

POLITECNICO DI TORINO

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

MASTER’S DEGREE COURSE IN MECHATRONIC ENGINEERING

FINAL PROJECT WORK

A COMPLETE END-TO-END SIMULATION

FLOW FOR AUTONOMOUS DRIVING

FRAMEWORKS

Supervisor:

Prof. Massimo Violante

Supervisor (Teoresi):

Eng. Andrea Marchese

Candidate:

Salvatore Filippo Santonato

245451

Academic Year 2019/2020

II

In partnership with:

Teoresi S.p.A.

III

Abstract

The research on automotive industry in the last year focused on three main
aspects: electric engine, advanced infotainment and autonomous driving.

Nowadays autonomous driving represents one of the hottest topics in the
automotive field, since technology advancement in these last years, especially
with the new discovery on Artificial Intelligence, allowed to lay the foundations
for the development of fully autonomous vehicles and revolutionize the concept
of autonomous mobility.

Since building a real vehicle equipped with the needed sensors is very
expensive, it is critical to test every component, both hardware and software,
considering all the possible scenarios where the vehicle may operate. It is clear
how Software and Hardware in the Loop play a key role for the development,
allowing a preliminary validation of the vehicle before road testing. However,
this approach, to be reliable, requires a virtual environment that mimics the
conditions of the real world. The goal of this thesis is to create an automated
system for the generation of three-dimensional maps starting from simple 2D
maps. The building of a structured simulation ready map, a detailed map
containing information of the environment, starting from OpenStreetMap data
is the key for reduce costs and time for fast prototyping of this new generation
of algorithms. The map generation is accomplished by using CARLA simulator,
an Unreal Engine-based simulator. After this, the map is converted into a
specific format suitable for an eventual field test by using a bridge between
CARLA and the ROS-based platform Autoware. The last part is dedicated to
the evaluation of the achieved result considering possible limitations and
improvements.

IV

V

Acknowledgements

First of all, I would like to thank my parents and my brothers, I am really
grateful for their support in all these years. A special thought goes to my late
grandmother and all the happy memories with her, which I will cherish forever.

Lastly, I thank all my friends and colleagues, who helped me to grow as a
person.

VI

VII

Contents

Abstract ... III

Acknowledgements .. V

1 Introduction .. 1

2 Simulation for autonomous driving .. 3

2.1 The importance of simulation .. 3

2.2 Features and applications of Autonomous Driving Simulators 4

2.3 State of the Art in Autonomous Driving Simulators 5

2.3.1 Uber platform ... 5

2.3.2 Cruise ... 6

2.3.3 Carcraft (Waymo) .. 8

2.3.4 NVIDIA DRIVE Constellation .. 8

2.3.5 rFpro ... 9

2.3.6 Cognata simulator .. 10

2.3.7 Metamoto simulator ... 11

2.3.8 Vires Virtual Test Drive ... 12

2.3.9 AutonoVi-Sim .. 12

2.3.10 IPG CarMaker .. 13

2.3.11 PreScan ... 14

2.3.12 VRXPERIENCE .. 15

2.3.13 Deepdrive ... 15

2.3.14 Udacity Simulator .. 16

2.3.15 AirSim .. 18

2.3.16 CARLA simulator .. 19

2.3.17 LGSVL Simulator .. 20

2.3.18 Sim4CV .. 20

2.4 HD maps ... 21

2.4.1 Apollo and Autoware: two open source platforms strongly related
to HD maps .. 24

2.5 Related works ... 26

3 Methodology ... 27

VIII

3.1 Selecting the suitable simulator ... 27

3.2 Data source ... 29

3.3 Conversion to OpenDRIVE format .. 30

3.3.1 SUMO netconvert .. 30

3.4 3D Map generation ... 31

3.4.1 StreetMap ... 32

3.4.2 RoadRunner.. 33

3.5 Setting up the simulation environment .. 34

3.5.1 CARLA setup and map importation .. 35

3.5.2 Bridge to Autoware .. 37

3.6 Autoware HD map generation ... 38

3.6.1 Point cloud map.. 38

3.6.2 Vector map generation ... 39

3.7 The overall pipeline – from OpenStreetMap to Autoware 41

4 Results ... 43

4.1 OSM data ... 43

4.2 OpenDRIVE conversion .. 45

4.3 Generated map for CARLA ... 46

4.4 HD map for Autoware .. 48

4.5 Running the final simulation .. 49

5 Discussions .. 51

5.1 Map data ... 51

5.2 RoadRunner as main choice ... 53

5.3 What the generated maps look like .. 53

5.4 Generated HD maps ... 54

5.5 Analysis of the final simulation ... 55

6 Conclusion ... 57

6.1 Future work .. 57

References ... 59

IX

List of Figures

Figure 1.1 Typical autonomous vehicle system overview 1

Figure 2.1 An example of a pre-processed 3D map ... 6

Figure 2.2 The Matrix: a glimpse of the simulation .. 7

Figure 2.3 An example of a scene on Worldview .. 7

Figure 2.4 A scene of Carcraft ... 8

Figure 2.5 an example of Nvidia DRIVE Sim ... 9

Figure 2.6 Model of a photorealistic scanned road .. 10

Figure 2.7 Cognata simulator:on the left is shown the graphic quality while on
the right a comparison between simulation and reality.................................... 11

Figure 2.8 The platform structure .. 11

Figure 2.9 Vires VTD simulation... 12

Figure 2.10 AutonoVi-Sim Platform Overview ... 13

Figure 2.11 a scene of the CarMaker simulation ... 14

Figure 2.12 an example of a PreScan simulation ... 14

Figure 2.13 several examples of simulations through VRXPERIENCE 15

Figure 2.14 a snapshot from Deepdrive .. 16

Figure 2.15 Simulator main screen ... 17

Figure 2.16 a snapshot from the simulator ... 17

Figure 2.17 a snapshot from AirSim .. 18

Figure 2.18 a snapshot from CARLA .. 19

Figure 2.19 a snapshot from LGSVL ... 20

Figure 2.20 a snapshot from Sim4CV .. 21

Figure 2.21 an example of how a HD map appears ... 22

Figure 2.22 the layer-based structure of HD maps .. 23

Figure 2.23 Overview of the two architectures: on top is shown Autoware
architecture while on the bottom is shown Apollo architecture 25

Figure 3.1 Map exporting from a selected area ... 29

Figure 3.2 Visualization of the OpenDRIVE data - Crocetta district 31

Figure 3.3 Map created with StreetMap plugin ... 32

Figure 3.4 Map generated in RoadRunner - Crocetta district 34

Figure 3.5 Design of the followed pipeline .. 35

Figure 3.6 Map successfully imported in Unreal Engine................................. 36

Figure 3.7 Runtime Manager Interface .. 37

Figure 3.8 Appearance of the tool Interface. Point cloud data is used as visual
reference as shown ... 39

Figure 3.9 Interface of Vector Map Builder .. 40

Figure 3.10 The entire workflow ... 42

X

Figure 4.1 A comparison between a selected area of Turin and its corresponding
extracted road network ... 44

Figure 4.2 The area chosen to conduct the experiment.................................... 45

Figure 4.3 Map visualized in the OpenDRIVE viewer 46

Figure 4.4 A snapshot of the map generated in RoadRunner 47

Figure 4.5 The generated pcd map successfully loaded in Autoware 47

Figure 4.6 The generated lanelet2 map successfully loaded in Autoware 48

Figure 4.7 Matching between pcd map and lanelet2 map................................ 49

List of Tables

Table 3.1 Sensors comparison.. 28

Table 3.2 Standard format support ... 28

1

Chapter Ⅰ
1 Introduction

An autonomous car, as the name suggests, is a vehicle capable of operating
without the human action by making use of several sensors tasked with sensing
its environment to safely drive. While sensors are essential for the correct
vehicle operation, they are not the only important components. A combination
of hardware and software components is required to ensure the self-driving
capability. The entire process behind autonomous driving can be summarized
by the below scheme, as shown in Figure 1.1, which shows the fundamental
components in an autonomous vehicle (AV).

Figure 1.1 Typical autonomous vehicle system overview

More specifically:

• Sensors: they represent the eye of the vehicle and collect information
about the environment. Sensor fusion of the data from different sources
allows the vehicle to perceive the environment more accurately.

• Perceptions: the vehicle analyses the data received by the sensors to
detect and classify the objects around itself and also to locate its position.

2

• Planning: this is the process of planning the route of the vehicle. The
decision is made considering all the information about the environment
and the road in order to choose the best path.

• Control: the combination of actions needed to follow the path previously
planned. These actions regard the control over the steering angle and the
acceleration, or the brake amount issued by the planning process.

AV technology has the potential to improve daily life and not only but the
presence of all these components, both hardware and software, requires a high
level of reliability as prerequisite since safety has the top priority. Industry is
still far away from achieving fully autonomous driving but in the meantime its
development is proceeding rapidly thanks to the number of goals reached by
technology in these last years. All companies involved in autonomous driving
development are facing several challenges related to many aspects and in doing
so their vehicles are undergoing testing to collect essential data and improve
their systems. Data represent indeed a powerful resource for AV development
and particularly every information regarding the environment is useful to build
an infrastructure able to help the vehicle by communicating with the last one
which will know the status of the surrounding world. For this purpose, in these
last years a new generation of maps built for AVs is gaining foothold in the
industry. These so-called HD maps bring with them high road accuracy and
more information of the surroundings supporting AV navigation. From the
previous considerations, it is clear why running tests and gathering data is
essential.

