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Summary

When we talk about Artificial Intelligence, in the collective imaginary, we
often think about the ”prediction of the future”: this is probably a result
that we could achieve in the future, and Time Series Forecasting are the clos-
est models to this ideal. Today, the price prediction field is one of the most
important in AI, both from a theoretical and a practical perspective. Indeed,
the interest of equity market investors towards this type of solutions has in-
creased more and more in recent years, as not only prediction models are
capable of storing and processing more data that a person can manage, but
also a lot of time and money is already spent in order to collect these data.
Moreover, an AI-based tool can find correlations otherwise impossible to see
in the same time frame. On the other hand, from the researcher’s perspec-
tive, this field offers many challenges that improve the quality of predictions
more and more. This is because the stock market is essentially dynamic,
nonlinear, complicated, nonparametric, and chaotic in the financial time se-
ries prediction process.

The work presented in this thesis is inserted in this context. In fact, the
scenario we faced, schematized in Figure 1, is the following: after having
collected the data relating to the price of energy and information regarding
the weather and energy consumption of a collection of houses, our goal was
to manage the contribution of the energy grid automatically, selling energy
when it was not needed and buying it when needed. All this to optimize not
only energy waste but also the economy of the complex.

To do this, we used three different datasets: the first collects historical data
relating to the price of energy between 2010 and 2013, the second and the
third, relating to the same period, collected data on the climate (precisely,
exposure solar energy and amount of rain) and those of energy consumption,
in particular for every 30 minutes, we have a value that indicates whether
we are in surplus, which means the use of energy is lower than the produced
one, or in deficit; the data derive from a collection of 300 households that
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Figure 1: Households grid structure.

have rooftop solar systems and a gross metered solar system installed. Then
we implemented four different algorithms, using both Machine Learning and
Deep Learning approaches:

• Facebook Prophet: that is a procedure for forecasting data, and it
is based on a decomposable time series model with three main model
components: a linear or logistic growth curve for modeling data trends,
one for modeling periodic changes, one for the effects of holidays and
the last one for catching the unusual changes.

• XGBoost: eXtreme Gradient Boosting is an optimized distributed gra-
dient boosting library designed to be highly efficient, flexible, and
portable. It consists of a tree structure which aims to make decisions
and discriminate between different classes. XGBoost analyzes the data
and maximizes the decision making of this tree through the use of ma-
chine learning techniques, where the final prediction for a given example
is calculated as the sum of the gradient statistics on each leaf, and then
apply the scoring formula to get the quality score.

• Long-Short Term Memory (LSTM): these Networks are a special kind
of Recurrent Neural Networks, explicitly designed to avoid the so-called
long-term dependency problem. Their main feature is the capability of
removing or adding information to the cell state, remembering them
for long periods of time regulated by structures called gates.
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• Stacked LSTM: a variant of LSTM implemented by us, where we took
all the additional information, concatenated them into one normalized
vector and fed it into the LSTM Cell during the forward phase together
with the hidden inputs derived from the price data. In this way, we
kept intact the importance of the information on the price but still
adding more information that can be used for the prediction.

From the results, we were able to see how the Deep Learning-based approach
has produced generally better results, confirming how the greater complex-
ity and adherence of structures such as LSTMs to data encoded in time
series help this type of problem. Furthermore, although in the literature we
can find similar task solutions with better results (albeit with different data
and contexts), the important take-home message we have derived is that us-
ing different features that characterize price fluctuations has a considerable
impact on prediction. Therefore, in order to be able to identify with more
certainty and precision other possible factors that determine these variations,
the proposed solution can obtain even better results by merely changing or
extending the external data. As for the architecture we tested, it is possible
to extend it using bidirectionality, which in the training phase allows the net-
work to obtain information both from the past states of the cell (backwards)
and from future ones (forward) at the same time t, increasing the number of
inputs known to the network.
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Abstract

This work presents an intelligent tool developed utilizing a deep learning
technique to trade energy stocks. The tool forecasts energy prices and recom-
mends when to buy and how much energies from different households. First,
we introduce the world of time series, showing examples of fields where they
are being successfully used as well as their growing importance nowadays.
We then describe how they have been classified through the years and the
different technologies that have been experimented with for solving forecast-
ing problems in different ways.
Then, we discuss the world of recommending systems and how they are be-
coming more and more important in the context of classification.
We will explain the problem that this work tries to solve, which consists of
the creation of an intelligent tool capable not only of analyzing and process-
ing the past data of the electricity market in order to predict the price trend
of the following two days, but also to select the best time to buy and sell
energy in that time frame. Such transactions are recorded on the blockchain
(thanks to the Accenture team I have worked with). The tool thus created
has the purpose of optimizing the management of the grids that supply en-
ergy to groups of houses.
After using some of the most popular machine learning regression libraries, we
decided to implement a particular Recurrent Neural Network called Long-
Short Term Memory (shortened LSTM). We then implemented a Stacked
LSTM: the attributes that can affect the price value (such as information on
the time of day and the weather) are not given in input to the LSTM cell
immediately but are inserted later. All the data used refer to the electricity
market in the south of Australia. The approach we propose resulted in an
improvement in the results that could be appreciated using only machine
learning and the basic implementation of LSTM.
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Chapter 1

Introduction

The purpose of this thesis is to develop a solution to a Energy Market Pre-
diction problem, more precisely our value proposition is to build a tool able
to predict the price trend of electricity and to optimally manage its purchase
and sale. To achieve our goal we used Time-series Analysis techniques in or-
der to generate a model able to extract and use relationships between price
data and external information.

1.1 The team

The project described in this thesis is the result of the combined work of
two different companies: LINKS Foundation and Accenture Labs. Since the
project brings together two of the most critical modern topics, Deep Learn-
ing and Blockchain, the work has been divided as follows: as regards LINKS
Foundation, with which I worked with the support and supervision of expert
figures of the sector, such as Giuseppe Rizzo (senior researcher at LINKS),
took care of the development of the Artificial Intelligence tool described in
Chapter 4 together with the API interfaces needed to communicate data ex-
ternally. Accenture Labs instead has the task of presenting the predictions
made and managing the transactions through Blockchain. We will focus on
the work done by LINKS Foundation.

The union of these two modules defined a prototype, which has been sub-
mitted to the Patent Commission and is currently being under evaluation.
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1.2 Why Deep Learning?

Deep Learning is a new technology that is obtaining more and more interest
in recent years, especially in fields like Computer Vision, Natural Language
Processing and Time Series Processing. Deep Learning means using a neural
network with several layers of nodes (called neurons) between input and
output. These layers are able to compute relevant features automatically in
a series of stages, just like the process of an human brain.

1.3 Results

This work compares the Deep Learning models (vanilla LSTM and Stacked
LSTM) with those of Machine Learning (XGBoost and FacebookProphet).
The Deep Learning approach has obtained better results for all the met-
rics used (Mean Squared Error, Mean Absolute Error, and Mean Absolute
Percentage Error), confirming how much the use of architectures based on
Neural Networks leads to more accuracy in the price predictions in the field
of forecasting.
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Chapter 2

State of the art

In the following chapter, we describe how Time Series Forecasting has been
studied and classified, with an additional analysis of the technologies that
are obtaining good results in this field.

