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Abstract

Telepathology refers to practicing pathology from a distance. Telecommunications
technology is used for facilitating the transmission of pathology image data between
two distant locations for diagnosis, research and education purposes. In order
to perform telepathology, a pathologist must choose the video images that need
to be analyzed and then render a diagnosis. The use of television microscopy,
which preceded telepathology, didn’t require a pathologist to have a virtual or
physical hands-on involvement in choosing the microscopic fields-of-view to analyze
and diagnose. Today, With the wide applications of prediction, especially in the
telemedicine field, the research of prediction algorithm and theory has made a
great progress. However, these applications have consistently need to face packet
losses and a recovery mechanism is required to achieve accetable delays. The
goal of this thesis is to propose an approach that uses a machine learning (ML)
method, Hidden Markov Model (HMM), to predict the future packet content from
the generated network traffic during a telepathology session. Then, the predicted
packet will be used to remedy packet loss and maintain an acceptable latency of
data transfers. The thesis work is also focused on the comparison between HMM
and others ML tecniques such as Support Machine Vectors (SVM), Autoregressive
Integrated Moving Average (ARIMA), Generative Adversarial Network (GAN), etc.
Additionally, this approach makes use of the software LiveMicro [1], which is a new
edge computing-based telepathology system that enables live histological image
processing and real-time remote control of the microscope. During the experimental
analysis, we train and test the models with two datasets that represent two different
scenarios observed in different telepathology sessions. In particular, HMM achieves
the highest average classification accuracy of 87.28% and 82.84%, for the scenario1
and scenario2 respectively. These findings indicate that the proposed method,
HMM, is the best algorithm analyzed for this study.

Keywords: machine learning, hidden markov model, prediction, packet
content, telepathology.
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Chapter 1

Introduction

Telepathology is the transmission between two distant locations of digital histo-
logical images based on a glass slide using telecommunication technologies for
research, diagnosis and education purposes. Telecommunications technologies can
cause delays which lead to packet loss and difficulties to control the remote device.
These difficulties have arisen in a microscope teleoperation system. Teleoperation
allows a user to physically control remote operation thanks to commands sent via
a telecommunication channel. Nevertheless, telepathology favors an increase in the
costs of experts and that IT and telecommunication costs fall, as a consequence,
telepathology experts could start to regularly use remote-controlled equipments
to the diagnosis. From a location, a pathologist could take control of a physically
remote microscope and selects the video images to analyze, then performs the
diagnostic of a patient who is in remote rural areas. Therefore, this process can
be carried out in one trip to a nearest rural hospital and avoid going to a distant
health center, which is often required more than once, for instance, for an initial
assessment and another investigation, on the date of the biopsy procedure and
later for the results and ancillary procedures before final treatment. However,
as its use around the world has become increasingly popular, telepathology is
currently dealing with a growing demand to enhance patient safety, quality, reliable
consultations, delay and accuracy of diagnostic, etc.

This thesis aims to propose an approach that uses a machine learning (ML)
classifierl, Hidden Markov Model (HMM), to predict the future packet content
from the network traffic generated during the execution of the LiveMicro system
(telepathology session), then, the predicted packet content will be used to remedy
packet loss issue and maintain an acceptable delay of data transfers during a live
session. LiveMicro is a telepathology system that enables remote computations and
consultations. The thesis work is also focused on the comparison between HMM
and others ML tecniques such as Support Machine Vectors (SVM), Autoregressive

1



Introduction

Integrated Moving Average (ARIMA), Decision-Tree (DT), etc.

The rest of the paper is structured as follows:

• In Section 2: we discuss related telepathology solutions and machine learning
models used for the prediction.

• In Section 3: we briefly describe the LiveMicro system and our proposed
classifier Hidden Markov Model (HMM).

• In Section 4: we present the structure of our system.

• In Section 5: we descrive the experimental setup and results obtained by
measuring performance metrics of HMM and others classifiers.