This thesis work aims to develop a methodology to build a simulation
environment for testing purpose by means of real geodata and simulation
software. In the next chapter the state of art of simulation is discussed,
considering the most important simulators available in this field. This is
followed by an overview of the HD map features. Then, in the Methodology
chapter, the workflow to obtain such simulation environment is proposed and
discussed.

3

Chapter ⅠⅠ
2 Simulation for autonomous driving

2.1 The importance of simulation

Nowadays, the automotive industry is offering models of car equipped with
Advanced driver-assistance systems (ADAS), electronic systems capable of
assisting the driver in many situations but still, they are not sufficient to offer
full self-driving. Despite the continuous technological progress and the
development of the infrastructure to support the testing, the maturity necessary
for the landing these technologies in the current productions has not yet been
reached. Reliability matters above all when safety is considered the top priority
for drivers who have to rely on intelligence inside a car. It is generally assumed
that no fully autonomous vehicle has already hit the market because the desired
level of safety is still not guaranteed. The big question that every companies
involved in AV development is asking is: “How safe if safe enough?”.
Answering this is not simple or simplified. The only way to measure safety for
the companies is to continuously test their vehicles gathering useful data to
prove the vehicle reliability. According to a report of Rand Automotive,
Autonomous vehicles would have to be driven hundreds of billions of miles to
demonstrate their reliability [1]. The objective is to obtain a vehicle able to drive
at least as good as a human driver. Testing on real road is fundamental,
especially in real life scenarios to study how the vehicle act and to locate
eventual issues. The problem of road testing is that it requires a lot of resources
and money. Making a vehicle can be very expensive due the presence of many
components, particularly the ones used by ADAS. For this reason, many
companies are investing their time and effort in building simulators to be used
for testing. Virtual testing allows to evaluate the vehicle behaviour in a virtual
environment where every sort of scenario can be simulated. This is a great
opportunity for carmakers to improve their systems making the vehicle safer
before road testing but also to shorten the time of development. Besides being
a cost-effective solution, a simulator has the advantage to give full control over
the simulated world. This is extremely important since in real world tests it is
nearly impossible to cover all kinds of possible scenarios, particularly those that
are less likely to happen. Hence, it is not simply the number of miles that matters
but the overall quality of the data obtained by simulating and this is even more

4

true when it comes to AI training. For these reasons, simulation represents a
linchpin for the autonomous driving development.

2.2 Features and applications of Autonomous Driving
Simulators

Simulators can be a valuable source for data gathering and development but to
be useful they must offer realistic simulations. Other than an accurate dynamic
model of the vehicle, a good simulator requires several important features, such
as support for different sensors or traffic handling and so on, in order to ensure
high-fidelity simulation environments. The number of these features depends
on the functionality to be tested but in general, if the aim is to test the full
solution stack, a simulator must include all the needed features and models with
high accuracy to reproduce a real world scenario. “Fidelity” represents an

important concept in AV simulation since it can tell how well a simulation
matches the real world. While for vehicle dynamics modelling it is easy to
achieve a high-fidelity level, for environment representation it is a different
matter. Environment model contains information about roads, surrounding
infrastructures and actors. It must be highly detailed, trying to recreate the
realism of a possible scenario, in particular the behaviour of possible actors
interacting with the vehicle. Detailed maps, such as HD maps, can be of great
help for the environment realization. Also, the physics used in the simulation
plays a key role since all the dynamic elements of the virtual world depend on
it. These last ones have a great impact on the vehicle perception system. The
vehicle knows how to act only if it is capable to sense its surroundings correctly.
Perception requires a high computational effort since it has to process a large
amount of data and this is due in part to the high level of details of the
represented environment. The previous features can be considered as the
foundations of a simulator, but they are not the only features. From the point of
view of the user, a simulator must be easy to use and offer a good level of
controllability. This allows the users to test several aspects in the simulation by
simply setting values in the scenario. Another interesting feature is flexibility
since it is very useful interfacing the simulator with third party software or
hardware elements. This is the case of Software in the Loop (SIL) and Hardware
in the Loop (HIL). These two methods of simulation give the possibility to test
and validate components which will be implemented in the final platform. The
more features are present in a simulator the more applications can find, but the
choice of a specific simulator depends mainly on the purpose of the test. In fact,
in the industry are available all kinds of simulators, some of them are suitable

5

to test a particular functionality, as can be traffic management or path planning,
while other are more advanced and allow to test every elements related to the
autonomous driving, from simple algorithm testing to test and validation of
software and hardware components. Hence, defining the applications of a
specific simulator without considering the testing purpose makes little sense.

2.3 State of the Art in Autonomous Driving
Simulators

Leading companies in autonomous driving have already developed their own
simulating platform for a few years thanks to their resources but now that
technology has become accessible to everyone, many minor companies or even
research groups are working on their own solution. Not all of these simulators
are available on the market, but instead they are only utilised for internal
research and this is in general the case of big companies. On the other hand,
many simulators are available as open-source software, thus allowing the
democratization of autonomous driving research and development [2]. A special
mention goes to the video game industry which offers the possibility to use
game engine technology for the creation of photorealistic environments.

The rest of this section is dedicated to an overview of the most common and
advanced simulators or platforms available in the industry, also taking into
consideration the aim of the case study of this thesis work.

2.3.1 Uber platform

At Uber the Advanced Technologies Group (ATG) with the help of the Data
Visualization Team is working on its platform focusing on the interpretation of
the collected data [3]. The team is building this platform by designing it as a
browser-based service (Figure 2.1). Thanks to the data collected from the real
world, the simulator recreates the roads with high precision which can be used
for future simulations.

6

Figure 2.1 An example of a pre-processed 3D map

Perception is fundamental to properly predict the position of all the objects the
vehicle can came across. This information allows to compute the motion
planning algorithms. Besides, last year Uber made available an open-source
version of its Autonomous Visualization System [4], hoping to create a standard
for engineers and developers who can share data.

2.3.2 Cruise

At the beginning of the year, Cruise [5], a subsidiary company of General
Motors, unveiled its new electric vehicle called Origin, devoid of manual
controls. After the announcement, the company began to share new information
about the progress achieved. Like other competitors, Cruise has invested a lot
of its time to gather data by driving many miles. To further improve the quality
of the data, the company relies on 3D simulation. The team developed an end-
to-end simulator based on the Unreal Engine [6] (Figure 2.2), which the
employees call “The Matrix”, capable to recreate high detailed cities [7].

7

Figure 2.2 The Matrix: a glimpse of the simulation

Moreover, Cruise has made available its open source visualization tool
Worldview [8], a web browser-based 2D and 3D scene renderer (Figure
2.3).This tool allows to visualize, explore, and analyse data collected in the
simulation and on the road.

Figure 2.3 An example of a scene on Worldview

8

2.3.3 Carcraft (Waymo)

Waymo, a subsidiary owned by Alphabet Inc., developed its own simulation
platform called Carcraft (Figure 2.4). Thanks to the simulator, all the virtual AV
vehicles drive billion miles per day [9].

Figure 2.4 A scene of Carcraft

When Google unveiled Carcraft, a real scene, which really happened in the
presence of a roundabout, was recreated to show off the potential of the
simulator. It has been stated that the simulator has the capability to employ a
fleet of thousands of virtual vehicles. Moreover, Waymo has recently begun to
make use of AI to simulate AV sensor data. By using a SurfelGAN network, it
is possible to recreate realistic camera images through simulation and data [10].

2.3.4 NVIDIA DRIVE Constellation

Nvidia, one of the leading companies in GPU manufacturing, has developed its
AV platform called NVIDIA DRIVE [11]. This platform provides both
hardware and software solutions, including DRIVE Constellation, an advanced
driving simulation software stack. DRIVE Constellation is a Hardware in the
loop simulation-based platform which allows to develop and validate
autonomous vehicles through virtual test. The platform consists of three main
components:

SurfelGAN:#_CTVL00114cc268b8ba54acb9d88421c47cb93fa

9

• DRIVE Sim: it is the 3D simulation software which recreate a realistic
virtual environment.

• DRIVE Constellation Simulator: it is a powerful GPU server which
runs DRIVE Sim generating data to send to the AV hardware

• DRIVE Constellation Vehicle: it is the processing system, hosting AV
hardware and software, which receives the data generated in the
simulation.

The simulation provides a high level of fidelity to recreate realistic scenarios.
In order to reach such level, Nvidia DRIVE platform combines photorealistic
physics and HD Maps as shown in Figure 2.5.

Figure 2.5 an example of Nvidia DRIVE Sim

2.3.5 rFpro

rFpro [12] provides a simulation platform which allows to test and validate
vehicles in photorealistic environments (Figure 2.6). The company offers
LIDAR-scanned road surfaces and supports the HD map format to build detailed
environments.

10

Figure 2.6 Model of a photorealistic scanned road

Another feature of the platform is its support to Simulink® [13] which allows
communication between Simulink models and external applications.

The high level of accuracy offered by the platform has meant that many top
automotive OEMs have adopted its solutions.

2.3.6 Cognata simulator

Cognata [14], an Israeli start-up company, has developed a simulation platform
which leverages real world map data to recreate accurate and realistic virtual
roads, as shown in Figure 2.7. The idea of the company is to speed up testing
and validation by building 3D city models as detailed as possible. According to
Dan Atsmon, Cognata CEO, the result is achieved in three steps [15]:

• a first layer is built, containing the assets of every static element, such as
the buildings, the roads, the traffic sign or even the trees.

• A second layer is built, containing all the dynamic information and
models such as the traffic behaviour of vehicles and pedestrians and the
weather conditions previously recorded in the real world.

• Finally, a third layer is dedicated to the simulation of all the sensor
interactions with the surroundings.

11

Additionally, the company makes use of AI and deep learning to further
improve fidelity of the generated virtual environments.

