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Abstract

In recent years, the development of technology has led to the emergence of in-
creasingly complex and accurate localization and mapping algorithms. In the field
of robotics, this has allowed the progressive integration alongside other programs
with the most varied functions, from home care to space exploration, designed to
provide a service, to support and improve people’s living conditions. With this
goal in mind, the PIC4SeR (PoliTo interdepartmental centre for service robotics)
has developed the idea of integrating a SLAM algorithm, for simultaneous self lo-
calization and mapping, with a convolutional neural network for room recognition.

The main goal of this thesis project is the development of an algorithm able to
lead an unmanned ground vehicle in an unknown, closed domestic environment,
mapping it and classifying each room encountered in the process. Low cost sensors
and free, open-source software are used to achieve the final result.

For localization and mapping, several techniques are considered, from the clas-
sic extended Kalman filter to the more advanced graph-based SLAM. The most
adapted ones are further developed, to retrieve a first, raw representation of the
environment.
The map is then processed with computer vision software in order to obtain a
cleaner and clearer plot of the surroundings, and to setting it up for the recogni-
tion algorithm.

Finally, a convolutional neural network model is used, alongside to a series of
frame images taken by the robot from the environment, to classify each room and
provide predictions on the map.

The final algorithm is relatively efficient and lightweight, and opens up to a
series of future implementations in the field of service robotics, in domestic envi-
ronments and in the assistance to elderly and disabled users.
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Chapter 1

Introduction

1.1 Objective of the thesis
In recent years, the development of technology has led to the emergence of in-
creasingly complex and accurate localization and mapping algorithms. In the field
of robotics, this has allowed the progressive integration alongside other programs
with the most varied functions, from home care to space exploration, designed to
provide a service to support and improve people’s living conditions. With this
goal in mind, the PIC4SeR (PoliTo interdepartmental centre for service robotics)
has developed the idea of integrating a SLAM algorithm, for simultaneous self lo-
calization and mapping, with a convolutional neural network for room recognition.

The main goal of this project of thesis is to develop an algorithm able to lead an
unmanned ground vehicle in an unknown, closed domestic environment, mapping
it and classifying each room encountered in the process. Low cost sensors and
free, open-source software are used to achieve the final result. For localization and
mapping part, several techniques are introduced in this paper, starting from the
historical ones to the more advanced algorithms used nowadays, analyzing merits
and complications of each one. The most common Machine Learning classification
algorithms are briefly exposed, focusing more deeply on Deep Learning techniques
and explaining what is a Neural Network, how it works, and how is used for image
classification. Later, the main implementation used to achieve the goal of the
project are presented, both for the localization and mapping and for classification,
pointing out difficulties encountered and solutions adopted. Finally, a short record
about future improvements and integration is reported, stating how this project
could be used for further implementations.
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1.2 Organization of the thesis
The thesis is composed of seven chapters, organized as follows:

• The first chapter is an introduction to the project, presenting the main mo-
tivations and goals, and briefly explaining the topics covered in the following
sections;

• The second chapter is a theoretical introduction to Machine Learning and its
most common classification techniques. Deep Learning Neural Networks are
later explained more in details, how they work and why are so important for
image classification, and then for the room recognition problem;

• The third chapter briefly presents what is a robot, how it is designed and
used, depending on the tasks it has to perform and the characteristic of the
environment of work, with a major focus on the mobile, wheeled robot, which
is the type employed in this project. Then it passes to expose the main sen-
sors commonly used on such robots and how they works. Later, the Robotic
Operative System (ROS) is introduced, as one of the main and more diffused
means to control and organize a robotic system. Finally, the hardware com-
ponents used on the robot in this thesis project are presented, justifying why
they where chosen instead of others;

• The fourth chapter is a theoretical introduction to SLAM, involving Localiza-
tion and Mapping in addition to the major filters used to solve such problems.
Then the most known SLAM technique are presented, from the historical Ex-
tended Kalman Filter to the more advanced and at the State-of-Art Graph-
Based simultaneous localization and mapping;

• The fifth chapter presents the implementation of both, the classification and
the SLAM algorithms used in the project, how they are created and improved,
with the major difficulties encountered, and how they are integrated in the
final localization, mapping and classification program;

• The sixth chapter sums up the entire work done in this thesis project, and
show the results of every section;

• The seventh chapter conclude the paper, exposing how outcomes obtained by
this work can be improved and presenting a series of practical applications
for which this project can be useful.

2



Chapter 2

Machine Learning

Classification is a statistical problem much older than the invention of Machine
Learning, but which, in recent years, has received a great benefit from technological
advancement and, in particular, from the development of so-called Deep Learning.
In order to better understand what a classification problem really is, and how and
why deep learning is so effective in solving it, it is necessary to introduce the basic
principles of machine learning.

2.1 Machine Learning basics
Machine Learning is essentially a form of applied statistic which consists in the
use of computers to estimate complex functions. The main goal is to allow an al-
gorithm to learn from a certain type of data, and use such information to predict
new instances. To better comprehend what is meant when it is said that a com-
puter algorithm can learn, Tom M. Mitchell provided the following definition: "A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured
by P, improves with experience E" [1]. In this quote, it is possible to extrapolate
three variables, which are here better explained.

The Task, T How said before, machine learning is used to solve complex func-
tions, which are virtually impossible to be computed with programs written and
designed by human beings. In these problems, learning itself is not the task of
the algorithm, learning is indeed the means by which this task is accomplished.
Generally, in machine learning these tasks are referred to in terms of how the algo-
rithm has to process a certain number of instances. This directly affect the format
of the input data, how and what the algorithm has to learn from it, and how has
to use such information to give a result. Classification is one of several tasks which
can be solved with machine learning, and will be examined more deeply later on.

3
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The Performance Measure, P To evaluate how well a machine learning algo-
rithm is performing, it is necessary to define a quantitative measure. Such measure
is specific to the task T to be carried out. For example, in a classification problem
the variable to be evaluated is generally the accuracy, based on the correctness
of predictions preformed. On the other side, it is possible to obtain the same
information evaluating the error rate, that is based on incorrect output produced.

Usually, these performance measures are obtained by testing the model on a
set of data it has never seen. This set is generally called the test set, in opposition
to the set used for training, the training set. Therefore the test set is used to
evaluate how well the model will perform in the real world. However, the choice of
the test data is not always so easy, and often it depends on the kind of application
implemented.

The Experience, E Most of the learning algorithms, classification ones in-
cluded, are designed to experience from an entire dataset, a collection of many
instances, but a further distinction can be done:

• An Unsupervised learning algorithm experiences a dataset containing
many features and learns, by itself, the structure’s properties of such dataset.
From a practical point of view, the algorithm has to observe several instances
of a random vector x, and learn to predict p(x), the probability distribution
of x;

• A Supervised learning algorithm experiences a dataset containing many
feature, but each instance is also associated to a label. All the labels together
form the structure of the dataset, which is so provided. From a practical point
of view, the algorithm has to observe several instances of a random vector x
and the associated vector of labels y, then learn to predict y from x, generally
by estimating p(y|x), the probability distribution of x in relation to y.

• There are then machine learning algorithms which do not simply experience
a dataset. An example is the Reinforcement learning algorithm, that in-
teract with an environment with a feedback loop between the learning system
and its experiences.

2.1.1 Overfitting and Underfitting
How said before, to evaluate the performance of a machine learning model, often
the errors are taken into consideration. More precisely, it is very important to
consider both, the errors on training and validation set. How it is well evident,
a model is performing well when these two errors are both sufficiently low. Less
obvious is the fact that the gap between these two values has to be small. In fact,
as stated before, a machine learning model is preforming well when it is able to
correctly predict new instances it has never seen before. This behavior is called
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generalization, because the model manages to generalize what it has learned, and
does not stagnate on the data used for training. This ability is directly connected
with the capacity of the model, which is the ability to fit a wide variety of functions.

When the capacity of a model is too high, there is an high probability of in-
curring in the phenomenon of Overfitting. In particular, overfitting occur when
the model learn to predict the data contained in the training set extremely well
(it is said that the model specializes on the training set) and, as a consequence, it
is unable to generalize on other instances, namely it is inefficient in estimate any
other instance that does not belong to the training set. Practically, this event is
recognizable when the training error is very low, and the error on the test set is
much higher.

On the opposite side, when the capacity of the model is too low, the algorithm
is not able to fit the training set, and arise a problem of Underfitting. In this case,
there is still room for improvement on the training set, which present an error
unacceptably high, independently from the test’s error.

Figure 2.1: Visualization of Overfitting and Underfitting [2].

Machine learning algorithm will generally performs better when their capacity
is appropriate to the task they need to accomplish. To solve the overfitting and
underfitting problems, a series of techniques exist, some of which will be discussed
in this paper later on.

2.1.2 Validation
In the implementation of a machine learning algorithm, in addition to the training
and test set, there is another fundamental dataset called Validation set. While the
concept of test set and validation set can be easily mistaken, they are two differ-
ent things: both these sets contain data the model has never seen before, hence

5



Machine Learning

different from the training set, but if the former is the set of data used to evaluate
the performance of a fully-specified model, the latter is the dataset used to tune
the parameters of such model during its implementation. Typically, the validation
set is obtaining dividing an initial dataset in two, with a 75/80% used as training
set and the remaining 20/25% used for validation. Machine learning models have
several settings used to control the behavior of the learning algorithm, and the
validation set can be used to test and set these settings, called hyperparameters.

2.1.3 Linear Regression
In machine learning, Linear Regression is one of the most simple algorithm, and
is at the base of any machine learning algorithm. How the name implies, it is
specialized in solving regression problems, a task in which the output is in the form
of continuous numerical values. For this reason, linear regression is not particularly
suitable for classification problems, but it can be useful to better understand the
classification techniques explained in the next section.

From a practical point of view, the task of linear regression is to take as input
a vector x, and predict the scalar value ŷ, associated with the ground truth scalar
value y, which is a linear function of the input, defined as:

ŷ = f(x) = θ · x (2.1)
where θ is a vector of parameters, sometimes also called weight vector and

indicated with w. Each parameter θi affects the corresponding feature xi in a
different manner.

In other words, the goal of linear regression is to estimate the probability dis-
tribution of y in function of x and θ, p(y|x, θ), such that:

p(y|x, θ) = f(x) = θ · x (2.2)
The performance of such model can be evaluated by computing the mean

squared error of a test set, defined as:

MSE = 1
m

m∑︂
i=1

(ŷ − y)2
i (2.3)

where m is the number of instances of the test set, ŷ is the predicted value and
y is the ground truth value. Hence, the goal is to design a model able to learn to
optimize the parameters θ during the training phase, in a way that reduces the
MSE. To minimize such cost function, there is a closed-form solution that give
the results directly, called Normal Equation:

θ̂ = (XT X)−1XT y (2.4)
where θ̂ is the value of θ that minimize the cost function and X is the training

set.
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Figure 2.2: On the left, the linear regression optimized the weight vector, such that
the function y = wix passes as close as possible to instances points. On the right,
the point indicate the value wi, found by the normal function which minimize the
mean squared error.

2.2 The Classification Task
Classification is the statistical problem of identifying the category membership of
each new instance from a set of categories established a priori, starting from a
training set of correctly identified observations. Classification can be divided into
two types:

• Binomial (or Binary): where instances belong only to two classes. Typi-
cally a one-vs-rest strategy is involved, in which case one of the two classes
represent the normal state (a positive response, generally identified by the
label 0) and the other the abnormal state (a negative response, identified by
label 1). The two different type of error (false positive and false negative)
are usually treated with different importance weight. Some algorithms, like
Logistic Regression and Support Vector Machines, are specifically designed
for binary classification and do not support multi-class problems unless they
are turned by a variety of strategies;

• Multi-Class: where more than two classes are present. Different strategies
are used in order to solve such kind of problems, and generally are categorized
into transformation to binary, extension from binary and hierarchical classi-
fication. In the sector of machine learning, and specifically in that of neural
network, multi-class tasks are solved exploiting N binary neurons in the final
output layer, one for each class, instead of just one, and normalizing with a
softmax function.

How said in the previous section, in order to evaluate the quality of a machine
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Figure 2.3: Graphical representation of the difference between Binary and Multi-
class Classification.

learning model, some performance measures are necessary, and for a classification
model these are made through two main parameters, accuracy and loss. These
metrics are generally considered not only on the training set, but also on the
validation set, and are defined as follows:

• Accuracy is expressed as a percentage, and is defined as ratio between the
number of correctly predicted samples of the training (or validation) set and
the total number of samples in the training (or validation) set. It is well
evident that this value has to be as high as possible. Generally, values of
accuracy equal or greater than 70% are acceptable results, but it depends on
the case at hand a lot;

• A loss function is used to optimize a machine learning algorithm. Contrary
to accuracy, loss value is not expressed as a percentage, and is defined as the
sum of errors made for each sample in training (or validation) set. Practically,
loss value implies how poorly or well a model behaves after each iteration,
and has to be as low as possible.

In a classification problems, overfitting occur when the accuracy on the train-
ing set continues to increase reaching high values, often near to 100%, while the
accuracy on validation set stagnates on low values or even decreases through each
samples. At the same time, it can happen that loss on the training set reaches
very low value, near to zero, while on validation set it stagnates on high values or
even increases through each samples. On the other side, underfitting occur when
the accuracy on the training set is too low.
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2.3 Machine learning classification
In machine learning, classification is considered as an example of supervised learn-
ing, and a series of classifier algorithms have been developed during the years. In
this section, the most popular ones are briefly exposed.

2.3.1 Logistic Regression
While linear regression is not suitable for classification, there are regression algo-
rithms which can be used for classification as well. One of these is the Logistic
Regression, one of the most used algorithms for binary classification, but that can
also be extended for multi-class problems. The task is pretty similar to that of
linear regression, to compute a weighted sum of the input features, but contrary
to before, the output has to be the logistic of the result:

p(y|x, θ) = f(x) = σ(xT θ) (2.5)

Unlike Linear Regression, no closed form solutions can solve the problem, so
the logistic σ is a sigmoid function which outputs a number between 0 and 1:

σ(t) = 1
1 + e−t

(2.6)

Figure 2.4: Logistic function [3].

Therefore, the logistic regression model estimates the probability p that an
instance x belongs to the positive class or not, then makes its prediction ŷ:

ŷ =

⎧⎨⎩0 if p < 0.5,

1 if p ≥ 0.5
(2.7)

The logistic regression can be generalized to be used for multi-class problems
without having to combine multiple binary classifiers. This generalization takes
the name of Softmax Regression. For each instance x, it computes a score sk(x) for
every class k, then estimates the probability of each class by applying the softmax
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function to te scores. The computation of the score is very similar to the equation
for linear regression prediction:

sk(x) = xT θk (2.8)
It is worth noting that each class has its own parameter vector θk. Once all the

scores are obtained, the softmax function is applied:

pk = σ(s(x))k = exp(sk(x))∑︁K
j=1 exp(sj(x))

(2.9)

The softmax function estimates the probability pk, which is equal to σ(s(x))k,
the estimated probability that the instance x belongs to the class k given the
vector s(x), containing the scores of each class for that instance; and does this by
computing the ratio between the exponential of the score of instance x for class
k, and the summation of exponentials of the score of instance x for all the classes
K.