2.1 Time Series Forecasting

Time series forecasting has a crucial difference from the standard regression
problems: the constraint of the order. In fact, the chronological order of the
data makes it harder for an estimator to learn an overall model that can be
used, as patterns may appear for some time and then disappear, or even the
entire distribution of the data might change. Furthermore, the main reason
we analyze Time series is forecasting, where we try and use past observations
to predict the future. To do this, we have to consider two main variables:

• The past values of the series called endogenous variables.

• The external factors that may be correlated with the distribution of
the data. These factors have to be deterministic; otherwise, we are
in multivariate Time series forecasting, where these values have to be
predicted. Anyway, this kind of variables takes the name of exogenous
variables.

As for the predicted values, we can decide to predict the value after the
considered time:

ŷt+1 = f(y0, y1, . . . , yt−1, yt) (2.1)

Or, starting from knowledge at time t we can decide to predict data which it
is not at time t+ 1 but at time t+x. This can be done in two ways: the first

14



one is the direct approach, which uses the past values to forecast directly the
future value:

ŷt+x = f(y0, y1, . . . , yt−1, yt) (2.2)

The second one is the iterative approach, where in order to compute the
value at time t+ x, all intermediate points are predicted and used as a basis
for the next prediction. in this case, however, it must be emphasized that
the error is propagated for all elements, which can cause poor accuracy for
predictions very far in the future:

ŷt+1 = f(y0, y1, . . . , yt−1, yt)

ŷt+2 = f(y0, y1, . . . , yt, ŷt+1)

...

ŷt+x−1 = f(y0, y1, . . . , yt, ŷt+1, . . . , ŷt+x−2)

ŷt+x = f(y0, y1, . . . , yt, ŷt+1, . . . , ŷt+x−2, ŷt+x−1)

(2.3)

2.1.1 Sliding Window

The traditional approach is to train the model on a portion of the dataset (the
training dataset) and compute the performance on the test dataset (Figure
2.1). The problem with this strategy is that we cannot assume that the
distribution of the series never changes, and it is not necessary that some
variables need to be used or modeled. To prevent these problems, it is often
used a sliding window approach.

Figure 2.1: Standard forecasting approach utilizing train and test datasets.

The sliding window strategy is the state of the art implementation for
Time Series Forecasting as it can provide better predictions. The mechanism
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can be found schematized in Figure 2.2, and it can transform the time series
dataset into a supervised learning problem, which is when the process of
training is supervised because we know the correct answers, so that we can
correct errors on predictions done on training data.
To achieve this, we change the structure of the data to see, at the same time
t the input and the next time step output, keeping intact the order between
the observations. Furthermore, we can set a different width of the sliding
window to consider more previous time steps.

Figure 2.2: Sliding window mechanism.

2.2 Machine Learning

Machine Learning is a subset of AI algorithms that enable the machine to
learn through experience, simulating human intelligence. Machine Learning
applications are several, such as image recognition, speech recognition, mul-
timedia platforms, and much more.
The perceptron was the first architecture that implemented the principle of
taking different vectors as input and adjusting the internal weights consider-
ing the predicted and the expected value, of which we can see the structure
in the Image 2.3, where the output is calculated as follows:

Output = σ(w ∗ x+ b) (2.4)

σ =
1

1 + e−t
(2.5)

Lately, the Machine Learning has been classified in two subgroups:
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Figure 2.3: Perceptron structure.

• Unsupervised Learning: here we extract features and information
from a set of data with no labels. Examples of unsupervised learning
are Clustering process or Principal Component Analysis.

• Supervised Learning: this is the most common type and consists of
predicting the correct label taking as input the item features.

2.3 Deep Learning

Over time, having a greater number of data led to the need to have facilities
that can handle it. This need was felt particularly in the context of time series
and benefited from the birth of Neural Networks, which are a concatenation
of multiple perceptrons where every layer extract features from the previous
one.
One of the best architecture that can handle the problem of Time Series
Forecasting is the Recurrent Neural Network because it can take advantage
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of the order in the data. Recurrent Neural Networks are a special type of
Neural Network with the peculiarity of looking at the current input and the
previous ones. We can see a simplified structure in Figure 2.4. The Cell is a
Feedforward neural network, and we compute the output using the following
computations:

At = g(WaxXt +WaaAt−1 + ba) (2.6)

Ht = g(WyaAt + by) (2.7)

A is the output of the hidden layer, g(t) is the activation function, W is
the weight matrix, X is the input, and H is the output at time step t, and
finally, b is the bias.

Figure 2.4: A Recurrent Neural Network.

Out of the RNN units present in literature, the most useful and most
widespread for the problem we will presenting in Chapter 3 is the Long Short
Term Memory, that we will describe in-depth in Section 4.2. But Another
architecture could fit our problem well, and it is the Gated Recurrent Unit
(GRU, Figure 2.5).
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This type of Neural Network is simpler than the LSTM one, which makes the
computations faster. It uses structures called gates in order to manipulate
the current data and the previous ones, and we have two gates in GRU:

• Update Gate: based on the new information, it decides which features
are to be kept and which not.

• Reset Gate: it decides which features from past events are to be
forgotten as they are not relevant for the output.

Figure 2.5: GRU Cell Structure. Source: https://towardsdatascience.

com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
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2.4 ARMA Models

One of the models that fits the problem of Time Series Analysis the most
is the autoregression model, where the prediction is done after the linear
combination of the past values. The autoregressive model can be written as:

y(t) = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt (2.8)

yt = c+ εt

p∑
k=1

φkyt−k (2.9)

where εt is the noise, φ are the parameters, and p is the order of the model,
from which the notation AR(p) is born that means autoregressivemodeloforderp
[2].

Similar to autoregressive models, there are the Moving Average Models.
The main difference is that the intercept is the average of the most recent q
values, so we regress on the difference between the average and the observed
values.

y(t) = c+ εt + φ1εt−1 + φ2εt−2 + · · ·+ φqεt−q (2.10)

As for the autoregressive model,εt is the noise, φ are the parameters, and q
is the order of the model and the notation is MA(q) [4].
The MA component is the linear combination of latest residuals with φi∈[1..q]
the weight of each error correction.

The combination of AR(p) and MA(q) generates the ARMA(p,q) model,
which is the sum of the two models mentioned. The most important weakness
of these models is the constraint to have stationary time series, which means
that there are features that do not depend on the time at which the series is
observed [10]. This, in real life challenges are not true in almost every case: so
we need an operation to stazionarize the series. With the ARIMA(p,d,q)
an operator called back − shift is introduced [6]:

∆yt = yt−1 (2.11)

(1−∆)yt = yt − yt−1 (2.12)

∆dyt = ∆d−1yt−1 = yt−d (2.13)

With the introduction of this operator, we can handle non-stationary time
series, with d being a variable that defines the number of differencing per-
formed on datapoints. Still, we have the problem that ARIMA models are
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not able to handle seasonal data as it does not model this component in its
mathematical formulation.

For this reason, the ARIMA model was generalized by Box and Jenk-
ins in 1970 with the introduction of SARIMA(p, d, q)(P,D,Q)s in order to
manage the seasonality components of time series, by introducing another
differentiation adding other parameters:

φP (∆s)(1−∆s)Dzt = εtφq(∆
s) (2.14)

• φP (∆s) is the Seasonal AR.

• (1−∆s)Dzt is the Seasonal Differencing.

