
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master’s Degree Thesis

Offering Cloud-Native Network Services
to Residential Users

Supervisors

Prof. Fulvio RISSO

Prof. Guido MARCHETTO

Ing. Roberto MORRO

Candidate

Francesco PAVAN

December 2020

“Perseverance is the hard work you do after you get tired of doing the hard work
you already did”
Newt Gingrich

ii

Abstract

The recent spread of cloud technologies and new virtualization paradigms has
created new possibilities in the way telecom operators offer network services to
residential clients. The transition to a cloud-native-based context marked the
evolution of a well-known technology in the world of computer networks: Network
Function Virtualization (NFV). In a standard NFV scenario, Virtual Netowork
Functions (VNFs) are deployed as virtual machines on physical servers; in a cloud-
native NFV scenario, however, network functions, which are now called Cloud
Native Network Functions (CNFs), run inside containers and are possibly managed
through a container orchestrator system, such as Kubernetes. This evolution
has forced telecom operators to also evolve their residential broadband access
technologies, pushing them towards the adoption of a cloud-native model.

This thesis analyzes SDN-Enabled Broadband Access (SEBA), one of the most
promising technologies regarding the cloud-native residential broadband access
management, and its integration with the Network Service Mesh project, which
enables the creation of multiple CNFs meshes in Kubernetes. The fusion of these
two technologies allows telecom operators to offer its customers network services
fully deployed in Kubernetes with CNFs.

In the first part of the work a brief analysis of CNFs in Kubernetes is provided,
also addressing the problem of creating service chains with Network Service Mesh.
However, NSM alone cannot be directly used to drive end-users’ traffic inside a
service mesh, since they does not run pods inside their devices. It is therefore
necessary to find a way to bring cloud-native technologies closer to residential users.

One of the most prominent solutions to the problem is the SEBA framework,
which leverages SDN, NFV, Kubernetes and other technologies to provide a cloud-
native, open and programmable architecture to manage the central office and the
access network of an internet service provider. A deep analysis of this framework
is carried out, both from the point of view of the control plane and data plane,
also explaining the differences between the broadband access management system
currently used by operators and the one managed with SEBA.

Finally, this thesis presents also the technical details to integrate the two systems
together, showing two different deployment scenarios and analyzing the performance
impact of the fusion of the two systems.

Table of Contents

List of Tables iv

List of Figures v

Acronyms vi

1 Introduction 1

2 Background 3
2.1 SDN: Software Defined Networking 3
2.2 Cloud Native Network Functions (CNFs) 5
2.3 Kubernetes (K8s) . 7

2.3.1 Control Plane Components 8
2.3.2 Node Components . 8

2.4 PON: Passive Optical Network . 10
2.4.1 OLT: Optical Line Termination 11
2.4.2 ONU: Optical Netowork Unit 12
2.4.3 ODN: Optical Distribution Network 12

3 Cloud Native Network Function Chains in Kubernetes 13
3.1 Network Service Mesh . 13

3.1.1 Main Concepts . 14
3.1.2 Main Elements . 15
3.1.3 NSM Operations . 19
3.1.4 Firewall Use Case . 21

3.2 NSM Advantages and Limitations 22

i

4 SEBA: SDN-Enabled Broadband Access 24
4.1 Standard Residential Access Management 24
4.2 CORD: Central Office Re-architected as a Data Center 27

4.2.1 R-CORD: Residential CORD 30
4.3 SEBA Main Components . 30

4.3.1 Hardware Components Disaggregation 32
4.3.2 VOLTHA: Virtual OLT Hardware Abstraction 34
4.3.3 ONOS: Open Network Operating System 36
4.3.4 NEM: Network Access Mediator 39

5 SiaB: SEBA-in-a-Box 43
5.1 Differences with SEBA . 43

5.1.1 PON Virtualization . 44
5.1.2 Mininet . 45

5.2 AT&T SEBA Workflow . 45
5.3 SiaB Use Case . 48

6 Integrating SEBA (SiaB) and Network Service Mesh 51
6.1 First Scenario: SiaB and NSM in the same server 52

6.1.1 SiaB Deployment . 52
6.1.2 NSM Deployment . 54
6.1.3 Integration Procedures . 55

6.2 Second Scenario: SiaB and NSM in two different servers 63
6.2.1 Servers Configuration . 63
6.2.2 SiaB and NSM Deployment 64
6.2.3 Integration Procedures . 64

6.3 Issues and Gap Analysis . 67

7 Experimental Validation 69
7.1 Test Environment . 69
7.2 Tests . 70

7.2.1 Throughput Tests . 71
7.2.2 Latency Tests . 72
7.2.3 Final Discussion . 76

7.3 Integration Summary . 77

8 Conclusions and Future Works 79

ii

Bibliography 81

iii

List of Tables

6.1 Parameters to create the Fabric Crossconnect Service Instance . . . 61
6.2 Parameters to create the BNG Port Mapping 62

7.1 First Scenario: Ping between RG and BNG 73
7.2 First Scenario: Ping between RG and NS Client 74
7.3 First Scenario: Ping between RG and BNG 74
7.4 Second Scenario: Ping between RG and NS Client 75
7.5 Second Scenario: Ping between RG and NS Server 75
7.6 Second Scenario: Ping between NS Client and NS Server 76
7.7 Integration Procedures Summary 78

iv

List of Figures

2.1 Kubernetes Main Components [4] 7
2.2 PON Main Components [6] . 10
2.3 OLT Device . 12

3.1 NSM Main Concepts representation [8] 15
3.2 NSM Main Elements representation 16
3.3 Cross-connection to one NS Endpoint [8] 20
3.4 Firewall (iptables) Use Case . 21

4.1 Residential Access Network [10] . 25
4.2 CORD Possible Reference Hardware Architecture [15] 29
4.3 SEBA Hardware and Software Architecture [17] 31
4.4 Disaggregated OLT . 33
4.5 VOLTHA Software Components [19] 34
4.6 ONOS System Components [21] . 37
4.7 ONOS Component Interactions [21] 38
4.8 XOS Internal Structure . 41

5.1 NEM steps for new user subscription 47
5.2 SEBA AT&T Workflow Overview 48
5.3 SEBA-in-a-Box Dataplane Components 49

6.1 Graphical Representation of the First Integration Scenario 56
6.2 802.1Q VLAN Tagged Interfaces Configuration 59
6.3 Graphical Representation of the two Servers 64
6.4 Graphical Representation of the Second Integration Scenario 65

7.1 gRPC Overview [33] . 71

v

Acronyms

AAA

Authentication, Authorization and Accounting

API

Application Programming Interface

BSS

Business Support System

BNG

Broadband Network Gateway

CIDR

Classless Inter-Domain Routing

CLI

Command Line Interface

CNF

Cloud Native Network Functions

CNI

Container Network Interface

CO

Central Office

vi

CORD

Central Office Re-architected as a Data Center

CPE

Customer Premise Equipment

CRD

Custom Resource Definition

DHCP

Dynamic Host Configuration Protocol

DNS

Domain Name System

FTTH

Fiber To The Home

GUI

Graphic User Interface

IDS

Intrusion Detection System

IPS

Intrusion Prevention System

IP

Internet Protocol

IPoE

IP over Ethernet

ISP

Internet Service Provider

vii

K8s

Kubernetes

LAN

Local Area Network

M-CORD

Mobile CORD

MAC

Medium Access Control

NAT

Network Address Translation

NEM

Network Access Mediator

NFV

Network Function Virtualization

NIC

Network Interface Controller / Card

NSM

Network Service Mesh

OAM

Operations, Administration and Maintenance

ODN

Optical Distribution Network

OF

OpenFlow

viii

OLT

Optical Line Termination

ONF

Open Networking Foundation

ONOS

Open Network Operating System

ONT

Optical Network Terminal

ONU

Optical Network Unit

OSS

Operational Support System

POD

Point Of Delivery

PON

Passive Optical Network

PONSIM

PON Simulator

PPP

Point-to-Point Protocol

PPPoE

PPP over Ethernet

QoS

Quality of Service

ix

R-CORD

Residential CORD

RADIUS

Remote Authentication Dial-In User Service

RG

Residential Gateway

RPC

Remote Procedure Call

SDN

Software Defined Networking

SEBA

SDN-Enabled Broadband Access

SiaB

SEBA-in-a-Box

Veth

Virtual Ethernet

VLAN

Virtual LAN

VM

Virtual Machine

VNF

Virtual Network Function

VOLTHA

Virtual OLT Hardware Abstraction

VPP

Virtual Packet Processor

x

Chapter 1

Introduction

In recent years, cloud technologies, which previously were the prerogative only
of large providers and companies that had the financial resources to create an
on-premises environment, are spreading in all sectors of information technology,
including the networking environment.

It all started with virtualization, which had as its objective the optimization of
the number of servers used to deploy applications. When virtualization became
common it began to spread to network functions as well, starting a process called
Network Function Virtualization (NFV). Network functions, which are now called
Virtual Network Functions (VNFs), became virtualized services running on open
computing platforms instead of proprietary, dedicated hardware technology.

VNFs have introduced a number of advantages in terms of network programma-
bility and services management, but they have also introduced some drawbacks.
These drawbacks mainly concern the performance required by the devices where
these functions are deployed, much greater than traditional network devices, in
which software and hardware are highly optimized for the purpose.

A possible solution to this problem is represented by containers, which are
based on a lighter form of virtualization that allows you to create multiple net-
work functions even within the same virtual machine. Containers are less power
consuming than virtual machines, deploy faster and large set of containers can be
easily managed with container orchestrator systems, such as Kubernetes. Thus,
thanks to these new virtualization techniques, Cloud Native Network Functions
(CNFs), which are network functions that run inside containers, and cloud-native
technologies are born.

1

Introduction

All these new innovations have created new possibilities in the way telecom
operators offer network services to residential clients and the evolution from VNFs,
widely used by operators, to CNFs, very efficient but difficult to integrate into
a non-cloud-native environment, has forced them to also evolve their residential
broadband access technologies, pushing towards the adoption of a cloud-native
model.

This thesis analyzes the SDN-Enabled Broadband Access (SEBA) framework,
one of the most promising technologies regarding the cloud-native residential
broadband access management. SEBA leverages SDN, NFV, Kubernetes and other
mature technologies to provide a cloud-native, open and programmable architecture
to manage the central office and the access network of an internet service provider.

Thanks to this cloud-native context extended to all the elements of the edge
network of an internet service provider it is now possible to fully exploit the
potential offered by Cloud Native Network Functions, since they can be integrated
with the existing cloud-native architecture offered by SEBA.

The most valid way to exploit the potential of CNFs is Network Service Mesh,
which enables the creation of multiple CNFs meshes in Kubernetes. In the last
part of this work the integration between SEBA and NSM is analyzed in two
different scenarios, because the fusion of these two technologies allows telecom
operators to offer its customers network services fully deployed in Kubernetes with
CNFs, improving at the same time the management of these services thanks to the
advantages offered by the cloud environment.

Finally, the results obtained in the integration phase are summarized, also
addressing the possible next steps to improve the integration of the two systems,
and discussion about the performance of the framework is made.

2

Chapter 2

Background

In this thesis many technologies concerning the world of computer networks and
residential access have been used. In this chapter they are explained in the shortest
but at the same time effective way possible, to give a basic understanding of the
working context.

2.1 SDN: Software Defined Networking
Software-defined networking is an approach to networking that uses software-based
controllers or APIs to communicate with the underlying hardware infrastructure,
to direct traffic on a network. This model differs from the one of traditional
networks, which use dedicated hardware devices, such as routers or switches, to
control network traffic. SDN can create and control an entire virtual network, or
control a traditional hardware component, via software [1].

A typical SDN architecture, is made up of three parts, which may be located in
different places:

• Applications: they communicate resource requests or information about the
network as a whole;

• Controllers: they implement the control plane functionalities, use the informa-
tion from applications to decide how to route a data packet;

• Networking devices (physical or virtual): they implement data plane function-
alities, receive information from the controller and actually move the data
through the network.

3

Background

The key difference between SDN and traditional networking is the infrastructure:
SDN is software-based, while traditional networking is hardware-based. Because
the control plane is implemented in software decoupled from the hardware, SDN
is much more flexible than traditional networking. It allows administrators to
control the network, change configuration settings, provision resources, and increase
network capacity, all from a centralized user interface.

Software Defined Networking offers the following advantages:

• Increased control with greater speed and flexibility: instead of manually
programming multiple vendor-specific hardware devices, developers can control
the flow of traffic over a network simply by programming an open standard
software-based controller. Networking administrators also have more flexibility
in choosing networking equipment, since they can choose a single protocol
to communicate with any number of hardware devices through a central
controller;

• Customizable network infrastructure: with a software-defined network, ad-
ministrators can configure network services and allocate virtual resources to
change the network infrastructure in real time through one centralized location.
This allows network administrators to optimize the flow of data through the
network and prioritize applications that require more availability;

• Robust security: a software-defined network delivers visibility into the entire
network, providing a more holistic view of security threats. With the prolifera-
tion of smart devices that connect to the internet, SDN offers clear advantages
over traditional networking. Operators can create separate zones for devices
that require different levels of security, or immediately quarantine compro-
mised devices so that they cannot infect the rest of the network. However,
because software-defined networks use a centralized controller, securing the
controller is crucial to maintaining a secure network.

SDN represents a substantial step forward from traditional networking, enabling
a new way of controlling the routing of data packets through a centralized server.

4

Background

2.2 Cloud Native Network Functions (CNFs)
Before starting to talk about Cloud Native Network Functions it is necessary to
take a step back and give a brief definition of what are network functions (NFs)
and virtual network functions (VNFs) [2].

Network functions (NF) are physical devices that process packets supporting a
network and/or application services. Routers, switches and firewalls are network
function examples. More generally a network function is a physical component
which has two network interfaces, one interface is used to send traffic to the NF
while the other interface is used to send it out of the function. What distinguishes
one function from another is the functionality it implements, which is determined
by the software that runs inside the hardware component: the application processes
every packet that arrives at the function and, once it finished, it sends out the
packet through the output interface. In traditional network functions hardware and
software are closely coupled, making interoperability between devices from different
manufacturers difficult and introducing some problems from the management point
of view.

To solve these problems virtual network functions (VNF) were introduced. A
virtualized network function (VNF) is an NF designed to run in a virtual machine,
normally deployed on a common hardware infrastructure. Being applications
deployed within a virtual machine, they inherit all the advantages introduced
by virtualization, such as isolation, automated configuration and operations and
multi-tenancy.

Moreover, they introduced some improvements with respect to normal NF, and
some of them are listed below:

• Lower costs: VNFs reduce costs in purchasing network equipment via migration
to software on standard servers;

• Service chaining: a uniform customer application or service is assembled from
a set of interconnected VNFs, which can be deployed inside the same virtual
machine;

• Scalability: scaling a network architecture made of virtual machines is faster
and easier, and it does not require purchasing additional hardware.

This newer technology, which is nowadays the current de facto standard for
standing up network functions in cloud environments, has not only led to advantages

5

Background

but also introduced new problems to be solved, mainly concerning the performance
of the new network functions. In fact, due to the virtualization overhead introduced
by the guest OS/kernel, host OS/kernel and hypervisor, VNFs require much more
powerful servers than the standard hardware network functions. Moreover, long
boot times under normal maintenance, failure restart, and burst scenarios can
impact availability.

A solution to the performance problem is given by containers, which take
advantage of a lighter virtualization paradigm and do not have all the overhead
introduced by VMs. Containers introduced a new approach for developing and
running applications in a cloud environment, called cloud-native approach, which
is based on microservices and container orchestration systems, such as Kubernetes,
in which CNFs run inside a pod (section 2.3).

Thanks to this new approach Cloud Native Network Functions are born. A
CNF is a network function designed and implemented to run inside a container
instead of a virtual machine. They inherit all the principles of the VNFs and of
the cloud native model, introducing a number of advantages [2]:

• Smaller footprint compared to physical or virtual devices: this reduces resource
consumption, with the potential savings allocated to applications and/or
infrastructure expansion;

• Rapid development, innovation and immutability: CNFs should run in user
space where it is easier, faster and less risky to develop and deploy new features
and innovations. There is no need to interact with the stable and mature
Linux kernel used by other components in the environment;

• Agnostic to host environments: bare-metal or VMs are the most common.
Since VMs do not add value to CNFs, bare-metal could become the preferred
host of choice.

CNFs and the cloud-native paradigm are spreading more and more also in the
world of telecom operators and not only in the one of developers, leading them
to search for cloud-native solutions also for the management of residential access
networks, as will be seen in the next chapters.