Just as the logistic regression, the softmax regression predicts the class with
the highest estimated probability, which is the class with the highest score:

ŷ = argmax
k

(σ(s(x))k) = argmax
k

(sk(x)) = argmax
k

((θk)T x) (2.10)

2.3.2 Support Vector Machine (SVM)
A SVM construct one or more hyperplanes in a high-dimensional space such that
these have the largest distance to the nearest training data point of any class. A
hyperplane is then a set of points x which satisfy the function:

w · x + b = 0 (2.11)
Where w is the normal vector to the hyperplane and b

||w|| is the offset of the
hyperplane from the origin. Anything below

w · x + b < 0

belongs to one class, and anything above

w · x + b ≥ 0

belongs to the other class.
Kernel Support Vector Machine is similar to SVM but, contrary to this, it

is used for nonlinear classification problems. This is possible by projecting the
nonlinear data to an higher dimensional space, where it is linearly separable by a
hyperplane, which obtain a nonlinear shape returning to the original dimensional
space.
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Figure 2.5: Support Vector Machine representation.

2.3.3 K-nearest Neighbors (KNN)

In KNN classification, a number of neighbors K is chosen a priori and then, for each
instance x, the algorithm identifies the k closest neighbors from that instance, and
provide a prediction based on the majority vote of these neighbors. The algorithm
searches for nearest neighbors of an instance x̂ employing the Minkowski metric:

||x̂− xj||p = (
q∑︂

i=1
|(xi)ˆ − (xi)j|p)1/p (2.12)

Which, for p = 2, correspond to the Euclidean distance. In case of binary
classification, the KNN algorithm is defined as:

fKNN(x̂) =

⎧⎨⎩1 if ∑︁
i∈Nk(x̂) yi ≥ 0,

−1 if ∑︁
i∈Nk(x̂) yi < 0

(2.13)

For a multiclass classification problem, this equation become:

fKNN(x̂) = argmax
y∈y

∑︂
i∈Nk(x̂)

I(yi = y) (2.14)

With the function I() which return 1 if its argument is true and 0 otherwise.
This algorithm is an example of lazy learning, since the function is only approxi-
mated locally, and normalizing the training data can improve the accuracy [4].
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Figure 2.6: K-Nearest Neighbors representation.

2.3.4 Naive Bayes
Naive Bayes classifiers works on the principle of conditional probability as given
by Bayes theorem, which can be expressed as follows:

P (A|B) = P (B|A)P (A)
P (B) (2.15)

where A and B are events and P(B)/=0:

• P (A) is the probability of occurrence of event A;

• P (B) is the probability of occurrence of event B.

• P (A|B) is the probability of occurrence of event A when B is true;

• P (B|A) similarly is the probability of occurrence of event B when A is true;

In a binomial classification problem, in which each new instance has to be
assigned to class A or B, in order to apply a Naive Bayes classifiers, for each new
instance a number of parameters are needed:

• P (A): probability of occurrence of event A, which is the ratio between the
number of observations in the class A and the total number of observations;

• P (B): probability of occurrence of event B, which is the ratio between the
number of observations in the class B and the total number of observations;

• P (X): marginal probability, which is the ratio between the number of obser-
vations within a certain radius from a new instance and the total number of
observations;
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• P (X|A): conditional probability that observations of class A exhibit features
of X, which is the ratio between observations of class A within a certain
radius from a new instance and the total number of observations of class A;

• P (X|B): conditional probability that observations of class B exhibit features
of X, which is the ratio between observations of class B within a certain
radius from a new instance and the total number of observations of class B;

Figure 2.7: Naive Bayes representation.

Then Bayes filter is applied as follows:

P (A|X) = P (X|A)P (A)
P (X)

and
P (B|X) = P (X|B)P (B)

P (X)
Finally the two results P (A|X) and P (X|B) are compared and on this basis the
new instance is assigned to the more probable class.

2.3.5 Decision Tree and Random Forest Classification
Decision Tree Classifiers have been very used in the past due to their qualities,
among the others for being very easy and intuitive to implement (require very
little data preparation) but at the same time very powerful algorithms. They are
also the fundamentals for Random Forest Classifier. A Decision Tree Classifier,
like the name says, lean on a Decision Tree, which is traversed for each instance
to find the corresponding leaf node, and then returns the probability of belonging
to each class.
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Figure 2.8: Graphical representation of Decision Tree Classification boundaries on
an example problem involving the recognition of flowers on the base of width and
length of their petals [3].

Random Forest is one of the most powerful machine learning algorithms nowa-
days that operate by aggregating the predictions of a group of predictors, in par-
ticular of a multitude of decision trees. Practically, Random Forest classifier pick
K random data points from the training set and construct a decision tree on these
points. This operation is repeated N time, where N is the number of tree desired.
When a new instance is received, every tree constructed in such a way make a
prediction, and the new data point is assigned to the class that wins the majority
vote.
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2.4 Deep learning classification

2.4.1 The artificial neuron
Deep learning is a branch of machine learning based on artificial neural networks,
of which neurons are the fundamental elements. Neurons take a certain number
of weighted input element, sum theme up and then apply an activation function
in order to obtain an output. There are lots of different activation function, and
depending on the problem to be solved some do the job better than others. The
most used are the Threshold (step) function and the Rectifier function (also called
ReLU ), that will be presented later on in this paper, the sigmoid function, already
defined in (2.6), and the Hyperbolic tangent function.

The most simple example of artificial neuron, and also one of the first theo-
rized, is the perceptron, developed in the 1950s and 1960s by the scientist Frank
Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts. A
perceptron takes several binary inputs, each associated with a different weight,
and produce a single binary output, that follows the threshold activation function
below:

output =

⎧⎨⎩0 if ∑︁
j wjxj ≤ threshold

1 if ∑︁
j wjxj > threshold

(2.16)

Figure 2.9: Step function [5].

The main limit of perceptrons is that a small change in the weights or in the
threshold (generally called bias) could cause heavy and unpredictable changes in
the output, since a characteristic property of perceptrons is that they can only
assume value 0 or 1. Considering that small changes in weights is an operation
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of primary importance in the process of learning, this throwback can create some
very complicated scenarios.

Figure 2.10: Perceptron representation [5].

This problem can be overcome by using Sigmoid neurons. These are very similar
to perceptrons, but in addition to assume value 0 or 1, they can contain any other
value between these two. Consequently the output of a Sigmoid neuron will not
be binary, but σ(wx + b), where σ is the sigmoid activation function (2.6).

2.4.2 Artificial Neural Networks
An artificial neural network is then formed by a series of neurons organized in
layers, and each layer is fully connected to one another. Generally three types of
layers are present:

• An Input layer, where is initially contained the data entering the network;

• An Output layer, the last layer of the network which provide the final output
data;

• A certain number of Hidden layers, so called because are between the pre-
vious two layers. Networks with an high number of hidden layers are usually
more complex and can achieve better decision making results.

Typically, for a sigmoid neurons network, hidden layers are activated by a ReLU
function, while for the output layer a sigmoid or softmax function is used depending
on the type of output, respectively binary or multi-class.

But how can an ANN learn? When a train data is provided to the network,
it tries to predict the results. Initially weights of each neuron are set to a small
number, close to 0. Each result obtained from the output layer is then compared
with the ground truth value, and a Cost Function is computed:

C(w, b) = 1
2n

∑︂
x

||y(x)− ŷ||2 (2.17)
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Figure 2.11: ReLU function [2].

Figure 2.12: Representation of a simple neural network [5].

Where w and b are respectively all the weights and all the biases in the network,
n is the total number of training input and ŷ is the ground truth value when x
is input. This information enters the output layer and proceeds backwards in the
network, in an operation called backpropagation, at the end of which weights are
updated according with how much they are responsible for the error.

The objective of backpropagation (and the main objective of the neural network
in general) is to bring the cost function to a null value, which occurs when y(x) = ŷ.
Nearer the cost function to the zero value, more precise will be the network (this
is typically attained using a Gradient descent algorithm, which will be further
explained later). Two different kind of learning technique can be identified:
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• Reinforcement learning: where weights are updated after each observa-
tion;

• Batch learning: where weights are updated only after a batch of observa-
tion.

2.4.3 Convolutional Neural Networks
In the previous section, fully connected networks were presented, in which every
neuron in the network is connected to every neuron in the adjacent layers:

Figure 2.13: Fully connected neural network [5].

In the field of visual imagery, and precisely in that of classification of images,
the use of such a network leads to have a input layer with a neuron for each pixel
of the image, between which there is no spacial relationship. Indeed the original
structure of the image is not maintained, and pixels that are close together or far
apart are treated on the same basis. A different kind of network, able to take in
consideration the disposition of pixels in the image, would not only start from a
pool of a priori information that could improve results, but also make faster and
easier the training process.

Convolutional Neural Networks (CNNs) are powerful ANN particularly used in
the field of visual imagery, and based on three fundamentals:local receptive fields,
shared weights, and pooling.

local receptive fields Contrary to previous networks, instead of gather input
neurons (and so image’s pixels) in a vertical column with no relationship between
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one and the other, CNN respect the spatial structure of the image. Considering
for example a 28 x 28 pixels image, it is convenient to depict the input layer like
shown in Figure 2.14.

Figure 2.14: CNN input layer [5].

Where each neuron contain the intensity value of each pixel. Then, progressing
with the implementation of the first hidden layer, instead of connecting every input
pixel with every hidden neuron, only connections in small, localized regions of the
input image are performed. As always, each connection will have an associated
weight, and each new hidden neuron will have a bias. Sliding the region across the
whole image, it is possible to obtain the first hidden layer. Proceeding with the
example, 5 x 5 region can be considered for this operation like presented in Figure
2.15.

This whole process is called Convolution.

Shared weights and biases At the end of the previous operation a 24 x 24
neurons layer will be obtained. Each of these neuron will have the same weights
and bias, which means that all neurons in the first hidden layer will detect the
same feature in the input image, but at different locations. This makes CNN
well adapted to translation variances, meaning that it will recognize the features
in the image also if these are translated in different positions. For this reason,
the map from input to hidden layer is called feature map, and the weights and
bias are called respectively shared weights and shared bias. Shared weights and
bias define a matrix, called kernel, filter or Feature detector (which is the 5 x 5
region previously defined in the example). Anyway, this structure detects just one
feature. Generally a convolutional layer is made up of more feature maps, and
so different kernel are used. Once the network is trained to recognize a feature,
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Figure 2.15: Implementation of first hidden layer in a CNN [5].

that particular feature will be detected across the entire image. Remaining in the
example, the finale result will be a layer of dimensions x x 24 x 24, where x is the
number of feature maps.

Pooling In a CNN, usually immediately after a convolutional layer, a pooling
layer is inserted, which simplify the information contained in a convolutional layer.
For example, max-pooling, a common pooling procedure, outputs the maximum
activation in the 2 x 2 input region.

In such a way the feature is isolated, and a bigger importance is given to the
rough location of a feature with respect to the others rather than its precise lo-
cation; this leads to a drastic reduction in number of parameters needed in later
layers, improving the general performance of the network and maintaining the pre-
cision of its results. Remaining in the example, the obtained hidden layer after
the pooling operation will have a dimension of x x 12 x 12, where x is the number
of feature maps from which the pooling operation is performed.
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Figure 2.16: Max-pooling procedure in a CNN [5].

Putting it all together, the obtained final neural network presents as input layer
a 28 x 28 neuron structure that encode the original image’s pixels. This is followed
by a first hidden layer of dimensions 3 x 24 x 24, obtained applying a convolutional
operation with a 5 x 5 local receptive field and 3 feature maps, and then a second
hidden layer of dimension 3 x 12 x 12 obtained applying a max-pooling operation
with 2 x 2 regions, across each of the three feature maps. Finally the output
layer is made up of X neurons, where X is the number of class contemplated in
the problem. This convolutional architecture is quite different to the architectures
used in earlier sections, but the overall picture is similar: a network made of many
simple units, whose behaviors are determined by their weights and biases. And the
overall goal is still the same: to use training data to train the network’s weights
and biases so that the network does a good job classifying input data.

Figure 2.17: CNN architecture [5].
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Practice working But how does a Convolutional Neural Network work in prac-
tice? As stated before, the first and most important role of CNN is solving of
classification problems involving visual imagery. In these problems, the dataset
is usually divided in training set and validation set, where the latter is usually a
minor fraction of the former (generally the validation set has a number of images
equal to a quarter or a fifth of the training set). Then, the CNN model is "fed"
with this dataset for a certain number of cycles, called epochs. For each epochs,
two important operations happen:

• first, the model use the training set to "learn" with a Gradient descent algo-
rithm. This consists in making a prediction for each image of the training set
and then compare this result with the ground truth label corresponding to
that image, and use the error to update weights and biases;

• then, this model is tested using the validation set. It is not directly respon-
sible for the training of the model, but provide important information to the
programmer about its accuracy. Similarly to the training phase, the model
try to predict these images one by one, and then this prediction is compared
with its ground truth label. The ratio of correct predictions to the total
represent the accuracy value of the model for that particular classification
problem. It is worth noting that validation set, and consequently its split, is
not fundamental for the model to learn, but it is good practice to obtain a
quality feedback of the model before applying it.

Often datasets contain a considerable number of images and the system could
not permit to maintain all of them in memory, so they are gathered in groups of
the same size; each of these groups is called Batch. Depending on the batch size,
gradient descent algorithm can be replaced by:

• Batch Gradient Descent, when the batch size is equal to the whole training
set;

• Stochastic Gradient Descent, when the batch size is equal to one, which
means it is equal to the total number of samples in the training set;

• Mini-Batch Gradient Descent, when the batch size is greater than one
but smaller than the total number of samples in the training set.