• φq(∆
s) is the Seasonal MA

• εt is the noise.

with the SARIMA model, we can handle the non-stationary time series and
the seasonal components.
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Chapter 3

Problem Setting

In this chapter, we will briefly talk about the reasons that convinced us to
investigate the use and the importance of time series in the world of Deep
Learning.
Furthermore, we will explain the different application areas this type of so-
lution can be applied; finally, we will discuss the use case that the solution
presented in this work tries to solve.

3.1 The importance of Time-Series Forecast-

ing

When we talk about Artificial Intelligence, in the collective imaginary, we
often think about the ”prediction of the future”: this is probably a result
that we could achieve in the future. Today, Time Series Forecasting are the
closest models to this ideal.
These solutions’ objective is to predict a datum, such as a value or a class,
knowing the data’s history in the considered field.

To better understand these models’ functioning and how they evolved until
today, we have to define what a time series is: a time series is a sequence of
data taken at a given time interval. By analyzing these data, it is possible
to obtain various information, such as trends, cyclicity, seasonality, and ir-
regularities. All this information allows us to understand and model which
factors can influence the variation of the value considered and predict future
points.

In literature, this type of information is called pattern. In order to improve
the understanding of the differences between them, we can define different
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type of patterns (3.1):

Figure 3.1: Derivable patterns from Time Series.

• Trends: a trend is defined as an increase or decrease in a value over
a given period of time. This variation can occur in a deterministic
way; therefore, it has a reasonable cause and can be considered useful
information, or stochastic, so we cannot consider it for our models.

• Seasonal: often, seasonality is a fixed and know type of frequency. For
some types of data, such as the one considered in this thesis, there is the
possibility that it influences the value trend. Therefore it is appropriate
to consider the seasonality data: in these cases, we talk about seasonal
patterns, which are sometimes also called periodic time series.

• Cyclic: a cyclic pattern exists when data exhibit rises and falls that
are not of a fixed period.

The single measure can be defined as follows:

y(t) = T (t) + S(t) + C(t) + ε(t) (3.1)

y(t) = T (t) ∗ S(t) ∗ C(t) ∗ ε(t) (3.2)

Where y(t) represents the measure at time step t, T (t) is the overall trend
of the series, S(t) the seasonal aspect of the time series, C(t) describes the
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cyclic component of the observation and finally, ε(t) represents the irregular
pattern within the series, called residuals. The two equations describe both
the additive and multiplicative decomposition.
The first is more appropriate if the magnitude of the seasonal fluctuations
does not vary with the time series level; the second one instead has to be
used when the variation appears to be proportional to the level of time series.
With the economic time series, multiplicative decompositions are the best.

The analysis of a time series could be done differently for different objec-
tives; this is why time series models occur in many fields and got a wide
application in several areas, such as economic forecasting, population stud-
ies, biomedical science, quality control, and many more.

3.2 Price Forecasting

Today, the price prediction field is one of the most important in AI, both
from a theoretical and a practical point of view. Indeed, the interest of eq-
uity market investors towards this type of solutions has increased more and
more in recent years, as not only prediction models are capable of storing
and processing more data that a person can manage, but also a lot of time
and money is already spent in order to collect these data; an AI-based tool
can be able to find correlations otherwise impossible to see in the same time
frame.
On the other hand, from the researcher’s point of view, this field offers many
challenges that improve the quality of predictions more and more. This is
because, in the financial time series prediction process, the stock market is
essentially dynamic, nonlinear, complicated, nonparametric, and chaotic [1].
Besides, there are market-affecting factors that are difficult to both track
and predict, such as political events, general economic situation, rising in-
terest rates, investors speculations, institutional investors choices, and even
psychological factors of investors.
The sum of this and the investments in the area mean that stock prediction
is and will be a field that, in the future, will have greater importance.

3.3 Problem Formulation

The use case that the solution presented in this thesis tries to solve is the
automatic management of the energy present in a grid.
In fact, in the structure of the case considered (3.2), there were several ele-
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ments:

Figure 3.2: Households grid structure.

• Household: house equipped with solar panels.

• Energy Provider: energy provider company.

• Energy Grid: energy collection and distribution grid. The most im-
portant mechanism to underline here is that the grid is not able to store
energy.

• DLT Energy Marketplace: element whose function is to manage the
transaction of energy. Here, the energy provider can buy surplus, and
the grid can buy energy when in deficit. This element is not directly
connected to the Energy Grid.

• AI Enabled Trader: intelligent element capable of predicting the
price trend energy from the data for the next two days, and between
the predicted values, prepare purchase/sale for the DLT energy mar-
ketplace.

The procedure that follows the system, of which we can find a graphic
example in figure 3.3, is the following:

1. The data present in the DLT Energy Marketplace are extracted and
contain the requests for the sale of surplus or energy requests from
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households. In this case, we have two types of agreements: the Energy
Provider buys surplus, and the households buy energy from Energy
Provider.

2. In the External Data source (for more detail about all the data, see 5),
the information referring to the historical weather data and the future
climate forecast are downloaded.

3. The data is then pre-processed to be inserted into the network. Here, in
addition to aligning all the data according to the time span considered,
the normalization, the transformation into tensors, and the different
sources’ concatenation is also performed.

4. Once the data is ready, it is fed into the network, and predictions for
the next two days are calculated (the detailed structure explained in
4).

5. Based on the predicted values, one or more recommendations are made.
They can be of two types: when to buy or when to sell.

Figure 3.3: Learning from DLT to recommend energy stocks.

A system with this type of automation has several advantages. First
of all, remembering that the energy grid cannot store energy, selling the
surpluses reduces waste. Furthermore, there is also an advantage in monetary
terms: both the sale and the purchase will be made when the maximum and
minimum peak of the price curve, respectively.
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Chapter 4

Solution Description

In this chapter, the core architectures and technologies that have been used
for the development of the solution presented in this work are reported.

4.1 Baselines

4.1.1 Facebook Prophet

Facebook Prophet [12] is a procedure for forecasting time series data devel-
oped and open-sourced by Facebook in 2017. It is developed both in Python
and R (a ”data science” programming language) and has the advantage of
proposing a series of parameters that are easy to understand and use to im-
prove results: for this reason, even people without in-depth knowledge of the
models used for the analysis of time series have the opportunity to approach
this area of application. In addition, this model is robust when there are
missing data or outliers.

The operating principle of this model is based on additive regression models,
in which seasonal components play an essential role. The equation that puts
them together is the following:

y(t) = g(t) + s(t) + h(t) + εt (4.1)

• y(t): is the forecast.

• g(t): represents the trend models, which are non-periodic changes. In
order to provide more flexibility, Prophet relies on Fourier Series to
model the seasonality effects.

• s(t): these are the periodic changes, such as week, months, and years.
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• h(t): defines the effects of holidays with irregular schedules, and it is
a user-provided list because holidays and events are an essential fac-
tor that has to be taken into consideration depending on the place
considered.

• εt: any changes which are not detected by the models represent the
error term.

Even if the models can be written or extended (according to specific
requirements), Facebook Prophet standardly provides two models. The first
one is the Logistic Growth Model, which is particularly effective with non-
linear data and it is described by the following equation:

g(t) =
C

1 + e−k(t−m)
(4.2)

Where C is the carry capacity, k is the growth rate and m is an offset
parameter.

