
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Matematica

Tesi di Laurea Magistrale

Gamma processes and their applications

Relatore: Candidato:

Franco Pellerey Luca Serri

Contents

1 Models 4

1.1 Failure rate function . 4
1.2 Random deterioration rate . 4
1.3 Markov process . 5

1.3.1 Brownian motion with drift 5
1.4 Monotonically increasing jump processes 6

2 Gamma processes 7

2.1 De�nition . 7
2.2 Properties . 8
2.3 Expected deterioration . 11
2.4 Parameter estimation . 12

2.4.1 Method of maximum likelihood 12
2.4.2 Method of moments 13

3 Implementation and testing 14

3.1 Implementation . 14
3.1.1 Generating random samples 14
3.1.2 Computing parameters 17
3.1.3 Time of failure estimation 22

3.2 Testing the code . 27
3.2.1 Parameter estimation 27
3.2.2 Failure time estimation 35

4 Application of gamma processes: two case studies 37

4.1 Importing data from dataset and computing parameters . . . 37
4.2 Fatigue-crack . 39

4.2.1 Overview . 39
4.2.2 Results . 40
4.2.3 Comparison . 42

4.3 GaAs lasers . 43

1

4.3.1 Overview . 43
4.3.2 Results . 44
4.3.3 Comparison . 46

5 Conclusions 48

6 Appendix 49

2

Introduction

Speaking about engineering structures and infrastructures, a key problem
is the optimization of maintenance, because the amount of money spent for
it during the last decades has increased a lot; various mathematical models
are being studied to lower the costs [1].

In maintenance, decisions often must be made under uncertainty, and
the most important is generally the uncertainty in the deterioration and
lifetime of objects. Up to the early nineties, most mathematical maintenance
models were based on describing the uncertainty in ageing using a lifetime
distribution, but this has a clear disadvantage: it only quanti�es whether a
component is functioning or not, and thus cannot be used to estimate its
deterioration. Another problem is that the failure rate is only useful for
making inferences for a large population of components rather than for a
single component: in fact, failure rates cannot be observed or measured for
a particular component [2].

3

Chapter 1

Models

For modeling stochastic deterioration, there are various possibilities. One
can use a failure rate function or a stochastic process, such as random dete-
rioration rate, Markov process, Brownian motion with drift, non-decreasing
jump process (of which the gamma process is a special case).

1.1 Failure rate function

If the lifetime distribution has a cumulative probability distribution F (t)
and probability density function f(t), then the failure rate can be de�ned as

r(t) =
f(t)

1− F (t)
=
f(t)

F̄ (t)

for t > 0. A probabilistic interpretation of it is that r(t)dt represents the
probability that a component of age t will fail in the time interval [t, t+ dt];
for deteriorating elements, the failure rate is an increasing function.

Failure rates have a big disadvantage: they cannot be observed or mea-
sured for a particular component [2]. Therefore, a reliability approach solely
based on lifetime distributions and their unobservable failure rates is unsat-
isfactory.

1.2 Random deterioration rate

A very simple approach consists in a stochastic process such that the
cumulative amount of deterioration at time t is X(t) = A t, where A (average
deterioration rate) is a random variable with some known distribution, for
example uniform or normal. However, this model is not satisfactory when

4

inspections are involved, since sample paths are straight lines and therefore
a single inspection is enough to �remove� the stochastic component of this
model [3].

1.3 Markov process

A Markov process is a stochastic process {X(t)}t such that, given the
value of X(t), then values of X(τ) for τ > t only depend of X(t) and are
independent ofX(u) where u < t; in other words, the conditional distribution
is independent of the past and is only determined by the present.

There are various classes of Markov processes that are useful for model-
ing stochastic deterioration [4]: discrete-time Markov processes with a �nite
or countable state space (Markov chains), and continuous-time Markov pro-
cesses with independent increments, such as the Brownian motion with drift
and the gamma process. The former is described in the next section, while
the latter will be discussed in the next chapter.

Letting ∆s,t = X(t)−X(s), recall that a stochastic process {X(t)}t has
independent increments if and only if ∆t0,t1 is independent of ∆t2,t3 for any
choice of t0 < t1 ≤ t2 < t3. This is more restrictive than the Markovian
property: in fact, X(τ) = X(t) + ∆t,τ and with independent increments ∆t,τ

is independent of ∆u,t for all u < t.

1.3.1 Brownian motion with drift

Recall that a random variable has normal distribution (or gaussian dis-
tribution) if its probability density function is

N (x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

The Brownian motion with drift is a continuous-time stochastic process
{X(t)}t≥0 with drift parameter µ and variance parameter σ2 (σ > 0) having
the following properties:

� P(X(0) = 0) = 1

� X(t) ∼ N (µt, σ2t) for all t ≥ 0.

� X has independent increments.

� X is continuous.

5

An example of application of this process is describing the motion of small
particles in �uids.

The brownian motion with drift cannot be used for the purpose of a
deterioration, since it is not monotone, but has its advantages. For example,
explicit expressions can be derived when stress and strength are independent
Brownian motions with drift [5].

1.4 Monotonically increasing jump processes

Another possibility consists in modeling the deterioration as a one-dimensional
random walk process in which the deterioration steps occur randomly in time
at a constant mean rate with step sizes being non-negative, independent, and
identically distributed; failure is de�ned as the event in which the deteriora-
tion reaches such a level that the object is considered to be worn out com-
pletely [6]. An example consists of studying the lifetime of a device subjected
to a sequence of shocks that occur randomly in time: it can be approximated
by an homogeneous Poisson process.

In addition to models that consider discrete amounts of damage in isolated
instants of time, one can be interested in a model where the deterioration
occurs continuously in time. A notable example is gamma process, which is
covered in the next chapter.

6

Chapter 2

Gamma processes

2.1 De�nition

Recall that a random variable has gamma distribution with shape pa-
rameter v > 0 and rate parameter u > 0 if its probability density function
is

Ga(x|v, u) =
uv

Γ(v)
xv−1e−ux x > 0

where Γ is the gamma function de�ned by

Γ(α) =

∫ +∞

0

zα−1e−zdz

It is worth noting that exists another common parameterization which in-
cludes shape and scale parameter, with the latter equal to the reciprocal of
the rate parameter.

This random variable has expected value and variance

E(x|v, u) =
v

u
V ar(x|v, u) =

v

u2

The coe�cient of variation is de�ned by the ratio of the standard deviation
and the mean, i.e.

cv(x|v, u) =

√
V ar(x|v, u)

E(x|v, u)
=

1√
v

which is decreasing in time.
The following graph shows the probability density function of gamma-

distributed random variables for various values of v and u:

7

Let v(t) be a non-decreasing, right-continuous, real-valued function for
t ≥ 0 with v(0) = 0, u > 0, and {X(t)}t≥0 a continuous-time stochastic
process with the following properties:

� P(X(0) = 0) = 1

� X(t2)−X(t1) ∼ Ga(v(t2)− v(t1), u) ∀t2 > t1 ≥ 0

� X has independent increments

Then {X(t)}t≥0 is a gamma process with shape function v(t) and rate pa-
rameter u.

2.2 Properties

Let X(t) denote the deterioration at time t ≥ 0: its probability density
function, according to the de�nition of gamma process, is

fX(t) = Ga(x|v(t), u), (2.1)

and thus its expectation and variance are

E(X(t)) =
v(t)

u
, V ar(X(t)) =

v(t)

u2
,

8

while the coe�cient of variation is

cv(X(t)) =

√
V ar(X(t))

E(X(t))
=

1√
v(t)

,

which is decreasing in time, because v(t) is non-decreasing. On the other
hand, the ratio of variance and mean is 1/u and therefore is constant in
time.

