
POLITECNICO DI TORINO

Master’s Degree in Computer engineering

Master’s Degree Thesis

Service-agnostic Dashboard for
Kubernetes

Supervisors:
Prof. Fulvio Risso
Dott. Alex Palesandro

Candidate:
Alessandro Napoletano

Academic year 2019-2020

i

Contents

1 Introduction 1

1.1 The critical need of data accessibility 1

1.2 General Concepts . 3

1.2.1 Dinamic discovery of resources 4

1.2.2 Modular environment . 4

1.2.3 Full customization of resources 5

1.2.4 Real time event responsiveness 5

1.2.5 Integration with Liqo and CrownLabs 5

2 Kubernetes Integration 7

2.1 Kubernetes Overview . 7

2.1.1 Pod . 8

2.1.2 Deployment . 8

2.1.3 Service . 9

2.1.4 API server . 9

2.2 Importance of a dashboard for Kubernetes 9

Contents ii

2.3 Kubernetes dashboards: State of the Art 10

2.3.1 Kubernetes Dashboard . 10

2.3.2 Octant . 12

2.3.3 k8dash . 13

2.4 Custom resources: the missing point 14

3 LiqoDash Overview 16

3.1 The Frontend . 17

3.1.1 JavaScript Frameworks . 17

3.1.2 Javascript library for Kubernetes 19

3.1.3 Watches . 19

3.2 The Backend . 20

3.2.1 No need for a complex backend 20

3.2.2 NGINX Reverse Proxy . 21

3.2.3 The CORS problem . 22

3.2.4 Pod to API Server communication 22

4 Authentication, Authorization and Methods of access 24

4.1 Kubernetes Role-based Access Control 24

4.2 LiqoDash Login . 26

4.2.1 Service Account Token . 27

4.2.2 Support for OIDC . 27

4.3 Accessing LiqoDash . 30

4.3.1 Basic access: Node Port and Port forward 30

Contents iii

4.3.2 Advanced access: Ingress . 31

4.3.3 Differences between access methods 31

4.4 LiqoDash and Kubernetes communication 32

5 Resource Discovery and Operations 34

5.1 The generic approach . 34

5.1.1 Discovery process . 35

5.1.2 Service-agnostic exploration of resources 36

5.2 CRUD Operations on Generic Resources 37

5.2.1 The challenge of a dynamic approach 38

5.2.2 Generic data view . 38

5.2.3 More than just plain YAML 40

5.2.4 Using the OpenAPI v3 Schema 41

5.3 Relationships between resources . 42

5.3.1 Different kind of relationships 42

5.3.2 Design of data trees and level of search depth 44

6 A Fully Customizable Dashboard 46

6.1 The importance of customization . 46

6.2 Icons and Favourites management . 47

6.3 The Dashboard Design Configuration 49

6.3.1 Resource List view customization 49

6.3.2 Single Resource view customization 51

7 Modular Environment 53

iv

7.1 Concept of modular dashboard . 54

7.2 The Custom View CRD . 54

7.3 More resources per view . 56

7.4 Dynamic loading of custom components 58

8 Integration with existing projects and Performance 60

8.1 Liqo . 60

8.1.1 LiqoDash meet Liqo . 61

8.2 CrownLabs . 66

8.2.1 LiqoDash meet CrownLabs . 67

8.3 Performance . 69

9 Conclusions 73

10 Bibliography 74

v

List of Figures

2.1 Kubernetes Dashboard. 11

2.2 Octant. 12

2.3 k8dash. 13

3.1 LiqoDash Pod structure and communication with the API server. . . 23

4.1 The two methods of login. 30

4.2 LiqoDash API calls workflow. 33

5.1 Search bar showing the results of the discovery process. 37

5.2 A resource of type Deployment displayed through the dynamically
generated form view with ready-to-update fields. 39

5.3 The editor view, used to show the resource in plain YAML or JSON. 40

5.4 Example of custom resource being created through the form wizard. . 41

5.5 Example of a dynamically generated dependency graph of a Pod re-
source with all the methods of relationship search activated and a
level 3 depth of search. Its Deployment is selected on the right column. 45

6.1 Select and implementation of icons and favourites. 48

List of Figures vi

6.2 Example of the resource list view displaying Pod with custom columns. 51

6.3 Example of a custom tab created for the Deployment resource kind. . 52

7.1 Example of a custom view that includes different list of custom re-
source types and single resources, used to keep under control a custom
system. 57

8.1 Liqo Home view that shows available and connected clusters, as well
as the status of the cluster itself. 62

8.2 The details view shows the detail of a single cluster connected. 64

8.3 The CrownLabs view for generic users. Designed to be clean and
simple. 68

8.4 The CrownLabs view for admin users. Let the admin explore the
cluster. 68

8.5 Comparison of the dashboards’ load time. 70

8.6 Load time of four kind of resources. The minimal backend gives
LiqoDash a significant advantage. 71

vii

Listings

4.1 An example of Secret object that contains a token. 27

4.2 OIDC Configmap of LiqoDash. 29

5.1 Example of a custom resource’s schema with direct object reference
to a resource of type Middle. 44

1

Introduction

1.1 The critical need of data accessibility

Since the introduction of information technologies in the past century, they have
become year after year a fundamental part of our society’s everyday life. A phe-
nomenon so influential and rapid in its rise that can be considered without a doubt
one of the most characterizing of human history. Huge loads of information are
spread throughout the world thanks to these technologies in a way that still nowa-
days is hard to believe. With every new piece of technology, new information is
generated, processed and most of the time that produces new information that are
poured in a sea of data that is nonetheless difficult to understand for whomever will
have to distill it into actual intelligence. As a matter of fact, information alone has
no value if it is not used in the right way. A business manager need to analyze data
in order to make decisions, and that is possible only if the data is easily accessible,
readable and, most important of all, understandable. A very large amount of wide-
spread information is little to no help when it comes to retrieve the essential out of
it. The higher is the amount of information, the higher is the risk of drowning in
sea of useless data.

The information industry has grown more and more important over the years
and is now considered one the most relevant economic sectors. As the name states,
it is a class of industries that relies on information, consumed or generated. To
prevent being washed away with data, the information industry has put the research
of managing data in a perceivable, fully explanatory yet concise way that can get

1. Introduction 2

the most out of an unorganized set of data volumes, as one of their most important
needs. The evolution of data visualization has since come a long way, and it is now
a rare occasion that a new piece of technology gets released to the public without a
proper way to visualize, manage and analyze it. As it happens, business models for
every kind of product (primarily software or technological pieces) are focused mostly
on how their product can be used, often leaving aside all the details on how it really
works, or how a feature is implemented. The world is bombarded with new products
by the minute, and if something is not immediately and easily understandable, its
real value can be not taken into consideration by the most.

One tool that quickly emerged from this need of easier data accessibility and
understanding is the information dashboard. A dashboard is not only the point of
contact between the user and the program but it is fundamentally the most powerful
way to communicate with the external world. Especially when it comes to generic
user oriented programs, giving a tool to make the interaction between the user and
the program as understanding and intuitive as possible is as important, if not more,
as the actual features claimed by the program. There are countless examples of
programs with rather interesting ideas at their base that did not make it to the
public because of their complexity and their lack of user oriented tool integration
such a dashboard or a generic user interface. A well designed UI can really make the
difference between a successful product and one that is just an interesting concept.
If we look at the last decades of the past century, it is easy to understand why
companies like Microsoft or Apple have emerged above all, and is all thanks to well
thought designs that made from that time on complex tasks like using a computer
as easy as we are now used to. Data and information are now accessible within a
few clicks. This is exactly the core concept of a dashboard.

Designing a dashboard is not as easy as it gets and the keyword that need to be
kept in mind is communication. To serve their purpose, a dashboard have to display
a very wide range of data structures, a dense array of information all accessible in
no more than few clicks, in a manner that communicates clearly and immediately.
This requires an understanding not only of what is needed to be displayed, but
also how data have to be displayed to enhance its meaning. The latter falls in
an informational field that it is called visual design. Its importance is not to be
undervalued when it comes to the development of a user interface as it is the first
point of contact with the user. It should not to mention that fine-tuned visuals and
a smooth user experience are key factor that makes the end-user choose a product
over another.

If the information is important, it deserves to be communicated well.
- Stephen Few, 2006

1. Introduction 3

1.2 General Concepts

Kubernetes is one of the most popular orchestration systems for managing container-
ized applications in a clustered environment, and is quickly becoming the standard
choice for companies that need this kind of service. Because it is a vastly used
and open-source platform, it’s common for developers to define their own custom
resources that extend the set of APIs that Kubernetes provides. All the best known
dashboards for Kubernetes fall short when it comes to represent this kind of re-
sources that are often left aside unacknowledged or displayed as no more than a
list of names that brings no real value to the user experience. As a result, projects
that relies heavily on the use of custom resources are forced to develop their own
dashboards from scratch, or worse renounce to the idea of having a user interface.
Because projects that use Kubernetes are countless and their number continues to
grow by the day the risk is to have a number of different dashboards and interfaces
that are not really necessary and will only cause confusion for their users.

This work address the problem described above, and proposes a different kind of
approach in developing a generic Kubernetes web-based user interface that focuses
primarily on offering the end user not only a way to manage their system (and the
dashboard itself) in every aspect but also an environment that would grant easy
implementations of custom components.

This thesis set its basis on three key factors:

• Dynamic discovery of resources: the dashboard have to be agnostic to the
type of the single resource represented and does not need prior knowledge of
the resources that reside in the Kubernetes cluster.

• Modular environment: the user can extend the dashboard functionalities,
creating their own views using data from the Kubernetes server directly ac-
cessible in the dashboard with little effort.

• Full customization of resources: every view that represents a resource or
a list of resources can be personalized to show only the information that is
important to the user, avoiding useless display of data.

1. Introduction 4

1.2.1 Dinamic discovery of resources

On a Kubernetes cluster, especially in a development environment, resources, and
their definitions, are in constant changing, being updated, added or removed. Even
resources that represents the core of the platform are updated when a new version
of Kubernetes comes out. Because of that, the dashboard cannot rely on the imple-
mentation of a static representation for these resources. The approach presented is
the following: every time the dashboard is accessed it starts the discovery process
that is nothing more than a series of API calls to the Kubernetes API server that
will respond with the resources available at the moment. That means that resources
and views will always be up to the last update in the dashboard.

This solution well addresses the limitation that other dashboards have towards
the exploration of custom resources. In fact, the dashboard proposed in this the-
sis does not make distinction between resources that are provided by default with
Kubernetes and custom ones, and so the problem does not rise.

1.2.2 Modular environment

The dashboard comes with a set of default views that are fundamentals to the basic
management of the Kubernetes system and all its resources. But that is often not
enough to give the user a complete understanding of what is happening in their
cluster, as many resources are related to each other and it would be quite useful to
have all of them displayed in a single working space instead of multiple ones.

This project extends this idea to the concept of modular environment. That
means that the dashboard offers its users the possibility to define custom views
that are treated as empty work spaces that can host different kind of resources (single
ones or lists) or custom components created by the user. This comes pretty handful
in the context of custom resources that are part of complex systems developed over
Kubernetes.

1. Introduction 5

1.2.3 Full customization of resources

A completely generic and dynamic approach comes with its downsides. The knowl-
edge of what to expect from a resource makes it easier to show what is really impor-
tant to display and what not, creating ad hoc views for specific kind of resources.
On the other hand, a generic code-base can only rely on what is common for all
resources.

The solution that this project presents is to use a design configuration com-
pletely independent from the dashboard (it is, in fact, a separate YAML object)
that it is used to fully customize the views of resources, granting the user the power
to only display what they want and how they want. With the definition of a design
configuration, not only the dashboard can have all the expressiveness that other
more specific dashboards have (with less code and less time spent), but is also a
step further in that regard, giving the user full control over its dashboard instead of
imposing a view that often does not suite all users’ needs.

1.2.4 Real time event responsiveness

One of the key features of the dashboard is its real-time responsiveness, meaning
that if a resource or component gets updated (or added/deleted) in the cluster, the
dashboard will react immediately and will automatically be updated without the
need to refresh the page. This is obtained thanks to the use of watches, a powerful
Kubernetes mechanism that allow the dashboard to get update notifications and
therefore synchronize the state of resources. In detail, whenever there is an interest
in viewing the real-time state of a resource and getting notified about its change, a
watch is opened and will remain active until the view is left.