Mini-batch gradient descent seeks to find a balance between the other two
implementation, and is the most common algorithm of gradient descent used in
deep learning. It is so important because contrary to the simple gradient descent,
allows to update weights and biases of the model after the training with each batch.
In such a way, considering always that an epoch is counted after the training on
the whole training set, and so on all the batches, the model update frequency will
be equal to the number of epochs divided by the number of batches. This allows a
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more robust convergence, avoiding local minima and improving accuracy, and at
the same time lightens the computation effort by avoiding to have all the images
always in memory.
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Chapter 3

Robot

Before talking about how a robot can navigate an environment and localize itself
in it, it is necessary to introduce what it is, in practice. A robot is a machine
able of preforming a series of actions autonomously, that means without the direct
intervention of an external agent. Robots are generally able to move themselves
or to move physical objects, and are mainly used to assist humans, during work
or other daily activities, replace theme in the execution of a task, or perform
potentially dangerous actions at their place. Robots can have different structure
depending on their function:

• Mobile robots are able to move in a specific environment, which can be more
or less wide, determined by the function assigned. The branch of mobile
robots is very large, ranging from civil use like domestic robots for cleaning
and maintenance or autonomous vehicle, to military and space exploration
rovers;

• Industrial robots are generally manipulators constituted of a jointed arm with
many degree of freedom, ending with a gripper or other different tools. They
are usually automatically controlled, reprogrammable and very flexible, able
to fulfill many tasks;

• Humanoid robots resemble a human body, with torso, head, two arms and
two legs. Like other robots, the design has generally a functional motivation,
like experimental purpose on bipedal locomotion or other human tasks, but
could also have an aesthetic purpose like, for example, in the field of service
robotics for children and elders assistance;

• Bio-inspired robots have a design that attempt to translate biological concepts
into engineered systems. These robots are more often inspired rather than
copied from nature, which means biological structures are taken and simplified
in the robotic design. They can have different use, from natural research to
military purpose;
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• UAVs, unmanned aerial vehicles, commonly known as drones, are aircraft
guided without a pilot on board. The most famous of this kind are quad-
copters. Also in this case, they can have different applications, and are used in
military, commercial, scientific, agricultural, recreational, surveillance, prod-
uct delivery and other activities;

• Modular robots are created for multifunctional purpose, and are constituted
of different module types, allowing hyper-redundancy with more than eight
degree of freedom.

Figure 3.1: General mechanical structure of robots [6].

Robotics is commonly defined as the science studying the intelligent connection
between perception and action [6]. Figure 3.1 represent the general structure of a
robot. The capacity to exert an action, both locomotion and/or manipulation, is
provided by an actuation system which animate the mechanical components of the
robot. This system is generally composed of servomotors, drives, transmissions,
and other mechanical components able to obtain the desired functionality. The
capability of perception is entrusted to a sensory system which can acquire data
on the internal status of the mechanical system (proprioceptive sensors) as well
as on the external status of the environment (exteroceptive sensors). The connec-
tion between perception and motion is practiced by a control system which can
command the actuation system on the basis of the information retrieved from the
sensory system, and of the task the robot has to complete. The feedback principle
followed by the robotic system in this context is very similar to that followed by
the human body.

3.1 Sensors
There are a vast number of different sensors being used in robotics, applying
different measurement techniques, and using different interfaces to a controller.
The scope of this section is not presenting all kinds of robotic sensors but more
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specifically those sensors mainly used for SLAM operations. First of all, it is
necessary to make a classification based on the kind of application [7]:

• Local or on-board sensors, mounted on the robot;

• Global sensors, mounted outside the robot, in its environment, transmitting
data back to the robot;

• Internal or proprioceptive sensors, monitoring the robot’s internal state;

• external or exteroceptive sensors, monitoring the robot’s environment state.

3.1.1 Accelerometer and Gyroscope
Accelerometer and Gyroscope are generally local and proprioceptive sensors, able
to determine the orientation of the robot in a 3D space, which is of primary
importance in problems requiring the tracking of the robots, in balancing and
walking robots or autonomous planes. More of the same sensor can be integrated
in order to measure two or all three axes of orientation.

Accelerometes are electromehcanical device that measure acceleration, the rate
of change in velocity of an object, but can not directly measure the orientation of
the body, and are often very imprecise and need software filtering to obtain better
results.

On the contrary, gyroscopes can measure the orientation of the body with great
precision. Combinations of accelerometers and gyroscopes are often used for the
creations of advanced electronic devices, like the Inertial Measurement Unit (also
called IMU), which is able to reports a body’s specific force, angular rate and
orientation.

3.1.2 Digital Cameras
On mobile robots, digital cameras are usually local and exteroceptive sensors, and
a fundamental part of the machine vision system.

Digital cameras are complex sensors because of the processor speed and mem-
ory capacity required. Since there is always a trade-off between frame rate and
resolution, the former is often preferred upon the latter. In fact, for mobile robot
applications, the most important aspect of a camera is an high frame rate, be-
cause during the movement it is required to retrieve updated sensor data as fast
as possible. Furthermore, the frame rate can be also influenced by the pre- or
post-processing process applied on the received image.

On the oter side, the image resolution must be high enough to detect a desired
object from a specified distance. This object can be properly recognized only if,
on the camera, it is received as a certain number of pixels.

Anyway, in the last years, the compromise between frame rate and resolution
has been dwindling, and now cameras with high resolution and frame rate are
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commonly available on the market. This gave birth to another problem, that is the
passage of much more data, which require additional, faster storage components.

Often, it is more robust to describe robot tasks and environments in three
dimensions than in 2D. This because the 3D shapes of tasks and environments are
invariant to changes in the scene, like for example lighting, shadows, occlusions and
so on. When two cameras are rigidly mounted to a common mechanical structure,
they form a stereo camera. The two cameras are aligned on the same x-axis and
their y- and z-axis are parallel, making possible to determine the depth to points
in the scene from the center point of the line between their focal point, similarly
to how works the human eye.

Simple stereo cameras are passive devices, namely they passively observe the
scene without giving any other contribute, and the real depth detection is entrusted
to the software. This lead to a series of complications, and the depth recognition
is influenced by a series of factors, both related to the camera (resolution, lens
type and quality and so on) and to the environment (lighting, shadows, and so
on). Furthermore, this kind of implementation can lead to a very known problem
in computer vision, called correspondence problem, in which the software has dif-
ficulties in recognizing which parts of one image correspond to which part of an
other. How it will be understandable in the next chapters, this might be a big
problem in SLAM application.

3.1.3 Range Data
The problems discussed previously affecting stereo cameras can be solved by using
an active device, able to illuminate the scene in various ways emitting beams and
structured light, rather than observe the scene passively. These devices are called
deapth cameras or range cameras.

Depth cameras can operate according to a number of different techniques. One
of the most famous and used is Stereo triangulation, which work similarly to passive
stereo vision system, but is able to partially solve all the problem affecting these
cameras. Stereo triangulation introduce an active contribute, which consist in a
controlled light emitter, like laser or infrared beam, which project an unstructured
light pattern. In this case, as in conventional stereo case, the position of the bright
spot where the laser beam strikes the surface of interest is found as the intersection
of the beam with the projection ray joining the spot to its image, but contrary to
conventional stereo case, the laser spots are much brighter than the other scene
points, avoiding the correspondence problem.

An other widespread technique is the Time-of-Flight (ToF), which work by
measuring the phase-delay of reflected infrared LED or laser illuminator, meaning
the time required for these light pulses to fly into the scene and bounce back to
the depth camera, capturing a whole scene in three dimensions. This technique is
very sensitive to radiometric, geometric and illumination variations, for example
measurement accuracy is limited by power of the IR signal, which is usually low
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compared to daylight. An other critical problem with ToF is motion blur, caused
by either camera or object motion. Depth accuracy and frame rate are limited
by the required integration time of the depth camera, longer integration time
usually allow higher accuracy of depth measurement, which is particularly adapt
for static scenes, while for capturing moving objects may be necessary to shorten
the integration time, an so the accuracy.

Structured light cameras is another kind of depth camera worth mentioning. It
project a precisely known pattern of light into the scene, the camera observe how
this pattern is deformed as it lands on objects and surfaces in the scene, and a
reconstruction algorithm estimate the 3D structure of the scene from this data.

3.1.4 Laser scanning

Although depth cameras are very precise and efficient in their work, there are still
some applications in which Laser scanners are widely employed, because of their
superior accuracy and longer sensing range.

One of the most famous laser scanner devices is the LiDAR (Light Detection
And Ranging), which transmit an amplitude modulated laser beam to a spot of
the 3D surface and receives the reflected signal back. By comparing the change
of fase, introduced by the delay, between the transmitted and received signal, the
device is able to measure the distance in terms of the period of the modulation of
the laser beam. These computations are generally always handled by the firmware
of the device.

Laser scanners find several uses in the construction of high-resolution maps
with different applications, for laser altimetry tasks, and recently have also been
employed in control and navigation for some autonomous cars. In the latter case,
laser scanners are significantly different from those used for indoor or slow-moving
robots, due to the differences in velocities and distance ranging they have to deal
with, but also for aerodynamic forces, vibrations and temperature gaps. To over-
come this necessities, on autonomous vehicles LiDARs are often mounted in series,
producing multiple scanlines.

Similarly to Time-of-Flight cameras, laser scanners are very sensitive to the
different environment conditions, which can change or even fade the laser beams
in unexpected ways. For example, LiDAR pulses may be affected by heavy rains,
high sun angles or huge reflections, caused for instance by glass windows or water
surfaces. Furthermore laser scanners are generally slower compared to depth cam-
eras, due to the time needed to compute the phase change for each spot, and also
much more expensive, because of mechanical parts used to steer the laser beam.
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3.2 ROS
Until this point, the hardware structure of a robotic system has been presented,
neglecting one of the most important parts: robot control. The software implemen-
tation of robot control has always been one of the most complex and studied topic
in robotics. The need for an open collaboration framework was felt by many peo-
ple in the robotics research community: this lead to the birth of ROS. The Robot
Operating System (ROS) is a framework for writing robot software, one of the most
used all around the world. It is a collection of tools, libraries and conventions that
aim to simplify the task of creating complex and robust robot behavior across a
wide variety of robotic platforms. Since creating truly robust and general-purpose
robot software can reveals very challenging, and it is very difficult and expensive
to build a complete system from scratch, ROS was built to encourage collaborative
robotics software development. In order to understand the implementations used
in this project, a briefly introduction to the main characteristics and functions of
ROS is needed.

3.2.1 ROS graph and roscore

A ROS system structure can be easily illustrated by a ROS graph. It present
many different programs running simultaneously and communicating with one
another by passing messages. These programs are called nodes, because they are
represented as nodes on the ROS graph, and programs that communicate with one
another are connected by edges, which represents a stream of messages. Typically,
a software crash will only take down its own process (and the corresponding node),
while the remaining structure will stay up.

Nodes are able to find one another thanks to roscore, a service that provides
connection information to nodes, so that they can transmit messages to one an-
other. Every node connects to roscore at startup to register details of the message
streams it publishes and the streams to which it wishes to subscribe. How it is
understandable, roscore is a fundamental part of ROS, and no ROS system can
exist without it running.

3.2.2 rosrun and roslaunch

ROS software is organized into packages, each of which contains some combination
of code, data and documentation. The ROS ecosystem includes thousands of pub-
licly available packages in open repositories. Since these packages are locations in
the filesystem with very long paths, it would be tiresome and time-wasting look-
ing for theme one by one. ROS provides a more efficient way to run its programs,
a command-line called rosrun. The syntax expects the command rosrun fol-
lowed by the name of the package and the name of the executable, and eventually
also other parameters compatible with the specific program. Another important
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Figure 3.2: roscore provide information between two nodes so that they can
transmit messages to one another [8].

command-line is roslaunch, designed to automate the launching of collections of
ROS nodes. The syntax is almost identical to the rosrun command-line, expecting
the command roslaunch followed by the name of the package and the name of
the launch file, and eventually other parameters. roslaunch is very useful because
not only can run a series of nodes, but also other launch files. Furthermore, when
a roslaunch is closed, all of the nodes associated with it are closed as well.

3.2.3 Topics, Services and Actions
ROS nodes, by themselves, are not very useful until they communicate with each
other, exchanging information and data. The most common way to do that is
through topics, which are names for streams of messages with a defined type.
Topics implement a publish/subscribe communication mechanism: before starting
to transmit data, a node has to advertise both the topic name and types of messages
that are going to be sent. Then they can start to publish the actual data on the
topic. Nodes that want to receive messages on a topic can subscribe to that topic
by making a request to roscore and, from then on, all the messages on the topic
will be delivered to these nodes. It is worth noting that all messages on the same
topic must be of the same data type.

The publish/subscribe model is a very flexible communication paradigm, but
is not appropriate for request/reply interaction. Services are another way to pass
data between nodes in ROS. They are synchronous remote procedure calls, defined
by a pair of messages: one for the request and one for the reply. That allow one
node to call a function that executes in another node. Service calls are well suited
to things that only need to do occasionally and take a bounded amount of time
to complete. They are useful for synchronous request/reply interactions, namely
those cases where asynchronous ROS topics don’t seem like the best fit.
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However, services are not the best fit, either, in those cases when it is needed
to initiate long-running tasks. For these situations, ROS provides actions, asyn-
chronous procedures which in addition to set a goal and give a result, like services,
also use feedback to provide updates on the behavior’s progress toward the goal
and allow to cancel or modify such goal. An action is essentially a higher-level
protocol that specifies how a set of topics (goal, result, feedback, etc.) should be
used in combination.

3.2.4 Teleoperation
Through nodes, it is possible to make a robot perform all a series of actions and
computations in order to accomplish a certain task. But how is it possible to
physically move a robot in the environment?

For a terrestrial wheeled robot, the control can be actuated acting just on
two velocity degree of freedom: the linear velocity (forward/backward), and the
angular velocity around the Z-axis which is, in other words, how fast it is spinning.
It is simple to understand how with just these two components it is possible to fully
drive a wheeled robot in his 2D environment for all control configurations, whether
manual or automatic. ROS provide a function to manually control the movement
of the robot through teleoperation, using input from a computer keyboard or from
a variety of different controllers.

From a practical point of view, the robot is set in communication with the
controller source, generally with Bluetooth or through a LAN network, and then
the node responsible for the teleoperation (that can usually be the
teleop_twist_keyboad for general twist robots, or the turtlebot_teleop for
turtlebot robots) is launched, allowing the control fundamentally through five
commands, two for adjust forward and backward velocity, two for both rotation
speeds, and another one for immediately interrupt any motion.

3.2.5 rviz

rviz stands for ROS visualization, is a general-purpose 3D visualization environ-
ment for robots, sensors and algorithms. A role of paramount importance is taken
by the frame of reference: when rviz is launched to visualize, for example, a con-
trollable robot, every type of data must be associated to a reference frame. This
means that, remaining in the example, there must be at lest a reference frame
associated to the environment, which usually is set as the fixed frame, and a refer-
ence frame associated to the robot, which usually is the mobile frame desired to be
followed during the motion. Each robot can have several reference frames, like the
center of the structure base, the camera, or even wheels in mobile robots, while in
a manipulator each joint, including the end effector, has its own reference frame.
rviz presents a number of panels and plugins that can be configured as needed,
and integrates perfectly with the ROS system, allowing to visualize a whole series
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of plugins corresponding to topics running in the actual ROS system. In such a
way, it is possible to visualize all a series of services corresponding to different
parameters of the robot and its sensors, like position and orientation in the envi-
ronment of each reference frame, trajectory, camera’s output images, depth cloud,
environment grid map, and so on.