The second model, used by default by Facebook Prophet, is the Piece-Wise
Linear Model, best option to choose when data shows linear properties and
fitted by the following statistical equations:

y =

{
β0 + β1x if x <= c

β0 − β2c+ (β1 + β2)x if x > c
(4.3)

We have decided to use Facebook Prophet as one of the baselines because
it fits our problem particularly: in fact, market variations often follow the
seasonal trend, and it is easy to find other cyclic patterns.

4.1.2 XGBoost

XGBoost, the acronym for eXtreme Gradient Boosting, is a widely used
supervised learning algorithm in machine learning. It was developed as a
research project at the University of Washington in 2014 and presented at
the SIGKDD (Special Interest Group on Knowledge Discovery and Data
https://www.kdd.org/) conference by Tianqi Chen and Carlos Guestrin.
This algorithm has gained popularity not only because it allows us to obtain
excellent results and performances but also because its implementation brings
with it several advantages, such as:

• Portability: it runs smoothly on the main operating systems, such as
Windows, Linux, and OS X.
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• Languages: it supports the main programming languages.

• Applications: it can be used to solve a wide range of problems, such as
regression, classification, and forecasting problems.

• Cloud: it supports AWS clusters, Azure, and similar ecosystems.

XGBoost is a particular implementation of the Gradient Boosting model [7]
with the peculiarity of the focus on the speed and the algorithm efficiency; in
fact, all the operations can be parallelized, and this is the main reason why
this library is one of the most used in the context of Data Science challenges.

The heart of the operation of this algorithm is the decision tree model. It
has a tree structure, where each of the leaves corresponds to a class, and each
node represents an attribute. On the other hand, the concept of boosting
refers to the mechanism of converting weak models to strong ones through
its combination and doing the training sequentially so that in each iteration
model tries to correct the error done in the previous iteration. Finally, Gradi-
ent Boosting is a technique wherein each of the interactions the new predictor
is constructed to fit on the pseudo-residuals of the previous predictor.
The schema of the solution can be find on 4.1. Here, we can find this opera-
tions:

1. The Mean of target values is calculated from the initial predictions and
the corresponding initial residual errors: po(x) = Mean(value) and
predictedvalue = value− po(x).

2. Each model M is trained with independent variables and residual errors
as the data to get the predictions.

3. The additive predictions and the residual errors are calculated with
some learning rate from the previous output predictions obtained from
the model.

4. Computation of the prediction value at i-th iteration: pi(x)

5. Additive prediction is done by the sum of the previous predictions and
a parameter α called Learning Rate: Fi = ho(x) +

∑
i hi(x)

6. The final prediction is the additive sum of all previous predictions made
by the models.
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Figure 4.1: Flowchart for the Boosting framework.

4.2 Long-Short Term Memory

Long-Short Term Memory (LSTM) networks are a special architecture of Re-
current Neural Networks (RNN) designed by Hochreiter and Schmidhuber in
1997 and set accuracy records in multiple applications domains [8]. LSTMs
were specifically designed to overcome the long-term dependency problem
faced by recurrent neural networks RNNs due to the vanishing gradient prob-
lem. This problem is often encountered when training neural networks where
the weights are updated by a value that is proportional to the partial deriva-
tive of the error function with respect to the current weight in each iteration
of the training; in some cases, this value (called gradient) can result in a van-
ishingly small amount, and in the worst case it can stop the neural network
from further training.
The LSTM structure implements feedback connections in addition to the
feedforward ones of the classic RNN; in this way, each of the data present in
the sequence is not treated independently concerning the other points, thus
allowing to predict the following data while maintaining useful information
from the previous ones. This mechanism is why LSTMs are mainly used to
analyze any data sequence, be it time-series, text, or speech.

Let us now go into the details of its operation: the main heart of an LSTM
cell (Figure 4.2) is composed of the state and the gates: the state is the
element that allows preserving the information along with the different it-

30



erations of the sequence processing, effectively acting as a ”memory ”of the
network. On the other hand, Gates serve to discriminate which information
must be saved or deleted from the state. The gates are based on the Sigmoid
activation function (in the figure, with letter S), which allows you to nor-
malize the values between 0 and 1: if the information is forgotten, it will be
multiplied by 0. The other activation function present in an LSTM cell is the
hyperbolic tangent (tanh, in the figure with letter T): in fact, the values that
are introduced into the network are transformed by mathematical operations
many times; in order to prevent the explosion of the magnitude of the data,
we use the tanh function to keep the values between -1 and +1. The graphs
of both these functions can be seen in Figure 4.3.

Figure 4.2: Overview of the LSTM cell structure.

Figure 4.3: Hyperbolic tangent and Sigmoid activation functions graphs.

4.2.1 Forget Gate

Once the two input parameters, namely our input at time t and our output
at time t − 1, have entered the network, the first element they encounter
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is the forget layer ref figure: 4.4 . In this phase, the decision taken by
the network is to ”remember” the important elements and ”forget” those
that are not: this operation is done through a Sigmoid activation function,
whose outputs are values between 0, which means ”forget this element” and
1, which instead means ”keep this element”: these values are stored in a
variable called ft (Figure 4.4):

ft = σ(Wf · [ht−1, xt] + bf ) (4.4)

Figure 4.4: Forget Gate.

4.2.2 Input Gate

The input data, which we underline to be the same processed by the Forget
Gate, are passed in input to two other elements, whose interaction we need
to calculate which new information must be saved in the state of the cell
(Figure 4.5):

1. New Memory Vector: the purpose of this element, whose equation is
the following:

C̃t = tanh(WC · [ht−1, xt] + bC) (4.5)

is to generate the vector for updating the state of the cell, combining the
previous state and the current inputs: it is done through an activation
function tanh (whose values range from -1 to +1), as possible negative
values can reduce the impact of specific components on the cell state

2. Input Gate: since the values processed by the New Memory Vector
do not check the actual importance of the data, we need an element
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that does this work: it is the input gate, which is a Sigmoid activated
network that acts as a filter, whose operating principle is the same seen
and described in the Forget Gate:

it = σ(Wi · [ht−1, xt] + bi) (4.6)

3. Ensembling: the outputs of the two blocks described so far are put
together through a pointwise multiplication. Therefore, the values de-
cided by the New Memory Network are regulated by those of the Input
Gate. This operation gives us the values that allow the updating of our
long-term memory (cell state).

Figure 4.5: Input Gate.

4.2.3 Cell State Update

The information we have calculated up to this point is enough to perform
the status update operation. This operation brings together the results of
the previous ones, so we have that the new state is given by the sum of
that of the previous iteration, of which we have forgotten the unnecessary
information, and the important elements calculated from the inputs of the
current iteration (Figure 4.6).

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.7)
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Figure 4.6: Update of the Cell State.

4.2.4 Output Gate

The final operation is to decide what the output of the current iteration will
be. To do this, first of all we have the Output gate, which works like the
input gate and the forget gate, and which serves to filter the input data, and
which therefore is always a Sigmoid. However, this filter is now applied to
the new state of the cell to make sure that only the necessary information is
sent to the output.

ot = σ(Wo · [ht−1, xt] + bo) (4.8)

However, before applying the filter, we make sure that the data is normalized
between -1 and +1 via an Hyperbolic Tangent activated network. The mul-
tiplication of these two results (ot and tanh(Ct)) results in the new hidden
state.

ht = ot ∗ tanh(Ct) (4.9)

Figure 4.7: Output Gate.
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4.3 StackedLSTM

The solution we have explored and proposed does not modify the basic struc-
ture of the LSTM explained in the previous section but modifies how the data
is inserted into the cell. The phenomenon that we have noticed is that by
inserting a huge set of data into the network, the importance of the infor-
mation relating to the price was lost as a whole. This behavior caused very
wrong predictions.