Let r0 denote the initial resistance of a component and R(t) = r0 −X(t)
its deteriorating resistance; the component is said to fail when R(t) falls
below a value s, called stress. Assuming that both r0 and s are �xed and
known,

R(t) < s ⇒ r0 −X(t) < s ⇒ X(t) > r0 − s = y

and we de�ne Ty (lifetime) as the time at which failure occurs. From (2.1)
we can obtain the lifetime distribution

F (t) = P(Ty ≤ t) = P(X(t) ≥ y)

=

∫ +∞

y

fX(t)(x)dx

=

∫ +∞

y

Ga(x|v(t), u)dx

=

∫ +∞

y

uv(t)

Γ(v(t))
xv(t)−1e−uxdx

=
1

Γ(v(t))

∫ +∞

yu

uv(t) z
v(t)−1

uv(t)−1
e−z

1

u
dz

=
1

Γ(v(t))

∫ +∞

yu

zv(t)−1e−zdz

=
Γ̃(v(t), yu)

Γ(v(t))
,

where Γ̃ is the incomplete gamma function de�ned by

Γ̃(α, x) =

∫ +∞

x

zα−1e−zdz.

The probability density function can be obtained deriving the lifetime
distribution:

f(t) =
∂F (t)

∂t
=

∂

∂t

(
Γ̃(v(t), yu)

Γ(v(t))

)

9

Assuming that the shape function v(t) is di�erentiable, we can apply the
chain rule and obtain

f(t) =
∂

∂v(t)

(
Γ̃(v(t), yu)

Γ(v(t))

)
∂v(t)

∂t

= v′(t)
∂

∂v(t)

(∫ +∞
yu

zv(t)−1e−zdz∫ +∞
0

zv(t)−1e−zdz

)
∂

∂v(t)

∫ +∞

yu

zv(t)−1e−zdz

=

∫ +∞

yu

∂

∂v(t)

(
zv(t)−1e−z

)
dz

=

∫ +∞

yu

zv(t)−1e−z log z dz,

and the same holds for the other integral.
In the following calculations, the integrand will be abbreviated in

zv(t)−1e−z log z = g(v(t), z) = g;

recall that the digamma function is de�ned as

ψ(x) =
d log Γ(x)

dx
=

Γ′(x)

Γ(x)
; (2.2)

it holds

ψ(v(t)) =

∂Γ(v(t))
∂v(t)

Γ(v(t))
=

∫ +∞
0

g log z dz∫ +∞
0

g dz
,

and therefore

f(t) = v′(t)
∂

∂v(t)

(∫ +∞
yu

g dz∫ +∞
0

g dz

)

= v′(t)

∫ +∞
yu

g log z dz
∫ +∞

0
g dz −

∫ +∞
yu

g dz
∫ +∞

0
g log z dz(∫ +∞

0
g dz

)2

=

v′(t)∫ +∞
0

g dz

(∫ +∞
yu

g log z dz
∫ +∞

0
g dz −

∫ +∞
yu

g dz
∫ +∞

0
g log z dz∫ +∞

0
g dz

)

10

=
v′(t)

Γ(v(t))

(∫ +∞

yu

g log z dz −
∫ +∞

yu

g dz

∫ +∞
0

g log z dz∫ +∞
0

g dz

)

=
v′(t)

Γ(v(t))

(∫ +∞

yu

g log z dz −
∫ +∞

yu

gψ(v(t)) dz

)
=

v′(t)

Γ(v(t))

∫ +∞

yu

(log z − ψ(v(t))) zv(t)−1e−zdz

It can be proved that if v′(t) > 0, then the failure rate is increasing.
If �xed values of initial resistance and stress are not satisfactory, one can

opt for a di�erent model where y is replaced by a random quantity Y > 0.
Given the probability density function fY (y), the probability of failure in
time interval (0, t) is

P(X(t) > Y) =

∫ +∞

0

fX(t)(x)P(Y ≤ x)dx

=

∫ +∞

0

∫ x

0

fX(t)(x)fY (y)dydx.

The probability P(Y > x) = 1 − G(x) = Ḡ(x) can be interpreted as the
probability that a device survives x units of deterioration. It can be shown
that the cumulative distribution function has an increasing failure rate if v(t)
is convex and G(x) has an increasing failure rate.

2.3 Expected deterioration

When modeling the temporal variability in the deterioration, a crucial
question is how the expected deterioration increases over time. Empirical
studies show that the expected deterioration at time t is often proportional
to a power law:

E(X(t)) =
v(t)

u
∼ c tb

u
= a tb (2.3)

Examples of expected deterioration according to a power law include the
expected degradation of concrete due to corrosion of reinforcement (b = 1),
sulphate attack (b = 2), di�usion-controlled ageing (b = 0.5) [7]. In the
special case b = 1 the expected deterioration is linear in time, and the gamma
process is called stationary.

These cases are notable because estimating the time of failure is simple:
in fact, given critical value of deterioration y then

y = a tbfail ⇒ tfail = b

√
y

a

11

2.4 Parameter estimation

A typical dataset contains inspection times {tj}j=1,...,n (with 0 = t0 <
t1 < ... < tn) and corresponding observations of cumulative amounts of dete-
riorations {xj}j=1,...,n (with 0 = x0 ≤ x1 ≤ ... ≤ xn), often taken for multiple
objects. Given this data and supposing that the expected deterioration is
(2.3), the two most common methods of parameter estimation are method of
maximum likelihood and method of moments.

2.4.1 Method of maximum likelihood

The maximum likelihood estimators of c and u can be obtained by max-
imizing the logarithm of the likelihood function of the increments. Letting
wj = tbj − tbj−1, the likelihood function of the observed deterioration incre-
ments δj = xj − xj−1 is a product of independent gamma densities

`(δ1, ..., δn|c, u) =
n∏
j=1

fX(tj)−X(tj−1)(δj) =
n∏
j=1

ucwj

Γ(cwj)
δ
cwj−1
j e−uδj (2.4)

By computing the �rst partial derivatives of the loglikelihood function of
the increments with respect to c and u, the maximum likelihood estimates
ĉ and û can be computed by solving the following system (see Appendix for
calculations):

û =
ĉtbn
xn

n∑
j=1

wj(ψ(ĉwj)− logδj) = tbn log(û)
(2.5)

From the �rst equation it follows that the expected deterioration at time t
can be written as

E(X(t)) = xn

(
t

tn

)b
Because cumulative amounts of deterioration are measured, the last inspec-
tion contains the most information; this is con�rmed by the fact that the ex-
pected deterioration at the last inspection time tn equals xn, i.e. E(X(tn)) =
xn.

This method can be used to estimate b as well: this parameter can be
obtained by maximizing the likelihood function (2.4). In particular, Nicolai
et al. [9] applied this approach to �t a gamma process to inspection data of
the Dutch Haringvliet storm-surge barrier representing percentages of steel-
gate surfaces that have been corroded due to ageing of the coating.

12

2.4.2 Method of moments

Given that the expected value and the variance of cumulative deteriora-
tion at time t are

E(X(t)) =
ctb

u
, V ar(X(t)) =

ctb

u2
,

when the power b is known the gamma process can be transformed into a
stationary gamma process with a monotonic transformation t 7→ z(t) = tb

obtaining

E(X(z) =
cz

u
, V ar(X(z) =

cz

u2
,

which is a stationary gamma process with respect to the transformed time
z. According to Çinlar et al. [8] the extimates can be computed by solving
the system

ĉ

û
=

∑n
j=1 δj∑n
j=1 wj

=
xn
tbn

= δ̄

xn
û

(
1−

∑n
j=1 w

2
j

(
∑n

j=1wj)
2

)
=

n∑
j=1

(δj − δ̄wj)2

(2.6)

The �rst equation is the same as (2.5) but the second one is simpler, because
it can be rearranged to obtain an explicit expression for parameter û, so
parameter extimation is easier.