3.3 Hardware components employed
For the purpose of this thesis project, it is necessary a robot able to respect a
series of constraints, mainly concerning the robotic structure and the availability
of sensors. First of all, it must be small enough to easily roam in complex do-
mestic indoor environments, nimbly avoiding obstacles and impediments, but also
big enough to contain all the necessary hardware, including the central process-
ing unit, all without constituting a danger for people or object inside the indoor
environment. Furthermore it must support a number of sensor in order to:

• Estimate the 3D structure of the scene, for reconstructing the map of the
environment;

• Localize itself in such map;

• Capture some image frame of the environment, which will be used by the deep
learning algorithm to classify rooms. For this purpose, the more high is the
quality (resolution) of these images, the more precise will be the prediction.

3.3.1 Robotic structure
Terrestrial wheeled robots and UAVs, especially quadcopters, are the two types
of robots most largely employed for navigation and SLAM operations. While
quadcoperts are used for both outdoor and indoor SLAM operations, terrestrial
wheeled robots are simpler, can support more hardware without strict weight
limits, and in a domestic scenario are much safer. The choice therefore fell on
TurtleBot3, in particular the Waffle version.

TurtleBot is a minimalist platform for ROS-based mobile robot education and
prototyping, developed by the Korean manufacter ROBOTIS [10]. It present a
small differential-drive mobile base with an internal battery, power regulators and
changing contacts, and is constituted of a stack of laser-cut "shelves", covered with
mounting holes, allowing to customization by adding additional hardware subsys-
tems, like manipulators, sensors, upgraded computers, and so on. By default, the
fundamental components provided with the TurtleBot3 Waffle are:

• An Intel Joule 570x Single Board Computer, an embedded computer con-
troller complete of 16GB of storage, 4GB of included memory and an inte-
grated graphic processing unit, all with a system running on Linux;
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Figure 3.3: Principal TurtleBot3 Waffle components [9].

• Two Dynamixels, high-performance, all-in-one actuators which control the
two front wheels;

• An OpenCr (Open-source Control Module for ROS), developed for ROS em-
bedded systems, which mount a STM32F7 series chip based on a very powerful
32-bit ARM Cortex-M7 microcontroller with floating point unit. This whole
system is used to the control of sensors and actuators;

• A 360 LiDAR sensor;

• An Intel Realsense R200 active stereo depth camera for range sensing;

• An inertial measurement unit constituted of a 3 axis gyroscope, a 3 axis
accelerometer and a 3 axis magnetometer;

• A Lithium polymer 11.1V 1800mAh/19.98Wh battery.

For this project, the Intel Joule 570x is replaced with a more powerful NVIDIA
Jetson AGX Xavier Developer Kit unit [11], which present a 512-core NVIDIA
Volta GPU, an 8-core ARM 64-bit NVIDIA XAVIER CPU, 32GB of flash storage
and 32GB of DRAM memory, with an operative system called JetPack, a Software
Development Kit (SDK) based on Linux as well [12]. Moreover, in addition to the
DC power socket, it is provided with an HDMI port for system installation and
implementation, an Ethernet port for internet connection, two USB type C and
one USB 3.1 type A ports, allowing connection of many components.
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Figure 3.4: Jetson AGX Xavier [11].

The Jetson AGX Xavier was mainly designed for robots and autonomous ma-
chines, so it is particularly adapt for real-time execution and is able to perform neu-
ral networks computation very efficiently, thanks to integrated software libraries
as CUDA, cuDNN and TensorRT. Because of its considerable size, it has been
necessary to slightly modify the TurtleBot3 Waffle in order to make enough space
to contain it.

3.3.2 Employed Sensors
In addition to TurtleBot3 Waffle’s integrated sensors, an other pair of cameras have
been added to the structure, to allow a more precise and robust SLAM execution,
and to retrieve better RGB images for the deep learning classification algorithm.

Intel RealSense D435i Depth Camera An active IR stereo depth camera
used to replace the Intel RealSense R200, which potentially has all the charac-
teristics needed by this project. In fact, Intel RealSense D435i is provided with
two infrared cameras and an infrared projector. The two IR cameras sees both IR
and visible light, performing dense stereo matching based on feature it can see in
visible wavelength, while in infrared they pick up also on artificial features gener-
ated by the projector [13]. The operating range is between 0.105 and 10 meters at
86x57 degrees of FOV, with a depth resolution of 1280x720 at up to 90 fps. This
solutions, united with the integrated Intel RealSense Vision Processor D4, which
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takes care of rectifying and processing the images captured by cameras, allows a
very precise and robust 3D reconstruction of the environment.

Figure 3.5: Intel RealSense D435i structure [14].

D435i mounts also Full HD RGB camera at 30 fps, with a 69.4x42.5x77 degree of
FOV, that is perfect for the acquisition of frames for the deep learning classification
algorithm.

Finally, Realsense D435i has also an IMU unit, which combine a variety of
sensors with gyroscopes to detect both rotation and movement in 3 axes, as well
as pitch, yaw and roll. In such a way, knowing the initial pose of the robot, it
is possible to track its subsequent positions and orientations with respect to the
environment in any moment.

Even thought this camera seems to be the perfect fit for this project, and seems
to have all the characteristics needed to achieve the prefixed goals, the localization
offered by its IMU unit in many cases results not very robust, leading to lost of
tracking, even with the slightest jolt, without any possibility of recovery. This lead
to the search of a new device able to compensate this weakness.

Intel RealSense T265 Tracking Camera A tracking camera is a camera
specifically designed for localization and pose estimation. This particular Intel
model is provided with two OV9282 Fisheye cameras that transmit monochrome
images at a risolution of 484x800 and 30 fps, with a field of view of 173 degree each,
in addition to an inertial measurement unit constituted of a series of Accelerom-
eters and Gyroscopes in a single package. For processing of the images retrieved
by cameras, the T265 use a VPU (visual processing unit) Movidius MA215x.

For localization and pose estimation, Intel RealSense T265 exploit its advanced
inertial measurement unit, similarly to D435i, but contrary to this it integrate this
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Figure 3.6: Intel RealSense t265 [15].

IMU with a Virtual Inertial Odometry (VIO) system, which determine position
and orientation of the robot by analyzing the associated camera images, with an
appearance-based loop closure detection (explained in the following chapter).

The integration between Intel RealSense D435i and T265 allow a more robust
and reliable localization and tracking of the robot, leading to a better pose esti-
mation and improving the precision in building the 3D map of the environment.
Actually, the joint use of these two camera is employed, and also very encouraged
by Intel for SLAM projects [16].

Turtlebot Lidar The lidar module mounted on the TurtleBot3 Waffle is a 360
Laser Distance Sensor LDS-01, a 2D laser scanner capable of sensing 360 degrees
that collects a set of data around the robot.

Figure 3.7: 360 Laser Distance Sensor LDS-01 [17].
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How will be discussed in next chapters, the depth camera can be used instead
of the lidar, on the other hand the latter is a relatively simple and cheap device
that allows to obtain a better quality map of the environment.
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Chapter 4

SLAM

4.1 Introduction
The simultaneous localization and mapping is the computational problem of con-
structing the map of an unknown environment with a robot while simultaneously
localizing and tracking the position of said robot, in relation to this map. In the
field of robotics, it is historically known as a fair complex problem: to localize a
robot, a priori information about the environment’s map are necessary, while to
construct said map, it is necessary to know the pose of that robot in any moment.
When both these information are unknown the problem gets exponentially com-
plicated, but nowadays several technique to solve it exist. Formerly, it is possible
to recognize two kind of SLAM:

• Online SLAM: involves estimating the posterior over the momentary pose
along with the map.

p(xt, m|z1:t, u1:t) (4.1)

where xt is the pose at time t, m is the map, z and u are respectively the
measurements and controls.

• Full SLAM: involves calculating a posterior over the entire path x1:t along
with the map, instead of just the current pose xt.

p(x1:t, m|z1:t, u1:t) (4.2)

Furthermore, SLAM problem is continuous and discrete at the same time. The
localization of object in the map and the robot’s own pose constitutes a continuous
problem, while correspondence of an object, as a landmark, with an other previ-
ously detected, is typically a discrete problem. This duality is manageable thanks
to some algorithms (like EKF, discussed later at section 4.5.2), able to estimate
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both the robot pose, which is continuous, and the correspondences of measure-
ments and landmarks in the map, which are discrete. The successive sections will
be organized like follows:

• first of all, in order to better understand next arguments, Section 4.2 will
briefly explain the concepts of Bayes filter and Markov assumption, which are
the basis for almost every SLAM algorithms;

• then, Sections 4.3 and 4.4 will expose the two basic operations which consti-
tute the SLAM problem: Localization and Mapping;

• finally, from Section 4.5 to 4.8, a series of the most popular filter and associ-
ated technique used for solving SLAM problems will be presented.

4.2 The Bayes filter
At the base of the Bayes filter there is the concept of Probabilistic Robotics. The
key idea is to represent the uncertainty as the calculus of probability, that means
instead of relying on a single "best guess", represent information by probability
distributions over a space of possible hypotheses. In this context, the probability
function describing the robot’s momentary estimate of its state (or pose) is referred
to as belief.
The Bayes filter, already introduced in (2.15), can be furthermore appreciated with
this equation:

Table 4.1: General Bayes filter algorithm [18].

In order to retrieve the belief of the state x at time t, bel(xt), the Bayes filter
take as input the belief at time t − 1, along with the most recent control ut and
measurement zt. This operation is called update rule and is applied recursively to
calculate the belief bel(xt) from the belief bel(xt−1) for every t. In particular the
update rule is accomplished through two major steps:

• the prediction, depicted in line 3, where the belief bel(xt), that is the one
assigned by the robot to the state xt, is calculated by the integral of the
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product between the belief bel(xt−1) and the probability that the control ut

induces a transition from xt−1 to xt

• the measurement update, depicted in line 4, where the previously obtained
belief bel(xt) is multiplied by the probability that the measurement zt may
have been observed in correspondence to the state xt, and normalized through
the constant η, to finally obtain the belief bel(xt).

In conjunction with the Bayes filter, Markov assumption is of fundamental
importance. It states that past and future data are independent if one knows the
current state xt, in other words the trajectory of the robot can be neglected as
long as we know its current pose.

4.3 The localization problem
For mobile robots, localization is the problem of determining the pose of the robot
relative to a given map of the environment. It is at the base of almost every prob-
lem in robotics, simply because all tasks require knowledge of the location of the
robot and objects around it to perform an action. Localization can be seen as a
problem of coordinate transform. It is necessary, in fact, to detect and monitor the
reference frame integral with the robot in relation with the reference frame of the
environment and objects contained therein. Knowing the pose xt = (x, y, θ)T is
usually sufficient for such coordinate transform, but this pose generally can not be
sensed directly by the robot and must be retrieved through other means. Not only,
usually a single localization method and a single measurement are not sufficient
to guarantee a precise pose estimation, instead a set of localization technique are
needed, and the robot has to integrate data over time to determinate a pose.

Localization problems can be more or less difficult depending on a certain num-
ber of variables, as the initial knowledge of the robot in relation with the environ-
ment, the characteristic of the environment itself and the type of approach used
to solve the problem.

Initial information of the robot

• Position tracking: the initial robot’s pose is known, and the noise for the
subsequent poses is assumed to be small. This is a local problem, since the
uncertainty is local and confined to a region near the robot’s true pose;

• Global localization: the initial robot’s pose is unknown, so it can be ev-
erywhere in the environment;

• Kidnapped robot problem: this is a variant of the global localization
problem, where the robot can be taken and teleported to some other location
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during the operation. This problem can be very complex since while in the
global localization problem the robot know that it does not know where it is,
here it can think to know where it is when it does not.

Environment characteristic

• Static environment: the only variable quantity is the robot’s pose, ev-
erything else that characterize the environment is fixed and can not change
position for the whole duration of the robot’s operation;

• Dynamic environment: both, the robot pose and parts of the environment
can change position over time, during the robot’s operation. Most real envi-
ronments are dynamic. Obviously, localization in such environments is much
more difficult, just think, for example, that the robot may take a moving
object as landmark.

Passive and Active approaches

• Passive localization: the localization module observe the robot operating
but can not, in any case, take control of the robot or influence its motion;

• Active localization: the localization module control the motion of the robot
to facilitate the tracking operation and minimizing the localization error. This
approach generally leads to better results, since instead of waiting for the
robot to move in a favorable location, the localization algorithm can guide it
there exactly when and how it needs it.

4.4 The Mapping problem
In the robotics field the Mapping problem is intended as the problem of construct-
ing a map of the environment in which a certain task has to be actuated. This
map does not have to be perfectly faithful to the real world, but accurate enough
depending on the kind of operation required.

In general, a map of the environment is a list of objects and their locations, and
can be usually indexed in one of two ways:

• a feature-based map is a list of features. Each feature correspond to a
distinct object in the real world, and posses the information of its location,
in robotics it is common to call these object landmarks;

• a location-based map is a list of locations, that are generally referred to
with coordinates.
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With feature-based map, the robot’s sensors can measure the range and the
bearing of the landmark relative to the robot’s local coordinates, then use these
information in order to localize itself and to detect new landmarks. In such a
way the robot construct a map that does not contain the information about the
whole environment, but only about a portion of area in correspondence to most
salient elements (landmarks) and positions with respect to them and to himself.
If this is an advantage from a certain point of view, in fact the final result will
be very compact and lightweight, on the other side does not provide any useful
information for navigation. On the contrary, location-based map are volumetric,
in that they offer information not only about object in the environment but also
about the "free-space", or absence of obstacles.

A classical location-based map representation is known as Occupancy Grid Map,
where the map is a fine-grained grid defined over the continuous space of locations.
The posterior of the map can be written as

p(m|z1:t, x1:t) (4.3)

where m is the map, z1:t and x1:t are respectively all the measurements and all
the poses up to time t. Here, we can define the map as:

m =
∑︂

i

mi (4.4)

where mi refers to the grid cell i. During the mapping process, grid cells not yet
analyzed do not contain any value, but when they are approached by the field of
view of robot’s sensors a binary value is assigned: "0" for free and "1" for occupied.
The probability for a cell to be free or occupied will be written p(mi), and then
the problem (4.3) can be rewritten:

p(mi|z1:t, x1:t) (4.5)

This problem is simpler because the estimate is performed only over one cell at
a time, and not over the whole map.

4.5 Gaussian filters

4.5.1 The Kalman fiter
Historically the earliest and most influent SLAM algorithm is the one based on the
Kalman filter (and on the more advanced Extended Kalman filter). It is part of the
family of Gaussian filters, which are based on the idea that belief are represented
by multivariate normal distributions, depictable as Gaussian functions.
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Figure 4.1: Two example of occupancy grid map with different measurement
ranges. Grey cells are not yet been examined, white cells indicate free-space,
while black cells indicate obstacles [18].

Figure 4.2: General Gaussian function representation [19].

In a Gaussian function the density over the variable x is characterized by two
set of parameters: the mean µ and the covariance Σ.

