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Abstract

The increasing interest in the collaboration between humans and machines has
led to the development of collaborative robots, called cobots, both in manufacturing
plants, to help the workers with their tasks, and in the medical sector, to improve
the effectiveness of physical therapy. Most of these robots have to interact and move
in unknown environments that are often crowded. Such operations are non-trivial,
because the knowledge that the robot has about its surroundings is often limited;
moreover, they require complex control strategies that work only in very specific
conditions.

This thesis tackles this problem with an innovative approach. A controller for
a differential drive robot is designed to track and follow a target in a moving
multiple-obstacles environment. The control structure is composed by three layers:

1. Machine learning-based identification of obstacles and target;

2. DS-based motion planner for target tracking;

3. Model Predictive Control (MPC) low-level controller.

To continuously map points cloud data (LIDAR) to a probability distribution
of the obstacles over the 2D motion space, two algorithms have been implemented:
a first one using a Gaussian Mixture Model, and a second one using a K-means
clustering algorithm. A DS-based motion planner, relying on the modeling of the
obstacles distributions, generates feasible trajectories for reaching and following the
target while avoiding obstacles. The MPC-based low-level controller is in charge of
generating the control law to follow the desired trajectories.

Evaluation of the whole system architecture and control has been performed in
simulation using Python and with raw data of moving people. Results show that
the proposed approach is feasible for real-time control implementation, with the
main limitation being the computational cost for the non-linear MPC.

From this study it is possible to conclude that the control architecture presented
in this work has the following advantages:

• the implementation of Machine Learning algorithms for the obstacles detection
guarantees high performances, responsiveness and stability;

• the DS-based motion planner provides a reactive and robust to perturbation
behaviour with instantaneous trajectory re-planning based on the robot spatial
location;



• MPC-based controller guarantees optimality of the proposed control-law for
trajectory following;

• the modular structure allows for fast adaptation to different robotic systems.

The main disadvantage of this solution consists in the computational timing,
because, in order to have consistent control inputs from the MPC, the prediction
horizon has to be large enough, which causes the computational cost to be quite
high.
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Chapter 1

Introduction

1.1 Project description

In the last years we have observed an increasing interest in the field of the col-
laboration between humans and machines. In particular, new kinds of cobots [1],
i.e. collaborative robots, have been introduced firstly in the manufacturing plants
to help the workers with their task; then in the medical sector to improve the
effectiveness of the physical therapy.

Most of these robots have to interact and move in unknown environments that
are often crowded. The appeal of this challenge and the possibility of profitable
innovations have lead different organizations to play in advance and to work on
possible solutions. The CrowdBot project [2] is an example of this push and the
Qolo robot [3] is the perfect representation of a cobot that has to be used in a
crowed scenario.

The project Planar target tracking in a moving multi-obstacles scenario
was proposed by the Learning Algorithms and Systems Laboratory (LASA)at the
École polytechnique fédérale de Lausanne - EPFL inside the International Mobility
Program of 2019/2020.

The main problem that the Master Project aims to tackle is the target tracking
while avoiding multiple moving obstacles. The non-triviality of this question
requires complex control techniques: non-linear control techniques present in the
literature showed interesting results in person following and static obstacle avoid-
ance. The project wants to deal with real-world scenarios that encompass moving
obstacles and all the issues related to them: they might or might not pass very close
to the desired tracked target. In this situation the controlled agent has to react
fast to incoming obstacles or generic perturbation from the external environment.

1



Introduction

Figure 1.1: Crowded scenario

The goal of the project is the design of a controller, using machine learning
algorithms, for a mobile robot platform for safe navigation in a crowded scenario
while following a predefined moving target. This involves the capability of avoiding
moving obstacles; in addition the robot has to be capable of following the target
keeping a constant side offset and align its velocity in magnitude and direction
with the target upward orientation. The controller has to deal also with the robot’s
constraints that limit some of its movements.

The solution proposed hereby implements different machine learning techniques
and non-linear control algorithms to identify the obstacles in the environment and
to produce suitable control inputs.

