
POLITECNICO DI TORINO

Master Degree in Mechatronic Engineering

Master Degree Thesis

Adaptation of a path planning
algorithm for UGV in precision

agriculture

Supervisor:
Prof. Andrea Maria Lingua
Co-Supervisor:
Dr. Vincenzo Di Pietra

Candidate:
Francesco Messina

December 2020

Contents

Abstract 6

Introduction 8

1 Path Planning 9
1.1 Sensors and Representation . 11
1.2 Planning Algorithms . 13

1.2.1 Grid-based or Graph-based 15
1.2.2 Reward-based . 17
1.2.3 Artificial Potential Field based 18
1.2.4 Sample-based . 20

2 Materials and Methods 25
2.1 Algorithm identification . 26
2.2 Maps . 30
2.3 Unmanned ground vehicle . 33
2.4 Software . 39
2.5 Hardware . 42

3 Code 47
3.1 Code detailed explanation . 49

3.1.1 Parameters Settings . 49
3.1.2 Map Generation . 52
3.1.3 Map Positioning . 55
3.1.4 Main Loop . 56

3.2 Code Simulations . 67

4 Validation 81

5 Conclusions 95
5.1 Possible future improvements . 96

2

Acronyms 98

List of Figures 100

List of Tables 103

Bibliography 104

3

Acknowledgements

This thesis work represents the conclusion of a difficult path, made of tears, sleep-
less nights, sacrifices but also of many satisfactions and happy moments. All these
moments together create an experience that has forged me as a person and as a
professionist. To all the people who have supported and accompanied me along
this path I would like to express my most sincere gratitude.

My first thoughts go to my parents who have allowed me to start this path
despite the difficulties faced due to the distance that separates us and that has
supported me in the darkest moments of this journey.

A special thanks goes to Dr. Vincenzo di Pietra who wisely guided and pa-
tiently helped me during this work and thanks to whom it was possible to complete
even the last phases of the experimentation despite the difficulties imposed by the
sanitary circumstances of this year.

I thank Dr. Gianluca Dara and Dr. Diego Aghi and more generally all members
of PIC4SeR for the collaboration and valuable advice from which the work has
benefited.

I would also like to thank all the members of DIATI who supported me with
their valuable work experience and passion.

Last but not least, I would like to thank all the friends who have been by my
side and shared both the most difficult and the happiest moments of this path
with me.

Finally, I dedicate this thesis work to my grandparents who would surely be
proud of achieved goal.

4

Abstract

A great interest in self-driven vehicles has developed in the field of robotics and
more generally in the industrial sector in the last few decades, and the number of
applications where these vehicles are used is growing strongly. A clear example of
this phenomenon are the efforts made by several automotive in terms of research
and development, to manufacture increasingly competitive, safe and precise Au-
topilots. This is also due to cutting-edge on-board computers, the development of
highly precise and performing sensors, and the advent of the 5G network, which
is also aimed to ensure an unprecedented V2X (Vehicle-to-everything) communi-
cation, especially thanks to a new architecture called "network slicing".

The robotics sector is now focused on providing solutions that may promote
and improve the man-machine collaboration in agriculture as well as in other areas
closely related to the civil sphere, therefore not only for military uses and space
exploration, as it used to be. This process has seen an acceleration this year for
the emergence of Covid-19, which has become a global pandemic. This situation
has highlighted, now more than ever, the need to rely on autonomous instruments
that, for example, transport medical equipment or essential commodities, without
running the risk to get in contact with other people or the need for anyone to leave
home.

In this context, the aim of this thesis work is the creation of a UGV (Unmanned
Ground Vehicle) that can run independently, safely and efficiently through rough
and uneven terrain, as for agricultural fields or unpaved roads, by using the RRT*
(Rapidly-exploring Random Tree) path planner. The latter manages to accomplish
its task also thanks to the collaboration with a UAV (Unmanned Aerial Vehicle)
that, by means of the aerial photogrammetric survey method, can generate high-
precision georeferenced orthophotos and DTM (Digital Terrain Model), that are
later processed by a GIS (Geographic Information System) software to generate
the static binary mask. In detail, the project is designed to cover different project
phases. Starting from the design phase, when the criticalities of the problem are
evaluated and possible solutions are identified, to the programming phase, in which
a code has been developed that allows the planning of the route adapting to the
problems that may arise in this type of terrain, up to the simulation and real test

5

phase in the field.

6

Introduction

That of self-driven vehicles is one of the fastest growing sector nowadays, whether
they are land-based, airborne or otherwise, and this is due to multiple factors.
Among the many, the main one can be traced back to an exponential growth
of the technological sector, both in terms of investments and resources spent for
research activities in the sector and increasingly high level of efficency, safety and
precision with which the new instrumentation can fulfil their purpose.

Another factor that has contributed to the growing interest in this sector,
especially in recent years, has been the advent of the 4G and later the 5G net-
work, aimed at providing unprecedented V2X communication, thanks to its new
architecture, called "network slicing". A last important contribution surely comes
from the increasing use of artificial intelligence, i.e. of automatic (or autonomous)
learning techniques, such as neural networks, machine learning and deep learning,
whose use in many applications represent a big step forward, also for autonomous
driving. In short, there is a clear will and need for a closer and more dynamic
collaboration between man and machine that developed over time, in a worldwide
panorama where most people already live interconnected with machines thanks to
the increasingly pervasive use of IoT (Internet of Things) technologies.

Hence, autonomous driving is evidently becoming a concrete and reliable fea-
ture for many different sectors such as: military, aerospace, emergency (earth-
quakes, floods, search for missing persons, etc..), agriculture, mining, construction,
manufacturing, surveillance, etc..

In this scenario, the objective of this thesis work is the realization of a UGV
that can travel independently on uneven terrain, for instance in an agricultural
field or on unpaved roads, through the use of the route planning algorithm known
as RRT* and its adaptation to the problems that may arise in terrain whose
characteristics may give the vehicle a hard time during navigation.

The UGV is able to achieve its task by collaborating with a UAV that, provides
the algorithm with high resolution static maps made in several steps, through the
aerial photogrammetric survey technique. Starting from the 3D model of the place
where the rover will operate, it is possible to obtain 2 georeferenced maps, a DTM
with the terrain altitude information and a binary mask where the obstacles are

7

identified, through different elaborations with a GIS software.
The algorithm calculates different possible routes that will allow the vehicle to

reach the objective, analyzing the surface characteristics of the terrain that the
vehicle will face in any possible route. The evaluations use a trial and error ap-
proach, in terms of distance, slope, slope variation and roll. This type of approach
allows the exclusion of all those paths not meeting the imposed constraints.

The algorithm provide a text file as output. All the waypoints of the route
that the vehicle will follow to arrive at its destination are transcribed in this file
in Geographic coordinates. The file is then loaded on a GCS (Ground Control
Station) software connected to the flight controller mounted on the vehicle. The
vehicle was also equipped with several sensors including a high performance GNSS
(Global Navigation Satellite System) module. With the interaction and collabora-
tion of these sensors, the vehicle should faithfully follow the route planned by the
algorithm.

The work was divided into five chapters, here below is a little overview of each
of them.

• PathPlanning - A brief presentation of the world of route planning and
architecture needed to create an interface between the surrounding environ-
ment and the rover, plus a general introduction to the sensors that can be
used to create the above interface and the different types of representations
possible, is provided. Then, through a short digression, different types of
route planning algorithms that can be found in the literature are presented.

• Materials and methods - This part deals with the design choices regarding
the algorithm, the creation of the maps, the vehicle that was used for the
mission, the various software and hardware components selected to achieve
the objective.

• Code and Simulations - Several flow charts, tables and pseudo-code parts
are here used to examine in detail how the code works. Afterwards, differ-
ent aspects of the code are evaluated through several simulations, even by
examining the variation of the code behavior, according to some parameters.

• Validation - The results of several tests that were run on the field were
compared with the ones from simulations, and an analysis of the issues arising
from the vehicle and the instruments was also performed.

• Conclusions - The problems that were faced during the whole project are
evaluated and discussed in this final part, drawing the appropriate conclu-
sions and giving possible suggestions for future changes and possible steps
forward.

8

Chapter 1

Path Planning

Path planning is defined as the computational problem to find a sequence of valid
configurations that moves the object from the source to the destination.

In the world of robotics, a movement task can be completed autonomously
within a certain environment in many different ways. A first distinction to make
is between guided and unguided vehicles, the former are classically named AGV
(Automated Guided Vehicle), an industrial term indicating vehicles handling goods
in a factory.

These vehicles can typically take predetermined routes in most cases, given the
nature of the environment where they operate. The routes may be indicated by a
range of technologies, such as guide tape, wired, laser target navigation, inertial
navigation and vision guidance.

On the other hand, unguided vehicles are not limited to a predefined driving
path. Therefore, it is essential to collect detailed information about the environ-
ment where the vehicle is operating before this is able to make a decision. As a
consequence, two situations can occur:

• the environment is completely known;

• the environment is completely unknown.

Path planning algorithms dealing with known environments are called piano-
movers problem problem algorithms, while the ones for unknown environments are
named path planning with uncertainty [10]. In general, the system diagram shown
in Figure 1.1 applies to unguided vehicles.

A priori information can be gathered, for example, from pre-existing maps of
the place where the vehicle is set to operate, or, from the vehicle itself, in case
is equipped with the necessary tools and sensors to investigate the surrounding
environment. As it is stressed in [11], the sensors provide data that may fall into
into three main categories:

9

Path Planning

Figure 1.1: General process scheme for vehicle autonomous guide.

1. the world (terrain shape, temperature, color, composition);

2. the system and its relationship to the world (battery charge, location, accel-
eration);

3. other concepts of interest (collaborator, adversary, goal, reward).

Depending on the type of information obtained from the sensors, different
representations of the environment surrounding the vehicle can be created, ranging
from the very basic ones, based on single values, to complete 3D geometric models.

The planner strictly depends on the type of information available and, there-
fore, on what type of representation is going to be built. The very structure and
content of the representation will define what decisions the planner can actually
make and, ultimately, the set of action plans that the robot can pick [11].

For example, some algorithms can function just in some specific representa-
tions, such as bitmaps, while others may adapt to multiple types of representations
with some common characteristics.

Lastly, one of the controller’s main task is to send the correct inputs to actu-
ators, such as power signal to motors, servos and other devices, and, possibly, fix
them in real time to keep the vehicle moving as the algorithm planned.

10

Path Planning

1.1 Sensors and Representation
In the context of autonomous driving, sensors are an essential part of the pro-
cess. As already mentioned, sensors can collect utterly necessary and precious
information to build a model of the environment to move through.

Many types of sensors have been designed and tested for this purpose, and
most of the times they are combined together to conceive a useful representation
of the surrounding environment. Sensors can be grouped into two main categories:

1. active sensors, whose instruments rely on their own source of radiation to
measure the propagating signal, which comes back to the source by reflection,
to detect the position, shape, distance of the objects surrounding the vehicle
and other information on the environment;

2. passive sensors, whose instruments make use of information already present
in the environment, i.e. they capture radiations, such as light, heat, vibra-
tions or other phenomena emitted by the environment itself.

The first family includes sensors such as radars, lidars, sonars and ultrasonic
sensors. In autonomous driving applications, these sensors are generally integrated
with passive ones, infrared or hyperspectral cameras, RGB cameras, GPS (Global
Positioning System) and inertial sensors to obtain more complete representations
of the environment.

Plus, it is worth mentioning all those sensors needing to establish a physical
contact with environment area that they are sensing. These devices are thermome-
ters, tactile sensors, strain gauges, and bumper sensors.

When speaking of a detailed representation of the environment, this must not
mean complex, since a complex representation does not necessarily lead to a better
result. This also depends on the type of environment where the vehicle is oper-
ating. Obviously, the more flexible and general is an application, the more the
representation can adapt to new events.

Nowadays the most common types of representations are the following:

• metric topological maps, shown in Figure 1.2, that combine the 2D metric
framework and the topological framework. In the former, objects are iden-
tified by precise coordinates but is excessively noise sensitive, while in the
latter only locations and the relationships between them are considered, like
a graph;

• full metric maps, shaping the entire operating environment into a fixed co-
ordinate system.

11

Path Planning

Figure 1.2: Example of Metric Topological Map [4].

As underlined by [11], the trend to use this type of representations in recent
years is due to various factors, the main ones being:

• more accurate localization techniques, thanks also to the development of
systems such as GNSS improving GPS integrity, accuracy and availability;

• increasingly powerful computers capable of storing and processing a higher
and higher amount of information in less time. This means that these com-
puters can interact with increasingly large and complete maps.The example
in Figure 1.3 shows the trend for various computer parameters over the last
48 years;

• more accurate range sensors such as lidar and stereo vision;

• recent developments in planning algorithms making use of these types of
maps.

Maps can be either created in real time thanks to the sensors on the vehicle or
be entirely provided by the algorithm, if this is obtained in advance. A map can
be static, unable to change, or dynamic, constantly updated as the robot moves
along.

As with most engineering solutions, hybrid versions integrating the above-
mentioned examples can be used for optimal results. For example, two represen-
tations, a global one and local one, can be used in parallel. A local representation,
containing highly detailed information, depicts what surrounds the robot, whereas,
the global representation contains all the most relevant information that the robot
perceived in the local frame.

12

Path Planning

Figure 1.3: 48 Years of Microprocessor Trend Data (https://www.karlrupp.net/
2018/02/42-years-of-microprocessor-trend-data/).

This type of planning is widely used to cope with the problems that each single
representation brings with it. Locally, the robot risks to show a myopic behaviour,
while it is likely to overload its memory and extend the algorithm computation
times globally, specially with very large and information-rich maps.

1.2 Planning Algorithms
After having made an overview of the sensors and the types of representations
used in this field, we want to focus on the types of algorithms that exist in the
literature. Before that, however, for a better understanding it is convenient to
introduce a canonical definition of the problem that these algorithms are called to
solve and that highlights its fundamental issues.

Consider a robot, which can be either a mobile one or a standard manipula-
tor, now let C = (0,1)d be the configuration space, where d ∈ N represent the
dimension of the space in which we are working and d ≥ 2. There can be static
obstacles in this space, the region they occupy within the configuration space will
be indicated with Cobst. The remaining portion of the configuration space that is
free from obstacles, will be denoted with Cfree = C/Cobst.

13

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Path Planning

It should be noted that the above term configuration space, is somehow dif-
ferent from that of a geometric map. In general, the C-space represents the valid
configuration states within the geometric map. Some planning algorithms, in fact,
turn the latter into the former, by applying a specific method.

The C-space may be sufficient to find a valid path, as described by LaValle in
[9], since it provides a powerful abstraction that converts the complicated models
and coordinates transformations into the general problem of computing a path
that traverses a manifold.

The term manifold indicates a specific type of topological space that behaves
at every point like our intuitive notion of a surface, and the size of this topological
space is generally related to the degrees of freedom of the robot. It is assumed
both that the geometry of the robot, the obstacles and the pose of obstacles in C
are known, and that the robot is free from any kinematic constraints.