The Kalman filter was invented in the 1950s by Rudolph Emil Kalman, as a
technique for filtering and prediction in linear systems, and is the best studied
technique for implementing Bayes filters. Its algorithm can be formalized as in
Table 4.2.

At time t, the belief of the state xt, bel(xt), is represented by the mean µt

and the covariance Σt, taking as input the belief of the state xt−1 represented
by the mean and the covariance at time t − 1, and the most recent control and
measurement. Then:
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Table 4.2: General Kalman filter algorithm [18].

• at line 2, the mean of the posterior state µt is obtained by the sum of the
mean at time t− 1 and the most recent control respectively linearized by the
matrices At and Bt. At has size n× n, Bt is n×m where n is the dimension
of the state vector xt and m is the dimension of the control vector ut;

• at line 3, similarly, the covariance of the posterior state Σt is obtained the
sum of the covariance at time t− 1, linearized with the product between the
matrix At, and Rt, which is the covariance of the Gaussian random vector ϵt;

• at line 4, the Kalman gain Kt is computed by the division between the covari-
ance of the posterior state, linearized by the product with the matrix Ct, and
the sum between the same linearized posterior state’s covariance and Qt. Ct

is a matrix of size k× n where k is the dimension of the measurement vector
zt, while Qt is the covariance of the measurement noise vector δt. In general,
Kt specifies the degree to which the measurement is incorporated into the
new state estimate.

• finally at line 5 and 6 the new mean and the covariance of the state xt are
computed through the values obtained previously, plus an identity matrix I.

The Kalman filter is computationally quite efficient, but how does it work from
a practical point of view? How illustrated in Figure 4.3, in the prediction phase at
point (a), for every new pose of the robot an initial belief is stated (generally based
om odometry information). Then the update phase begin at point (b), where a
measurement (in bold) is taken through sensors. Since the initial belief is only a
first estimate and the measurement can be affected by noises and uncertainties,
both are not singularly sufficiently reliable to establish a reasonably probable pose
of the robot. To achieve a solution, the Kalman algorithm is applied and, as
evident at point (c), it integrate the two distributions in order to obtain a single,
more reliable, result. from point (d) to (f) the same operation is applied to a new
position of the robot, to the right of the precedent one.
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Figure 4.3: Kalman filter functioning [18].

4.5.2 Extended Kalman filter

One of the biggest limits of the Kalman filter is its dependence to the linearity of
the system. Since most of practical robotic tasks, including also SLAM operation,
are often nonlinear problems, this make the Kalman filter not reliable. A very
straightforward solution to this is the Extended Kalman Filter. Often referred
to as EKF, it is a relaxation of the Kalman filter, which overcome the linearity
assumption. This is usually obtained by applying a first order Taylor expansion,
which is able to approximate the nonlinear function to a linear one.

The EKF algorithm, exposed in Table 4.3, is very similar to the Kalman filter
algorithm, the major difference are exposed in Table 4.4.

That means the linear predictions At, Bt are replaced by the nonlinear gener-
alization g and similarly Ct by h, and more precisely the Jacobian Gt correspond
to the matrices At and Bt, while the Jacobian Ht correspond to the matrix Ct.

The EKF is a powerful and very computational efficient algorithm, but has an
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Table 4.3: Extended Kalman filter algorithm [18].

Kalman filter EKF
state prediction (line 2) Atµt−1 + Btut g(ut, µt−1)

measurement prediction (line 5) Ctµt h(µt)

Table 4.4: Main differences between KF and EKF

important limitation, that derive from the use of Taylor expansion for the linear
approximation. The goodness of this approximation depends on the degree of non-
linearity and the degree of uncertainty of the function. The former because the
closer the nonlinear function is to be linear, the better will be its approximation.
As a consequence, very nonlinear functions will lead to very unreliable approxi-
mations. The latter because the less certain the robot is of its state estimate, the
wider will be its Gaussian belief, and so more affected by nonlinearities in the state
transition and measurement functions.

In order to overcome such limits, sometimes other approximation methods are
preferable. One of these is the Unscented transform, which probes the function to
be linearized at selected points and calculates a linearized approximation based on
the outcomes of these probes. When this transform is used, the filter take often
the name of Unscented Kalman Filter (or UKF). Another one is called moments
matching, which during linearization preserves the mean and the covariance of the
original distribution.

4.5.3 Information filter
Like Kalman filter, the Information Filter represents the belief by a Gaussian,
but with a substantial difference: While Kalman filters (and as a consequence
EKFs) represent Gaussians by their moments (mean and covariance), information
filters represent Gaussians in their canonical representation, that means through
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an information matrix and an information vector. Such difference leads to have
situation in which what is computationally complex in one representation happens
to be simple in the other, and vice versa.

The canonical representation of a multivariate Gaussian is given by an informa-
tion matrix Ω and an information vector ξ, computed respectively as the inverse
of the covariance matrix and as the product between the inverse of the covariance
matrix and the mean.

Ω = Σ−1

ξ = Σ−1µ
(4.6)

The Information filter algorithm, as evident from Table 4.5, is almost identical
to the Kalman filter algorithm. Matrices At, Bt, Ct and Qt are the same explained
in the precedent sections, while the information vector ξt/ξt−1 and the information
matrix Ωt/Ωt−1 take respectively the place of the mean µt/µt−1 and the covariance
Σt/Σt−1, following the equation (4.6).

Table 4.5: Information filter algorithm [18].

Just like the Kalman filter, also the Information filter has a relaxation version
of its assumptions, called similarly Extended Information Filter (EIF).
The analogies between the Kalman and the information filter end their respective
extended versions can also be noted in the EIF algorithm, depicted in Table 4.6.

Also in this case, the nonlinear generalizations g and h (and their Jacobian Gt

and Ht) replace the linear parameters At, Bt and Ct. Since both g and h require
a state as an input, Ω and ξ are not sufficient and the computation of µ, at line 2,
is required.

This additional step is one of the major throwback of the Information filter
over the Kalman filter, and for this it is largely considered to be computationally
inferior to his counterpart, the EKF.
On the other size, representing global uncertainty is simpler in the Information
filter, and often is numerically more stable. Another advantage of the Information
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Table 4.6: Extended Information filter algorithm [18].

filter over the Kalman filter arise for multi-robot problems, where the integra-
tion of sensor dafa collected decentrally, and commonly performed through Bayes
rule, becomes an addition. This greatly simplify the numerical complexity of the
problem and make the Information filter more flexible than Kalman filter.

4.6 Particle filter
Particle Filter is a nonparametric implementation of the Bayes filter, which ap-
proximate the posterior by a finite number of parameters. Instead of representing
the distribution of states with a parametric form, as a Gaussian, particle filter
represent a distribution by a set of weighted samples drawn from this distribution.
These samples are called particles, and are denoted as:

χt = x
[1]
t , x

[2]
t , ..., x

[M ]
t (4.7)

Just like Bayes filter, and how can be seen from Table 4.7, the set of particles
χt is constructed recursively from the set χt−1, and need as input also the most
recent control ut and measurement zt. Then, the algorithm construct a temporary
particle set χt of dimension M , which is similar to the belief belxt , by generating
(at line 4) an hypothetical state x

[m]
t based on the particle x

[m]
t−1 and the control ut.

Then, at line 5, a weight w
[m]
t is assigned to the particle x

[m]
t from the most recent

measurement information. From line 8 to 11 the resampling occurs, where the
algorithm draws with replacement M particles from the temporary set χt, based
on the importance weight of each particle.

A popular localization algorithm based on particle filter is the Monte Carlo
Localization algorithm. It is applicable to both, local and global localization prob-
lems, is easy to implement and has often good performances. Its algorithm is
almost identical to the that of the general particle filter, and can be exposed in
three phases:
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Table 4.7: Particle filter algorithm [18].

• Prediction phase, in which a new set of temporary particles χt is deter-
mined starting from the previous set χt−1 and the most recent control ut

(and sometimes also odometry information);

• Update phase, in which each particle is assigned a weight based on the
information extracted through sensors;

• Resempling phase, in which a new set of particles χt, that better approxi-
mates the probable robot state, is determined from the information gathered
previously.

The precision of MC localization, and in general of the particle filter, is based on
the dimension of the particle set M , higher this value, more precise the prediction.

4.7 Histogram filter
The Discrete Bayes Filter is applied to problems with finite state space, that means
where the random variable Xt can assume different values. Table 4.8 provide its
algorithm, and as evident it derives from the general Bayes filter of Table 4.1. xi

and xk are finite individual states, while pk,t is the probability of each state xk. At
line 3, the prediction (belief) for the new state is calculated, based on the control
alone. This prediction is then updated in line 4, to incorporate the measurement.

The greater limit of Discrete Bayes Filter is that it is only useful for discrete
systems. There is a variant of its algorithm, used also for continuous systems,
called Histogram Filter. Histogram filter decompose the state space into finitely
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Table 4.8: Discrete Bayes Filter algorithm [18].

many regions, and represent the cumulative posterior for each region by a single
probability value.

range(Xt) = x1,t ∪ x2,t ∪ ... ∪ xk,t (4.8)

Xt is a random variable describing the state of the robot at at time t, and
the function range(Xt) is the state space, that is the set of possible values that
Xt might assume. Each xk,t describes a convex region, and together form a par-
titioning of the state space. A decomposition of a continuous state space is a
multi-dimensional grid where each xk,t is a grid cell, and for each cell discrete
Bayes filter assign a probability pk,t

This concept is at the base of the Grid localization algorithm, one of the most
popular localization algorithm, which exploits the histogram filter in order to ap-
proximate the belief of the robot’s state over a grid decomposition of the pose
space. The belief bel(xt) is defined as:

bel(xt) = {pk,t} (4.9)

and is conceptually almost identical to what seen with the discrete Bayes filter
algorithm. In fact, the Grid localization algorithms takes as input the discrete
probability value {pt−1,k}, along with the most recent measurement and control,
and obviously the map. For each grid cell, at first it calculates an initial belief, and
then this is updated through the information retrieved from sensors. In the most
basic version of grid localization, the partitioning of the space of all poses is time
invariant and each grid cell is of the same size. Also the choice of the dimensions
of the grid cell is very important: smaller cells will leads to more accurate results,
but also will increase the computational complexity of the operation. A common
granularity used for indoor environment is 15 centimeters for x- and y-dimensions.
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4.8 Graph-based
Graph-based SLAM is one of the last state-of-the-art technique used nowadays
in SLAM applications. Its goal is the creation of a graph made up of robot’s
poses, represented by nodes, and constraints that connect the poses of the robot
while moving. In order to achieve this result, a least square approach to SLAM is
necessary.

4.8.1 Least Square
The Least Square approach is an approach for computing the solution of an over-
determined system, minimizing the sum of the squared errors in the equations.
Given a system described by a set of n observation functions fi(x)i = 1 : n,
and considering x as the state vector, zi as the measurement of the state x and
zî = fi(x) as the function which maps x to a predicted measurement ẑi, given n
noisy measurements z1:n about the state x, the goal is the estimation of the state
x which best explains the measurements z1:n.

Figure 4.4: Least Square graphical representation [20].

These measurements are affected by an error ei, which is the difference between
the predicted and actual measurement ei(x) = zi − fi(x), and is generally con-
sidered with a zero mean and normally distributed. Remembering that Gaussian
error can be represented by the information matrix Ωi, the squared error of a
measurement depends only on the state, and is a scalar that can be represented
as:

ei(x) = ei(x)T Ωiei(x) (4.10)
And so, the goal of the least square approach is to find the state x∗ which

minimizes the error, that means:

x∗ = argmin
∑︂

ei(x)T Ωiei(x) (4.11)
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This problem is generally very complex and does not present closed form solu-
tion, so some assumptions are necessary:

• A good initial guess is available;

• The error functions are smooth in the neighborhood of the minima.

Now, a solution can be found through iterative local linearizations, by following
the Gauss-Newton solution. Here, passages of the Gauss-Newton solution are
listed, and later they are further exposed:

• Linearize the error terms around the current solution/initial guess. This will
lead to the error equation

ei(x + ∆x) ≃ ei(x) + Ji(x)∆x (4.12)

• Compute the first derivative of the squared error function and find the terms
for the linear system;

bT =
∑︂

i

eT
i ΩiJi (4.13)

H =
∑︂

i

JT
i ΩiJi (4.14)

• Solve the linear system ∆x∗ = −H−1b

• Update the state x← x + ∆x∗

• Iterate

Starting from the first point, the error functions are approximated around an
initial guess x via Taylor expansion:

ei(x + ∆x) ≃ ei(x) + Ji(x)∆x (4.15)

Where Ji is the Jacobian and ∆x is the increment. Now, replacing the Taylor
expansion in the squared error terms it is possible to fix the initial estimate x,
obtaining:

ei(x + ∆x) = eT
i (x + ∆x)Ωiei(x + ∆x) (4.16)

From which:

ei(x + ∆x) = ci + 2bT
i ∆x + ∆xT Hi∆x (4.17)
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with

ci = eT
i Ωiei (4.18)

bT
i = eT

i ΩiJi (4.19)
Hi = JT

i ΩiJi (4.20)

This equation represent the squared error, with little modification it is possible
to obtain the equation of the global error:

F (x + ∆x) = c + 2bT ∆x + ∆xT H∆x (4.21)

with

c =
∑︂

i

ci (4.22)

bT =
∑︂

i

eT
i ΩiJi (4.23)

H =
∑︂

i

JT
i ΩiJi (4.24)

This equation is the expression of the objective function, under a linear ap-
proximation of the sensor model around a neighborhood of the initial estimate x.
Fixing the initial estimate, the value of the function in the neighborhood can be
approximated by a quadratic form with respect to the increments ∆x. Thus, it is
possible to minimize this quadratic form and get the increment ∆x∗ that applied
to the current guess gives a better solution:

x∗ = x + ∆x∗ (4.25)

But how can this increment ∆x∗ be found? Simply by finding the first derivative
of F (x + ∆x) and setting it to zero. This lead to the equation:

∆x∗ = −H−1b (4.26)

4.8.2 Graph-Bases SLAM
As said before, the main goal of Graph-Based SLAM is the creation of a graph,
made up of nodes and edges. The building of the graph is commonly called front-
end, and is heavily sensors dependent, while the second part called back-end relies
on an abstract representation of the data, and has the goal of optimize the pose-
graph to reduce the error.