13

Chapter 3

Implementation and testing

Gamma processes can be implemented in code and used for various pur-
poses. In this study Python language is used [10], with libraries NumPy [11],
SciPy [12] and Matplotlib [13]. The code is written by myself and is available
at the following link: https://github.com/lucas992x/gammaprocesses

At �rst, formulas described in the previous chapters are used to generate
random samples, compute the parameters using this data and compare ob-
tained values with initial values. Inspection times and parameters b, c, u are
arbitrarily chosen; a critical value is passed too, to analyze failure times and
try to approximate them with some known distribution.

After this, the code is applied to two case studies, which are illustrated
in the next chapter.

3.1 Implementation

3.1.1 Generating random samples

From the de�nition of gamma process given in Section 2.1 it follows that

X(tj)−X(tj−1) ∼ Ga(c(tbj − tbj−1), u)

for each couple of inspection times 0 ≤ tj−1 < tj. This equation is used
to generate random degradation paths with numpy.random.gamma; however,
NumPy expects shape and scale parameters while formulas described in the
previous chapter (and therefore this equation) are based on shape and rate
parameters, so the distribution is rewritten as

X(tj)−X(tj−1) ∼ Ga

(
c(tbj − tbj−1),

1

u

)

14

https://github.com/lucas992x/gammaprocesses

Given the number of samples needed (num), the list of inspection times
(times) and the parameters (b, c, u), the code generates random deteriora-
tion increments and sums them to obtain cumulative deterioration in inspec-
tion times.

def GenerateSamples(num , times , b, c, u):

samples = []

for j in range(num):

sample = [0]

for j in range(1, len(times)):

incr = np.random.gamma(c * (times[j] ** b - times

[j - 1] ** b), 1 /

u)

sample.append(incr + sample[-1])

samples.append(sample)

return samples

It is possible to pass a critical value, that states whether objects are
considered to have failed or not, in that case this value is added to the title:

def PrintPlotSamples(t, samples , b, c, u, where , method =

None , limits = [[], []],

critical = 0):

if method is None:

title = 'Original samples '

else:

title = 'Samples generated with {}\nb = {:.3f}, c = {

:.3f}, u = {:.3f}, a =

{:.3f}'.format(method

, b, c, u, c / u)

if critical > 0:

title += ', critical = {}'.format(critical)

[...]

The user can decide to print the samples to console, plot them on a graph,
or both:

def PrintSample(sample , sep , pad , decs):

print(sep.join(['{:{}.{}f}'.format(s, pad + 1 + decs ,

decs) for s in sample]).

strip ())

def PrintPlotSamples(t, samples , b, c, u, where , method =

None , limits = [[], []],

critical = 0):

[...]

print to console

if where in ['console ', 'both']:

maxvalue = max(t[-1], max([v[-1] for v in samples]))

decs = 3

15

pad = len('{:.{}f}'.format(maxvalue , decs)) - 1 -

decs

print('\n{}:'.format(title))

PrintSample(t, args.sep , pad , decs)

for sample in samples:

PrintSample(sample , args.sep , pad , decs)

plot to graph

if where in ['graphs ', 'both']:

PlotGraph(t, samples , title , limits[0], limits[1],

critical)

The graph is plotted using matplotlib.pyplot. If argument yy contains
exactly two elements, the code prints the estimated pdf of failure times (see
next section), otherwise it prints all samples that were generated with arbi-
trary parameters passed by the user. In both cases the graph is automatically
saved as image.

def PlotGraph(x, yy , title , xlimits = [], ylimits = [],

critical = 0, labels = ['Time'

, 'Degradation ']):

adjust text size

rcparams = {

'axes.titlesize ': 11 ,

'axes.labelsize ': 10 ,

'xtick.labelsize ': 8,

'ytick.labelsize ': 8,

}

plt.rcParams.update(rcparams)

if len(yy) == 2:

in this case plot normal pdf with a dotted line and

estimated pdf with a

continuous line

plt.plot(x, yy[1], linestyle = ':')

plt.plot(x, yy[0])

else:

plot horizontal line with critical level

if critical > 0:

plt.axhline(critical)

plot all samples

for y in yy:

plt.plot(x, y)

plt.grid()

plt.xlabel(labels[0])

plt.ylabel(labels[1])

if xlimits:

plt.xlim(*xlimits)

if ylimits:

plt.ylim(*ylimits)

plt.title(title)

16

plt.savefig('{}.png'.format(title.replace('\n', ' ')))

plt.close()

Here is an example of a graph with random degradation paths and a
critical value:

3.1.2 Computing parameters

Method of moments is very straightforward to apply, because equations
(2.6) can be easily explicited to obtain c and u:

def SolveMoments(t, x, b):

n = len(t)

delta = [x[j] - x[j - 1] for j in range(1, n)]

deltabar = x[-1] / (t[-1] ** b)

w = [t[j] ** b - t[j - 1] ** b for j in range(1, n)]

u = x[-1] * (1 - sum([wj ** 2 for wj in w]) / (sum(w) **

2)) / sum([(delta[j] -

deltabar * w[j]) ** 2 for

j in range(n - 1)])

c = u * deltabar

return c, u

Instead, method of maximum likelihood is more complicated because (2.5)
involves a minimization with two constrains (2.4).

17

likelihood function of the increments with respect to c and

u

def IncrLikelihood(params , *args):

b, c, u = params

t, delta = args

w = [t[j] ** b - t[j - 1] ** b for j in range(1, len(t))]

to maximize f, minimize -f

return -np.prod([(u ** (c * w[j])) * (delta[j] ** (c * w[

j] - 1)) * np.exp(-1 * u *

delta[j]) / (gamma(c * w[

j])) for j in range(len(w)

)])

maximum -likelihood estimator of c (used as constraint to

solve using ML method)

def MaxLikeC(params , *args):

b, c, u = params # u unused here

t, delta , xn = args

w = [t[j] ** b - t[j - 1] ** b for j in range(1, len(t))]

logarg = c * (t[-1] ** b) / xn

avoid errors if logarithm argument is not positive

if logarg <= 0:

any non -zero value is ok to make the constraint

unsatisfied

return 666

else:

return sum([w[j] * (digamma(c * w[j]) - np.log(delta[

j])) for j in range(

len(w))]) - (t[-1] **

b) * np.log(logarg)

maximum -likelihood estimator of u (used as constraint to

solve using ML method)

def MaxLikeU(params , *args):

b, c, u = params

tn, xn = args

return u - c * (tn ** b) / xn

To solve this, scipy.optimize.minimize is used when b is unknown. The
function returns 0 if the minimization fails.

solve using method of maximum likelihood

if guesses = [b0 , c0 , u0] all parameters are evaluated ,

with this values as initial

guesses

if guesses = [b0 , c0] only c and u are evaluated , b0 is

fixed and c0 initial guess

def SolveMaxLike(t, x, guesses):

n = len(x)

18

delta = [x[j] - x[j - 1] for j in range(1, n)]

if len(guesses) == 3:

mins = minimize(IncrLikelihood , guesses , args = (t,

delta), constraints =

[

{'type': 'eq', 'fun': MaxLikeC , 'args': (t, delta , x[

-1])},

{'type': 'eq', 'fun': MaxLikeU , 'args': (t[-1], x[-1]

)}],

bounds = ((0, None), (0, None), (0, None)))

if mins.success == True:

return mins.x[0], mins.x[1], mins.x[2] # b, c, u

else:

return 0, 0, 0

else:

[...]