The use of DS-based control techniques offers a useful tool to acquire stable and
robust behavior: the adoption of DS learning technique to shape the high-level
robot policy is one of the fundamental pillars of this project. Deformation of DS
streamlines in order to account approaching obstacles can be obtained by applying
proper modulations as proposed in LASA inserire reference. Stability guarantees
can be achieved by leveraging on a differential approach known as contraction
theory.

Nonetheless, given the complexity of the scenario due the partially observability

2
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and controllability of the control problem other approaches such as Model Predictive
Control have been implemented, in order to generate the low-level robot policy: the
non-linearity of the dynamical system and the constraints imposed by the robot’s
structure can not be tackled with the standard control algorithms.

Furthermore, machine learning techniques were used to model the obstacles and
the environment, starting from raw data obtained by the robot’s sensors. They
are very useful to remove the outliers in the data caused by noise (implementing a
noise filter) and to cluster the data-points to identify the obstacles.

3



Chapter 2

Work organization

In this chapter is present a brief description of the universities involved in this
project; there will be also an introduction to the algorithm structure, linked to the
workload distribution during the last months.

2.1 Institutions involved
The institutions involved in this Master Project are mainly three, all of them are
academic organization and contributed in different way to the project development.

• Politecnico di Torino: as home university, it provided mainly bureaucratic
support and technical knowledge. It was represented by prof. Marcello Chi-
aberge, who acted as main supervisor.

• École polytechnique fédérale de Lausanne - EPFL: the project was
proposed in this university by the Learning Algorithms and Systems Laboratory
(LASA). EPFL is, therefore, the host university and thanks to the supervisors
prof. Aude Billard and dr. Diego Paezand to the PhD. student Bernardo
Fichera, it provided cognitive resources and contributed in a significant way to
develop all the technical aspects of the project. In addition, LASA provided
the instruments and the places to work safely, even during the pandemic.

• Politecnico di Milano: it is involved thanks to the Alta Scuola Politecnica
program, a double degree project that interests both the Politecnico di Tori-
noand the Politecnico di Milano. Prof. Francesco Braghinwas the supervisor
from this university; he showed great interest in the project and gave useful
suggestions and supplied technical knoledge.

4



Work organization

2.2 Work schedule
This project started after the end of the exam session at École polytechnique
fédérale de Lausanne - EPFL; the first month, i.e. February, was dedicated to the
literature review. In particular the main aspects that were analyzed in this period
were:

• control algorithms for target tracking in static and dynamic environments;

• control algorithm for obstacle avoidance in static and dynamic environments;

• machine learning algorithms developed at Learning Algorithms and Systems
Laboratory (LASA), in particular the DS-based algorithms, both for learning
a trajectory and for producing control inputs;

• reinforcement learning algorithms, used to learn a behaviour starting from a
dataset obtained simulating the environments or recording in reality a desired
conduct.

In the meanwhile, using MATLAB [4], some simulation environments were
created, in order to become more familiar with the robot’s dynamics and try out
the DS-based algorithms already implemented and available on LASA website.

The activities mentioned before were conducted in the LASA’s laboratory and
offices, but, after the pandemic outbreak, all the work was carried in smart working
from March until June, when it was possible to go back to the university.

During this period, a deep analysis of the paper Avoidance of Convex and
Concave Obstacles with Convergence ensured through Contraction [5]
was conducted and, using MATLAB, all the main steps of the algorithm were
re-implemented. In such a way, it was possible to better understand the potentiality
of DS-based control; moreover, different changes to the algorithm were tried in
order to adapt it to a situation in which the target is not static any more, but it is
moving. This first part of work focused especially on an high-level type of control,
for this reason, the kinematic of the robot and its volume were often neglected,
preferring a point mass idealization. In addition, at the beginning, a complete
knowledge of the environment and of the obstacles was supposed.

After some months of work, it was implemented in MATLAB a LIDAR simulator,
in order to be more accurate to the real implementation. Using the simulated
datapoints obtained by the LIDAR, some machine learning algorithms were used
to model the environment around the robot.