The graph is build finding the node configuration that minimize the error intro-
duced by the constraints and, it is easy to understand, this minimization is done

53



SLAM

Figure 4.5: General Graph Based representation [21].

using the least square approach, in which the state vector x is represented by the
nodes, meaning the poses assumed by the robot. Each xi is a 2D or 3D pose, and
a constraint/edge exists between xi and xj if the robot moves from one pose to
the other. In this, the edge correspond to the odometry, so it is affected by noise,
and its uncertainty is encoded by the information matrix Ωij, which is bigger the
more edge matters in the optimization. Since nodes have different orientations,
a transform matrix is useful to understand how one node is seen from the other.
This transformation can be expressed using homogeneous coordinates:

(x−1
i xj) (4.27)

Introducing the error on the single constraint eij(xi, xj) = (zij
−1(x−1

i xj)), with
zi, j the measurement of j with respect to i, it is also possible to represent the
objective of graph-based SLAM of finding the node configuration that minimize
the error:

x∗ = argmin
∑︂
ij

eT
ijΩijeij (4.28)

It is now possible to adapt the least square approach and the Gauss-Newton
solution to achieve this goal. The error function around an initial guess x can be
approximated via Taylor expansion as

eij(x + ∆x) ≃ eij(x) + Jij∆x (4.29)

with the jacobian J , equal to Jij = δeij(x)
δx

. It is worth noting that eij(x) does
not depend on all state variables, but only on xi and xj. This means that the
jacobian will be non-zero only in the columns corresponding to xi and xj. These
two columns can be denoted respectively as Aij = δe(xi,xj)

δxi
and Bij = δe(xi,xj)

δxj
. This

introduce a problem called sparcity, which is inherited by the structure of b and
H. So, in this case, terms b and H can be represented as:
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b =
∑︂
ij

bij =
∑︂
ij

JT
ij Ωijeij (4.30)

H =
∑︂
ij

Hij =
∑︂
ij

JT
ij ΩijJij (4.31)

Which means b will be non-zero only at the indices corresponding to xi and xj,
while H will be non-zero only in the blocks relating i, j. The resulting system in
sparse, so it can be computed by summing up the contribution of each edge. For
doing so, many solvers can be used, and this allow to efficiently solve the problem.
In fact, once the error eij is computed, the coefficient can be retrieved as:

bT
i + = eT

ijΩijAij bT
j + = eT

ijΩijBij (4.32)
H ii+ = AT

ijΩijAij H ij+ = AT
ijΩijBij (4.33)

Hji+ = BT
ijΩijAij Hjj+ = BT

ijΩijBij (4.34)

And, as before, the increment ∆x∗ is obtained as ∆x∗ = −H−1b.

4.8.3 Loop closure
Loop closure is a relatively recent, appearance-based localization and mapping
technique used for improving both the localization of the robot and the construc-
tion of the 3D map. Loop closing is the act of correctly asserting that a vehicle
has returned to a previously visited location [22], and update belief accordingly.
This is achieved by recognizing and memorizing a certain number of features and
locations in the environment, which will be unique to the specific pose of the robot,
gather them into a set of descriptors, and comparing theme each other to deter-
mine similarity between local scenes. These sets of descriptors are often replaced
by bags of words, a visual model that treat image features as a sparce vector of
words. Loop closure integrates well with graph-based SLAM and has the capacity
to greatly improve its results. In fact, When a loop closure hypothesis is accepted,
a new constraint is added to the map’s graph, then the graph optimizer minimize
the errors in the map.

One of the most famous algorithm of this type is RTAB-Map (Real-Time
Appearance-Based Mapping), a Stereo and Lidar Graph-Based SLAM approach
based on an incremental appearance-based loop closure detector, which makes use
of a bag of words approach and a memory management approach to limit the
number of locations used for loop closure detection and graph optimization, so
that real-time constraints on large-scale environnements are always respected [23].
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Software implementation

In this chapter, the implementation of the software used for the project is pre-
sented. It is divided in four parts, where the first two expose how both the deep
learning room recognition convolutional neural network model and the simulta-
neous localization and mapping algorithm are obtained, while the third explains
how these two have been integrated each other and with hardware components.
Finally, the fourth part deals with how the algorithm has been further modified
and refined in order to obtain the final results.

5.1 Room recognition
For the purpose of this thesis project, the robot has to roam in an unknown indoor
environment and classify each different room it encounter. This is a clear example
of classification problem and, as stated at Chapter 2.4.3, one of the most powerful
algorithm used to solve such problems is the convolutional neural network. In
the following sections, all the passages used in order to achieve the final room
recognition algorithm will be presented:

• initialization phase, in which a CNN model is implemented and all the
information and data useful for training are gathered;

• training phase, where the model is trained and tested;

• Application, where the model is exported and deployed on the robot.

For the implementation of the model, written in Python, many libraries are
used. Here the main ones are listed:

• TensorFlow: it is a free and open-source software library use particularly
for machine learning;
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• Keras: an API of TensorFlow, is an open-source neural network library which
provide a series of function for preprocessing of images and for implementation
and training of CNN models;

• scikit-learn: an other very common free machine learning library [24];

• GradCam: an algorithm used to visualize on dataset’s images the features
extracted by the model during training.

5.1.1 TensorFlow and Keras
Working in a Python environment, TensorFlow is of fundamental importance in
the creation of a Machine Learning model. TensorFlow is an end-to-end open
source platform for machine learning. It has a comprehensive, flexible ecosystem
of tools, libraries and community resources that lets researchers push the state-
of-the-art in ML and developers easily build and deploy ML powered applications
[25].

In this project, it is used alongside an intuitive high-level API, free and open-
source, called Keras, which provide a series of helpful functions used for implement,
train and test the model. Here, the fundamental ones are listed:

• ImageDataGenerator: create a data generator used in the following passages
to import the image dataset. In it a series of parameters for data preprocessing
can be specified, like color rescaling and image flipping;

• flow_from_directory: uses the precedently implemented data generator
to import images from a specified folder. If images are divided in folders
corresponding to each class, the label is automatically assigned to every image.
Also in this case a series of parameters can be assigned in order to resize the
imported images and divide them in batches of a specified size;

• layers: an API that use several functions to create different type of layer,
the building blocks of neural networks. Some of these are Dense, which create
a densely-connected NN layer, Activation for the application of activation
functions; different type of convolutional layers like Conv2D, different type of
pooling layers like MaxPooling2D and AveragePooling2D and many more;

• Model: a class that groups different layers in a neural network model. Once
the model is created, it can be visualized with model.summary(), configured
with losses and metrics with model.compile(), trained with model.fit(),
or used to do predictions with model.predict().

5.1.2 Data preprocessing
Before implementing the model, images of the dataset are preprocessed. Data
Preprocessing is an important passage in machine learning: it consists in optimizing
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data that will be used for training and validation of the model, allowing to reduce
the computational complexity and increasing the accuracy of the algorithm. First
of all, the dataset consisting of a certain number of images (and as many labels) is
built and divided in training set and validation set, each of which is further divided
into the same number of classes. For each class the ratio of images between train
and validation sets is generally 3 or 4 to 1. This division is fundamental in which
the model need a set to train and "learn" how to classify each image, and an other
to validate such model, in a way presented at the end of Chapter 2.4.3. Since
images of the dataset consist in RGB coefficient in the 0-225 range, which is too
high for the model to process, with the normalization, they are rescaled by a 1/255
factor using ImageDataGenerator, to take them in the 0.0-1.0 range. Then, with
flow_from_directory, they are divided in batches of 64 samples each, resized to
a dimension of 224x224 pixels and, for the training set, they are shuffled in order
to obtain better results during training. How explained before, the same function
takes care also of the labelling division of the images in classes.

5.1.3 Checking model results
During the training and validation of the model, by default TensorFlow and Keras
provide values of loss and accuracy for both training and validation. Often, these
information are not sufficient to really figure out the behavior of the model, and
further graphical visualizations are required to better understand if it is working
as expected. An example is Matplotlib, a library for creating static, animated and
interactive visualizations in Python. In addition to lots of other implementations,
it can be very useful in the creation of graph depicting accuracy and loss curves,
which is a more clear and immediate way to visualize the behavior of such metrics.

An other very useful tool is represented by scikit-learn. It provide two functions
called confusion_matrix and classification_report. The former, as the name
says, take as inputs the ground truth labels of a set of images and the labels
predicted by the model on the same set, with which construct a confusion matrix.
It is a square matrix with a number of row and columns equal to the number
of classes. Every row correspond to the predicted classes, while every column
correspond to the true classes. This means the diagonal will represent the number
of points for which the predicted label is equal to the true label, while off diagonal
elements are those that are mislabeled by the classifier. This visualization can be
very useful for binary classification problems, or multiclass problems where the
number of class is restrained.

The classification_report function takes as inputs the same parameters of
confusion matrix, plus the names of each class in the set. Then, it build a text
report showing the main classification metrics for each class and for the whole set.
This visualization is more complete, providing more data than confusion matrix,
and is a better choice for problems with lots of classes.
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Figure 5.1: Generic Matplotlib metrics behavior visualization.

Figure 5.2: Generic scikit-learn Confusion Matrix [26].
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Furthermore, there are also techniques able to making the CNN-based model
more transparent by directly visualizing images of the dataset and providing a
series of information on them, helping the user to understand how the classifica-
tor behaves with each one. One of these is Grad-CAM (Gradient-weighted Class
Activation Mapping), a technique able to retrieve and highlight, with a coarse
localization map, the more "important" regions of input for prediction in every
dataset’s image [27]. In other worlds, it visualizes, for each image, the regions
where the model focuses more in order to provide a prediction.

5.1.4 Model implementation
Once the dataset is loaded and ready, it is possible to proceed to the implementa-
tion of the model. It is worth mentioning that, like for any other machine learning
work, several attempts have been made before obtaining the final model. Trial and
error is fundamental for parameters and hyperparameters optimization, which di-
rectly impact model metrics. For the sake of concisivness and practicality, in the
next paragraphs, only the salient implementation attempted before reaching the
final room classification model are presented. Anyway, the loss function employed
has never been changed, is always a categorical crossentropy function, very
adapt for multiclass classification problems as this. For the same reason, the in-
ternal layers’ activation function will be always a ReLU function, while the last,
output layer will always have a softmax function.

In a very first stage of the project, a really elemental convolutional neural net-
work model, created from scratch, was tried. It was a sequential model constituted
of a dozen layers, alternating between Conv2D and MaxPooling2D in the first lay-
ers, terminating with some Dense layers, and running on 10 epochs. Obviously the
performance of this model was very limited under many aspects: first of all, both
training and validation accuracy was very low, hovering around values of 30%,
yet there was an overfit problem. Increasing the number of epochs only made the
overfitting worst, but accuracy values did not improve. The lack of accuracy was
clearly caused by the simplicity of the model, respect to the complexity of the
scenes depicted in the dataset’s images. An other problem, and reason of both
low accuracy and overfitting, was the structure of the dataset. In this first imple-
mentation, it was constituted of images retrieved from some classes of the MIT’s
Indoor Scene Recognition CVPR 09 dataset [28]. The dataset used presented 11
classes, each containing at most a few hundred of images. Practically, there were
too few images for too many classes to expect better results. This factor also
influenced the result on the loss values, which were very low.

In that moment, the primary focus was to improve accuracy and loss results: it
is not worth spending time and resources in trying to reduce overfitting when also
the training accuracy is so low. Hence, in a second time implementation, it was
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decided to start from a pre-trained existing model, and the choice fell on ResNet50
[29], a convolutional neural network 50 layers deep. Some final layers were added
to it, in order to adapt it to the case of study of this project, and the layers of the
whole obtained model were set as trainable.
Furthermore, the dataset was downsized to 7 classes, simplifying the model classifi-
cation. Running on 10 epochs, this model gave remarkable better results compared
to the precedent model, but yet not good enough to be considered acceptable.
Training accuracy was very high, with values over 90%, but on validation it stag-
nates under 60%, in an obvious overfitting manner. The same behavior could be
visible on losses, with values on training very low, but not as low on validation.
It was clear that the next step to go was to try to reduce the overfiting, hoping it
would improve accuracy on validation set as well.

After a series of unsuccessful attempts to reduce the overfitting on the model,
involving the use of more advanced hyperparameters and data augmentation tech-
niques, it was decided to dismiss that model based on RedNet50 and try using a to-
tal different model. To that end, MobileNet was chosen, a pre-trained CNN model
that is 53 layers deep [30]. Also in this case, some GlobalAveragePooling2d,
BatchNormalization and Dense layers where added at the bottom to adapt the
model. In addition, some hyperparameter settings used for reduce overfitting with
the precedent model were maintained, and while on that model they had not given
great results, in this case the situation has improved. Such hyperparameters that
enhanced the model are the learning-rate of the Adam optimizer, which give better
results if reduced (but not too much), and the addition of some Dropout layers
after Dense layers.
After all this implementation, the new model performed incredibly well: in fact,
not only accuracy values increased over 83%, but also losses were greatly reduced.
In any case, overfitting was still too influential, and there was room for improve-
ments, yet.

In an attempt to reduce overfitting and further increase accuracy, a new dataset
were created, integrating the CVPR 09 with much more samples, obtaining a final
dataset based on 6 classes, Bathroom, Bedroom, Closet, Dining room, Living room,
and Kitchen, for a total of over 7000 images, which was a great improvement
compared to the 2700 circa used previously. Running the same model as before
with this new collection of images, accuracy further increased, peaking values of
87%. However, here arised a new problem: the whole system was very unstable,
and if sometimes final accuracy results were so high, other times they were just
as low, reaching values below 65%. Besides, also when these values were high,
on losses was evident the presence of a heavy overfitting problem that caused
validation loss to be much more high compared to training loss.

Finally, a last successful attempt was made to solve the problems reported
above. A small modification to the model structure was sufficient to improve its
results, and led to the final model used for this project. Practically, more Dense
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followed by Dropout layers were added, and on Dense layers Kernel regularizer
was implemented. This hyperparameters works trying to reduce the weights, that
means the Kernel matrix (for reference see section 2.4.3).
Now, this model reaches accuracy results on training set over 85%, which is slightly
lower than before, but is the price to pay for having a much more robust system,
and much better loss results which are fairly close between training and validation,
as can be seen from Figure 5.3. The overfitting problem is been greatly reduced,
although not completely solved. Anyway, these results can be considered pretty
good, given basically two factors: first, the scenes shown in the images do not
depict single objects but whole rooms, and are quite complex, and in general
difficult to be analyzed by a neural network and, secondly, for the purpose of this
project a number of instances potentially infinite can be run in every room, this
makes the single prediction lose value in favor of a more complete general picture.

Figure 5.3: Visualization of results of the actual classification model (on the right)
compared to the previous one (on the left).

Below it is possible to observe the confusion matrix and the classification report
obtained for the final model.

Some of the most peculiar results obtained with Grad-CAM on the room recog-
nition model are also presented.
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Figure 5.4: Confusion Matrix of the final room recognition classification model.

Figure 5.5: Classification Report of the final room recognition classification model.

5.2 SLAM algorithm
How presented in Chapter 4, lots of different SLAM algorithms and techniques
exist, and it is not always simple to figure out which of these might best fit the
problem in question. For this thesis project, it is needed a fast but lightweight
program, able to run on the NVIDIA Jetson alongside the room recognition CNN
algorithm and to operate in real-time. Furthermore, it should be integrable with
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Figure 5.6: Some results of the analysis conducted with Grad-CAM.

ROS and its environment, easily implementable with RealSense cameras, and also
should be able, at the end of the process, to generate a 2D map of the environment
on which the room recognition predicted annotation could be written.