Figure 2.7 Cognata simulator:on the left is shown the graphic quality while on the right a comparison between

simulation and reality

2.3.7 Metamoto simulator

Metamatoto [16] provides its simulation platform as Service to train, test,
debug, and validate autonomous vehicles. The platform comprises three main
components, as shown in Figure 2.8:

• Designer: a development tool to build scenarios and configure vehicle
• Director: the core of the platform, which schedules and runs simulations

for every scenario.
• Analyzer: an autonomous system software debugging tool to assess how

a vehicle acted in a specific scenario.

Figure 2.8 The platform structure

The company goal is to build a platform that is scalable and highly
parameterizable. In addition, the simulation is characterized by a realistic

12

physics and along with the possibility to support HD maps, a high level of
fidelity can be ensured.

2.3.8 Vires Virtual Test Drive

Virtual Test Drive [17] is a platform which provides the possibility to create,
configure, simulate and customize virtual environments for AV development.
Figure 2.9 shows an overview of different scenarios generated in the simulator.

The platform provides a Road Network Editor which allows to design complex
road and rail networks with the addition of the OpenDRIVE [18] support for the
network logic. The open and modular design of the platform offers the
possibility to interface the simulation with external applications to enable X in
the loop (where X could be: Software, Vehicle, Hardware etc.).

Figure 2.9 Vires VTD simulation

2.3.9 AutonoVi-Sim

AutonoVi-Sim is presented as a novel high-fidelity simulation platform for
autonomous driving data generation and driving strategy testing by the
development team [19]. The platform supports multiple vehicles and non-
vehicle traffic participants, and weather control along with support of several
sensors allow to recreate all kinds of scenarios useful for data generation. The
modular structure of the platform, as shown in Figure 2.10, facilitates the

AutonoVi-Sim:#_CTVL0019e685c1653ba4bcba90efaea1347ff77

13

construction of advanced scenarios by enabling the configuration of every
aspect of the simulation.

Figure 2.10 AutonoVi-Sim Platform Overview

The simulation platform is still in development and has some limitations, but it
is promising, especially for its modular nature.

2.3.10 IPG CarMaker

CarMaker [20] is a virtual test-driving platform (Figure 2.11) developed
specifically for testing passenger cars and light-duty vehicles. The platform
provides the possibility to recreate realistic scenarios thanks to the accurate
representation of the vehicle dynamics and traffic models. The road generation
tool allows to import real road networks from external sources such as HERE
maps [21] and supports multiple standard file formats including OpenDRIVE.

14

Figure 2.11 a scene of the CarMaker simulation

2.3.11 PreScan

PreScan [22] is a physics-based simulation platform (Figure 2.12) used for
developing and testing ADAS with the possibility to integrate XIL and third-
party applications. The platform also supports Vehicle-to-everything (V2X)
communication applications. Scenarios can be quickly built by using real
information from external sources such as OpenStreetMap, Google Earth and
GPS navigation device.

Figure 2.12 an example of a PreScan simulation

15

2.3.12 VRXPERIENCE

VRXPERIENCE [23] of ANSYS is a driving simulator used to create virtual
scenarios powered by SCANeR [24]. Driving scenario generation support HD
map importing to recreate high-fidelity environments. The level of realism is
further improved by the possibility to simulate lighting systems and sound
sources. Another feature is the presence of a tool dedicated to the Human-
Machine-Interface (HMI) assessment. Moreover, it is possible to interface the
platform with third-party applications and run XIL tests. In Figure 2.13 are
shown different scenes taken from the simulation.

Figure 2.13 several examples of simulations through VRXPERIENCE

2.3.13 Deepdrive

Deepdrive [25] is an open-source self-driving car simulator which supports deep
reinforcement learning and Unreal API integrated with python. The goal of
Voyage, the company behind this simulator, is to facilitate research and
development through machine learning and with regard to this, the company has
decided to launch a leaderboard where anyone can submit their own agent to
see how it stacks up against others. Regarding the virtual environments
available, the simulator features realistic 3D worlds built by Parallel Domain

16

[26], a platform for automated generation of virtual worlds. Figure 2.14 shows
a snapshot taken from the simulator.

Figure 2.14 a snapshot from Deepdrive

2.3.14 Udacity Simulator

Udacity has developed its self-driving car simulator [27] for research and
teaching purposes and made the code available on GitHub as open source
software. The simulator is built on Unity [28] engine but it does not offer a
photorealistic graphics, as compensation, however, it has a user-friendly
interface. In the main screen it is possible to choose a track and a mode as shown
in Figure 2.15.

17

Figure 2.15 Simulator main screen

The training mode gives the possibility to record the driving behaviour, useful
for training purpose. The autonomous mode can be used to test machine learning
models. Through Unity editor it is possible to modify existing scenes. Figure
2.16 shows a snapshot taken from the simulator.

Figure 2.16 a snapshot from the simulator

18

2.3.15 AirSim

AirSim [29] is an open-source simulator built on Unreal Engine (an
experimental release based on Unity is available) for drones, cars and other
vehicles (Figure 2.17). The main goal of this platform is to support research by
developing and testing deep learning and reinforcement learning algorithms
[30]. The simulator features high-fidelity photorealism, in particular thanks to
the advanced physics, and supports HIL testing and external peripherals, such
as a flight controller, to improve simulation results.

Figure 2.17 a snapshot from AirSim

AirSim currently supports the following sensors for data gathering:

• Camera
• Barometer
• Imu
• Gps
• Magnetometer
• Distance Sensor
• Lidar

It is available a detailed 3D urban environment which can be customized in the
Unreal Engine editor, but it is also possible to import new environments.

AirSim:#_CTVL001184dea0282b949de8901b94e11bd9fa8

19

2.3.16 CARLA simulator

CARLA is an open-source simulator developed for autonomous driving
research [31]. The simulator is built on Unreal Engine to provide high-fidelity
simulations. In Figure 2.18 is shown a scene of CARLA.

Figure 2.18 a snapshot from CARLA

It is possible to recreate complex and realistic scenarios thanks to traffic and
agent management. Data gathering can rely on the presence of several kinds of
sensors and cameras. CARLA offers flexibility and gives good control over the
simulator through Python API. As stated by the team, the simulator can be used
to evaluate three approaches to autonomous driving [31]:

• Classic modular pipeline: this approach focuses on dedicated
subsystems for perception, planning and control.

• Imitation learning: this approach utilizes a dataset of human driving
records to train a deep network.

• Reinforcement learning: this method trains a deep network to complete
a task, based on a reward signal, within an environment.

Roads and urban information are defined according to the OpenDRIVE
standard. The simulator is still in development and currently the latest released
version is 0.9.9 [32], which added support to several third-party software.

CARLA:#_CTVL00171299d002ee14d4e84b3e8d81829b771
CARLA:#_CTVL00171299d002ee14d4e84b3e8d81829b771

20

2.3.17 LGSVL Simulator

LGSVL simulator is a high-fidelity simulation platform built on Unity engine
(Figure 2.19) and its source code is freely available on GitHub [33], [34]. The
platform is designed to be open and interfaceable with Autonomous Driving
stacks with support of SIL and HIL testing [34]. Users takes control over the
simulator by employing Python API. A default set of sensors is available, but it
is possible to implement custom sensors as plugins. 3D environments support
HD map annotations to handle agents in the simulation.

Figure 2.19 a snapshot from LGSVL

Regarding applications, the simulator allows to test machine learning and
reinforcement algorithms as well as V2X algorithms.

2.3.18 Sim4CV

Sim4CV is a photo-realistic simulator (Figure 2.20) built on Unreal Engine used
to develop and test autonomous driving for cars and autonomous flying for
aerial vehicles [35].

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/LGSVL%23_CTVL001dc812eb66e794517be5aba37282edec4
file:///C:/Users/salva/Desktop/Roba%20di%20tesi/LGSVL%23_CTVL001dc812eb66e794517be5aba37282edec4
Sim4CV:#_CTVL001fadc540deb0f453892dfdde7012f2aea

21

Figure 2.20 a snapshot from Sim4CV

Multiple sensors can be set up to collect data which can be used to train vehicles
by exploiting a deep neural network. This neural network is then employed to
predict waypoints ahead the vehicle and build control algorithms. Virtual
environments are built by means of an external software tool starting from a 2D
map with overhead view.

2.4 HD maps

Nowadays High-Definition maps are widely used in the autonomous driving
industry and are now considered essential in ensuring safety on the road. HD
maps can be seen as the necessary evolution of the classic maps and they fill the
void left by the lack of accuracy of the GPS technology. Considering a width of
10 cm for lane markings, it is clear that autonomous vehicles need centimeter
level accuracy to avoid collisions by wrongly assessing their position [36]. But
high precision is not the only feature of HD maps (Figure 2.21). In fact, these
maps provide rich geometric information as well as semantic data about road
network and surroundings [37].

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/Machine%23_CTVL001f934b36d661d4efd9197b9edb81ccd5d

22

Figure 2.21 an example of how a HD map appears

Having a priori information about the environment is critical in assisting
sensors, reducing accordingly computational effort. From a structural point of
view, a HD map is organized in multiple layers. Lyft gives an idea about the
anatomy of this kind of map, although it may slightly change depending on the
HD map provider [36]. These layers are: the base map layer, the geometric map,
the semantic map, map priors, and real-time knowledge as shown in Figure 2.22.

• Geometric Map Layer: this layer contains 3D information about the
world. It is composed of collected raw sensor data. Data, in the form of
3D point cloud, is post-processed to produce derived map objects.

• Semantic Map Layer: this layer, built on the geometric map layer,
includes semantic objects.