As said before, the work done until that moment didn’t consider the kinematics
of the robot. To compensate this issue, a low-level controller was studied, that had
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the task to translate the high-level commands to control inputs suitable for the
robot and, at the same time, had to consider the constraints caused by the robot’s
structure.

Different approaches were tried, from the simplest ones to the more complex.
The best results were obtained using non-linear Model Predictive Control, which
is able to take into account both the system’s dynamics and the system’s constraints.

At this point, there was enough material to try everything on the robot, for
this reason in was necessary to move all the code in Python [6]. It was possible to
use and to modify the code already developed by Lukas Huber [7], that deployed
several optimized features that weren’t implemented in MATLAB.

When it was possible to go back to the university (June 2020), some tests were
done on the robot (between June and July), and several problems related to the
timing of the algorithms emerged: the SLAM algorithm of the robot, the high-level
controller and the low-level one were too slow and it was not possible to control
the robot in a good way.

At the end of July it was necessary to use again the smart working solution,
since the Mobility period ended. In August and in the first weeks of September
other low-level controllers were developed, in order to respect the time constraints
of the robot; the simulated results were promising, but real tests on the robot have
to be done.

In September and in October the work focused again on the machine learning
implementation that has to deal with the raw datapoints obtained by the LIDAR
and the camera. The main methods used for this purpose were the Gaussian
Mixture Model [8] and the K-means [9].
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Chapter 3

QOLO robot [10] [2] [11]

Figure 3.1: QOLO robot [2] [12]

The project revolves around the QOLO (Quality of Life with Locomotion) robot
[11] [3], shown in 3.1. The robot is part of the CrowdBot project [2], a collaboration
between 7 organizations from 4 European countries. The goals of this project is to
combine technical knowledge with ethics, in order to obtain robots that are able to
move in a crowded scenario while sensing and predicting the specific dynamics of
the pedestrians around the robot.

Qolo robot is a device able to combine active powered wheels and passive
exoskeleton, resulting in a wearable robot for wheelchair user. The great revolution
of this robot consists of a standing mobility that does not impact on the compactness
and on the portability, thanks also to its light weight.
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A Qolo’s user is helped by the passive exoskeleton to sit and to stand up, using
easy body posture changes. Moreover, it is possible to use the robot without using
the hand, while standing, thanks to its control interface [13].

The main aspects of the robot that will be used for this project are:

1. Sensing - how to perceive the obstacles around the robot;

2. Movement - the dynamic model of the robot;

3. Control and interface - the software part of the system.

3.1 Sensing
In a crowded scenario, a crucial aspect for a good behaviour of the whole system is
how the robot sense and perceive the environment around it. Qolo uses different
instruments that allow it to have a good knowledge of its surroundings in real-time.
First of all, it uses a front and a rear lidar to sense the environment at medium
distances. A lidar is a device that illuminates the space with laser light and
measures the reflection, doing so it is able to compute the distances of the objects
around it. Using different wavelengths and return times of the laser, it is possible
to obtain a 3D representation of the surroundings. An example of the device used
on the robot is shown in Figure 3.2.

Figure 3.2: Lidar [14]

In addition to the lidars, the robot has three depth cameras: they are Intel
RealSense™ Depth Camera D435 [15], shown in Figure 3.3. This kind of camera is
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an optimal solution because its cost is relatively low and with a single device it is
possible to measure near distances and to record.

Combining the lidars and the depth cameras allows the robot to have information
both on the depth and on the kind of obstacles around it. Using these data, an
already implemented algorithm, is able to distinguish the people near the robot
from other obstacles. Unfortunately this algorithm can work only at 10Hz and it
often produces false positives: the algorithm sees people even if they are not present
in reality. This Master project wants to tackle also this problem, using machine
learning algorithms able to filter the noise and produce more reliable information
regarding the obstacles and the environment.

Figure 3.3: Intel RealSense™ Depth Camera D435i [16]

3.2 Movement
Qolo’s movement structure is composed of two differential motored wheels, that
propels the robot and allow the movement; and two castor wheels that are nec-
essary for stability reasons. This typology of drive mechanism can be modeled
as a unicycle and it is called differential drive: the motored wheels can work
independently one from the other, but they have the same stearing angle; this
causes the system to be nonholonomic.