5.2.1 Kimera
One of the first implementations attempted for this project, exploited an advanced
and at the state-of-art software developed by MIT, called Kimera. Kimera is a
C++ library for real-time metric-semantic simultaneous localization and mapping,
which uses camera images and inertial data to build a semantically annote 3D mesh
of the environment. Kimera is modular, ROS-enabled, and runs on a CPU [31].

This modularity derive from the inclusion of four key module:

• Kimera-VIO: a VIO module for fast and accurate IMU-rate state estimation;

• Kimera-RPGO: a robust pose graph optimization method that adds a ro-
bustness layer which avoid SLAM failures;

• Kimera-Mesher: a module that computes a fast per-frame and multi-frame
regularized 3D mesh to support obstacle avoidance;

• Kimera-Semantics: a module that builds a slower-but-more-accurate global
3D mesh using a volumetric approach.

While this implementation can seem optimal for the studied case, a series of
problems occurred during its implementation: first of all, although Kimera is re-
ally lightweight compared to all the services it offer, it is not light enough to be
efficiently run on Jetson AGX Xavier, and its employment alongside the classifi-
cation algorithm might be very problematic. Secondly, while it allows to obtain a
3D global mesh of the environment, there are no currently ways to retrieve a 2D
map.
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5.2.2 RTAB-Map
Since Kimera appeared not quite appropriate for the case of study, on a second
implementation it was decided to use RTAB-Map, for a series of reasons reported
below:

• It is relatively lightweight in terms of computational effort, that makes it
adapt for embedded system like the one in use;

• It is specifically designed for real-time operations, thanks to its memory man-
agement approach which limits the number of locations used for loop closure
detection and graph optimization;

• A ROS wrapper is available, making it well integrable with the ROS environ-
ment and easily implementable with rviz;

• It is well integrable with Intel RealSense cameras, in particular with the active
IR stereo system of the D435i;

• In addition to its ability to generate a 3D point clouds map of the environ-
ment, which can be useful in an implementation phase to monitor the system
behavior, it provide also the construction of a 2D occupancy grid map, which
is the best desired output for this project.

The ROS wrapper for Intel RealSense Devices [32] provides several packages
suitable for using RealSense cameras with ROS. Among others, it provide a roslaunch
called opensource_tracking, which allow to use RTAB-Map for conducting a
SLAM operation with the RealSense D435i as the only sensor. For doing this, it
exploits, in addition to RTAB-Map and RealSense cameras initialization packages,
other two powerful open source tools called imu_filter_madgwick [33] and
robot_localization [34]. The former is used to filter and fuse raw data from
IMU devices, the latter provides nonlinear state estimation through sensor fusion.

Even though this first implementation seems to work pretty well, sometimes it
proves not very robust: how discussed at Section 3.3.2, the D435i IMU, on its own,
is not always able to ensure a tacking stability good enough, even when integrated
with some powerful tools like those mentioned earlier; hence the introduction of
the Intel RealSense T265, which supplys a very precise VIO, is fundamental. With
this addition, codes must be changed for adapting the two cameras to RTAB-map.

Intel already provides a ROS launcher file that initialize both the T265 and the
D435i, called rs_d400_and_t265.launch. This launcher create some nodes, each
of which publish several topics. Among these, the most interesting one are listed
below:

• /d400/realsense2_camera_manager: a node related to D435i camera, which
publishes:
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– /d400/color/image_raw: stream the image received by the color cam-
era;

– /d400/depth/color/point: stream a depth point cloud which respect
the RGB code of the image received by the color camera;

– /d400/aligned_depth_to_color/image_raw: stream a depth image.
While conceptually it is different from /d400/color/image_row, which
is a PointCloud type data instead of a depth image type data, if imple-
mented alongside /d400/color/image_row, from a visualization point of
view they can be almost equivalent;

• /d265t/realsense2_camera_manager: a node related to T265 camera, which
publishes the topic /t265/odom/sample, directly related to the camera VIO,
used by RTAB_Map for localization and tracking, instead of D435i’s IMU
of the precedent implementation. In addition, the use of T265’s VIO makes
unnecessary the integration with imu_filter_madgwick and
robot_localization, which are then removed;

On the other side, the ROS wrapper for RTAB_map provides a launcher file
simply named rtabmap, which launch the /rtabmap/rtabmap node, which pub-
lishes the following topics:

• /rtabmap/grid_map: takes depth data from sensors and generate an occu-
pancy grid map of the environment;

• /rtabmap/octomap_grid: takes depth data from sensors and generate an
occupancy grid map of the environment called octomap, because it is based
on Octree, a tree data structure in which each internal node has exactly eight
children. It is faster than a normal grid map, but not as precise;

• /rtabmap/mapData: takes data streamed by a depth point cloud and con-
struct an RGB, 3D point cloud map of the environment.

A rviz configuration is created, in such a way that when it is launched alongside
the SLAM algorithm the most relevant information can be immediately visualized,
removing some useless parameters and adding others, enabling the main param-
eters and leaving disabled some less significant alternatives. Moreover, the map
frame of the environment is selected as fixed frame, while among all the possible
mobile frame it is chosen the frame integral with the T265’s camera, t265_link,
which is also the main reference for the localization and tracking of the system.
All the other reference frames (such as t400_link, integral with D435i camera)
are hidden in favor of a clearer visualization.

At this point, in order to implement a immediate and user-friendly program able
to combine these two systems, a new ROS launcher file is created. It launches both
rs_d400_and_t265.launch and rtabmap, but the latter needs some modification
to fit the current problem:
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• /t265/odom/sample is passed as odometric topic, so that RTAB-Map can use
T265’s VIO for localization and tracking, and the reference frame t265_link
is passed as the main reference frame of the mobile system. As a consequence,
the parameter visual_odometry, which introduce a visual odometry software
implementation in the absence of a VIO hardware sensor, is set to be disabled;

• /d400/aligned_depth_to_color/image_raw is passed as the depth image
topic, /d400/color/image_row is passed as the RGB image topic, and
/d400/color/camera_info is passed as the camera_info topic;

• The rgbd_sync parameter is set to be used. It synchronize RGB, depth and
camera_info messages into a single message, which is useful when, for exam-
ple, rtabmap is subscribed also to a laser scan or odometry topic published at
different rate than the image topics. As a consequence, approx_rgbd_sync
is set to be disabled;

• Since, by default, RTAB-Map use a proprietary software for visualizations
called rtabmapviz, it is set to not be utilized in favor of rviz. In addition, the
rviz configuration created before is passed as default one when the algorithm
is launched.

The launcher thus obtained, is able to initialize both Intel RealSense cameras
and RTAB-Map, and immediately start visualizing the RGB image streamed, the
depth point cloud and the occupancy grid map of the scene within the camera field
of view, alongside other parameters which can be easily activated when needed (for
reference, see Figure 5.7).

5.2.3 Gmapping
As interesting and innovative as RTAB-Map may be, it presents a significant prob-
lem. The 3D map obtained by the algorithm is an impressive results, considering
it is built only with a commercial depth camera. The same can be said for the
occupancy grid map, but unfortunately the latter is still too dirty for the purpose
of this project. Although until now it has been tried to avoid using devices other
that the depth camera for the construction of the map, in order to obtain a better
representation of the environment, the use of the lidar module integrated in the
TurtleBot3 Waffle proved necessary.

Since the Lidar alone is actually able to provide a pretty much accurate occu-
pancy grid map without the use of other devices or advanced software like RTAB-
Map, it is decided to lean on simpler but also more lightweight mapping software.
A series of these are available and compatible with the Waffle lidar, like for instance
Gmapping, Cartographer, Hector, Karto, and so on. For this project it was decided
to use Gmapping, but they all are quite equivalent and interchangeable for this
application. Gmapping is a mapping software based on a particular particle filter,
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Figure 5.7: Visualization of the working RTAB-Map SLAM algorithm in rviz.
As default, only the map grid (Grid), the depth point cloud (PointCloud2),
the main reference frames (tf), the RGB image (Image) and the occupancy grid
map (GridMap) are activated, but other parameters can be enabled at any time.
These are the RGB depth image (DepthCloud, see above for the difference with
PointCloud2), the global 3D environment’s point map constructor (MapCloud)
and the occupancy grid octomap (OctoMap).

called Rao-Blackwellized particle filter, in which each particle carries an individual
map of the environment [35]. ROS already provide a node able to initialize and
run a SLAM algorithm, which at its base has Gmapping as mapping program,
called slam_gmapping. This node takes as input the scan message from the lidar,
and provide as output the occupancy grid map. As said previously, Gmapping is
definitely simpler than RTAB-Map, it cannot create a 3D map of the environment,
and is not based on a SLAM technique as sophisticated, but for the purpose of
this project it is not a big deal.

If the mapping part of this process seems really linear, this implementation
does not solve the other great problem of a SLAM algorithm, that of localization.
In fact, in order to localize the robot during the mapping, the Gmapping node
requires also the three reference frames of lidar, robot and map (that is the one
of the physical world or environment in which the robot has to navigate), and the
transformations between them. Additionally, one of these reference frames has to
track the robot during the navigation. Gmapping is virtually able to perform this
tracking using the information coming from the lidar scan, but like the D435i, this
tracking system is not very precise and subject to gross errors. But similarly to the
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RTAB-Map case, this problem can be easily bypassed using the VIO information
coming from the Realsense T265. Once the camera is mounted on the robot, both
their reference frames can be considered integral each other, and that of the lidar
as well. Once this block is defined, it is sufficient to define its initial position with
reference to the map, and all the subsequent poses assumed by the robot during
the navigation will be automatically computed by the SLAM algorithm.

As before, a new ROS launcher file is created. This file, simply called
robot_slam.launch, alongside rs_d400_and_t265.launch, initialize four other
nodes:

• slam_gmapping, presented previously, able to start the SLAM algorithm
based on Gmapping. A couple of arguments are passed to the node in order to
define the /scan topic as the lidar scan argument and the t265_pose_frame
topic as the base frame of the robot. In this case, the t265_pose_frame topic
plays the same role as t265_link of the previous implementation, further-
more passing it as the base frame automatically solve the problem of setting
the camera reference frame integral with that of the robot;

• Two static_transform_publisher nodes, which define a static transforma-
tion between two reference frames. The first is used to set the map frame
equal to that of the initial position of the robot, and the second set the lidar
integral with the robot;

• As before, the last node run a custom rviz configuration, reported in Figure
5.8.

The Intel Realsense D435i, although is not necessary anymore for mapping, is
maintained for its RGB camera feature, very helpful for the classification part.

5.3 Integration
The classification and the SLAM algorithms have to be integrated in a single
one, able to guide an unmanned terrestrial robot in a domestic, unknown indoor
environment, mapping it and making a certain number of prediction for each room.
However, while the SLAM algorithm is already in ROS language, so it can easily
be integrated with a robot, the room recognition classification model currently
available is unable, by itself, to perform all a series of fundamental operations, like
communicate with the ROS system, retrieve the images to classify, provide the
classification result and so on. In order to achieve all these tasks, it is necessary
to integrate first the previously obtained model with the ROS environment, and
then with the localization and mapping algorithm.
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Figure 5.8: Visualization of working SLAM algorithm with Gmapping in rviz.
Alongside with the grid (Grid), reference frames (tf) and occupancy grid map
(Map), there is also the visualization of scan data received from the lidar
(LaserScan).

5.3.1 Acquire and predict
To recognize the rooms encountered by the robot, this has to acquire some images
of the environment as it advances, and provide them to the model. These images
must have a resolution good enough and must be in a RGB format to be properly
used by the model, and the RGB camera provided with the Intel RealSense D435i
is perfect for this purpose.

For the acquisition of frames streamed by the color camera, Intel provide an
open source computer vision library called OpenCV (Open Source Computer Vi-
sion Library), written in C++ but well integrated in Python [36].

Since every vision sensor device connected to a machine running Linux is associ-
ated to a unique ID and number, OpenCV provides a function called VideoCapture()
which, specifying the number of the desired camera, is able to directly access to
such device and stream, with a function called imshow(), the images acquired by
it in a window onscreen. In such a way all the frames captured by the camera are
received, with a frequency very near to the frame rate of camera. For the purpose
of this project, the model has to predict only one image for each unit of time, so
it is possible to set a timer and, after every quantity of time, save a frame for the
prediction. Ideally, it would be easy to pass such frame directly to the model, and
use the TensorFlow function predict() to obtain a prediction. Actually, to be
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processed by the model, that frame has to be preprocessed, exactly how it is done
for the image dataset before the training. So it is much more easy to save that
frame with the OpenCV function imwrite, specifying the name and the directory
location of the image, re-load it with the TensorFlow function load_image() which
allow also to resize the picture during its importing, add it to an array, normalize
by dividing by 255, and then use it for the prediction.

Now, the algorithm described above is very simple and can work if executed
by itself, but it cannot, in any way, communicate with other ROS components,
because in general it is not integrated in a ROS system. Initially, this may not
seem like a big deal, but what would happen if a ROS process which use the same
D435i camera (like, for example, the SLAM algorithm) is run concurrently? In
that case, the camera is set as a mutually exclusive resource for the ROS system,
which means only components of the ROS system can see it. That means the
acquisition and classification algorithm, as it is now, cannot use that camera any-
more. Or rather, it cannot until it is integrated in the ROS system.

In order to achieve this goal, since, how is described before at Section 5.2.2,
the ROS launcher rs_d400_and_t265.launch publish a series of topics providing
different resources of the D435i camera, like the image received by the color camera,
it is possible to subscribe to the relative topic, called /d400/color/image_raw,
and retrieve the image frames from it. But here arise a new problem: these images
are in ROS image message format, so OpenCV can’t process them directly, unless
CvBridge is used. CvBridge is a software able to convert ROS images into OpenCV
images and vice versa.

Figure 5.9: CvBridge structure visualization [37].

Hence, all is needed to do, is to create a new node, subscribe it to the color
camera topic, and then use the CvBridge function imgmsg_to_cv2 to convert the
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camera frames into OpenCV images. At this point the process is very similar to
before: after each unit of time, an image is saved, re-loaded, preprocessed and then
is used to make a prediction. As now, results of predictions cannot be exported,
they can at most be printed on the system terminal.

5.3.2 Set the Marker
Before dealing with importing that data back into the ROS system, an other source
of information is necessary. The prediction result has indeed to be placed on the
environment map, at the location assumed by the robot when the image has been
taken, so the algorithm must also retrieve the robot odometry information. For
this purpose, the same node created before, is subscribed to another topic, the
T265’s /t265/odom/sample. In such a way, it is possible to retrieve the pose of
the robot, so that, after each unit of time, in addition to save the image for the
prediction, simultaneously it also saves the position of the robot in that moment.

Now that the prediction result and the position where to place it are retrieved,
it is necessary to find the answer to two fundamental questions: "How to import
that data in the ROS system?" and "How to visualize it?".