The planning problem can be summarized as follows: given an initial pose of
the robot xinit and a final goal region Xgoal in the obstacle free space Cfree, find,
if exist, a path that drives the robot between the two poses, avoiding collisions at
the same time, as it is shown in Figure 1.4. An algorithm addressing this problem
is said to be complete if it terminates in a finite time, returning a valid solution if
one exists, and a failure otherwise.

Figure 1.4: Representation of a simple C-space where the task is to find a path
from xinit to Xgoal through the Cfree space.

Motion planning under differential constraints can be considered as a variant
of classical two-point boundary value problems (BVPs). In mathematical analysis,
a function of bounded variation is a real-valued function whose total variation is
bounded (finite).

14

Path Planning

Let σ : [0,1]→ Rd; the total variation of σ is defined as:

V (σ) = sup
n−1∑︂
i=0
| σ(xi+1)− σ(xi) | (1.1)

The total variation of a path is essentially its length, i.e., the Euclidean distance
traversed by the path in Rd. A function σ with V (σ) <∞ is said to have bounded
variation. In this way a collision free path can be defined as a continuous function
σ of a bounded variation where σ(x) ∈ Cfree for all x ∈ [0,1] [7].

Considering this definition, the literature shows several algorithms approaching
the problem in different ways, both in terms of complexity and success. Some of
these will be cited and briefly described below to better understand the choices
made during the design phase of this work.

• Grid-based or Graph-based algorithms

• Reward-based algorithms

• Artificial Potential Field algorithms

• Sample-based algorithms

1.2.1 Grid-based or Graph-based
A grid is superimposed with a certain resolution (in terms of the size of each
cell) on the configuration space in these types of algorithms. The grid can be of
several shapes, each shape lead to a different number of degrees of movement, for
example: square (4), hexagonal (6) or octagonal (8) and there are many other
possible solutions as shown in Figure 1.5.

Each point of the grid, that is classically located at the centre of the cell,
represents a specific configuration that the robot may assume. There are two
basic constraints governing the grid:

1. two points of the grid can be connected if contained in two adjacent cells;

2. the line connecting the two points must reside entirely within the free space
Cfree.

The last constraint is verified thanks to the use of geometric algorithms detect-
ing the collision between the robot and a possible obstacle. As highlighted in the
first constraint, the shape of the grid should be carefully designed depending on
the specific type of search algorithm that is being implemented.

In general, a certain cost value is associated with each single point of the grid,
on the base of what is to be minimized or maximized, such as the distance between

15

Path Planning

Figure 1.5: Possible types of grid shapes (http://www.davetech.co.uk/
gamemakerpathfindingnode).

starting and ending points or the distance between a point and an obstacle. Hence,
an attempt is made to find a sequence of points or poses, fulfilling the imposed
constraints, for the robot to reach its destination.

According to the above, the grid can therefore be thought of as a graph G =
(V, E) composed of a set of vertices V , i.e. the points of the grid, and arcs E,
i.e. the lines connecting the nodes that form the path. Algorithms that make this
kind of interpretation are called graph-based. The arcs can be undirected i.e. with
a direction but without a verse, in this case they are called edges, or oriented i.e.
with defined direction and verse as showed in 1.6.

Figure 1.6: Example of directed graph (https://www.baeldung.com/
java-dijkstra).

The generic problem is addressed in the following terms, let xi represent an
arbitrary node in the graph and denote xgoal and xstart as a set of goal nodes and
start nodes respectively. Let ei,j represent an edge that goes from node xi to node

16

http://www.davetech.co.uk/gamemakerpathfindingnode
http://www.davetech.co.uk/gamemakerpathfindingnode
https://www.baeldung.com/java-dijkstra
https://www.baeldung.com/java-dijkstra

Path Planning

xj that, as already said before, can be oriented so ei,j /= ej,i or undirected where
ei,j = ej,i. Node xj is considered a neighbor of node xi if ei,j ∈ ei where ei is the
set of all edges that leave node xi [11].

As the search begins, the algorithm starts at xstart and attempts to find a
path to xgoal with a node-to-node exploration via edges, this method is known as
forward search, or vice-versa using the backward search method. Each node can
be seen in different states during the search, a node is said to be unexpanded if
the search algorithm has not reached it yet, whereas it is said to be alive or open
if it was reached by at least one of its neighbor, it is said to be expanded, dead or
closed, if it was reached as well as all of its neighbors.

In general, as the search progress, two lists are maintained: an open list where
all open nodes are recorder and a closed list containing all dead nodes. At each
step the neighbors of the current node xi that has not been reached xj are added
to the open list and xi is removed from the open list and added to the closed one.
The search is either successful when the goal node is added to the open list at the
end of it, or unsuccessful if the goal node has not been reached yet and the open
list is empty [11].

The various graph-search algorithms like Breadth-first (BFS), Depth-first (DFS),
Best-first, A*, D* and many others differ in the way they choose a node xi from
the open list.

1.2.2 Reward-based
It is assumed, for these algorithms, that the robot may choose between different
actions to perform, any time and in any given pose. However, the result of a given
choice is not known a priori and a sort of trial and error approach is used, where if
the goal is reached a positive evaluation is assigned, while if the performed action
leads to a dead end or collides against an obstacle, a negative rating is assigned.

The goal of this type of algorithm is to maximize positive evaluations. One of
the most used mathematical decision models in this very approach is the Markov
Decision Process, known as MDP, which can be defined as a discrete time stochastic
control process, conceptualized as a nondeterministic graph representation of the
world.

As can be seen in Figure 1.7 at each time step the agent is in state s, it receive
from the Reward function R(a, s, t) information about the reward obtained through
an action performed at time t in state s and information about the next state s
at time t + 1 through the transition function S(a, s, t). Then following the chosen
Policy, it performs a decision or an action and the loop goes by until the goal
state is reached. The “Policy” can be interpreted as a function P that specifies
the action P (s) that the decision maker will choose when is in state s. The goal is
to select a policy which could maximize some cumulative function of the random

17

Path Planning

rewards, typically the expected discounted sum over a potentially infinite horizon
[3].

Figure 1.7: Reward-based loop.

The main advantage of using MDP is that they generate optimal path, but they
limit the robot to choose from a finite set of actions, therefore the resulting path
will be not smooth. In order to solve this last problem usually a fuzzy interference
system is usually applied to the MDP.

1.2.3 Artificial Potential Field based
Artificial Potential Field (APF) algorithms make use of the potential field concept
to find a path along the obstacles. It simply matches every point in a given envi-
ronment with a potential artificial field, using the potential field function defined
over free space as the sum of an attractive potential Uatt(q) pulling the robot to-
ward the goal configuration and a repulsive potential Urep(q) pushing the robot
away from obstacles [12].

U(q) = Uatt(q) + Urep(q) (1.2)

The attractive potential is a function of the distance between the robot current
position and the target and can be modelled as follow:

Uatt(q) = 1
2ka(q − qgoal)2 (1.3)

18

Path Planning

where ka is a positive coefficient of gravity for APF. Therefore, knowing that the
force due to this potential field Fatt(q) is

Fatt(q) = −∇Uatt(q) = ka(qgoal − q) (1.4)

That corresponds to the negative value of the gradient of the potential field with
respect to the configuration q.

The repulsive force requires a distance function between the C space obstacle
B and the configuration q identified as d(q, B) instead. In this case the model of
the repulsive potential is:

Urep(q) = kr

2d2(q, B) (1.5)

where kr represent the repulsion gain coefficient. The force is the negative gradient
again, due to this potential field, and it points in the direction where the distance
between q and the C space obstacle grows the fastest.

Frep(q) = −∇Urep(q) = kr

d3(q, B)
∂d

∂q
(1.6)

Figure 1.8: (a) The attractive potential without obstacle, (b) The repulsive po-
tential set the highest value to the obstacle, (c) Whole potential shows the combi-
nation of the two forces to get the final potential field result.

The resulting force between the attractive and the repulsive field is

FT (q) = −∇UT (q) = Fatt(q) +
N∑︂

i=1
Frep,i(q) (1.7)

The goal node is matched with the lowest potential, while the highest one is
matched with the starting node. As described in [14] there are three possible
approaches to plan a collision-free path with this method:

19

Path Planning

1. let τ = FT (q) where τ is the vector of generalized forces hence let FT (q)
represent the vector of generalized forces that guide the motion of the robot
according to its dynamic model;

2. treat the robot as if it were a lumped mass point moving under the influence
of FT (q), as in q̈ = FT (q);

3. interpret the force field FT (q) as the desired speed for the robot, imposing
q̇ = FT (q).

The main drawback of this approach is the fact that the robot can be easily
trapped into local minima, as shown in Figure 1.9, for example when an obstacle
is located between the goal and the rover and it is very close to the goal so that
the sum of the repulsive force of the obstacle and the attractive force of the goal
node will cancel each other.

Figure 1.9: Example of local minimum.

1.2.4 Sample-based
Sampling-based methods randomly sample a set of states from the free configu-
ration space Cfree and connect them in a roadmap fashion. Each sampled state
represents a graph node and edges indicate what are the possible transitions be-
tween states.

The sampling process continue until the start and goal node are contained in
the graph and connected. The algorithm can fail in finding a path for two reason:

1. there is not a traversable path connecting the start node and the goal one in
Cfree;

20

Path Planning

2. the maximum number of pre-set samples is not enough to reach the target
node.

The connectivity between nodes is checked through methods not requiring explicit
construction of obstacles in the configuration space C, which is proved to lead to
a considerable saving of time computation [6].

These types of algorithms are perfectly suitable for high-dimension problems
because the running time does not exponentially depend on the dimension of the
configuration space. For sample-based algorithms, unlike others seen previously,
a weaker definition of complete can be accepted in the sense that they may not
signal when the path does not exist.

Therefore as LaValle points out in [9] the notion of denseness gains importance
in these cases, which means that the samples come arbitrarily close to any configu-
ration as the number of iterations tends to infinity. A deterministic approach that
samples densely will be called resolution complete. This means that if there is a
solution, the algorithm will find it in finite time; however, if a solution is missing,
the algorithm may run forever.

Sample-based algorithms that are based on random sampling are defined as
probabilistic complete meaning that the probability of finding a solution tends to
one as the number of samples increases. It is also proven that the rate of decay of
the probability of failure is exponential under the assumption that the environment
has good “visibility” properties [1].

The most famous algorithms of this family are the Probabilistic RoadMap
(PRM) and the Rapidly-exploring Random Tree (RRT) although the base idea of
sampling random points in the configuration space and connect them to create a
path is present in both algorithms, they differ in the way they construct the graph
that connects nodes [7].

The Probabilistic RoadMap algorithm is primarily aimed at multi-query ap-
plications. The Algorithm 1 shows the simplified version of the algorithm, where
an initial point xinit that is the given starting point and n sampled points from
the Cfree space are taken and added to the vertex set V . Then a virtual ball of
radius r, starting from the point v, is created for all the vertices in the set V and
all the points in this radius are added to the vertex set U . For each point u of the
set that is connected to v that results in a free collision connection, a new edge is
added to the set of edges E.

A practical implementation of the PRM algorithm often considers different
methods to choose the set U of vertices where connections are attempted, an
example of it can be the well-known k-Nearest method [7].

On the other hand, the Rapidly-exploring Random Tree algorithm can be seen
as a single-query counterpart of the PRM. The RRT algorithm incrementally builds
tree branches from randomly sampled points within the state space and it is biased

21

Path Planning

Algorithm 1: sPRM algorithm.
V ← {xinit} ∪ {SampleFreei}i=1,....,n; E ← ∅;
foreach v ∈ V do

U ← Near(G = (V, E),v,r)\ {v};
foreach u ∈ U do

if CollisionFree(v,u) then
E ← E ∪ {(v, u), (u, v)};

end
end

end
return G = (V, E);

22

Path Planning

to grow towards large unsearched areas of the graph 1.10.

Figure 1.10: Example of RRT branches expansions [8]

This is evident from the Voronoi diagram of the RRT vertices. Since it is proven
that the larger regions of Voronoi can be found in the "frontier" of the expanding
tree the fact that vertex choice is based on nearest neighbors principle leads to
increase the probability of the selecting nodes with a large Voronoi region [8].

The use of the term state space, in this algorithm, indicates a greater generality
than what is normally considered in path planning. For a standard problem,
X = C which is the configuration space of a rigid body in a 2D or 3D environment,
but X = T (C), for a kinodynamic planning problem, which is the tangent bundle
of the configuration space containing information on both the configuration and
the velocity of the rigid body [8].

An outline of the algorithm is given in Algorithm 2 where the initial state xinit

is added to the vertex set V and the edges set is empty. For n iterations a state is
randomly picked from the free state space called xrand and from that point using
the nearest neighbor search xnearest is selected.

The final state of the trajectory that extends the nearest vertex (xnearest) to-
wards the sample (xrand) through the Steer procedure is called xnew and in the
case of a collision-free trajectory, this is added to the edges set E and the state
xnew is added to the vertex set V .

The search can end before the n-th iteration is reached, if a node making part
of the goal region is added to the vertex set V .

RRT includes some properties of the PRM but it has the unique advantage that
it can be directly applied to nonholonomic and kinodynamic planning problems.
This advantage stems from the fact that RRT does not require any connections
to be made between pairs of states, while probabilistic roadmaps typically require
tens of thousands of connections [8].

23

Path Planning

Algorithm 2: RRT algorithm.
V ← {xinit}; E ← ∅;
for i= 1,...,n do

xrand ← SampleFree;
xnearest ← Nearest (G=(V,E), xrand);
xnew ← Steer (xnearest, xnew);
if ObstacleFree(xnearest, xnew) then

V ← V ∪ {xnew}, E ← ∪ {(xnearest, xnew)};
end

end

24

Chapter 2

Materials and Methods

In the first chapter we saw what path planning is in general, what aspects are
crucial (like the type of sensors and representation used) what types of algorithms
are fit for the task and how they work. Whereas, in this chapter, we are going
to deal with a series of considerations and choices based on what has been said
before.

Therefore, in the following sections, , the choices made during the design phase
also with regards to maps, vehicle, navigation software, algorithm development
and hardware components will be illustrated, as well as the explanation of the
selected algorithm, to provide a complete overview of the project.

The algorithm was chosen as a consequence of some considerations on the
problems that may arise also due to the environment where this algorithm is
planned to operate and the circumstances that may occur.

Starting with the previously mentioned graph-based algorithms, it can be
stated that their main feature is to comply with the assumption that the whole
representation is explicitly known, as if the structure of the graph was known a
priori, according to these algorithms.

This method can be very effective for simple and relatively small environments,
however, this type of approach can become a real challenge on a computational
level or even infeasible, when we deal with very large maps and complex environ-
ments.

In these cases an implicit representation, using a black box function to deter-
mine whether a point in the configuration space is valid or not, may be the right
choice to address the computational complexity of large and complex environments
[11].

As far as the Artificial Potential Field is concerned, its main criticality is to
easly get stuck in local minima, as it was previously stated. Plus this type of
algorithm is difficult to implement for a real application.