1.2.5 Integration with Liqo and CrownLabs

To serve its purpose and fulfill its potential, the dashboard needs a real implementa-
tion: some projects to use as test cases that could show the validity of this approach.
Liqo and CrownLabs are the perfect choice: two project developed throughout the
year at Politecnico of Turin that are built upon Kubernetes and relies heavily on

1. Introduction 6

the use of custom resources.

The idea was to use the dashboard as a framework and exploit its generic and
modular approach to make custom views specific for Liqo and CrownLabs. In par-
ticular, some of the views developed that way are:

• Liqo home view: let the user have a general overview of its cluster, and how
Liqo is working, making it easy to exploit the potential and functionalities
that Liqo offers.

• Liqo resources view: making use of the custom view creation functionality
that comes with the dashboard, this view shows all the necessary information
to manage and keep track of the Liqo system and its resources, having all of
them displayed in a single and compact page.

• CrownLabs home view: a user interface for CrownLabs, that let the user
manage virtual machines on their Kubernetes cluster.

This was all possible with a relatively little amount of effort in terms of time spent
and code written (roughly an hour of work per view), this because all the basic
infrastructure was already made available by the dashboard (the connection with
the Kubernetes cluster, a complete and secure login system, built-in real-time re-
sponsiveness). The integration with these two projects was reduced to its essentials
and without needing to develop a dashboard from scratch.

7

Kubernetes Integration

This chapter is meant to explain the platform that the dashboard presented in this
work is designed for. Knowing what is Kubernetes and its general mechanisms will
help to better understand the role of the dashboard and how LiqoDash works, as
well as acknowledging the needs and problems that the approaches of this work try
to address and their solutions that make LiqoDash significantly different from the
other dashboards.

We will go through a more generic overview of the Kubernetes system, then going
more in detail explaining why a dashboard is important for a system of that kind.
Finally, a rapid view of the well-known dashboards that already exist, pointing the
finger at their pro and cons, and how they all have some common flaws.

2.1 Kubernetes Overview

Kubernets is an open-source platform for deploying and managing containerized
resources developed by Google and presented for the first time in 2014. Written in
the Go language and supported by a great number of contributors and partnerships,
its popularity has grown more and more, and it has quickly become the standard
for container orchestration. Nowadays almost every big company that has to deal
with the Cloud has adopted Kubernetes.

2. Kubernetes Integration 8

As a result, managing applications and services deployed over Kubernetes and
their life cycle has become way less tedious and the fact that the platform itself
provides consistency, scalability and availability with little to no effort is the reason
why so many projects are relying on Kubernetes as a development platform. At
this time, projects that are built over Kubernetes are countless and the number
continue to grow by the day, which is only natural if we think about how powerful
this platform is. Being able to deploy applications seamlessly is a real catch for
developers that want to focus their resources (in terms of time, but mostly in terms of
money to spend) in the development of their applications instead of the management
of their deployments.

In the sections below we will briefly explain some of the resources and mechanisms
that are of interest in relation to the work portrayed by this project. For more details
it is recommended to check out the official documentation.

2.1.1 Pod

Pods are the smallest computing units that can be created in Kubernetes. A Pod is
a collection of containers that share storage and network resources, as that they are
running in the same execution environment. With the term container it is meant
a unit of software that contains the application code and all of its dependencies.
The most popular container runtime is Docker, although it is not a limitation of
Kubernetes, that it supports also others.

2.1.2 Deployment

As the official documentation states, a Deployment provides declarative updates for
Pods. In short, a Deployment is the manager of a deployed application, and as that,
its Pods. Deployments make it easy to update versions of the code of applications
running in Pods, in a reliable and safe way. As we will see in the next chapters,
LiqoDash itself is a Deployment, and changing through different configurations is
particularly easy thanks to this object provided by Kubernetes.

2. Kubernetes Integration 9

2.1.3 Service

A Service is an easy way that Kubernetes provides to expose a set of Pods on
a network, being it a closed local network or Internet. This abstraction comes in
handy especially if we think about how Pods are created and destroyed regularly and
their IPs change constantly. If a frontend (such as LiqoDash) needs to be attached
to a backend Pod, the problem is quite obvious: how to keep track of the IPs? The
solution is to use a Service. The frontend will communicate with the Service (which
does not change as Pods do) and the Service will handle the communication with
the Pods. Different kind of Services will be described in Chapter 4.

2.1.4 API server

In developing a dashboard one of the most important parts is to access objects and
data from the server, that are nothing more than API calls to said server. On
Kubernetes, resources are made available thanks to the API server, a component
that exposes the API of Kubernetes, intercepts API calls, validate them and, if there
are no validation errors, processes them and respond with a the resources requested.
The Kubernetes API server is the point of contact between the dashboard and the
Kubernetes system.

2.2 Importance of a dashboard for Kubernetes

In the introduction we have discussed about the reason behind the concept of im-
plementing a dashboard for a project and the added value it could bring shipping a
user interface along with the main application. Kubernetes makes developers lives
easier, but it is a really complex system and managing the platform itself requires a
non trivial understanding of it. Most of the time, Kubernetes users interact with it
through the CLI, a text-based interface that has the advantage of being immediate
in its workflow (a single line command can let the user explore every resource they
need in no time), but it is in fact hard to use for a non-expert, or a manager that
is interested only in knowing how their cluster is performing, the status of their

2. Kubernetes Integration 10

resources and not being drowned in the sea of details that the CLI provides, which
are useful, but not all the times.

Dashboards are essentially tools that come in support of users that are not so
acquainted with the use of a CLI or prefer a more graphical environment than just
some line of text. But they can be so much more than just a visually pleasant
way to see what can already be seen in the command prompt. Ideally, the user
interface’s job is to also make common operation that would require several passages
on the command line, readily available with a few clicks. In the case of Kubernetes,
performing CRUD operations on resources is a good example of how a UI can be put
of good use. Also, in terms of customer support, the person in need of help is often
requested to open the command prompt, running some commands and describe
what they see which is not the best way to deal with problems. For these cases
and more, having a dashboard to manage Kubernetes is a not only a general good
recommendation, but it is fundamental when there is the need to explain what is
happening in the platform in way that even user not accustomed with the system
can interpret and understand.

2.3 Kubernetes dashboards: State of the Art

In this section we are going to explore in brief what is the state of the art of current
open-source web-based Kubernetes dashboards, explaining for each the strong points
and the weak ones.

2.3.1 Kubernetes Dashboard

Kubernetes Dashboard is a general purpose, web-based UI for Kubernetes clusters.
It allows users to manage applications running in the cluster and troubleshoot them,
as well as manage the cluster itself. It is the dashboard provided and maintained by
the Kubernetes team, which has recently released the version 2.0. It is by far the
most popular and most used dashboard thanks to its vicinity with the core project.

Strong points:

• Easy to install as a deployment directly in Kubernetes;

2. Kubernetes Integration 11

• Useful to see basic information of resources and check the general status of the
cluster;

Weaknesses:

• No easy way to perform operation on resources (only deployments can be
created through a form);

• No useful representation for custom resources;

• No easy way to filter by status, e.g. to see all ”Pending” pods;

• No possibility to customize the dashboard;

• Only support for a single cluster;

Figure 2.1: Kubernetes Dashboard.

2. Kubernetes Integration 12

2.3.2 Octant

Octant is an open source developer-centric web interface for Kubernetes that lets
the user inspect a Kubernetes cluster and its applications. Developed by VMWare,
it has quickly become one of the favourites by the users thanks to its appealing user
interface.

Strong points:

• Useful to see basic information of resources and check the general status of the
cluster;

• Possible extensibility through custom Go plug-ins;

Weaknesses:

• Not as stable as the Kubernetes Dashboard;

• No useful representation for custom resources;

• Only support for a single cluster;

Figure 2.2: Octant.

2. Kubernetes Integration 13

2.3.3 k8dash

k8dash is another popular web-based UI, that claims to be the easiest way to manage
a Kubernetes cluster. Strong points:

• Immediate and compact general status visualization to keep track of the per-
formance of the cluster;

• Really fast UI;

• Integration with OpenID to login;

Weaknesses:

• No support for Custom Resource Definitions;

• No possibility to customize the dashboard;

• Only support for a single cluster;

Figure 2.3: k8dash.

2. Kubernetes Integration 14

2.4 Custom resources: the missing point

As it can be seen by analyzing what are the weaknesses that all the dashboards
presented above have in common, it is clear that they all fall short when it comes
to giving the user the possibility to easily customize their dashboard. Another
interesting flaw that is present in all of the above solutions is the lack of a proper
representation of Custom Resource Definitions (or CRDs) and their derived custom
resources.

But what are custom resources in Kubernetes? Custom resources are exten-
sions of the Kubernetes API. Kubernetes works through endpoints, meaning that
an object that resides in the server is directly accessible (if we have the right to
access it) simply performing an API call to the API server. Creating a custom re-
source means that we are creating a new endpoint in the Kubernetes API that is
pointing at a collection of a specific kind of API objects. To add a kind of custom
resources, it is firstly necessary to define it through an API that Kubernetes pro-
vides by default, which is the CustomResourceDefinition. CRDs are simple and can
be created easily without having to program anything. There is also another way
to add custom resources to the cluster, that is programming an API Aggregation,
which allows more control over the APIs but requires more effort.

Many developers that relies on Kubernetes for their projects need to define their
own set of declarative API and working with custom resources is nowadays a stan-
dard. Kubernetes is an open platform and the possibility for customization is as
important as its core functions. As a result, it is not surprising to see that in a
production environment such the one of a medium or big company, the use of cus-
tom resources is heavily implemented on their Kubernetes installations, and many
core functions are built using custom resources. It all just makes Kubernetes more
modular.

So why if the platform embraces this concept of modularity to the point that is as
important as the rest of the functionalities, a dashboard, that has as a key point the
job to show and explain what reside in the cluster, does not? Why using a dashboard
I can easily scale the replicas of a deployment with a single click, but when it comes
to a custom resource all the UI has to offer is a YAML representation of the object?
Even when the object can be modified (and only in certain dashboards it is possible)
as a matter of fact, it brings no real value to the user experience. Simply moving
what can be done in a text editor or in the command prompt, in a same-fashioned
text editor, but within a web interface, is at least useful (if you are already using
the dashboard) but it does not make the user want to boot up the dashboard just

2. Kubernetes Integration 15

to edit a line of code.

A proper way to represent custom resources, interact with them and customize
the views to the likes of the end-user is the missing point that all of the above
dashboards have in common, and as such it is what LiqoDash sets its key lines of
work, facing the problem with a completely different approach that will be explained
in details in the following chapters.

16

LiqoDash Overview

In this chapter we are going to explain how LiqoDash has been built, the choices
made and why building a reliable and scalable UI for Kubernetes can be really
difficult. Speaking about the latter, it is no secret that the Kubernetes APIs are not
really suited to build user interfaces on top of them, and, as their implementation
suggests, are mainly been designed so that creating resources and having managers
working on them consumes little computational resources. That at the cost of
having a poor general understanding of what is really happening in the cluster as a
consequence of an action. Ideally, what the user want is the overview of a workflow
that is often separated across multiple objects. For example, when we scale up
the replicas of a deployment it is not immediate that this has repercussions on the
status other objects (such as Pods and ReplicaSets). It is a consequence that the
user (or the dashboard that uses the Kubernetes APIs) needs to know beforehand.
Even though Kubernetes offers some ways to trace the links between resources,
this is often not enough for a complete overview of the system and certainly not
satisfying in the context of custom resources. A tool that would show at runtime
the correlations between resources that would make the exploration of the cluster
easier would be quite helpful in these situations, but we will discuss about it later
on in the next chapters.

3. LiqoDash Overview 17

3.1 The Frontend

In this section we are going to explore the solutions proposed to build the frontend
of the dashboard. The term frontend refers to just the user interface part of the ap-
plications, the one that runs directly in the browser of the end-user and, ultimately,
what the user is going to see and interact with. It is the single point of contact
between the application and the person who is going to use it. In a developer’s
mind, it is as important as every other component, but when it comes to the users
it is the user experience what really makes the difference in choosing between one
solution over another.