When b is known, the code uses (2.5) to compute c and u: the �rst equation
is solved using scipy.optimize.fsolve.

solve using method of maximum likelihood

if guesses = [b0 , c0 , u0] all parameters are evaluated ,

with this values as initial

guesses

if guesses = [b0 , c0] only c and u are evaluated , b0 is

fixed and c0 initial guess

def SolveMaxLike(t, x, guesses):

n = len(x)

delta = [x[j] - x[j - 1] for j in range(1, n)]

if len(guesses) == 3:

[...]

else:

b0, c0 = guesses

w = [t[j] ** b0 - t[j - 1] ** b0 for j in range(1, n)

]

func = lambda c : sum([w[j] * (digamma(c * w[j]) - np

.log(delta[j])) for j

in range(n - 1)]) - (t

[-1] ** b0) * np.log(c

* (t[-1] ** b0) / x[-

1])

c = fsolve(func , c0)[0]

u = c * (t[-1] ** b0) / x[-1]

return c, u

Both scipy.optimize.minimize and scipy.optimize.fsolve require an
initial guess, i.e. a vector of values "close" to the solution.

In the �rst case, an approximation of b is obtained by �tting the function
f(t) = a tb (expected deterioration) with scipy.optimize.curve_fit, while

19

approximations of c and u are calculated using explicit formulas of method
of moments (2.6) using �tted b. If this does not lead to a solution, the code
tries with various guesses for b and then chooses the computed value that
maximizes the likelihood function.

In the second case only c needs to be approximated, and this is done using
method of moments as in the �rst case. This method is also used to solve
with method of maximum likelihood using (2.5) with �tted b, to compare the
results.

There is no need to explicitly specify which case is being used: the code
uses the right one by checking how many guesses are being passed as argu-
ments.

def Expon(t, a, b):

return a * (t ** b)

def SolveAll3(t, xx , bguesses , percentiles , prnt = False):

[...]

for x in xx:

fit function

params = curve_fit(Expon , t, x)

a0, b0 = params[0]

c0, u0 = SolveMoments(t, x, b0) # also used as

initial guesses that

satisfy constrains

solve with method of maximum likelihood

b1, c1 , u1 = SolveMaxLike(t, x, [b0, c0 , u0])

if b1 > 0:

solML = [b1 , c1 , u1]

else:

try to solve with various guesses for b

solutions = []

for bg in bguesses:

c0, u0 = SolveMoments(t, x, bg) # get

initial

guesses for c

and u that

satisfy

constrains

b1, c1 , u1 = SolveMaxLike(t, x, [bg, c0 , u0])

if b1 > 0:

solutions.append([b1 , c1 , u1])

if solutions == []:

solML = [0, 0, 0]

else:

find the actual minimum among solutions (

which can

contain local

20

minima)

delta = [x[j] - x[j - 1] for j in range(1,

len(x))]

minimum = sys.float_info.max

solML = 3 * [minimum]

for solution in solutions:

llvalue = IncrLikelihood(solution , t,

delta)

if llvalue < minimum:

minimum = llvalue

solML = solution

c2, u2 = SolveMaxLike(t, x, [b0, c0])

c3, u3 = SolveMoments(t, x, solML[0])

[...]

When multiple samples are available, the code computes parameters for
all of them and then calculates mean, variance, standard deviation and two
percentiles. If there are more than 10 samples the code removes some of
them, speci�cally lowest and greatest values, in a quantity equal to the lowest
between 10% of samples and 5 samples; this is done because the mean is not
very stable, in the sense that even a single value can drastically change its
value if it is signi�cantly greater or lower than the others.

compute mean , variance , standard deviation and two

percentiles of some data (

default 2.5\% and 97.5\%)

class Stats:

def __init__(self , data , percentile = 2.5):

remove some data to avoid a result "ruined" by a

few mistakes

if len(data) >= 10:

data = sorted(data)

remove = min([len(data) // 10 , 5])

self.values = data[remove:-remove]

else:

self.values = data

self.n = len(self.values)

self.mean = np.mean(self.values)

sqsum = sum([(x - self.mean) ** 2 for x in self.

values])

self.variance = sqsum / self.n

self.std = np.sqrt(sqsum / (self.n - 1))

self.perc = percentile

self.lowperc = np.percentile(self.values , percentile)

self.upperc = np.percentile(self.values , 100 -

percentile)

After computing parameters with these methods, they are compared using

21

Akaike Information criterion [14] and Bayesian information criterion [14], two
criterions commonly used to choose a model among a �nite set. They are
based on the same idea: since the likelihood of a model can be increased
by adding parameters, they add a penalty term that increases when more
parameters are used, which also helps to prevent over�tting.

Letting k be the number of estimated parameters, n the number of sam-
ples and L̂ the maximum value of the likelihood function, they are de�ned
as

AIC = 2k − 2 log L̂ (3.1)

BIC = k log n− 2 log L̂ (3.2)

In both cases the model with lowest value is preferred; this is intuitive, be-
cause the goal is to maximize the likelihood while preventing the model from
becoming too complex.

Implementation in code is simple and straightforward: IncrLikelihood
function was already de�ned before, here is used to compute the likelihood
of entire dataset, recalling that log xy = log x+ log y.

def CalcCriterions(b, c, u, t, xx , bknown = False , method = '

'):

loglike = 0 # loglikelihood

for x in xx:

delta = [x[j] - x[j - 1] for j in range(1, len(x))]

loglike += np.log(-IncrLikelihood([b, c, u], t, delta

))

if bknown == True:

k = 2

else:

k = 3

aic = 2 * (k - loglike)

bic = k * np.log(len(xx)) - 2 * loglike

if method:

print('{} {:8.3f} {:8.3f}'.format(method , aic , bic)

)

return aic , bic

3.1.3 Time of failure estimation

If a critical value is passed, the code computes the estimated probability
density function of failure time. Intuitively, this p.d.f. should assume higher
values in regions where there is more data.

Recall that a window function is a function that is null outside a given

22

interval; a very simple window function is

ϕ(x) =

1 |x| ≤ 1

2
0 otherwise

which is null outside [−1
2
, 1

2
] and assumes value 1 inside this interval. This

function is also a density, because it is non-negative over R and it is easy to
check that

∫
R ϕ(x)dx = 1. It can be adapted to any interval: in fact, given

[a, b] then

ϕa,b(x) =
1

b− a
ϕ

(
x− a+b

2

b− a

)
assumes value 1

b−a inside [a, b] and 0 outside, which means it's still a density.
Given n samples and an arbitrary value h > 0, one can compute this on

intervals [xj − h, xj + h] for each sample xj. The function

fh(x) =
1

n

n∑
j=1

1

h
ϕ

(
x− xj
h

)
is a density, in fact it is non-negative (because ϕ is non-negative by de�nition
and h is positive) and∫ +∞

−∞
fh(x)dx =

∫ +∞

−∞

1

n

n∑
j=1

1

h
ϕ

(
x− xj
h

)
dx

=
1

n

n∑
j=1

1

h

∫ +∞

−∞
ϕ

(
x− xj
h

)
dx

=
1

n

n∑
j=1

1

h
h = 1

The following graphs show the window function for a single sample and
the resulting density function obtained with samples {1, 2, 3, 6, 7, 9} and h =
2:

23

It is important to note that not all h give good results. These two graphs
show what happens with h too small or too large:

With small h each window contains only one sample, and therefore the
function will assume value 1

nh
near a sample and 0 otherwise. With large h

the function becomes nearly constant over considered samples.
However, the resulting density is not smooth and has discontinuities. A

common choice to make the density smooth is the p.d.f. of a normal distri-
bution with zero mean, i.e.