6

Background

2.3 Kubernetes (K8s)
Kubernetes is a portable, extensible, open-source platform for managing container-
ized workloads and services, that facilitates both declarative configuration and
automation. It has a large, rapidly growing ecosystem [3].

When Kubernetes is deployed, it created a cluster. A Kubernetes cluster consists
of a set of worker machines, called nodes, that run containerized applications. Every
cluster has at least one worker node. The worker nodes host the Pods that are the
components of the application workload. The control plane manages the worker
nodes and the Pods in the cluster. In production environments, the control plane
usually runs across multiple computers and a cluster usually runs multiple nodes,
providing fault-tolerance and high availability.

Figure 2.1 shows a diagram of a Kubernetes cluster with all the components
tied together.

Figure 2.1: Kubernetes Main Components [4]

A Pod, which is the smallest deployable units of computing that you can create
and manage in Kubernetes, is a group of one or more containers, with shared
storage/network resources, and a specification for how to run the containers. A
Pod’s contents are always co-located and co-scheduled and run in a shared context.

7

Background

A Pod models an application-specific logical host: it contains one or more application
containers which are relatively tightly coupled.

2.3.1 Control Plane Components
The control plane’s components make global decisions about the cluster, as well as
detecting and responding to cluster events. Control plane components can be run
on any machine in the cluster. However, for simplicity, set up scripts typically start
all control plane components on the same machine, and do not run user containers
on this machine.

Components of the control plane are briefly described below:

• kube-apiserver: the API server exposes the Kubernetes API and represents
the front end for the Kubernetes control plane. kube-apiserver is designed to
scale horizontally - that is, it scales by deploying more instances. It is possible
to run several instances of kube-apiserver and balance traffic between those
instances;

• etcd: it is a consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data;

• kube-scheduler: it is the control plane component that watches for newly
created Pods with no assigned node, and selects a node for them to run on;

• kube-controller-manager: it is the control plane component that runs controller
processes. Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single
process;

• cloud-controller-manager: it is the control plane component that embeds
cloud-specific control logic to interact with the underlying cloud providers.

2.3.2 Node Components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

8

Background

Node components are described below:

• kubelet: it is an agent that runs on each node in the cluster. It makes sure
that containers are running in a Pod. kubelet doesn’t manage containers
which were not created by Kubernetes;

• kube-proxy: kube-proxy is a network proxy that runs on each node in your
cluster, implementing part of the Kubernetes Service concept. kube-proxy
maintains network rules on nodes. These network rules allow network com-
munication to your Pods from network sessions inside or outside of your
cluster;

• Container runtime: container runtime is the software that is responsible for
running containers.

To interact with the cluster REST APIs are used. The API server exposes an
HTTP API that lets end-users, different parts of your cluster, and external compo-
nents communicate with one another, allowing the user to query and manipulate
the state of the objects. Depending on the kind of request, the kube-apiserver can
interact with other control plane components on master node, for example forward-
ing the request to them so that they can elaborate it, or interact directly with
worker nodes. The interaction with worker nodes is made possible by the kubelet,
which receives and reply to messages from kube-apiserver. There is never direct
interaction from kube-apiserver to pods deployed in worker nodes, communication
is always mediated by the kubelet.

9

Background

2.4 PON: Passive Optical Network
A passive optical network (PON) [5], represented in Figure 2.2, is a fiber-optic
network utilizing a point-to-multipoint topology and optical splitters to deliver
data from a single transmission point to multiple user endpoints. Passive, in this
context, refers to the unpowered condition of the fiber and splitting/combining
components. Passive optical networks are often referred to as the last mile between
an Internet service provider (ISP) and its customers.

In contrast to an active optical network, electrical power is only required at the
send and receive points, making a PON inherently efficient from an operation cost
standpoint. Passive optical networks are used to simultaneously transmit signals
in both the upstream and downstream directions to and from the user endpoints.

A PON consists of an optical line termination (OLT) and a number of optical
network units (ONUs). Normally, the OLT is placed at the provider’s central office
and the ONUs are put near end-users. Up to 32 ONUs can be connected to an
OLT.

A PON system makes it possible to share expensive components for FTTH. A
passive splitter that takes one input and splits it to broadcast to many users, which
help cut the cost of the links substantially by sharing, for example, one expensive
laser with up to 32 homes. PON splitters are bi-directional, that is signals can be
sent downstream from the central office, broadcast to all users, and signals from
the users can be sent upstream and combined into one fiber to communicate with
the central office.

Figure 2.2: PON Main Components [6]

10

Background

In addition to high energy efficiency, PON also has other advantages, such as
a simple and upgradable infrastructure and high ease of maintenance. The main
drawbacks are instead:

• Distance: this is the main drawback when PON is compared to active optical
networks. The range for PON is limited to between 20 to 40 km, while an
active optical network may reach up to 100 km;

• Test access: the PON cannot be isolated so test tools must allow in-service
troubleshooting without disrupting service to other end-users on the same
PON;

• Little redundancy: there is little redundancy in PONs and in case of an
accidental fiber cut or a faulty OLT the service disruption can be extensive.

Overall, the inherent benefits of passive optical networks substantially outweigh
these limitations.

2.4.1 OLT: Optical Line Termination
The OLT (Figure 2.3) is the starting point for the passive optical network, which is
connected to a core switch (aggregation switch) through Ethernet cables [7]. The
primary function of the OLT is to convert frames coming from the aggregation
switch to optical signals and transmit towards the ONUs and to coordinate the
ONUs multiplexing for the shared upstream transmissions, converting optical
signals into Ethernet frames and sending them to the aggregation switch.

In general, OLT equipment contains rack, CSM (Control and Switch Module),
redundancy protection, -48V DC power supply modules or one 110/220V AC power
supply module and fans. In these parts, PON card and power supply support
hot-swap while another module is built inside. The OLT has two float directions:
upstream (getting distributing different types of data and voice traffic from users)
and downstream (getting data, voice, and video traffic from the metro network
or from a long-haul network and send it to all ONU modules on the Optical
Distribution Network). The maximum distance supported for transmitting across
the ODN is 20 km.

11

Background

Figure 2.3: OLT Device

2.4.2 ONU: Optical Netowork Unit
The ONU converts optical signals transmitted via fibers by the OLT to electrical
signals and vice-versa [7]. These electrical signals are then sent to individual
subscribers. In general, there is a distance or other access network between ONU
and end-user’s premises. Furthermore, ONU can send, aggregate, and groom
different types of data coming from the customers and send it upstream to the
OLT. Grooming is the process that optimizes and reorganizes the data stream so
it would be delivered more efficiently. ONU supports bandwidth allocation that
allows making smooth delivery of data float to the OLT, which usually arrives in
bursts from the customers. ONU could be connected by various methods and cable
types, like twisted-pair copper wire, coaxial cable, optical fiber, or through Wi-Fi.

ONU may also be referred to as the optical network terminal (ONT), ONT is
an ITU-T term, whereas ONU is an IEEE term.

2.4.3 ODN: Optical Distribution Network
The ODN provides the optical transmission medium for the physical connection of
the ONUs to the OLTs, with 20 km or further reach. Within the ODN, fiber optic
cables, fiber optic connectors, passive optical splitters, and auxiliary components
collaborate with each other to provide internet access to end-user [7].

12

Chapter 3

Cloud Native Network
Function Chains in
Kubernetes

In this chapter the problem of creating CNF chains in Kubernetes is addressed
and the most valid solution to this problem is briefly described, which is Network
Service Mesh.

CNFs meshes are important, especially for telecom operators, because as in the
NFV paradigm more VNFs are chained together in a specific order to offer one or
more services, in a cloud-native environment the services are offered through the
concatenation of several CNFs. Currently, however, the concatenation of VNF is
easy to carry out and well established while the ordered concatenation of CNF in
Kubernetes remains an open problem, since it is not natively supported by the
framework.

The content of this chapter is freely drawn from Raffaele Trani’s Master’s Degree
thesis, which analyzes the whole NSM project with a greater level of detail [8].

3.1 Network Service Mesh

Kubernetes default networking system is based on a Container Network Interface
(CNI), which consists in a set of APIs that are introduced in K8s cluster and
are used to provide network connectivity to the pods of the cluster. This system

13

Cloud Native Network Function Chains in Kubernetes

cannot solve the problem of creating service meshes, mainly due to the following
two limitations:

• Lack of multiple network interfaces on pods: CNFs requires two network
interfaces to properly work, one for traffic to get inside the CNF and one
to get outside of it. Kubernetes should configure these interfaces in pods
that implement CNFs, but it does not provide this behavior, limiting the
configuration to a single interface (Multus CNI1 solves this problem with a
special configuration);

• Unsupported service chain implementation: no CNI allows the creation of
pod chains, therefore it is not possible to natively create CNF chains. This is
due to the fact that the CNI provides connectivity between pods and deploys
necessary elements to allow routing not only inside the node but also between
the nodes, but it does not establish how links between pods need to be created
to implement a chain of CNFs.

Even if Multus CNI can provide more than one interface per pod the service
chain implementation is still missing, so it is necessary to use the Network Service
Mesh framework to solve the problem.

Network Service Mesh (NSM) is a novel approach to solve complicated L2/L3
use cases in Kubernetes that are tricky to address withing the existing Kubernetes
Network Model. Inspired by Istio, Network Service Mesh maps the concept of a
service mesh to L2/L3 payloads [9].

3.1.1 Main Concepts
Network Service Mesh offers the possibility to create service chains of pods in
Kubernetes. This is made possible by two abstractions: the Network Service and
the Cross-connection, which are represented in Figure 3.1.

Network Service

The network service is a Kubernetes Custom Resource Definition (CRD), an ad-hoc
resource (standard resource are pods, deployments, services, etc.) which implements
a user-defined function. Once a CRD is installed it can be created in the same way

1https://github.com/intel/multus-cni

14

https://github.com/intel/multus-cni

Cloud Native Network Function Chains in Kubernetes

Figure 3.1: NSM Main Concepts representation [8]

as any other resource. A Network Service represents the logical implementation of
a chain of CNFs implemented as pods in the cluster. If, like in Figure 3.1, a chain
of CNFs is composed by a firewall and a VPN gateway, the Network Service would
represent the chaining of these virtual network functions. The network service also
specifies the order of CNFs, so traffic that traverses the chain will follow the order
specified during the network service definition.

Cross-connection

A cross-connection represents a virtual wire which is created between two pods
in the chain. Referring Figure 3.1, each link between two pods represents a cross-
connection. Cross-connections are created by the control plane elements of NSM
and are composed of two interfaces, configured and injected in pods belonging to
the CNF chain by these same components. Network Service Mesh supports both
L2 and L3 cross-connections, thus allowing Ethernet frames or IP packets to travel
along the chain from pod to pod.

3.1.2 Main Elements

To properly create cross-connections and allow communications between pods,
NSM provides both control plane and data plane elements. Figure 3.2 gives a
graphical representation of these elements.

15

Cloud Native Network Function Chains in Kubernetes

Figure 3.2: NSM Main Elements representation

Network Service Client

The Network Service Client is deployed as a pod in Kubernetes environment and
its main aim is to request a cross-connection to a specific Network Service thanks
to a container made on purpose (there may also be other containers inside the pod).
This request is sent to the manager using gRPC and includes all the necessary
parameters needed to allow the manager to understand which Network Service is
required. Once the request is sent, the container awaits to receive a reply from the
Manager. The process described above starts as soon as the pod is deployed in K8s,
so that the cross-connection is immediately established and the main container of
the NSC can communicate to the pods implementing the CNFs involved in the
requested Network Service as soon as possible.

Network Service Endpoint

This element is in charge of implementing a CNF specified in a Network Service.
Referring to Figure 3.1, it represents the firewall pod as well as the VPN gateway
pod belonging to the Network Service named secure-intranet-connectivity. As
for Network Service Client, also this pod can be composed by more containers,
for example one implementing the NSM control plane functionalities and the
other implementing the required cloud native network function. The control plane

16

Cloud Native Network Function Chains in Kubernetes

container receives request of cross-connection forwarded by NSM Manager from
NSC. Once it receives the request, in may behave in two different ways: if it is not
the last hop of the service chain it belongs to it will create a new request in order
to create a cross-connection to the next hop of the chain, otherwise, if it is the last
hop of, it will immediately elaborate the request and create an appropriate reply
which then is sent to NSM Manager.

It is worth to note that control plane containers and CNF containers can work
concurrently in the pod and, for this reason, it may be necessary for them to
coordinate. There are two different ways to make them coordinate: the first one
involves a specific configuration of the CNF container, so that it can work properly
with the cross-connection built by NSM. The second way involves merging the
two containers into a single container, which implements both NSM control plane
functionalities and the CNF logic. In the latter case, the part of the container
implementing the virtual network function does not need further configuration, as
it receives direct instructions from the control plane part of the container.

Network Service Manager

Network Service Manager main aim is to receive and transmit all messages involved
in control plane communications to build cross-connections. These messages are
implemented by NSM using gRPC technology. First of all, it is implemented as
a DaemonSet in Kubernetes environment, which means that a pod implementing
this resource is deployed in each node of the cluster. In this way, each node has its
own Network Service Manager, which guarantee that each pod in a node that is
part of NSM will receive control plane messages. NSM Managers can interact with
each other to exchange both direct messages and messages that need to be sent to
other NSM elements in the node.

It is composed by three different containers:

• nsmd: this container is the heart of the NSM control plane implementation of
Network Service Manager. It is in charge of elaborating all kind of requests
involved in the cross-connections construction: it elaborates and possibly
modify the requests coming from the Network Service Client and the Network
Service Endpoint to allow their proper forwarding, it communicates with
the NS Forwarder to actually create cross-connections and it monitors cross-
connection-related messages, to get updates about cross-connections between
pods registered with the NSM Manager.

17

Cloud Native Network Function Chains in Kubernetes

• nsmd-k8s: this container manages the local registers and interfaces with the
remote ones. It also communicates with Network Service Endpoints that
are deployed on its same node, registering them to the NS Manager at their
startup. It also communicates internally with nsmd container to interact with
data stored locally and with NS Managers in other K8s nodes for data stored
remotely;

• nsmdp: this last container is in charge of checking that all the elements
involved in NS Manager functions are working properly. To do so, it interacts
with them, periodically interrogating their state and, in case something is
wrong, it provides necessary functionalities to correctly react to the event.

Network Service Forwarder

The main aim of this pod is to implement NSM data plane functionalities, in
particular it is in charge of the creation and configuration of the additional interfaces
and of the building of the cross-connection between involved pods.

It receives cross-connection requests from the NS Manager and, if all the pa-
rameters are correct and supported, it builds the cross-connection, by injecting the
necessary interfaces into pods. Once the cross-connection is built, the forwarder
advertises the NSM Manager about it, so that the latter can replies to the Network
Service Client, which will then be able to use the cross-connection to communicate
with the other pod. Network service Mesh provides two different implementations
of this forwarder:

• VPP Forwarder: this implementation is the default one provided by NSM. In
this case the forwarder behaves differently depending on the technology of the
cross-connection indicated in the request that the forwarder receives from the
NSM Manager. This forwarder can in fact support both standard technology
and VPP technology2 and it configures different kind of interfaces basing on
the technology that is implemented in the pods involved in the chain;

• Kernel Forwarder: it is the forwarder used in this thesis. Differently from
the previous implementation, in this case the forwarder supports only the
construction of cross-connection which consists of a veth pair between the

2https://wiki.fd.io/view/VPP/What_is_VPP%3F

18

https://wiki.fd.io/view/VPP/What_is_VPP%3F

Cloud Native Network Function Chains in Kubernetes

two pods involved in the communication. To set up the cross-connection,
the forwarder uses the NetLink Linux library3, which not only injects veth
interfaces in pods, but it also configures appropriate entries in the routing
tables to allow pods to reach each other.

NSM Admission Webhook

In a Kubernetes cluster, normally, when the api-server receives a request of pod
creation, it will immediately elaborate the request, sending it to the proper elements
inside the master node. However, the api-server can be configured to work in a
slightly different way: when the api-server receives a request of pod’s creation,
instead of elaborating immediately the request, it will previously send the request to
a chain of controllers, called webhooks, which analyze the request and can perform
some action on the request itself, modifying or even rejecting it.

In this optic, NSM provides its own admission webhook: this elements intercepts
pod creation requests directed to the api-server and, depending on its configuration
and annotations present in the YAML file, it can modify the request, injecting
specific code in the file associated to the request. This element is necessary to
allow a client pod to be able to communicate with the other pods involved in NSM,
because the Admission Webhook injects the container which begins the process of
connecting the new pod to the NS Manager.