• In Section 6: we conclude our thesis work.
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Chapter 2

Related work

In this section, we will list and describe some systems and applications used in
telepathology. Dynamic telepathology involves the transmission and viewing of live
images in real time. The most widely used system is a local camera connected to a
microscope that provides a live transmission of video-style moving images, viewed
over an Internet connection by the remote pathologist on a computer or mobile
device. This mode of operation is highly dependent on the operator’s ability at
the site to locate relevant cells so that the most relevant areas can be viewed by
the remote pathologist. An important component of the type of telecopathology is
Two-way verbal communication. Ideally, it should be hands free and allow the use
of headphones to ensure some privacy when communicating between sites, as shown
in [2]. A system that facilitates a faster information exchange, particularly under
critical transmission, is shown in [3]. The system proposes a model of Specialized
Telepathology Electronic Patient Record (STEPR), exploiting the features (com-
pression efficiency, multiple decompression spatial resolution, region of interest and
signal to noise ratio scalability) of emerging image compression standard JPEG
2000. However, the main focus of the model (STEPR based on JPEG 2000) is to
offer the flexibility for pathological information manipulation, transmission and
processing without compromissing its standardization. In [4] the digital images
are uncompressed and shared in high-quality full-resolution. The authors use the
new technology of the microscope-integrated telepathology systems. The system
exploits an optical module installed on the microscope in order to capture a live
feed of the tissue passed on the eyepiece of the microscope. Then, the optical
module enables remote participants to view and discuss in real-time a live image
that is of high digital pathology grade. During the telepathology session, the remote
viewers could perform annotations from their computer screens and, the main micro-
scope user could see annotations on top of the tissue within the microscope eyepiece.

The last section examines different Telepathology solutions and the way in
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which data is shared among users over networks. However, this section explores
different methods used for the network data prediction. For example in paper [5],
the authors presented a long short-term memory (LSTM) neural network model
combined with deep neural networks (DNN) to predict network traffic that behaves
as a nonlinear system. According to characteristics of autocorrelation, an autocor-
relation coefficient is added to the model to improve the accuracy of predictions.
The main novelty of the method is to include autocorrelation of the time series in
the input of the machine learning algorithm, which leads to high performance with
respect to existing methods. Similar approach can be found in [6]. In fact, the
authors of [6] introduced NeuTM, a framework for network Traffic Matrix (TM)
prediction based on Long Short-Term Memory Recurrent Neural Networks (LSTM
RNNs). TM prediction is defined as the problem of estimating future network
traffic matrix from the previous ones. In [7] the authors proposed Autoregressive
Moving Average (ARMA) time series approach to predict the number of network
traffic packets during the next five steps. File Transfer Protocol (FTP) was used
to send and receive large files over the network. They capture and collect three
hour of network packets at different time intervals, exploiting the network protocol
analyzer (Wireshark). The number of packets at each interval is normalized into a
log return value, that reflects the relationship between two consecutive network
data. During their experiment, they transmit two files of 1GB and 10MB over
the network, then used ARMA model which will create the appropriate network
traffic pattern. This pattern, together with the log return values, is used to predict
the number of network traffic packets during the next five steps. Their result
showed that breaking a large file into small size is more efficient and effective than
large file for network traffic prediction. Zhou et al. [8], proposed a network traffic
prediction based on time series forecasting model ARFIMA, which is an improved
ARMA model, to predict real trace records and netflow sampling flow records. In
experiment, they combined the data collected from network traffic of CERNET
backbone and the ARFIMA model. The result showed that, compare to the ARMA
model, the ARFIMA can get more effective network traffic prediction. To overcome
the problem of non-liner classification and regression, Weidong et al. [9], introduced
a new machine learning method LS-SVM (Least Squares SVM), which is an im-
proved model of SVM (Support Vector Machines). Exploiting NS2 simulator, they
simulated the process of the network working with RED and Drop-tail controller,
then collected on the bottleneck router the traffic data predicted. The experiment
results on the accuracy of prediction was good and feasible.