N0,σ(x) =
1√

2πσ2
e−

x2

2σ2

It is worth noting that this is not a window function, although its value
is very close to zero outside an interval. σ should be chosen properly, for
the same reason of h; in this case, with σ = 0.3 the result looks good:

24

These functions are called kernel functions.
Estimating the failure time for a sample is pretty straightforward: the

code �nds the last inspection before failure and the �rst inspection after it,
and applies a linear proportion to estimate the time of failure.

def GetFailureTime(t, x, critical):

failure has not happened yet

if x[-1] < critical:

failtime = None

time of failure is contained in t

elif critical in x:

failtime = t[x.index(critical)]

estimate time of failure

else:

index = x.index(max([xx for xx in x if xx < critical]

)) # index of last

inspection before

failure

prev = [t[index], x[index]] # last inspection before

failure

next = [t[index + 1], x[index + 1]] # first

inspection after

failure

apply a proportion to compute time of failure

failtime = prev[0] + (next[0] - prev[0]) * (critical

- prev[1]) / (next[1]

- prev[1])

return failtime

Once failure times are all computed, the code estimates the probability den-
sity function using Gaussian kernels (scipy.stats.gaussian_kde) and plots
it. The p.d.f. of a normal distribution with mean and variance equal to
sample mean and sample variance is evaluated and plotted too (using scipy

.stats.norm.pdf), to compare the two functions:

25

def GetFailurePdf(t, samples , critical , b = None , c = None , u

= None , percentile = 2.5):

compute failure times

failuretimes = []

for sample in samples:

failuretime = GetFailureTime(t, sample , critical)

if failuretime is not None:

failuretimes.append(failuretime)

if no sample reached failure there 's no need to compute

pdf

if failuretimes == []:

print('No sample reached failure!')

same when only one sample reached failure

elif len(failuretimes) == 1:

print('Only one sample reached failure , at time {:.3f

}'.format(failuretimes

[0]))

else:

failuretimes = Stats(failuretimes , percentile =

percentile)

plot the graph

xgraph = np.linspace(0.9 * failuretimes.lowperc , 1.1

* failuretimes.upperc ,

num = 100)

title = 'Estimated pdf of failure time with {}

samples '.format(len(

samples))

parameters will be printed if arbitrary

if b is not None:

title += '\nb = {:.3f}, c = {:.3f}, u = {:.3f}, a

= {:.3f}'.format(

b, c, u, c / u)

title += ', critical = {}'.format(critical)

estimate pdf of failure time using Gaussian kernels

kde = gaussian_kde(failuretimes.values)

normal distribution pdf , to compare it with

estimated pdf

normpdf = norm.pdf(xgraph , failuretimes.mean ,

failuretimes.std)

plot the two curves on the same graph

PlotGraph(xgraph , [kde(xgraph), normpdf], title , [min

(xgraph), max(xgraph)]

, [0, 1.05 * max([max(

kde(xgraph)), max(

normpdf)])], labels =

['', ''])

26

3.2 Testing the code

3.2.1 Parameter estimation

Random samples are generated using three sets of arbitrary parameters,
recalling that a = c/u:

b c u a
1 3.14 2.72 1.154
1.4 11 6 1.833
2 4 8 0.5

The �rst method used to estimate parameters is simple and straightfor-
ward: since the expected deterioration is often in the form E(X(t)) = a tb,
the code tries to �t this function to estimate a and b. Here are the results:

Parameter Value Mean Std p0.025 p0.975

b 1 1.032 0.175 0.718 1.409
a 1.154 1.174 0.500 0.430 2.336
b 1.4 1.401 0.088 1.233 1.575
a 1.833 1.871 0.389 1.207 2.713
b 2 2.007 0.103 1.812 2.206
a 0.500 0.509 0.124 0.306 0.780

b is very accurate in all cases, and estimation of a is good too.
The second method is maximum likelihood, described in Section 2.4.1,

which estimates b, c and u. Here are the results with the same arbitrary
parameters:

Parameter Value Mean Std p0.025 p0.975

b 1 1.022 0.182 0.683 1.403
c 3.14 5.170 3.337 1.349 13.909
u 2.72 4.486 2.663 1.738 11.514
b 1.4 1.432 0.098 1.250 1.633
c 11 15.007 8.042 4.524 36.732
u 6 8.581 4.008 3.215 18.647
b 2 1.957 0.118 1.736 2.200
c 4 5.265 2.224 2.161 10.436
u 8 9.288 2.973 4.070 14.445

27

b is still very accurate, while c and u are signi�cantly di�erent. At �rst glance
one can think that this implies a bad model; however, it is worth noting that
the estimation of a is accurate:

a Estimated
1.154 1.152
1.833 1.749
0.500 0.567

From (2.3) it follows that the expected deterioration is unchanged if c and
u are modi�ed keeping c/u constant; it means that these parameters can still
be used to approximate the expected deterioration. This is evident when
looking at the graphs, the following pictures show a comparison between
random samples generated with input parameters (left) and values obtained
from method of maximum likelihood (right):

28

Similar results are obtained when computing c and u with method of
maximum likelihood but using �tted value of b:

Parameter Value Mean Std p0.025 p0.975

c 3.14 5.057 3.248 1.328 14.068
u 2.72 4.482 2.599 1.792 11.484
c 11 17.132 10.205 5.396 41.856
u 6 9.200 4.904 3.197 21.238
c 4 6.170 3.639 2.165 17.296
u 8 12.488 7.492 4.567 33.399

a Estimated
1.154 1.128
1.833 1.862
0.500 0.494

29

As seen in Section 2.4.2, method of moments can only estimate c and
u when b is assumed to be known. Since b can be estimated wth the two
methods described above, they will be combined with method of moments
to compare results. In both cases, similar considerations hold: a is accurate
although c and u are not, which means that this method is still good to
estimate the expected deterioration.

The following tables show a comparison of values obtained from all meth-
ods discussed above:

30

First set of arbitrary parameters
Parameter Value Mean Std p0.025 p0.975

b (�tted) 1 1.032 0.175 0.718 1.409
a (�tted) 1.154 1.174 0.500 0.430 2.336

b (method of maximum likelihood) 1 1.022 0.182 0.683 1.403
c (method of maximum likelihood) 3.14 5.170 3.337 1.349 13.909
u (method of maximum likelihood) 2.72 4.486 2.663 1.738 11.514
a (method of maximum likelihood) 1.154 1.152

c (method of maximum likelihood, b �tted) 3.14 5.057 3.248 1.328 14.068
u (method of maximum likelihood, b �tted) 2.72 4.482 2.599 1.792 11.484
a (method of maximum likelihood, b �tted) 1.154 1.128

c (method of moments, b �tted) 3.14 4.889 3.260 1.105 13.509
u (method of moments, b �tted) 2.72 4.281 2.460 1.512 11.108
a (method of moments, b �tted) 1.154 1.142

c (method of moments, b from ML) 3.14 4.981 3.380 1.091 13.870
u (method of moments, b from ML) 2.72 4.235 2.505 1.394 11.382
a (method of moments, b from ML) 1.154 1.176

First set of arbitrary parameters
Method AIC BIC

Method of maximum likelihood 9451.631 9464.275
Method of maximum likelihood (b �tted) 9464.577 9477.221

Method of moments (b �tted) 9380.101 9392.744
Method of moments (b from ML) 9379.644 9392.288

In this case both AIC and BIC suggest that method of moments is better,
with b computed from maximum likelihood method slightly better than �tted
b.

31

Second set of arbitrary parameters
Parameter Value Mean Std p0.025 p0.975

b (�tted) 1.4 1.401 0.088 1.233 1.575
a (�tted) 1.833 1.871 0.389 1.207 2.713

b (method of maximum likelihood) 1.4 1.432 0.098 1.250 1.633
c (method of maximum likelihood) 11 15.007 8.042 4.524 36.732
u (method of maximum likelihood) 6 8.581 4.008 3.215 18.647
a (method of maximum likelihood) 1.833 1.749

c (method of maximum likelihood, b �tted) 11 17.132 10.205 5.396 41.856
u (method of maximum likelihood, b �tted) 6 9.200 4.904 3.197 21.238
a (method of maximum likelihood, b �tted) 1.833 1.862

c (method of moments, b �tted) 11 15.408 9.305 4.837 41.217
u (method of moments, b �tted) 6 8.267 4.473 2.866 20.463
a (method of moments, b �tted) 1.833 1.864

c (method of moments, b from ML) 11 13.776 7.890 4.001 35.074
u (method of moments, b from ML) 6 7.811 3.887 2.773 17.500
a (method of moments, b from ML) 1.833 1.764

Second set of arbitrary parameters
Method AIC BIC

Method of maximum likelihood 13218.099 13230.743
Method of maximum likelihood (b �tted) 13242.823 13255.467

Method of moments (b �tted) 12972.048 12984.691
Method of moments (b from ML) 13103.211 13115.854

Method of moments is again the winner, but in this case �tted b is sig-
ni�cantly better than b computed with method of maximum likelihood.