3.2.1 Holonomic and Nonholonomic system
The configuration of a robot can be described by a vector q ∈ Rn, called gener-
alized coordinates. Assuming that the set of all possible configurations, called

9



QOLO robot [10] [2] [11]

configuration space C, coincides with Rn, the robot motion can be described by
q(t), that can be subject to different constraints.

In literature, we distinguish the constraints in holonomic and nonholonomic.
The first typology of constraints causes the reduction of the accessible configurations
from Cn to Cn−k, where k is the number of holonomic constraints. This implies
that k generalized coordinates become a function of the other n−k. The holonomic
constraints are generally represented as:

fi(q, t) = 0, with i ∈ [1, k] (3.1)

A system is nonholonomic when its state depends on the path taken in order
to achieve it [17]. Differently from the holonomic constraints, these do not imply
a loss in the accessibility of C, but they constrain the velocities to a subspace of
dimension n− k, where k is the number of nonholonomic constraints.

3.2.2 Unicycle Model

Figure 3.4: Unicycle model [18]

The Qolo robot’s model on an horizontal plane is called Unicycle Model. As-
suming the generalized coordinates vector q = [x, y, θ]T , the robot’s kinematic can
be described by the non-linear system:

ẋ = ωR+ωL

2 · r · cos(θ)
ẏ = ωR+ωL

2 · r · sin(θ)
θ̇ = ωR−ωL

b
· r

⇒


ẋ = v · cos(θ)
ẏ = v · sin(θ)
θ̇ = ω

(3.2)

Where x, y and θ are the position and the orientation of the robot in a fixed
reference frame; r is the radius of the wheels, d is the distance between the two
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wheels and ωR and ωL are the angular velocity of the right and left wheels.
v = ωR+ωL

2 · r and ω = ωR−ωL

b
(in Figure 3.4 u2 and u1 respectively) are the the

control inputs for the system.
As a matter of fact it is possible to rewrite the dynamics of the system as:

q̇ =

 ẋ
ẏ

θ̇

 = G(q) · u =

 cos(θ) 0
sin(θ) 0

0 1

 C v
ω

D
(3.3)

The nonholonomicity of this model is caused by the pure rolling constraint: theo-
retically, in normal conditions, the wheels of the robot should roll without slip and,
as a consequence, the velocity component along the normal direction to the wheels
plane is always non-zero. This constraint means that the robot can not move side
to side, therefore appropriate control strategies have to be implemented in order to
drive the robot to the desired position.

3.3 Control and interface
The robot is controlled using ROS, a robotics middleware [19] [20], that allows the
robot and software designer to easily interface the different hardware parts with
the software unit, dedicated to the control.

As a consequence, the control algorithms have been developed in Python [6]
[21], in order to guarantee the compatibility with the existing control structure.
Nevertheless, a part of the control algorithms has been firstly implemented in
MATLAB [4][22] and then converted in Python, in order to understand better the
algorithm structure and because of the easiness of the debugging.
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Chapter 4

Algorithm Structure

The structure of the algorithm can be divided into three main components, that
combined all together provide a complete control algorithm for the target tracking
and the obstacle detection and avoidance.

Figure 4.1: Algorithm Scheme
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The first component is the obstacles and target detection algorithm; it
has to analyse the data obtained by the LIDAR and the camera and produce as
output the position of the obstacles, with their velocity and the volume occupied,
and the position of the target with its velocity and volume. The latest task is the
most difficult one, since it is necessary to extract from the information available a
sufficiently stable knowledge of the target, otherwise the control inputs produced
would be irregular and unpleasant.

The methods adopted for this part are mainly machine learning algorithms and
will be explained in detail in Chapter 7 with some anticipations in Chapter 5.

The High Level Control is the part of algorithm that takes as inputs the
position and the orientation of the robot and all the possible information about
the environment and, using a dynamical system (DS) approach produces locally
the desired velocity vector that the mass point robot should have in order to reach
the target and avoid the obstacles.