To overcome this, we decided to manipulate the external data we wanted
to use for price prediction. First, we took the climate data and brought it
into a time interval comparable to what we had for price and energy con-
sumption: in this case, the information on solar exposure and rainfall was
given to us on a daily basis, which introduced some noise into the data and
which can certainly be a point that, by being able to collect data every 30
minutes, can improve the accuracy of predictions.

In any case, the second operation carried out on the data is on those of
energy consumption: from the dataset in our possession, every 30 minutes,
we had the information of the energy produced or consumed in excess, called
respectively surplus and deficit. Since this is an exclusive type of data, i.e.,
if there is a surplus, there is no deficit, and vice versa, what we did was
select only the useful information. Once the information was collected, we
normalized it according to the following formula:

Xstandardized = (X −Xmin)/(Xmax −Xmin) (4.10)

In this way, all the input data are brought in a value range between 0
and 1, without modifying its distribution. It is important to remember that
the use of a MinMaxScaler, like the one done for external data and price
values, allows us to normalize each feature’s data independently. Further-
more, since the transformation is done using the maximum and minimum of
the distribution, particular attention must be paid to the outliers, which can
introduce unpleasant errors: in this case, it is advisable to clean the data, or
use tools such as the RobustScaler, which scales the values using statistical
operations that are robust to outliers, such as not using the average value
but the so-called quantile range (IQR = the range between the 1st quartile
and the 3rd quartile).
The rationale behind standardization/normalization operations is that hav-
ing many features, usually measured with different scales of values, cannot
contribute to the model building, in the same way, creating potential bias.

35



Furthermore, during the backpropagation operation, having scaled data al-
lows to speed up and stabilize the calculations compared to using non-scaled
ones.
All the values thus obtained are then concatenated, and we called them
externaldata. The procedure is schematized in Figure 4.8. The last thing to
do is pass this data into a Feedforward layer: this is done because a Feedfor-
ward layer has the goal to approximate some function. In our case, we gave
as input all of our data, with an input size of 310, and output a vector of
size 10, which keep being representative of all the information.

Figure 4.8: Concatenation and normalization process.

The tensor containing the external data is inserted in the forward phase
of the LSTM after being concatenated with the hidden values tensor gener-
ated by the LSTM cell. This tensor has a size of 100 (a value that we found
to be an excellent trade-off between results and performance) starting from
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input price. In this way, the price information is preserved without giving
up the important information given by external data.

However, having a total dimension tensor of 110, we need to reduce the
dimensionality as we had previously done with the external data. This is
done using two Feedforward layers to obtain a single output value, repre-
senting our predicted price. We have inserted two layers in this case because
passing from a dimension 100 to 1 in a single Feedforward would proba-
bly have caused errors due to the impossibility of approximating a vector of
more than one hundred elements in a single value: therefore, we have the first
Feedforward that transforms the vector from 100 to 10, and then the second
that further transforms it from 10 to 1. We can see the complete structure
designed in the Figure 4.9.

Figure 4.9: Stacked LSTM structure schema.
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4.4 Trading System

To complete the solution to the problem presented, we implemented a system
of analysis and selection of time windows to recommend purchasing or sell-
ing energy stocks (Figure ). We consider the data generated by the Energy
Price Predictor: among them, we can find maximum and minimum peaks,
which correspond to the main points where sales or purchases can take place,
respectively. However, we must consider a significant factor: which of these
periods to select? We have said that energy cannot be stored in the grid for
very long and that more supply is needed when the grid is empty. For this,
the selection of the period must also take into account the data relating to
energy consumption.
In our case, what we did was take the data relating to all the households
and, for every 30 minutes, calculate the total energy value present in the
grid. Therefore, considering this value and the possible transaction periods,
we choose the most suitable one.

Finally, the predictor and this trading system were packaged together in
order to be called through the REST API:

• predict: an object is instantiated that represents our Energy Price
Predictor which, starting from the selected period, loads the reference
trained model and predicts the energy price for the next two days.

• bestBuyStock: select the best periods to make a possible purchase from
the results mentioned above.

• bestSellStock: select the best periods to make a possible sell from the
results mentioned earlier.
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Figure 4.10: Example of possible choices for the purchase or sale of energy
stocks.
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Chapter 5

Dataset

In this chapter, we will describe the datasets used in detail, along with some
statistics that allowed us to fully understand the data. For the work described
in this thesis, we used multiple datasets, which includes different types of data
and information:

• A dataset containing the historical series of the price of energy.

• A dataset containing weather information.

• A dataset containing the information of the energy produced and stored
by different households in Australia.

5.1 Energy Price Data

This dataset, which can be viewed and downloaded via the address http:

//www.nemweb.com.au/#mms-data-model, collects the history of electricity
prices. The range of period that has been analyzed goes from 01/01/2010 to
31/12/2013.

The downloaded dataset had a lot of information, such as looking at the
price in different currencies and different geographic areas. Still, many of
them have not been used, which can be a useful source of data for this
work’s future extensions.
The data relating exclusively to the NSW1 area has been considered by us,
which corresponds to the southeast of Australia, where we have the house-
holds’ data. Furthermore, we also took the price of energy in dollars. All
these information are listed in table 5.1.
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Finally, there is also a small consideration to make: what we are discussing
in this thesis is the price of solar energy; this value depends on many factors,
some of which we have taken into consideration because they directly affect
the price, such as the weather data. There are many other factors that influ-
ence its trend indirectly, such as the price of oil, a significant raw material in
the modern market; a possible addition that can be made to this work is to
feed the network with as much information as possible, having an awareness
of selecting the most correlated one to avoid that the network does not know
how to recognize the essential elements useful at the moment of prediction.

DVD TRAD-
INGPRICE

SETTLEMENT DATE REGION RRP

PRICE 2010/07/01 00:30:00 NSW1 29.36
PRICE 2010/07/01 01:00:00 NSW1 29.26
PRICE 2010/07/01 01:30:00 NSW1 32.62
PRICE 2010/07/01 02:00:00 NSW1 31.89
PRICE 2010/07/01 02:30:00 NSW1 28.88

Table 5.1: Example of the Energy Price dataset.

5.2 Weather Data

This dataset, which can be found at the following address http://www.bom.
gov.au/climate/data/, contains data relating to the weather conditions in
the South West of Australia.

The data was loaded from two .csv files, containing information about
sunny days and the other containing information relating to rainy days. In
both of them, the time span considered is the day: this has created some
discrepancy on the time base considered for the price of energy and the be-
havior, which is per half an hour. A more granular dataset in line with the
quantization of the other evaluated data could increase the efficiency of the
models that have been described in chapter 4.

Climate data are vital in this context. The energy produced by the houses
considered derives from photovoltaic plants, which make solar exposure the
necessary condition to produce more energy.
This premise leads to the following aspect: on a rainy day, since the energy
produced is naturally deficient, the energy consumption will likely be higher
than the one produced. Consequently, it may be necessary to purchase more.
On the contrary, on a very sunny day, we can have a surplus of energy, and
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in this case, we can sell this surplus. These operations have an impact, albeit
minimal, on the variation of the energy price.