APF also shows poor performance when the vehicle must go through narrow

25

Materials and Methods

passages and have to cope with symmetric obstacles, that is exactly our situation
here, since the case study is a vineyard.

Shifting the focus on reward-based algorithms in general these are hard to
implement, as already said, and opting for a simple MDP model may entail a
narrow choice of actions for the rover, not to forget that this type of algorithms is
most successful if supported by a machine learning algorithm. Therefore, reward-
based and APF types were discarded.

The sample-based algorithms were finally selected, because of some interesting
properties of theirs that may prove to be fruitful if used in this application.

2.1 Algorithm identification
Before shedding some light on the advantages of a sample-based algorithm and its
detailed functioning, a reference to the beginning of this chapter will help prove
why these algorithms are being used.

The A* algorithm, one of the most commonly-used graph-based algorithms,
works with 2 lists, an open one and a closed one and inserting an element in
them or selecting a specific element among hundreds is nothing difficult, but in
an environment with hundreds of thousands of items, even keeping a list is not
such a trivial task. This situation may occur in case of a large map or if the grid
resolution is high. Actually in this very case study both difficulties are present.

Moreover, something else is worth stating regarding the pre-set goal of control-
ling the slope and its variation along the path.

All the algorithms generally seek a node-by-node path, referring to the position
of the rover (classically the centre line of the rear axle of the vehicle) as if the vehicle
was entirely included in that node. This may work when the cells are more or less
the size of the rover and the cost value of each cell is associated to the average
height of the ground in that portion of space, but if the grid resolution is higher
than the size of the vehicle, the path that the algorithm finds, trying to minimize
the total cost, could generate an unexpected result in the real application.

Basically, the path that the simulation found may be optimal for the center of
the rear axle, but the real points of contact with the ground, the centers of the
wheels, are running along paths with differently-inclined slopes that can lead to
strong instability during navigation as showed in Figure 2.1.

The use of a grid with cells of dimensions that may match those of the vehicle
was excluded, given the nature of the project which aims to develop a precision
positioning method.

Suppose that the surface area occupied by the chosen rover is about 0.25 square
meters, with the resolution used for the square cell grid of 0.1 meter side, results
that the surface area of each cell is 0.01 square meters and therefore within the

26

Materials and Methods

Figure 2.1: Front view of a possible unstable situation

surface area of the vehicle can ideally house 25 cells.
As it was anticipated at the beginning of the chapter the sample-based algo-

rithm was picked for path planning purpose, due to some interesting properties
that can be useful to achieve the set objective.

One of the first advantages that these algorithms display is that, unlike graph-
based, they use an implicit representation and, therefore, the structure of the graph
is not known a priori as they randomly sample a set of states.

This feature determines their speed in building a graph as well as the fact that
trying to simulate the same task twice in a row, i.e. the same starting and ending
point, two different paths are most likely to be found.

Since the computational time that the algorithm needs to find a feasible path
is very short, as underlined in [7], additional heuristics are used to improve the
solution, in many field implementations of sampling-based algorithms. This feature
opens the way to subsequent checks, for example, on the slope and its variation
along the entire path as in our case.

The other fundamental feature is that the nodes are selected starting from
random numbers generated by a certain seed. When changing the seed, as a
consequence, also the generated path will be different for each single test.

This leads to two obvious but fundamental considerations. The first is that
using the same seed with the same start and end coordinates the same path will
always be generated. It must also be considered that, given the speed at which
the algorithm can build a graph, it is possible to have a different path by changing
the seed for each cycle, in a sort of trial-and-error version of the algorithm.

In detail, the algorithm used for this thesis work is an optimal version of the
RRT called RRT* proposed by Sertac Karaman and Emilio Frazzoli in [5] and [6],

27

Materials and Methods

that ensures asymptotic optimality, with respect to a given cost function, while
maintaining the same properties and the same complexity of the basic RRT.

In particular in [5] the authors demonstrate that the RRT algorithm converges
to a non-optimal solution with probability 1 and an RRT* version is proposed that
results optimal for systems without differential constraints.

In the second article [6] Karaman and Frazzoli extend the properties of RRT*
to achieve optimal results even with systems with differential constraints by iden-
tifying a set of conditions sufficient to ensure asymptotic optimality. The following
example consists of the problem presented by them.

Given the domain X, obstacle region Xobs, goal region Xgoal and a smooth
function f that describes the system dynamics, find a control u ∈ U with domain
[0, T] for some T ∈ R > 0 such that the unique corresponding trajectory x ∈ χ,
with ẋ(t) = f(x(t), u(t)) for all t ∈ [0, T]:

• avoids the obstacles, i.e., x(t) ∈ Xfree for all t ∈ [0, T];

• reaches the goal region, i.e., x(T) ∈ Xgoal;

• and minimizes the cost functional J(x) =
∫︁ T

0 g(x(t)) dt.
In terms of algorithm, the extended version partly takes up what was reported

in Chapter 1 in subsection 1.2.4 for the RRT algorithm, adding a part of the
procedure that we report in Algorithm 4 in detail.

As before, only the initial vertex xinit is inserted into the set of vertices V at
first, while the set of edges E is left empty. In iterative mode, there is a random
sample from the Xfree space, called zrand and then the tree branch is extended by
adding this sample to the vertex set.

In the extended version through the Nearest function the vertex closest to the
sample is searched, which will be called znearest. Then a trajectory is searched
through the function Steer, which will be called xnew, between the near vertex and
the sample, to define the final state of the newly found trajectory as znew.

If the trajectory falls entirely in an area without any obstacles, then znew is
added to the set of vertices V. Then the cost of this vertex, calculated through the
function Cost(znew), is defined as the minimum cost cmin and the vertex znearest is
set as a minimum vertex (zmin).

The set of vertices that are close to znew called Znearby are found by means of
the function NearVertices and for each of these vertices defined as znear a trajectory
with znew is to be found where the sum of the cost of the vertex Cost(znear) plus
the cost of the trajectory J(xnear) is lower than the one previously found.

Anything provided that the trajectory belongs to an unobstructed area. Once
the new vertex znew is inserted into the tree together with the edge connecting it
to its parent, the extend operation also attempts to connect znew to vertices that
are already in the tree.

28

Materials and Methods

Algorithm 3: The RRT* algorithm.
V ← {zinit}; E ← ∅; i ← 0;
while i < N do

G← (V, E);
zrand ← Sample(i); i ← i+1;
(V, E)← Extend(G, zrand);

end

Algorithm 4: Extended procedure of the RRT* algorithm.
V’ ← V; E’ ← E;
znearest ← Nearest(G, z);
(xnew, unew, Tnew) ← Steer(znearest, z);
znew ← xnew(Tnew);
if ObstacleFree(xnew) then

V’ := V’ ∪ {znew};
zmin ← znearest; cmin ← Cost (znew);
Znearby ← NearVertices (G, znew, |V |);
for all znear ∈ Znearby do

(xnear, unear, Tnear) ← Steer(znear, znew);
if ObstacleFree(xnear) and xnear(Tnear) = znew then

if Cost(znear) + J(xnear) < cmin then
cmin ← Cost(znear) + J(xnear);
zmin ← znear;

end
end

end
E’ ← E’ ∪ {(zmin, znew)};
for all znear ∈ Znearby \ {zmin} do

(xnear, unear, Tnear) ← Steer (znew, znear);
if xnear(Tnear) = znear and ObstacleFree(xnear) and Cost(znear) >
Cost(znew) + J(xnear) then

zparent ← Parent(znear);
E’ ← E’ \ {(zparent, znear)};
E’ ← E’ ∪ {(znew, znear)};

end
end

end
return G′ = (V ′, E ′);

29

Materials and Methods

2.2 Maps
As previously mentioned, representation is an important, if not vital, element for
the correct functioning of the algorithm.

Given the initial desire to create an autonomous UGV that collaborates with a
UAV (Unmanned aerial vehicle) two maps were then used, a DTM (Digital Terrain
Model) and a binary map that were extracted starting from a previously realized
point cloud, shown in Figure 2.2, resulting from an aerial survey performed by a
drone.

The maps here used refer to a vineyard in Baldicchieri d’Asti in the province
of Asti Piemonte.

Figure 2.2: Point Cloud of Baldicchieri Vineyard.

The rather recent technique consists in taking a series of high-resolution images
in sequence using a drone that flies over the area to be analyzed. Clearly visible
markers are positioned uniformly on the ground to accurately scale the survey
and to carry out checks on the accuracy returned in post-processing. The exact
position of each marker was previously measured with a GNSS receiver.

All the resulting images obtained are subsequently post-processed according
to the photogrammetric procedure consisting of various algorithms including SFM
(Structure From Motion) and image matching. In this way a 3D model is obtained,
from which to derive the orthophoto and the DTM.

Orthophotos, DSM and DTM can be generated through different functions, as
described in [15], from the three-dimensional model. The binary map has been
realized in two steps.

30

Materials and Methods

Figure 2.3: Final orthophoto generated through the series of high-resolution images
of the vineyard.

In the first one the difference between the altitude values of the digital model of
the surface and the terrain is computed using a function of the ArcMap software,
called Raster mathminus.

The second step involves the use of a tool called Raster Reclass classifying
certain elements in two categories according to the values of the selected thresholds.

The two categories either refer to positions with or without obstacles. The
threshold values that were selected for the two categories refer to all the elements
whose height difference is below 0.5 cm and all those whose height difference falls
above the 0.5 cm threshold respectively.

Both maps, in Figure 2.4, are in GeoTiff format and georeferenced with a
0.01-0.02 meters accuracy along the plane and 0.02-0.03 meters in altitude.

In the final phase of the project, given the period of restrictions due to the
covid-19 pandemic, running the validation tests where the case study actually is
was very hard, therefore, we opted to carry them out in an airfield near Rivoli in
the province of Turin.

This site neither has vineyards nor a particularly rough terrain, unlike the
case study. Since the conformation and the specificities of the vineyard had to be
replicated, the DTM and the starting orthophoto of the airfield were modified as
follows:

31

Materials and Methods

Figure 2.4: (a)Spectral view of the DTM, (b)Base mask of the vineyard.

1. the orthophoto shown in Figure 2.5a was modified through QGIS, shifting
from three bands to one;

2. two polygonal shape files were created using the function offered by QGIS,
one is a rectangular section of the modified orthophoto that occupies almost
all the useful terrain of the airfield and some polygonal vectors having the
same size and shapes like vineyard rows were also created, to be placed as
obstacles;

3. using the Symmetrical difference function between the two shape files, a
third then is generated in practice, in other words the base ground minus
the vineyard rows we have subtracted;

4. the binary mask shown in Figure 2.5b is generated using the rasterize func-
tion, setting the parameters as shown in Table 2.1;

5. the DTM is cut out using the same dimensions of the raster of the binary
map.

Obviously both the DTM and the mask files were set with the same resolution
used for the Baldicchieri’s map (0.1 m).

32

Materials and Methods

Table 2.1: Setting the correct parameters of the Rasterize function for creating
the binary map.

Parameters Value
Input layer Final shape file
A fixed value to burn 1
Output raster unit of measurement Georeferenced units
Horizontal resolution 0.1
Vertical resolution 0.1
Extension Same as the input layer
Output data type Byte

(a) Orthophoto of the flying field (b) Binary mask

Figure 2.5: (a) Orthophoto and (b) binary mask of the flight field near Rivoli
(TO).

2.3 Unmanned ground vehicle
One of the significant and necessary element to choose is the UGV to be used for
both the simulations and the field tests. First of all, a definition and a glimpse
of what is the UGV landscape will be provided. The term UGV defines a land
vehicle without the physical presence of people in control. This type of vehicle is

33

Materials and Methods

used in many fields and applications and three main types of vehicle control can
be pinpointed as described in [13]:

1. manual, in which direct signals are usually sent to the vehicle actuators by
means of a remote radio control;

2. supervisory control, where a human supervisor gives very general commands
to the vehicle remotely and the vehicle can perfectly interpret those com-
mands and break them down into simple, more detailed actions. At the
same time the supervisor can check if the vehicle is performing the task cor-
rectly. This level of control represents an intermediate stage between manual
and fully automatic control;

3. automatic, in which the vehicle can interact with the surrounding enviroment
and make decisions autonomously on the base of the assigned task.

The most classic areas of use are those where a unmanned vehicle must be used
for hazardous tasks such as the defusing of a bomb or the treatment of dangerous
material, or if the place to reach is difficult to access for a human being or even to
better handle heavy objects. As a consequence, the areas of interest can range from
military, to extraterrestrial exploration or even civilian ones such as agriculture,
manufacturing, mining and emergency rescue missions.

The vehicle that was selected for this project is the Traxxas X-Maxx, a very
compact radio-controlled off-road vehicle, that can reach an over 80 km/h speed
on flat terrain.

This vehicle is chosen due to two main factors making it suitable for the final
application. The first of these two factor is the size of both the wheelbase and
the axle track reported in Figure 2.6 which ensures a particularly good rollover
stability even when the vehicle is climbing steep climbs and also provides a large
central surface, as can be seen in Figure 2.7, that can be used to install various
navigation components.

The second factor is represented by the combination of the four-wheel drive
with 4 high-performance GTX Alluminum Shocks suspensions that give the vehicle
excellent traction and stability even on rough terrain. Another interesting aspect
of this vehicle is its turning radius, so that allows for maneuvering even in small
spaces. Considering a maximum turning angle of θ = 35°, the minimum turning
radius is calculated as follows:

radius = wheelbase

tan(θ) = 0.69m (2.1)

All the other specifications of the vehicle are reported in the Table 2.2 below.

34

Materials and Methods

Figure 2.6: Traxxas X-Max external dimensions

Figure 2.7: View from above of the internal anatomy of the Traxxas X-Max.

The vehicle here presented, was not originally ready for sensors to be installed
on, therefore, some adjustments were made. Firstly, the upper body and its bearing
structure were disassembled to have bare structure as shown in Figure 2.7. Then
a custom made fiberglass support plate was made, to be used as a base to install
the sensors and the flight controller with the addition of two other smaller plates
mounted above the base plate, on the front and rear axes respectively, as shown
in Figure 2.8.

This configuration, although not definitive, allowed us to have a comfortable
support surface so that the sensors were configured more freely, and some room
was made avaiable to install additional sensors in the future, for the vehicle to be

35

Materials and Methods

Table 2.2: Detailed list of all the vehicle specifications.

Components or Features Specifications
Length 30.67 inches (779mm)
Front Track 22.26 inches (540mm)
Rear Track 20.66 inches (525mm)
Ground Clearance 4 inches (102mm)
Weight 19.1lbs (8.66kg)
Height (ride) 13.79 inches (350mm)
Wheelbase 18.92 inches (480mm)
Shock Length 7.4 inches (187mm)
Tires (pre-glued) 8.0x4.0 inches (203mm)
Wheels 4.3x5.7 inches (110x145mm)
Wheels Hex Size 24mm splined hex
Speed Control Velineon VXL-8s
Motor (electric) Velineon 1200XL
Transmission Single-Speed
Overall Drive Ratio 8.11 (stock, out-of-box)
Differential Type Sealed, Hardened Steel Bevel,

Limited Slip
Gear Pitch 1.0-Pitch
Chassis Structure/Material Composite Nylon Tub
Brake Type Electronic
Drive System Shaft-Driven 4WD
Steering Bellcrank
Radio System TQi™ 2.4GHz Transmitter

with TSM® receiver™
Servo Torque: 365oz.