Depending on the implementation of the three algorithm together, the output
of this subsystem can be the desired velocity or directly the desired next position,
integrating the system for one time-step.

In Chapter 5 there will be an exhaustive description of the methods used and of
the trials and errors.

The last component is the Low Level Control and has the purpose of con-
verting the results obtained with the High Level controller into control inputs for
the robot. It has to deal with the kinematic constraints of the unicycle, with the
limitations imposed by the actuators on the robot (linear velocity and angular
velocity) and with the limits dictated by the acceleration and the jerking that the
human body can withstand.

Many typologies of controller have been tried, but just few of them have shown
good results; the Chapter 6 will display the different attempts.

To conclude, it is worth to mention that the sine qua non condition for the
combination of the three sub-algorithms to work properly is that the timing
constraints are respected: the algorithms have to run at a frequency that is fast
enough to compute, at every time-step, all the necessary outputs. If this is not
respected, for example, if the Low Level Control is too slow, the control inputs of
the robot would not be up to date and would control a situation that is not the
real one, producing a behaviour that could be potentially dangerous for the user
and for the people around him or her.
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Algorithm 1 Algorithm Structure
1: ó Execution
2: while Robot is working do
3: ó Obstacle and Target Detection
4: ó Get data from LIDARS
5: Raw_data← LIDARs
6: ó Get information about robot’s position in the environment
7: [x, y, θ]T ← SLAM algorithm
8: ó Run the algorithm for the people detection (already existing)
9: People← People detection

10: ó Use Raw_data to model the obstacles
11: [Obstacle, ˙Obstacle]←MLalg(Raw_data)

ó MLalg() identifies a Machine Learning algorithm developed
to find the obstacle position, shape and velocity

12: ó Use People to identify the target
13: Target← TargetDetection(Obstacle, People)

ó TargetDetection() identifies an algorithm than
choose the target among the obstacles

14: ó High Level Controller
15: ó Use the information on Obstacle, ˙Obstacle to model the environment
16: ó Use the information on Target and ˙Target to define the attractor
17: ó Apply the modulating DS algorithm to obtain the desired velocity vector

of the robot
18: ˙robotdes ←Mod_DS()

ó Mod_DS() identifies the modulating algorithm

19: ó Low Level Controller
20: ó Use the information on ˙robotdes to compute the control inputs
21: ó Optimize the control inputs to be compliant to the boundaries
22: Inputs← InputGen( ˙robotdes)

ó InputGen() identifies an algorithm that generates the
inputs, taking into account the robot’s contraints

23: ó Apply the control inputs to the robot
24: end while
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Chapter 5

High Level Control

5.1 Dynamical System based control
The mathematical definition of a dynamical system is straightforward: it is a
system described by a function that relates the time dependence of a point to a
geometrical space. [23]

This definition can be adapted to the physical world describing "a particle
or ensemble of particles whose state varies over time and thus obeys differential
equations involving time derivatives." [24]

The main characteristic of a dynamical system, at a time t, is its state ξ(t), a
vector of real numbers with which it is possible to identify a point in a geometrical
manifold called state space. The differential equations define an evolution rule that
traces the future states, starting from a current state. There are two typologies of
dynamical systems’ functions:

• Deterministic functions - the evolution from a certain state is completely
known and only one state can be the next one;

• Stochastic functions - the evolution is characterized by randomness, as a
consequence, probabilistic events determine the future states.

The knowledge of the function allow us to predict the behaviour of the system
using an analytical solution or, in the more complex cases, through numerical
integration.

The general formula of a differential equation for a dynamical system is the
Equation 5.1, in which the time variance is explicit and the state evolution might
depend also on other variables identified with u.

If the system is autonomous and time invariant the formula that describes such
system is illustrated in 5.2. This typology of dynamical system is very common in
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control theory and it will be fully exploited in this project.

ξ̇ = f(ξ, u, t) (5.1)

ξ̇ = f(ξ) (5.2)

A dynamical system (DS) based control differs from the classical path planning
in the planning itself: the DS-based presents a control law that is in closed form
and, as a consequence, does not need a re-planning.