In table 5.2 and 5.2, we have a small extract of the data contained in the
solar exposure and rainfall datasets. The data are divided as follows:

• Product Code: it is a datum inserted at the moment of data acqui-
sition, irrelevant for the work presented.

• Bureau of Meteorology Station Number: although it is a data
not considered by the architectures presented in this thesis, it indicates
the data acquisition station, which therefore was geographically located
in the area considered, that is the southeast of Australia.

• Year: indicates the year

• Month: indicates the month.

• Day: indicates the day.

• Daily Global Solar Exposure (MJ/m*m): the solar exposure val-
ues of the considered station.

Product Code Bureau of
Meteorol-
ogy Station
Number

Year Month Day Daily Global
Solar Ex-
posure
(MJ/m*m)

IDCJAC0016 66037 2010 1 1 141
IDCJAC0016 66037 2010 1 2 158
IDCJAC0016 66037 2010 1 3 81
IDCJAC0016 66037 2010 1 4 143
IDCJAC0016 66037 2010 1 5 291

Table 5.2: Example of the Solar Exposure dataset.

5.3 Household Behavior Data

Through this dataset (available at the following address https://www.ausgrid.
com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data#

.Vl-RUhNCp0s), we have access to information concerning the behavior of a
group of 300 randomly selected households that have rooftop solar systems
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Product
Code

Bureau of
Meteorol-
ogy Station
Number

Year Month Day Rainfall
Amount
(mm)

Period Quality

IDCJAC0016 66037 2010 1 1 0.0 1 Y
IDCJAC0016 66037 2010 1 2 0.0 1 Y
IDCJAC0016 66037 2010 1 3 11.6 1 Y
IDCJAC0016 66037 2010 1 4 1.2 1 Y
IDCJAC0016 66037 2010 1 5 0.0 1 Y

Table 5.3: Example of the Rainfall dataset.

and a gross metered solar system installed. So, we have, for every 30 min-
utes, a value that indicates whether we are in surplus, which means the use
of energy is lower than the produced one, or in deficit. Therefore it means
that the value of energy production is lower than the used one.

We have two files: surplus.csv and deficit.csv, which already indicates the
type of data we are evaluating. In the table 5.3 and 5.3 we have a small
excerpt of the elements considered. In particular:

• Household: indicates the house taken into consideration, of a total of
300.

• Datetime: indicates, in Y Y Y Y −MM −DDHH : MM : SS format,
the date to which the data refers.

• Net:

• Value: indicates numerical value of the surplus/deficit.

Obviously, for the same DateTime, we have only one data in one of the
two files.

5.4 Data Statistics

All the analyzed data were not chosen by us after a careful review of the
literature, but followed a process similar to notarization so that the data
could not be modified. For this reason, during a first preliminary analysis,
we noticed no strange behaviors such as lack of values (encoded in pandas
with NaN Not a Number). However, there is the presence of some outliers,
which are points that have a value that is not in line with the distribution
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Household Datetime Net Value
h1 2010-07-01

00:30:00
-4.072 -0.11955392

h216 2010-07-01
00:30:00

-0.13 -0.0038168

h215 2010-07-01
00:30:00

-4.378 -0.128538

h214 2010-07-01
00:30:00

-0.126 -0.00369936

Table 5.4: Example of the deficit dataset.

Household Datetime Net Value
h146 2010-07-01

01:00:00
0.011999 0.0003511

h146 2010-07-01
01:30:00

0.038 0.001239559

h146 2010-07-01
02:00:00

0.076 0.00242364

h146 2010-07-01
02:30:00

0.158 0.00456304

Table 5.5: Example of the surplus dataset.

being analyzed. As we can see from Figure 5.1, where the outliers have
already been eliminated, the prices that rise above the value 200 and below
0 are 138 on the total number of 52608 datapoints, corresponding to 0.2%.

Furthermore, from the data relating to the weather, we note how the two
distributions of rainfall and solar exposure are complementary (Figures 5.2)
while the remaining information are all related to better specify the date con-
sidered (and they are hour, dayofweek, quarter, month, year, dayofyear,
dayofmonth, weekofyear)

Finally, we have the data relating to energy consumption, which are ex-
clusive, so they will be shown in a single graph where they are combined to
calculate the total contribution. These data can be viewed in the Figure 5.3.
We can observe that almost all of the data shows deficits, and this is due to
the fact that the energy produced by the houses is not enough for the sus-
tenance of the group of households considered. With more energy produced,
managing the grid becomes more challenging.
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Figure 5.1: Distribution of price data.
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Figure 5.2: Distribution Daily global solar exposure (MJ/m*m) and Rainfall
amount (millimetres).

Figure 5.3: Distribution of energy consumption.
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Chapter 6

Experimental Setup

In this Section, we will discuss the tools we used to implement the solution
designed in section 4, together with the reasons for which we chose them, as
well as the methods used to evaluate the results we obtained.

6.1 Framework and libraries

The programming language we chose for our experiments is Python. The
reasons for this choice are several: first of all, it provides excellent libraries
for big data management and analysis, such as Pandas (Subsection 6.1.1).
In addition, Python offers a lot of advanced frameworks for Deep Learning,
such as PyTorch or TensorFlow (Subsection 6.1.2). Finally, it is an easily
approachable language thanks to its simplicity regarding the syntax and the
management of the various entities, so this language is gaining more and
more popularity. However, compared to other languages, it certainly does
not shine for its optimization of resources management.

6.1.1 Pandas

We made extensive use of the Pandas library, an open-source library released
in 2009 and based on data analysis for the development of our solution. We
used Pandas to import our datasets into structures called DataFrames: they
wrap several file formats, such as CSV, JSON, and Microsoft Excel, in a
row/column table, allowing us to apply a large number of useful functions,
such as sorting data with respect to values of a specific column, the appli-
cation of lambda functions by single row or operations of grouping data by
columns.

In addition to this, Pandas is incredibly easy to use and implement a
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very useful optimization in data management: the modification of the data is
done by parallelizing the operations, which excludes the need to sequentially
iterate all the data and therefore makes the computations decidedly faster.

All these advantages make this library excellent for time series manage-
ment, which is the subject of this work, as well as being the main reason why
we opted for its use.

6.1.2 PyTorch

The advent of Deep Learning led to the need to have frameworks that can
support creating the architectures necessary for both applicative and research
fields. For this reason, tech giants like Facebook and Google released several
frameworks making it easier to learn, build, and train different types of neu-
ral networks.

TensorFlow is an open-source framework released by Google in 2015 (https:
//www.tensorflow.org/) widely used by companies and startups and con-
sists of two main blocks:

1. A library that has the purpose of defining computational graphs, to-
gether with mechanisms that allow the execution on different hardware
configurations.

2. A computational graph.

A computational graph is an abstract way to describe the flow of execution of
a program through a directional graph. Graphs, born from graph theory [5],
are structures composed of two elements: the nodes, which represent various
entities, and the edges, which have the function of relating two nodes; the
edges can be with or without verse. In a computational graph, nodes are
variables or operations that have to be performed. At the same time, edges
define the inputs of the nodes, which can be either a variable or the result of
another node. When we run code in TensorFlow, the computation graph is
defined statically [9]. For example, let’s consider these simple operations:

param1 = 5
param2 = 4

product = param1 ∗ param2
sum = param1 + param2
r e s u l t = product / sum
print ( r e s u l t )
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Figure 6.1: Result of the static generation of a computational graph. Here, we
can observe what defines nodes and edges and how the workflow is structured.