Due to its good performance in statistics, HMM (Hidden Markov Model) tech-
nique is recentlly developed and applied in fields as voice recognition, security
situation prediction, network traffic prediction, classification, telemedicine, intru-
sion detection, etc. In the field of security situation prediction, Wei Liang et al.
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[10] proposed the application of the weighted HMM based algorithm to predict
the security situation of mobile networks, where the multiscale entropy is used to
address the low speed of data training in mobile network, whereas the parameters of
HMM situation transition matrix are also optimized. Furthermore, the correlation
coefficients are considered as weights, so it can reasonably use the association
between the characteristics of the historical data to predict future security situation.
In the experiment, DARPA2000 (an offline intrusion detection datase) was used,
and with the multiscale entropy method, an appropriate scale factor is selected as
training data to train the parameters in HMM model. Finally, the experimental
results have shown that the proposed algorithm is highly competitive, with good
performance in prediction speed and accuracy when compared to existing security
situation prediction techniques. In the field of network traffic prediction [11], the
authors provided a study based on Hidden Markov Model (HMM) for the Internet
traffic in the Next Generation Mobile Networks (NGMN) such as transitioning 5G
and LTE derived using realistic traffic traces collected from various datasets. The
model is used to forecast the Quality of Service (QoS) parameters for the given
wireless networks. Firstly, they used the model to predict the joint distribution of
Inter-Packet Delay Variation (IPDV) and End-to-End Delay (d), then forecast the
QoS parameters for the given wireless networks. The simulation is set-up for the
LTE and 5G datasets with different sample size and tolerance limit. The results
showed that the end-to-end delay and the Inter-packet Delay Variation (IPDV) can
be modeled using an HMM with accuracy up to 80% for a percentage tolerance
of 10%. In the field of telemedicine [12], the authors used multiple sensors for
wearable devices and, integrated the data from different sensors. They introduced
an approach based on Hidden Markov Models (HMMs), that analyses the data
from each sensor to predict the risk for different diseases that a patient might have.
Then, they exploited a rule-based engine that uses the predictions from the HMMS
in order to diagnose the health state of a patient for wearable device. In their
experiment, they found that a sensor malfunctioning can lead to conflicting results.
However, they propose a model of an autonomic system to try to overcome that
difficulty. The goal of their research was to detect a specific disease (using HMMs)
that differs to the goal of this thesis, which is the prediction of the network packet
using HMM.

In this paper, a telemedicine application is used to send and receive data over
the network. We exploit the network protocol analyzer (Wireshark) to capture the
network packets, then apply HMM to predict the next network packet from the
previous one.
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Chapter 3

Proposed methods

To achive our goals, we apply the machine learning model for prediction during
the execution of LiveMicro application. This chapter deals with the theory behind
hidden Markov models and their main problems, along with a brief description of
the LiveMicro.

3.1 LiveMicro
LiveMicro is a telepathology system that enables remote computations and con-

sultations. Remote consultation allows a telepathologist to access a live telepathol-
ogy session and remotely manipulate the virtual instance of the microscope. Pathol-
ogists usually carry glass slides in order to analyze histological samples. This latter
allows to minimize the diagnosis time.However, LiveMicro eliminates the necessity
to transfer physical slides and allows a remote specialists to consult at distance.
This preserves time and unnecessary expense, resulting in better patient care and
faster diagnoses. It allows services such as focus of a microscope, zooming and
remote control of panning on software-defined glass slides. In our thesis work,
LiveMicro is used in order to perform a live session and generate datasets.

3.2 Markov Model
The Markov model is a stochastic model used to model temporal or sequential

data. It is assumed that future states depend only on the current state, not on
the events that occurred before it (Markov property). Formally, a Markov model
is specified by the set of states (Q), a transition probability matrix (A) and an
initial probability distribution over states (π). In the Markov model, each state
corresponds to an observable event.
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3.3 Hidden Markov Model
A hidden Markov model (HMM) is a Markov model that exploits both observed

events and hidden events. In hidden Markov model defined above and illustrated in
Figure 3.1, the states are considered as hidden events. Thus, they are not directly
visible to the observer. However, only the output symbols (also called observations)
can be observed.