3.1.1 JavaScript Frameworks

JavaScript is one of the most popular programming languages used mainly to de-
velop dynamic web-based applications and web browsers. The decision about using
JavaScript to code the dashboard was made on the basis of the following factors:

• Iterpreted language: instructions are executed directly in the browser, with-
out previous compilation. That gives the application platform independence,
makes the language more dynamic and makes the development of plug-ins and
extensions easier.

• Weakly typed: there is no need to define the type of object that are going to
be processed, which comes useful for example when there is no knowledge of
the kind of object that the API server will respond with.

• NPM packages: being one of the mostly used languages out there, there is
plenty of open-source packages and libraries made by the community that
avoid writing useless boilerplate code.

There is no doubt that JavaScript is an objectively flawed programming language,
and pages could be written about the pro and cons of all the alternatives, but for
the reasons depicted above, the choice of using it to develop the dashboard was
considered the most fitting.

3. LiqoDash Overview 18

ReactJS

React (or ReactJS) is an open-source JavaScript framework that is used for building
single-page user interfaces and UI components. Released in 2013 and maintained by
Facebook, it has gained lots of popularity through the years and there is an ever-
growing passionate community of individuals and companies that helps making it
one of the best options when working with JavaScript frontends. As their front
page states React make it painless to create interactive UIs, allowing the user to
declare components that will automatically transpiled in HTML, without the need
to have splitting views that separates HTML and JavaScript code. This approach
is what is so interesting about React and becomes really helpful when it comes to
debugging code. Declaring components, each one managing its own state, that can
be composed to create complex user interfaces makes the process of building a UI a
relatively easy and painless job.

WebPack

Applications are often split in separate chunks of code that enclose different func-
tionalities. Each chunk is called a module. WebPack is a static module bundler for
JavaScript applications that builds a dependency graph which maps every module
and exports them as bundles. The use of WebPack (or a module bundler of sorts)
was necessary because of the many plugins and external modules that LiqoDash
uses (for example the various loaders for images, SVGs, fonts and others) as well as
to include the JavaScript library for accessing Kubernetes API which we will talk
about more in detail later in this chapter.

Ant Design

Ant Design is a React UI library that contains a set of high quality, fully responsive
and highly customizable components for building rich, interactive UIs. It was chosen
as design framework mostly because its simple but fresh design that is particularly
well suited for a dashboard. It also proposes a very interesting set of features that
will be listed below:

• Enterprise-class UI designed for web applications;

3. LiqoDash Overview 19

• A set of high-quality React components out of the box;

• Internationalization support for dozens of languages;

• Powerful theme customization in every detail;

• Predictable static types;

Sadly it is a relatively new framework, although it has seen a spike of popularity in
recent days, so API are in constant change, and not always explained clearly. Also
it is a Chinese project, and sometimes their English translation is not the best.

3.1.2 Javascript library for Kubernetes

The library used to connect to the Kubernetes API is kubernetes-client-javascript,
our patched version of the official one. As the Kubernetes developer team states,
the client of official library is implemented only for server-side, using NodeJS. This
is because of various dependencies that can only be solved server-side, that would
not allow the use of these API to a pure JS client. The solution was to use a
patched version is the same as before, but with a slightly different build file. In
fact in this project it is performed a binding of those server-side-only modules with
user-accessible ones. With this library we are able to make calls to the Kubernetes
API inside the dashboard, without the need of a backend.

3.1.3 Watches

As explained in the introduction, one of the key features of LiqoDash is its real-time
responsiveness. Resources changes constantly in a Kubernetes cluster, and there
is no way to predict them. Setting up a timer that updates every resources once it
reaches zero is a bad idea, because most of the time only few resources from all the
ones we are keeping track of are actually updated, and it is generally a not scalable
solutions. The input that something has changed need to come from the server
itself, and when notification of sorts need to be intercepted by the dashboard and
processed accordingly changing the information displayed. To achieve it LiqoDash
leverages the use of watches, a Kubernetes mechanism that is able to efficiently
detect changes of resources and sending a notification to who is listening for them.

3. LiqoDash Overview 20

The way they work is simple but, as we said, quite efficient: every Kubernetes object
has, in its metadata, a field called resourceVersion that keeps track, as the name says,
of the current version of the object. When an object is updated its resourceVersion
is updated too. When the frontend asks for a resource it will be responded by the
Kubernetes API server with a resourceVersion that can be use to start a watch on
said resource. If the watch is started, the server will then notify the caller of any
changes that have been made to that resource after the supplied resourceVersion.
From the frontend point of view, whenever we are interested in viewing the real-time
state of a resource (e.g. we are on a view that shows a specific CRD and its related
custom resources) and getting notified about its change, a watch is opened and will
remain active until we leave the view. At its core, a watch is nothing more than a
HTTP/2 connection established with the cluster’s API server.

3.2 The Backend

In the sections below we are going to explain the solutions and how we have chosen
to implement the backend part of the application. As we did for the frontend, let’s
give a more techical definition of what is it meant by the tems bakend before we
begin the exploration. The term backend refers to all of the parts and components
of the software that the user does not come in contact directly. It is what the user
does not see and does not need to know or understand to work with the application.
In contrast with the frontend which the code is often not compiled a priori, but its
interpreted by the web browser and its content generated on-the-fly, the backend
is often compiled code, static, and its purpose regards everything that happens
before the page is displayed, such as processing of API calls and generating proper
responses, handling complex workflows and storing records in a database.

All this work is done by the backend, but in the context of creating a dashboard
for a platform like Kubernetes, is that really necessary? We will be discussing about
that in the next paragraphs.

3.2.1 No need for a complex backend

We have explained that one of the roles of a backend is managing API calls to provide
an object or resource to the frontend to display (or operate with it). When we

3. LiqoDash Overview 21

talked about the Kubernetes internal in the previous chapter, we remember about
a particular component called the Kubernetes API server and its job, among
others, it to provide responses for API calls in the form of JSON objects (when we
ask for resources). That said, there is no real reason for a backend implementation
that takes frontend calls, processes them into other calls to the API server and then
forwards the responses back to the dashboard. It seems like an unnecessary step
that only makes the dashboard slower in retrieving data.

On the other hand, there are equally valid points for having a backend that imple-
ments business logic. They are well described in the official Kubernetes Dashboard
documentation as the following:

• Clear separation between the presentation layer and business logic layer;

• Transactional actions are easier to implement on the backend than on the
frontend;

• On certain occasions where to get the full view of a resource there is the need
to perform more than one API call, the backend is faster on retrieving data,
shortening the round trip time. For example, getting a list of pods with their
CPU utilization timeline requires at least two requests;

Given the little advantages that a backend gives (we are talking about speed of
data retrieving, and only in particular occasions), the implementation of a complex
backend which would take time to develop and perform fairly well, we decided to go
against this decision.

But relying on not having backend at all it is unthinkable and only leads to a
series of problems (one in particular that we are going to show in detail later) that
cannot be overcome. That is why LiqoDash has its implementation of a backend, just
a minimal one. As a result, we have avoided all the troubles about not incorporating
a backend solutions, with all the advantages of having little to no delay time given
by the middle step between the API call of the dashboard and the response of the
Kubernetes API server.

3.2.2 NGINX Reverse Proxy

What does it mean minimal backend and how is it implemented? The backend
that we opted for is just a minimal implementation of an NGINX reverse proxy. A

3. LiqoDash Overview 22

reverse proxy is a type of proxy server that is responsible for retrieving resources
from a server (the Kubernetes server in this case) on behalf of a client (the dashboard
frontend). Using NGINX as reverse proxy was a natural choice because of its high-
performances and lightweight structure. This proxy will receive API calls from the
dashboard frontend and, without additional processing, will forward them to the
Kubernetes API server. The same logic is applied for the server responses.

3.2.3 The CORS problem

As we said earlier, without even this minimal implementation of a backend, we will
incur in major problems, security-wise. In detail, without a backend, and sending
requests to the Kubernetes API directly from the dashboard, there could be some
errors performing these requests. One kind of error regards the configuration of
CORS. Cross-Origin Resource Sharing (CORS) is a standard that allows a server
to relax the same-origin policy. This is used to explicitly allow some cross-origin
requests while rejecting others. For example, if a site offers an embeddable service, it
may be necessary to relax certain restrictions. CORS errors occur where either the
browser would not accept a cross-origin request or the API server would not accept
the request, responding with an error, if it does not allow cross-origin requests. The
CORS mechanism is very important for the safety of both client and server, and
to prevent error or avoiding configurations that would possibly put the Kubernetes
server in danger, the solution was put a middleware between the dashboard and the
actual API server: the NGINIX reverse proxy. With a proxy we have no CORS
related errors, keeping the security that this mechanism provides.

3.2.4 Pod to API Server communication

In this small section we are going to take a look on how a LiqoDash Pod is structured,
what it contains and how the communication between it and the API server is
performed through some key points.

• Init Container: this is a special kind of container that run before the app
containers are started, at the start of the Pod’s life cycle. Its role will be
clearer after reading the next chapter. For now, what we need to know is

3. LiqoDash Overview 23

that it shares a folder with the NGINX proxy where it retrieves the certificate
needed to talk with the dashboard in HTTPS.

• LiqoDash: the code of the application, in the container as a Docker image.

• NGINX Proxy: requests performed by the dashboard applications to a par-
ticular path that starts with /apiserver/ are intercepted by the proxy and
forwarded too the Kubernetes API.

• Kubernetes API: at this point, the API call is managed by the Kubernetes API
validation mechanism, that verifies that what we are making is a valid request,
with a valid token and the user has the privileges to access the resources it is
asking for. Whatever the response is (could be a Success or a Failure) it will
be forwarded the same way it arrived, and will be showed in the dashboard
accordingly.

All the connections between proxy and dashboard/API server are secured (over
HTTPS).

Figure 3.1: LiqoDash Pod structure and communication with the API server.

24

Authentication, Authorization and

Methods of access

One of the first implementations to think about when starting developing a web-base
user interface that can be potentially accessed by anyone on the internet is a secure
and reliable method of login. The dashboard is no exception, as it gives its users
access to resources in the cluster. This chapter is dedicated to explaining in details
the solutions adopted in regard of managing authentication and authorization to a
Kubernetes cluster, as well as the methods of accessing the dashboard.

4.1 Kubernetes Role-based Access Control

Before talking about the various methods of login, it is important to know that,
whether it would be the method used, the dashboard relies on the same basic ac-
cess control entity for authentication and authorization: the Kubernetes role-based
access control (RBAC). Role-based access control is a method of regulating access
to computer or network resources based on the roles of individual users within the
organization. RBAC authorization uses the rbac.authorization.k8s.io API group to
drive authorization decisions, allowing the user to dynamically configure policies
through the Kubernetes API.

4. Authentication, Authorization and Methods of access 25

To understand more about how LiqoDash leverages RBAC for authorization, we
need to explain what are defined as roles and bindings in Kubernetes.

Roles and ClusterRoles

An RBAC Role or ClusterRole contains rules that represent a set of permissions.
Permissions are purely additive (there are no ”deny” rules). A Role always sets
permissions within a particular namespace; when creating a Role, it is mandatory to
specify the namespace it belongs in. ClusterRole, in contrast, is a non-namespaced
resource. The resources have different names (Role and ClusterRole) because a
Kubernetes object always has to be either namespaced or not namespaced and it
can’t be both. With ClusterRoles can be defined permissions that are relative to a
namespace, granted across other individual or every other namespaces. Also there
can be defined permissions for resources that are cluster-scoped.

RoleBindings and ClusterRoleBindings

A role binding grants the permissions defined in a role to a user or set of users. It
holds a list of subjects (users, groups, or service accounts), and a reference to the
role being granted. A RoleBinding grants permissions within a specific namespace
whereas a ClusterRoleBinding grants that access cluster-wide. A RoleBinding
may reference any Role in the same namespace. Alternatively, a RoleBinding can
reference a ClusterRole and bind that ClusterRole to the namespace of the RoleBind-
ing.

ServiceAccounts and Token Controller

In Kubernetes, service accounts are used to provide an identity for pods. Pods
that want to interact with the API server will authenticate with a particular service
account. By default, applications will authenticate as the default service account in
the namespace they are running in.