32

Third set of arbitrary parameters
Parameter Value Mean Std p0.025 p0.975

b (�tted) 2 2.007 0.103 1.812 2.206
a (�tted) 0.500 0.509 0.124 0.306 0.780

b (method of maximum likelihood) 2 1.957 0.118 1.736 2.200
c (method of maximum likelihood) 4 5.265 2.224 2.161 10.436
u (method of maximum likelihood) 8 9.288 2.973 4.070 14.445
a (method of maximum likelihood) 0.500 0.567

c (method of maximum likelihood, b �tted) 4 6.170 3.639 2.165 17.296
u (method of maximum likelihood, b �tted) 8 12.488 7.492 4.567 33.399
a (method of maximum likelihood, b �tted) 0.500 0.494

c (method of moments, b �tted) 4 5.819 3.817 1.722 15.980
u (method of moments, b �tted) 8 11.728 7.847 3.604 32.545
a (method of moments, b �tted) 0.500 0.496

c (method of moments, b from ML) 4 5.165 2.667 1.831 11.811
u (method of moments, b from ML) 8 9.068 3.802 3.419 18.490
a (method of moments, b from ML) 0.500 0.570

Third set of arbitrary parameters
Method AIC BIC

Method of maximum likelihood 10884.749 10897.393
Method of maximum likelihood (b �tted) 11188.894 11201.538

Method of moments (b �tted) 11026.647 11039.290
Method of moments (b from ML) 10913.673 10926.317

Unlike previous cases, with this set of arbitrary parameters method of
maximum likelihood has the best performance.

However, when b is greater than 2 the results are di�erent, as shown in
the following example:

33

Third set of arbitrary parameters
Parameter Value Mean Std p0.025 p0.975

b (�tted) 3 2.999 0.047 2.907 3.092
a (�tted) 0.800 0.806 0.087 0.645 0.993

b (method of maximum likelihood) 3 2.585 0.050 2.488 2.672
c (method of maximum likelihood) 4 1.049 0.128 0.817 1.308
u (method of maximum likelihood) 5 0.506 0.082 0.388 0.660
a (method of maximum likelihood) 0.800 2.072

c (method of maximum likelihood, b �tted) 4 6.379 3.674 2.282 16.683
u (method of maximum likelihood, b �tted) 5 7.926 4.470 2.895 21.036
a (method of maximum likelihood, b �tted) 0.800 0.805

c (method of moments, b �tted) 4 7.319 6.205 1.803 26.048
u (method of moments, b �tted) 5 9.086 7.585 2.260 30.459
a (method of moments, b �tted) 0.800 0.806

c (method of moments, b from ML) 4 1.094 0.225 0.727 1.672
u (method of moments, b from ML) 5 0.529 0.127 0.337 0.811
a (method of moments, b from ML) 0.800 2.068

In this case �tting is clearly better, because method of maximum like-
lihood underestimates b; estimation of a is still good with both method of
maximum likelihood and method of moments when the value of b is accurate.
As shown in the following graphs, sample deterioration paths are somewhat
similar when b is underestimated but the variance is much higher:

34

3.2.2 Failure time estimation

The following graphs show the estimated probability density functions
obtained with the second set of parameters and increasing number of samples,
the dotted line represents a gaussian probability density function with mean
and variance equal to sample mean and sample variance:

35

The two curves become very close as the number of samples increases,
which means that the distribution of failure times can be approximated by a
normal distribution.

36

Chapter 4

Application of gamma processes:

two case studies

Gamma processes will be applied to two case studies: fatigue-crack growth
dataset and GaAs lasers degradation dataset.

4.1 Importing data from dataset and comput-

ing parameters

When a dataset is passed as argument, the script reads it and estimates
parameters. Dataset should contain {tj}j and {xi,j}i,j, where tj is the j-th
inspection time and xi,j is the measured deterioration of component i at time
tj. Since t0 = 0 and xi,0 = 0 ∀i, it is not necessary to insert them in the
dataset: the script will automatically add them to t or any xi that does not
have 0 as �rst value. By default the script assumes that values are separated
by comma, but this can be changed with a speci�c argument.

Dataset can be structured in two ways, and a argument is available to
specify which is used:

� Writing {tj}j in the �rst line, {x1,j}j in the second line, {x2,j}j in the
third line, and so on.

� Writing t0, x1,0, x2,0, ..., xn,0 in the �rst line, t1, x1,1, x2,1, ..., xn,1 in
the second line, and so on.

If the user does not specify it, the script assumes that the �le uses the
�rst structure. If the argument is not "rows" or "columns", an error is raised
and the execution stops; same happens if the �le is not found.

37

def ReadDataset(datafile , sep , mode):

if not os.path.isfile(datafile):

sys.exit('Error: file "{}" not found!'.format(

datafile))

'rows' mode: row 1 contains values of t, other rows

values of x (one object

per row)

if mode == 'rows':

with open(datafile) as file:

lines = file.read().splitlines ()

t = [float(tt) for tt in lines[0].strip ().split(sep)]

x = [[float(xx) for xx in lines[j].strip ().split(sep)

] for j in range(1,

len(lines))]

'columns ' mode: row j contains t[j], x1[j], x2[j], ...,

xn[j]

elif mode == 'columns ':

t = []

x = []

with open(datafile) as file:

for line in file:

values = line.strip().split(sep)

t.append(float(values[0]))

for j in range(1, len(values)):

if len(x) < j:

x.append([float(values[j])])

else:

x[j - 1].append(float(values[j]))

else:

sys.exit('Error: mode "{}" not recognized!'.format(

mode))

[...]

Once the values are read from dataset, leading zeros are automatically added
if necessary, to make sure that t0 = 0 and x0 = 0 for each sample.

def ReadDataset(datafile , sep , mode):

[...]

add leading zeros if necessary

if t[0] > 0:

t = [0] + t

xx = []

for xj in x:

if xj[0] > 0:

xx.append([0] + xj)

else:

xx.append(xj)

return t, xx

38

After this, parameters are evaluated using methods described in previous
chapters.

4.2 Fatigue-crack

4.2.1 Overview

This dataset was presented by Rodriguez-Picón et al [16]: it studies the
propagation of a crack in a terminal of an electronic device. The function
of the terminal is to transfer a signal to a receptor, and the propagation of
the crack to a certain critical length can lead to failure of the device given
the inability of transferring the signal. The crack growth was measured
every 0.1 hundred thousands cycles until 0.9 hundred thousands cycles, for
10 samples: if the length of a crack exceeds the critical level of 0.4 mm the
device is considered to have failed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.010 0.030 0.055 0.107 0.165 0.183 0.200 0.260 0.302
0.090 0.161 0.172 0.247 0.259 0.281 0.371 0.401 0.429
0.010 0.060 0.081 0.118 0.142 0.158 0.169 0.232 0.262
0.016 0.076 0.087 0.104 0.127 0.198 0.208 0.218 0.258
0.036 0.096 0.176 0.204 0.242 0.281 0.325 0.415 0.495
0.014 0.102 0.112 0.194 0.277 0.289 0.305 0.335 0.391
0.037 0.064 0.078 0.096 0.124 0.164 0.234 0.254 0.326
0.035 0.086 0.105 0.174 0.267 0.277 0.347 0.361 0.384
0.067 0.148 0.161 0.173 0.184 0.218 0.219 0.229 0.275
0.025 0.052 0.064 0.076 0.151 0.187 0.205 0.222 0.262

The following graph shows a visual representation of the deterioration
level for all samples; two of them exceed the critical level in considered times-
pan.