Then, the statically generated computational graph will be as follows:
The advantage of this mechanism is parallelism, which makes training

faster and more efficient. On the other hand, to use parallelization, we have
to code and fine-tune every operation manually. Moreover, everything re-
lated to the neural network must be declared a priori, and TensorFlow does
not support the debugging with the extremely powerful Python tools and
does not allow to add modularity through modules, making the creation of
a new project slow and repetitive.

PyTorch is one of the latest deep learning frameworks, developed by Facebook
and open-sourced in 2017 (https://pytorch.org/). Similar to TensorFlow,
PyTorch is composed of two main blocks:

• Dynamic building of computational graphs.

• Autograds.

The autograd package is the main core of all neural networks written with
PyTorch: it provides automatic differentiation for all Tensors operations.
These structures are a generalization of those usually defined in linear al-
gebra. torch.Tensor is the central class of the autograd package. In this
way, the computational graph is generated dynamically during execution;
that is, the instantiation of the graph is done whenever the forward method
is called, making the application much more scalable and research-oriented.
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Moreover, the implementation of PyTorch is very connected with the Python
language, sharing the same advantages described at the beginning of this Sec-
tion. Finally, it also supports modules and the use of multiple CPUs and
GPUs, along with good documentation and plenty of existing projects made
with the support of PyTorch. These reasons led us to decide to adopt this
as the framework for the development of our solution.

6.2 Google Colaboratory

Given the nature and the size of the dataset, the computing resources we
needed were not particularly expensive. Since we did not have to rely on
extremely powerful calculators, we decided to take advantage of a free to
use product released by Google called Colaboratory. Colab is based on the
open-source project Jupyter; the code is executed on a remote virtual ma-
chine connected with your account. It can be modified directly online and
subsequently downloaded if you want to have a local copy. In this regard,
both GitHub and Google Drive are integrated into Colab, making versioning
operations even more straightforward and effective. For what concerns the
hardware level, Colab provides limited resources to allow the free use for all
people; it uses different GPUs: Nvidia K80s, T4s, P4s, and P100s. Using the
resources provided by this tool, we were able to carry out all the experiments
without incurring any problems and with good execution times. For these
reasons, I thank Google since with this product, they managed to bring more
and more people close to the world of Machine and Deep Learning and make
this process more very simple thanks to its ease of use.

6.3 Flask

To provide our tool the opportunity to communicate with the outside world,
we decided to use Flask. It is a micro-framework (which means it is com-
posed of a single core that can be extended) for web development in Python;
extensions can add functionalities to an application as if they were imple-
mented by Flask, which in his core still offers several useful tools such as the
possibility of making RESTful requests, server and debugger for development
and excellent documentation.

We opted for Flask because we needed a light and secure framework for
writing API calls to pass the data predicted to the visualization tool created
by the Accenture Labs colleagues.
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6.4 Evaluation Metrics

In the world of Machine and Deep Learning, the choice of the evaluation
metric is fundamental: it allows you to influence how the performance of a
model is measured and compared; moreover, they also influence the impor-
tance that you choose to give to different characteristics of the model on the
results.

6.4.1 Mean Squared Error

The Mean Squared Error (shortened MSE) is calculated using the following
formula:

MSE =

∑n
i=1(yi − ŷi)2

n
(6.1)

Therefore, the sum of the squares of the prediction errors, which are
equivalent to the difference between the real values and the predicted one, is
divided by the number of predicted data. Using a very large scale of values,
it is possible to incur very high MSE values, so the variant Root Mean Square
Error is often used, which inserts the root on the MSE.

For The work presented in this thesis, we did not have problems like the
one mentioned above (for detailed information about the data used, see the
section 5), so we chose to use the classic MSE.

6.4.2 Mean Absolute Error

The Mean Absolute Error (shortened MAE) is calculated using the following
formula:

MAE =

∑n
i=1 |yi − ŷi|

n
(6.2)

Again, MAE is a widely used function over regression problems, and it
is calculated as the average measure of the errors (which is the difference
between the predicted values and the real ones), regardless of its direction.

The main difference between the two loss functions presented is that in the
MSE, having the square of the difference, we have that the higher the error,
the higher the MSE value. Therefore, we tell our network that we do not
admit values that are very different from the real ones.
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6.4.3 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is defined by the formula:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (6.3)

It is calculated as the average of the absolute percentage errors of forecast
[11], so the error is defined as the difference between the observed value and
the forecasted one; the errors are then summed to compute MAPE.
This measure is easy to understand because it provides errors in terms of per-
centage and is widely used in forecasting problems. The smaller the MAPE,
the better the forecast.
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Chapter 7

Results

In this chapter the results of the all the solution we described so far are
presented, along with our comments on them.

7.1 Facebook Prophet

The results obtained by the Facebook Prophet implementation are shown in
Table 7.1. way: all the data, except for the last 30 days, were used for the
training phase of the models. The remaining data were then used for price
prediction and assessment of the quality of the predictions. From what we
see in the Figure 7.2, we can understand how the quality of the predictions
is not excellent, despite the model having a loss with a decreasing trend, an
important sign that the model is learning. Although it is possible to carry
out further parameter tuning operations or even implement additions such
as in the management of timestamps (since Facebook Prophet is unable to
manage them and a conversion to a DATE type format is needed), the quality
of the observed results may certainly be due to the few data considered.
Specifically, considering the size of our dataset, the data we handled turned
out to be an adequate number regarding the other solutions we tested, but
what distinguishes Facebook Prophet is its strong orientation to model data
that are very season-dependent. and cyclicity, information that is more easily
obtained by having information available with a broader timespan (of 12
hours or even of the day) but with a much wider time window. As we also
see in the temporal components extracted in the Figure 7.1, we can see how
there is no clear definition of some types of components and that with more
data, it could have been more defined
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Figure 7.1: Facebook Prophet components.

Figure 7.2: Real values compared with Facebook Prophet predictions.
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MSE MAE MAPE

231.559 11.187 14.924

Table 7.1: Facebook Prophet Results.

7.2 XGBoost

The results obtained by the Extreme Gradient Boosting implementation are
shown in Table 7.2. XGBoost also provides us with important information
on the features present in the dataset and its importance in price prediction:
we can see the scores in the Figure 7.3. From it, we can make some important
deductions, such as the poor score for the month, quarter, and year features
is probably caused because our dataset is very granular (remember that the
price information is recorded with 30 minutes) and so, the importance of
information that is more dilated over time is lost. In confirmation of this
assumption, we see how the week and day acquire more importance. Finally,
we also have a high score on solar exposure: meanwhile, the information
on rain is complementary, so the two features could also be combined by
admitting to considering negative values for rain. Furthermore, considering
that what we are analyzing is the price of electricity produced by households
through solar panels, we can understand why solar exposure is important.
Here too, as for the Facebook Prophet model, the predicted values compared
with the real ones and visible in the Figure 7.4, we do not have very high
precision. However, although they have a very large optimization margin,
we consider that both models were used without investing too much time in
tuning but to be used as a baseline for the other solutions presented.

Figure 7.3: XGBoost features importance.
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Figure 7.4: Real values compared with XGBoost predictions.