The Token Controller component is part of the Kubernetes controller-manager.
Its job is to observe the creation or deletion of ServiceAccounts and act consequen-

4. Authentication, Authorization and Methods of access 26

tially, creating Secrets that contain tokens used to authenticate the user.

4.2 LiqoDash Login

During the installation of the dashboard a service account and a role binding are
created along the deployment of the application. The role binding binds the newly
created service account with a cluster role that has admin privileges. That means
that a secret containing a token will be created by the Token Controller, and this
token can be used to login in the dashboard and access the Kubernetes cluster
authenticated and authorized as an admin. Being an admin in the context of Ku-
bernetes management means that every resource in every namespace is accessible
and is a type of privileges that only few people should be having, especially when
there are lots of cluster’s users.

With that said, although the installation of LiqoDash provides a cluster admin
account for authentication, it is certainly not mandatory nor suggested to use it,
as the dashboard is an application that is intended to be used by everyone, not
only the administrators. Users with limited privileges will still be able to access the
dashboard, and interact with just the resources they have the authorization for. As
a matter of fact, all the dashboard do is use the token (provided by the user via
ways that we will explain in the following sections) to make calls to the Kubernetes
API. The process of validating authorization and authentication is all handled by
the Kubernetes system. If a users do not have permission to access a resource,
Kubernetes will respond with a failure and the dashboard will report it graphically
to the user.

After the first login, the token is stored in a Cookie. That prevents successive
interactions with the dashboard to ask again for the token. The Cookie will be
deleted when the browser is closed.

LiqoDash offers two distinct methods of login that are provided in different ways,
but share the core aspects of validation that we have explained before. Let’s explore
them.

4. Authentication, Authorization and Methods of access 27

4.2.1 Service Account Token

This first option, which is also the easiest one, is to make use of a service account
token. As we have said, every service account, being that the one created at the
installation of the dashboard or one that was already existing in the cluster, is
related to a secret that contains a token. This token can be used to login into the
dashboard and access resources in the cluster.

1 Name: liqodash -admin -sa -token -94 v8x

2 Namespace : liqo

3 Labels : <none >

4 Annotations : kubernetes .io/service - account .name: liqodash -admin -sa

5 kubernetes .io/service - account .uid: ad421b68

6

7 Type: kubernetes .io/service -account -token

8

9 Data

10 ====

11 ca.crt: 1025 bytes

12 namespace : 4 bytes

13 token: XXXXXXXXXXX

Listing 4.1: An example of Secret object that contains a token.

4.2.2 Support for OIDC

The dashboard also offer another solution of login, that is through the integration
of OpenID. OpenID Connect is a flavor of Oauth2 supported by all the most famous

4. Authentication, Authorization and Methods of access 28

providers, such as Azure, Google, Facebook and Keycloak. The protocol’s main
extension of Oauth2 is an additional field returned with the access token that is
called an ID Token. This token is a JSON Web Token (or JWT) with well known
fields, such as a user’s email, signed by the server.

The login process follows some steps that we try to summarize in a few key
points:

• Once the dashboard is accessed, if there is no Cookie containing the token or
if the token has expired, the user will be redirected to the identity provider.

• Once the access with the identity provider is done, it will respond with an
access token, an id token and a refresh token.

• The id token is sent in the Authorization header to the Kubernetes API server.

• The API server will validate the JWT by checking against the certificate name
in the configuration, making sure that the JWT has not expired and that the
user has valid authorizations to access the dashboard.

• The API server then respond to the dashboard.

• The dashboard provides feedback to the user.

• In case of positive response, from now on the dashboard will send every API
calls with the token id in the Authorization header.

LiqoDash Configmap

The dashboard needs to know if the user want to access with an OIDC provider or
through the classic login before making every other call to the API server. For that
it uses some static environment variables that are provided by the user before the
LiqoDash Deployment has started. Changing these variables, and so the method
of login, will require the Deployment to be restarted. The variables are stored in
a Configmap, that is a Kubernetes object that is perfect for providing simple value
to key storage. The Configmap (showed in the following piece of code) has four
variables:

• Client ID: ID that the identity provider has registered the user with;

• Client secret: secret that the identity provider will accept;

4. Authentication, Authorization and Methods of access 29

• Provider URL: the identity provider that will be contacted (e.g Google, Key-
cloak);

• Redirect URL: the URL the user will be redirected to after the login is com-
plete. This could be localhost in a development environment, or the name with
which the user is accessing the dashboard with;

1 apiVersion : v1

2 ...

3 name: liqo -dashboard - configmap

4 namespace : liqo

5 resourceVersion : " 012345 "

6 selfLink : /api/v1/ namespaces /liqo/ configmaps /liqo -dashboard -

configmap

7 uid: 8e48f478 -993d -11e7 -87e0 -901 b0e532516

8 data:

9 oidc_client_id : <CLIENT_ID >

10 oidc_client_secret : <CLIENT_SECRET >

11 oidc_provider_url : <PROVIDER_URL >

12 oidc_redirect_uri : https :// example .com

13 kind: ConfigMap

Listing 4.2: OIDC Configmap of LiqoDash.

4. Authentication, Authorization and Methods of access 30

(a) LiqoDash login page

(b) An example of OIDC login using key-
cloak

Figure 4.1: The two methods of login.

4.3 Accessing LiqoDash

There are two major ways of exposing the dashboard so that it can be accessed by
the users. In this section we are going to explore them in detail, understanding what
are the differences between the basic and advanced configuration.

4.3.1 Basic access: Node Port and Port forward

When we explained the fundamentals of Kubernetes, we talked about Services. To
recap, a Service is an abstract way to expose an application that is running on a
Pod as a network service. There are various types of services, and we are going to
concentrate on one in particular: the NodePort.

When setting the type of a service to NodePort, the Kubernetes control plane
allocates a random port (specified from a range typically from 30000 to 32767) and
each node proxies that port into the Service. With that, we are no longer dependant
to the dashboard Pod actual internal IP, because the application will be accessible
through the master Node IP (that supposedly does not change) via a static port,
and so even if the Deployment is restarted, the dashboard will always be accessible

4. Authentication, Authorization and Methods of access 31

with the same path.

Accessing the dashboard via NodePort requires, as we said, the IP of the master
node. But there is another way to access the application, which is fundamentally
the same concept, but allows the user to work with localhost, that is the machine’s
loopback address. To do that, we take advantage of the port-forward functionality
that is provided with the Kubernetes CLI that exposes a service to a local port.

4.3.2 Advanced access: Ingress

LiqoDash can also be exposed using an Ingress. An Ingress is an API object provided
by default by Kubernetes that manages external access to the services in a cluster,
typically HTTP. As the official Kubernetes documentation specifies, Ingress exposes
HTTP and HTTPS routes from outside the cluster to services within the cluster.
Traffic routing is controlled by rules defined on the Ingress resource. For an Ingress
resource to work, the cluster must have an Ingress controller running. All the major
Cloud Providers such as Amazon AWS and Azure also offers support for Ingress
controllers.

The dashboard service can so be externally reachable through an URL given by
an Ingress configuration and the installation provides the user with a pre-compiled
Ingress resource whenever a hostname is specified. Of course, that resource can be
modified at will according to the user preferences.

4.3.3 Differences between access methods

LiqoDash offers the option of more than just a single method of accessing the dash-
board, but with that comes the question about what is the difference between them
and why use a method over another. In this section we will explain what are the
possible cases that will help a user make that decision.

4. Authentication, Authorization and Methods of access 32

When to use Port-Forward

Using kubectl port-forward to access the dashboard service is usually meant for
testing/debugging purposes. It is not a long term solution, as it require to always
run the port-forward and keep it active. However, if the user just wants to access
the dashboard via localhost, this is the easiest method.

When to use NodePort

Using a NodePort means that a specific port is opened on all the Nodes, and traffic
sent to this port is forwarded to a service (in this case the dashboard). It is not
recommended to use this method to directly expose a service on the internet, but if
the user is going to use the dashboard on the same machine where their cluster is,
that is a simple and valid solution.

When to use Ingress

Using Ingress is probably the best way to expose LiqoDash, especially if the idea is
to access it through the internet. It can provide load balancing, SSL termination
and name-based hosting, letting the users access the dashboard using a host name
instead of just its IP. Because there many types of Ingress controllers, each one with
different capabilities, it may require some work to properly set up.

4.4 LiqoDash and Kubernetes communication

Now that we know how the authorization and authentication works, let us take a
look at how the connection is established between the client (the dashboard) and
the server (the Kuberntes cluster) following the workflow of an API.

• Client side: through the Kubernetes JavaScript library the dashboard makes
a call to the Kubernetes API (e.g. we want to list all CRDs present in the

4. Authentication, Authorization and Methods of access 33

Figure 4.2: LiqoDash API calls workflow.

cluster). As we explained in the previous chapter, this is not a direct call,
meaning that we won’t ask directly the Kubernetes API server, but it contains
nonetheless all we need to make an API call: the bearer token (that we need
to prove to the Kubernetes API that we are a valid user that has access to
the resource requested), the path to the endpoint we want to access and, of
course, the body and the option headers we need if we are creating or updating
resources. Because we are transferring sensible data (first of all the token),
the connection needs to be secure and its only natural to use HTTPS, and in
particular HTTP/2, because of the multiple connections opened with the use
of watches.

• Ingress (optional): although highly suggested the use of an Ingress in not a
requirement for the dashboard to work.

• LiqoDash service: the request is then forwarded to the LiqoDash service. If
there is no Ingress the dashboard will be accessed directly through the ser-
vice, exposing it via NodePort or port-forward. The service is the point of
contact between the user and the pod (the resource that actually contains the
dashboard application).

• NGINX reverse proxy and API server: the request is then forwarded to the
proxy, processed and passed on to the server that will produce a response.
This workflow is the same as what is explained in the Chapter 3.

34

Resource Discovery and Operations

So far we have discussed about the general concepts behind the LiqoDash project,
and why we thought it was necessary to improve the dashboards that already exist
for Kubernetes, opting for a completely different approach at its core. We have
set the basis to the system we are working on and described the workflow of data
exchange with the server. In the next few chapters we are going to take a look at the
internals of the dashboard, the ideas that led to the birth of this application and the
solutions proposed, as well as the downsides that came with their implementation.

In this chapter we will explain the resource discovery process that uses an
agnostic-like method of resource retrieval and exploration, and the various common
operations that can be performed on the discovered resources.

5.1 The generic approach

When it comes to think about the design of an application, whatever its kind or
purpose may be, it is often a good choice to consider not just the immediate func-
tionalities that the software need to implement, and so creating ad hoc programs
that serve only that purpose, but being open to the possibility of supporting changes
without having to rewrite a lot of the code-base. Flexibility is a high value for an
application as it allows the developer to avoid spending too much time updating it
to follow changes that depend on external factors, and, potentially, the company

5. Resource Discovery and Operations 35

resources (in terms of budget, code maintenance, and time that could be spent on
other features).

In the case of Kubernetes, a dashboard is, of course, heavily dependent on the
platform and the resources it has to offer. Without a way of generic programming,
we would have to keep track of the changes that occur in the system and update
the code of the dashboard accordingly. If we consider, for example, the case of an
API provided by Kubernetes in its beta version; the dashboard is designed, in order
to retrieve it from the server and display it to the user, to make an API call to a
path that is specific to the beta version; later, the API get updated an comes out of
beta; until the dashboard is not updated, it will fetch and display an older version
of the API, which is, in some cases, not acceptable. The same logic can be applied
if we think about newly created APIs, that is, if we recollect our memories, the case
of custom resources. Even the choice of the parameters of a resource to display can
be subjected to a change in the resource definition.

That is why we decided that, rather than waiting for an API update and the
change the code consequentially, it was a far better approach to make the dashboard
able to react to these changes without needing to write or rewrite code, making the
dashboard stateless and with no knowledge of what resources are in the server before
accessing it. How this is obtained is fairly simple, but quite effective and will be
described in the next section.

5.1.1 Discovery process

As soon as the dashboard is accessed, after the login and the process of user val-
idation, the discovery process starts in background. This is one of the most
important workflows of LiqoDash as it is the one that will create the first wide-
scoped high level representation of the dashboard, giving the user the possibility to
search for and explore resources that are in the cluster, of course only if it has the
rights to do so.