39

4.2.2 Results

Method of maximum likelihood seems to be less accurate than others,
both quantitatively and qualitatively: in fact, estimated value of a is sig-
ni�cantly di�erent from other methods, standard deviation is much higher,
and the graph with randomly generated samples is di�erent. Other meth-
ods, including method of maximum likelihood with �tted value of b, return
similar results: method of moments is arguably better, because the standard
deviation is slightly lower, but the di�erence is small.

40

Parameter Mean Variance p0.025 p0.975

b (�tted) 1.037 0.171 0.776 1.300
a (�tted) 0.367 0.075 0.284 0.460

b (method of maximum likelihood) 1.051 0.188 0.736 1.305
c (method of maximum likelihood) 34.191 18.725 17.462 68.482
u (method of maximum likelihood) 76.380 33.480 40.804 126.692
a (method of maximum likelihood) 0.448

c (method of maximum likelihood, b �tted) 28.936 10.467 17.177 45.840
u (method of maximum likelihood, b �tted) 84.540 30.724 50.447 125.246
a (method of maximum likelihood, b �tted) 0.342

c (method of moments, b �tted) 25.727 9.156 15.575 40.671
u (method of moments, b �tted) 73.190 24.575 49.204 109.962
a (method of moments, b �tted) 0.352

c (method of moments, b from ML) 24.039 9.285 15.678 40.269
u (method of moments, b from ML) 66.862 25.518 39.881 111.401
a (method of moments, b from ML) 0.360

Both Akaike information criterion and Bayesian information criterion con-
�rm the previous impression: method of moments is less accurate than others
and method of moments is slightly better.

41

Method AIC BIC
Method of maximum likelihood -399.475 -398.567

Method of maximum likelihood (b �tted) -415.063 -414.155
Method of moments (b �tted) -420.732 -419.824

Method of moments (b from ML) -422.782 -421.874

Speaking about time of failure, estimated pdf is shown in the following
image. Unfortunately the dataset contains few samples, but the similarity
with gaussian distribution can be seen in the graph.

4.2.3 Comparison

The following graphs show a comparison between random samples gener-
ated with parameters from method of moments and parameters obtained by
Rodriguez-Picón with OpenBUGS software. Value of b and a are very sim-
ilar, but in the latter case the variance is higher because of di�erent values
of c and u, and the e�ect is evident in the graph.

42

However, AIC is very close with a value of −430 in the best case: this
means that these two methods perform similarly.

4.3 GaAs lasers

4.3.1 Overview

This dataset was presented by Meeker and Escobar [15]: it studies the
e�ects of degradation on some laser devices. They have a decrease in light
output when degradation increases, but some of them mantain the output
constant by increasing the operating current; when it gets too high the de-
vice is considered to have failed. In this case the GaAs lasers have been
studied at 80◦, which is much higher than the use temperature, to acceler-
ate failures and obtain data more quickly. 15 samples have been observed
to measure the percent increase in operating current at inspection times
tj = 250, 500, 750, ..., 4000 hours.

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000
0.47 0.93 2.11 2.72 3.51 4.34 4.91 5.48 5.99 6.72 7.13 8.00 8.92 9.49 9.87 10.94
0.71 1.22 1.90 2.30 2.87 3.75 4.42 4.99 5.51 6.07 6.64 7.16 7.78 8.42 8.91 9.28
0.71 1.17 1.73 1.99 2.53 2.97 3.30 3.94 4.16 4.45 4.89 5.27 5.69 6.02 6.45 6.88
0.36 0.62 1.36 1.95 2.30 2.95 3.39 3.79 4.11 4.50 4.72 4.98 5.28 5.61 5.95 6.14
0.27 0.61 1.11 1.77 2.06 2.58 2.99 3.38 4.05 4.63 5.24 5.62 6.04 6.32 7.10 7.59
0.36 1.39 1.95 2.86 3.46 3.81 4.53 5.35 5.92 6.71 7.70 8.61 9.15 9.95 10.49 11.01
0.36 0.92 1.21 1.46 1.93 2.39 2.68 2.94 3.42 4.09 4.58 4.84 5.11 5.57 6.11 7.17
0.46 1.07 1.42 1.77 2.11 2.40 2.78 3.02 3.29 3.75 4.16 4.76 5.16 5.46 5.81 6.24
0.51 0.93 1.57 1.96 2.59 3.29 3.61 4.11 4.60 4.91 5.34 5.84 6.40 6.84 7.20 7.88
0.41 1.49 2.38 3.00 3.84 4.50 5.25 6.26 7.05 7.80 8.32 8.93 9.55 10.45 11.28 12.21
0.44 1.00 1.57 1.96 2.51 2.84 3.47 4.01 4.51 4.80 5.20 5.66 6.20 6.54 6.96 7.42
0.39 0.80 1.35 1.74 2.98 3.59 4.03 4.44 4.79 5.22 5.48 5.96 6.23 6.99 7.37 7.88
0.30 0.74 1.52 1.85 2.39 2.95 3.51 3.92 5.03 5.47 5.84 6.50 6.94 7.39 7.85 8.09
0.44 0.70 1.05 1.35 1.80 2.55 2.83 3.39 3.72 4.09 4.83 5.41 5.76 6.14 6.51 6.88
0.51 0.83 1.29 1.52 1.91 2.27 2.78 3.42 3.78 4.11 4.38 4.63 5.38 5.84 6.16 6.62

The following graph shows a visual representation of the deterioration

43

level for all samples; three of them exceed the critical level in considered
timespan.

4.3.2 Results

With this dataset performance is similar with all methods, both quali-
tatively and quantitatively: unlike the previous case, method of maximum
likelihood performs well. Method of moments with b estimated from maxi-
mum likelihood method seems to be better, because its samples span over a
higher interval which is closer to the one of the original samples, but again
the di�erence is small.

44

Parameter Mean Variance p0.025 p0.975

b (�tted) 0.990 0.072 0.870 1.098
a (�tted) 0.003 0.001 0.001 0.005

b (method of maximum likelihood) 1.004 0.060 0.917 1.088
c (method of maximum likelihood) 0.062 0.050 0.019 0.161
u (method of maximum likelihood) 25.754 10.528 13.925 44.481
a (method of maximum likelihood) 0.002

c (method of maximum likelihood, b �tted) 0.069 0.049 0.018 0.152
u (method of maximum likelihood, b �tted) 25.297 10.510 13.659 44.018
a (method of maximum likelihood, b �tted) 0.003

c (method of moments, b �tted) 0.062 0.047 0.015 0.147
u (method of moments, b �tted) 22.942 10.392 11.292 40.165
a (method of moments, b �tted) 0.003

c (method of moments, b from ML) 0.056 0.048 0.017 0.152
u (method of moments, b from ML) 23.253 10.448 11.299 40.544
a (method of moments, b from ML) 0.002

However, both Akaike information criterion and Bayesian information
criterion suggest that method of moments performs drastically better than
method of maximum likelihood, with b �tted as the best technique.

45

Method AIC BIC
Method of maximum likelihood 126.625 128.749

Method of maximum likelihood (b �tted) 126.461 128.585
Method of moments (b �tted) 75.313 77.438

Method of moments (b from ML) 82.265 84.389

Speaking about time of failure, similar considerations as before hold:
athough the dataset is small, similarity with gaussian distribution can be
seen in the graph.