Speed: 0.17 sec/ 60 degrees(6.0V)
Top Speed 50+ MPH with two 4s LiPo batteries

and optional pinion gear
Skill Level 6
Battery Tray 197mm x 51.5mm x 44mm
Required Batteries 4 “AA” (transmitter)

enhanced.

The upper plated that was mounted on the rear axle of the vehicle is a highly
remarkable detail since it leaves some room to mount the antenna of the GNSS

36

Materials and Methods

Figure 2.8: Vehicle with its custom made fiberglass backing plate.

module, which will be discussed in detail in the hardware section of this chap-
ter. The antenna is placed in a raised position thus favouring the reception of
satellite signals and coincides exactly with the position in which the waypoints are
calculated in the algorithm.

Then some holes were drilled both on the base plate, to let the flight controller
power, steering and throttle control cables pass through, and on the rear top plate
to secure the GNSS module antenna. The final result can be seen in Figure 2.9.

37

Materials and Methods

Figure 2.9: UGV final configuration.

Figure 2.10: UGV connections diagram [2].

38

Materials and Methods

2.4 Software
With reference to chapter 1, in particular with Figure 1.1, there are three main
types of software needed for the application:

• a software responsible for acquisition, recording, analysis, display, sharing
and presentation of the information resulting from the geographic data to
correctly generate the representation layer, this type of system is called GIS
(Geographic Information System);

• an IDE (Integrated development environment) working efficiently with large
vector or matrix data (deriving from raster maps), that can implement and
simulate algorithms, plot graphics and generate the code in the most suitable
language for the chosen hardware in case an embedded implementation is
required;

• a GCS (Ground Control Station) software transmitting the useful informa-
tion, which resulted through the algorithm, to the flight controller and receive
the information from the sensors on board, in order to supervise the mission
and various parameters in real time.

GIS As regards the GIS software, it was decided to use one of the most popular
software in this field known as QGIS. QGIS is an open source GIS desktop appli-
cation, the project was born in 2002 from a Gary Sherman’s idea and subsequently
incubated by the Open Source Geospatial Fundation in 2007.

Its first version was officially released in January 2009, the last stable pub-
lished version is 3.12 Bucuresti of February 2020. The software is published as
cross-platform and is available for MacOS, Linux, UNIX, Microsoft Windows and
Android.

This software was mainly used to analyze the raster maps and the point cloud of
the vineyard, adapt the resolution and size of the DTM from the previously created
binary mask and store these files in GeoTiff format, which allows for embedding
geographic references within a Tiff image.

Potentially, it can include projections, ellipsoids, datums, coordinates, and
everything else needed to establish the exact spatial reference for the file. Storing
files in GeoTiff format was useful to georeference raster maps within the developed
algorithm.

IDE The algorithm was developed thanks to a well know software known as
MATLAB, also used for numerical computation and statistical analysis. This
software was created in the late 1970s by Cleve Moler, who together with two

39

Materials and Methods

other engineers rewrote MATLAB in C language and founded The MathWorks in
1984. The main features of this software are:

• its ability to manipulate matrices in an easy and intuitive way;

• its ability to visualize functions and data in detail with highly customizable
plots;

• the possibility of implementing algorithms;

• its ability to create user interfaces;

• the possibility to interface with other programs;

• the possibility of generation and verification procedures in C/C++ for pro-
totyping, implementation and integration of the software;

• its extensive library of functions and several toolboxes that greatly facilitate
the development of algorithms and control systems for applications in various
fields;

• the possibility to use NVIDIA® GPUs to accelerate the activities of artificial
intelligence, deep learning and other computationally expensive analysis.

MATLAB is used by millions of people in the industrial and the academic world
industry due to its wide range of tools to support the most diverse applied fields
of study and runs on a variety of operating systems, including Windows, Mac OS,
GNU/Linux and Unix. The choice of the programming environment was dictated
by three essential factors:

1. matrices and vectors, widely present considering how the nature of the rep-
resentation was conceived, had to be easy to manipulate;

2. its ability to read GeoTiff files, work separately on the matrix of values
and other geographic information in the GeoTiff format, and merge all this
information to create a cost map where to navigate;

3. the inner presence of the RRT* algorithm, identified in the previous para-
graph 2.1 as the basic starting algorithm to achieve the final objective, with
the possibility to modify the main parameters simply and intuitively.

40

Materials and Methods

GCS The third necessary element is the identification of a Ground Control Sta-
tion that can plan, monitor and correct the autonomous driving operations of the
vehicle starting from what the algorithm provides, the georeferenced waypoints,
in our case.

Starting from this assumption, the choice fell on Ardupilot’s Mission Planner
Figure 2.11 that is a free, open-source, community-supported application designed
and built by Michael Oborne for Plane, Copter and Rover controll in 2010.

Figure 2.11: Home of Mission Planner software overlooking the Baldicchieri d’Asti
vineyard.

It is arguably one of the most comprehensive open-source GCS and offers all
the configuration and analysis tools needed for vehicle control. This GCS can
perform many different tasks, here are some of the key ones:

• load the firmware into the autopilot board (i.e. Pixhawk series) that controls
your vehicle;

• setup, configure, and tune your vehicle for optimum performance;

• simulate planned missions through the SITL (Software In The Loop) simu-
lator;

• plan, save and load autonomous missions into you autopilot with simple
point-and-click way-point entry on Google or other maps;

• download and analyze mission logs created by your autopilot;

41

Materials and Methods

• interface with a PC flight simulator to create a full hardware-in-the-loop
UAV simulator;

• monitor your vehicle’s status while in operation;

• record telemetry logs which contain much more information the the on-board
autopilot logs;

• view and analyze the telemetry logs;

• operate your vehicle in FPV (First Person View);

One of the fundamental features of this GCS software is its ability to import
waypoints files to plan the mission. The GCS will be provided with the detailed
information of the flight plan that the algorithm offers us, through this method.

MAVLink is a communication protocol used by Mission Planner, a very lightweight
messaging protocol to communicate with drones (and between onboard drone com-
ponents). Reading the protocol guide we see that the waypoints format that the
software can read is a structured text format as shown in Figure 2.12 where the
first line contains the file format and version information, while the subsequent
line(s) are mission items.

Thanks to this, it can be ensured that the output of the algorithm is a text file
containing the waypoints of the mission and it can be uploaded to the GCS easly
and quickly.

Figure 2.12: Waypoints file format from MAVLink guide.

2.5 Hardware
For the vehicle to move around autonomously, some hardware components adapt-
ing to the needs of the project (information/instructions provided by the algo-
rithm) and act as an intermediary between the software part and the actuators of
the vehicle are required.

The thesis work of a colleague [2], carried out with the same intent, precision
positioning, was considered for the set of hardware components, their installation

42

Materials and Methods

and the setting of their fundamental parameters. Therefore only the main aspects
will be reported, for all the details refer to the aforementioned thesis.

Referring to the choices made in terms of software where Ardupilot’s Mission
Planner was identified as Ground Control Station, the same software guide recom-
mends using Pixhawk 1 as flight controller, reported in Figure 2.13.

The other necessary nevigation peripherals were some of those recommended
by the guide given the plug&play compatibility.

Figure 2.13: Pixhawk 1

Pixhawk The Pixhawk 1 autopilot is a flight controller based on the FMUv2-
Pixhawk hardware project (combines the functionality of PX4FMU + PX4IO) and
runs the PX4 code on the NuttX operating system, all the specifications on this
product can be found in table 2.3.

The feature of this autopilot that is most interesting to the goal of this work, it
is its support to the redundancy of GNSS modules and inertial measurement units
(IMUs). The necessary peripherals identified in [2] to complete the operational
configuration are:

• a high-performance Piksi Multi GNSS module;

• a GNSS module with U-Blox chip and integrated compass (used as secondary
module);

• two radios for telemetry, operating on the 433 MHz frequency;

• a power supply module (Battery Eliminator Circuit - BEC);

• an 8Gb micro SD memory card;

43

Materials and Methods

• a Safety Switch + LED;

• an audio buzzer;

• a FrSky X4R model receiver, with S.BUS OUT1 channel;

• a radio transmitter model FrSky Taranis X9D Plus;

• wiring with JST-GH connector at one end and DF-13 at the other;

• support with 4 anti-vibration dampers.

Table 2.3: Pixhawk 1 Specifications

Component Specifications
Processor 32-bit ARM Cortex M4 core with FPU

168 Mhz
256 KB RAM
2 MB Flash
32-bit failsafe co-processor

Sensors MPU6000 as main accel and gyro
ST Micro 16-bit gyroscope
ST Micro 14-bit accelerometer/compass (magnetometer)
MEAS barometer

Interfaces 5x UART serial ports, 1 high-power capable, 2 with HW flow control
Spektrum DSM/DSM2/DSM-X Satellite input
Futaba S.BUS input (output not yet implemented)
PPM sum signal
RSSI (PWM or voltage) input
I2C, SPI, 2x CAN, USB
3.3V and 6.6V ADC inputs

Characteristic External safety switch
Multicolor LED main visual indicator
High-power, multi-tone piezo audio indicator
microSD card for high-rate logging

1The presence of the S.BUS OUT (or PPM OUT) channel allows you to forward the inputs
of the transmitter to the flight controller, remembering that as you can see from the Pixhawk
specifications table 2.3 there is only the S.BUS input.

44

Materials and Methods

GNSS module The other hardware component that is fundamental for this
thesis work is the aforementioned high performance GNSS module Piksi Multi
Figure 2.14 made by the American Swift Navigation company. This type of mod-
ule, as already mentioned in section 1.1 dedicated to sensors, improve the integrity,
accuracy and availability of GPS.

Figure 2.14: Piksi Multi board.

The module was chosen for its peculiar characteristics that make it suitable for
the purpose such as dimensions, weight, its ability to determine the position quickly
(necessary element in controlled navigation via satellite positioning systems) and
compatibility with the Pixhawk flight controller. In detail, the main features are:

• centimeter accuracy;

• receiving RTK corrections;

• dual frequency multicostellation receiver;

• robustness of positioning information;

• rapid convergence to the RTK solution;

• low latency of solutions, <30 ms;

• adaptable interfaces: UART, Ethernet, CAN, USB;

• communication protocols: Swift Binary Protocol (SPB) and NMEA 0183

• integrated Micro Electro Mechanical Systems (MEMS) IMU and magne-
tometer;

45

Materials and Methods

The above mentioned RTK corrections are necessary for precision guidance
and result from a differential technique called Real Time Kinematic. Since the
understanding of how the technique works is beyond the scope of this thesis, a
brief summary is provided below.

Two or more receivers are used in this technique, in which one of the two called
master station is positioned in a fixed way in a known point acquiring its coordi-
nates in a precise way and calculating the Pseudorange correction (PRC) and the
Carrier phase correction (CPC) and transmitting the aforementioned corrections
almost instantaneously to the receiver mounted on the vehicle so as to greatly in-
crease its accuracy. As underlined in [2] the rapid convergence to the RTK solution
is of great importance in case the signal is lost when the navigation start and the
fact of being a multi-constellation module increases the robustness of the solution
and it also ensures a significantly better performance in environments with poor
or hindered sky visibility.

The other interesting aspect in the use of this product is that two L1/L2/L5
GPS/GLN/BDS survey antennas reported in Figure 2.15 are also included in the
Piksi Multi kit. These antennas are well-performing given the possibility of using
the GPS L5 signal providing a safe and robust radio navigation means for crit-
ical applications. The signal is broadcast in a frequency band protected by the
ITU for aeronautical radio-navigation services. The L5 band providing additional
robustness in the form of interference mitigation, the band being internationally
protected, the redundancy with existing bands, the geostationary satellite aug-
mentation, and the ground-based augmentation are all valid aspects for both land
and non-land vehicles, but given their dimensions, antennas like these are rarely
used on medium and small drones.

Figure 2.15: Piksi Multi survey antenna by Swift Navigation and its dimensions.

46

Chapter 3

Code

The main objective of the developed Code is to provide a text file, where the way-
points are saved, which can be immediately load on the Ground Control Station.
This, however, is not the only thing that is aimed to achieve, as already mentioned
in the introduction. In fact, since the environment where the rover will move is
a predominantly uneven terrain, the most relevant purpose of this project is the
creation of a tool providing a safe path in terms of vehicle stability and trying to
minimize the distance between the starting and the arrival points.

Identifying the basic algorithm and the type of representation to use was the
most demanding task of this work. At first, a more complex representation of the
environment had to be provided, probably through the use of cameras or tools like
lidar, to create a representation directly in 3D in real time or offline.

However, two problems arose during the early stages of the thesis work, the
first was the Italian national lockdown in early March, which made impossible any
vehicle sensor testing, and spread a great deal of confusion, in general. The second
problem was the size and therefore the excessive weight of the map as a point
cloud. For these reasons, the method of representation through raster maps was
adopted, as described in section 2.2.

The basic idea was to build a code allowing the user to interactively select
the start point, the end point and even possible intermediate points on the map
to have the algorithm iteratively searching a complete route, checking thoroughly
every single pose, to guarantee a certain stability, if high precision standards for
the map are met.

This is because, as it happens most path planners based on a representation of
this type, in non-perfectly planar environments, the controller does not grasp that
the vehicle configuration prevents the same to run that route, and so the wheels
receive too much or too little torque or, in general, this leads to an unnatural
reaction and may drift the vehicle off the planned route.

An overview of the highly articulated logic and the full development of the code

47

Code

Figure 3.1: High-level code flow chart.

is better schematized in the flow chart shown in Figure 3.1, where the process is
split into four fundamental sections.

• The first one regards which specific parameters will better adapt the part of
the code meeting the user’s needs and those of the environment to navigate.

• The second section is dedicated to the loading of Geotiff files regarding the
raster maps and the consequent creation of the cost map.

• The third section concerns a part of the code that allows the user to inter-
actively select the points on the cost map to easily designate the initial and
the final positions and any intermediate points, with the consequent creation

48

Code

of a table to store the coordinates so that the algorithm can work on one
section of the route at a time.

• The last section is the heart of the whole code, the main loop performing
different tasks, including planning and controlling in a trial and error version,
as it will be explained in the next section.

3.1 Code detailed explanation

3.1.1 Parameters Settings
Some parameters, affecting the whole code, are initialized in this first section. All
the parameters and variables that must be configured and tuned to make the code
work properly are listed in Table 3.1.

The first and perhaps most important parameter of the code is called Pla-
narDiff. This variable indicates the tolerance, expressed in meters of difference
between one pose and the next, for both the control on the slope and its variation.