But what does it mean discovery process and how is it achieved? The dash-
board, as a fundamental we impose for this project, have to be agnostic to the type
of resources that reside in the cluster. That means that we cannot rely on making
specific calls for specific resources because, as stated, the dashboard is not aware
a priori of what kind of resources are available or not. These resources need to be
discovered first, and then the dashboard can make the user interact with them. The
discovery process is the process of collecting the various types of resources that the

5. Resource Discovery and Operations 36

cluster has available (and the user the authorization to perform actions on) at the
moment of the request and portray them in the user interface ready to be explored.
Thanks to the Kubernetes API server, achieving it is just a matter of API calls. To
be clearer, the discovery process workflow has been summarized in few key points:

• Question Kubernetes API sets: there are two major API sets on Kubernetes
that are worthy of being displayed in the dashboard: apis and api v1. A call
to these API results in a response containing a group of resource types or an
array of groups of resource types.

• Iterate through groups of APIs: once obtained the references from the previ-
ous search, the dashboard iterates through the newly found groups of APIs
asynchronously until the response is just a set of resources types, which is the
last and deepest level of search as we, as a user, only care to know what kind
of resources are available and only later the resources of a specific kind.

• Cache the server responses: at this point, to avoid having to ask again the
server (which is quite costly in terms of computational time spent), the dash-
board stores the essential information about the types of resources discovered
(such as the name and the link to retrieve them).

• Make them available: the resources are now available to the user through the
sidebar or a convenient search bar with autocomplete positioned in the header.

• Open watches: a series of watches are opened for resources or API groups
that need to be kept track of because their changes have an impact on the
general environment that constitutes the dashboard (for example, CRDs can
be updated, added or deleted during the time the dashboard is opened and as
that a watch is opened and will be kept open until the dashboard is closed).

5.1.2 Service-agnostic exploration of resources

The exploration of resources in a top-down fashion is one of the most unacknowl-
edged part of Kubernetes that almost every single Kubernetes dashboard seems to
not be particularly interested to display. That is because of the non-generic ap-
proach that other dashboards decided as implementation. Being able to explore
APIs starting from a general level is not only useful in a variety of different cases
(for example, we want to explore every Custom Resource Definition that belongs
to a certain group of API), but it also comes rather easy with the adoption of a
service-agnostic kind of dashboard.

5. Resource Discovery and Operations 37

(a) Easy exploration of resources
(b) The auto-complete functionality: search-
ing resources that belongs to a specific set of
groups

Figure 5.1: Search bar showing the results of the discovery process.

5.2 CRUD Operations on Generic Resources

The job of a dashboard is not only to represent data in a well designed and visually
pleasant environment, but also to let the user interact with the resources displayed
to perform more or less complex actions and workflows.

The Kubernetes API are accessed using REST calls. Representational state
transfer (REST) is a software architectural style that defined a series of operations
that can be performed over resources exposed through a web service. Using HTTP
and Kubernetes, the operations concerned are the following:

• GET: retrieve a resource;

• LIST: retrieve a collection of resources;

• POST: create a resources based on the body of the request;

• PUT/PATCH: replace/update a resource based on the body of the request;

• DELETE: delete a resource or a collection of resources;

Because of the REST nature of the the Kubernetes API, once the resource is obtained
(through the discovery process) and accessed, performing the classic CRUD opera-
tions over it is a rather easy task. In the next sections we will describe how these

5. Resource Discovery and Operations 38

methods are implemented in LiqoDash and the challenges and solutions adopted in
the context of a service-agnostic and generic approach.

5.2.1 The challenge of a dynamic approach

With the generic method that LiqoDash uses to retrieve data from the server, there
are a series of challenges to take on. The first one, and by far the most concerning
one, is how to handle a JSON object, that is the resource that the server responds
with, which the dashboard has no idea how it is structured, and offer the user
an environment where they can perform actions on it (first of all, visualize it) in
an understandable and meaningful way. With this approach comes, of course, a
huge loss in expressiveness, but this project provides alternative solutions that sail
against the common implementations that all the other dashboards make, imposing
pre-defined views to their users.

LiqoDash is generic by design, and does not assume the status of the Kubernetes
cluster. That means that a view that has the job of displaying a resource has to
be generic too and does not have to assume the kind of resource it will be showing.
As that, has to be dynamically generated according to what the interested object is
and the same code needs to be the same between different kind of resources.

5.2.2 Generic data view

Although it is just a fraction of the architecture of a dashboard, the visual design
of the user interface and the way of visual communication (also called User Experi-
ence) are one of the most interesting and difficult part to manage, as well as being
extremely important for the end-user that will interact with the application. That
means that the user is unaware and has no interest in knowing about the approaches
that the dashboard has implemented, but what they want instead is a well designed
view that would show the resource they want to explore understandable at a glance.
Relying on just showing the user a YAML or JSON view of their resource is a very
poor choice of design and brings little to no value to a dashboard.

LiqoDash introduces a type of view that meets the need of a good visual im-
plementation without having to renounce to its generic and dynamic approach of
handling resources. The view proposed (an example of it is Figure 5.2) is dynam-

5. Resource Discovery and Operations 39

ically generated on the basis of the resource it needs to display and offers the user
an easy and intuitive way of performing rapidly all the operations that they need.

• Visualize: the resource obtained by the Kubernetes API server is processed
by a component (the dynamic form generator) that creates a completely
explorable form based on the object provided. This component is completely
generic and independent of the resource it needs to display. The view can
be switched to the editor mode, which will show the raw object as YAML or
JSON object depending on the user preferences.

• Search: the integration of a searchbar with an auto-complete function makes
the exploration of a resource an easy task.

• Update: the parameters of the resource can be updated or added by the
user and validated by the Kubernetes validation system. Parameters can be
modified quickly in the form or in the editor. They will also be automatically
updated if they have been modified outside of the dashboard (for example
directly in the cluster from someone else) thanks to the watch that will open
at the opening of the resource view.

• Delete: clicking the red button will prompt a pop-up asking if the user is sure
of the decision. Clicking Yes will delete the resource. There is no undo.

Figure 5.2: A resource of type Deployment displayed through the dynamically
generated form view with ready-to-update fields.

5. Resource Discovery and Operations 40

5.2.3 More than just plain YAML

Although the possibility to update and manage resources through a YAML (or
JSON) editor is always available, as it should be in the context of a dashboard
(especially one for Kubernetes), a noteworthy amount of work has been put in the
design and development of components that would make the user need to rely on
it on very few occasions. The job of a dashboard, as we have said many times by
now, is to give the user a sense of easiness when managing complex resources and
workflows. That is why using a text editor in a UI is in part in contrast with the
principles of the user experience. Sometimes there is no way to avoid it, and the
translation from a text based context to a graphical and interactive one is limited or
not possible, but when the possibility is there, such as visualizing generic resources,
it must be grasped.

Sadly, exploring other dashboards, the trend is to have fancy and clear views of
only certain Kubernetes components, leaving aside the ones that are not provided by
default or are not considered important. Especially in the case of custom resources,
all we can see is an editor an no more. The same could be said for creating or
updating a resource. Always the editor. But the editor is not enough for a dashboard
to fully serve its purpose, and the user needs more than that. This is what LiqoDash
offers, more than just plain YAML.

Figure 5.3: The editor view, used to show the resource in plain YAML or JSON.

5. Resource Discovery and Operations 41

5.2.4 Using the OpenAPI v3 Schema

When creating a resource (especially a custom one), the dashboard relies on the
resource’s validation schema, which is an OpenAPI v3 schema. With it, the form
generator presented before can be expanded to a real dynamically implemented
form wizard which is used to create, and validate the object before sending it to
the Kubernetes server for validation. This saves time and, of course, the issue of
writing object using a YAML or JSON editor.

Making comparisons with other dashboards, only the official Kubernetes Dash-
board has made a step towards the implementation of a wizard that helps to easy
the pain of creating resources, but works only for resources of type Deployment, and
not at all when it comes to custom resources. In contrast, the LiqoDash solution is
perform extremely well in such a context and creating complex objects has become
a trivial task that only requires to fill up a form.

Figure 5.4: Example of custom resource being created through the form wizard.

5. Resource Discovery and Operations 42

5.3 Relationships between resources

We have said how the Kubernetes API are designed to be fast and reliable and not so
much aimed at an easy integration of a UI. That is because often what the user wants
to see logically is scattered across multiple objects. As an example, when looking at
a Deployment, the user is interested in how to access it. That requires looking at a
collection of objects that are separate entities, but are all related nonetheless, like
Services and Ingresses, Endpoints, Pods and Nodes.

LiqoDash offers its users a way to overcome this limitation through a view that,
for each resource, is able to build a dynamic dependency graph that let the user
visualize and explore the objects that are in some ways related to the one we are
on. Each object can be selected on the graph and its content will be described in a
separate column.

5.3.1 Different kind of relationships

We are about to describe three different methods that LiqoDash uses to understand
the relationship between the resource selected and the others that reside in the
cluster, and as that, create the dependency graph. Each one of these approaches are
enabled by default, meaning that the dashboard will apply all of them when trying
to create the graph, but there is always the possibility to disable the ones that are
not needed, as the three methods are independent one from the other. The methods
depicted below are ordered from the more general to the more specific in terms of
resources correlation.

Using labels

Labels enable users to map their own organizational structures onto system objects
in a loosely coupled fashion, without requiring clients to store these mappings. When
objects share the same label there is a probability that they have some kind of
relationship. This kind of resource linking is of course the most loose between the
three we are going to explain because there is no way to guarantee that two objects
that share the same label are indeed related. This is also the slowest method of

5. Resource Discovery and Operations 43

generating links between resources, as it require to check every resource type in the
Kubernetes cluster and apply a label selector in the API request, so that the server
will respond with a list of items that contains the selected label.

Owner References

Some Kubernetes objects are owners of other objects and that ownership can be
used to detect correlations between objects. For example, a ReplicaSet is the owner
of a set of Pods. The owned objects are called dependents of the owner object. Every
dependent object has a metadata.ownerReferences field that points to the owning
object. These values can be set automatically by Kubernetes or can be specified
manually by setting the proper field. This is a mechanism by which the Kubernetes
garbage collector controller works. Cross-namespace owner references are disallowed
by design. This means that namespace-scoped dependents can only specify owners
in the same namespace, and owners that are cluster-scoped and cluster-scoped de-
pendents can only specify cluster-scoped owners, but not namespace-scoped owners.

Direct object reference: a new approach

A new method, developed in this thesis, to specify the relationship between two
object is to directly include a reference to a resource in the schema of the resource.
Of course, because the user can only define the schema of a resource through the
Custom Resource Definition API, only custom resources can implement this method
of linking. The way it works is rather simple: in the resource schema the reference
is created including an object which name that is formatted in a specific fashion:
resource-group/resource-kind. It has two parameters which are the name of the
resource referenced and the namespace, in the case of a cluster-scoped resource. With
that, there is no cross-namespace limitation, but the user need to have authorization
to access all the namespaces interested in the relationship for it to be displayed.

LiqoDash also handles this kind of references when a resource is being created or
updated, letting the user select a resource of the type referenced instead of having
to input the name and the namespace, avoiding common and mistakes.

5. Resource Discovery and Operations 44

1 openAPIV3Schema :

2 properties :

3 ...

4 spec:

5 type: object

6 properties :

7 reference :

8 type: object

9 properties :

10 dashboard .liqo.io/ MiddleRef :

11 type: object

12 properties :

13 name:

14 type: string

15 namespace :

16 type: string

Listing 5.1: Example of a custom resource’s schema with direct object reference

to a resource of type Middle.

5.3.2 Design of data trees and level of search depth

The view is generated using a custom version of the Vis.js library for React to
display networks consisting of nodes and edges. Nodes represent the resources,
and a node can indicate one or multiple (clustered) objects. Edges represent the
relationship between resources and are designed in different ways associated to the

5. Resource Discovery and Operations 45

different methods that they represent (e.g. dashed line for the label method, a
straight line for the owner reference). The graph is automatically updated every
time a direct link is created. To avoid computational overhead and establishing an
excessive amount of open connections with the server, the dashboard will not react
to indirect changes happening in regarding of the first two methods of exploration of
relationships. Only if the main resource (the one that we are visualizing) is modified
(i.e. a new label has been applied or a new owner reference has been selected) the
graph will be updated.