Figure 3.1: A Hidden Markov Model showing the initial states probabilities,
transition probabilities and emission probabilities.

The hidden Markov model is composed of the following five elements:

1. A set of states denoted as

Q = {q1, q2, . . . , qN}, (3.1)

where N representing the number of states in the model. In our sytem, we
consider the field "ActionType" (action that a pathologist performs on the
screen in a telepathology session) of the dataset as state, i.e, Snap, Exposure,
Autofocus, etc.

2. A transition probability matrix over states,

A = {aij}NxN , aij = P (qt+1
j | qt

i), for t = 1,2, ..., T − 1 (3.2)

where aij expressing the probability of moving from state i to state j.

7
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3. A sequence of observations,

V = {v1, v2, . . . , vM}, (3.3)

where M is the number of observations values in the model. For each entry in
the dataset, we use the following set of fields as an observation: Source IP,
Destination IP, Length and Ratio (request/response) size.

4. A sequence of observation likelihoods, also called emission probability
matrix,

B = {bjk}NxM , bjk = P (vt
k | qt

j), for t = 1,2, ..., T (3.4)

where bjk representing the probability of an observation vk being generated
from a state j at time t.

5. The initial states probabilities over states,

π = {π1, π2, . . . , πN}, πi = P (qt
i), for t = 1 (3.5)

where πi defines the probability to start in state qi.

Finally, hidden Markov model can be represented as λ = (A, B, π). There are
three basic problems for HMMs:

• First problem (Likelihood): Given the observation sequence in time O
= (o1,o2,...,oT ) and a HMM model λ = (A, B, π), determine the likelihood
P(O|λ);

• Second problem (Decoding): Given the observation sequence in time O
= (o1,o2,...,oT ) and a HMM model λ = (A, B, π), find the most likely state
sequence Q = (q1,q2,...,qT );

• Third problem (Training): Given the observation sequence in time O =
(o1,o2,...,oT ) and the set of states in the HMM, find the model λ = (A, B, π)
that maximizes the probability of O.

3.3.1 Likelihood problem: The Forward Algorithm
Given an HMM with an observation sequence of T observations and N hidden
states, it requires NT possible hidden sequences. In real-world applications, the
direct computation of P(O|λ) is hard and sometimes impossible, because N and T
both are wide numbers, so NT will be very wide. The more efficient way to solve
P(O|λ) is the recursive forward algorithm. The parameters αt(i) are keys elements
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of the algorithm, and defined as the joint probability of observing the sequence up
to time t and the Markov process being in state st at time t:

αt(i) = P (o1, o2, . . . , ot, st = qi|λ) (3.6)

The computation process:

1. Initialization:
α1(i) = πibi(o1); 1 ≤ i ≤ N

2. Recursion:

αt(i) =
NØ

i=1
αt−1(i)ajibi(ot); 1 ≤ i ≤ N, 1 < t ≤ T

3. Termination:

P (O | λ) =
NØ

i=1
αT (i)

3.3.2 Backward algorithm
Given the model λ and we are in state si at time t, the backward variable is the
probability of the partial observation sequence from t + 1 to the end:

βt(i) = P (ot+1, ot+2, . . . , oT | qt = si, λ) (3.7)

The computation process is approximately similar to the Forward algorithm:

1. Initialization:
βT (i) = 1; 1 ≤ i ≤ N

2. Recursion:

βt(i) =
NØ

j=1
βt+1(j)aijbj(ot+1); 1 ≤ i ≤ N, 1 ≤ t < T

3. Termination:

P (O | λ) =
NØ

j=1
πjbj(o1)α1(j)
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3.3.3 Decoding problem: The Viterbi Algorithm
Decoding problem is a very common situation regarding the hidden Markov models,
the idea is to predict the generating state path of a particular observed sequence.
This problem could be solved using both Forward and Backward algorithms. Given
both the model λ and the observation sequence, the most likely state si at time t
can be obtained through the γti parameter, defined as:

γt(i) = P (qt = si | O, λ) (3.8)

As the Forward parameter (αt(i)) evaluates the state probability before time t and,
the backward parameter (βt(i)) takes care of the state probability after time t, so,
the γ parameter can be calculated using Froward and Backward parameters as:

γt(i) = αt(i)βt(i)
P (O | λ) (3.9)

Thus, the most likely state at time t can be considered as the state qt for which
γt is higher:

qt = argmax
1≤i≤N

[γt(i)] , 1 ≤ t ≤ T (3.10)

However, this approach of individually most likely state presents a huge incon-
venience. For instance, given a model that holds unfeasible transitions, i.e., the
transition from state i to j is zero (aij = 0); the resulting sequence of states may
not be generated by the model whether the sequence contains those transactions.
This problem can be solved by using a standard algorithm, called Viterbi algorithm,
that uses a dynamic programming approach in order to maximize P[S | O, λ] (the
likelihood of the whole generating state sequence). Finally, we can compute the
Viterbi recursion as follows:

1. Initialization:
δ1(i) = πibi(O1); 1 ≤ i ≤ N

ψ1(i) = 0; 1 ≤ i ≤ N

2. Recursion:

δt(i) = max
1≤i≤N

[δt−1(j)aji] bi(Ot); 1 ≤ i ≤ N, 1 < t ≤ T

ψt(i) = argmax
1≤i≤N

[δt−1(j)aji] ; 1 ≤ i ≤ N, 1 < t ≤ T

3. Termination:
The best score: P ∗ = Nmax

i=1
δT (i)

The start of backtrace: q∗
T = Nargmax

i=1
δT (i)

10
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3.3.4 Training probelm: The Baum-Welch Algorithm
Now, let us look at the HMM training problem (also called learning problem): Given
an observation sequence O and knwon number of states, the training process aims to
find the optimal model parameters, λ = (A, B, π), that maximizes the probability
of the observation sequence, P = (O | λ). The standard algorithm to solve this
problem is the Baum-Welch Algorithm (forward-backward algorithm), that is an
instance of a general family of EM (expectation-maximization) algorithms. Thus,
the Baum-Welch Algorithm starts by iterativelly estimating the initial transition,
emission and state start probabilities, then using those estimates to computes
better and better estimates. In practice, the Baum-Welch process requires initial
values for the model parameters λ = (A, B, π), which will have the influence on
the performace. In the E-step, the algorithm computes ξt(i,j) (joint probabilities)
and γt(i) (di-gamma) variables:

ξt(i) = P (qt = si, qt+1 = sj | O, λ) = αt(i)aijbj(ot+1)βt+1(j)
P (O | λ) , (3.11)

γt(i) = P (qt = si | O, λ) =
NØ

j=1
ξt(i, j), (3.12)

where ξt(i), as shown in Figure 3.2, is the probability of being in state si at time
t and state sj at time t + 1, given the model and the observation sequence, while
γt(i) is defined as the probability of being in state si at time t.

Figure 3.2: Calculation of the joint probability of being in state i at time t and
state j at time t + 1.

Finally, the M-step performs reestimation of the model parameters in order to
improve them:

11
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1. State transition propability:

āij =
qT −1

t=1 ξt(i, j)qT −1
t=1 γt(i)

; 1 ≤ i ≤ N, 1 ≤ j ≤ N, (3.13)

where āij is expressed as the expected number of transitions from state i to
state j divided by the expected number of transitions from state i.

2. Emission probability:

b̄j(k) =
qT

t=1,ot=vk
γt(j)qT

t=1 γt(j)
; 1 ≤ j ≤ N, 1 ≤ k ≤M,

where b̄j(k) is ythe expected number of times in state j and observing symbol
vk divided by the expected number of times in state j.

3. Initial state probability:

π̄i = γ1(i); 1 ≤ i ≤ N,

where π̄i is equal to the probability of being in state i at time 1.