• Map priors layer: this layer contains information about dynamic
elements and also human driving behaviour (e.g. the order in which
traffic lights change).

• Real-time knowledge layer: this is a layer designed to be continuously
updated and contains information about real-time traffic.

23

Figure 2.22 the layer-based structure of HD maps

HD maps creation requires great effort and resources but due to their
importance, all the companies involved in this field are investing their time to
optimize the process of map generation seeking to lower the cost. For this
reason, companies adopt different approaches, some of them rely on
crowdsourcing by encouraging drivers to gather data while others invest on
computer visions to avoid the high cost of sensors such as LiDAR [38]. Some
of the top key player operating in the industry are TomTom, HERE, Waymo,
NVIDIA, and NavInfo, all of them being big companies, a further evidence of
the required effort for HD map creation.

The importance of having HD maps to improve the level of safety and reliability
in AVs has led many companies to integrate them in their simulation platforms
ensuring high-fidelity. The necessity to speed up autonomous driving
development is pushing towards the realization of a standard format for HD
maps. Currently, the most popular formats supported by several companies are:

• OpenDRIVE: is an open format based on XML syntax for the
description of road networks in driving simulation applications [39]. The
data describes the geometry of roads as well as features along the roads
that influence the logics (e.g. lanes, signs, signals) with the format
organized in a hierarchical structure.

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/OpenDRIVE%23_CTVL001af796759294a4a128cdf1d0d683144a9

24

• Lanelet2: this format has been developed as an extension of the map
format Liblanelet and was designed to be representable on the XML-
based OSM (OpenStreetMap) data format [40]. Lanelet2 divides the
world into a hierachical structure of six different primitives: Points,
linestrings, polygons, lanelets, areas and regulatory elements.

• Apollo Map format: Baidu uses a modified version of the OpenDRIVE
format for its Apollo platform [41]. Roads elements are represented by
sequences of points.

• Autoware Vector format: Autoware [42] is one of the most popular and
advanced open-source frameworks for autonomous driving vehicles and
its HD map format is now widely supported. This format has been
developed by the Japanese company Aisan Technology [43] but no
official documentation is available.

• Navigation Data Standard (NDS): NDS is a standardized format for
automotive-grade navigation database, developed by automotive OEMs
and suppliers [44]. It is not an open format, but it is widely supported by
companies. Since it requires a purchase of a license, this format is not
ideal for academic research.

The diffusion of these formats has led to the development of tools capable of
map format conversion to facilitate the process of creation. Among the above-
mentioned formats, OpenDRIVE can be considered the de facto standard due to
its wide and increasing support from many companies and research teams.

2.4.1 Apollo and Autoware: two open source platforms
strongly related to HD maps

The process of HD map creation consists of two steps: data collection and map
generation. Data collection is a critical stage and the quality of data can make
the difference for the final result. Two approaches can be adopted for data
gathering: by collecting sensor data through vehicle or by using available
sources of existing map data. The second step requires a software tool to give
shape to the map itself. To this end, Apollo and Autoware represent a good
choice for HD map development. These two platforms are both built on ROS
[45] (Cyber RT for Apollo 3.5 and after), and in terms of open source software,
they offer the state-of-the-art of the autonomous driving software stack and
therefore their HD map formats are now popular. Figure 2.23 shows an
overview of the architecture of both the platforms.

Lanelet2:#_CTVL00111357e223d5546c7a342861d1e171faf
file:///C:/Users/salva/Desktop/Roba%20di%20tesi/An%23_CTVL0012ef05c7c549044ef883d72abd0b00cbb
ROS:#_CTVL0013971c93db5414179ad7689b89d083209

25

Figure 2.23 Overview of the two architectures: on top is shown Autoware architecture while on the bottom is

shown Apollo architecture

As can be seen, both Apollo and Autoware share similar functionalities. HD
maps are fundamental for localization and planning, and for this reason, in the
next chapter the possibility to generate HD maps will be discussed by eventually
exploiting mapping functionalities of one of these platforms.

26

2.5 Related works

Currently, the main trend for generating 3D scenario for AV simulation is
mainly based on sensors fusion and manual editing. Geodata is still hardly used
as the only source of information for scenario generation and only in recent
years the automotive industry showed interest in speeding up the development
and diffusion of reliable map database of the real world. The ongoing
standardization and diffusion of specific formats for HD maps is particularly
helping the academic world which is focusing the attention on developing useful
tools for this area of the automotive industry. OpenStreetMap, being the only
valid data source freely available, is currently supported by several platforms
and tools but at the time of writing there are still no available works which
outlined a similar methodology, fully based on the implementation of GIS data.
Worth mentioning is Christoffer Wilhelm Gran’s work [46]. Gran has
developed a methodology for generating HD maps compatible with Apollo
platform using OpenStreetMap data. The generated maps are very simple and
not accurate but the work is still interesting since Apollo map format was
investigated and the obtained results can be potentially useful for possible future
works.

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/HD-Maps%23_CTVL00152a0a711ebb741688f786a244d44bfc7

27

Chapter III
3 Methodology

The goal of this work is to define a process to automatically generate realistic
3D scenarios, using real world data from an open data source, to be implemented
in driving simulation. The logical description of road networks is then used to
build HD maps in accordance with the main standard formats. In this chapter,
the methodology to define the process is presented.

3.1 Selecting the suitable simulator

This section focuses on the selection of the most suitable simulator for this case
study, keeping in mind the fact that the choice is influenced by the necessity to
use only an open source simulator. Moreover, the final choice dates back to the
end of the last year, after conducting the literature review and some tests with
different software.

The search, for the simulator to be used, can be further narrowed down by
setting the following requirements as filters:

• Constant and long-term support from the development team
• Good documentation
• High-fidelity level of simulation
• Easy for users to customize the simulator according to their own needs
• Possibility to integrate the simulator with other platforms, especially

with Apollo and Autoware
• Support to HD maps and formats for the logical description of road

networks, such as the OpenDRIVE or lanelet2 formats.

The only 3D simulators that satisfy these requirements are CARLA and
LGSVL.

For this reason, in the following tables only the main features of these two
simulators are considered for a direct comparison.

The first table (Table 3.1) shows a comparison of the main sensors available in
both simulators. The most essential sensors are implemented in both simulators.

28

Table 3.1 Sensors comparison

 SENSORS

RGB
camera

Depth
camera

Segmentation
camera

Lidar Radar GPS IMU

CARLA + + + +* + + +

LGSVL + + + + + + +

Table legend:(+) implemented, (-) not implemented

*: Lidar in CARLA does not generate intensity for the points nor semantic labels. A semantic Lidar is planned to
be included in the next release.

Table 3.2 shows instead the standard formats and AD platforms supported by
the simulators.

Table 3.2 Standard format support

 AD Platforms Formats

Autoware Apollo OSM OpenDRIVE Lanelet2

CARLA + - +* + -

LGSVL +** +** - + +

Table legend:(+) implemented, (-) not implemented

*: Osm support is planned to be included in the next release. **: Lgsvl allows to export HD maps in the Apollo and
Autoware formats.

Looking at both tables, it is evident that lgsvl simulator offers more
functionalities but for both simulators it is possible to generate a HD map by
defining a pipeline which exploits several tools. It was eventually decided to
choose CARLA simulator since this one is release under the MIT license, giving
more freedom than the proprietary license of lgsvl simulator.

29

3.2 Data source

The first step is to identify an open source database offering geodata. There are
several companies and agencies that made available for free their database, but
this is limited to certain areas only. The data must contain information about
roads, in particular their geometry as well as their features. OpenStreetMap is
currently the only valid free option to offer the necessary data, good enough to
be used for HD map generation. The growing popularity of this project attracted
millions of users, who support the project via crowdsourcing, and many big
companies giving the opportunity to compete with giants like Google. This
success allowed the .osm file format to become a standard widely used. The
official website of OpenStreetMap [47] offers the possibility to export an .osm
file of a selected area as shown in Figure 3.1.

Figure 3.1 Map exporting from a selected area

A valid alternative is to export osm data from the website BBBike [48] which
allows to select different file formats for the road data to be exported with the
possibility to manually set the boundary box shape. The osm file is mainly
distributed in the XML format. All the features regarding the map are defined
by the following three primitives:

• A node: this primitive defines points in space and includes its
coordinates

• A way: this primitive defines linear features and area boundaries
• A relation: this primitive defines a relationship between two or more

data elements.

30

Many available editors allow to visualize road networks derived from extracted
osm files and eventually make changes. This can be useful to check the quality
of the road data.

3.3 Conversion to OpenDRIVE format

Having chosen CARLA as simulator, it is fundamental to have available data
formatted to the OpenDRIVE format since CARLA requires this type of file.
For this reason, a conversion from osm to xodr (OpenDRIVE file extension) is
required. It is possible to exploit the conversion tool included in SUMO
(Simulation of Urban MObility) to generate an OpenDRIVE file from the osm
data.

3.3.1 SUMO netconvert

The netconvert [49] tool allows to import road networks from different sources
and then generates as output a new file formatted as specified in the command
line. It is possible to easily install SUMO on Windows, Linux and macOS and
then use its command line applications by setting the necessary parameters.

SUMO is an open source microscopic traffic simulator which allows to simulate
and manage road traffic [50]. It is provided as a package containing useful tools
for the generation, validation and evaluation of traffic scenarios.

In this specific case for the conversion from osm to OpenDRIVE, the command
to be run inside the shell is the following:

The converted file is generated according to the version 1.4 of the OpenDRIVE
specification. This version of the OpenDRIVE standard is currently the most
supported one with the 1.6 released in March 2020.