The graph generation inherits the service-agnostic nature of the dashboard, and
the three methods of links search are only dependant on the actual resource we are
currently viewing. That means that, through the use of recursive functions that
only need a starting resource, a graph could have, in theory, an infinite depth. The
right compromise between good performances in terms of computational time spent
in generating the graph and clear exposition on all the most important relationships
between resources is to consider depth the of the graph of two layers, as such it is
designed to be the default one. As a result, the view will be showing, by default,
the resources that are directly related to the resource in question and also the one
ones that are related to them (as shown in the Figure 5.5). Depth of search can be
changed by the user in the settings.

Figure 5.5: Example of a dynamically generated dependency graph of a Pod re-
source with all the methods of relationship search activated and a level 3 depth of
search. Its Deployment is selected on the right column.

46

A Fully Customizable Dashboard

As we have said in the introduction, a completely generic and dynamic approach
comes with its downsides. The knowledge of what to expect from a resource makes
it easier to show what is really important to display and what not, creating ad hoc
views for specific kind of resources. On the other hand, a generic code-base can only
rely on what is common for all resources. In this chapter we explain the solutions
adopted to grant LiqoDash the same level of expressiveness that other, more specific
dashboards have and how this is, in fact, one of the strong points of the dashboard
that is capable of solving numerous resource-displaying related problems.

6.1 The importance of customization

A concept that other dashboards do not have taken into account is the one of view
customization. This is one of the key flaws that we have identified in all of the
current solutions for a Kubernetes user interface. Reading through various blogs
around the internet it seems that there are more than few users that lament the fact
that there is no way to add useful parameters that are not displayed in the default
views to the page, or, for example, add custom columns to filter resources through
certain object fields.

This project addresses that problem and proposes a way to give the user the
possibility to use the default view that the dashboard provides, or completely over-

6. A Fully Customizable Dashboard 47

turn it into something that is more appropriate for the user’s needs. We know well
that a dashboard is designed for the users, but different users may need different
visualization of the same resource, and who better than the user itself knows what
is the best for their cases? What LiqoDash offers is a powerful, fully customizable
environment that the user can modify at will, only keeping what is necessary, and if
there are changes to be made, these are extremely easy to make. All without writing
a single line of extra code: it is all managed by the dashboard.

6.2 Icons and Favourites management

Before talking about the implementations and the solutions adopted between dif-
ferent customizable views, it is noteworthy taking a more general overview of the
basic management systems shared through all the views. There are two features
that are relatively easy to build, and give a huge contribution in improving the user
experience. Having them is a great advantage with a little amount of work, and are
two of those features that the end-user does not really know they need, but once
they are accustomed to it, it is difficult to not rely on them. We are talking about
the favourite management and the customizable icon system.

Icons

At first impact, having the possibility to customize the icon of a view may seem to
be a nice feature, but rather useless for the user experience and just an aesthetic
improvement of the dashboard. It is reasonable to consider useful only what it makes
some jobs done (e.g. the implementation of a tedious workflow in just one click).
But let us not forget about the elements that many times they are overlooked by the
programmer or the architecture manager, but are nonetheless important in granting
the end-user a good quality of experience. The visual design is fundamental in a
dashboard, and there is no way to deny that. That is why LiqoDash comes with a
feature that let the user customize their resource’s icons.

6. A Fully Customizable Dashboard 48

(a) The user can select between a set of
over 400 icons

(b) Favourite resources are displayed in the
sidebar

Figure 6.1: Select and implementation of icons and favourites.

Favourites

The user can mark every resource or group of resources as favourite which is a
way to pin the resources to make them readily available for use. What happens
behind the scenes when marking a single resource as favourite is that it will create a
”favourite: true” annotation in the resource metadata. When a resource is removed
from the favourites, the annotation will be deleted. When a list of resource is
marked as favourite, we need a more high level way of keeping track of it, and
this is done thanks to the use of a particular custom resource called the Dashboard
Configuration that we will explore deeply in the next sections. At the start of the
application, LiqoDash will check if there are resource list marked as favourite in the
Dashboard Configuration and will act accordingly displaying them in the sidebar,
easily accessible by the user.

6. A Fully Customizable Dashboard 49

6.3 The Dashboard Design Configuration

In this section we are going to explain how it is managed the full customization of
views that LiqoDash provides. First, we need to introduce a Custom Resource called
DashboardConfig that is the object in which the design configuration of the
dashboard’s views are stored. Because it is a separate YAML object, it is completely
independent from the dashboard code, which only contains generic components that
process and display the design depicted in the configuration. This grants the user
the power to only display what they want and how they want. With the definition
of a design configuration, not only the dashboard can have all the expressiveness
that other more specific dashboards have (with less code and less time spent), but
is also a step further in that regard, giving the user full control over its dashboard
instead of imposing a view that often does not suite all users’ needs.

6.3.1 Resource List view customization

The Resource List view let the user have a look at all the resources they have
the right to interact with, exposing them in a table with full customizable columns
which purpose is to show general details that give the user an overview of each
resources in a compact fashion. In this view the user can also create a resource of
the type visualized.

The table is composed of three static columns, that represents the essential
details that represents a resource of every kind, and as such they cannot be modified
or removed:

• Favourite column: through this column, resources can be marked or unmarked
as favourites. It is always the first column.

• Name column: is the name of the resource as given by its metadata field.
Resources in Kubernetes cannot exist without a name, and names cannot be
changed after the resource is created. So this column is treated as static and
always present.

• Age column: this column shows how much time has passed from the creation
of the resource. It is always the last column.

6. A Fully Customizable Dashboard 50

The other columns of a resource list table are can be modified, removed, or
added at the user’s own discretion. The dashboard provides a default configuration
for all the common and most used resources of a Kubernetes cluster, but in cases
where that is not possible (e.g. custom resources that only the user know about)
the dashboard offers a way to implement the parameters that are more appropriate
with ease and just in a matter of few steps.

Clicking the add column button will create a new column as the second-to-last.
A searchbar with autocomplete will let the user select the parameters that the re-
source kind has available as described in its OpenAPI v3 schema. The autocomplete
function does not let the user select a parameter that is not defined in the resource’s
schema to prevent the input of wrong data. The newly created column can be saved
and will now show, for each resource displayed, the corresponding value of the pa-
rameter. For each column there can be specified more than just one parameter and
even some text to show in each cell, or a basic arithmetic calculation between pa-
rameters. For example if we want to create a column that shows the ratio between
available replicas and total replicas of a Deployment, it can be done providing the
first parameter and the second with a divisor (such as ”/”) between the two. That
way we have created a column that shows a more complex situation and is more
clearly understandable than just single parameters in different columns.

Saving the column will also save the new design in the dashboard configu-
ration CRD. If the resource kind has not already an entry in the configuration,
meaning that no customization has been performed on it or its resources, it will
be generated and added. The column is saved in an array of objects simply called
columns and is composed of two inner objects: an list of parameter to display and
the name of the column. The name of the column is a string auto-generated at the
act of saving the column, it is meant to describe the content of the column and
can be changed by the user at any time just by clicking the column header. Every
column of the table also comes with a filtering option next to its name, and it is a
feature available regardless of the column being a default or a custom one. Simply
clicking its relative search icon will open a pop-up that will let the user input a
search query. Resources can also be filtered by favourites for an easy search.

In the picture below (Figure 6.2) we can see a custom-made view that describes
the resource of kind Pod. Aside from the default columns, we have added the
Namespace that shows the namespace that the Pod belongs to and the Phase that
describes where the Pod is in its life cycle. It is also worthy to notice that two
columns are not represented as strings. That is because the parameter Ready is a
boolean, and boolean are represented with a green check if true or a red cross if
false, to help the user understand the situation with a quick glance. The column is
also able to manage an array of parameters as input, and they are represented as
Tag components, and an example of that is the Restartcount column.

6. A Fully Customizable Dashboard 51

Figure 6.2: Example of the resource list view displaying Pod with custom columns.

6.3.2 Single Resource view customization

Regarding the view that shows the details of a single resource, in the previous
chapter we have described that it contains two default tabs: the one containing a
dynamically generated form created from the JSON object returned from the server
and another one containing an editor view, displaying the object in plain YAML or
JSON. Sometimes that is not enough as a view describing the most important details,
leaving aside the ones that are not as interesting, in a compact and immediate way
can really improve the user experience.

Because of that, LiqoDash offers a tool to create custom tabs specific for single
resources kind in order to give the user full controls in managing their resources,
especially if we are talking about custom ones. A custom tab is essentially a blank
working space where the user can add, remove and manage their own contents in
the form of cards components. This working space is wrapped in a customizable
grid layout and every card on it can be dragged around, resized at any time and its
layout is automatically saved in the dashboard configuration resource. A card is the
singular component that is stored in a tab. More cards can be composed together
to create a single tab and are generally used to tie in a single space parameters that
are somewhat related (for example Metadata fields or Status fields).

Creating a new card is easy thanks to custom context menu of the tab, which
let the user add objects simply with the mouse right click. A card can be of various
types:

6. A Fully Customizable Dashboard 52

• List: a simple list of parameters chosen by the user. Useful when we want to
display a list of separate parameters or an object;

• Table: useful when we want to display an array of objects;

• Reference: shows a different kind of resource chosen from the list of resources
available in the cluster. Useful when we want to display a resource list related
to the resource (e.g. a deployment and its pods);

Creating a new tab will also save the new design in the dashboard configu-
ration CRD. If the resource kind has not already an entry in the configuration, it
will be generated and added. The tab is saved in a collection of objects (each one
represents a single tab) and the object itself is composed of a list of cards that the
tab contains and the name of the tab, which can be changed by the user at any time
simply clicking the tab name in the resource view. Each card that belongs to a tab
is also an object composed of a collection of parameters, the kind of the card (list,
table or reference) and its name, and all can be modified directly in the dashboard.

Figure 6.3: Example of a custom tab created for the Deployment resource kind.

53

Modular Environment

LiqoDash is born to give the users an alternative when choosing the proper UI for
their Kubernetes system. But it has come with the time a more wide-spread project,
and constraining it with just the definition of dashboard would be an understatement.
That is because LiqoDash is indeed a platform and a framework that allows users
and developers to create their own user experiences that have Kubernetes at the core.
The goal is to also help teams reduce the time spent on developing interfaces and
incorporate different ones with different workflows all in a single working space.

Trying out different tools and dashboards, each of them was missing one, ex-
tremely important thing: the ability to seamlessly extend them and create custom
views to visualize and interact with resources in the Kubernetes cluster. That is
where LiqoDash comes in to play: the easily extensible platform that this project
offers, the ability to override the default views of the dashboard, is what makes
LiqoDash a highly powerful tool.

In this chapter we describe the solutions adopted in these regards, what can be
done directly in the dashboard just through the user experience, and what instead
requires a little bit of code-work by developers to create custom and complex work-
flows to build smart, insightful and actionable interfaces around resources provided
by Kubernetes.

7. Modular Environment 54

7.1 Concept of modular dashboard

The default views provided by the dashboard describes just the fundamentals of the
basic resources the Kubernetes makes available, and are meant to give the user a
general idea of the system, allowing then to keep exploring one resource at a time
if interested. We talked about how Kubernetes API design is not particularly fitted
for a UI exploration of that kind, because often what the user really need to view
is scattered through various object, and that makes understand the correlations
between resources quite difficult, if we just can view one resource at a time. The
customization offered by LiqoDash is helpful in that sense, as it allows to reference
other resources to the one we are currently on, but we need a more generic way of
organizing objects in a way that is meaningful for the user and, as for everything
that needs interaction in the dashboard, rather easy to do.

That is the reason behind the implementation of a modular dashboard: a dash-
board that can be expanded by the user through the creation of custom view, that
can be either collection of resources, of completely custom components designed ad
hoc by the developers which implement custom workflows.