3.1.3 NSM Operations

Now that all the main elements have been presented, it is possible to briefly
describe the operations of Network Service Mesh in a simple use case, taking into
consideration the deployment of NSM on a single worker node and a pod chain
made of a single CNF. For a more detailed analysis always refer to Raffaele Trani’s
Master’s Degree Thesis [8].

Once the network service has been defined and the pods that implement the NS
Client and the CNFs (NS Endpoints) of the chain have been deployed through a
set of YAML files that make up a Helm4 chart, the system is ready to start.

First of all, NS Endpoints register themselves with the NS Manager installed on

3https://man7.org/linux/man-pages/man7/netlink.7.html
4https://helm.sh

19

https://man7.org/linux/man-pages/man7/netlink.7.html
https://helm.sh

Cloud Native Network Function Chains in Kubernetes

Figure 3.3: Cross-connection to one NS Endpoint [8]

the node with a gRPC message, containing information about the pod’s role in
NSM. If the registration is successful, local NS Manager will know that in its node
there is a pod implementing a CNF function of that specific Network Service and
it will send it requests directed to that pod if necessary.

Then, the cross-connection building step begins. The NS Client sends a gRPC
message to the NS Manager containing the cross-connection request to a Network
Service. When the NS Manager receives the request it tries to find the Network
Service specified in the request and, if present, it identifies which CNF is required
by looking in the local registry. Then, it sends the request to the selected NS
Endpoint, that analyzes it to understand if the parameters associated to the request
(i.e. specific required technology of cross-connection) can be satisfied. If so, the
NS Endpoint replies to the NS Manager which in turn contacts the NS Forwarder
sending the specific instructions and parameters about the cross-connection that
needs to be built.

Then, the NS Forwarder injects the required interfaces in pods involved in the
chain and, depending on the selected technology, it may also create interfaces on
itself and properly configure them to receive traffic from newly injected interfaces
and forward it between them. Once the interfaces are injected and properly
configured, forwarder creates the cross-connection and advertises the NS Manager

20

Cloud Native Network Function Chains in Kubernetes

that the process is completed.
Finally, once the NS Manager receives confirmation about the creation of the

cross-connection, it advertises the NS Client that the cross-connection is created
and it can be used to communicate with NSEs involved in the Network Service.

Figure 3.3 gives a graphical representation of the steps explained above to create
a cross-connection.

3.1.4 Firewall Use Case

In this section the NSM use case used for the development of this thesis is briefly
illustrated, which is represented in Figure 3.4.

In this scenario three pods are deployed5: NS Client and NS Server, which
are made of a simple Ubuntu container with no additional configurations and the
Firewall, which is an Ubuntu-based container with the addition of one or more
iptables6 rules to implement firewall functionalities.

Figure 3.4: Firewall (iptables) Use Case

5Helm charts to reproduce this configuration are available here: https://github.com/
PPaviii/my-nsm

6Linux Man Page of iptables: https://linux.die.net/man/8/iptables

21

https://github.com/PPaviii/my-nsm
https://github.com/PPaviii/my-nsm
https://linux.die.net/man/8/iptables

Cloud Native Network Function Chains in Kubernetes

As can be seen from Figure 3.4, NSM kernel forwarder was used: this element
configures veth pairs between pods involved in communications using the NetLink
Linux library, which provides all the necessary functions to properly configure
and inject the interfaces. Thus, the forwarder is not directly involved in the
communication, it just provides the cross-connection between pods involved in the
communications, without configuring further interfaces.

IP addresses assigned to each veth pair are different and they are isolated from
each other. For this reason, it was necessary to manually configure routing tables
entries in the NS Client and the NS Server, to allow each one of them to reach
the other one. On the other hand, no manual configuration of routing table was
needed inside the firewall pod, because automatic routing tables were injected
during its creation, so that it could reach both veth pairs. As said before, the
firewall application consists of one or more iptables rules injected in the kernel.

3.2 NSM Advantages and Limitations
Network Service Mesh project is nowadays the most promising solution to allow
integration of Cloud Native Network Functions in Kubernetes. After this brief
analysis some positive aspects can be pointed out:

• Chaining of pods: once the chain is established and pods implementing CNFs
are deployed, the cross-connections really allows the communication between
pods and the order of CNFs in the chain is respected;

• Self-healing system: NSM comes with a full working monitoring system, which
does not only concerns with cross-connections’ state, but also with pods
involved in NSM environment. Specifically, if a cross-connection for some
reasons fails, the NSM Manager restarts the creation process to substitute the
failed one. On the other hand, if a pod implementing a CNF stops working,
the NSM Manager tries to create a cross-connection with the replica pods
that implement the same CNF or, if no replicas are present, with the new
same pod as soon as it is available.

Besides positive aspects, there are also some important limitations:

• Support for dynamic change of service chain: in a CNF service chain is
sometimes necessary to dynamically change the chain but NSM does not
supports this aspect;

22

Cloud Native Network Function Chains in Kubernetes

• Load balancing: NSM does not provide load balancing between NSEs that are
replicas of the same CNF. This means that all the cross-connections created
by the NS Manager and the NS Forwarder involve only on replica of the CNF,
not balancing requests to other possible pods which implements the same
CNF.

One last important limitation, in particular regarding the use of NSM in the
context of telecom operators, is that it cannot be directly used to drive end-users’
traffic inside a service mesh, since they do not run pods inside their devices. A
possible solution to this problem is to deploy Network Service Mesh in the central
office of an operator, in order to filter the traffic that arrives from users without
forcing them to use Kubernetes pods.

Unfortunately, in the context of the central offices of the majority of operators,
NSM would be the only cloud-native technology, making the flexibility and scala-
bility benefits brought by the cloud environment and the advantages brought by
Network Service Mesh very limited. It is therefore necessary to find a way to bring
cloud-native technologies closer to residential users, in order to make better use of
the NSM framework.

23

Chapter 4

SEBA: SDN-Enabled
Broadband Access

The advent of the cloud-native paradigm and the birth of new technologies, such as
Network Service Mesh, which use the advantages of the cloud environment has forced
telecom operators to also evolve their residential broadband access technologies,
pushing them towards the adoption of a cloud-native model to manage their
resources.

In this chapter the SDN-Enabled Broadband Access (SEBA) framework is
analyzed in detail, which is one of the most promising technologies regarding the
cloud-native residential broadband access management. However, before analyzing
the framework, a brief description of how residential access network is currently
managed and of SEBA’s ancestor (CORD) is presented.

4.1 Standard Residential Access Management
Central offices (COs) are the central part of the telecommunication infrastructure
of a telecom operator. They are the part of the edge network where subscriber
homes and business lines are connected to the backbone network. From here the
traffic is then aggregated, sent to the network of the ISP and finally forwarded
towards Internet destinations.

Figure 4.1 represents the typical residential access network of a telecom operator,
which is composed by a PON network (section 2.4) with three ONT, one optical
splitter and three OLT devices, two aggregation switches and two Broadband

24

SEBA: SDN-Enabled Broadband Access

Figure 4.1: Residential Access Network [10]

Network Gateways (BNG). These last two devices play an important role in the
forwarding of traffic from end-users to the Internet, so their operations are briefly
explained below.

Aggregation Switch

The aggregation switch is the fundamental component of the aggregation network
present in the central office. The main purpose of this component is to aggregate
the large amounts of traffic coming from the OLTs into a smaller number of data
streams and to send them to the BNG. Normally, more switches than necessary
are deployed within the central office and are managed with the VRRP protocol,
to prevent any packet loss or malfunction. The switch must provide the following
capabilities [11]:

• A means to prioritize traffic in order to handle congestion at points of over-
subscription;

• Multicast deployments support;

• Quality of Service (QoS) support;

• High availability (e.g. by multi-homing) support;

• Multiple VLANs aware bridging support, according to 802.1ad principles;

25

SEBA: SDN-Enabled Broadband Access

• Maintain user isolation.

These features are not only required by the switches but must be supported
throughout the entire aggregation network they make up.

Broadband Network Gateway (BNG)

Broadband Network Gateway (BNG) connects residential subscribers to the broad-
band network of an Internet Service Provider. It is an active part of this broadband
network, also participating in routing protocols. CPEs, which are also called
Residential Gateways (RGs), and the BNG establish a direct connection, through
which the subscriber can access the broadband services provided by the Internet
Service Provider [12]. Beyond the BNG, traffic can be correlated to a subscriber
using the IP address, but the complete view is lost.

BNG establishes and manages subscriber sessions. When a session is active, BNG
aggregates traffic from various subscriber sessions from the aggregation network, and
routes it to the network of the service provider, managing the following subscriber
management functions:

• Connecting with the RG: BNG connects to the RG through a multiplexer.
The three user devices pictured in Figure 4.1 represents the represent the
three most common types of traffic: voice, video, and data. The individual
subscriber devices connect to the RG;

• Establishing Subscriber Sessions: each subscriber device (the application which
is executed on the RG) connects to the network by a logical session. Based
on the protocol used, subscriber sessions are classified into two types, PPPoE
and IPoE;

• Interacting with the RADIUS Server: BNG exploits an external Remote Au-
thentication Dial-In User Service (RADIUS) server to provide Authentication,
Authorization, and Accounting (AAA) functionalities to end-users. During the
AAA process, BNG uses the RADIUS protocol to authenticate a subscriber
before establishing a subscriber session, to authorize the subscriber to access
specific broadband services or resources and to track the usage of this services
for accounting or billing purposes. This server contains a database with all
the subscribers’ information of an Internet service provider, and provides to
the BNG subscriber data updates. BNG, on the other hand, to keep data
updated, sends to the RADIUS server session usage (accounting) information;

26

SEBA: SDN-Enabled Broadband Access

• Interacting with the DHCP Server: BNG relies on an external Dynamic Host
Configuration Protocol (DHCP) server for address allocation and to correctly
configure clients’ devices. The DHCP server contains an IP address pool, from
which it allocates addresses to the residential gateways.

The collaboration of all these devices allows a telecom operator to offer Internet
access and network services to residential users but as can be seen from this brief
explanation this model is very static and difficult to integrate with a cloud-native
environment, due to the lack of programmability of the infrastructure. It is therefore
necessary to find a new model that uses more recent technologies to achieve this
integration, without however upsetting the operator’s network architecture.

4.2 CORD: Central Office Re-architected as a
Data Center

The first attempt to design and develop a platform that allowed central office
management in a more similar way to the cloud-native paradigm was made by
the Open Networking Foundation (ONF) and produced the CORD project, which
stands for Central Office Re-architected as a Data Center. The main aim of the
project was to transform the central office into an agile service delivery platform
enabling the operator to deliver the best end-user experience along with innovative
next-generation services.

The CORD framework presents a reference implementation which is open and
complete, integrating everything needed to create a fully operational edge data
center with built-in service capabilities. The implementation is all based on
commodity hardware and white box switches and follows the latest cloud-native
design principles [13].

The implementation specifies four architectural requirements [14]:

• Commodity servers and white box switches: the framework must be based
on commodity hardware and leverage merchant silicon as mush as possible.
There must not be dependencies on proprietary or specialized hardware to
reach high performance. This requirement is dictated by goal of supporting
cloud infrastructure economics and, by implication, the software running on
that commodity hardware must deliver the same performance and reliability
as today’s purpose-built hardware;

27

SEBA: SDN-Enabled Broadband Access

• Support of a wide range of services: the framework must not be limited to
access services and must not constrain the implementation process of ser-
vices. In particular, it must support services belonging to the following four
fields: access services and conventional cloud services, data plane and control
plane services, operator-provided and third-party services and bundled legacy
services. Finally, CORD must manage services without knowing their imple-
mentation details or how these services implements isolation, high, availability,
scale and performance;

• High configurability: CORD is by definition a configurable framework, not
a ready to use solution. An operator must have the possibility to specify
the services it wants to deploy and how to manage them. Thanks to this
configurability feature CORD can be used to manage different markets and
all the three access technologies: residential, enterprise and mobile;

• Support of multiple domains of trust: in CORD it is not sufficient to only
distinguish between CORD users and CORD operators, but it is necessary
to include a wider range of intermediate roles, for example including global
operators, site-specific operators, etc.;

• Support for partial and intermediate failures and incremental upgrades: CORD
is a system built by integrating multiple, independently developed and de-
ployed software components so it must support incremental upgrades and
partial/intermediate failures;

CORD runs on commodity servers and white-box switches, coupled with disag-
gregated packaging of media access technologies. These hardware elements are then
organized into a rackable unit which exploits a leaf-spine switching fabric, called
POD, that is suitable for the deployment in a telecom operator central office. White
box switches implements the data plane functionalities of the elements analyzed
in section 4.1 (OLT and aggregation switch), while the control plane software
runs on the commodity servers. The disaggregation of the control plane and data
plane functionalities of the various devices is a key point to understand the new
architecture, so it is analyzed in more detail in the next sections, since the same
principle is also exploited by SEBA (section 4.3.1). Figure 4.2 represents a possible
configuration for a reference implementation of CORD.

As far as software components, CORD exploits four different open source projects
[15]:

28

SEBA: SDN-Enabled Broadband Access

Figure 4.2: CORD Possible Reference Hardware Architecture [15]

• OpenStack: it is the framework which provides the Infrastructure as a service
(IaaS) capability, and is responsible for creating, provisioning and managing
virtual machines and virtual networks;

• Docker: services are deployed as Docker container and interconnected with
Docker features. It also plays a role in deploying CORD itself (e.g., some
management elements are instantiated in Docker containers);

• ONOS: it is the network operating system which is in charge of managing
both software switches and the physical switching fabric. All the subscriber
services but also the switching fabric itself are managed through applications
hosted in ONOS;

• XOS: it is a framework for assembling and composing services, based on the
Everything as a Service principle. It unifies OpenStack, which provides the
infrastructure services, ONOS, which provides the control plane services, and
all the data plane or cloud services running in VMs or containers.

To support the widest possible number of services, the reference implementation
supports services running in VMs, in containers running directly on bare metal, and
in containers deployed inside VMs. ONOS plays two roles in CORD: it interconnects
VMs implementing virtual networks and manages flows across the switching fabric
and provides a platform for hosting control programs that implement CORD
services.

29

SEBA: SDN-Enabled Broadband Access

Finally, each unique CORD configuration is defined by a Profile. It consists of a
set of services (e.g., access services, VNFs, other cloud services, etc.), including both
abstract services on-boarded into XOS and SDN control apps running on ONOS. The
two main profiles are M-CORD and R-CORD, which are CORD-based solutions
to manage, respectively, mobile wireless access networks and ultra-broadband
residential services. The latter is briefly described in the next section, as it was
starting point for the development of SEBA.

4.2.1 R-CORD: Residential CORD

To deliver ultra-broadband residential services using the CORD platform and
principles R-CORD was born. R-CORD is an open source solution which aims
to transform the edge of an internet service provider’s network into an agile
service delivery platform, to allow operators to exploit innovative next-generation
technologies to deliver the best end-user experience [16].

Compared to the standard version of CORD, R-CORD also exploits the disag-
gregation/virtualization of the residential user’s RG. This device runs a collection
of essential functions (e.g., DHCP, NAT) and optional services (e.g., Firewall,
Parental Control, VoIP) on behalf of residential subscribers. By extending the
capabilities of the RG in the cloud, new added-value services as well as customer
care capabilities can be provided more easily.

The virtualized RG runs a bundle of functions selected by the subscriber, but it
does so on commodity hardware located at the Central Office rather than on the
customer’s premises. There is still a device at home (which is still called RG), but
it can be reduced to a bare-metal switch, with most of the functionality that ran
on the original RG moved into the central office and running in a virtual compute
instance (e.g., a VM or container) on commodity servers. In other words, the
customer LAN includes a remote VM or container which resides in the central
office, effectively providing every subscriber with direct ingress into the telecom
operator’s cloud.

4.3 SEBA Main Components
SEBA is a lightweight platform based on a variant of R-CORD, born from an
initiative of AT&T and the ONF. The main difference between the two systems is
that SEBA does not exploits the virtualization of the residential gateway, which

30

SEBA: SDN-Enabled Broadband Access

Figure 4.3: SEBA Hardware and Software Architecture [17]

caused a considerable overhead. In SEBA dataplane traffic for a subscriber just
goes through the hardware and out to the Internet, creating a fast-path to the
Internet for subscribers’ traffic. This fast path stays in hardware and only goes out
to compute nodes when necessary, for example, when a subscriber needs to exploit
one or more third-party services deployed in compute nodes. By comparison, in
R-CORD, the traffic that comes from a residential subscriber does not always stay
in hardware, in fact it has to go to compute nodes trough a virtual switch to visit
the virtualized residential gateway. Once finished, traffic goes back to the hardware
and out to the Internet [17].