That allows the system to be very reactive, hence, this kind of controller presents
optimal features for an obstacle avoidance control algorithm, because in such a
situation the responsiveness of the robot is a must

5.2 Avoidance of Convex and Concave Obstacles
The first part of the work of the project consisted in the understanding, repro-
duction and modification of the control algorithm for the avoidance of multiple
concave obstacles. The paper used to set the algorithm is "Avoidance of Convex
and Concave Obstacles with Convergence ensured through Contraction" [5] and
shows a method that guarantees asymptotic stability.

In this section a detailed explanation of the original algorithm will be provided,
while in the following ones there will be the different tests done to reproduce.

First of all, it is necessary to define a state ξ ∈ Rd, where d is the dimension of
the state; in our case d = 2 because the model taken into account is the unicycle
one, so working in a plane is sufficient; but this method can be applied also for
three-dimensional spaces. Then, an attractor ξa ∈ Rd has to be defined. Since it
represents the desired final state, a dynamic system is needed to impose a control
law; for this purpose, an autonomous, time invariant, linear system has been chosen,
of the form written in Equation 5.3.

ξ̇ = f(ξ) = −(ξ − ξa) (5.3)

With the dynamics above mentioned the point mass is not able to avoid obstacles
that are in its trajectory. In order to solve this problem, a modulation matrix M(ξ)
is introduced:

ξ̇ = M(ξ) · f(ξ) (5.4)

This matrix does not change the existing minimum produced by the attractor
and, as long as the matrix has full rank, no other extrema (maxima or minima)
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are introduced. M(ξ) is obtained multiplying specific matrices:

M(ξ) = E(ξ)D(ξ)E(ξ)−1 (5.5)

Where E(ξ) is a basis matrix composed by:

E(ξ) = [r(ξ), e1(ξ), ..., ed−1(ξ)] (5.6)

remembering that d is the dimension of the state and, hence, of the system.

r(ξ) = ξ − ξr

||ξ − ξr||
(5.7)

Where ξr is a reference point inside the obstacle. ei with i ∈ [1, d− 1] are tangents
to the surface of the obstacle, in the point where the border of the obstacle meets
the line that joins ξ with ξr.

D(ξ) is the associated eigenvalue matrix that is able to stretch and compress
the dynamics along the directions e− r-system.

D(ξ) = diag(λr(ξ), λe1(ξ), ..., λed−1(ξ)) (5.8)

The eigenvalues λ determine the amount of stretching in each direction. A necessary
condition that ensures that the point mass does not penetrate the obstacle is to have
λr = 0 on the edge of the obstacle; in this way we cancel the flow in the direction
of the obstacle. While, the effect of the eigenvalues of the tangent directions is to
increase the speed along that directions.

In order to ensure that the magnitude of the velocity is preserved in certain
direction we want that:

0 ≤ λr(ξ) ≤ 1 and λe(ξ) ≥ 1 (5.9)

A possible solution for these eigenvalues is the following:

λr(ξ) = 1− 1
Γ(ξ) and λe(ξ) = 1 + 1

Γ(ξ) (5.10)

where Γ(ξ) is a distance function defined as

Γ(ξ) =
A
||ξ − ξr||

R(ξ)

B2h

(5.11)

With R(ξ) distance from the reference point ξr within the obstacle to the surface
of the obstacle itself, in direction r(ξ) and h ∈ N+.
In this way Γ(ξ) > 1 for all the points outside the obstacles and Γ(ξ) = 1 for all
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the points on the boundary of the obstacle.

E(ξ) has to be invertible, which means it has to have full rank; this condition is
meet if the reference direction of r(ξ) can not be written as a linear combination of
the tangent directions ei(ξ). In order to obtain this situation, the reference point
ξr has to be inside a convex obstacle. Depending on the position of the point,
different results might be obtained, as shown in Figure 5.1

Figure 5.1: Left: Reference in the Center
Right: Reference to the Top

[5]

However, having only convex obstacles can be very limiting in real life scenarios;
a smart way to solve this issue is to use the so called star-shaped obstacles. They
are basically obstacles composed by two or more convex obstacles that share the
same reference point.