7.2 The Custom View CRD

We introduce now the means through which a custom view life cycle is managed.
Every custom view in the dashboard is stored as a custom resource of type View,
defined by its Custom Resource Definition. This resource describes each custom
view individually and is unique in its namespace, so that in the context of a large
used cluster, users with different privileges will have access only to certain custom
views that they have the right to visualize, or simply to keep a generic user out
of the scope of certain custom workflows that are meant for a restricted group (for
example developer that are working on a new custom component for the dashboard
and do not want it to be used by non-developer’s hands).

The View CRD is divided in two main sections: the first one describes generally
the custom view, while the second describes the resources that the view should
contain. More in detail, for the first part we have:

7. Modular Environment 55

• viewName: the generic name of the view, which is different from the one gave
at its creation, which is stored in the metadata and is immutable. In contrast,
this name can be modified at any time.

• enabled: when a custom view is created, but no longer needed, there is no
need to delete it, as it can be disabled just by setting this boolean to false.
When disabled, a custom view will not be considered in the pool of accessible
custom views, and as that will not be displayed in the sidebar.

• component: this boolean is used to differentiate between a custom view that
contains only resources or groups of resources (such as a list of Deployment,
a specific Service or a custom resource) and a custom view that contains a
custom component. That because the loading method between the two types
of custom view is different, and will be described later.

• icon: as we have said in the previous chapters, defining custom icons is par-
ticularly important for the user experience, and as that LiqoDash offers the
possibility, although it is not a requirement, to personalize a custom view by
defining an icon to represent it.

Each custom view allows an indefinite amount of resources and components that
can be displayed in a single page, and it is up to the end-user choosing the right
balance between what should be shown and what not. What the custom view offers
is a way to describe the resource and its layout in the view, that brings us to
describing the second section of the CRD. For every resource we have the following
parameters:

• resourcePath: The path of the resource or the custom component we want to
display in the view. In case of a resource, it has to be a valid path which refers
to a valid API endpoint or the resource will not be considered. In case of a
custom component, it has to reference an existing component, or an alert will
be prompted.

• resourceName: this is the name of the resource displayed in the view. It can
be whatever name the user choose and is not bound by any constraints. If it
not specified, an auto-generated one derived from the resourcePath parameter
will be used.

• layout: defines the layout of the resource in the view, which is an object that
describes the height, width, and coordinates of the card wrapping the content
of the resource. It is automatically updated every time it is changed.

7. Modular Environment 56

7.3 More resources per view

LiqoDash offers the user the possibility to create its own custom views as a page
that displays a set of resources of choice, useful to keep track of different resources
at the same time, without the need to switch from one page to another. This can
be all done directly in the dashboard an without needing to write a single line of
code or having to deal with YAML.

As it can be seen in the figure below (Figure 7.1), we have together in a single
view three different resource lists. Every card in the view has its own layout that
can be changed at any time. The general feature that comes with the workplace set
up by default by the custom view are:

• Drag and drop: every card can be moved in the space of a custom view just
by dragging it through the title bar and then placed where the user finds more
suited. The cards are automatically vertically packed.

• Resizable: the size of card is in the hand of the user, which can use the
resize handle at the bottom-right corner of the component to make it bigger
or smaller.

• Easy resource exploration: everything that is displayed in a card has a refer-
ence link to its own single view. In the case of a resource list displayed, every
resource can be accessed directly through the custom view as the dashboard
itself manage these links.

• Automatic save: every change in the view’s layout is automatically saved, so
every time the user access a custom view they can expect every card to be in
the same position as they left it the last time.

The view is responsive and support separate layouts per responsive breakpoint,
that means that when resizing the browser window (changing breakpoint) the new
layout will be saved as a different one and will not overwrite the previous.

One of the key feature of LiqoDash, as we have said many times, is the real-time
reaction to cluster events. That means that if something is changed on the cluster
it is automatically reflected on the view you are on, if we are interested on it. The
custom view is no exception, so if a resource that is part of the set of resources that
we are displaying in the view is updated, the changes will be reflected in the view
without the need to refresh the page. This also applies if a resource is added/deleted
from the set of resources in the custom view.

7. Modular Environment 57

Figure 7.1: Example of a custom view that includes different list of custom resource
types and single resources, used to keep under control a custom system.

Creating a custom view

Creating a custom view can be done in three ways:

• From the sidebar: clicking the New Custom View button will open a menu
where the user can specify a name for the custom view as well as choose the re-
sources groups they want to include with a convenient selector. Custom views
created this way will be placed in the default namespace, or in a namespace
where the user has the right to create resource of type View.

• From the resource view: clicking the layout button will pop-up a dropdown
menu. Selecting New Custom View will open the same menu specified in the
first method, but this time the resource viewed will be already included in the
set of resources in the custom view. As said previously, creating a custom view
this way will be place it in the default namespace, or in a namespace where
the user has the right to perform such action.

• From the View CRD: because every custom view is, in fact, just a resource
of type View, the user can create one as they would do with every other
resource, exploiting the capabilities of the dashboard. This way the user has
more freedom in the creation of their resource.

7. Modular Environment 58

Adding and removing a resource from a custom view

While on the page of a resource or group of resources, the user can select the layout
button. This will show a dropdown menu where the user can all the custom views
they have access to in the cluster. If the name of a custom view is red it means the
resource is already in that custom view.

• Clicking on a neutral Custom View will add the current resource to the selected
custom view.

• Clicking on a red Custom View will remove the current resource from the
selected custom view.

As we said earlier, a custom view is nothing more than a resource of type View.
As such, it can be modified at any time in the resource of type View page. Users
can add or remove a resource in the editor.

Deleting a custom view

Deleting a custom view is the same as deleting a resource of type View. Going in the
resource’s page will let the user delete the resource clicking the appropriate button.

7.4 Dynamic loading of custom components

LiqoDash offers the possibility for developers to implement custom workflows that
require writing their own custom components and that can be integrated in the
dashboard as plugins managed by a custom view resource. That comes within the
concept of modularity and dashboard as a framework, exploiting the many widgets
the dashboard provides as well as an easy to use API manager that handles all the
interactions with Kubernetes and the watches, granting always full responsiveness
of the resources involved in the workflow.

Although managing custom components through a custom view resource is not
at all mandatory for the dashboard to be used as a framework and work with the

7. Modular Environment 59

implementation of user’s plugins, it has some advantages that may be useful to a
developer:

• No need for a hard-coded route path to access the view, it’s all managed by
the custom view loader;

• Custom components are directly accessible in the sidebar and they can be
enabled or disabled like every custom view;

• The layout of the view can be be managed through the custom resource;

• Custom components are loaded only if their custom view is enabled, making
the loading of components completely generic and independent from the com-
ponent itself. It is useful if, using the dashboard as a framework, we want to
expand the set of custom components, making the linking between the dash-
board and the custom component as easy as creating a custom view resource.

We will see some examples of integration of custom components in the later
chapters, and how it is an easier an reliable solution compared to developing a
dashboard from scratch.

60

Integration with existing projects

and Performance

To serve its purpose and fulfill its potential, the dashboard needs a real implementa-
tion: some projects to use as test cases that could show the validity of this approach.
Liqo and CrownLabs are the perfect choice: two project developed throughout the
year at Politecnico of Turin that are built upon Kubernetes and relies heavily on
the use of custom resources. The idea was to use the dashboard as a framework and
exploit its generic and modular approach to make custom views specific for Liqo
and CrownLabs.

It this chapter we are going to explore these two use cases and the custom
views and components created and integrated in LiqoDash. Finally we are going to
give a general overview on the performance of the application in relation to other
dashboards that we have listed in Chapter 2.

8.1 Liqo

Liqo is an open source project started at Politecnico of Turin that allows Kubernetes
to seamlessly and securely share resources and services, so you can run your tasks

8. Integration with existing projects and Performance 61

on any other cluster available nearby.

Thanks to the support for K3s, also single machines can participate, creating
dynamic, opportunistic data centers that include commodity desktop computers
and laptops as well.

Liqo leverages the same highly successful “peering” model of the Internet, with-
out any central point of control. New peering relationships can be established dy-
namically, whenever needed, even automatically. Cluster auto-discovery can further
simplify this process.

Sharing and peering operations are strictly enforced by policies: each cluster
retains full control of its infrastructure, deciding what to share, how much, with
whom. For security we leverage all the features available in Kubernetes, such as Role-
Based Access Control (RBAC), Pod Security Policies (PSP), hardened Container
Runtimes Interfaces (CRI) implementations.

With Liqo, there is no disruption neither in the common Kubernetes administra-
tion tasks nor from the user perspective because everything happens as your cluster
gets bigger. And, for Liqo admin tasks, a dedicated GUI (LiqoDash) will bring users
to their objective in a few clicks.

Finally, according to the sharing economy principles, Liqo is also more energy
efficient, for the benefits of our planet as well.

8.1.1 LiqoDash meet Liqo

The first view presented is the Liqo Home. This page contains general information
about the status of the user’s cluster and their Liqo resources, such as clusters you
are connected to and the available ones. It is divided in various sections that will
be discussed in detail.

Header

This first section is mean to show the status of the Liqo system and its working
mode. It includes:

8. Integration with existing projects and Performance 62

• Cluster Name: the name of the cluster. Can be modified at any time just
by clicking on it.

• Status: it can be Running or Stopped.

• Cluster ID: a unique identifier of your cluster.

• Mode: in this dropdown menu the user can choose between various working
modes that Liqo supports.

• Policies: a link to the Liqo policies page, where the user can set their preferred
policies.

• Settings: a link to the Liqo configuration page, where the user can set their
preferred configuration for their system.

Figure 8.1: Liqo Home view that shows available and connected clusters, as well
as the status of the cluster itself.

Connected Peers

In this section the user can see the clusters they are connected to. For each peering
it is displayed the direction of the connection, that let the user know if they are
connected to the foreign cluster, if someone is connected to them or both. Having

8. Integration with existing projects and Performance 63

established a connection doesn’t mean that the user is actually sharing resources,
but just that they can. To show if resources are actually shared between the user’s
and the foreign cluster, either offering and/or consuming, connections are colored in
different ways: blue if there is actual resource sharing or gray if there is not.

If there is resource sharing, the amount of memory consumed in a cluster, in
relationship to how much is made available to share, can be seen around the inter-
ested cluster, and hovering over it with the mouse will show the actual percentage of
memory consumed. For example, in the picture above, the first peering represent a
bidirectional connection where both the home cluster and the foreign one are using
resources of each other. In the second case, we can see that the connection is only
from the home cluster to the foreign, meaning that the user could use resources of
the foreign cluster, but the other way around is not possible. Also the connection
is gray, meaning that there is no actual resource sharing.

The user can disconnect from a peer just by clicking Disconnect in the peer’s
menu or selecting the connection and clicking the Disconnect button.

Details

The details of a particular peering can be viewed selecting it from the dropdown
menu, placed right beside the name of the foreign cluster the user is connected to.
This view displays some general information about the peering, such as the direction
of the connection, and some more in depth details about the status of both the home
and the foreign cluster. In particular we can see:

• Two double gauge-shaped progress bars that represent how much CPU and
RAM is both consumed and reserved in percentages and in units (m for CPU
and Mi for memory);

• A table that lists all the Pods offloaded to the other’s cluster (on the Foreign
tab) or the Pods that the one the connected cluster is offloading to the user’s
one (in the Home tab), along with the status of each POD;

Metrics are calculated in different ways:

• The Reserved percentage is the sum of each Pod’s requested resource alloca-
tion, in relationship to how many shared resources are established during the
peering. These resources are guaranteed to be available. If a Pod (or one of

8. Integration with existing projects and Performance 64

its containers) does not specify requested resources will always be considered
as if it has zero resources reserved.

• The Consumed percentage is the sum of each Pod’s used resource over the
total of shared resources agreed. Information about the real usage of CPU
and memory are given by a metrics server deployed in the cluster to which
LiqoDash has an integration with. If there is no metrics server available the
Consumed metrics will be the same as the Reserved ones, as the dashboard
assumes the user is consuming as much as requested.

Figure 8.2: The details view shows the detail of a single cluster connected.

8. Integration with existing projects and Performance 65

Properties

This menu shows the Liqo resources associated with a specific peer (either available
or connected). For every resource the user can modify its spec directly in the view
(the status and metadata are readonly, as the user is not supposed to modify them).
The resources are:

• Foreign Cluster: it is the resource that describes the peer and contains
information like the cluster ID or the status of the peering. It is always present.