12



Chapter 4

Architecture

As practicing pathology at a distance requires the use of microscope, we consider
the LiveMicro application together with the Hidden Markov Model as one system.
In Figure 4.1, we see a general overview of the system. LiveMicro represents a
virtual microscope that allows to perform a live telepathology session. Defined as
Data collector, it collects network data during a live session and prepares them
for the preprocessing part. The preprocessing step, analyzes the dataset selecting
the information to be considered as observations and hidden states. This part also
splits the data into training and test sets. Thus, the training set is used in order
to train our model using the Baum–Welch algorithm, then, create a new HMM
model for the test part. However, the test part is done on the test set, and it is
divided into two parts: first, we predict the sequence of hidden states using the
Viterbi algorithm, given the test sequence of observations. Secondly, for each state
(at time t) in the predicted sequence, we exploit the transition probability matrix
in order to find the next state at time t+1.

13
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Figure 4.1: Detailed view of the system

The process of data recovery can be adopted when observing the phenomenon
of packet loss. This process involves packet retransmissions technique in order
to recover packet losses. Thus, in this work, the next state predicted is used to
reconstruct the original data when occur packet losses, and retransmit them during
the execution of the telepathology session.

14



Chapter 5

Experimental setup and
results

This chapter presents the way our model was trained and tested, along with the
measurements carried out in order to measure the performance of the model in
terms of accuracy, precision, recall, F1-Score and training time. First, we introduce
the training and testing data used in our system. Then, we present the evaluation
of our model and the comparison with others ML models.

5.1 DataSet

In this project, we used different datasets to test our model. The datasets,
considered as scenario1 and scenario2, are generated during the execution of
LiveMicro application. Both scenario1 and scenario2 represent the set of packets
exchanged during a telepathology session. Scenario1 contains three types of states
(classes), while scenario2 has two, as shown in Figure 5.1. Each class corresponds
to the packet content, which is the action types executed by the pathologist.
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Figure 5.1: State distribution histograms in scenario1 and scenario2.

5.2 Experimental setup
Evaluation of the Hidden Markov Model requires initial values for the model

parameters, i.e., state initial probabilities, transition matrix over states and emission
probabilities. In practice, it is important to have good initial parameters for HMM
to achieve accurate classification results in a reasonable time. In this work, we
calculated the initial parameters by randomly generating the values until we found
those that yield an acceptable result.

For the training and testing phase, we splitted the dataset into train (80%) and
test (20%) sets. This is because the model will use the data in the training set to
learn HMM parameters, then use the learned parameters to make prediction about
the data in the test set.
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5.3 Performance Metrics
The performance evaluation of the ML model is an essential part of any project.
The choice of metrics affects how the performance of ML model is evaluated and
compared. In most cases, the classification accuracy is used to measure the model
performance, but it is not sufficient to truly judge the model. In this work, we
compare the performance of the classification models according to certains metrics
like training time, precision, accuracy, recall and f1-score. However, the metrics
can be calculated using a confusion matrix:

1. Confusion Matrix: It is used to measure the performance of a classifier on
a set of test data whose true values are known. A confusion matrix is a table
of two dimensions, Predicted and Actual, in which each dimension contains the
following elements: True Positives (TP), True Negatives (TN), False Positives
(FP), False Negatives (FN), as shown in Figure 5.2.

Figure 5.2: A Confusion Matrix.

Where TP means both predicted class and actual class of data is Yes, while
TN occurs when both predicted class and actual class of data is No. FP means
predicted class of data is Yes and actual class of data is No, and FN when
predicted class of data is No and actual class of data is Yes.
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2. Accuracy: It expresses the percentage (0% - 100%) of the exact predicted
class in total number of instances. The Accuracy can be calculated as:

Accuracy = TP + TN

TP + TN + FP + FN
(5.1)

3. Precision: It quantifies the number of positive class predictions that actually
belong to the positive class. The Precision can be calculated as:

Precision = TP

TP + FP
(5.2)

4. Recall: It quantifies the number of positive class predictions made out of all
positive examples in the dataset. The Recall can be calculated as:

Recall = TP

TP + FN
(5.3)

5. F1-score: This score refers to the harmonic average of the Recall and Precision
metrics, i.e., it is the weighted average of the Recall and Precison metrics. It
varies from 0 (worst) to 1 (best). The F1-score can be calculated as:

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

(5.4)

6. Training time: The time (usually expressed in seconds) that a classifier
takes for building a model on the set of training data. The lower the value of
this time, the fitter will be the model.