If an obstacle in moving, the modulation can be performed in the reference frame
of the obstacle and then it can be brought back in the inertial frame. Considering
the linear velocity ξ̇L,o and an angular velocity ξ̇R,o of the obstacle with respect to
its center point, the relative position of the point mass with respect to the obstacle
is:

ξ̃ = ξ − ξc (5.12)
The modulation in this condition is

ξ̇ = M(ξ)(f(ξ)− ˙̃ξ) + ˙̃ξ (5.13)
with

˙̃ξ = ξ̇L,o + ξ̇R,o × ξ̃ (5.14)
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× is the cross product, so a fast way to compute ξ̇R,o× ξ̃ in the 2D case is to multiply
the angular velocity ξ̇R,o with [ξ̃(2),−ξ̃(1)]T , where ξ̃(1) is the first component of
the vector ξ̃ and ξ̃(2) the second one.

When multiple obstacles are present in the scene, the modulation approach can
not be used in a straightforward manner: some changes in the algorithm are needed.
First of all, it is necessary to compute the modulated DS for each obstacle ξ̇o with
o ∈ [1, N o] and N o number of obstacles. Every modulated DS can be decomposed
in magnitude and direction:

ξ̇o = ||ξ̇o||nξ̇o (5.15)

We will use these components separately to compute the total modulated DS ˙̄ξ as
a weighted mean, using the weights wo. In order to have a balanced effect of the
obstacles and to avoid that the effect of an obstacle is perceived on the border of
the other ones, the weights are constrained so that:

NoØ
k=1

wo(ξ) = 1 (5.16)

The weight wo(ξ) is chosen to be inversely proportional to the distance measure
Γo(ξ)− 1, using the formula in Equation 5.17

wo(ξ) =
rNo

i /=o(Γi(ξ)− 1)qNo

k=1
rNo

i /=k(Γi(ξ)− 1)
(5.17)

The magnitude || ˙̄ξ|| is computed using the formula:

|| ˙̄ξ|| =
NoØ
o=1

wo||ξ̇o|| (5.18)

As for the direction n̄(ξ), it is computed as the change in direction from the orig-
inal DS, compared to the versor nf (ξ) that represents the the original DS’ direction.

The function

κ(ξ̇o, ξ) = arccos(n̂ξ̇o

1 ) [n̂ξ̇o

2 , ..., n̂ξ̇o

d ]Íqd
i=2 n̂

ξ̇o

i

(5.19)

projects the modulated DS of every obstacle onto a (d-1)-dimensional hyper-sphere,
whish ad radius equal to π.

n̂ξ̇o

i = RT
f n

ξ̇o

i (5.20)
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With Rf = [nf(ξ), ef
1(ξ), ..., ef

d−1(ξ)] and ef
i (ξ) chosen to form an orthonormal

basis.
Since we are working in a 2D environment, d = 2 and, as consequence

κ(ξ̇o, p) = arccos(n̂ξ̇o

1 )sign(n̂ξ̇o

2 ) (5.21)

Evaluating the weighted mean in the κ-space we have

κ̄(ξ) =
NoØ
o=1

wo(ξ)κo(ξ̇, ξ) (5.22)

Now it is necessary to bring back in the original space the modulated DS ˙̄ξ, using
the formula

n̄(ξ) = Rf (ξ) [cos(||κ̄(ξ)||), sin(||κ̄(ξ)||) · sign(κ̄(ξ))]Í (5.23)

Having both the new direction n̄(ξ) and the magnitude ˙̄ξ, the final velocity is

˙̄ξ = n̄(ξ) · || ˙̄ξ|| (5.24)

A possible idea to enforce the attraction to the reference point, could be to
consider N o + 1 obstacles: the additional obstacle is the attractor, but in this case
we do not modulate the DS (M s(ξ) = I) and the consequence is that the final
velocity ˙̄ξ tends to be more aligned with the original DS direction nf (ξ).
This may cause some problem if the target goes on an obstacle, but we will analyse
this case in the next sections.