• Advertisement: it describes what the other cluster is offering in terms of
hardware capabilities or software.

• Peering Request: a request sent by a cluster to create a peering with another
cluster.

Available Peers

In this section are listed the peers that are available to connect to. The user can see
some general information regarding the peer, such as its name or if the connection is
made through LAN or an external network. Clicking on the peer (or the dropdown
menu in the right) will let the user see more details about the available peer and the
possible connection. If the user wants to connect to an available peer, they can do
so just by clicking the Connect button or select Connect in the peer’s menu. This
will trigger the connection process, and its various phases will be described as a side
note in the peering section. The user can also decide to stop the connection process
by clicking the Stop Connecting button.

Cluster Status

This view is meant to show the total of resources consumed in either your cluster
and all the foreign clusters you are connected to. Here are displayed, for both Home
and Foreign clusters:

• Consumption of CPU and RAM: this donut chart shows you the per-
centage of resource consumed. In the Home cluster section, it shows the user’s

8. Integration with existing projects and Performance 66

consumption as well as every other peer consumption. Hovering over each slice
of the chart will pop-up a tooltip that let the user know the peer that is using
their resources and the percentage of use. In the Foreign clusters section, it
shows how much resources the user is using on the clusters they are connected
to. Hovering over each slice of the chart will pop-up a tooltip that let the user
know the peer they are using their resources from and the percentage of use.

• Consumption trend: a chart that displays the difference in consumption of
CPU and RAM over time. It is updated every 30 seconds.

Unlike the Connection Detail view (which tells all the details about a single
connection), the Cluster Status view is a more generic exposure of how and who is
using resources on the user’s cluster, as well as how much they are using others’.

8.2 CrownLabs

CrownLabs is a set of services that can deliver remote computing labs through a
per-user virtual machine.

Instructors can provision a set of virtual machines, properly equipped with the
software required for a given lab (e.g., compilers, simulation software, etc).

Each student can connect to its own set of (remote) private environments without
requiring any additional software, just a simple Web browser. No space problems on
the student hard disk, no troubles in setting up the environment required to support
multiple subjects on the same machine, and more.

In addition, each student can share his remote desktop with their groupmates,
enabling multiple students to complete their labs in a team.

Finally, CrownLabs supports also instructors, who can connect to the remote
desktop of the student and play directly with his environment, e.g., in case some
help is required.

8. Integration with existing projects and Performance 67

8.2.1 LiqoDash meet CrownLabs

While the integration with Liqo is just about the expansion of the functionalities of
the dashboard through the implementation of custom views that performs workflows
specific for the Liqo system, the integration of CrownLabs is a completely different
use case that really demonstrates the high extensibility of LiqoDash and the powerful
tools that it offers.

CrownLabs is used by both system admins and generic users (students and pro-
fessors) which possibly know nothing about how it works and the fact that it is built
over Kubernetes. Because of that, the user interface needs to be clean and simple for
the latter kind of users, stripped to its basic functionalities, avoiding all the superflu-
ous actions that the dashboard provides by default that would only cause confusion
to the end-user. With that in mind, exploiting the modularity of LiqoDash and the
possibility to enable or disable each general component, we created two dashboard
configuration for the two roles, one that only implements what the end-user could
and should interact with, and another configuration that maintains all the features
that are useful in managing the cluster.

Because the generic user does not need to explore the cluster, the discovery pro-
cess has been disabled in the configuration, as well as the sidebar and the possibility
to select a namespace or search for a resource. Some useful external links have been
added to the header (Drive and Grafana) with the links to the custom views that
implements the components specific for CrownLabs. Also a footer with a Github
reference to the CrownLabs project has been enabled.

That shows how a single dashboard can act differently with two kind of users.
Technically, if every user of the cluster has a role (e.g. different service account or
identity to access the dashboard), that means that a different dashboard configura-
tion can be assigned to every user.

8. Integration with existing projects and Performance 68

Figure 8.3: The CrownLabs view for generic users. Designed to be clean and
simple.

Figure 8.4: The CrownLabs view for admin users. Let the admin explore the
cluster.

8. Integration with existing projects and Performance 69

8.3 Performance

In this section we analyze the performances of LiqoDash in relation to the other
dashboards that represent the state of the art of the Kubernetes web-based user
interfaces, described in Chapter 2. The tests were performed using a test Kuber-
netes cluster environment in which all the dashboards were deployed, expect Octant
which is an external program and therefore does not run directly in Kubernetes. In
the cluster were also present a considerate amount of custom resources to test the
scalability of the discovery process of LiqoDash and deployments to simulate a
production environment (although a really small one).

For these tests were considered three dashboards other than LiqoDash: Kuber-
netes Dashboard, k8dash and Octant.

Initial Load Time

This first chart represent the average time that the dashboard takes to:

• Load the application: all the process needed to start the dashboard and the
creation of the environment (assuming the login is already done);

• Load the page: that means the general structure of the a page, understanding
which content is needed to load and the resources to ask the server, as well as
all the initial scripting executed before the view rendering;

• Load the resources to show: generating requests to retrieve resources from the
Kubernetes API server and waiting for the responses;

• Load and create the DOM content: process data retrieved from the API server
and load components to create the views;

Because the home page vary from dashboard to dashboard, all the tests have been
performed using a view that is common to all four of them: the Deployment resource
view, that shows all the deployments in a namespace of the cluster.

As we can see from the Figure 8.3, the fastest UI to load is k8dash with just
less than a second. One of the key feature advertised by the k8dash team is indeed

8. Integration with existing projects and Performance 70

Figure 8.5: Comparison of the dashboards’ load time.

its speed, and it shows in the benchmarks. The Kubernetes Dashboard follows
with 1.3 seconds of overall loading time. It is, however, noteworthy to specify
that almost 80% of the loading time of a user interface is about the rendering of
the graphic components, and the components of these two first dashboards (tables,
menus, lists and buttons) are extremely simple in their visual design and, as such,
highly performant speed-wise at the expense of their aesthetics.

LiqoDash needs almost double the time to load compared to the official dash-
board. This is partly because of the discovery process that starts as soon as the
dashboard is accessed and, although it is a background process, because JavaScript
is designed as a single-threaded language, this process affect the first loading of the
dashboard. Finally, the rendering of the components forming the view is what slow
the creation of the DOM contents the most. This is tied to the choice of using ant
design as design framework which is highly customizable and well designed visually,
but it is still a relatively new framework and the performances are not as good as
the one given by others design framework such as material-ui.

The slowest one, Octant, takes 3.3 seconds to fully load its initial page.

8. Integration with existing projects and Performance 71

API call time

This test was performed switching through various views of the dashboards, and its
purpose was to validate the approach that LiqoDash has implemented in regard to
the use of a minimal backend instead of the full ones that all the other dashboards
have. The chart shows the RTT (round trip time) of an API call from the moment
the request has been sent by the dashboard to the moment a response (only positive
ones in this case) is received. The four resources chosen for test are:

• Namespaces: a cluster-wide resource;

• Nodes: a cluster-wide resource;

• Deployment (all namespaces): a namespaced resources, but the request is to
get all resources of type Deployment in all namespaces;

• Deployment (default namespace): in this case, only the request is to get the
resource only in one namespace;

Figure 8.6: Load time of four kind of resources. The minimal backend gives
LiqoDash a significant advantage.

As we can clearly see in Figure 8.4, the absence of a complex backend that
process API calls and forwards them to the API server gives LiqoDash a significant
advantage. The data is self-explanatory: even though the resource requested (the

8. Integration with existing projects and Performance 72

API called) is the same, the response time of the other dashboards is always more
than doubled, and in case of the Node resource, the RTT is ten times lower for the
LiqoDash than its counterparts.

73

Conclusions

The work of this thesis aims at defining a new kind of approach in regards of improv-
ing the user experience of a platform as complex as Kubernetes. The focus is not
only to give system administrators a suited environment in which they can manage
their resources and monitor the cluster with ease, but also, and perhaps most impor-
tantly, offering developers that choose Kubernetes as a base for their projects and
applications a way to integrate their work in a user interface, which is fundamental
when said application has to be used by generic users that are not really accustomed
with the powerful but rather complex platform that is Kubernetes.

We have seen how it is possible for the dashboard to accommodate easily every
user’s needs and how it is designed for simplicity, but at the same time capable of
representing complex systems and workflows. It is all in the user’s hands and this
is one of the quality of this project.

As Kubernetes gains more and more attraction, and its use has slowly shifted
from just being a simple orchestrator to a real echosystem, a simple dashboard that
let the user only watch their resources in a very disconnected fashion is not enough
anymore. That is where LiqoDash finds its spot. Like Kubernetes is designed to
be a customizable platform in which developers can create their own applications,
the dashboard is designed the same way: a platform in which developers can create
their frontend for generic users to interact with the applications, and for developers
themselves to monitor their resources, workflow and in general, their cluster.

Like every other application, the dashboard is always in constant changing and
trying to improve the user experience and the tools it offers its users. As an open-
source project, there is always room for improvement.

74

Bibliography

1. Stephen Few, Informational Dashboard Design (2006)

2. Octant. URL: https://octant.dev/

3. k8dash. URL: https://github.com/indeedeng/k8dash

4. Kubernetes Official Dashboard. URL: https://github.com/kubernetes/
dashboard

5. Kubernetes Official Website: URL: https://kubernetes.io/

6. React. URL: https://reactjs.org/

7. Ant Design. URL: https://ant.design/

8. Kubernetes Client for Javascript. URL: https://github.com/liqotech/
kubernetes-client-javascript

9. Cross-Origin Resource Sharing. URL: https://developer.mozilla.org/
it/docs/Web/HTTP/CORS

10. OpenID Connect. URL: https://openid.net/connect/

11. Liqo Official Website. URL: https://liqo.io/

12. CrownLabs. URL: https://github.com/netgroup-polito/CrownLabs

https://octant.dev/
https://github.com/indeedeng/k8dash
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://kubernetes.io/
https://reactjs.org/
https://ant.design/
https://github.com/liqotech/kubernetes-client-javascript
https://github.com/liqotech/kubernetes-client-javascript
https://developer.mozilla.org/it/docs/Web/HTTP/CORS
https://developer.mozilla.org/it/docs/Web/HTTP/CORS
https://openid.net/connect/
https://liqo.io/
https://github.com/netgroup-polito/CrownLabs

	Introduction
	The critical need of data accessibility
	General Concepts
	Dinamic discovery of resources
	Modular environment
	Full customization of resources
	Real time event responsiveness
	Integration with Liqo and CrownLabs

	Kubernetes Integration
	Kubernetes Overview
	Pod
	Deployment
	Service
	API server

	Importance of a dashboard for Kubernetes
	Kubernetes dashboards: State of the Art
	Kubernetes Dashboard
	Octant
	k8dash

	Custom resources: the missing point

	LiqoDash Overview
	The Frontend
	JavaScript Frameworks
	Javascript library for Kubernetes
	Watches

	The Backend
	No need for a complex backend
	NGINX Reverse Proxy
	The CORS problem
	Pod to API Server communication

	Authentication, Authorization and Methods of access
	Kubernetes Role-based Access Control
	LiqoDash Login
	Service Account Token
	Support for OIDC

	Accessing LiqoDash
	Basic access: Node Port and Port forward
	Advanced access: Ingress
	Differences between access methods

	LiqoDash and Kubernetes communication

	Resource Discovery and Operations
	The generic approach
	Discovery process
	Service-agnostic exploration of resources

	CRUD Operations on Generic Resources
	The challenge of a dynamic approach
	Generic data view
	More than just plain YAML
	Using the OpenAPI v3 Schema

	Relationships between resources
	Different kind of relationships
	Design of data trees and level of search depth

	A Fully Customizable Dashboard
	The importance of customization
	Icons and Favourites management
	The Dashboard Design Configuration
	Resource List view customization
	Single Resource view customization

	Modular Environment
	Concept of modular dashboard
	The Custom View CRD
	More resources per view
	Dynamic loading of custom components

	Integration with existing projects and Performance
	Liqo
	LiqoDash meet Liqo

	CrownLabs
	LiqoDash meet CrownLabs

	Performance

	Conclusions
	Bibliography