We exploited the function Classification report of the library sklearn.metrics to
obtain the classification report of the model.

5.4 Results
In this section we present some experimental results achieved with the our pro-
posed classification model shown in Section 3.3 and the comparison with others
classifiers, i.e., Generative adversarial networks (GAN), Support Machine Vectors
(SVM), Autoregressive Integrated Moving Average (ARIMA), Decision-Tree (DT),
K-Nearest Neighbors (KNN), Naives-Bayes (NB). Table 5.1 and 5.2 summarize the
performance metrics of all the classification models, for the scenario1 and scenario2
respectively. Figure 5.3 illustrates the comparative analysis of different models with
regard to their accuracy, precision, recall and F1-score for the scenario1. From the
chart, we can notice that the accuracy is highest for HMM (87.28%), and lowest for
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ARIMA (43.72%). SVM achieves the accuracy of 62.48%, while GAN gets 69.57%.
The remaining models have the same accuracy of 68.76%. HMM obtains the same
and maximum value (0.87) of precission and recall, while ARIMA achieves the same
and maximum value (0.44) of precission and recall. The F1-scorel is maximum for
HMM (0.87) and minimum for ARIMA (0.41). Figure 5.4 shows the comparative
analysis of different models with regard to their accuracy, precision, recall and
F1-score for the scenario2. The accuracy is highest for HMM (82.84%), and lowest
for ARIMA (8.37%). ARIMA presents the same and lowest value (0.08) of precision,
recall and F1-score, while HMM obtains 0.72, 0.83 and 0.76, for precision, recall
and F1-score respectively. Figure 5.5 shows the training time chart of different
machine learning models for the scenario1. GAN consumes the highest time of
525.73 seconds, however DT and NB consume the lowest time of 0.01 seconds.
Figure 5.6 shows the training time chart for the scenario2. GAN consumes the
highest time of 304.11 seconds, while DT and NB consume only 0.01 seconds.

Table 5.1: The performance metrics of all the classifiers (scenario1).

Accuracy (%) Precison Recall F1-score Training time (s)
HMM 87.28 0.87 0.87 0.87 0.45
ARIMA 43.72 0.44 0.44 0.41 172.71
SVM 62.48 0.53 0.69 0.58 0.23
DT 68.76 0.53 0.69 0.58 0.01
NB 68.76 0.53 0.69 0.58 0.01
KNN 68.76 0.53 0.69 0.58 0.06
GAN 69.57 0.61 0.73 0.67 525.73

Table 5.2: The performance metrics of all the classifiers (scenario2).

Accuracy (%) Precison Recall F1-score Training time (s)
HMM 82.84 0.72 0.83 0.76 0.51
ARIMA 8.37 0.08 0.08 0.08 74.33
SVM 58.44 0.52 0.67 0.57 0.07
DT 66.52 0.52 0.67 0.57 0.01
NB 66.52 0.52 0.67 0.57 0.01
KNN 66.52 0.52 0.67 0.57 0.02
GAN 58.68 0.51 0.59 0.54 304.11
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Figure 5.3: The comparison of models in terms of accuarcy, precision, recall and
F1-score (scenario1).

Figure 5.4: The comparison of models in terms of accuarcy, precision, recall and
F1-score (scenario2). 20
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Figure 5.5: The comparison of models in term of training time (scenario1).

Figure 5.6: The comparison of models in term of training time (scenario2).
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In summary, these findings indicate that the proposed method, HMM, is the
best machine learning algorithm analyzed for this study. This model has been
shown to be effective in accurately predicting the content of network packets in
order to overcome both packet loss and time delay issues during the telepathology
session.
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