SEBA inherits all the principles of CORD (it runs on commodity servers and
white-box switches, it is a configurable platform, etc.) but uses the latest cloud
technologies, such as Kuberentes. In fact, SEBA is designed as a set of container
elements which run in a Kubernetes environment. The system is modularized per
typical microservice system architectures, and there is a hierarchy of modularity
used to allow flexible compositions at different scales [18].

Figure 4.3 represents SEBA’s hardware and software architecture, including the
main elements of a PON network (ONU and OLT), the aggregation switches of the
central office and all the software components which implement the control plane

31

SEBA: SDN-Enabled Broadband Access

of the system and run on compute nodes. In the picture are missing the residential
gateway, since it is no more virtualized, and the BNG, because SEBA can operate
with both an external physical BNG and a virtual BNG, with the control plane
software implemented in the compute nodes and the data plane functionalities in
the aggregation switches, which now support aggregation, switching and routing of
data plane and control plane traffic within the SEBA Point Of Delivery (POD).

4.3.1 Hardware Components Disaggregation
The first step to transform the today’s central office following the principles of
SEBA is to disaggregate and virtualize the devices, that is, turn each purpose-built
hardware device into its software counterpart running on commodity hardware [15].
The Ethernet aggregation switch is not virtualized because the switching fabric,
under the control of ONOS, effectively replaces it.

OLT Disagreggation/Virtualization

OLTs represents a large financial investment, consisting of a large amount of
closed and proprietary hardware equipment, used to terminate access for tens
of thousands of subscribers. The virtualization of an OLT devices is especially
challenging because, unlike network functions that are actually implemented by
software applications which run on commodity servers, OLTs are implemented
primarily in hardware. Network traffic is currently distributed to tens of thousands
of customer sites per CO, making them a significant operational burden.

OLT terminates the optical link coming from the splitters in the central office,
with each physical termination point aggregating a set of subscriber connections.
The first step is to create an I/O device with the PON OLT medium access
control (MAC) and all the merchant silicon chips, which is under the control of an
OpenFlow application deployed in ONOS. Figure 4.4 shows this new I/O blade and
the difference with a standard device is immediately evident, especially in terms of
size.

These boxes are then brought under the same SDN-based control paradigm
as the white-box based switching fabric. The control plane application, which
is called virtual OLT (vOLT) and runs on top of ONOS, implements all the
functionality normally contained in a legacy OLT chassis: it manages per-subscriber
authentication, establishes and manages VLANs connecting subscriber’s devices to
the central office and finally manages the other control plane functions of the OLT.

32

SEBA: SDN-Enabled Broadband Access

Figure 4.4: Disaggregated OLT

BNG Disaggregation/Virtualization

As previously said, the virtualization of the BNG is not strictly necessary in SEBA,
but it is reported here for completeness.

BNG can be decomposed into the following control plane (CP) and user plane
(UP) functionalities:

• Control plane: Authentication, Authorization, and Accounting (AAA) and
session control;

• User plane: per subscriber packets and flow processing.

The routing Control Plane (CP) as well as User Plane (UP) are not dependent
on the per-subscriber functions and can thus become separated. By doing so leads
to a look at a BNG as being split into a subscriber-facing functions which is called
Service Edge (SE) and a router. The SE component can be now implemented as
a VNF or CNF in compute nodes while the router part can be embedded in the
aggregation switches.

Further steps of disaggregation are also possible. For example, control and user
plane can be split to allow the User Plane to stay on specialized hardware. This
further division enables service providers to scale both layers independently of each
other and to centralize the control plane.

33

SEBA: SDN-Enabled Broadband Access

Figure 4.5: VOLTHA Software Components [19]

4.3.2 VOLTHA: Virtual OLT Hardware Abstraction
Control and management in the access network space is complex. Each access
technology brings its own set of hardware devices and protocols, above which vendors
deploy their own interpretation or extension of the same network standards.

VOLTHA is an open source project of the Open Networking Foundation (ONF)
to create a hardware abstraction for broadband access equipment, to unify the
control and management of network devices. It supports the principle of multi-
vendor, disaggregated, any broadband access as a service for the Central Office of a
telecom operator[19].

VOLTHA currently provides a common, vendor agnostic, PON control and
management system, for a set of white-box and vendor-specific PON hardware
devices. It has four key concepts:

• Network as a Switch: VOLTHA abstracts all the connected PON access
network devices as a SDN programmable L2/L3 switch, isolating the PON
management system and the PON devices. In this way the SDN controller
does not have to know the PON-level details to work;

34

SEBA: SDN-Enabled Broadband Access

• Evolution to virtualization: VOLTHA supports a lot of access network tech-
nologies and devices and can work with them seamlessly;

• Unified Operations, Administration and Maintenance (OAM) abstraction:
service lifecycle, troubleshooting, device lifecycle (including upgrade and
discovery), alarms, security, system monitoring, etc. are handled in an unified,
vendor and technology agnostic manner;

• Cloud/DevOps bridge to modernization: all the previous key concepts are
implemented and deployed using a microservices architecture which runs on
top of Docker and/or Kubernetes.

In Figure 4.5 the software structure of VOLTHA is visible, which also includes
ONOS, OLT and ONU adapters and a white-box OLT device.

VOLTHA communicates with other systems via two interfaces: the northbound
interface, through which it hides all PON-level details from the SDN controller
and abstracts each PON as a pseudo-Ethernet switch easily programmed by the
controller itself with an ONOS app, and the southbound interface, through which it
communicates with PON hardware devices using vendor-specific protocols through
OLT and ONU adapters. These adapters manage and send commands to the
devices through agents installed in them (in Figure 4.5 only the one for the OLT is
visible) with the gRPC protocol.

VOLHA is in charge of of establishing the data plane connections through the
hardware by interpreting service requests from the SDN controller and transforming
them into requests to be fulfilled by the appropriate adapter. It has also the
responsibility of forwarding control plane requests to the SDN controller, for
example requests concerning authentication protocols like 802.1x and PPoE or
multicast services such as IGMP.

Finally, telecom operators should be able to view logs from all the VOLTHA
components as well as from white box OLT and ONU devices in a single stream.
This aspect is managed through an EFK (Elasticsearch1, Kibana2 and Fluentd3)
setup for VOLTHA which enables the operator to push logs from all components
in a single place.

1https://www.elastic.co/elasticsearch
2https://www.elastic.co/kibana
3https://www.fluentd.org

35

https://www.elastic.co/elasticsearch
https://www.elastic.co/kibana
https://www.fluentd.org

SEBA: SDN-Enabled Broadband Access

4.3.3 ONOS: Open Network Operating System
The possibility offered by SDN to take control functions out of a dedicated box
to centralize them and create applications for such purposes and to dynamically
program data paths through the network plays a key role when steering subscribers’
traffic. In SEBA, when looking at a residential gateway attachment process, there
are two major stages, which can be implemented differently by the various telecom
operators [18]:

• Device attachment and recognition: when device is powered on and attached
to the access node in the service provider domain (usually the ONU) layer 1
comes up and VOLTHA needs to enable the L2/L3 connection. To do so, it
can create an event that is processed by the SDN control framework. Then,
the port is authenticated and a network is created to enable step 2, where the
device attaches to the BNG;

• Subscriber session establishment: the new device is connected to the BNG
by inserting one or more forwarding rules (flow rules) in aggregation switches.
The newly created flow is then registered in a central database inside or
attached to the SDN controller if the BNG is virtualized or its registration is
delegated to the BNG if it is external.

In SEBA, these two features are provided by ONOS, the Open Network Operating
System, which is a distributed SDN controller developed in Java. ONOS can run
as a distributed system across multiple servers, allowing it to use the CPU and
memory resources of multiple servers while providing fault tolerance and potentially
supporting live/rolling upgrades of hardware and software without interrupting
network traffic.

It has four main characteristics [20]:

• Code modularity: it is possible to introduce new functionalities as self-
contained units built independently;

• Configurability: it is possible to load and unload various features, whether it
be at startup or at runtime;

• Separation of concern: there are clear boundaries between subsystems to
facilitate modularity and northbound and southbound APIs are provided to
interact with each subsystem;

36

SEBA: SDN-Enabled Broadband Access

• Protocol agnosticism: ONOS and its applications are not bound to specific
protocol libraries or implementations. If ONOS needs to support a new
protocol, it is possible to build a new module as a plugin that may be loaded
into the system.

ONOS System Components

ONOS is architected with tiers of functionality, represented in Figure 4.6. The three
main tiers are the App component, in which applications consume and manipulate
information aggregated by the managers, the Core or Manager component, which
receives information from Providers and serves it to applications and other services,
and the Providers component, which interface with the network via protocol-specific
libraries and with the core via a specific interface. A service/subsystem is defined
as a unit of functionality that is comprised of multiple components that create a
vertical slice through the tiers as a software stack.

Figure 4.6: ONOS System Components [21]

There are a lot of services (device service, host service, link service, topology
service, etc.) and each of them manages a specific functionality (inventory of
devices, inventory of hosts, inventory of links, snapshots of the network graph view,
etc.). Each of a service’s components resides in one of the three main tiers and
the relationships between those tiers are illustrated in Figure 4.7, where the top
and bottom dashed lines represent the boundaries created by the northbound and
southbound interfaces.

In this thesis three services have been mainly used: device subsystem, application

37

SEBA: SDN-Enabled Broadband Access

Figure 4.7: ONOS Component Interactions [21]

subsystem and flow rule subsystem, which are briefly described below.

Application Subsystem

The main aim of the application subsystem is to facilitate applications deployment
and management across all the ONOS instances in a cluster. The subsystem
exploits ONOS eventually consistent data structures and inter-node communication
procedures to make available the full inventory of applications in all the ONOS
instances [22].

All built in sample and test applications provided by ONOS are delivered ex-
ploiting those two features and are pre-installed in the standard ONOS distribution,
but are not activated by default. This includes any providers, such as OpenFlow
providers. In this way, there is no need to rebuild, or even reconfigure, ONOS itself
when optional software components have to be installed or withdrawn from it.

Device Subsystem

The main responsibility of the device subsystem is to discover and track the devices
that comprise the network and to enable operators and applications to control
such devices. Most of ONOS’s core subsystems rely on the Device and Port model
objects, which are an abstraction of a device with its ports, created and managed
by this subsystem, and on its provider for interacting with the network [23].

The provider component of this subsystem is made up of multiple providers,

38

SEBA: SDN-Enabled Broadband Access

each with support of their own network protocol libraries or means to interface
with the network. In this thesis the OpenFlowDeviceProvider is used, which allows
ONOS to interact with OpenFlow networks, those used in SEBA.

Flow Rule Subsystem

The main aim of the flow rule subsystem is to manage flow rules which are present
in the system and to install them into specific devices in the network [24].

This subsystem implements the semantics of a distributed authoritative flow
table where the master copy of the flow rules is contained in the controller and
then it is pushed down to the devices. According to this mechanism the subsystem
never tries to discover information from the network itself and never tries to deal
with flows that are already present on devices. If a flow is detected by ONOS on a
device that should not have it according to its authoritative flow table, ONOS will
remove that flow.

The providers of this subsystem are responsible for collecting statistics on flows
installed in the network and to report this data to the flow rule subsystem itself.
Then, the subsystem uses these reports to ensure that its representation of the
network state is still present on the devices on the network.

4.3.4 NEM: Network Access Mediator

Transforming today’s CO into CORD is a two-step process. The first step is to
disaggregate and virtualize the hardware devices, so what has been illustrated
in the previous sections, while the second step is to provide a framework into
which the resulting disaggregated elements can be plugged, producing a coherent
end-to-end system. This framework defines the unifying abstractions that forge
this collection of hardware and software elements into a scalable and agile system
[15].

The Network Edge Mediator (NEM) serves as the mediation layer between
the edge/access system and the service provider backend and global automation
frameworks. NEM will provide the interfaces and components required by the
service provider for managing the access network components and broadband service
subscribers the SEBA POD is designed to offer and support. A variety of operator
OSS/BSS and global orchestration frameworks can be integrated northbound for
specific deployment needs. NEM plays two important roles in SEBA [25]:

39

SEBA: SDN-Enabled Broadband Access

• NEM forms a complete and unified solution. Each telecom operator wants
a different subset of the available disaggregated components, which can be
specified in NEM at configuration time with a resource called Profile. In the
case of SEBA, for example, some operators want the BNG to be internal to
the solution and some want it to be external. Moreover, when the BNG is an
internal, some operators want it to be implemented in containers and others in
the switching fabric. NEM puts together all the components specified in the
declarative profile into a self-contained resource, by generating the necessary
glue code. It offers a coherent Northbound Interface to the operator’s OSS/BSS,
and it manages any state that needs to be shared among the components.
This avoids hardwiring dependencies into each component;

• NEM manages all the environment dependencies defining a runtime Workflow,
which has to be created by the telecom operator. In SEBA the workflow
specifies how the integrated solution interacts with the surrounding operational
environment, as individual subscribers are managed throughout their lifecycle
(e.g., new RG online/existing RG offline). The workflow specifies all aspects of
what happens as RGs and ONUs are detected and approved, authentication
packets are sent by the subscriber and are authenticated, DHCP requests
are received and IP addresses assigned, and, finally, packets start flowing.
Different workflows can be defined for different operators, yet reuse all the
same components without modification.

At a high level, NEM consists of three subsystems: an Authoritative State
Manager (implemented by XOS), which manages the state needed to configure
and control the collection of backend components, a Monitored State Manager
(implemented by Prometheus, Grafana, Elk Stack and Kibana), which collects and
manages the logs, metrics, and events produced by the backend components and
an Event Bus (implemented by Kafka), which shares events among all the backend
components and NEM subsystems.

Among the three components the most important is certainly XOS, used in the
context of SEBA to control the virtualized OLTs via VOLTHA and the aggregation
switches via ONOS, which is described below.

40

SEBA: SDN-Enabled Broadband Access

Figure 4.8: XOS Internal Structure

XOS

XOS is a logically centralized, model-based service for operating micro-service-based
cloud applications. XOS complements cloud orchestration tools like Kubernetes,
which manages the set of containers that implement each micro-service, focusing
instead on managing the state necessary to configure and control the collection of
micro-services as a whole, and doing so at the granularity of individual subscribers.
In this sense, XOS can be thought of as augmenting the micro-service-based
architecture with an Extensible Service Control Plane [25].

XOS plays a central role in operationalizing the disaggregated backend com-
ponents in SEBA. It takes a set of model definitions (schema) as input, and
auto-generates the glue code needed to integrate those components. XOS internal
structure is shown in Figure 4.8.

The models define both the Profile of disaggregated components the operator
wishes to deploy and the Workflow required to integrate those components into
a surrounding operational environment. The auto-generated code includes the
Northbound Interface used by the operator to manage the deployment and the
Synchronization Framework needed to keep the backend components synchronized
with the authoritative state defined in the data models.

The XOS Data Model is initialized with a set of core models. The core defines

41

SEBA: SDN-Enabled Broadband Access

common abstractions, such as services and service dependencies. Each component
that is to be integrated into a particular Profile then loads one or more component-
specific models into XOS (these typically extend the core models), along with a
Synchronizer plugin (an imperative program) that map the abstract declarative state
about how the system is supposed to behave (as defined by the XOS data model)
into the concrete operational state of the backend components that implement
the system. XOS also supports purely logical services that have no corresponding
backend component. These logical services create new/composite functionality by
programming the data model. Models used by XOS are written with the XOS
Modeling Framework, which defines a language for specifying data models and a
tool chain for generating code based on the set of models.

Finally, XOS also plays an important role in SEBA’s security, providing hooks
for specifying security policies, which are generic logic expressions that can operate
on any model or on the environment. These policies determine what a user,
represented by a user model or by an API context, can do on a given resource
(read, write, update, etc.). The policies are enforced at the API boundary. When
an API call is made, the appropriate policy is executed to determine whether or
not access should be granted, and an audit trail is left behind. The policy enforcers
are auto-generated by the generative toolchain as part of the model generation
process.

42

Chapter 5

SiaB: SEBA-in-a-Box

SEBA is a big framework and it requires a lot of hardware components to be
deployed and tested, making a first approach impossible for a user interested in
the technology, who would have to buy and configure a lot of network equipment.
Some problems arise even if it is an internet operator or a new possible SEBA
partner which is interested in the framework, since developing and testing new
features or new system integrations in such a complex system takes a long time
and it is impossible without having a complete system deployed.