From the official website of OpenDRIVE, a basic viewer can be downloaded to
visualize the OpenDRIVE data as a map [51]. Figure 3.2 shows the
representation on the viewer of the converted data.

netconvert --osm <FILE>.osm --opendrive-output <FILE>.xodr

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/Microscopic%23_CTVL001ffc3811417254c80b4cc773af8597bf0
https://sumo.dlr.de/docs/Basics/Notation.html#referenced_data_types

31

Figure 3.2 Visualization of the OpenDRIVE data - Crocetta district

3.4 3D Map generation

CARLA simulator is built on top of the Unreal Engine 4, hence map generation
requires that all the generated assets must be compatible with the engine in case
an external editor is used. Two approaches are possible to generate a map by
exploiting osm data:

• Generate the map inside Unreal Engine
• Generate the map by using third-party editors

Currently, there are not many available solutions offering the possibility to
automatically generate maps from geographic data. In general, the main trend
in the industry is to manually build a map and only recently the focus is shifting
towards automatic generation processes. On the web, some plugins for the
Unreal Engine capable of generating maps by importing osm data are available
or in development but only one turned out to be potentially interesting during
the initial investigation. In the end, after some considerations about the desired
results, the choice fell on the RoadRunner [52] editor, which represents the best
solution, since it offers native support for CARLA simulator. The use of

32

RoadRunner was possible thanks to the collaboration between TeoresiGroup
and MathWorks. In next subsection the procedure to generate a map from osm
data by using the Unreal Engine plugin is still briefly shown since it represents
a valid free option to RoadRunner.

3.4.1 StreetMap

The StreetMap [53] plugin, available for free on GitHub, allows to import osm
data into Unreal Engine rendering streets and buildings. The plugin can be built
alongside with CARLA to generate drivable roads almost out of the box.
CARLA assets can be used to improve the results though the plugin still has
obvious limitations:

• Roads are very simple; they do not present lane markings and traffic
directions are not rendered

• Textures are not always correctly rendered
• The lack of an OpenDRIVE file does not allow to enable autopilot and

cause some issues with the Python API

In Figure 3.3 is shown an example of map generated via plugin

Figure 3.3 Map created with StreetMap plugin

33

Tests with this approach were limited to run the manual control python script
after making some changes to the script.

For the reasons set out above, the plugin requires some improvements and some
changes to the python scripts of CARLA need to be made but anyway the plugin
is still interesting for its open source nature.

3.4.2 RoadRunner

RoadRunner editor lets to design 3D scenarios for simulating and testing AD
systems. Among the various features, such as the possibility to import gis data
for visual reference, is of particular interest the one that allows to import
OpenDRIVE files. This last one is very useful since it is possible to
automatically generate roads from an OpenDRIVE file by simply clicking the
Convert to roads button. RoadRunner currently supports OpenDRIVE 1.4, the
same version supported by CARLA. Importing OpenDRIVE files has some
limitations as indicated in the official documentation and therefore the resulting
map may have some inconsistencies that require manual intervention. The
degree of interventions can also be affected by the quality of the initial imported
data. For any changes made afterwards to the scene, the OpenDRIVE file is
updated to include the new information. Once the map is ready, it is possible to
generate the necessary files to be exported to CARLA. The option to export the
map can be selected by clicking File > Export > CARLA (.fbx + .xml + .xodr)
in the menu. In Figure 3.4 is shown one of the generated maps successfully
imported in CARLA.

34

Figure 3.4 Map generated in RoadRunner - Crocetta district

The generated map could possibly require manual interventions to achieve a
good result and avoid possible sources of crashes in CARLA. Special attention
is required for junctions and maneuver roads within them. RoadRunner offers
several junction tools to edit geometry and traffic behaviour.

3.5 Setting up the simulation environment

Before running the actual experiment to generate the HD map related to the 3D
scene previously obtained in RoadRunner, it is necessary to set up the
simulation environment by building all the required software and dependencies.

Figure 3.5 shows the design of the pipeline related to the simulation
environment.

35

Figure 3.5 Design of the followed pipeline

As shown in the previous figure, ROS is used as middleware to link CARLA to
Autoware.

The setup chosen for the case study is the following:

• Ubuntu 18.04
• Unreal Engine 4.24
• CARLA 0.9.9 (built from source)
• ROS melodic
• Autoware 1.14 (built from source)
• CARLA-ROS bridge
• CARLA-Autoware bridge

In addition to these ones, there are other software required for the proper
functioning of all the environment. All these requirements are properly
indicated in the documentation of every software listed above.

3.5.1 CARLA setup and map importation

CARLA can be easily built by running the following two make commands in
the terminal:

1. make launch to compile the server simulator and launch Unreal Engine

36

2. make PythonAPI to compile the API client, necessary for simulation
control

It is possible to use a pre-packaged version of CARLA which does not require
to be build. This version has lower system requirements, but it is not possible to
customize maps inside the editor and it requires the use of the Docker image of
Unreal Engine to automatically ingest a map. After building CARLA, the
process to ingest a map is very simple. The files previously generated in
RoadRunner are placed in the Import folder inside CARLA. Once placed them,
running the make import command is enough to start the importing process. A
possible alternative to this method is to use the Unreal Engine plugin of
RoadRunner which turned out to be more reliable in some cases. Figure 3.6
shows the new map correctly ingested in the Unreal Engine editor.

Figure 3.6 Map successfully imported in Unreal Engine

It is possible to check the correct functioning of the new map by running a
python script of CARLA such as the manual_control.py from the Examples
folder.

37

3.5.2 Bridge to Autoware

Once CARLA is ready, it is possible to proceed with the installation of ROS
and Autoware. With the latest releases is now easier to build the bridge thanks
to the collaboration between the two teams behind CARLA and Autoware. As
matter of fact, Autoware 1.14 natively supports the bridge with CARLA. To
launch the bridge, it is necessary to run the following commands on different
terminals:

1. Run CARLA:

$ make launch-only

2. Run bridge:

$ roslaunch carla_autoware_bridge carla_autoware_bridge.launch

3. Run the agent:

$ roslaunch runtime_manager runtime_manager.launch

The Runtime Manager GUI (Figure 3.7) allows to operate functions and load
3D point cloud/vector map. These two kinds of maps are fundamental and
therefore in the next section is shown how to generate these files. In the absence
of a vector map is still possible to drive by following a pre-recorded route
consisting of waypoints which can be made by using the waypoint_saver
functionality available in the computing tab of the Runtime Manager interface.
However, this functionality is beyond the scope of this work.

Figure 3.7 Runtime Manager Interface

38

3.6 Autoware HD map generation

As explained above, Autoware requires a 3D point cloud map and a vector map
to correctly work. The former is used for localization while the latter contains
all the information inherent to the road, such as lanes, traffic lights, signs and
intersections.

There are different possible methods to obtain such kinds of map, some of which
involve tools available on the web. The following subsections focus on showing
the recommended and tested methods.

3.6.1 Point cloud map

ROS bridge [54] offers the possibility to create point cloud maps from CARLA
maps. By driving around the map, point clouds are created and then stored in
the temporary folder. The entire process makes use of pcl tools [55]. After
executing CARLA, the command to be run is the following:

$ roslaunch pcl_recorder pcl_recorder.launch

This command gives control over the vehicle and starts the point cloud
capturing. It is highly recommended to enable the autopilot to make easier the
capturing.

Once the capture is done, the size of the acquired data can be reduced by
running:

#create a single point cloud file

$ pcl_concatenate_points_pcd /tmp/pcl_capture/*.pcd

#filter duplicates

$ pcl_voxel_grid -leaf 0.1,0.1,0.1 output.pcd map.pcd

A check of the result can be done by launching the pcl viewer.

39

3.6.2 Vector map generation
The procedure to generate vector map in the Autoware format consists of the
following two steps:

1. Conversion from Opendrive to lanelet2
2. Conversion from lanelet2 to Autoware vector map

The choice to use lanelet2 as intermediate step is motivated by the fact that
Autoware is now supporting this format by also including a conversion tool
among the available utilities.

The first step requires to install ASSURE mapping tools [56], a useful tool for
viewing, editing and saving road network maps. This tool supports the following
formats:

• OpenPlanner1 [57] map format .kml (import/export)
• Google Earth .kml (export)
• Vector map for Autoware (import)
• Opendrive .xodr (import)
• Lanelet2 .osm (import/export)

Point cloud data can be imported and used as reference to guide the process of
editing, which relies on a minimalist GUI (Figure 3.8).

Figure 3.8 Appearance of the tool Interface. Point cloud data is used as visual reference as shown

1 https://github.com/Autoware-AI/core_planning/tree/master/op_global_planner

https://gitlab.com/autowarefoundation/autoware.ai/core_planning
file:///C:/Users/salva/Desktop/Roba%20di%20tesi/Open%23_CTVL001a90212a4fd8442e69fd605dfc32d8483

40

Once loaded the Opendrive file generated from RoadRunner, it is possible to
proceed with the conversion and obtain the equivalent lanelet2 file.

The obtained file can be now converted into Autoware Vector map by means of
the lanelet aisan converter [58] available in the utilities folder of Autoware.

The conversion can be done by running the following command:

rosrun lanelet_aisan_converter lanelet2aisan _map_file:=<path to lanelet map>
_origin_lat:=<latitude> _origin_lon:=<longitude> _save_dir:=<path to save the
map>

At the end of the conversion, several .csv file containing semantic information
about the road network. Conversion is not 100% accurate, hence the obtained
vector map may require manual adjustments to achieve the desired level of
quality. Tier IV, the company behind Autoware, offers a free web-based tool
to manually build or edit vector maps [59]. Using the vector map builder tool
can fill in the gaps due to the previous conversion. Although this process could
require substantial manual intervention, largely going against the research goal
of obtaining an automatic process, it is shown anyway, since it is currently the
most valid available option to build a vector map for Autoware. The tool
requires to sign up for an account before using it. Once logged in, the tool
features a simple Interface as shown in Figure 3.9.