4.3.3 Comparison

In this case samples generated with Rodriguez-Picón's parameters changes
drastically: variance is similar, but resulting deterioration paths are signi�-
cantly lower, and almost no sample reaches failure (only 2 or 3 on average,
out of 50 samples). Unfortunately his article does not provide AIC or BIC
for this case study.

46

47

Chapter 5

Conclusions

Gamma processes represent a powerful method to study the deterioration
of objects, which is very useful because it is a key problem in maintenance to
lower the costs and they have a lot of possibile applications. Of course there
are di�culties: each scenario requires speci�c adaptation of the methods,
because we have to �nd a way to measure deterioration and gather data
from various samples, which is not always easy to do. However, results
are encouraging: examples with arbitrary parameters show that methods
perform well, and analyzed case studies show that they can be applied to real-
life scenarios with good results. This is encouraging for future applications
but also to study and develop more complex models. For example one can
study the case when critical level is not deterministic but stochastic with
some known distribution (e.g. uniform or normal); or there could be more
components that deteriorate together, leading to a multivariate case.

48

Chapter 6

Appendix

Recall that the likelihood function of the observed deterioration incre-
ments is

`(δ1, ..., δn|c, u) =
n∏
j=1

ucwj

Γ(cwj)
δ
cwj−1
j e−uδj

where δj = xj − xj−1 and wj = tbj − tbj−1, so the loglikelihood is

``(δ1, ..., δn|c, u) = log
∏
j

ucwj

Γ(cwj)
δ
cwj−1
j e−uδj

=
∑
j

log

(
ucwj

Γ(cwj)
δ
cwj−1
j e−uδj

)
Before calculating the �rst partial derivatives of `` with respect to c and

u, it is useful to note that given α ∈ R and f : R→ R then

d

dx
log(αf(x)) =

d

dx
(���logα + log f(x)) =

d

dx
log f(x)

This means that some terms can be removed from logarithm argument when
calculating partial derivatives.

First partial derivative with respect to c is

∂

∂c
``(δ1, ..., δn|c, u) =

∂

∂c

∑
j

log

(
ucwj

Γ(cwj)
δ
cwj−1
j e−uδj

)

=
∑
j

∂

∂c
log

(
ucwj

Γ(cwj)
δ
cwj−1
j �

��e−uδj
)

49

=
∑
j

Γ(cwj)

ucwjδ
cwj−1
j

∂

∂c

(
ucwjδ

cwj−1
j

Γ(cwj)

)

=
∑
j

Γ(cwj)

ucwjδ
cwj−1
j

(
1

Γ2(cwj)

(
∂

∂c
(ucwjδ

cwj−1
j)Γ(cwj)− ucwjδ

cwj−1
j

∂Γ(cwj)

∂c

))

=
∑
j

1

ucwjδ
cwj−1
j Γ(cwj)

(
∂

∂c
(ucwjδ

cwj−1
j)Γ(cwj)− ucwjδ

cwj−1
j wjΓ

′(cwj)

)

=
∑
j

1

ucwjδ
cwj−1
j

(
wj log(u)ucwjδ

cwj−1
j + ucwjwj log(δj)δ

cwj−1
j − ucwjδcwj−1

j wj
Γ′(cwj)

Γ(cwj)

)

=
∑
j

wj���ucwj����δ
cwj−1
j

���ucwj����δ
cwj−1
j

(log u+ log δj − ψ(cwj))

= log u
∑
j

wj +
∑
j

wj(log δj − ψ(cwj))

= tbn log u+
∑
j

wj(log δj − ψ(cwj))

First partial derivative with respect to u is

∂

∂u
``(δ1, ..., δn|c, u) =

∑
j

∂

∂u
log

(
ucwj

����Γ(cwj)�
���δ
cwj−1
j e−uδj

)

=
∑
j

1

ucwje−uδj
∂

∂u
ucwje−uδj

=
∑
j

1

ucwje−uδj
(cwju

cwj−1e−uδj + ucwj(−δje−uδj))

=
∑
j

1

���ucwj���e−uδj
�

��ucwj���e−uδj(cwju
−1 − δj)

=
c

u

∑
j

wj −
∑
j

δj =
c

u
tbn − xn

To maximize the likelihood function of the observed deterioration incre-
ments these two partial derivatives must be equal to zero, i.e.

∂

∂c
``(δ1, ..., δn|c, u) = 0

∂

∂u
``(δ1, ..., δn|c, u) = 0

50

tbn log u+

∑
j

wj(log δj − ψ(cwj)) = 0

c

u
tbn − xn = 0

∑
j

wj(ψ(cwj)− log δj) = tbn log
(c
u
tbn

)
u =

c

u
tbn

This is the system (2.5).

51

Bibliography

[1] J.M. van Noortwijk (2007), A survey of the application of gamma pro-
cesses in maintenance, Reliability Engineering and System Safety (vol.
94, p. 2-21)

[2] R. Dekker (1996), Applications of maintenance optimization models: a
review and analysis, Reliability Engineering and System Safety (vol. 51,
p. 229-240)

[3] M.D. Pandey, X.-X. Yuan, J.M. van Noortwijk (2007), A comparison of
probabilistic deterioration models for life-cycle management of structures,
Advances in Engineering Structures, Mechanics & Construction (vol. 140,
p. 735-746)

[4] R.E. Barlow, F. Proschan, Mathematical theory of reliability (1965), So-
ciety for Industrial and Applied Mathematics

[5] A.P. Basu, N. Ebrahimi (1983), On the reliability of stochastic systems,
Statistics & Probability Letters (vol. 1, p. 265-267)

[6] A. Mercer, C.S. Smith (1959), A random walk in which the steps occur
randomly in time, Biometrika (vol. 46, p. 30-35)

[7] B.R. Ellingwood, Y. Mori (1993), Probabilistic methods for condition
assessment and life prediction of concrete structures in nuclear power
plants, Nuclear Engineering and Design (vol. 142, p. 155-166)

[8] E. Çinlar, Z.P. Bazant, E. Osman (1977), Stochastic process for extrap-
olating concrete creep, ASCE J Eng Mech Div (vol. 103, p. 1069-1088)

[9] R.P. Nicolai, R. Dekker, J.M. van Noortwijk (2007), A comparison of
models for measurable deterioration: An application to coatings on steel
structures, Reliability Engineering & System Safety (vol. 92, p. 1635-
1650)

[10] Python: https://www.python.org/

52

https://www.python.org/

[11] NumPy: https://numpy.org/

[12] SciPy: https://www.scipy.org/

[13] Matplotlib: https://matplotlib.org/

[14] E. Wit, E. van den Heuvel, J. Romeijn (2012), `All models are wrong...':
an introduction to model uncertainty, Statistica Neerlandica (vol. 66, p.
217-236)

[15] W.Q. Meeker, L.A. Escobar, Statistical Methods for Reliability Data

(1998), Wiley-Interscience

[16] L.A. Rodríguez-Picón, A.P. Rodríguez-Picón, L.C. Méndez-González,
M.I. Rodríguez-Borbón, A. Alvarado-Iniesta (2017), Degradation model-
ing based on gamma process models with random e�ects, Communica-

tions in Statistics - Simulation and Computation (vol. 47:6, p. 1796-1810)

53

https://numpy.org/
https://www.scipy.org/
https://matplotlib.org/

	Models
	Failure rate function
	Random deterioration rate
	Markov process
	Brownian motion with drift

	Monotonically increasing jump processes

	Gamma processes
	Definition
	Properties
	Expected deterioration
	Parameter estimation
	Method of maximum likelihood
	Method of moments

	Implementation and testing
	Implementation
	Generating random samples
	Computing parameters
	Time of failure estimation

	Testing the code
	Parameter estimation
	Failure time estimation

	Application of gamma processes: two case studies
	Importing data from dataset and computing parameters
	Fatigue-crack
	Overview
	Results
	Comparison

	GaAs lasers
	Overview
	Results
	Comparison

	Conclusions
	Appendix