To solve these problems the developers of SEBA created a fully virtualized and
easy to setup version of the framework, which can be installed on a single Ubuntu
server together with Docker and Kubernetes. Thanks to this lightweight version of
SEBA, called SEBA-in-a-Box (SiaB), in this thesis it was possible to analyze the
SEBA system and look for a method to integrate it with NSM.

In this chapter SiaB is analyzed, highlighting the differences with the standard
version of SEBA and showing the operator workflow it uses to manage residential
access.

5.1 Differences with SEBA

The main difference between SEBA and SiaB is hardware virtualization, in fact
control plane software is the same in both systems. The default configuration
of SiaB incorporates an emulated RG/ONU/OLT provided by PONSIM and an
emulated AGG switch provided by Mininet. Mininet is also configured with a host
that stands in as the BNG and runs a DHCP server. The RG is able to authenticate

43

SiaB: SEBA-in-a-Box

itself via 802.1x, run dhclient to get an IP address from the DHCP server in Mininet,
and finally ping the BNG. This demonstrates end-to-end connectivity between the
RG and BNG via the ONU, OLT, and aggregation switch [26].

With SiaB two other configurations are possible: the first allows to use a physical
aggregation switch instead of an emulated Mininet topology, reducing hardware
virtualization to PON components only, the second one allows to use a disaggregated
BNG, instead of an external one, with the BNG data plane implemented in the
aggregation switch and the control plane functionalities implemented in ONOS
(section 4.3.1). Thanks to these possible additional configurations, many more use
cases can be tested, also depending on the hardware available and the type of BNG
to be tested.

5.1.1 PON Virtualization
PON virtualization is based on two different Helm charts: PONSIM and PONNET.
The first chart to be installed is PONNET, which creates two or more Linux bridges,
pon0 and nni0, nni1, etc. depending on the selected number of simulated OLTs,
that allow a L2 dataplane to be created between the PONSIM RG and components
upstream of the PONSIM OLT. To create these bridges, the chart modifies the
underlying Kubernetes setup by installing the bridge CNI and adding configuration
files to create the two bridges. During the installation the number of desired ONUs
and OLTs must be specified (between 1 and 4) to configure the right number of
interfaces in the bridges.

Once the PONNET chart has been installed PONSIM can be installed too. It
deploys the hardware component of a PON, so one or more RGs, ONUs and OLTs,
as a set of containers in as many Kubernetes pods, in the context of VOLTHA.
All deployed pods are independent of each other and are scalable. OLT pods
communicates with ONU pods and with VOLTHA through the gRPC protocol,
while RGs and ONUs communicates through the pon0 bridge.

Finally, PONSIM also offers a CLI tool to use the simulator outside of a
Kuberentes cluster, giving the possibility to independently create, manage and test
one or more RGs, ONUs and OLTs.

44

SiaB: SEBA-in-a-Box

5.1.2 Mininet

As mentioned previously, the aggregation switch and the BNG are simulated
through Mininet. Mininet is a network emulator which creates a network of virtual
hosts, switches, controllers, and links. Mininet hosts run standard Linux network
software, and its switches support OpenFlow for highly flexible custom routing and
Software-Defined Networking [27].

One of the main advantages of Mininet is that its networks run real code
including standard Unix/Linux network applications as well as the real Linux
kernel and network stack (including any kernel extensions which may have been
available, as long as they are compatible with network namespaces).

Because of this, code developed and tested on Mininet for an OpenFlow controller,
modified switch, or host, can move to a real system with minimal changes, for
real-world testing, performance evaluation, and deployment. Importantly this
means that a design that works in Mininet can usually move directly to hardware
switches for line-rate packet forwarding.

In SiaB, Mininet is deployed through a Helm chart, which depends on the
PONNET one. This chart creates a virtual aggregation switch with Open vSwitch1,
that connects to the OLT(s) created by PONSIM through the nniX bridges, and
a host that stands in as the BNG and runs a DHCP server. This host has a
static IP address determined by the number of ONUs and OLTs present in the
deployment (e.g. 172.18.0.10 with 1 OLT and 1 ONU) and is configured with some
double-tagged interfaces to untag incoming traffic and tag outgoing traffic [28]. The
usage of VLAN tags is better explained in the following section while the usage of
double tagged interfaces is explained in the next chapter.

5.2 AT&T SEBA Workflow

To have a fully functional and testable version of SEBA it is not enough to
have the hardware available but it is also necessary to develop the software that
regulates the functions of the control plane and that manage the interaction
between the residential users and the devices managed by SEBA, starting from
users’ authentication.

1https://www.openvswitch.org/

45

https://www.openvswitch.org/

SiaB: SEBA-in-a-Box

The specification of this interaction is called Workflow and depends on the
telephone operator who decides to use SEBA. Actually there are four available
workflows described in the official documentation of SEBA2 but SiaB uses only
one, developed by the AT&T operator [29]. It authenticates end-users with the
802.1x protocol and exploits an external BNG.

The workflow is made of several steps, which are illustrated below:

1. A new ONU is turned on and discovered by the OLT. If its serial number is
not allowed or unknown, it is disabled by default. Anyhow, an event stating
that a new ONU has been discovered is generated and sent to the NEM, which
determines whether the ONU is valid by consulting local pre-provisioned data;

2. If the ONU is valid the port is enabled and an authentication 802.1x trap flow
is programmed in the OLT;

3. RG sends an 802.1x an EAPOL message which is trapped by the OLT and
sent to ONOS. Here the ONOS AAA app adds options and sends to RADIUS
server, which authenticates the request with its internal information;

4. If RG authentication fails, allow it to keep trying. If RG authentication
succeeds, ONOS AAA app notifies via an event on the Kafka bus that authen-
tication has succeeded;

5. NEM can listen for this event and program the network with its synchronizer
modules (the process is graphically shown in Figure 5.1):

• It creates a new subscriber service instance with two VLAN tags: the
Customer tag (C-tag) which is added by the ONU and it is used for the
customer’s purposes and the Service tag (S-tag) which is added by the
OLT and is used for forwarding purposes;

• With the OLT synchronizer (vOLT Synchronizer), it programs a DHCP
trap rule in the OLT to intercept DHCP packets coming from the RG;

• With the ONOS synchronizer (Fabric-xconnect Synchronizer), it programs
the aggregation switch to forward L2 Q-in-Q VLANs packets to the
external BNG. BNG is always configured to strip VLAN tags.

2https://wiki.opencord.org/display/CORD/SEBA+Workflows

46

https://wiki.opencord.org/display/CORD/SEBA+Workflows

SiaB: SEBA-in-a-Box

Figure 5.1: NEM steps for new user subscription

6. RG sends a DHCP request packet which is intercepted by the OLT and sent
to ONOS. Here the ONOS DHCP L2 relay app adds some information to the
packet and then sends it back to the data plane, where it is forwarded to the
DHCP server in the BNG by the aggregation switch;

7. The DHCP response is sent directly to the RG from the BNG without the need
of extra processing and an event is generated into the Kafka bus regarding the
DHCP state machine for each subscriber (including IP + MAC information);

8. If RG is disconnected from the ONU, authentication is forced again. Upon
reconnection to the ONU, RG must re-authenticate before DHCP/other-traffic
can flow on the provisioned VLANs.

In Figure 5.2 is shown a high-level complete vision of the AT&T workflow, in which
are indicated the functions of each component and the path of a packet in the
network with a blue line.

The steps just illustrated are only the most important part of the AT&T
workflow, which actually include other specifications, for example the hardware
requirements, the maximum number of ONUs per OLT or the maximum number
of OLTs connected to a single aggregation switch and many more. Finally, the
workflow also indicates how to properly disable or remove one or more components
without corrupting the system and how to react if a component fails.

47

SiaB: SEBA-in-a-Box

Figure 5.2: SEBA AT&T Workflow Overview

5.3 SiaB Use Case

In Figure 5.3 it is visible the full dataplane of SEBA-in-a-Box with one ONU and
one OLT, with all the elements explained in the previous sections. This is the
scenario used for the study of the framework and for the integration part between
SEBA and NSM.

In this section other details regarding the functioning of this scenario will be
added and it will be shown how to obtain an IP address for the residential gateway
deployed with PONSIM and how to perform a ping test between the RG and the
BNG deployed in Mininet.

First of all, the gray squares and rectangles in Figure 5.3 represent pods in a
Kubernetes cluster, deployed in different namespaces. In the picture are also visible
the two Linux bridges (pon0.0 and nni0) connecting the RG with the ONU and the
OLT with the aggregation switch emulated in Mininet. Finally, inside the Mininet
pod it is visible the BNG with the static IP address 172.18.0.10, connected to the
aggregation switch with a virtual link emulated by Mininet.

Near the connection between ONU and OLT, made with gRPC, and between
OLT and aggregation switch, made with the Linux bridge, the VLAN tags used in
this scenario are also visible. The customer tag (inner tag), added by the ONU, is
111, while the service tag (outer tag), added by the OLT, is 222.

48

SiaB: SEBA-in-a-Box

Figure 5.3: SEBA-in-a-Box Dataplane Components

As far as the control plane of SiaB, in the picture are visible only the VOLTHA
pod and the ONOS pod, in their usual representation. The NEM pod is not
represented because it is composed of several pods, in particular XOS alone is
composed of six pods, which implement different functionalities such as the GUI,
the core component and the database.

Once all the pods are available in Kubernetes and the system is fully deployed (a
complete guide to deploy the system is available in the next chapter), it is possible
to start the procedure to request an IP address for the RG, which will be in the
172.18.0.0/24 pool of addresses [26]:

1. Before starting the procedure it is necessary to remove from the dhclient profile
from apparmor if present on the host:

$ sudo apparmor_parser -R /etc/apparmor.d/sbin.dhclient ||
true

2. Enter the RG pod in the VOLTHA namespace and open a shell:

$ RG_POD=$(kubectl -n voltha get pod | grep rg0-0 | awk
’{print $1}’)

$ kubectl -n voltha exec -ti $RG_POD bash

49

SiaB: SEBA-in-a-Box

3. Inside the pod, run the following command:

$ wpa_supplicant -i eth0 -Dwired -c
/etc/wpa_supplicant/wpa_supplicant.conf

whose output must match the following one:

Successfully initialized wpa_supplicant
eth0: Associated with 01:80:c2:00:00:03
WMM AC: Missing IEs
eth0: CTRL-EVENT-EAP-STARTED EAP authentication started
eth0: CTRL-EVENT-EAP-PROPOSED-METHOD vendor=0 method=4
eth0: CTRL-EVENT-EAP-METHOD EAP vendor 0 method 4 (MD5)

selected
eth0: CTRL-EVENT-EAP-SUCCESS EAP authentication completed

successfully

4. Remove the IP address assigned to the main network interface of the pod:

$ ifconfig eth0 0.0.0.0

5. Request a new IP address to the DHCP server in the BNG:

$ dhclient

The output is the following:

mv: cannot move ’/etc/resolv.conf.dhclient-new.46’ to
’/etc/resolv.conf’: Device or resource busy

This error can be ignored, it is caused by the fact that /etc/resolv.conf is
mounted into the RG container by Kubernetes and dhclient wants to overwrite
it.

At the end of this procedure a new IP address will be assigned to the eth0
interface and it will therefore be possible to ping the BNG at its address 172.18.0.10.

Finally, it should be noted that it is not currently possible to contact hosts on
the Internet via SiaB, all traffic ends at the BNG.

50

Chapter 6

Integrating SEBA (SiaB)
and Network Service Mesh

This chapter describes the process of integrating SEBA-in-a-Box and Network
Service Mesh.

The study was divided into two scenarios:

• First scenario: SiaB and NSM are developed in the same server, creating a
full cloud-native environment where every component is managed with the
same instance of Kubernetes. This first scenario simulates the real use case in
which both SEBA and NSM are deployed within the central office of a telecom
operator and can be applied when the CNF chains do not require a dedicated
infrastructure;

• Second scenario: SiaB and NSM are deployed in two different servers, with two
different instances of Kubernetes. This second scenario is applicable when the
CNF chains require a lot of computational capabilities and therefore cannot be
deployed on the same servers that manage the SEBA control plane. Thanks
to the dedicated infrastructure, it is possible to create larger CNF chains or
duplicating one or more existing chains, also introducing a load balancing
functionality.

Before describing the integration process for each scenario, it is explained how
to correctly deploy the two systems, highlighting some of the possible problems
and the solutions to solve them.

51

Integrating SEBA (SiaB) and Network Service Mesh

6.1 First Scenario: SiaB and NSM in the same
server

In this scenario SiaB and NSM are developed in the same server, creating a full
cloud-native environment. As mentioned above, this scenario can be applied when
the CNFs of the telecom operator do not require much computing power and
therefore a dedicated infrastructure is not required.

Resource consumption is significant since the servers hosting the SEBA control
plane applications do not require high performance and are therefore not suitable
for processing large amounts of traffic, as it may be necessary for some network
functions, such as firewalls or IDS/IPS.

On the other hand, always using high-performance servers in order to support
any type of CNF workload can involve a large expense of money and could prove
useless if there is not always the need to maintain high performance.

6.1.1 SiaB Deployment

SiaB developers have tried to make its installation as simple as possible, creating
a special Makefile that takes about 10 minutes to install the whole system on a
physical server or VM. The recommended operating system is Ubuntu 16.04.

To get the Makefile and start the installation just run the following commands:

$ git clone https://gerrit.opencord.org/automation-tools
$ cd automation-tools/seba-in-a-box
$ rm Makefile
$ git clone https://github.com/PPaviii/my-SiaB.git .
$ make [NUM_OLTS=n] [NUM_ONUS_PER_OLT=m]

The number of OLTs and the number of ONUs for OLT must be between 1 and 4,
and by default they are both set to 1.

During the installation procedure the original Makefile is removed because to
enable IPv4 forwarding in Kubernetes it is necessary a modified version of the Calico
CNI configuration file, which is provided in the repository https://github.com/PPaviii/my-
SiaB.git together with the modified Makefile that allows its correct use.

In some cases the commands listed so far may be sufficient to install the complete
system, but it is possible that the following problems may arise:

52

Integrating SEBA (SiaB) and Network Service Mesh

• Errors due to the expiration of a timeout: in many places in the makefile
timeouts have been implemented to wait for Kubernetes pods to become
operational. On some occasions, depending on the performance of the server
or VM, the timeout may not be sufficient, and the installation procedure
fails. To solve the problem just restart the installation with the same initial
command, which will restart from where it left off;

• Errors due to CrashLoopBackOff status of the CoreDNS pods: CoreDNS is a
flexible, extensible DNS server that can serve as the Kubernetes cluster DNS
[30]. Sometimes these pods can stop working properly due to a short loop of
DNS requests, entering in the CrashLoopBackOff status. To solve the problem
is sufficient to disable the loop detection functionality in the pod configuration
file and to restart the pods, with the following commands:

$ kubectl -n kube-system edit configmap coredns

comment or delete line 19 of the file, which contains the word loop and then
restart the pods:

$ kubectl -n kube-system delete pod -l k8s-app=kube-dns

Finally, resume the installation procedure with the same initial command;

• Missing ONOS applications: this problem occurs if the Kubernetes pods do
not have direct internet access, for example due to a proxy. In this situation
it is not possible to download the ONOS applications of the control plane and
therefore they must be added manually to the system. First of all, download
the ONOS app on the server with the following command:

$ git clone https://github.com/PPaviii/onos-app-SiaB.git

Then, it is necessary to activate the ONOS GUI (username: karaf, password:
karaf) from the CLI and then manually upload the files:

$ ssh onos@127.0.0.1 -p 30115 (password: rocks / karaf)
onos@root > app activate gui

Finally, upload and activate all the ONOS applications previously downloaded
from the URL: localhost:30120/onos/ui/index.html#/app and resume
the installation procedure with the same initial command.

53

localhost:30120/onos/ui/index.html#/app

Integrating SEBA (SiaB) and Network Service Mesh

After solving some or all these errors the installation should finish correctly, and
it will be possible to carry out the steps listed in section 5.3 to authenticate the RG
and ping the BNG. From the ONOS GUI it is also possible to see the full network
topology, which will include the RG, the emulated OLT and ONU, displayed as a
single device thanks to VOLTHA, the aggregation switch and the BNG.