Starting from the second question, rviz provide a very useful tool called marker,
which allow to add some annotation of various nature on the visualization of the
map. These markers are displayed in a 3D spot in the world, and can be geometric
shapes, like cubes, spheres and pyramids, or can be convenient text annotations,
that always appears oriented correctly to the view, which are exactly what is
needed for this project. So, an array of text markers is created (it is more con-
venient to use an array of markes rather than multiple markers because a single
marker entity is always less expensive to render), and the shape, dimensions and
color is selected. After each unit of time, a new marker is added to this array,
and its location in the map is set to be each time equal to the actual position
of the robot in that moment. Obviously, the text of each marker is set to corre-
spond to the prediction result of the image taken at that moment, in that location.

Finally, to the question "How to import that data in the ROS system?", the
best answer is "In the ROS way". This means creating a publisher topic, called
marker_topic, which, after each unit of time, publishes the marker data generated
at that moment; then rviz subscribes to that topic in order to visualize on the
map all the annotations constituting the marker array.

Summing everything up, when the ROS rs_d400_and_t265.launch is launched,
so that the Intel RealSense D435i can broadcast RGB image data and T265 odome-
try data, this algorithm create a node that publishes a marker topic and subscribes
to the color camera and to the odometry topics, then uses the information thus
received to create and publish a marker array to which, after each unit of time, is
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added a new text marker, located in the same position assumed by the robot at
that time, and displaying the prediction result of the image taken at that moment,
in that location.

5.3.3 Deploy on machine
Moving to the robot, it is necessary to initialize all of its sensors and actuators. A
new ROS launcher is created, named start_robot.launch. In turn, this launches
three other ROS files:

• turtlebot3_robot.launch, a bring up package provided for TurtleBot3 ap-
plications. When a ROS master is running on a host computer (which is
intended to be used for teleoperate the robot), this node is able to put in com-
munication the ROS systems running on the two machines (the robot and the
host pc). It initialize the lidar module mounted on the TurtleBot, and passing
the scan argument it is automatically able to associate scan information to
the corresponding topic. Moreover, it initialize the motors for the movement
of the wheels. In such a way, when turtlebot3_teleop_key.launch will
be launched on the host computer, it will be possible to actually control the
robot;

• rs_d400_and_t265.launch, which, as said before, initialize the two Intel
Realsense cameras.

Subsequently, in the previously presented robot_slam.launch is inserted the
classification algorithm discussed in Subsection 5.3.1/5.3.2, so that with a single
launcher it is possible to run the whole localization, mapping and classification
algorithm.

The program thus obtained is robust, easy to execute, quite precise and rela-
tively lightweight, when executed on a PC. But since it has to run on the robot,
it is necessary to deploy the whole algorithm on the NVIDIA Jetson AGX Xavier,
and here some problems arise. In fact, while the Jetson can run the two algorithms
(the SLAM and the classification ones) individually, it is computationally not effi-
cient enough to execute both together. After a more careful analysis, the problem
is to be found in the room recognition algorithm, which requires a considerable
amount of RAM memory.

TensorFlow provide a framework for on-device inference, designed for mobile
and embedded devices, called TensorFlow Lite. With the TensorFlow Lite Con-
verter, a tool avilable as a Python API, it allows to compress a TensorFlow model
in a reduced and faster model, which does not affect accuracy, and optimize it in
various ways.

The room recognition model used until now is then taken and converted in two
different way:
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• The first obtained model is simply a direct conversion from TensorFlow to
TensorFlow Lite;

• The second one is obtained like the first one, but then it is optimized with
a process of quantization, which convert the 32bit model in a 16bit. This
operation reduces the precision of values and operations within a model, but
also the size and the time required for inference.

The first converted model is reduced from 64MB of the original model to a bit
more than 20MB, while the second is just 10MB. These two model are then tested
with a test dataset and, while both are a lot more lightweight and less resources
demanding, the quantized one proves to be more accurate to the other one, and
gives results almost identical to the original room recognition model.

For this reason, the quantized model is chosen and replaced to the original
model in the classification algorithm, and the whole program is retested on the
NVIDIA Jetson AGX Xavier. In this case, the execution gives satisfying results,
almost equal to those obtained on PC.

5.4 Final refining
Although this algorithm is able to perform quite well, a series of problems are still
present:

• Even though the integration with lidar allows a clearer visualization of the
map of the environment, this map is still affected by some errors and discrep-
ancy;

• Publishing a marker for each prediction can be very problematic, since if
just a minimal part of them reveals wrong, it can cause a very confusing
interpretation of the effective final result of the classification;

• Anyway, all these markers normally visualized in rviz, cannot be saved on
the final representation of the map;

• As lightweight as the algorithm is, sometimes it can still crash or block its
execution;

While these problems arise from different causes, with a specific workaround it
is possible to solve all of them in one go. This solution consists in dividing the
whole algorithm, currently fully executed in real time, into two steps:

• In a first step, the robot navigates the environment. At this time only the
strictly necessary information is gathered;

• In a second step, the previously acquired data undergoes a post processing
operation to obtain final results.
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5.4.1 First Step: Real Time Operations
In this first step, after start_robot.launch is run and the teleoperation service
is initialized from the controller computer, robot_slam.launch is executed. It is
the same implemented at Subsection 5.2.3, with the only difference it launches also
the node data_acquisition.py. This node, at each time unit, acquires an image
frame from the /d400/color/image_raw topic and save it in a specific directory.
For each image it acquires also the position assumed by the robot at the time that
image was acquired, and saves all these positions in a CSV file. When the mapping
process of the environment is complete, running save_and_print.launch it is
possible to save the occupancy grid map just created.

As it can be noted, in this process the only resource consuming operation is
the SLAM algorithm. The acquisition of images and positions is situational and,
in terms of computational efficiency, almost negligible. In this way during the
real time operation, all the resources are available to the localization and mapping
program, with no other execution running which can interrupt or interfere in any
way with the creation of the map.

5.4.2 Second Step: Post Processing Operations
In a second step, when the robot has finished its journey in the environment and
the SLAM algorithm is shut down, Predict.launch is executed. This launcher
runs two different nodes:

• X_Y_Pred_generator.py, which imports images and positions data collected
in the previous step, then use the room classification model to makes predic-
tions about the images, and returns a vector containing, for each position of
the robot, the estimate of the image taken in that position. This vector is
then saved in a CSV file called X_Y_Pred.csv;

• Mark_map.py, which is indeed contained into another launcher called
Mark_map.launch. In Predict.launch, the execution of this launcher and
the subsequent node is delayed by ten seconds, so that X_Y_Pred_generator.py
can finish its execution.
This node retrieves the raw map constructed before and, in an operation of
post processing, applies a series of computer vision technique and filters in or-
der to enhance the quality of the visualization and eliminating any gross error.
The map is then enlarged in scale, to allow a better and user-friendly visual-
ization. The X_Y_Pred.csv is imported and a temporal mean is performed,
so that for every n position/prediction samples, a new position/prediction
sample is obtained, which is the mean of these n samples. Each prediction of
these newly obtained samples is printed on the processed map, in the position
associated with it.
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The final result is an high resolution version of the map, which present a series
of labels used to identify each room of the domestic environment.
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Results

In this chapter, the main results obtained during the development of this project
are presented, and at times compared with the final results. Furthermore, major
issues which still afflict the final implementation are exposed and a solution is
proposed.

6.1 Mapping and data acquisition

Summarizing the subject of the last chapter, the final algorithm obtained runs
completely on the NVIDIA Jetson AGX Xavier mounted on the TurtleBot3 Waffle,
with the use of an external computer for teleoperation. Once these two machine
are set in communication, and the roscore command run on the host computer,
start_robot.launch is executed on the robot to initialize the bring up. Launching
turtlebot3_teleop_key.launch on the host computer is now possible to control
and drive the Waffle. At this point it is possible to start the slam operation
launching robot_slam.launch. data_acquisition.py, associated to it, gathers
frames in a directory called acquisition, and positions in a vector. When the node
is stopped, it save such a vector in a CSV file called robot_pose.csv, similar to
that exposed in Figure 6.1.

Before closing robot_slam.launch, launching save_and_print.launch it is
possible to save the image of the map in a file called map.pgm, and its major
information in map.yaml. An example of this file is reported in Figure 6.2: the
most important information is contained in the first three lines. The voice image
refers to the name of the original map image, resolution indicates the ratio between
the dimensions of a pixel on the image and the real ones. In this case every pixels
has a dimension of five centimeters in the real world. Finally, origin denote, in
meters, the position of the origin of the image with respect to the origin of the
map, defined during the mapping operation.
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Figure 6.1: Sample of CSV file created by data_acquisition.py. The first column
corresponds to x coordinates, the second to y coordinates.

Figure 6.2: Sample of yaml file created alongside the occupancy grid map, and
reporting some useful information about it.

In regards of the created map, as said before, the use of RTAB-Map was aban-
doned for the results obtained on the occupancy grid map, which were too dirty
to allow a proper work on theme. In Figure 6.3 the difference between the result
obtained with RTAB-Map (to the left) and the one obtained using GMapping (to
the right) is well evident. In particular, the latter is much more clear and clean,
and allows a post processing operation to enhance it even more. However, how
said before, it is worth noting that, contrary to the one obtained with GMapping,
the RTAB-Map map has been obtained only with the use of the two RealSense
cameras, without the lidar.
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(a)

(b)

Figure 6.3: Comparison between (a) reconstruction of the real map of the envi-
ronment used to test the mapping algorithm and (b) the two Occupancy Grid
Map obtained. To the left the one obtained with RTAB-Map, using only the two
cameras. To the right the one obtained with GMapping, using the lidar alongside
RealSense T265.
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6.2 Prediction of environment frames

At the end of the slam and acquisition operation, Predict.launch can be exe-
cuted. The first node it run, X_Y_Pred_generator.py, retrieve the frames from
the directory acquisition, preprocess them in order to give to each frame the same
format of images used for training, and then use the previously trained model to
make a prediction.

Here, one of the major problems of this project arises. The training set used
on the model is a collection of photography of domestic rooms taken from a man-
height, and the set used to test the accuracy of such model contains similar images.
Testing this model on the field, if the Intel RealSense D435i is maintained to a man-
height, the results are pretty accurate, consistent with the accuracy values found
with the validation set. On the other hand, during the navigation of the robot,
frames are acquired at a ground-height, and this inevitably influence negatively
the accuracy of the model, how can be seen in Figure 6.5.

Although this problem is obvious, it can indeed be solved rather easily. In
fact, since the model itself proved to be very accurate and robust, a simple retrain
with a dataset of images taken from a ground-height should be sufficient to obtain
vastly better results.

Once all the frames are been predicted, X_Y_Pred_generator.py retrieve the
data contained in robot_pose.csv and add prediction information to it. Then
this new vector containing poses and predictions undergoes a mean operation, after
which for every n sample, where n is equal to ten by default but can be selected
by the user, only one sample remains, which posses as pose value the mean of the
n poses, and as prediction the mode of the n predictions. The remaining vector
is then saved in a new CSV file, called X_Y_Pred.csv, similar to that exposed in
Figure 6.4.

Figure 6.4: Sample of CSV file created by X_Y_Pred_generator.py. The first
column corresponds to x coordinates, the second to y coordinates, and the third
to the predictions, where each number correspond to a different class.
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(a)

(b)

Figure 6.5: Comparison of the accuracy of the model on (a) man-height frames
and (b) ground-height frames.
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6.3 Map Post-Processing
The execution of the second node, Mark_map.py, is delayed since it needs
X_Y_Pred.csv to work, and so has to wait for X_Y_Pred_generator.py to finish.
First of all, this node apply a post-process operation on the raw map, map.pgm.
After the application of a threshold, a gaussian blur and a Canny filter, with some
further arrangement, the final map can be observed in Figure 6.6. How can be
seen, the map is now much cleaner, most of biased pixels are removed, and only
the real obstacles and walls are maintained.

Figure 6.6: Post processed image of the Map.

On the other hand, this result clearly is not as accurate as expected initially,
and here arises the second big problem of this project. While the major walls
and obstacles are correctly detected, they are not always well defined, and lots of
imperfections still affect the final outcome. These errors can have principally two
causes:

• The last data (and so the final results), have been gathered in unfavorable or,
in any case, not optimal conditions. While in the early testing the control of
the robot was actually actuated through teleoperations, for late testing the
robot was driven manually. This, inevitably, has certainly negatively influ-
enced the data acquired, and consequently the map obtained. Driving manu-
ally the robot instead of controlling it through teleoperations, and so letting
it move on its own wheels, cause not very predictable and clean movements
of the robot and so of its sensors. Furthermore, since the SLAM algorithm is
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mainly designed for mapping environments with no mobile subjects, the pres-
ence of close quarter operator to push it has caused inevitably a not indifferent
element of disturbance;

• While Intel RealSense cameras are commercial sensors, but still surprisingly
precise and efficient in their work, the lidar unit mounted on the TurtleBot3
Waffle is very elemental and not so accurate. The employment of a better
sensor of this kind could certainly highly improve results.

Now, the map is enlarged in order to allow the insertion of labels. Then two
coordinate conversions are carried out. The first is used for convert from real world
coordinates to image coordinates, using the information coming from map.yaml.
The second is used for convert from the original image coordinates to the enlarged
image coordinates. With these two transformations, it is possible to locate the
poses contained in X_Y_Pred.csv on the map image. A further function is used to
convert the numeric predictions contained in the CSV files to text and, knowing
the poses, these textual predictions are marked on the map as labels. The final
result can be observed in Figure 6.7(a), while (b) represent the same result using
frame images taken from man-height, for comparison.
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(a)

(b)

Figure 6.7: Post processed images of the Map with labels.
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Conclusions

Results obtained can be considered acceptable, satisfy the request of the thesis,
and represent a first step of a larger project. The author of this project is aware of
problems still afflicting the outcomes, and discussed in the previous chapter, so here
some implementations which can reveal useful to improve results are presented:

• How said before, the Room Recognition algorithm is greatly influenced by
the train set used for the learning. Since training the model with man-height
taken photographs and testing it on the field with similar data has provided
satisfying outcomes, a retrain with a ground-height dataset could certainly
improve predictions;

• Retest the SLAM algorithm in better conditions, and possibly with a more
accurate lidar sensor can also vastly improve the mapping results.

On the other hand, this project opens up to a series of future implementations:

• The algorithm can be further improved by adding an application able to
segment rooms using only the occupancy grid map, so it can place a single
label for each room, which is the mean value of all the predictions taken in
that room;

• It can be integrated with navigation and object avoidance algorithms, to allow
autonomous operations within the environment;

• It can be integrated with additional hardware components such as grappling
end effectors, to allow assistance to disabled or elderly users;

Furthermore, it is worth noting that, from a user privacy perspective, all the
images and information gathered are fully processed right on the robot, and are not
shared, by any means, with external entities. This makes it optimal for working
in any private environment.
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