Figure 3.9 Interface of Vector Map Builder

The first step is to load the .pcd file, previously obtained by using the pcl
recorder command. Since the tool can only read files in the binary format, it is
necessary to convert the file from ASCII to binary. This can be done by running
the following command which exploits pcl tools:

41

$ pcl_convert_pcd_ascii_binary <map.pcd> <bin-map.pcd> 1

After also importing the vector map obtained from the lanelet2aisan conversion,
it is possible to edit the map and make the final adjustments. Eventually, the
map is ready to be used in Autoware.

3.7 The overall pipeline – from OpenStreetMap to
Autoware

In this Chapter, the focus has been put on defining the methodology to be
adopted for generating a 3D scenario for autonomous driving simulation by
exploiting free GIS data. To summarize, the process begins with
OpenStreetMap data extraction to obtain an .osm file which is then converted
in the OpenDRIVE format (.xodr) through SUMO netconvert tool. The
converted .xodr file is imported in RoadRunner to automatically generate the
road network. In this phase it is possible to customize the generated map, if
desired, before exporting it to CARLA. CARLA simulator is finally connected
to Autoware through a ROS bridge. To run the simulation, an HD map is
required. Such HD map is obtained by combining two files: a point cloud map
and a Vector map. The former is generated by collecting point cloud data of the
3D map while the latter is generated in two steps: a conversion of the
OpenDRIVE file in the lanelet2 format by means of ASSURE mapping tools,
which is then converted in the Vector map format through one of the Autoware
utilities. Once obtained and loaded these files into Autoware, it is possible to
eventually run the simulation. Figure 3.10 shows the methodology workflow.

42

Figure 3.10 The entire workflow

43

Chapter IV
4 Results

This chapter is dedicated to the presentation of the results obtained by following
the above outlined methodology. Specifications of the laptop, utilized for this
study, are listed below as reference:

• CPU: i7-7770HQ, 2.80GHz 4 cores
• RAM: 16 GB
• GPU: NVIDIA GTX 1070, 8GB GDDR5
• OS: Ubuntu 18.04

4.1 OSM data

OpenStreetMap database is a valuable source of road network data but it has
one significant limitation, map accuracy is not always guaranteed since the
service relies on crowdsourcing. This led to a preliminary quality check of the
osm data to be used. Several tests were carried out on different areas of the city
of Turin to find a suitable one for the map generation. The analysis of the data
extracted from the OpenStreetMap database was conducted by means of SUMO
netedit [60]. This tool is a visual network editor, built on top of netconvert,
which allows to visualize the road network. Figure 4.1 shows a comparison
between the original map and the corresponding road network visualized in
netedit.

44

Figure 4.1 A comparison between a selected area of Turin and its corresponding extracted road network

By looking at Figure 4.1, it is possible to notice some inconsistencies (indicated
by the red arrows) between the two maps. The absence of some stretches of road
is due to the aforementioned crowdsourcing model adopted for mapping. The
use of netedit tool allowed to check the extracted data before proceeding with
the conversion into OpenDRIVE format. In the end, it was decided to use, as

45

reference for the experiment, an area from the Aurora district after assessing the
quality of the corresponding osm data as shown in Figure 4.2.

Figure 4.2 The area chosen to conduct the experiment

Figure 4.2 shows how the extracted road network and the map perfectly match,
turning out to be a good choice.

4.2 OpenDRIVE conversion

Conversion from osm to OpenDRIVE format was performed through
netconvert tool from SUMO. It is possible to visualize the map, corresponding
to the obtained OpenDRIVE file, through the viewer available online (Figure
4.3).

46

Figure 4.3 Map visualized in the OpenDRIVE viewer

A quick comparison between the map in Figure 4.2 and the one in Figure 4.3
shows that the conversion generated an acceptable map, at least as regards the
road network. A more in-depth analysis allows to notice the absence of some
elements in the map such as the traffic lights and traffic signs or some geometric
anomalies in junctions. These errors are directly caused by the netconvert tool
which has significant limitations.

4.3 Generated map for CARLA

The OpenDRIVE generated from the conversion was imported in RoadRunner
to automatically generate the road network. Figure 4.4 shows the road network
automatically generated in RoadRunner.

47

Figure 4.4 A snapshot of the map generated in RoadRunner

When importing OpenDRIVE files, RoadRunner builds junctions based on the
overlap of roads while dead-end roads are readjusted with the addition of a U-
turns placed as junctions at the end. The map was centered in (0,0) as indicated
in the CARLA documentation before exporting [61]. Once the map was ready,
the scene was exported in CARLA by embedding all the textures in the .fbx file.
The map was then successfully imported in CARLA where it was eventually
used to generate the corresponding point cloud map in the .pcd format by means
of the pcl_recorder tool included in the ROS bridge. In Figure 4.5 is shown the
generated pcd map.

Figure 4.5 The generated pcd map successfully loaded in Autoware

48

4.4 HD map for Autoware

HD map generation was achieved by means of two different tools. The first tool,
ASSURE mapping tools, allowed to convert the OpenDRIVE file in lanelet2.
Figure 4.6 shows the resulting map in the lanelet2 format.

Figure 4.6 The generated lanelet2 map successfully loaded in Autoware

The generated map contains simple information about the roads, and elevation
tags are always present. No information about traffic signs or lane markings are
included.

The lanelet2 map was then converted in the Vector map by means of one of the
Autoware utility. The conversion process generated the following series of .csv
files:

• area.csv
• dtlane.csv
• intersection.csv
• lane.csv
• line.csv
• node.csv
• point.csv
• wayarea.csv
• whiteline.csv

https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/intersection.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/lane.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/line.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/node.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/point.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/wayarea.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/whiteline.csv

49

After obtaining the necessary maps, it was possible to load the two maps and
finally build the desired HD map. Both maps contain information about their
coordinates. A specific tf launch file is required to provide the necessary
transforms for the different coordinate frames. Figure 4.7 shows how the pcd
map and the lanelet2 perfectly match. The HD map was thereby ready.

Figure 4.7 Matching between pcd map and lanelet2 map

4.5 Running the final simulation

In the end, having obtained the HD map, it was possible to launch the CARLA-
Autoware bridge. Control over the simulation can be taken by directly
interacting with Autoware or by enabling the manual control functionality
provided by CARLA PythonAPI module through ROS bridge. In Figure 4.8 is
shown the simulation successfully performed while the bridge is in execution.

50

Figure 4.8 A snapshot of the simulation running on Autoware and CARLA via bridge

51

Chapter V

5 Discussions

This chapter focuses on discussing and making observations on the findings of
this work, which aims to define an automatic process for generating a realistic
3D simulation scenario featuring semantic information extracted from real
world road networks. Moreover, limitations are underlined to address the
weaknesses of this study and highlight all the aspects of the methodology which
require further development to improve results. The previous chapter showed
how it is possible to generate 3D scenarios by means of several tools, eventually
deploying them into an end-to-end driving simulation.

5.1 Map data

As seen in the previous chapters, OpenStreetMap represents the only valid road
network data source freely available to be used in map generation. The osm file
format structure is very intuitive, and tags allow to quickly analyse and change
any code section. However, data are not always good and during the research
work a few limitations has come to light. Anyway, available data is in general
quite accurate and traffic information included in the database still represents a
valuable asset which can be exploited in simulation. Turin was chosen as the
reference area for demonstration purposes only. All areas which were presenting
inconsistencies or missing data were avoided in order to have a good map as
starting point. This step was crucial since SUMO conversion from osm to
OpenDRIVE is not perfectly accurate and therefore further issues can emerge.
In this regard, SUMO netconvert turned out to be the most critical phase of the
entire workflow due to the limitations of the conversion tool. Converted files
are mainly afflicted by geometrical issues concerning junctions, which in some
cases require to manually intervene. Furthermore, the tool is not able to maintain
all the information derived from the osm file such as traffic signs. It is possible
to find missing data by directly examining the code of the converted file. Below
a snippet of the code shows the absence of information about signs in the
converted file, as can be seen under the Signal tag at the end of the snippet.

52

<road name="Corso Verona" length="44.32704031" id="1391" junction="-

1">

 <link>

 <predecessor elementType="junction" elementId="3"/>

 <successor elementType="junction" elementId="1"/>

 </link>

 <type s="0" type="town"/>

 <planView>

 <geometry s="0.00000000" x="433.71754369"

y="427.84956072" hdg="-1.01856079" length="44.32704031">

 <line/>

 </geometry>

 </planView>

 <elevationProfile>

 <elevation s="0" a="0.00" b="0" c="0" d="0"/>

 </elevationProfile>

 <lateralProfile/>

 <lanes>

 <laneSection s="0">

 <center>

 <lane id="0" type="none" level="true">

 <link/>

 <roadMark sOffset="0" type="solid"

weight="standard" color="standard" width="0.13"/>

 </lane>

 </center>

 <right>

 <lane id="-1" type="driving" level="true">

 <link/>

 <width sOffset="0" a="3.20" b="0" c="0"

d="0"/>

 <roadMark sOffset="0" type="solid"

weight="standard" color="standard" width="0.13"/>

 <speed sOffset="0" max="13.89"/>

 </lane>

 </right>

 </laneSection>

 </lanes>

 <objects/>

 <signals/>

 </road>

By further analysing and comparing the code with the corresponding osm file,
it is possible to spot all the missing data. This allows to get a sense of the
expected result on RoadRunner. Limitations of the SUMO netconvert tool had
a significative impact on the overall result of the outlined workflow and possible
alternatives were investigated during the initial phase of the study.
Unfortunately, there are only few minor projects available on GitHub but none
have given satisfactory results. Recently, CARLA team has started developing

53

an internal conversion tool based on SUMO netconvert but for now results does
not differ much from the ones obtained with SUMO [62].