In this case, the 0.1 meter value proved to fit perfectly with this map in terms
of trade-off between computation time and the average slope level of the terrain,
but this value may be insufficient or too strict in other environments other than
the specific case.

Obviously, applying increasingly stringent values, the computation time in-
creases dramatically and no path may fall within the selected parameters in some
cases.

This parameter is closely related to another one called PoseDistance. This
represents the maximum distance imposed to the RRT* algorithm to connect two
successive poses. This makes clear how, if the distance between the two points and
their maximum height difference is know in advance the slope and its variation
can be controlled.

This assumption is certainly valid as long as the distance between the two
points remains below a cartain value. This is the reason why the map and the GPS
measurements must be fairly accurate and precise. The usage of the mentioned
values for these two parameter leads to the ideal construction of a maximum slope
that is graphically visible in Figure 3.2.

A series of parameters is then used to build the vehicle and the map to simulate
within. The first of these series, called Cellsize, represents the side length of each
square cell forming the grid to build the cost map. This parameter is dictated by
the size of the pixels constituting the raster maps, even if the resolution is editable
through QGIS, a certain compromise with the accuracy value of the tools with
which the maps were created has to be found.

49

Code

Table 3.1: Parameters Settings

Parameter Value
PlanarDiff 0.1
Cellsize 0.1
PoseDistance 0.3
VehicleDims refer to Figure 2.2
ObstacleIR 0.4
maxtrial 3
DynamicIterations 8
surfsize 3
WeightMatrix [1,1,1; 1,3,1; 1,1,1]
utmzone 32T
WPdistance 2
DistEffThreshold 1.3
SeedDestination ’File name.txt’
MissionWPDestination ’File name.txt’

The other two parameters for the construction of the map are VehicleDims and
ObstacleIR, the first refers to an object created by matlab called vehicleDimensions
allowing to insert and store the dimensions of the vehicle, including a very complete
description of it, as can be seen in Figure 3.3.

Figure 3.2: Visual example of what type of slope can result using the same value
used in the code.

The second parameter, where the name stands for Obstacle inflation radius,
was introduced. This parameter is used to modify the radius created by the ve-
hicleCostmap function around obstacles, as can be seen in Figure 3.4, to prevent

50

Code

the vehicle from approaching them during the simulated creation of the route and
therefore also in real navigation.

This function is usually based on the parameters regarding the size of the
vehicle, for the radius to be calculated, but since this was the only parameter to
operate on, in case this had to be increased for the sake of safety or decreased for
other factors, it was decided to maintain some sort of differentiation between the
vehicle inflaction radius and that of the obstacles.

Therefore the parameter might be modified according to the users’s personal
needs knowing that the choice is also a function of how well the main binary mask
is made, the recommended values for the vehicle used range from 0.35 to 0.5.

Figure 3.3: Vehicle parameters can be edited using the vehicleDimensions object
(https://it.mathworks.com/help/driving/ref/vehicledimensions.html).

Then a series of useful variables is configured for the main loop part. Two of
these are counters whose only purpose is to dynamize the algorithm, in the sense
that if there is no valid solution for the path within a certain number of cycles, a
series of parameters and thresholds, that could increase the probability of finding
a valid path, automatically update. These are maxtrial and DynamicIterations,
and their exact function will be later explained with the part about the main loop.

The other two parameters are used to define: the size of the contact surface
of the wheels to be taken into account and the weighed value of each individ-
ual cell within the chosen contact surface. They are surfsize and WeightMatrix
respectively.

The last five parameters are used to import and save seeds and waypoints cor-
rectly. The first of these is called utmzone and is used to specify the geographic
area of the map to be used with UTM coordinates and then convert them into

51

https://it.mathworks.com/help/driving/ref/vehicledimensions.html

Code

Figure 3.4: Visual representation of the inflated area around an obstacle, the
obstacle is the one in deeper red at the center of the grid (https://it.mathworks.
com/help/driving/ref/vehiclecostmap.html).

Geographic coordinates, used by the Mission Planner. The variable called WPdis-
tance is used to write only a portion of the waypoints effectively found by the
algorithm. The third one is called DistEffThreshold and is a coefficient working as
a discriminator to possibly save path found in the seeds file. The remaining two
only pinpoint the destination text file name for seeds and waypoints respectively.

3.1.2 Map Generation
Two functions provided by MATLAB for this type of work are used in the section
about the construction of the cost map. The first is geotiffread that, as the name
suggests, reads a georeferenced grayscale, RGB, or multispectral image or data
grid from a specific GeoTIFF file and creates a spatial referencing object, so that
only the grayscale image is saved in a matrix and all the other relative data of the
map are stored in another structure.

The map data are stored in an object structure called MapCellsReference by
MATLAB containing information shown in Table 3.2.

This function is used for both the mask raster and the DTM raster. It should
be noted that MATLAB does not recommend the use of this function and suggests
the usage of a new one present in the 2020b version called readgeoraster, but the
first one had to be used since the version used in this project is the 2019b.

The second function offered by MATLAB is called vehicleCostmap and creates
a costmap representing the planning search space around a vehicle. It therefore
contains information about the surrounding environment and possible obstacles as
well as areas that cannot be traversed by vehicle.

The cost map is stored as a 2-D grid of cells. Each grid cell in the cost map

52

https://it.mathworks.com/help/driving/ref/vehiclecostmap.html
https://it.mathworks.com/help/driving/ref/vehiclecostmap.html

Code

Table 3.2: MapCellsReference object stucture.

Propertiy Value
RasterInterpretation ’cells’
XIntrinsicLimits [0.5,854.5]
YIntrinsicLimits [0.5,2622.5]
CellExtentInWorldX 0.1
CellExtentInWorldY 0.1
XWorldLimits [427691.48,427776.88]
YWorldLimits [4973555.05,4973817.25]
RasterSize [2622,854]
ColumnsStartFrom ’north’
RowsStartFrom ’west’
RasterExtentInWorldX 85.4
RasterExtentInWorldY 262.2
TransformationType ’rectilinear’
CoordinateSystemType ’planar’

has a value ranging from 0 to 1 representing the cost of navigating through that
grid cell as can be seen in Figure 3.5. The status of each grid cell is free, busy or
unknown.

Figure 3.5: Example of how the vehicleCostmap function works on the costruc-
tion of the occupancy grid (https://it.mathworks.com/help/driving/ref/
vehiclecostmap.html).

The possible input arguments and the editable properties of this function are
shown in Table 3.3. As you can see from this table, these were used as input only:

53

https://it.mathworks.com/help/driving/ref/vehiclecostmap.html
https://it.mathworks.com/help/driving/ref/vehiclecostmap.html

Code

the C-Cost values, specified as a matrix of real values in the range [0, 1] called Map-
Matrix which is nothing but the matrix obtained through the geotiffread function,
and mapLocation where the first element of the XIntrinsicLimits and YIntrin-
sicLimits vectors from the previously obtained structure MapCellsReference was
inserted, corresponding to the initial coordinates of the map.

These data are used to georeference the map, since the size of cells of the chosen
cost map are the same size as the pixels of the map, this perfect match provides
us with a correct georeferencing. In the part about properties, in fact, the variable
described in the previous section 3.1.1 called Cellsize was inserted as avalue for
the CellSize parameter.

Table 3.3: List of inputs and properties that the vehicleCostmap function provides
to obtain a cost map according to specific needs.

Arguments Name Assigned Value
Inputs C (Cost values) single(MapMatrix)

mapWidth (not used)
mapLenght (not used)
costVal (not used)
occMap (not used)
mapLocation [XWorldLimits(1) YWorldLimits(1)]

Properties FreeThreshold 0.2 (default)
OccupiedThreshold 0.65 (default)
CollisionChecker inflationCollisionChecker (default)
MapExtent [xmin xmax ymin ymax] (default)
CellSize Cellsize
MapSize [nrows ncols] (default)

The properties of the CollisionChecker are then updated with the previously
selected values regarding the vehicle size and the inflation radius of the obstacle
called VehicleDims and ObstacleIR respectively. The cost map shown in Figure 3.6
is plotted on screen as the last step of this section. This map plot will be useful
in the next section to enter the coordinates of the route.

54

Code

Figure 3.6: Plot of the georeferenced cost map.

3.1.3 Map Positioning
The third section of the code regards the positioning part on the map and consists
of the coordinates of the start, end and intermediate points, by defining these the
total route plan can be subsequently created. The coordinates on the axes of the
map can be identified through the ginput function provided by MATLAB, moving
the cursor to a certain location and press either the mouse button or a key on the
keyboard. The right button of the mouse must be pressed to stop selecting the
points.

55

Code

This function has a structure thanks to which the x and y coordinates can be
stored in a vector. The structure of the route plan table is reported in Table 3.4.

Table 3.4: Global route plan table example where with Midn we indicate the n-th
intermidiate point.

StartPose EndPose Attributes
StartX, StartY, Startθ Mid1X, Mid1Y, Mid1θ Attributes
Mid1X, Mid1Y, Mid1θ Mid2X, Mid2Y, Mid2θ Attributes
Mid2X, Mid2Y, Mid2θ Mid3X, Mid3Y, Mid3θ Attributes
Mid3X, Mid3Y, Mid3θ EndX, EndY, Endθ Attributes

In the table it is shown that in the nth row there are three elements representing
the n-th section of the route to search for: the starting position, the finishing
position and a part about attributes.

The attributes part is nothing more than a structure where some parameters
such as the maximum allowed speed and the speed to reach the end point of the
route section are indicated.

The so built table structure of the route plan is necessary given the subsequent
use of a class of help provided by MATLAB called HelperBehavioralPlanner which
acts as a simplified behavioral layer in a hierarchical planning workflow, whose
operation will be explained in the next subsection about the main loop.

In addition to the above, a cellular structure called TotalRefPath was also
created, to save every single segment, of each section of the path, between one pose
and another, to make it easier for us to compile the text file with the waypoints.

3.1.4 Main Loop
The fourth section is about the main cycle but before describing it some variables,
initialized before the cycle starts, need to be explained in detail. The first of these
is the behavioral planner, whose important function is to call each segment of the
path once the search for the previous one is over.

This processs is managed thanks to the help block called HelperBehavioralPlan-
ner that needs the table structure of the route plan and the value of the maximum
steering angle, matching the one described in section 2.3 about the vehicle used,
as input.

The initial speed of the vehicle, assuming this starts its navigation from stand-
still, is set equal to zero. The counter that will save each macro segment within the
previously explained structure called TotalRefPath, and the variable called Seed-
Variation, which was initially set to zero, are then updated. The latter will help
with the random variation of the seed at each internal cycle.

56

Code

Figure 3.7: Simplified flow chart scheme of the main loop of the code.

Since the logic of the loop is articulated, a simplified flow chart of the main
loop is reported in Figure 3.7, i.e. what is inside the decision block, previously
shown in Figure 3.1, to have an initial overview of what will be explained in detail
below.

57

Code

The process starts with a while loop that will repeat as many times as the
number of macro segments of the route plan. All this thanks to an internal function
of the behavioral planner called reachedDestination telling whether the segments
to be calculated are over or not. Therefore, the loop is set as follows: until a valid
route to reach the final goal is found, do the following.

The coordinates and the various configurations (which you get from the At-
tributes section of the route plan) of the next manoeuvre are then saved through
another function of the behavioral planner called requestManeuver.

Some counters shown in Table 3.5 are also initialized. These will have different
purposes in the inner loop that will be tackled in due time.

Table 3.5: List of some useful counters for the inner loop.

Variable Initial value
slopetrial 1
slopedottrial 1
attempt 0
trial 0
attemptcount 1

Immediately afterwards, the specifically created function, named filescan, is
used to see whether the macro path segment resulting from the requestManeuver
function is present in the seed database or not. This function reads the text file
containing the seeds that were found and stored from previous simulations. The
input and output data are shown in Table 3.6.

Table 3.6: Input and output variables of the filescan function.

Input variables Output variables
SeedDestination flagSeed
currentPose DistEfficacy
nextGoal SlopeThreshold

SlopeDotThreshold
RNG
maxIterations

The names of the file to read, already mentioned in Table 3.1, the current
location vector of the vehicle and the next goal of the path segment are present as
inputs, in the reported order.

58

Code

The first output is called flagSeed and is useful to understand if the seed re-
ferring to the input coordinates of the macro segment is present or not. This flag
will be used to skip a part of the internal loop to immediately get all the poses of
that segment so we can move to the next one.

The other parameters are, in order: the value of the ratio between the real
length of the path and the Euclidean distance, the value of the two thresholds
found for that segment, the actual seed and the number of maximum iterations
with which the segment was found.

Therefore, if the value of the flag is 1, the segment is present in the database
and the information on the seed and the number of maximum iterations is directly
entered in the RRT algorithm* that immediately finds the segment to get directly
to what we called Process2 within the flow chart 3.7. If the value is 0, the segment
is not there and the inner loop must be entered to find a possible path.

Before starting internal cycle, if flagSeed is 0, further parameters shown in
Table 3.7 are initialized: the maximum number of iterations of the initial algorithm
and the three thresholds for slope, slope variation and roll, respectively.

Table 3.7: Parameters initialization needed in the internal loop.

Variables Value
TrajectorySearch True
maxIterations 10000
SlopeThreshold PlanarDiff/PoseDistance
SlopeDotThreshold SlopeThreshold
RollThreshold 30

The threshold for the variation of the slope was set with the same value of
the slope that can be seen in Table 3.7, this is for being more stringent with the
slope variation. For example, using what is shown in the Figure 3.2 as a reference,
the slope may shift from positive to negative, between one pose and another, and
according to the values set for the slope threshold, it would be possible to have a
variation that is two times bigger as shown in Figure 3.8 for pose 2.1.

On the contrary, by setting the same value for both the thresholds, the maxi-
mum variation is bounded to be like in Figure 3.8 for pose 2.2, the exact half. The
same holds for a change in slope that goes from negative to positive.

A while loop is used for the innermost loop, with the above mentioned Trajec-
torySearch variable, which continues as long as the loop is true.

This becomes false when in the found path there are no verse changes in the di-
rection vectors connecting the poses and when all the flags concerning the different
controls are equal to 0, that is they are not activated. In the Algorithm 5 we report

59

Code

Figure 3.8: Visual example of acceptable and unacceptable slope variation.

the first part of the internal loop until the second condition, which containing the
heart of the control, that will be explained later.