6.1.2 NSM Deployment

The deployment of Network Service Mesh is divided into three parts: a first part
where all the components to make NSM work are installed and a second part where
the firewall use case with its three pods is installed (section 3.1.4) and a third part
where some routes are added to the routing tables of the various pods so that the
whole system works correctly. The steps to install the framework are as follows:

• Download the source code of NSM and enter the corresponding folder:

$ git clone https://github.com/networkservicemesh/
networkservicemesh.git

$ cd networkservicemesh/

• Download the source code of the firewall use case, called example, and put it
into the deployments folder:

$ git clone https://github.com/PPaviii/my-nsm.git
deployments/helm/example

• Install Network Service Mesh, selecting the default Kubernetes namespace
and the kernel forwarder:

$ NSM_NAMESPACE=default FORWARDING_PLANE=kernel
INSECURE=true SPIRE_ENABLED=false make helm-install-nsm

• Install the firewall use case pods, with the same options as before:

$ NSM_NAMESPACE=default FORWARDING_PLANE=kernel INSECURE=true
SPIRE_ENABLED=false make helm-install-example

To insert one or more route towards a specific subnet into the routing table
enter the selected pod and use the command:

54

Integrating SEBA (SiaB) and Network Service Mesh

$ ip route add <subnet_CIDR> via <IP_address_next_hop>

The routes that must be entered are:

• NS client routes: in the client must be entered the route to reach the IP
address of the NS server (172.16.2.2);

• Firewall routes: in the client must be entered the route to reach the IP address
of the residential gateway;

• NS server routes: in the server must be entered the routes to reach the IP
address of the NS client (172.16.1.1) and the one of the residential gateways.

Network Service Mesh installation should be successful in most cases, except
in the presence of a proxy. In the latter case it is necessary to add two Linux
environment variables in the /etc/environment file:

NO_PROXY=nsm-admission-webhook-svc.nsm-system.svc
no_proxy=nsm-admission-webhook-svc.nsm-system.svc

where nsm-system is the name of the namespace where NSM is installed (default
in the case of this thesis).

Once the installation is finished, the framework will work correctly and the NS
client pod will be able to send and receive traffic from the NS server pod through
the firewall.

6.1.3 Integration Procedures
Up to this point all the SiaB and NSM pods are deployed in the same instance of
Kubernetes, but the systems are not connected and cannot yet exchange traffic.
The first step is to connect the data planes of the two systems and then modify
the control plane with XOS so that the traffic flows from SiaB to NSM and then
comes back.

Figure 6.1 represents the final deployment after integrating the two systems.
NSM is connected to SiaB between the aggregation switch and the BNG, with the
NS client connecting to the aggregation switch via a veth pair. Figure 6.1 depicts
a more general scenario, where a generic CNF is represented instead of NS client.

55

Integrating SEBA (SiaB) and Network Service Mesh

Figure 6.1: Graphical Representation of the First Integration Scenario

Connect Mininet pod with NS Client pod

A custom made veth pair was used to connect the two pods together, with one head
in the network namespace of the Mininet pod and the other one in the network
namespace of the NS client. In Kubernetes it is not easy to find the namespace of
a pod, so it is necessary to find it with two Docker commands:

• Mininet network namespace:

$ DOCKER_ID_MN=$(docker ps | grep <mininet_pod_name> |
head -n 1 | awk ’{print $1}’)

$ POD_NETNS_MN=$(docker inspect --format ’{{ .State.Pid
}}’ $DOCKER_ID_MN)

• NS Client network namespace:

$ DOCKER_ID_NSC=$(docker ps | grep <ns_client_pod_name> |
head -n 1 | awk ’{print $1}’)

$ POD_NETNS_NSC=$(docker inspect --format ’{{ .State.Pid
}}’ $DOCKER_ID_NSC)

Once both network namespaces are found the command to create the veth pair
is the following:

56

Integrating SEBA (SiaB) and Network Service Mesh

$ ip link add <mininet_interface_name> netns $POD_NETNS_MN
type veth peer name <ns_client_interface_name> netns
$POD_NETNS_NSC

where mininet_interface_name and ns_client_interface_name are the names
assigned to the new veth interfaces in their respective pods. Once the two interfaces
have been created enter both pod and activate them with the command:

$ ip link set dev <interface_name> up

Once all these operations are finished, the two pods will be correctly connected
and will be able to exchange traffic. The two systems, however, are not yet connected
because the new veth interface in the mininet pod is not directly connected to the
aggregation switch, and therefore the RG cannot yet communicate with NSM.

Connect veth interface in Mininet to the Aggregation switch

The last step to connect the two systems is to connect the new Mininet pod interface
to the simulated aggregation switch in it. Since the switch is emulated through
OpenvSwitch its CLI will be used, which is called ovs-vsctl.

First of all, the name of the switch is needed, which can be found with the
command:

$ ovs-vsctl show

Then, the command to add the port to the switch is the following:

$ ovs-vsctl add-port <switch_name> <veth_interface_name>

Finally, it is possible to check if the port was added successfully by looking at the
list of all the ports of the switch, where the new port must be present:

$ ovs-vsctl list-ports <switch_name>

At this point the two systems are correctly connected from the point of view of
the data plane, but there are still some problems to be solved:

• The BNG is still the default gateway for the RG so all traffic directed to CNFs
deployed in NSM, which have an IP address in a different subnet compared to
that of the RG, is still sent to the BNG instead of to the NS Client;

• NSM does not currently support VLAN tagged traffic forwarding and then all
tagged packets that arrive at the NS Client are discarded by default;

57

Integrating SEBA (SiaB) and Network Service Mesh

• Currently the aggregation switch is configured to send all the traffic it receives
from the RG to the BNG, without the possibility of steering it to the CNF
chain in NSM;

• Calico source NATting prevents the RG pod from communicating with the IP
address assigned to it by DHCP, replacing it with the one of the host server
on which both systems are deployed. Due to this behavior the routing cannot
work, and the use case would no longer be applicable to a real scenario, where
the RG is not a pod and therefore does not suffer this effect.

Additional integration steps are required to resolve these issues, as detailed
below.

Create double tagged VLAN interfaces on NS Client

NSM does not support and cannot forward VLAN tagged traffic from SiaB, which
in turn cannot function without VLAN tagged traffic. It is therefore necessary to
find a method to untag all packets arriving at NS client from the veth interface
connected to the aggregation switch and to tag all those that leave the same veth
interface towards SiaB.

The method is to create two 802.1Q VLAN interfaces on top of the veth interface
of the NS client pod, which untag incoming traffic and tag outgoing traffic. These
interfaces are logical interfaces that can be created on a hardware interface. These
software-defined interfaces allow the segregation of traffic into separate logical
channels on a single hardware interface, with which they share the MAC address
and all the other physical characteristics. In this case two interfaces are needed
since there are two VLAN tags, so the first interface inserts/removes the outermost
(222) tag while the second interface the innermost one (111).

The procedure to create and activate the two interfaces is as follows:

• Create the first 802.1Q interface on top of the veth interface, to manage the
outermost tag:

$ ip link add link <veth_interface_name> name
<veth_interface_name>.222 type vlan id 222

• Create the second 802.1Q interface on top of the one just created, to manage
the innermost tag:

58

Integrating SEBA (SiaB) and Network Service Mesh

Figure 6.2: 802.1Q VLAN Tagged Interfaces Configuration

$ ip link add link <veth_interface_name>.222 name
<veth_interface_name>.222.111 type vlan id 111

• Activate both interfaces:

$ ip link set dev <veth_interface_name>.222 up
$ ip link set dev <veth_interface_name>.222.111 up

Finally, thanks to these two new interfaces it is possible to easily solve the
defalut gateway problem, assigning the same address as the BNG to the double
tagged interface of NS client. In this way the traffic directed to the default gateway
that arrives at the NS Client is not discarded but it is directed towards the CNFs
chain without having to introduce changes to the configuration of the RG, thus
making the solution more manageable. The Linux command to carry out this
procedure is:

$ ip addr add 172.18.0.10/24 dev <veth_interface_name>.222.111

Figure 6.2 provides a graphical representation of the connection between the
aggregation switch and the NS Client, with the virtual veth_nsc interface and the
two logical virtual 802.1Q interfaces created on top of it.

59

Integrating SEBA (SiaB) and Network Service Mesh

Modify XOS configuration to steer RG’s traffic

The next step to make the two systems communicate is to modify the forwarding
rules of the aggregation switch to steer the traffic that originally was directed to
the BNG towards the CNFs chain in NSM. Before illustrating the procedure to
modify the existing forwarding rules, the mechanism of operation of XOS and the
abstractions on which it is based are briefly presented.

The first abstraction used by XOS is the VLAN Cross Connect: VLAN cross
connect creates a L2 bridge between two given ports on the same device. Once
configured, every packet arriving at one of the ports with specific VLAN tag will
be sent to another port directly. Current implementation only matches on the
outermost VLAN tag. If the packet is double tagged, the S-tag will be matched and
both the S-tag and C-tag will be persisted [31]. A cross connection is created on
an OpenFlow device with the segmentrouting ONOS application, which is present
by default on every ONOS instance.

This abstraction is used by the Fabric Crossconnect service in XOS [32], which
creates an L2 bridge between two given ports on the same device.

The service is made up of three parts:

• FabricCrossconnectService global service-related parameters, such as the name
of the service. There is currently no additional state here beyond the default
XOS Service model;

• FabricCrossconnectServiceInstance represents one half of a VLAN crossconnect.
Fields include the following:

– s-tag: the VLAN id that will be connected;

– switch_datapath_id: switch id where the VLAN crossconnect will be
enacted;

– source_port: the source port number on the switch.

• BNGPortMapping represents the other half of a VLAN crossconnect. Fields
include the following:

– s-tag: the VLAN id that will be connected. In addition to specifying a
single id, the keyword ANY may be used, or also a range of ids;

– switch_port: the output port number on the switch.

60

Integrating SEBA (SiaB) and Network Service Mesh

Property Value
Name <custom_name>
Owner id fabric-crossconnect
S tag 222
Source port 2
Switch datapath id of:0000000000000001

Table 6.1: Parameters to create the Fabric Crossconnect Service Instance

FabricCrossconnectServiceInstance and BNGPortMapping work together to
create a VLAN crossconnect tuple, linked by a common s-tag.

The Fabric Crossconnect service uses the synchronization framework (Figure 5.1)
to modify ONOS forwarding rules: When a FabricCrossconnectServiceInstance or
a BNGPortMapping is created, updated, or deleted, the synchronizer will make a
REST API call to ONOS. Appropriate cross connections are removed from ONOS
and parallelly new BNG data and rules are pushed to it.

To create the cross connection in XOS there two alternatives: the GUI or the
APIs exposed by XOS. In both cases all the parameters listed above are required
(s-tag, switch_datapath_id, source_port and switch_port). The GUI is reachable
at http://localhost:30001 and can be accessed with admin@opencord.org as
username and letmein as password.

From the home page of the system navigate to Fabric crossconnect -> Fabric
Crossconnect Service Instances, delete the existing entry in the table and click
the top right Add button. In the new page create a new instance with the values
contained in Table 6.1.

Before creating the BNG Port Mapping it is necessary to discover the id of
the veth interface connected to the aggregation switch. To find this id, simply
navigate http://localhost:30120/onos/ui/index.html#/device (ONOS GUI)
and click on the aggregation switch, called leaf_1, after which a window will open
indicating the port id of all the switch ports.

Once the id is found (which is usually 3), navigate to Fabric crossconnect
-> BNGPortMappings, delete the existing entry in the table and click the top
right Add button. Here create a new port mapping with the values contained in
Table 6.2.

Once the creation of the BNG port mapping is finished, it is sufficient to wait a
few moments for XOS to synchronize the ONOS forwarding rules, after which the

61

http://localhost:30001
http://localhost:30120/onos/ui/index.html#/device

Integrating SEBA (SiaB) and Network Service Mesh

Property Value
S tag 222
Switch port <port_id>

Table 6.2: Parameters to create the BNG Port Mapping

two systems will finally be correctly connected also from the control plan point of
view. All that remains is to disable the calico source NATting to finish the systems
integration.

Disable Calico source NATting

Calico CNI implements a source NATting policy by default in case a pod is trying
to contact an IP address outside the Kubernetes cluster. In the case described
in these pages, source NATting is enabled although the pods are all in the same
cluster and this is due to the fact that the NSM pods are in a different subnet than
the one of the RG.

To disable this functionality it is necessary to first install calicoctl, the CLI of
Calico CNI:

$ cd /usr/local/bin
$ curl -O -L

https://github.com/projectcalico/calicoctl/releases/
download/v3.16.2/calicoctl

$ chmod +x calicoctl

Then, create a new YAML file with this content:

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:

name: no-nat-rg
spec:

cidr: 172.16.2.0/30
disabled: true
nodeSelector: all()

Where 172.16.2.0/30 is the subnet of the NS Server (the last CNF of NSM).
Finally, to disable the source NATting run the command:

62

Integrating SEBA (SiaB) and Network Service Mesh

$ DATASTORE_TYPE=kubernetes KUBECONFIG=~/.kube/config
calicoctl apply -f <file_name>.yaml

After this last command all the problems have been resolved, the two systems
will be perfectly integrated and they will be able to exchange traffic, more precisely
the RG will be able to ping the last CNF of the NSM chain (NS Server).

6.2 Second Scenario: SiaB and NSM in two dif-
ferent servers

In this scenario SiaB and NSM are developed in two different servers, with two
different instances of Kubernete. As mentioned at the beginning of this chapter,
this scenario can be applied when the CNFs of the telecom operator do require
much computing power and therefore a dedicated infrastructure is required.

A dedicated infrastructure not only brings advantages in terms of server perfor-
mance management and number of CNFs deployed but also allows greater flexibility
in the management of CNFs since the entire infrastructure can be changed without
the risk of damaging the one that controls the central office pods, which are critical
services and cannot stop working.

Furthermore, there is greater flexibility regarding the deployment of the CNFs, in
fact a dedicated infrastructure can be positioned anywhere in the telecom operator’s
network and not necessarily in the central office.

6.2.1 Servers Configuration
Figure 6.3 represents the configuration of the two servers used in this scenario.
SEBA-in-a-Box is deployed on the first server and is connected via a physical
interface to the second server, where Network Service Mesh is deployed. Also on
this server, there is a physical interface connected to the cluster. The connections
between cluster and physical interfaces (represented in orange in the figure) are
made through a veth pair between the host and a pod within the cluster.

The physical connection between the two servers is instead a normal Ethernet
connection between the two NICs, both with an IP address assigned. A more
complete characterization of the two servers will be carried out in section 7.1.

63

Integrating SEBA (SiaB) and Network Service Mesh

Figure 6.3: Graphical Representation of the two Servers

6.2.2 SiaB and NSM Deployment

The deployment of SiaB is exactly identical to the one illustrated in the previous
sections. There is only a small difference in NSM deployment: in the NSM server,
to avoid black holes or other routing problems, it is better to configure a different
network CIDR for Kubernetes’ pods than the one used in the SiaB cluster and the
one used by the CNFs of Network Service Mesh.

Compared to the previous scenario, many of the integration procedures are the
same, the main differences are in the connection of the two systems to physical
servers that host them and in some additional entries in the routing tables.

6.2.3 Integration Procedures

Up to this point all the pods of SiaB are deployed in one server and all NSM
pods are deployed in another one, with two different Kubernetes clusters. The two
servers are connected with a Gigabit interface, as shown above.

Figure 6.4 represents the final deployment after integrating the two systems.
NSM is connected to SiaB between the aggregation switch and the BNG, this time
with a physical connection between the two servers. In this scenario veth interfaces
are still used, but they are used to connect the virtual interface of a pod to the
server that hosts it. Also in this case, Figure 6.4 depicts a more general scenario,
where a generic CNF is represented instead of NS client.

Connect Mininet pod with the first server

This procedure to connect the Mininet pod to the host is very similar to the one
described in section 6.1.3, the only difference is that only one network namespace

64

Integrating SEBA (SiaB) and Network Service Mesh

Figure 6.4: Graphical Representation of the Second Integration Scenario

is required. Here are the commands:

$ DOCKER_ID_MN=$(docker ps | grep <mininet_pod_name> | head
-n 1 | awk ’{print $1}’)

$ POD_NETNS_MN=$(docker inspect --format ’{{ .State.Pid }}’
$DOCKER_ID_MN)

$ ip link add <mininet_interface_name> netns $POD_NETNS_MN
type veth peer <host_interface_name>

where mininet_interface_name and host_interface_name are the names assigned
to the new veth interfaces in the Mininet pod and in the host. Once the two
interfaces have been created activate them with the command:

$ ip link set dev <interface_name> up

In this way pod and host are connected. The next step is to connect the
new interface of the Mininet pod to the aggregation switch, with the same set of
commands explained in section 6.1.3.

