for the conduction
band of the device can be simply replicated for the valence band:

1 % [ 1 , NumSl ices ] Number o f c a r r i e r s f o r SCH i n vb [ − ]
2 NvbSCH=NcbSCH ;
3 % [ 1 , NumSl ices ] Number o f c a r r i e r s f o r WL i n vb [ − ]
4 NvbWL=NcbWL ;
5 %[ NumPops , NumSl ices ] Number o f c a r r i e r s f o r ES2 i n vb [ − ]
6 NvbES2=NcbES2 ;
7 %[ NumPops , NumSl ices ] Number o f c a r r i e r s f o r ES1 i n vb [ − ]
8 NvbES1=NcbES1 ;
9 %[ NumPops , NumSl ices ] Number o f c a r r i e r s f o r GS i n vb [ − ]

10 NvbGS=NcbGS ;
11

12 %[ NumPops , NumSl ices ] Occupat ion p r o b a b i l i t y f o r ES2 i n vb [ − ]
13 RhovbES2=RhocbES2 ;
14 %[ NumPops , NumSl ices ] Occupat ion p r o b a b i l i t y f o r ES1 i n vb [ − ]
15 RhovbES1=RhocbES1 ;
16 %[ NumPops , NumSl ices ] Occupat ion p r o b a b i l i t y f o r GS i n vb [ − ]
17 RhovbGS=RhocbGS ;
18 % [ 1 , NumSl ices ] Net Curren t i n vb [ ns ^ −1]
19 NetCurrentVB=NetCurrentCB ;

These calculations are repeated in every single time step of the process.
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A.6 Reference energy
The reference energy plays a key role in the developed code, but also in every post-
processing script that is used for the graphical representation of the obtained results.
In the existing TDTW model that was used as starting point of this work the reference
energy was evaluated as follows:

1 % [ 1 , 1 ] T r a n s i t i o n energy f o r the ES1 o f the c e n t r a l p o p u l a t i o n [ eV ]
2 PeakEnergyES1=Data . EnergyGapQDCentralPop ( end −1 ) ;
3 % [ 1 , 1 ] T r a n s i t i o n energy f o r the GS o f the c e n t r a l p o p u l a t i o n [ eV ]
4 PeakEnergyGS=Data . EnergyGapQDCentralPop ( end ) ;
5

6 i f s t rcmp ( Sim . r e f e r e n c e _ f r e q u e n c y , ’GS ’ )
7 R e f e r e n c e E n e r g y =PeakEnergyGS ;
8 e l s e
9 R e f e r e n c e E n e r g y =( PeakEnergyES1 +PeakEnergyGS ) / 2 ;

10 end

This simple approach is not su�cient to deal with chirped structures, thus, after the
introduction of ES2 as a con�ned state, the reference energy choice was changed.

1 PeakEnergyES2=sum ( Data . EnergyGapQDCentralPop ( 1 , : ) ) / Data . NumDiffDots ;
2 PeakEnergyES1=sum ( Data . EnergyGapQDCentralPop ( 2 , : ) ) / Data . NumDiffDots ;
3 PeakEnergyGS=sum ( Data . EnergyGapQDCentralPop ( 3 , : ) ) / Data . NumDiffDots ;
4

5 i f s t rcmp ( Sim . r e f e r e n c e _ f r e q u e n c y , ’GS ’ )
6 R e f e r e n c e E n e r g y =PeakEnergyGS ;
7 e l s e i f s t rcmp ( Sim . r e f e r e n c e _ f r e q u e n c y , ’ ES1 ’ )
8 R e f e r e n c e E n e r g y =( PeakEnergyES1 +PeakEnergyGS ) / 2 ;
9 e l s e

10 R e f e r e n c e E n e r g y =( PeakEnergyES2 +PeakEnergyGS ) / 2 ;
11 end

One thing that must be taken into account is the fact that with this approach the di�erent
multiplicity of each group is not taken into account. Since in this work the numbers
of QD layers in each group did not di�er greatly from one another this simpli�cation
does not lead to any signi�cant di�erence; but if the code was used to simulate devices
with a predominant group (like a 10-3-3 distribution) the di�erent multiplicity should
be taken into account, in the following way:

1 PeakEnergyES2=sum ( Data . EnergyGapQDCentralPop ( 1 , : ) . ∗ Mult ) / sum ( Mult ) ;
2 PeakEnergyES1=sum ( Data . EnergyGapQDCentralPop ( 2 , : ) . ∗ Mult ) / sum ( Mult ) ;
3 PeakEnergyGS=sum ( Data . EnergyGapQDCentralPop ( 3 , : ) . ∗ Mult ) / sum ( Mult ) ;
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The e�ects of this simpli�cation would be even more prominent if the energy levels
were more spaced between them, like a setup in which di�erent materials are used
in di�erent groups. To better show this di�erence and the missing impact on the
simulations performed in this work the values obtained with the two approaches, with
the parameters of the simulated device, can be observed in table A.1: It can be easily

Reference Reference Energy [eV] Reference Energy [eV]
GS 0.9955 0.99834
ES1 1.0242 1.0268
ES2 1.051 1.0528

Table A.1: Reference energy without considering multiplicity (center) and considering
it (right) for the simulated device

noticed that the di�erence between the two approaches leads to an error lower than
1%, thus it did not have an impact on the simulations. Grater errors can be observed in
Table A.2, where, using the same energy levels, the groups were redistributed in a 10-3-3
setup: With this con�guration the errors are of some percentage point, but could still

Reference Reference Energy [eV] Reference Energy [eV]
GS 0.9955 1.0141
ES1 1.0242 1.0411
ES2 1.051 1.0628

Table A.2: Reference energy without considering multiplicity (center) and considering
it (right) with the simulated chirped structure, but with greater asymmetry between
the number of layers in each group

be considered negligible. In order to show the possible e�ects of this misinterpretation,
in Table A.3 the reference energies obtained for a system in which the �rst group has
energies 0.5 eV higher than the others is reported. The last considerations are made
without making references to any particular material or structure, but serve as an
example of errors that could be obtained if the wrong method of picking the reference
energy was used.
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Reference Reference Energy [eV] Reference Energy [eV]
GS 1.1622 1.3987
ES1 1.1908 1.4257
ES2 1.2177 1.4474

Table A.3: Reference energy without considering multiplicity (center) and considering
it (right) with great asymmetry between the number of layers in each group and with
greater asymmetry in the energy levels
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