Algorithm 5: Inner Loop part 1.
while TrajectorySearch do

rng(’shuffle’);
Seed ← Seed + SeedVariation;
SlopeFlag ← 0;
SlopeDotFlag ← 0;
RollFlag ← 0;
if (attempt/attemptcount) ≥ DynamicIterations then

maxIterations ← maxIterations + 2000;
SeedVariation ← number · attemptcount;
attemptcount ← attemptcount + 1;

end
motionPlanner ← pathPlannerRRT ;
[refPath, tree] ← plan(motionPlanner,currentPose,nextGoal);
attempt ← attempt +1;
if isempty (PathSegments) /= 1 then

Process1 and Threshold checks;
end

end

What happens inside the while is the following:

• a random seed based on the pc clock is generated through the function
rng(’shuffle’) offered by MATLAB;

• the seed is updated by adding a variable called SeedVariation, that as said
in the first part of this subsection is equal to 0, but as we see in the first "if "
condition it is updated during the various cycles;

60

Code

• then the flags for the control of the thresholds are initialized;

• in the first condition it is required that every time the ratio between the
attempts and the counter (attemptcount) exceeds the value of the parameter
set at the beginning of the code called DynamicIterations, the number of
maximum iterations must be increased and the value of SeedVariation is
updated according to the counter, that will also be updated;

• an object called pathPlannerRRT is generated, it configures the vehicle path
planner based on the optimal rapidly exploring random tree (RRT*) algo-
rithm;

• the plan function, that plan vehicle path using RRT* path planner and save
in two vectors the segments of each pose and the ramifications, is then used;

• the counter attempt is updated;

• a final check on the status of path segments vector is made, to verify if it is
not empty.

In Table 3.8, are shown the properties of the pathPlannerRRT function that
refers to the algorithm of Karaman and Frazzoli [6] as described in chapter 2 in
section 2.1.

Table 3.8: Table of pathPlannerRRT properties.

Properties Value
Costmap map
GoalTolerance [0.1 0.1 3]
GoalBias (default)
ConnectionMethod Dubins (default)
ConnectionDistance PoseDistance
MinTurningRadius 1
MinIterations (default)
MaxIterations maxIterations
ApproximateSearch false

The Costmap parameter needs the previously created cost map called map as
input. GoalTolerance is used to indicate the tolerance within which the algorithm
is considered to have reached the target in terms of [x y θ].

ConnectionDistance represents the distance between one pose and the next
and the already discussed PoseDistance variable is then provided as an input,

61

Code

same thing for the MaxIterations parameter. While the last parameter called
ApproximateSearch is set to false, to increase the precision and accuracy of the
algorithm with which the vertices can be sampled.

The internal code is the focus of the following part. This code is visible in
Algorithm 6, regarding to what was defined as "Process1 " so far, in the flow chart
in Figure 3.7, and threshold controls.

If the path planner finds a path connecting the currentPose with the nextGoal
and therefore the PathSegments vector residing inside the refPath object is not
empty, the path control phase can be started. Firstly, the trial counter, showing
the successful attempts of the planner, is updated and then the Euclidean distance
between the initial and the final pose is calculated through the distance function.

The poses along the planned route of the vehicle are then interpolated, thanks
to the interpolate function which, besides providing us with transition poses, also
establishes a direction vector, whose 1 value indicates that the vehicle is making
a forward movement in that segment, while with -1 a reverse movement is made.

The transition poses are then associated to the center of the rear axis of the
vehicle and through the rear2front function, the corresponding coordinates in re-
lation to the frontal axis are calculated, assigning them to the FrontPoses vector.
Since the transitionPoses vector has the usual structure [x, y, θ], the above men-
tioned function takes respectively the x and y coordinates of the rear axle and adds
the product of the distance, between the rear center and the front called VFront-
FromRear, with the cosine and sine of the yaw angle of the vehicle respectively.

Subsequently, the exact coordinates of the center of each wheel, both front and
rear, are evaluated for each pose using the function called axle2wheel. This function
is conceptually identical to the previous one, the value of the angle changes, it can
be either −90◦ or +90◦ depending on whether the wheel is the right or left one
and the distance to consider is the one between the center of the wheel and the
center of the axis. An example of what results from the above steps is shown in
Figure 3.9.

Once the coordinates of the contact center of the wheels are found, these co-
ordinates must be connected with those of the matrix generated by the second
map, the DTM, containing the altitude information of the vineyard. The Coor-
dinate2matrix function, transforming the geographical coordinates found on the
main map into rows and columns to make them match with the second matrix of
the DTM as summarized in Figure 3.10, is used for this purpose. The meansur-
face function is then used to place the points found in the center of a matrix of
weights, that extends the contact surface of each wheel by a certain number of
cells, according to the value entered in the already mentioned surfsize parameter
and evaluates a weighted average. Therefore, this function provides us a weighted
average of the altitude values of the points of contact that each wheel has with the

62

Code

Algorithm 6: Inner Loop part 2 (related to what we have defined as
Process1).

if isempty (PathSegments) /= 1 then
trial ← trial + 1;
MinimumDistance ← distance(stateSpaceSE2,currentPose,nextGoal);
[transitionPoses, directions] ← interpolate(refPath,lengths);
RearPoses ← transitionPoses;
FrontPoses ← rear2front(RearPoses,VFrontFromRear);
FWheel ← axle2wheel(FrontPoses,HalfFrontAxle,90 or -90);
RWheel ← axle2wheel(RearPoses,HalfRearAxle,90 or -90);
FPoints ← Coordinate2matrix(map,FWheel);
RPoints ← Coordinate2matrix(map,RWheel);
FWheelSurf
←meansurface(FPoints,SlopeMatrix,surfsize,WeightMatrix);

RWheelSurf
←meansurface(RPoints,SlopeMatrix,surfsize,WeightMatrix);

FSlope ← slopefunction (PoseDistance,FWheelSurf);
RSlope ← slopefunction (PoseDistance,RWheelSurf);
FSlopeDiff ← diff (FSlope);
RSlopeDiff ← diff (RSlope);
FRoll ← rollfunction(FWheelSurf,Wheelbase);
RRoll ← rollfunction(RWheelSurf,Wheelbase);
if max(abs(FSlope or RSlope)) > SlopeThreshold then

SlopeFlag ← 1;
end
if max(abs(FSlopeDiff or RSlopeDiff)) > SlopeDotThreshold then

SlopeDotFlag ← 1;
end
if max(FRoll or RRoll) > RollThreshold then

RollFlag ← 1;
end
TrajectorySearch ← sum(abs(diff (directions))) ≥ 2 || SlopeFlag > 0 ||
SlopeDotFlag > 0 || RollFlag > 0;

end

63

Code

Figure 3.9: Visual example of wheel contact points resulting from a simulation
with MATLAB (the front of the vehicle points downwards).

Figure 3.10: Abstraction of the link created between the binary mask and the
DTM.

ground.
The choice, to extend the contact surface of each wheel by more than a single

cell, is determined by two considerations. The first is that the dimensions of the
wheel do not necessarely match those of a single cell (this could be both smaller
and larger as in the case of the vehicle used in this work). The second motivation
has to do with the fact that the center of contact of the wheel could not match

64

Code

that of the simulaton for different reasons, during the real mission on the field.
This little deviation, only of a few decimeters maybe, could lead one of the wheels
to unexpectedly end in a ditch or on a road bump.

This situation may trigger an unexpected behavior of the vehicle or lead to
a greater drift from the established route. The visual result compared to the
dimensions of the vehicle using the previously surfsize value is shown in Figure 3.11.

Figure 3.11: Visual result of the idea to use a 3x3 cells as ideal contact surface
compared to the vehicle used.

Once the averaged altitude value of each pose for each wheel are obtained using
the slopefunction function, the slope value of each segment between one pose and
the next is calculated and stored in a vector.

Since the distance between two successive poses is small and the value imagined
as punctual is averaged over a larger area, the slope value found with this technique
can be considered very close to the real slope that the vehicle will face while driving
through that segment.

Consequently, the slope variation that each wheel will undergo is evaluated
from this series of vectors, containing the slope information for each wheel, using
the diff function.

The analysis of this piece of information is very important, even more than
that on the slope, since a vineyard is rarely a perfectly flat terrain substantial
slopes are then common. However, the aim is to find a path allowing a stable

65

Code

crossing with no sudden holes or bumps that, as mentioned earlier, can lead to a
substantial deviation from the planned mission or make the vehicle unstable.

Especially for this reason, the threshold of the slope variation is much more
severe than the slope threshold.

In addition to these parameters, the rollfunction function, which is called im-
mediately afterwards, calculates the slopes percentage that the front and rear axes
will face. The evaluation of this parameter is necessary to check that the vehicle
does not experience a difference in slope between the right and left side, such as
to risk overturning.

Then, the fact that the maximum absolute value of the slope, its variation and
roll must fall within the chosen thresholds is verified through three conditional
instructions. In addition within the first two conditions, even if not reported in
Algorithm 6, it is also checked if the flags have already been activated a number
of times equal to maxtrial, through the above mentioned counters, slopetrial and
slopedottrial.

This additional control is added to make the code dynamic, which is to say
that if one of the two threshold values is too strict to find a route in that part of
the map, the threshold automatically increases by a certain value after a number
of failed attempts equal to maxtrial.

In case all the checks are successful, i.e. the flags have remained set to 0
and the planned route does not include any reverse maneuver (with reference to
sum(abs(diff(directions)))≥ 2), the TrajectorySearch variable becomes false from
here on, and it is possible to exit the innermost loop to move to what was defined
as Process2 in the flow chart shown in 3.7.

Before providing the description of the last functional block, once it is sure that
the path falls within the established values, a series of useful information is saved
in the text file about seeds, shown in the Table 3.9, thanks to the so called filewrite
function that completely characterize the found segment. The latter can be used
again in a new path search if the initial and final coordinates of the segment match
the previously searched ones, as already explained when the filescan function was
tacled.

The storage of the seed inside the file is determined by the parameter that was
initialized at the outset of the code, called DistEffThreshold. In fact, if the ratio
between the real distance of the path and the Euclidean one, called DistEfficacy,
exceeds the selected threshold this step is skipped.

The last procedure of the outermost loop is visible in Algorithm 7, where the
current position is updated with the final postion of the recently found segment
which is then plotted on the map. In the final step of the process, the segment
is inserted in the TotalRefPath object, thus updating also the counter needed to
split the segments in rows.

66

Code

Table 3.9: Example of the parameters that are stored in a line of the text file
dedicated to seeds.

Parameters Values
currentPose 427742.62 4973778.61 260
nextGoal 427752.08 4973768.23 350
Seed 1301811950
DistEfficacy 1.20
SlopeThreshold 0.33
SlopeDotThreshold 0.33
maxIterations 10000

Once all the segments have been found, up to the final goal, the external loop is
exited and thanks to the function called filewriteWP, based on the type of format
used by by Mission Planner as already stated in section 2.4, using the segments
stored in TotalRefPath the waypoints file is thus generated. Within filewriteWP
the utm2deg function is called, through which the coordinates from UTM are
converted into Geographic (latitude and longitude) using the parameter initialized
at the beginning of the code called utmzone.

Algorithm 7: Part of the code defined as Process2.
currentPose ← nextGoal;
plot(refPath);
TotalRedPath(m,1) ← refPath;
m ← m + 1;

3.2 Code Simulations
In the above code, the values of some parameters, as well as the presence of some
structures inside the code, derive from the choices made during several simulations
aimed at evaluating different aspects and behaviors of the algorithm, in a map that
is so vast and full of obstacles like the one of the case of study.

Two types of simulations were conducted:

1. The first one was used to evaluate the probability for the RRT* to find a path
in three different scenarios, depending on the parameters set. The choice to
perform this type of simulations originated when it was realized that the
basic algorithm could not always find a possible path to traverse, and this

67

Code

greatly affects the timing with which the code can provide a valid path, i.e.
a path that falls within the established constraints.

2. The second one, carried out using the simulator on the chosen GCS, served
to simulate the hypothetical behavior of the vehicle on the field while trying
to follow the waypoints. This is done in order to set the basic parameters of
the flight controller in the best possible way so that the vehicle can follow
the traced path as accurately as possible.

The first simulations were run to investigate if the parameters and the prob-
ability to find a path are somehow correlated. This analysis aims to adapt the
basic algorithm to the type of map provded as good as well possible. For this very
purpose, different functionalities of the code were blocked and very low values were
assigned to the slope thresholds, to be sure that none of the paths that were found
was actually valid.

In detail, the following were blocked: all functions regarding the various input
and output text files, the possibility to update the maximum number of iterations,
the possibility to update the initially entered thresholds and the section of the
code regarding the interactive positioning on the map.

By doing so, using the same initial and final coordinates for each scenario a
series of loop simulations were conducted, where the different parameters were
modified and the results in terms of probability of success and computational time
were recorded. When the above changes are applied, what happen is that, the
RRT* algorithm searches for a possible path and as soon as it finds one, this shifts
to the control phase, providing a negative response because of the deliberately too
low thresholds, and then the algorithm searches for a new possible path through
the RRT* again.

This procedure is repeated in loop for 24 minutes, a time that was arbitrarily
chosen to obtain an accurate statistical evaluation of the process. The simulations
stops after the 24 minute time and the results of the number of attempt (total
number of attempts of the algorithm) and the number of trial (number of found
paths that have been subjected to the threshold check) are recorded. The part
of the code dealing with control was maintained to estimate the temporal impact
that this part has on the whole code.

The three analysed scenarios are shown in Figure 3.12. The simplest case
is presented in the first one, as it is clearly visible, a relatively short path (20
meters) with plenty of room for maneuvering and without any significant obstacle
in between was chosed. In the second scenario, of intermediate difficulty, the
distance of the path is doubled and the vehicle is forced to pass through one of
many rows to reach the other side of the vineyard. In the third one, highly difficult,
the vehicle starts its journey between two given rows crossing a large central section
and then returning to a specific row and finish its journey in the middle of it.

68

Code

(a) Simple scenario (b) Intermediate scenario

(c) Difficult scenario

Figure 3.12: The three different scenarios that were used for the simulations of the
first type.

69

Code

The simulations that were conducted in these scenarios were made using incre-
mental values of maximum iterations and two different settings. In the first one,
the distance between one pose and the next was set to 0.2 meters with an infla-
tion radius of the obstacles that is equal to what the MATLAB vehicleCostmap
function automatically assigns, according to the size of the vehicle, which is 0.475
meters in this case; in the second one, the distance between one pose and the next
was set to 0.3 meters and the inflation radius was reduced to 0.35 meters.

As it can be seen in Figure 3.13, 3.14 and 3.15 regarding the graphs on the
probability of success, the most general phenomenon that all scenarios have in
common is that the higher is the number of maximum iterations the higher the
probability of finding a path. However, the point here is to understand how and
how much the probability of success changes case by case, trying to contextualize
and give a valid meaning or motivation to the results.

It is fair to remember that the goal is to have the highest probability of success
of the RRT* with no detriment to the level of accuracy required for this application,
so that even the found path is unlikely to meet the constraints, this probability is
not further affected by the probability of finding a path in general. In addition to
this, the use of the DynamicIterations and maxtrial parameters within the code
as well as the presence of the variable ObstacleIR need to be addressed as well.

More in details, looking at the two different settings used, it is evident that if
the same number of iterations is used, the increase in the distance between one
pose and the next brings some benefits since, by increasing the distance between
the nodes, the ramifications generated by the algorithm can grow further on the
map, thus increasing the probability of reaching the target vertex.

When the overall picture and the nature of the basic algorithm are considered,
it is clear that the excellent results of the second setting are not only due to the
modification of the above mentioned parameter but, also and above all, are an
effect of the reduction of the inflation radius of the obstacles.