5.2 RoadRunner as main choice

Scenario generation for autonomous driving requires significant effort to
develop high-fidelity simulations. In this case, where automatic scenario
generation is sought after, an editor capable of correctly parsing map data files
to build the corresponding scenario was necessary. At the beginning of this
work, it was decided to use only open source software, and in fact initial tests
were conducted with the StreetMap plugin. A custom version of the plugin was
also developed with minor changes to the source code. However, maps
generated via plugin were incomplete and required too much manual
intervention every time. Besides, several crashes and incompatibility issues
with ROS bridge occurred. For these reasons, it was eventually decided to use
RoadRunner thanks to the partnership between MathWorks and TeoresiGroup
company. The use of RoadRunner allowed to come under the objective of
automatically generating a 3D scenario. The only manual intervention required
is simply related to the customization of the map through the addition of props
such as buildings. The strength of RoadRunner is that maps generated in such a
way will be perfectly compatible with all the functionalities provided by the
Python module. To be more specific, world and actor settings and blueprints are
specifically created to properly work with CARLA. By correctly matching these
files, it is possible to avoid issues related to the Python API and consequently it
is not necessary to change the code every time for each generated map.

5.3 What the generated maps look like

As seen above, maps imported in CARLA are generated by converting
OpenDRIVE files in roads through the built-in option in RoadRunner. Road
generation supports signals importation. Due to the loss of information about
signals derived from SUMO netconvert tool, all road networks imported in
RoadRunner did not contain any signals. However, the editor offered the
possibility to automatically signalize junctions. Ideally, RoadRunner would
then be capable of generating satisfying scenarios without intervention if a good
OpenDRIVE file is used. Leaving aside these limitations, all imported maps
were fully driveable, and autopilot worked properly. Maps were also tested with

54

generated traffic to simulate a more complex scenario. In addition, ROS bridge
had no issues with maps generated from RoadRunner. The editor proved to be
the best choice and it is possible to assess its potential by looking at CARLA
official maps which were created through it. In the end, the major limitation
results from the converted OpenDRIVE which affects the final results.

5.4 Generated HD maps

The methodology presented in this thesis specifically focuses on HD map
generation compatible with Autoware. The latest releases (Autoware v1.13 and
v1.14) currently support Vector map and lanelet2 as official formats. The
Autoware Foundation will fully migrate from Vector map format to lanelet2 in
order to avoid relying on the proprietary map format of Aisan Technology
company. In spite of this, it was preferred to still include in this work a possible
method for generating a Vector map for a simple reason, older versions (v1.12
and older), which do not support lanelet2, are still widely used. As previously
stated in Chapter III, the process for Vector map generation consists of two steps
to obtain the desired map format starting from the OpenDRIVE file related to
the imported map in CARLA. Conversion from OpenDRIVE to lanelet2 relies
on ASSURE mapping tools. The developer behind these tools is an active
contributor of the Autoware community and he is currently a PhD student at
Nagoya University, the place where the Autoware Foundation started. While
interesting and useful, these tools are still in early development and they are not
exempt from bugs. Nevertheless, lanelet2 maps obtained from these tools are
specifically generated to be compatible with Autoware. Maps generated in such
a way slightly differ from the default format and contain specific tags which are
mandatory for Autoware. It is possible to have a better understanding about the
lanelet2 structure specific for Autoware by looking at the documentation
available on GitHub [63]. The operation to obtain the lanelet2 file was quite
simple and immediate. In this phase, it is possible to choose between the UTM
and MGRS coordinate system, therefore it is important to pay attention to this
point to avoid a possible mismatch between pcd and lanelet2 map. In this case,
matching between the two types of map is easy to achieve through the tf.launch
file since for every map imported into CARLA was chosen the point (0,0,0) as
the world origin. All tests were conducted using only the OpenDRIVE files
generated with SUMO netconvert or RoadRunner, which did not contain any
traffic signs. More tests would be needed to see how the tool handles the
conversion when using OpenDRIVE files containing more information.
However, it was possible to use the code of CARLA default maps, as reference,

55

to find out that information about traffic signs was missing in the lanelet2 file
whereas the OpenDRIVE file contained it. Checks on these files showed that
the tool is able to only generate simple road networks through conversion and
manual editing is needed if additional details in the map are required.
Conversion from lanelet2 to Vector map was the last step. The conversion tool
as part of the Autoware utilities is simple to use but, as said before, it is not
100% accurate and part of the information is lost with the conversion process.
It is possible to get an idea of the missing features by looking at the script
create_feature.cpp, where when a certain feature is not supported, a comment
like the following one is shown:

“missing.attribute” = 0; // Not supported

In the generated .csv file these missing features will display a value equal to 0.
If necessary, it is still possible to use the Vector Map Builder tool to improve
the resulting map. In any case, it is recommended to use the lanelet2 format, if
possible, for two simple reasons: it is an open source format, whereas the Vector
map format is proprietary and no clear documentation is available, and by
avoiding a further conversion process it is possible to maintain more
information.

5.5 Analysis of the final simulation

After generating the HD map, it was finally possible to test the bridge between
CARLA and Autoware. Before launching the bridge, a few changes in the code
of the bridge files were made. Once made all necessary preparations, the bridge
was successfully launched and the generated map was tested. The correct
functioning of the simulation was assessed by trying the autopilot mode and the
2D Nav Goal function on Rviz. The simulation performance can be affected by
the map derived from the OpenDRIVE. It is suggested to intervene in the map
creation on RoadRunner, if necessary, by fixing those areas of the map afflicted
by geometric anomalies which can make things difficult for the autopilot. As
mentioned above, possible issues are mainly related to junctions or road ends
which do not present U turns, so when the vehicle approaches a critical zone a
crash could occurs. Regardless, the entire methodology proved to give good

56

results and currently it represents a valid alternative to classical methods which
rely on sensor fusion and manual editing.

57

Chapter VI
6 Conclusion

The goal of this thesis work was to define a methodology to automatically build
3D scenarios generated from available map data of the real world as means of
implementing them in an autonomous driving framework. It was decided to rely
on open source software to accomplish the task with the only exception of
RoadRunner, which was implemented in the workflow thanks to the
collaboration between TeoresiGroup and MathWorks. The entire process
consisted of two main phases. The first phase focused on generating a 3D scene
by importing an existing road network previously extracted from the
OpenStreetMap database. In the second phase, the OpenDRIVE file, which
contains semantic road information, was converted in the lanelet2 and Vector
map formats to exploit them as HD map in simulations. The indicated
methodology points out all the necessary tools and software needed to reach the
desired goal. The strength of this methodology is that the development of each
software takes into account the progress of the others to keep up with them. This
leads to a simple integration of these software within the workflow. Moreover,
the adoption of open source formats, which are now de facto standards,
simplifies research and development, especially thanks to available clear
documentation. Results of this work are promising since having the possibility
to automatically generate a 3D scenario without resorting to a demanding
manual editing can be considered an important achievement. The outlined
methodology has large room for improvement, but it already represents a valid
means for speeding up the development of autonomous driving platforms.

6.1 Future work

This thesis work has shown how it is possible to build maps to support
autonomous driving by exploiting open source map data. Although
OpenStreetMap has proven to be a valid solution for map generation, the use of
SUMO netconvert tool had an impact on the outcome. The next step to improve
the proposed methodology would be to work on the source code of SUMO in
order to overcome the limitations imposed by the netconvert tool. Moreover, it
would be beneficial to monitor developments in the Autoware support for
lanelet2 since the team is still working on it. This must be kept in mind since in

58

the future it may be necessary to make some changes to ASSURE mapping
tools. Eventually, after solving all the issues related to SUMO, a field test with
a real car will be considered to move on the next step of the development of an
autonomous driving system.

59

References
[1] N. Kalra and S. Paddock, Driving to Safety: How Many Miles of Driving

Would It Take to Demonstrate Autonomous Vehicle Reliability?: RAND
Corporation, 2016.