Create double tagged VLAN interfaces on the first server

The principle of the operation of the interfaces and their creation is identical to the
one explained above, the only difference is that in this case the commands are given
from the host command line and not from the NS client. It is also necessary to set

65

Integrating SEBA (SiaB) and Network Service Mesh

the IP address of the BNG on the double tagged interface, to correctly configure
the default gateway of the RG. The commands are shown below for simplicity:

$ ip link add link <host_interface_name> name
<host_interface_name>.222 type vlan id 222

$ ip link add link <host_interface_name>.222 name
<host_interface_name>.222.111 type vlan id 111

$ ip link set dev <host_interface_name>.222 up
$ ip link set dev <host_interface_name>.222.111 up
$ ip addr add 172.18.0.10/24 dev <host_interface_name>.222.111

Once the two interfaces have been created, the following integration procedures
explained in section 6.1.3 must be repeated, which do not require any modification:
Modify XOS configuration to steer RG’s traffic and Disable Calico source NATting.

Connect the second server with the NS Client pod

This is the part where there are the greatest differences compared to the first
scenario, in fact although the commands to create the connection between host
and pod are identical to those already illustrated, in this case it is also necessary
to assign an IP address to each of the veth interfaces, otherwise the routing does
not work properly.

$ DOCKER_ID_NSC=$(docker ps | grep <ns_client_pod_name> |
head -n 1 | awk ’{print $1}’)

$ POD_NETNS_NSC=$(docker inspect --format ’{{ .State.Pid }}’
$DOCKER_ID_NSC)

$ ip link add <ns_client_interface_name> netns $POD_NETNS_NSC
type veth peer <host_interface_name>

Then, add the two IP addresses, one directly from the command line of the server
and the second one from the NS Client pod command line, taking care not to
create IP address conflicts:

ip addr add <IP_address> dev <interface_name>

At this point the two systems are correctly connected from both from the point
of view of the data plane and the one of the control plane, it is only necessary to
arrange the routing tables of the two servers and the various pods involved.

66

Integrating SEBA (SiaB) and Network Service Mesh

Routing tables configuration

The routing tables are not very different from the first scenario, but a greater
number of entries must be added, illustrated below, divided according to the
host/pod:

• First server: one route to reach the RG subnet via the veth interface towards
the Mininet pod and one route to reach the NS Server via the physical interface
towards the second server;

• Second server: one route to reach the RG subnet via the physical interface
towards the first server and one route to reach the NS Server via the veth
interface towards the NS Client pod;

• NS Client: one route towards the RG subnet via the veth interface towards
the second server and one route to reach the NS Server through the interface
connected to the firewall;

• NS Server and Firewall: their routes are identical to those of the first scenario.

The command to add a route is the usual one:

$ ip route add <subnet_CIDR> via <IP_address_next_hop>

At this point the two systems are perfectly integrated and the ping between the
RG and the NS Server flows correctly in the network.

6.3 Issues and Gap Analysis
Most of the problems encountered integrating the two systems were caused by
routing and by Calico’s source NATting. In fact with source NATting enabled the
source IP address of the RG packets is changed to the server IP and this prevented
the correct forwarding of the traffic. In particular, when a packet with changed
source IP arrived at the NS client it was discarded by the pod itself and was not
forwarded in the NSM chain.

In any case, even if the packet had been forwarded along the chain, once it
arrived at its destination it would never have had the opportunity to go back, since
the NS server thinks it has to send the packet to the server and no longer to the
RG.

67

Integrating SEBA (SiaB) and Network Service Mesh

The first solution to this problem was to manually change all the IP addresses of
the NSM chain, so that they belonged to the same subnet as the RG. This solution
can obviously be implemented only in the case of a very small CNFs chain, such
as the one used in the thesis, and not in a real case. Moreover, in a real scenario
the IP addresses assigned to users are not in the same subnet as the ones used by
the telecom operator for its services. For these two reasons another solution was
sought, bringing to light the phenomenon of source NATting and its subsequent
disabling.

A final observation regarding this problem is that in a real case the source
NATting would not be present since the RG is not a pod but a physical device
in the user’s home and therefore there would be no need to introduce further
configurations in the cluster.

As far as the gap analysis, currently the system created by the integration
of SEBA and NSM works, at least in its fully virtualized version. Although the
integration works, it still requires a lot of manual interventions which, although
reduced in a real case (for example there would be no need to create veth interfaces
for the connection between pods or to disable the source NATting), cannot be
performed in each central office of a telecom operator.

In the event that this integration occurs with a non-virtualized version of SEBA
and in a real production scenario, the new system should certainly be accompanied
by a controller or other mechanism that allows all the operations described in the
chapter to be carried out, but also the dynamic deployment of CNF chains, in a
more automated way, for example by leveraging ONOS and XOS APIs or custom
scripts.

68

Chapter 7

Experimental Validation

This chapter analyzes the performance of SiaB and the system formed by SiaB and
NSM in both scenarios, explaining the reasons why it was difficult and at times
impossible to carry out real performance tests.

In any case, even if it had been possible to carry out real performance tests, since
SiaB is a completely virtualized environment compared to a real SEBA installation,
the tests carried out would represent an upper limit in terms of system performance,
since generally virtual networking is faster than the real one. In the particular
case of this thesis instead, due to some SiaB developers’ implementation choices,
the system performance is low even if the environment is virtual, and this had an
impact on the tests and their feasibility.

Finally, the results obtained in the integration phase and those that have yet to
be achieved to create a complete and automated system were summarized, also
explaining the reasons why it was not possible to achieve them during the thesis.

7.1 Test Environment
Before explaining the tests and results obtained, a more detailed characterization
of the environment is provided. The two servers used to carry out the integration
procedures and the tests are located in one of TIM’s network laboratories, company
that collaborated in the development of this thesis. Here are hardware and software
information about the environment:

• First server hardware characteristics (the one used in the first scenario and as
the SiaB server in the second one):

69

Experimental Validation

– Processor: Intel Xeon 2.4GHz, 8 cores;

– Memory: 64 GB;

– Disk: 1 TB HDD.

• Second server hardware characteristics (the one used in the second scenario as
the NSM server):

– Processor: Intel Xeon 2.6GHz, 12 cores;

– Memory: 384 GB;

– Disk: 4 * 900 GB HDD.

• Application level characteristics for both servers:

– Ubuntu version: 16.04;

– Kubernetes version: 1.12.7;

– Kubernetes deployment: single node with Kubeadm1;

– Kubernetes CNI: Calico v3.3;

– Docker version: 17.06;

– Helm version: 2.14.2;

• Characteristics of the connection between the two servers:

– Protocol: Ethernet;

– Speed: 1 Gb;

– Cable type: UTP RJ45.

7.2 Tests
This section deals with two different types of tests: throughput tests and system
latency tests. The original idea was to run these tests to provide an upper limit to
system performance of SEBA and those of the system made of SEBA and NSM,
as virtual networking is usually faster than standard hardware. Carrying out the
tests, however, it was seen that the system performance is very low and that in

1https://kubernetes.io/docs/reference/setup-tools/kubeadm/

70

https://kubernetes.io/docs/reference/setup-tools/kubeadm/

Experimental Validation

general SiaB does not support large amounts of traffic, due to the usage of gRPC
to simulate network traffic, making it impossible to test real traffic scenarios. In
addition to the presentation of the results obtained, the reason for which gRPC is
the cause of the slowness of the system will also be addressed in more detail, also
showing the comparison with a non-gRPC connection.

7.2.1 Throughput Tests

Throughput test were carried out with Iperf32, with both TCP and UDP protocols.
Unfortunately the tests carried out with both protocols did not bring any results

in both scenarios, since starting the tests causes immediate system failure. The
cause of this break, which was also reported in the official SEBA Jira page3 and
currently has no solution, is due to the use of the gRPC protocol in the connection
between the ONU and the OLT in PONSIM.

gRPC (Figure 7.1) is a modern open source high performance RPC framework.
It can efficiently connect services in and across data centers. In gRPC, a client
application can directly call a method on a server application on a different machine
as if it were a local object [33].

Figure 7.1: gRPC Overview [33]

2https://iperf.fr/
3https://jira.opencord.org/browse/SEBA-711?page=com.atlassian.jira.plugin.

system.issuetabpanels%3Aall-tabpanel

71

https://iperf.fr/
https://jira.opencord.org/browse/SEBA-711?page=com.atlassian.jira.plugin.system.issuetabpanels%3Aall-tabpanel
https://jira.opencord.org/browse/SEBA-711?page=com.atlassian.jira.plugin.system.issuetabpanels%3Aall-tabpanel

Experimental Validation

As can be seen from this brief description, gRPC was not born to simulate an
L2 network connection, in fact in the case of SiaB the ONU does not send a packet
to the OLT in the usual way but instead calls a method within it, passing it as
parameters the data related to the user’s packet. Due to this implementation choice
there is a large overhead in this phase of transmission of a packet, which becomes
unsustainable in the case of Iperf3 tests, where the system is flooded with packets.
Failing to dispose of the excessive number of requests, the system interrupts the
connection between ONU and OLT, entering a state of error from which it is no
longer possible to exit. The system crashes even with the smallest bandwidth value
available for Iperf tests, which is 100 Kb/s.

Finally, to further investigate the system overhead caused by gRPC, latency
tests have been performed on the system, also in this case in both scenarios.

7.2.2 Latency Tests
Latency tests were performed with the standard ping command and their purpose
was to further investigate the overhead generated by the gRPC protocol. In both
scenarios the following latency tests were performed:

• Ping between the RG and the BNG: this test was carried out to analyze the
latency of the simulated environment as it is without NSM, to have a reference
point for comparisons with the results of the other tests. This test that has
been performed only in the first scenario, as SiaB is deployed in both cases
only on the first server;

• Ping between the RG and the NS Client: this test was carried out to analyze
the impact on the SiaB system of the change of a single element of the chain,
in fact now the RG connects to the NS Client which is a separate pod and no
longer to the BNG, which was instead emulated in mininet in the same pod
of the aggregation switch. However, the number of devices that make up the
chain does not change;

• Ping between the RG and the NS Server: this test aims to investigate the
latency of the system obtained from the integration between SiaB and NSM,
to investigate if the addition of the pods that make up the CNF chain has an
impact on the ping results;

• Ping between the NS Client and the NS Server: this last test was carried out

72

Experimental Validation

only in the second scenario, to test NSM alone, to have a reference regarding
the latency of a virtualized system without gRPC, in order to evaluate the
overhead introduced by the gRPC protocol. The test is particularly significant
since also in this case it is not a direct ping between two pods, but the packet
must cross a chain of pods, as in the case of SiaB.

In the next paragraphs the results of both scenarios will be presented, followed
by a discussion on the data obtained. All tests consist of 50 pings with standard
settings, of which only the first three and the last three are shown for each case.
At the end of each section also a summary of the results is provided, where the
minimum, average and maximum round trip times are indicated.

First Scenario: ping RG - BNG

In this first scenario it is already possible see how the latency of SiaB alone is very
high for a fully virtualized system.

Sequence Number Round Trip Time
1 25.0
2 18.9
3 18.4
... ...
48 33.5
49 20.8
50 34.7

Min RTT Avg RTT Max RTT
16.179 25.179 34.738

Table 7.1: First Scenario: Ping between RG and BNG

First Scenario: ping RG - NS Client

In this second case of the first scenario it is possible to see that adding a new pod
to the chain increases the round trip time but not significantly, which confirms the
hypothesis that gRPC is the system bottleneck.

73

Experimental Validation

Sequence Number Round Trip Time
1 52.4
2 23.9
3 30.8
... ...
48 35.8
49 23.8
50 22.4

Min RTT Avg RTT Max RTT
18.608 26.430 52.498

Table 7.2: First Scenario: Ping between RG and NS Client

First Scenario: ping RG - NS Server

In this test of the two integrated systems it can be observed once again how the
addition of two other pods to the chain does not entail a substantial difference in
the values obtained, on the contrary there is a slight improvement. Also in this
case the results show that the high latency is due to the SiaB system and not to
the integration of the two systems.

Sequence Number Round Trip Time
1 27.0
2 28.4
3 19.9
... ...
48 24.8
49 38.6
50 25.5

Min RTT Avg RTT Max RTT
18.564 26.299 38.636

Table 7.3: First Scenario: Ping between RG and BNG

74

Experimental Validation

Second Scenario: ping RG - NS Client

In this test with the two integrated systems on two different servers it can be seen
how the separate deployment has almost no effect on the results obtained, which
remain in line with the same case in the previous scenario.

Sequence Number Round Trip Time
1 27.9
2 17.8
3 27.1
... ...
48 29.9
49 21.6
50 18.5

Min RTT Avg RTT Max RTT
16.895 27.136 39.941

Table 7.4: Second Scenario: Ping between RG and NS Client

Second Scenario: ping RG - NS Server

Also in this last test of the two systems it can be observed that the results do not
differ much from those obtained in the previous scenario.

Sequence Number Round Trip Time
1 28.9
2 18.4
3 27.4
... ...
48 30.4
49 23.3
50 22.0

Min RTT Avg RTT Max RTT
17.154 27.543 40.259

Table 7.5: Second Scenario: Ping between RG and NS Server

75

Experimental Validation

Second Scenario: ping NS Client - NS Server

This test is used as a reference to evaluate the latency of a fully virtualized system
that does not use gRPC to connect pods together. As it is possible to see in the
table, the latency of the system is very low compared to that of SiaB.

Sequence Number Round Trip Time
1 0.122
2 0.061
3 0.065
... ...
48 0.074
49 0.082
50 0.072

Min RTT Avg RTT Max RTT
0.039 0.068 0.122

Table 7.6: Second Scenario: Ping between NS Client and NS Server

7.2.3 Final Discussion
The results of all latency tests in both scenarios confirmed the initial hypothesis
that the cause of the system’s inability to handle large amounts of traffic was the
gRPC protocol. As can be seen from Table 7.1, the SiaB system alone has a very
high latency, on average equal to 25 ms.

In all the other tests carried out, the average latency value never differs much
from 25 ms (the maximum value is 27.543 ms in Table 7.5, obtained in the ping test
between RG and NS Server in the second scenario), it can therefore be concluded
that the integration of the two systems did not lead to significant decreases in
performance. Comparing the values obtained in these tests with the values obtained
in the ping between NS Client and NS Server it can be seen how NSM, which does
not use gRPC but only veth interfaces, has instead a very low latency compared to
SiaB, well below the millisecond.

It can therefore be concluded that gRPC is the cause of the high system overhead.
Thanks to the latency data it is also possible to try to calculate the maximum
throughput supported by SiaB: gRPC is a protocol that is based on requests made

76

Experimental Validation

by a client to a server, so its throughput can be measured in requests per second
(req/sec). A ping from the RG to the BNG takes about 25 ms to cycle through the
pod chain twice, so it can be assumed that it takes about 12.5 ms to cycle through
the chain once. As previously mentioned (Table 7.6) a ping between two or more
pods connected by veth interfaces has a latency of less than one millisecond, so it
is possible to assume that a gRPC request from the ONU to the OLT takes about
12 ms to be satisfied. The maximum throughput supported by gRPC is therefore:

1
12 × 10−3 = 83.3 ∼ 83 req/sec

gRPC supports about 83 pings per second, therefore knowing that the size of
an ICMP packet that makes up a ping is 84 bytes (64 + 20) in total and that each
request corresponds to a package, the following throughput is obtained:

83 × (84 × 8) = 55776 b/s ∼ 56 Kb/s

Given this very low result, the breakdown of the system is therefore understand-
able even in the case of the minimum throughput of Iperf3 (100 Kb/s), which is
almost double the one supported by SiaB.

Finally, it is fair to observe that these results refer only to SiaB in this particular
context and do not concern the performance of SEBA, which should instead be
tested more rigorously in a real scenario. Furthermore, it can be concluded that
SiaB was not designed to simulate real traffic loads or to perform performance tests
but was developed to be able to bring developers and operators closer to the SEBA
project, allowing them to test new systems on SEBA and possible integrations of
the framework.

7.3 Integration Summary
In this last section of the chapter there is a table (Table 7.7) that includes a
summary of all the requirements for a correct integration of the two systems and
their availability. For each element is not only reported its availability but it is also
briefly explained how it was possible to implement that requirement. Finally, as
can be seen in the table, only the last three requirements are not available, because
they went beyond the objective of this thesis or due to some intrinsic limitations of
SEBA-in-a-Box which cannot be overcome.