The reduction of the inflation radius involves an enlargement of the Voronoi
regions of the map, with the consequent increase of the probability of the algorithm
to extend the ramifications also within the rows, particularly visible in the second
and third scenarios. This phenomenon is due, as explained in subsection 1.2.4 of
chapter 1, to the bias method used in the RRT algorithm that is based on the
k-nearest neighbors method.

Vehicle safety is another factor to take into account, because the risk of a
possible collision between the vehicle and obstacles also increases as the radius of
inflaction is reduced. Therefore, the value of the parameter ObstacleIR must be
set so to maintain the right trade-off between the increase of the probability of
success of the algorithm and vehicle safety. An inflaction radius value of 0.4 meters
was chosen for the final code, as explained in the previous section.

70

Code

Figure 3.13: Main results obtained from simulations carried out for the simple
scenario.

71

Code

Figure 3.14: Main results obtained from simulations carried out for the interme-
diate scenario.

72

Code

Figure 3.15: Main results obtained from simulations carried out for the difficult
scenario.

73

Code

The second graph, that is obtained, represents the average time it takes for
the algorithm to find a path to validate, for each of the scenarios. The graph,
gives a general idea of how long it takes for the algorith to find that kind of path.
As it can be seen, the harded is the path to find, the longer the algorithm takes
to generate a possible solution to be verified. The second setting leads to much
better results than the first in each scenario here as well, especially in the third
one where the algorithm can find a path in 5 seconds less on average.

The third graph is used to evaluate the impact of the number of iterations on
the average calculation time, since most of the time spent by the algorithm is used
to sample the vertices and connect them. The impact generally increases as well
as the number of maximum iterations, because the algorithm can sample more
vertices to try to find a valid connection with the objective vertex, as seen in the
third scenario where the increasing trend is very similar for both settings.

This situation changes drastically when analysing the graphs regarding the
first and the second scenarios. The slope of the curve for the second setting is
different since the algorithm is much more likely to extend its ramifications up to
the objective, before the number of samples reaches the maximum threshold, in
the first two scenarios, i.e. beyond a cartain value of iterations the algorithm very
often succeeds in reaching the objective, way before all the avaiable iterations are
used.

The results clearly show that some of the dynamic structures used in the code,
such as the one updating the number of maximum iterations after a certain number
of cycles or the one used to selectively increase the maximum thresholds after a
certain number of failed verifications, help reduce the time for the algorithm to
provide a solution and to avoid that this gets stuck, unable to find a possible path,
in some situations.

These simulations were also useful to identify an ideal number of ten thousand
initial maximum iterations, since excellent success probability and computation
time results were obtained with that number, both in the easy and in the inter-
mediate scenarios.

In the second type of simulations the Mission Planner simulator is used, as
previously stated, to accurately tune some parameters of the controller for the
vehicle to follow the trajectory as precisely as possible.

This typology of simulations has demanded the use of 3 software in a row to
elaborate the data correctly, seeing as, once the simulation on Mission Planner is
carried out, the relative datalogs of the simulation, in .BIN format originally, need
to be converted in a .mat file to be easily manipulated and analysed.

Once the key data of the simulated mission are obtained, the difference between
the GPS data of the route taken by the vehicle and the ideal one represented by
the waypoints that the algorithm provides as outputs need to be estimated. This

74

Code

operation is processed through the C2C function of CloudCompare, a well-known
open source software to manipulate and analyse point clouds, to evaluate the
absolute distance between two point clouds in 3D or 2D. The adopted approach is
similar to the one in [2] even if the results lead to a different parameters setting,
given the different level of accuracy required by the type of application.

The procedure is explained below:

1. Once the file containing the waypoints from the algorithm are obtained, these
are upload on Mission Planner and the type of vehicle is selected, in this case
a rover, in the simulation section.

2. Some parameters are tuned in the configuration section called Basic Tuning,
as shown in Figure 3.16 for the simulation to start.

3. The Datalogs of the mission are then extracted and converted in the .mat
format.

4. The GPS data inside the Datalogs are converted, from geographical lati-
tude and longitude coordinates into UTM, through the deg2utm function,
by means of a specifically created Matlab code and stored on a text file.

5. The two text files, the one related to the waypoints provided by the algorithm
and the one related to the GPS data, are uploaded on CloudCompare and
the results are evaluated through the C2C function.

6. If the results obtained are not satisfactory, the parameters are better re-tuned
going back to point 2.

In the first simulations, carried out with a quarter of the waypoints provided
by the code, the focus was on tuning the avaiable parameters of the Basic Tuning
section as well as possible. At the end of this first phase, when acceptable results
are obtained, as reported in Table 3.10, an attempt to evaluate the behavior of
the vehicle during simulations was done, by providing a higher and lower number
of waypoints.

The results of this second phase are summarised in Table 3.11 and shown in
Figures 3.17 3.18 3.19 3.20 3.21. When the number of waypoints through
which the vehicle can better stick to the trajectory of the route was identified,
control points to change the speed of the vehicle in and out of curves, named
DO_CHANGE_SPEED by Mission Planner, were manually entered to further
improve the overall vehicle performance, especially in tight curves.

Since the final goal of the project is to have the vehicle running along the desired
trajectory as accurately as possible, the cruising speed was set at 1 m/s. The
vehice, enter curves at a 0.5 m/s speed and then goes back to cruising speed once

75

Code

Figure 3.16: Basic Tuning section in Mission Planner software configuration set-
tings.

out. The result of this further refinement leads to a real improvement especially
in curves, as can be seen in Figure 3.22, getting a 0.109 meter average distance
and a 0.068 meter standard deviation. The values thus obtained are considered
excellent, also because further refinements would be irrelevant and not quantifiable
in the real test. The results of these simulations were obtained using a simulated
GPS accuracy of 0.3 meter in order to be conservative, compared to the GNSS
system mounted on the vehicle that should have an accuracy level ranging from
0.1 to 0.2 meters.

76

Code

Table 3.10: Final values assigned to the parameters for the simulation on the
Mission Planner.

Section Parameters Values
Speed 2 Throttle P (proportional gain) 0.1

I (integral gain) 0.2
D (derivative gain) 0.1
INT_MAX 1
Accel Max 1
Brake Enable

Throttle 0-100% Motor Type Normal
Cruise Speed 1
Cruise Throttle (%) 20
Min (%) 0
Max (%) 30

Steer 2 Servo P (proportional gain) 0.7
I (integral gain) 0.6
D (derivative gain) 0.2
INT_MAX 1
FF (feed forward) 1.5

Rover FS Value (Waypoint speed m/s) 1
Raggio WP 0
WP Overshoot 0
Turn Dist 0.4
Lat Acc Control Period 3
Lat Acc Control Damping 0.8

Table 3.11: Values resulting from the calculation of the absolute distance between
the ideal trajectory and the one resulting from simulations, through the C2C func-
tion of CloudCompare.

WP Ratio Mean Distance Standard Deviation
5 0.225 m 0.117 m
4 0.378 m 0.221 m
3 0.238 m 0.142 m
2 0.176 m 0.088 m
1 0.176 m 0.087 m

2-Refined 0.109 m 0.068 m

77

Code

Figure 3.17: Result obtained using a ratio of one WP every five.

Figure 3.18: Result obtained using a ratio of one WP every four.

78

Code

Figure 3.19: Result obtained using a ratio of one WP every three.

Figure 3.20: Result obtained using a ratio of one WP every two.

79

Code

Figure 3.21: Result obtained using a WP ratio of one to one.

Figure 3.22: Result obtained using a ratio of one WP every two with the refining
on the speed in and out of the curves.

80

Chapter 4

Validation

As mentioned in chapter 2 in the section 2.2, given the persistence of the covid-19
pandemic, the validation was carried out in a different site from the one initially
proposed as a case study, at Tetti Neirotti airfield near Rivoli (TO).

The tests were performed with the instruments, configured on the hardware
section as shown in chapter 2. In addition to this, a Tersus BX316 GNSS module
and a total station were used to have different positioning references to compare
with the obtained data.

The Tersus module was connected to the same antenna to which the Piksi
module was connected through a splitter, while a prism was mounted on the same
axis of the Piksi antenna, in this way the station hooks to the prism to trace
the path, so that the reference provided by the station is as accurate as possible
compared to the position that the antenna receives as shown in Figure 4.1.

Figure 4.1: Vehicle configuration adopted for the validation.

81

Validation

Unfortunately, only few tests have been carried out, given the impossibility to
continue in the absence of daylight in the only day when the tests were allowed. On
the other hand, several errors and malfunctions of the tools, used as reference, only
came to light once the data were post-processed and analyzed, forcing to consider
valid only two out of three among the tests performed for the overall analysis.

The planned mission used in the valid tests is different from the one shown
in the simulations and covers a greater distance, ideally passing through several
rows.

Some considerations should be made about the basic problems of the vehicle,
before analysing the results. One of the problems that became evident during the
tests was represented by the fact that the vehicle does not navigate fluidly at low
speeds (1 m/s), which forced to use a much higher speed value of 1.5 m/s to ensure
a smooth driving.

Another problem with wheel camber was also noticed due to the fully dis-
charged shock absorbers, which lead the vehicle to skid to the right during what
should be a straight line. This phenomenon is visible from the comparison be-
tween the total station reference and the Pixhawk’s Kalman filter solution during
straights.

Figures 4.2 and 4.3 shows the speeds in m/s, with respect to North and East
during Test 2 and 3 respectively, recorded by Pixhawk. As can be seen despite the
speed value was increased, the vehicle was not able to maintain a constant speed
even on straights. The peaks, on the other hand, correspond to the stretches of
the route where the vehicle takes a curve.

Figure 4.2: Velocity w.r.t. North in Test 2 and 3.

82

Validation

Figure 4.3: Velocity w.r.t. East in Test 2 and 3.

Figures 4.4, 4.5 and 4.6 show the roll, the pitch and the yaw recorded by
Pixhawk during Test 2 and 3 respectively. Given the predominantly flat terrain,
in which the tests were carried out, both the roll and the pitch values are very low,
although not almost zero, as expected. This can be traced back to an unbalance of
the vehicle due to the presence of several instruments mounted in the rear area of
the vehicle, a factor that is further accentuated by the discharged shock absorbers.

Figure 4.4: Roll Test 2 and 3.

83

Validation

Figure 4.5: Pitch Test 2 and 3.

Figure 4.6: Yaw Test 2 and 3.

Some parameters of the controller, other than speed, have been changed com-
pared to those discussed in the simulations section. The parameters used in the
two tests are reported in Table 4.1.

The most important changes were made on the derivative and integrative part
of the steer PID regulator and on the lateral acceleration control period. These
factors heavily influenced the steering control of the vehicle during the first trials,
producing a continuous zig-zag pattern even in the straights as the controller tried
to continuously correct the trajectory.

84

Validation

Table 4.1: Basic Tuning parameters of the flight controller used for Test 2 and 3.

Section Parameters Values
Speed 2 Throttle P (proportional gain) 0.1

I (integral gain) 0.2
D (derivative gain) 0
INT_MAX 1
Accel Max 1
Brake Enable

Throttle 0-100% Motor Type Normal
Cruise Speed 1
Cruise Throttle (%) 20
Min (%) 0
Max (%) 30

Steer 2 Servo P (proportional gain) 0.2
I (integral gain) 0.4
D (derivative gain) 0
INT_MAX 1
FF (feed forward) 1.5

Rover FS Value (Waypoint speed m/s) 1.5
Raggio WP 0.1
WP Overshoot 0.1
Turn Dist 0.6
Lat Acc Control Period 8
Lat Acc Control Damping 0.8

The most important considerations on the results can be made with reference
to Figures 4.7 and 4.10 showing three different trajectories plotted onto the binary
mask: a real one regarding the vehicle position measured by the total station with
millimetric accuracy, one calculated by the EKF of Pixhawk starting from the
signals of the two GNSS (Piksi and UBlox) systems and an ideal one consisting of
the Waypoints generated by the algorithm.

Since the results obtained by Tersus match almost perfectly with those provided
by the total station but are recorded at a lower frequency, only the data of the
total station will be used as reference in subsequent analysis.

85

Validation

Figure 4.7: Test 2 Total Station, EKF and Waypoints trajectories plotted onto the
binary mask with the presence of virtual rows.

86

Validation

Figure 4.8: Geographic plot of the trajectories obtained in Test 2.

Figure 4.9: Test 2 displacements with respect to Latitude and Longitude in UTM
coordinates.

87

Validation

Figure 4.10: Test 3 Total Station, EKF and Waypoints trajectories plotted onto
the binary mask with the presence of virtual rows.

88

Validation

Figure 4.11: Geographic plot of the trajectories obtained in Test 3.

Figure 4.12: Test 3 displacements with respect to Latitude and Longitude in UTM
coordinates.

89

Validation

The difference between the trajectories is minimal along straights, as it can
be seen, and falls within the necessary values to be obtained for this type of
application. It can be stated that this difference is mostly caused by the vehicle
problems that were described above.

Something totally different happens if the behavior of the vehicle is observed
in curves, where the difference between trajectories is relevant. The cause of this
behavior during curves had already been highlighted during simulations and is due
to the vehicle speed that results unsuitable for precision maneuvers. Plus, these
errors are further accentuated if we consider the inherent problems of the vehicle.
The vehicle does not immediately realign with the waypoints track since the gains
of the proportional and integral part of the steering PID regulator were reduced.

The comparisons between trajectories were made through Cloud Compare using
the C2C function, as in the simulations. The results in terms of mean distance and
standard deviation are shown in Tables 4.2 and 4.3 for test 2 and test 3 respectively
and refer to Figures 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18. The bar laterally
present in the plots represents the normal distribution of the absolute distance
between points of the compared trajectories. The two tests were performed using
the same mission and the same controller parameters, the only difference is the
number of waypoints. In test 2, half of the waypoints found by the algorithm were
used, while in test 3 a third of them was used.

Unlike what the simulations showed, it seems that a better solution can be
achieved with a smaller number of waypoints, even if the improper speed of the
vehicle may have affected this comparison.

Even if the results are not the expected ones, they are considered quite good,
since it was impossible to try further setups and therefore accurately tune the
parameters of the flight controller.

Table 4.2: Test 2 trajectories error evaluation.

Compared cloud Mean Distance Standard Deviation
Total Station VS EKF POS 0.409 m 0.317 m
Ideal WP VS Total Station 0.464 m 0.421 m

Ideal WP VS EKF POS 0.268 m 0.313 m

90

Validation

Table 4.3: Test 3 trajectories error evaluation.

Compared cloud Mean Distance Standard Deviation
Total Station VS EKF POS 0.294 m 0.301 m
Ideal WP VS Total Station 0.384 m 0.451 m

Ideal WP VS EKF POS 0.283 m 0.347 m

Table 4.4: Results obtained for straight trajectories (best case) in the third test
using the same comparison process already seen using CloudCompare.