[2] CARLA democratizes autonomous vehicle R&D with free open-source
simulator - Unreal Engine. Accessed: Jun. 7 2020. [Online]. Available:
https://www.unrealengine.com/en-US/spotlights/carla-democratizes-
autonomous-vehicle-r-d-with-free-open-source-simulator

[3] Engineering Uber’s Self-Driving Car Visualization Platform for the Web.
Accessed: Jun. 7 2020. [Online]. Available: https://eng.uber.com/atg-
dataviz/

[4] AVS Home. Accessed: Sep. 17 2020. [Online]. Available: https://avs.auto/
#/

[5] Cruise. Accessed: Sep. 17 2020. [Online]. Available: https://
www.getcruise.com/

[6] The most powerful real-time 3D creation platform - Unreal Engine.
Accessed: Sep. 17 2020. [Online]. Available: https://
www.unrealengine.com/en-US/

[7] GM’s Cruise is preparing for a self-driving future in the cloud |
VentureBeat. Accessed: Jun. 7 2020. [Online]. Available: https://
venturebeat.com/2019/04/20/gms-cruise-is-preparing-for-a-self-driving-
future-in-the-cloud/

[8] Worldview. Accessed: Sep. 17 2020. [Online]. Available: https://
webviz.io/worldview/#/

[9] ’Carcraft’ is Waymo’s virtual world for autonomous vehicle testing |

Engadget. Accessed: Jun. 7 2020. [Online]. Available: https://
www.engadget.com/2017-08-23-waymo-virtual-world-carcraft.html?
guccounter=1

[10] Z. Yang et al., “SurfelGAN: Synthesizing Realistic Sensor Data for

Autonomous Driving,” 2020.
[11] NVIDIA DRIVE - Autonomous Vehicle Development Platforms | NVIDIA

Developer. Accessed: Sep. 17 2020. [Online]. Available: https://
developer.nvidia.com/drive

[12] Driving Simulation | rFpro. Accessed: Sep. 17 2020. [Online]. Available:
http://www.rfpro.com/driving-simulation/

[13] Simulink - Simulation and Model-Based Design - MATLAB & Simulink.
Accessed: Sep. 17 2020. [Online]. Available: https://
www.mathworks.com/products/simulink.html

[14] Cognata | Autonomous and ADAS Vehicles Simulation Software.
Accessed: Sep. 17 2020. [Online]. Available: https://www.cognata.com/

60

[15] The spring of self-driving cars. - Towards Data Science. Accessed: Jun. 7
2020. [Online]. Available: https://towardsdatascience.com/the-spring-of-
self-driving-cars-e37f76c11586

[16] Metamoto. Accessed: Sep. 17 2020. [Online]. Available: https://
www.metamoto.com/

[17] Virtual Test Drive (VTD) – Complete Tool-Chain for Driving Simulation.
Accessed: Sep. 17 2020. [Online]. Available: https://
www.mscsoftware.com/product/virtual-test-drive

[18] OpenDRIVE - Home. Accessed: Sep. 17 2020. [Online]. Available: http://
www.opendrive.org/index.html

[19] A. Best, S. Narang, L. Pasqualin, D. Barber, and D. Manocha, “AutonoVi-
Sim: Autonomous Vehicle Simulation Platform with Weather, Sensing,
and Traffic Control,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, Jun.
2018 - Jun. 2018, pp. 1161–11618.

[20] CarMaker | IPG Automotive. Accessed: Sep. 17 2020. [Online].
Available: https://ipg-automotive.com/products-services/simulation-
software/carmaker/

[21] HD Maps for Autonomous Driving and Driver Assistance | HERE.
Accessed: Sep. 21 2020. [Online]. Available: https://www.here.com/
platform/automotive-services/hd-maps

[22] PreScan | TASS International. Accessed: Sep. 17 2020. [Online].
Available: https://tass.plm.automation.siemens.com/prescan

[23] Ansys VRXPERIENCE Driving Simulator | Ansys. Accessed: Sep. 17
2020. [Online]. Available: https://www.ansys.com/products/systems/
ansys-vrxperience/driving-simulator

[24] SCANeR studio - AVSimulation. Accessed: Sep. 17 2020. [Online].
Available: https://www.avsimulation.com/scanerstudio/

[25] Deepdrive from Voyage - Push the state-of-the-art in self-driving.
Accessed: Sep. 17 2020. [Online]. Available: https://
deepdrive.voyage.auto/

[26] Home - Parallel Domain. Accessed: Sep. 17 2020. [Online]. Available:
https://paralleldomain.com/

[27] GitHub - udacity/self-driving-car-sim: A self-driving car simulator built
with Unity. Accessed: Sep. 17 2020. [Online]. Available: https://
github.com/udacity/self-driving-car-sim

[28] Unity Real-Time Development Platform | 3D, 2D VR & AR Engine.
Accessed: Sep. 17 2020. [Online]. Available: https://unity.com/

[29] GitHub - microsoft/AirSim: Open source simulator for autonomous
vehicles built on Unreal Engine / Unity, from Microsoft AI & Research.

61

Accessed: Sep. 17 2020. [Online]. Available: https://github.com/
microsoft/AirSim

[30] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual
and Physical Simulation for Autonomous Vehicles,” pp. 621–635, 2017.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:

An Open Urban Driving Simulator,” 2017.
[32] GitHub - carla-simulator/carla: Open-source simulator for autonomous

driving research. Accessed: Sep. 17 2020. [Online]. Available: https://
github.com/carla-simulator/carla

[33] GitHub - lgsvl/simulator: A ROS/ROS2 Multi-robot Simulator for
Autonomous Vehicles. Accessed: Sep. 17 2020. [Online]. Available:
https://github.com/lgsvl/simulator

[34] G. Rong et al., “LGSVL Simulator: A High Fidelity Simulator for

Autonomous Driving,” 2020.
[35] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Sim4CV: A

Photo-Realistic Simulator for Computer Vision Applications,”

International Journal of Computer Vision, vol. 126, no. 9, pp. 902–919,
2017, doi: 10.1007/s11263-018-1073-7.

[36] Rethinking Maps for Self-Driving - Lyft Level 5 - Medium. Accessed: Jun.
9 2020. [Online]. Available: https://medium.com/lyftlevel5/https-medium-
com-lyftlevel5-rethinking-maps-for-self-driving-a147c24758d6

[37] J. Jiao, “Machine Learning Assisted High-Definition Map Creation,” in

Proceedings - International Computer Software and Applications
Conference, 2018, pp. 367–373.

[38] The Golden Age of HD Mapping for Autonomous Driving. Accessed: Jun.
9 2020. [Online]. Available: https://medium.com/syncedreview/the-
golden-age-of-hd-mapping-for-autonomous-driving-b2a2ec4c11d

[39] M. Dupuis, M. Strobl, and H. Grezlikowski, “OpenDRIVE 2010 and
Beyond-Status and Future of the de facto Standard for the Description of
Road Networks,”

[40] F. Poggenhans et al., “Lanelet2: A high-definition map framework for the
future of automated driving,”

[41] Apollo. Accessed: Sep. 17 2020. [Online]. Available: https://apollo.auto/
[42] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T.

Hamada, “An open approach to autonomous vehicles,” IEEE Micro, vol.
35, no. 6, pp. 60–68, 2015, doi: 10.1109/MM.2015.133.

[43] AISAN TECHNOLOGY. Accessed: Sep. 18 2020. [Online]. Available:
https://www.aisantec.co.jp/english/

[44] Navigation Data Standard (NDS) - The worldwide standard for map data
in automotive eco-systems. Accessed: Oct. 30 2020. [Online]. Available:
https://nds-association.org/

62

[45] M. Quigley et al., “ROS: an open-source Robot Operating System,”

[Online]. Available: http://stair.stanford.edu/
[46] C. Wilhelm Gran, “HD-Maps in Autonomous Driving,” 2019.
[47] OpenStreetMap. Accessed: Sep. 23 2020. [Online]. Available: https://

www.openstreetmap.org/
[48] BBBike extracts OpenStreetMap. Accessed: Sep. 18 2020. [Online].

Available: https://extract.bbbike.org/
[49] netconvert - SUMO Documentation. Accessed: Aug. 19 2020. [Online].

Available: https://sumo.dlr.de/docs/netconvert.html
#supported_network_formats

[50] P. A. Lopez et al., “Microscopic Traffic Simulation using SUMO,” in

IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC, 2018, pp. 2575–2582.

[51] OpenDRIVE - Downloads. Accessed: Sep. 11 2020. [Online]. Available:
http://www.opendrive.org/download.html

[52] RoadRunner - MATLAB & Simulink. Accessed: Sep. 17 2020. [Online].
Available: https://www.mathworks.com/products/roadrunner.html

[53] GitHub - ue4plugins/StreetMap: Import OpenStreetMap data into Unreal
Engine 4. Accessed: Sep. 17 2020. [Online]. Available: https://github.com
/ue4plugins/StreetMap

[54] GitHub - carla-simulator/ros-bridge: ROS bridge for CARLA Simulator.
Accessed: Sep. 23 2020. [Online]. Available: https://github.com/carla-
simulator/ros-bridge

[55] pcl/tools at master \textperiodcentered GitHub. Accessed: Sep. 17 2020.
[Online]. Available: https://github.com/PointCloudLibrary/pcl/tree/
master/tools

[56] GitHub - hatem-darweesh/assuremappingtools: Desktop based tool for
viewing, editing and saving road network maps for autonomous vehicle
platforms such as Autoware. Accessed: Sep. 17 2020. [Online]. Available:
https://github.com/hatem-darweesh/assuremappingtools

[57] H. Darweesh et al., “Open Source Integrated Planner for Autonomous

Navigation in Highly Dynamic Environments,” JRM, vol. 29, no. 4, pp.
668–684, 2017, doi: 10.20965/jrm.2017.p0668.

[58] utilities/lanelet_aisan_converter at master \textperiodcentered GitHub.
Accessed: Sep. 17 2020. [Online]. Available: https://github.com/
Autoware-AI/utilities/tree/master/lanelet_aisan_converter

[59] VectorMapBuilder. Accessed: Sep. 17 2020. [Online]. Available: https://
tools.tier4.jp/feature/vector_map_builder/

[60] netedit - SUMO Documentation. Accessed: Sep. 7 2020. [Online].
Available: https://sumo.dlr.de/docs/netedit.html

63

[61] Add a new map - CARLA Simulator. Accessed: Sep. 15 2020. [Online].
Available: https://carla.readthedocs.io/en/latest/tuto_A_add_map/

[62] Generate maps with OpenStreetMap - CARLA Simulator. Accessed: Oct.
16 2020. [Online]. Available: https://carla.readthedocs.io/en/latest/tuto_
G_openstreetmap/

[63] common/lanelet2_format_extension.md at master \textperiodcentered
GitHub. Accessed: Nov. 29 2020. [Online]. Available: https://github.com/
Autoware-AI/common/blob/master/lanelet2_extension/docs/lanelet2_
format_extension.md