MSE MAE MAPE

143.939 7.05 11.272

Table 7.2: XGBoost Results.

7.3 Vanilla LSTM

The results obtained by the vanilla LSTM implementation are shown in Table
7.3. The implementation of the vanilla version of LSTM needs a necessary
premise. The results shown were generated using only the price value data.
The rationale behind this choice is that entering external data as input al-
lowed the loss to have a decreasing trend, but the network loses information
on the data to predict. What happened was to have enormously high MSE
and MAE values. Furthermore, the network training was carried out for 1000
epochs, a fairly high number but which in terms of performance did not neg-
atively impact the data, albeit numerous (to be precise, the number of total
data points is 52608 ), were just numbers. As we can see from the Figure 7.5,
the results of the vanilla version of LSTM are appreciable, as also indicated
in the table 7.3. This behavior is certainly due to the greater complexity of
the neural structure.

MSE MAE MAPE

69.754 4.446 6.073

Table 7.3: Vanilla LSTM Results.
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Figure 7.5: Real values compared with vanilla LSTM predictions.

MSE MAE MAPE

55.642 4.361 3.764

Table 7.4: Stacked LSTM Results.

7.4 Stacked LSTM

The last results obtained by the Stacked LSTM implementation are shown in
Table 7.4. As we will see in the section 7.5, the version we implemented ob-
tained the best results among the various implementations. Both the vanilla
version of LSTM and the Stacked LSTM use the sliding window mode intro-
duced in the section 2.1.1 and trained for 1000 epochs. The sliding window’s
width has been set to 4, which we have empirically found to be a good com-
promise between results produced and processing time. Furthermore, we set
100 as the hidden layer dimension, to which two feedforward layers are then
applied to return to the unit size. Furthermore, as we see in the figure 7.6,
we trained the models on a variable dimension of training data, taking, for
each figure, six months of extra points and making the following month’s pre-
diction. We notice that as the number of data increases, the quality of the
prediction and the exact reconstruction of the price trend increases. Using
only six months as input, we have completely wrong values as the network
is not yet ready to be able to recognize patterns and trends from the data.
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Figure 7.6: Some grouped images
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Setup MSE MAE MAPE

FB Prophet 231.559 11.187 14.924
XGBoost 143.939 7.05 11.272
LSTM 69.754 4.446 6.073
Stacked LSTM 55.642 4.361 3.764

Table 7.5: Overall Results.

7.5 Solutions breakdown

From the results listed so far, we can draw some conclusions. The first is
that the Deep Learning-based approach has generally achieved better results:
this is a trend recognized in the literature and has been further verified in
this case. Machine Learning algorithms scale badly with the number of data,
that is, after a certain number of data, which depends on the algorithm and
the data considered, if you add others, the performance does not change.
Furthermore, using traditional machine learning techniques, many of the
features must be identified in order to reduce the complexity of the data
and better emphasize the patterns during training. This procedure is what
is instead learned from Deep Learning algorithms. Obviously, the hardware
on which the neural networks do the calculations and the training times are
much greater, but as we see, the results justify the wait. Finally, we see
that concerning the MSE and MAE metrics, the two solutions based on deep
learning do not differ much, also considering the range of prices. However, the
value of the MAPE decreases from 6,073 to 3,764, which we remember tells
us the error made on average as a percentage of the predicted values. This
result is an important take-home message. It confirms how external factors
to the price data help the network reconstruct the trend more accurately and
predict future values more accurately. All the results are listed in Table 7.5.
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Chapter 8

Conclusions and future works

Working on this thesis, we had the opportunity to study some structures and
topics that I had only dealt with in class and independent studies. Further-
more, being a significant area, many researchers work on these issues year
after year, producing increasingly satisfactory results; in fact, although the
solution presented has produced valid results, there is significant room for
improvements.

In this thesis, we presented our LSTM solution for the problem stated and
obtained different results from different approaches. We introduced the world
of Time Series Analysis, explaining how it works and showing examples of
fields where they are being used nowadays. We also described the different
implementations experimented through years for solving different types of
problems.

Starting from this knowledge, we tried our solution for a specific problem
belonging to the Time-series Forecasting, practically experimenting on dif-
ferent datasets, including the dataset of the historical data on energy prices
per day from 2010 to 2013, the dataset containing the historical data on cli-
mate, considering rainfall and solar exposure and finally the data concerning
energy consumption that are derived from a collection of 300 households lo-
cated in Australia with rooftop solar systems installed and with a gross meter
that records the total amount of solar power generated every 30 minutes, so
that we have the amount of energy surplus or deficit produced or needed by
individual homes.
We experimented two Machine Learning solutions: Facebook prophet, that
is a procedure for forecasting data, and it is based on a decomposable Time-
series model with three main components that are able to model trends and
periodic changes from a Time-series and XGBoost that is an optimized dis-
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tributed gradient boosting library: it consists of a tree structure which aims
to make decisions and discriminate between different classes. XGBoost an-
alyzes the data and maximizes the decision making of this tree through the
use of machine learning techniques.
After that, we implemented a Deep Learning approach using the vanilla ver-
sion of the Long-Short Term Memory network. Then, an extended version
we created, in which the external data are fed into the network in the forward
phase and not in the input one.

From the results, we were able to see how the Deep Learning-based approach
has produced generally better results, confirming how the greater complexity
and adherence of structures such as LSTMs to data encoded in time series
help this type of problem. Furthermore, although in the literature we can find
similar task solutions with better results (albeit with different data and con-
texts), the important message we have derived is that using different features
that characterize price fluctuations has a considerable impact on prediction.
Therefore, in order to be able to identify with more certainty and precision
other possible factors that determine these variations, the proposed solution
can obtain even better results by merely changing or extending the external
data.

8.1 Future Works

The work presented in this master thesis has a lot of possible improvement
because some part of the problem was not analyzed thoroughly.

8.1.1 Variants of LSTM

The first possible extension is to implement the so-called bidirectional LSTM
[3]. In the structure described in fact, we used a unidirectional LSTM, which
preserves the past information because the only inputs received are from the
past.
This is done not only by running the inputs forward but also backward in
the LSTM. In this way, we preserve the information from the future, and
combining the two hidden states, we are able at any point in time to main-
tain information from both past and future. The Bidirectional structure has
applications in the Natural Language Processing field because to understand
the meaning of a word, it is important to know both the word that comes
before and the one that comes after.
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Another possible LSTM variant that fits the problem of analyzing Time Se-
ries is the Gated Recurrent Unit (GRU), a simplified version of LSTM that
does not have separated memory cells but still controls the flow of informa-
tion, improving time performance. The architecture is explained in Section
2.3.

8.1.2 Recommender System

Another possible extension is to rethink how buying and selling management
can be more efficient. This improvement can certainly be made by imple-
menting a recommendation system; with the advent of the internet, we have
had access to a constantly growing number of information. In addition to
the need for tools that allow access and manipulation of large amounts of
data, systems have also become necessary that recommend the best data to
users. For this reason, recommendation systems have been created, which in
recent years have offered increasingly interesting challenges and applications
in everyday life (just think of the systems used for online purchases or the
advice given to us in multimedia platforms).

In our case, the implementation of a recommender system can help us select
precisely the correct period in which to make a purchase or sale, taking into
consideration, in addition to the price data to decide between and the history
of past transactions.
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