Compared cloud Mean Distance Standard Deviation
Total Station VS EKF POS 0.144 m 0.055 m
Ideal WP VS Total Station 0.140 m 0.100 m

Ideal WP VS EKF POS 0.141 m 0.060 m

Table 4.5: Results obtained for curves (worst case) in the third test using the same
comparison process already seen using CloudCompare.

Compared cloud Mean Distance Standard Deviation
Total Station VS EKF POS 0.606 m 0.495 m
Ideal WP VS Total Station 0.913 m 0.631 m

Ideal WP VS EKF POS 0.624 m 0.558 m

91

Validation

Figure 4.13: Total Station VS EKF POS Test2.

Figure 4.14: Ideal WP VS Total Station Test2.

92

Validation

Figure 4.15: Ideal WP VS EKF POS Test2.

Figure 4.16: Total Station VS EKF POS Test3.

93

Validation

Figure 4.17: Ideal WP VS Total Station Test3.

Figure 4.18: Ideal WP VS EKF POS Test3.

94

Chapter 5

Conclusions

This thesis work aims to realize a vehicle that can navigate in uneven terrain
independently, through the use of different hardware and software technologies
and tools. The main contribution to achieve this goal was the realization of a code
in the MATLAB development environment, which would be able to generate a safe
and efficient route with respect to different parameters such as distance, slope and
its variation, to have a precision navigation route through very hard environments,
like a vineyard.

The RRT* planning algorithm that was used and the superstructure that was
created all around it, to adapt the algorithm to the purpose and the problems
of this type of terrain, works quite well, thanks to the collaboration of an UAV
that, through an air-photogrammetric survey, provides the algorithm with high
resolution static maps with centimeter accuracy.

The RRT* has a hard time to find a path in the first type of simulations carried
out on MATLAB, especially when the vehicle has to pass between one row and
another, and this is because of the very narrow space that can be explored in those
stretches, as already discussed, which is further decreased by the inflation radius
applied by the vehicleCostmap function.

Therefore, to have a higher chance to find a possible path and therefore dras-
tically decrease the time to search for a path, the value of inflation radius of the
obstacles should be lower than that calculated as a function of the dimensions of
the vehicle. Despite a significant error between the expected trajectory and the
real one, using a 0.35 meters obstacle inflation radius, the vehicle touched the
ideal rows only once over 170 meters of navigation. As already recommended in
chapter 3, an optimal value to balance safety and the probability of finding a path
could be set on 0.4 meters, in our case.

Some precision navigation limits were highlighted during the simulations car-
ried out on Mission Planner, due to the speed that the vehicle is forced to maintain
in order to accurately follow the waypoints provided by the code. These limits have

95

Conclusions

become significant during the field validation phase, highlighting also some differ-
ences in the behavior of the vehicle compared to the controller parameters set
during the simulation phase. As shown in the previous chapter, the difference
between simulations and the tests on the field is especially remarkable in curves,
even if most errors are determined by the vehicle. It should be also pointed out
that the presented results were obtained in stand-alone mode, therefore without
the use of the RTK differential technique which, if used, should lead to a significant
improvement in positioning with respect to the assigned path.

Despite the many advantages of the Traxxas X-Maxx, including the large space
that was made on the vehicle to mount the different sensors and the convenient
size of the track and wheelbase, this UGV used has proved to be unsuitable for
this application, mainly because of the difficulties encountered when navigation at
low speeds.

The high precision Piksi GNSS module and the antenna, part of the kit that
was used, turned out to be quite good when compared to the solution given by
the reference obtained via the total station, while the same cannot be said for the
Ublox GNSS module used as a secondary GPS.

It is then clear that further field tests, a finer tuning of the controller parameters
and a vehicle maintaining a stable driving at a 1 m/s speed, as planned during
the simulations, would have led to better results.

5.1 Possible future improvements
There are several possible improvements to make, given the complexity of the
problem.

The implementation of a stereo camera or other sensors preventing the vehicle
from hitting the vineyards or other dynamic obstacles not provided in the static
maps in case it goes off course, was deemed as necessary for safety reasons. This
system could further improve the quality and accuracy of the navigation through
further visual corrections in addition to those provided by the sensors already on
board.

Another important point is to identify a vehicle that better suits the need
for driving at low speeds, perhaps equipped with tracks instead of wheels. The
advantage of the track over the wheel is given by the greater footprint on the
ground, which allows to operate on terrain with poor bearing capacity, on which
a wheeled vehicle would not be able to move (sand, mud, snow), thus helping the
vehicle overcome particularly challenging bumps.

In general, tracked vehicles have a higher mobility than vehicles equipped with
tires on rough terrain, in fact these vehicles reduce jolts by slipping on small
obstacles. Finally, tracked vehicles can rotate with smaller radii of curvature, since

96

Conclusions

it is possible to rotate with a turning radius as wide as the vehicle,by blocking a
track, and rotating while remaining in place is made possible by using a track in
reverse.

This choice may lead to small changes in the algorithm, with regards to the
evaluation of the support surface and the consequent calculation of the slopes, but
it could significantly affect the real navigation.

Finally, since the algorithm works by randomly exploring the free configuration
space in a sort of trial and error version, a new external superstructure based
on neural networks or deep learning may be created. Therefore, starting from
the solutions provided by the algorithm in a given map, after an initial phase of
training, it can predict what could be the best path once the desired starting and
ending point are known.

97

Acronyms

AGV Automated Guided Vehicle

APF Artificial Potential Field

BEC Battery Eliminator Circuit

BFS Breadth-First Search

BVP Boundary Value Problem

CPC Carrier phase Compensation

DFS Depth-First Search

DSM Digital Surface Model

DTM Digital Terrain Model

EKF Extended Kalman Filter

FPV First Person View

GCS Ground Control Station

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

IDE Integrated Development Environment

IMU Inertial Measurement Unit

IoT Internet of Things

98

Acronyms

ITU International Telecommunication Union

MDP Markov Decision Process

MEMS Micro Electro-Mechanical Systems

PID Proportional Integrative Derivative

PRC Pseudo Range Carrier

PRM Probabilistic roadmap

RRT Rapidly-exploring Random Tree

RTK Real Time Kinematic

SITL Software In The Loop

SPB Swift Binary Protocol

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UTM Universal Transverse of Mercator

V2X Vehicle-to-everything

WP WayPoint

99

List of Figures

1.1 General process scheme for vehicle autonomous guide. 10
1.2 Example of Metric Topological Map [4]. 12
1.3 48 Years of Microprocessor Trend Data. 13
1.4 Representation of a simple C-space where the task is to find a path

from xinit to Xgoal through the Cfree space. 14
1.5 Possible types of grid shapes. 16
1.6 Example of directed graph. 16
1.7 Reward-based loop. 18
1.8 Combination of attractive and repulsive potential field. 19
1.9 Example of local minimum. 20
1.10 Example of RRT branches expansions [8] 23

2.1 Front view of a possible unstable situation 27
2.2 Point Cloud of Baldicchieri Vineyard. 30
2.3 Final orthophoto generated through the series of high-resolution

images of the vineyard. 31
2.4 (a)Spectral view of the DTM, (b)Base mask of the vineyard. 32
2.5 (a) Orthophoto and (b) binary mask of the flight field near Rivoli

(TO). 33
2.6 Traxxas X-Max external dimensions 35
2.7 View from above of the internal anatomy of the Traxxas X-Max. . . 35
2.8 Vehicle with its custom made fiberglass backing plate. 37
2.9 UGV final configuration. 38
2.10 UGV connections diagram [2]. 38
2.11 Home of Mission Planner software overlooking the Baldicchieri d’Asti

vineyard. 41
2.12 Waypoints file format from MAVLink guide. 42
2.13 Pixhawk 1 . 43
2.14 Piksi Multi board. 45
2.15 Piksi Multi survey antenna by Swift Navigation and its dimensions. 46

100

List of Figures

3.1 High-level code flow chart. 48
3.2 Visual example of what type of slope can result using the same value

used in the code. 50
3.3 Vehicle parameters can be edited using the vehicleDimensions object. 51
3.4 Visual representation of the inflated area around an obstacle, the

obstacle is the one in deeper red at the center of the grid. 52
3.5 Example of how the vehicleCostmap function works on the costruc-

tion of the occupancy grid. 53
3.6 Plot of the georeferenced cost map. 55
3.7 Simplified flow chart scheme of the main loop of the code. 57
3.8 Visual example of acceptable and unacceptable slope variation. . . . 60
3.9 Visual example of wheel contact points resulting from a simulation

with MATLAB (the front of the vehicle points downwards). 64
3.10 Abstraction of the link created between the binary mask and the

DTM. 64
3.11 Visual result of the idea to use a 3x3 cells as ideal contact surface

compared to the vehicle used. 65
3.12 The three different scenarios that were used for the simulations of

the first type. 69
3.13 Main results obtained from simulations carried out for the simple

scenario. 71
3.14 Main results obtained from simulations carried out for the interme-

diate scenario. 72
3.15 Main results obtained from simulations carried out for the difficult

scenario. 73
3.16 Basic Tuning section in Mission Planner software configuration set-

tings. 76
3.17 Result obtained using a ratio of one WP every five. 78
3.18 Result obtained using a ratio of one WP every four. 78
3.19 Result obtained using a ratio of one WP every three. 79
3.20 Result obtained using a ratio of one WP every two. 79
3.21 Result obtained using a WP ratio of one to one. 80
3.22 Result obtained using a ratio of one WP every two with the refining

on the speed in and out of the curves. 80

4.1 Vehicle configuration adopted for the validation. 81
4.2 Velocity w.r.t. North in Test 2 and 3. 82
4.3 Velocity w.r.t. East in Test 2 and 3. 83
4.4 Roll Test 2 and 3. 83
4.5 Pitch Test 2 and 3. 84
4.6 Yaw Test 2 and 3. 84

101

List of Figures

4.7 Test 2 Total Station, EKF and Waypoints trajectories plotted onto
the binary mask with the presence of virtual rows. 86

4.8 Geographic plot of the trajectories obtained in Test 2. 87
4.9 Test 2 displacements with respect to Latitude and Longitude in

UTM coordinates. 87
4.10 Test 3 Total Station, EKF and Waypoints trajectories plotted onto

the binary mask with the presence of virtual rows. 88
4.11 Geographic plot of the trajectories obtained in Test 3. 89
4.12 Test 3 displacements with respect to Latitude and Longitude in

UTM coordinates. 89
4.13 Total Station VS EKF POS Test2. 92
4.14 Ideal WP VS Total Station Test2. 92
4.15 Ideal WP VS EKF POS Test2. 93
4.16 Total Station VS EKF POS Test3. 93
4.17 Ideal WP VS Total Station Test3. 94
4.18 Ideal WP VS EKF POS Test3. 94

102

List of Tables

2.1 Setting the correct parameters of the Rasterize function for creating
the binary map. 33

2.2 Detailed list of all the vehicle specifications. 36
2.3 Pixhawk 1 Specifications . 44

3.1 Parameters Settings . 50
3.2 MapCellsReference object stucture. 53
3.3 List of inputs and properties that the vehicleCostmap function pro-

vides to obtain a cost map according to specific needs. 54
3.4 Global route plan table example where with Midn we indicate the

n-th intermidiate point. 56
3.5 List of some useful counters for the inner loop. 58
3.6 Input and output variables of the filescan function. 58
3.7 Parameters initialization needed in the internal loop. 59
3.8 Table of pathPlannerRRT properties. 61
3.9 Example of the parameters that are stored in a line of the text file

dedicated to seeds. 67
3.10 Final values assigned to the parameters for the simulation on the

Mission Planner. 77
3.11 Values resulting from the calculation of the absolute distance be-

tween the ideal trajectory and the one resulting from simulations,
through the C2C function of CloudCompare. 77

4.1 Basic Tuning parameters of the flight controller used for Test 2 and 3. 85
4.2 Test 2 trajectories error evaluation. 90
4.3 Test 3 trajectories error evaluation. 91
4.4 Results obtained for straight trajectories (best case) in the third test

using the same comparison process already seen using CloudCompare. 91
4.5 Results obtained for curves (worst case) in the third test using the

same comparison process already seen using CloudCompare. 91

103

Bibliography

[1] Jérôme Barraquand, Lydia Kavraki, Jean-Claude Latombe, Rajeev Motwani,
Tsai-Yen Li, and Prabhakar Raghavan. A random sampling scheme for path
planning. The International Journal of Robotics Research, 16(6):759–774,
1997.

[2] Federico Faedda. Veicoli autonomi terrestri per il rilievo automatico speditivo
in aree critiche= Uncrewed Ground Vehicles for expeditious survey in critical
areas. PhD thesis, Politecnico di Torino, 2020.

[3] Mahdi Fakoor, Amirreza Kosari, and Mohsen Jafarzadeh. Humanoid robot
path planning with fuzzy markov decision processes. Journal of applied re-
search and technology, 14(5):300–310, 2016.

[4] Javier Gonzalez-Jimenez, J Ruiz-Sarmiento, and Cipriano Galindo. Improv-
ing 2d reactive navigators with kinect. In 10th International Conference on
Informatics in Control, Automation and Robotics (ICINCO), 2013.

[5] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algorithms
for optimal motion planning. Robotics Science and Systems VI, 104(2), 2010.

[6] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion plan-
ning using incremental sampling-based methods. In 49th IEEE conference on
decision and control (CDC), pages 7681–7687. IEEE, 2010.

[7] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846–
894, 2011.

[8] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[9] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.
[10] Gh Lazea and As E Lupu. Aspects on path planning for mobile robots.

TEMPUS M-JEP 11467: Intensive Course on Computer Aided Engineering
in Flexible Manufacturing, pages 19–23, 1996.

[11] Michael W Otte. A survey of machine learning approaches to robotic path-
planning. University of Colorado at Boulder, Boulder, 2015.

104

Bibliography

[12] EN Sabudin, Rosli Omar, and CKANH Che Ku Melor. Potential field meth-
ods and their inherent approaches for path planning. ARPN Journal of En-
gineering and Applied Sciences, 11(18):10801–10805, 2016.

[13] Thomas B Sheridan. Telerobotics, automation, and human supervisory con-
trol. MIT press, 1992.

[14] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.
Robotics: modelling, planning and control. Springer Science & Business Me-
dia, 2010.

[15] Jurgen Zoto, Maria Angela Musci, Aleem Khaliq, Marcello Chiaberge, and
Irene Aicardi. Automatic path planning for unmanned ground vehicle using
uav imagery. In International Conference on Robotics in Alpe-Adria Danube
Region, pages 223–230. Springer, 2019.

105

	Abstract
	Introduction
	Path Planning
	Sensors and Representation
	Planning Algorithms
	Grid-based or Graph-based
	Reward-based
	Artificial Potential Field based
	Sample-based

	Materials and Methods
	Algorithm identification
	Maps
	Unmanned ground vehicle
	Software
	Hardware

	Code
	Code detailed explanation
	Parameters Settings
	Map Generation
	Map Positioning
	Main Loop

	Code Simulations

	Validation
	Conclusions
	Possible future improvements

	Acronyms
	List of Figures
	List of Tables
	Bibliography