77

Experimental Validation

Requirement Availability

SiaB deployment on a single server Yes

SiaB double tagged traffic manage-
ment in NSM

Yes, thanks to two specially created
interfaces that untag incoming traffic
and tag outgoing traffic

SiaB and NSM connection on a single
server

Yes, the two systems are connected
through a veth pair

SiaB and NSM connection on two
different servers

Yes, the two systems are connected
through two veth pairs and a physi-
cal Ethernet connection between the
servers

Calico source NATting disabled Yes, otherwise the IP–src of a packet
would be modified, preventing its cor-
rect forwarding in the chain

Siab and NSM can correctly ex-
change traffic in both single server
and two servers’ cases

Yes

Traffic steering for one subscriber to-
wards a single NFV chain

Yes, thanks to ONOS flow rule in-
jection in the AGG switch made by
XOS

Traffic steering for more than one
subscriber towards a single NFV
chain

Not available (not tested)

Traffic steering for more than one
subscriber towards dedicated NFV
chains

Not available, because it is more con-
cerned with the NSM environment
than the SEBA one

Traffic steering automation: upon
subscription, associate the subscriber
to a NFV chain, configure data-path
and activate the chain

Not available, because SiaB currently
does not support the dynamic sub-
scription of new RGs, they can be
configured only at deployment time

Table 7.7: Integration Procedures Summary

78

Chapter 8

Conclusions and Future
Works

The SEBA framework is one of the most promising solution to manage residential
broadband access in a cloud-native way. Exploiting SDN, NFV, Kubernetes and
other technologies it provides a cloud-native, open and programmable architecture
to manage the central office and the access network of an internet service provider.
Furthermore, the introduction of a cloud environment closer to residential users
allows telecom operators to introduce other frameworks into their infrastructure,
such as Network Service Mesh.

After the analysis carried out in this thesis, following positive aspects of SEBA
can be pointed out:

• SEBA allows telephone operators to program their own residential access
network, while reducing the costs to build the network itself, introducing
a pay-as-you-grow model to eliminate wasteful overprovisioning of network
equipment;

• SEBA introduces greater agility into the network thanks to the separation
of control plane and data plane, reducing the cost of operations and the
equipment requirements;

• SEBA allows telecom operators to manage all central office devices through
a single interface and to define their own workflow without the framework
needing changes.

79

Conclusions and Future Works

Another very positive aspect of SEBA is that its community, and more generally
the Open Network Foundation community, is very active in developing the software
that makes up the framework and also really open on its social channels, where
developers try to help people asking questions as much as possible.

As far as the integration between SEBA and Network Service Mesh, the ad-
vantages are not limited to the possibility of offering network services deployed
on NSM to residential users but some of the intrinsic limitations of NSM are also
solved. As highlighted in section 3.2, two of the main characteristics of NSM are
the impossibility to create a dynamic chain of Cloud-Native Network Functions
and the missing support to load balancing between the various CNFs. Thanks to
the characteristics of SEBA and in particular to the possibility of steering users’
traffic in the aggregation switch through the injection of precise rules, both these
problems find a solution, albeit partial:

• Impossibility to create a dynamic chain of CNFs: this problem can be solved
by creating a new CNFs chain in NSM with the desired changes. To direct the
traffic to the new chain without service interruptions, it is enough to change
the forwarding rule in the aggregation switch;

• Missing load balancing support: also in this case the problem can be solved
by creating a new CNFs chain identical to the one it has to be balanced but
in this scenario all traffic should not be moved from one chain to another but
rather balanced according to the parameters of the packets (for example the
IP address or other possibilities offered by ONOS). Although this is not really
a traditional load balancer and is very limited in functionality, it still allows
to distribute traffic over two or more chains.

Finally, as far as the possible future developments of this thesis, the main
one consists in increasing the automation of the system, for example by making
automatic the deployment of network interfaces and the creation of VLAN interfaces
to connect SEBA to NSM. Further developments may otherwise concern the tests
carried out on the system and the integration scenarios: it would be interesting to
try to integrate the two frameworks in a real case with SEBA and not with SiaB
and try to steer user traffic with more residential gateways and/or more chains
of CNFs. In a real case scenario it would finally be interesting to carry out the
performance tests that did not provide a result in the case studied in this thesis.

80

Bibliography

[1] Software Defined Networking. https://www.vmware.com/topics/glossary/
content/software-defined-networking.html (cit. on p. 3).

[2] Cloud Native Network Functions. https://ligato.io/cnf/cnf-def (cit. on
pp. 5, 6).

[3] Kubernetes Docs. https://kubernetes.io/docs/home (cit. on p. 7).

[4] Kubernetes Architecture. https://platform9.com/blog/kubernetes-ente
rprise-chapter-2-kubernetes-architecture-concepts (cit. on p. 7).

[5] Passive Optical Network. https : / / www . viavisolutions . com / en - us /
passive-optical-network-pon (cit. on p. 10).

[6] Passive Optical Neworks and Optical Distribution Network. Tech. rep. North-
forge Innovations Inc., Feb. 2018 (cit. on p. 10).

[7] OLT, ONU and ODN. https://community.fs.com/blog/abc-of-pon-
understanding-olt-onu-ont-and-odn.html (cit. on pp. 11, 12).

[8] R. G. Trani. «Integrating VNF Service Chains in Kubernetes Cluster». MA
thesis. Politecnico di Torino, Mar. 2020 (cit. on pp. 13, 15, 19, 20).

[9] Network Service Mesh. https://networkservicemesh.io/docs/concepts/
what-is-nsm (cit. on p. 14).

[10] Northforge Solutions for PON using CORD and VOLTHA. https://gonor
thforge.com/northforge-solutions-for-pon-using-cord-and-voltha
(cit. on p. 25).

[11] Migration to Ethernet-Based Broadband Aggregation. Tech. rep. The Broad-
band Forum, July 2011 (cit. on p. 25).

81

https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://ligato.io/cnf/cnf-def
https://kubernetes.io/docs/home
https://platform9.com/blog/kubernetes-enterprise-chapter-2-kubernetes-architecture-concepts
https://platform9.com/blog/kubernetes-enterprise-chapter-2-kubernetes-architecture-concepts
https://www.viavisolutions.com/en-us/passive-optical-network-pon
https://www.viavisolutions.com/en-us/passive-optical-network-pon
https://community.fs.com/blog/abc-of-pon-understanding-olt-onu-ont-and-odn.html
https://community.fs.com/blog/abc-of-pon-understanding-olt-onu-ont-and-odn.html
https://networkservicemesh.io/docs/concepts/what-is-nsm
https://networkservicemesh.io/docs/concepts/what-is-nsm
https://gonorthforge.com/northforge-solutions-for-pon-using-cord-and-voltha
https://gonorthforge.com/northforge-solutions-for-pon-using-cord-and-voltha

BIBLIOGRAPHY

[12] Broadband Network Gateway Overview. https://www.cisco.com/c/en/us/
td/docs/routers/asr9000/software/asr9k_r4-2/bng/configuration/
guide/b_bng_cg42asr9k/b_bng_cg42asr9k_chapter_01.pdf (cit. on
p. 26).

[13] Central Office Re-Architected as a Data Center. https://opennetworking.
org/cord/ (cit. on p. 27).

[14] CORD Architectural Requirements. https://wiki.opencord.org/display/
CORD/CORD+Requirements (cit. on p. 27).

[15] Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy Bavier,
Saurav Das, Jonathan Hart, Guru Palukar, and William Snow. Central Office
Re-Architected as a Data Center. Tech. rep. IEEE, Oct. 2016 (cit. on pp. 28,
29, 32, 39).

[16] Residential CORD. https://opennetworking.org/r-cord (cit. on p. 30).

[17] SEBA (SDN Enabled Broadband Access) – The Next Generation of Broadband
Access. https : / / gonorthforge . com / seba - sdn - enabled - broadband -
access-the-next-generation-of-broadband-access/ (cit. on p. 31).

[18] SDN Enabled Broadband Access (SEBA) - Reference Design. Tech. rep. ONF,
Mar. 2019 (cit. on pp. 31, 36).

[19] VOLTHA Documentation. https://docs.voltha.org/master/index.html
(cit. on p. 34).

[20] ONOS Overview. https://wiki.onosproject.org/display/ONOS/ONOS+
%3A+An+Overview (cit. on p. 36).

[21] ONOS System Components. https://wiki.onosproject.org/display/
ONOS/System+Components (cit. on pp. 37, 38).

[22] ONOS Application Subsystem. https://wiki.onosproject.org/display/
ONOS/Application+Subsystem (cit. on p. 38).

[23] ONOS Device Subsystem. https://wiki.onosproject.org/display/ONOS/
Device+Subsystem (cit. on p. 38).

[24] ONOS Flow Rule Subsystem. https://wiki.onosproject.org/display/
ONOS/Flow+Rule+Subsystem (cit. on p. 39).

[25] XOS and NEM. https://wiki.opencord.org/display/CORD/XOS+and+
NEM+Background+Information (cit. on pp. 39, 41).

82

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r4-2/bng/configuration/guide/b_bng_cg42asr9k/b_bng_cg42asr9k_chapter_01.pdf
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r4-2/bng/configuration/guide/b_bng_cg42asr9k/b_bng_cg42asr9k_chapter_01.pdf
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r4-2/bng/configuration/guide/b_bng_cg42asr9k/b_bng_cg42asr9k_chapter_01.pdf
https://opennetworking.org/cord/
https://opennetworking.org/cord/
https://wiki.opencord.org/display/CORD/CORD+Requirements
https://wiki.opencord.org/display/CORD/CORD+Requirements
https://opennetworking.org/r-cord
https://gonorthforge.com/seba-sdn-enabled-broadband-access-the-next-generation-of-broadband-access/
https://gonorthforge.com/seba-sdn-enabled-broadband-access-the-next-generation-of-broadband-access/
https://docs.voltha.org/master/index.html
https://wiki.onosproject.org/display/ONOS/ONOS+%3A+An+Overview
https://wiki.onosproject.org/display/ONOS/ONOS+%3A+An+Overview
https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/Application+Subsystem
https://wiki.onosproject.org/display/ONOS/Application+Subsystem
https://wiki.onosproject.org/display/ONOS/Device+Subsystem
https://wiki.onosproject.org/display/ONOS/Device+Subsystem
https://wiki.onosproject.org/display/ONOS/Flow+Rule+Subsystem
https://wiki.onosproject.org/display/ONOS/Flow+Rule+Subsystem
https://wiki.opencord.org/display/CORD/XOS+and+NEM+Background+Information
https://wiki.opencord.org/display/CORD/XOS+and+NEM+Background+Information

BIBLIOGRAPHY

[26] SEBA-in-a-Box. https://guide.opencord.org/profiles/seba/siab.
html (cit. on pp. 44, 49).

[27] Mininet Overview. http://mininet.org/overview (cit. on p. 45).

[28] Mininet in SiaB. https://guide.opencord.org/charts/mininet.html
(cit. on p. 45).

[29] AT&T Workflow. https://docs.google.com/document/d/1nou2c8AsR
zhaDJmA_eYvFgd0Y33KiCsioveU77AOVCI/edit#heading=h.x73smxj2xaib
(cit. on p. 46).

[30] CoreDNS Pods in Kubernetes. https : / / kubernetes . io / docs / tasks /
administer-cluster/coredns (cit. on p. 53).

[31] VLAN Cross Connect. https://wiki.opencord.org/display/CORD/VLAN+
Cross+Connect (cit. on p. 60).

[32] Fabric Crossconnect Service. https://guide.opencord.org/fabric-cross
connect (cit. on p. 60).

[33] Introduction to gRPC. https://grpc.io/docs/what-is-grpc/introducti
on (cit. on p. 71).

83

https://guide.opencord.org/profiles/seba/siab.html
https://guide.opencord.org/profiles/seba/siab.html
http://mininet.org/overview
https://guide.opencord.org/charts/mininet.html
https://docs.google.com/document/d/1nou2c8AsRzhaDJmA_eYvFgd0Y33KiCsioveU77AOVCI/edit##heading=h.x73smxj2xaib
https://docs.google.com/document/d/1nou2c8AsRzhaDJmA_eYvFgd0Y33KiCsioveU77AOVCI/edit##heading=h.x73smxj2xaib
https://kubernetes.io/docs/tasks/administer-cluster/coredns
https://kubernetes.io/docs/tasks/administer-cluster/coredns
https://wiki.opencord.org/display/CORD/VLAN+Cross+Connect
https://wiki.opencord.org/display/CORD/VLAN+Cross+Connect
https://guide.opencord.org/fabric-crossconnect
https://guide.opencord.org/fabric-crossconnect
https://grpc.io/docs/what-is-grpc/introduction
https://grpc.io/docs/what-is-grpc/introduction

Acknowledgements
Mi sembra impossibile siano già passati due anni dall’ultima volta che mi sono
ritrovato qui, alla fine di una tesi e di un percorso universitario che mi ha portato
tanto, a scrivere i ringraziamenti.

Desidero ringraziare i miei relatori, prof. Fulvio Risso e Guido Marchetto che
non solo mi hanno accompagnato in questo percorso di tesi ma mi hanno fatto
appassionare alle reti e al cloud computing, temi centrali di questo elaborato e del
mio futuro lavorativo. Assieme a loro voglio ringraziare l’ing. Roberto Morro di
TIM e Raffaele Trani, che mi hanno supportato in ogni singola fase di questa tesi,
soprattutto nei temi più tecnici.

Il grazie più importante va a mamma Alessandra e papà Enrico, che non hanno
mai smesso di sostenermi e di spronarmi a dare il meglio di me in qualunque
situazione, rendendomi una persona migliore sotto tutti i punti di vista. Grazie
anche a tutta la mia famiglia: nonni, cugini e zii, perché in questi anni ho avuto
modo di vedere molte famiglie diverse e mi sono reso conto di quanto io sia fortunato
ad avere voi al mio fianco.

Grazie a Ilaria, sei stata la mia coinquilina, la mia migliore amica e ora sei
molto di più. Mi sei stata vicina in ogni momento di questa tesi, credendo in me
ed aiutandomi in tutti i modi possibili, il tuo supporto è stato essenziale.

Infine, ma non certo per ordine di importanza, voglio ringraziare tutti gli amici
che mi hanno accompagnato in questi due anni, rendendo Torino la mia seconda
casa. Grazie quindi a Simone e Riccardo, siete la mia seconda famiglia e due dei
più cari amici che io abbia mai trovato, vi voglio un bene dell’anima. Grazie a
Enrico, Giulia e Daniele che, assieme a Riccardo e Simone, hanno reso questi due
anni indimenticabili, pieni di gioie, risate e serate passate tutti assieme. Un grazie
speciale poi a tutte le amiche di UniTo, che hanno portato altra gioia e bei momenti
in quest’ultimo anno assieme. Senza di voi non avrei mai potuto superare tutti gli
ostacoli che mi si sono posti davanti, e ve ne sarò per sempre grato.

Francesco

84

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	SDN: Software Defined Networking
	Cloud Native Network Functions (CNFs)
	Kubernetes (K8s)
	Control Plane Components
	Node Components

	PON: Passive Optical Network
	OLT: Optical Line Termination
	ONU: Optical Netowork Unit
	ODN: Optical Distribution Network

	Cloud Native Network Function Chains in Kubernetes
	Network Service Mesh
	Main Concepts
	Main Elements
	NSM Operations
	Firewall Use Case

	NSM Advantages and Limitations

	SEBA: SDN-Enabled Broadband Access
	Standard Residential Access Management
	CORD: Central Office Re-architected as a Data Center
	R-CORD: Residential CORD

	SEBA Main Components
	Hardware Components Disaggregation
	VOLTHA: Virtual OLT Hardware Abstraction
	ONOS: Open Network Operating System
	NEM: Network Access Mediator

	SiaB: SEBA-in-a-Box
	Differences with SEBA
	PON Virtualization
	Mininet

	AT&T SEBA Workflow
	SiaB Use Case

	Integrating SEBA (SiaB) and Network Service Mesh
	First Scenario: SiaB and NSM in the same server
	SiaB Deployment
	NSM Deployment
	Integration Procedures

	Second Scenario: SiaB and NSM in two different servers
	Servers Configuration
	SiaB and NSM Deployment
	Integration Procedures

	Issues and Gap Analysis

	Experimental Validation
	Test Environment
	Tests
	Throughput Tests
	Latency Tests
	Final Discussion

	Integration Summary

	Conclusions and Future Works
	Bibliography