Another problem that emerges from this algorithm is that the point mass is
subject to the influence of all the obstacle, also the ones that are unlikely to collide
with it because they are quite far from the point. A plausible solution could be to
take into account only the the obstacles that are in a circumference centered in the
point mass and with a radius that can be defined a priori or that can depend on
the dimension of all the obstacles.

5.3 Dynamical system analysis
As illustrated in the previous sections, the first thing to do to understand the
modulated DS, is to analyse the DS without modulation. The Equation 5.3 describes
a dynamical system which is attracted by the point ξa. A more general formula is:

ξ̇ = f(ξ) = −A · (ξ − ξa) (5.25)
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With A > 0 to guarantee the attraction towards ξa. It is obtained starting from
the definition of potential energy U :

U = 1
2(ξ − ξa)T A(ξ − ξa) (5.26)

Computing the gradient of the potential energy U , we obtain f(ξ):

f(ξ) = ξ̇ = −∇ · U (5.27)

Some graphical examples can be obtained, firstly considering A = 1 with
ξa = [0,0]T in Figure 5.2 and then ξa = [3,3]T in Figure 5.3.

Other examples can be obtained changing the value of A; for instance, using
ξa = [0,0]T , we can show the different behaviour with A = 3 in Figure 5.4 (a) and
A = 10 in Figure 5.4 (b).

What immediately stands out is the possibility to change easily the attractor
point ξa and the attraction strength varying A: higher is the value of A, higher
will be the attractive force. Moreover, this typology of dynamical system present
many advantages because of its time invariance and linearity.

5.4 Dynamical System with moving attractor
Using the formula in the Equation 5.25, we describe the dynamic of a mass point
which is drawn to a static attractor. Since this project has the goal to follow a
moving attractor, a new DS law has to be designed.

Assuming to know the velocity vector of the attractor, identified as ξ̇a, a potential
function that guarantees the stability of the system is:

U = 1
2(ξ − ξa)T A(ξ − ξa)− (ξ − ξa)T · ξ̇a (5.28)

Applying the gradient, the new dynamic become:

f(ξ) = ξ̇ = −∇ · U = −A · (ξ − ξa) + ξ̇a (5.29)

Setting the attractor as ξa = [0,0]T , A = 1 and the velocity of the attractor as
ξ̇a = [1,0]T , the result obtained is shown in figure 5.5.

Even if the attractor is in the origin, the state of the mass point tends to go to
another point, which is the minimum of the potential function U . This behaviour
is very useful for our purpose because we take into account the dynamic of the
attractor, hence the mass point predicts the future behaviour (or at least the
expected one) of the attractor and compensate for it, going towards the future
positions of the attractor.
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(a) Potential Energy

(b) Dynamical System

Figure 5.2: DS example 1: A = 1 and ξa = [0,0]T

5.5 Modulated DS - Single fixed obstacle
The new modulation in Equation 5.29 differs from the one presented in the paper
[5] because it has also the velocity of the attractor. In this chapter the modulated
DS will be implemented with a single fixed obstacle, in order to acquire familiarity
with the modulation algorithm and to understand if a moving target could produce
problems in the implementation.

As first thing, we have to identify the typologies of obstacles that we can deal
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(a) Potential Energy

(b) Dynamical System

Figure 5.3: DS example 2: A = 1 and ξa = [3,3]T

with: as said in section 5.2, the obstacle has to be convex, so the easiest way
to begin is to use ellipsoid-shaped obstacles. An ellipse can be totally identified
knowing the semi-minor axis ry and the semi-major axis rx, the center C and
the tilted angle with respect to the abscissa axis θ. In this section we assume a
complete knowledge of the obstacle.

Then, the modulating algorithm has been reproduced:
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Algorithm 2 Modulation algorithm M

1: procedure M(ξ, rx, ry, C, θ, ξr)
2: ó ξ is the state where we compute the modulation
3: ó rx is the semi-major axis
4: ó ry is the semi-minor axis
5: ó C is the center of the ellipse
6: ó θ is the tilted angle of the ellipse
7: ó ξr is the reference point
8: ó Execution
9: ó ξr check

10: if ξr /∈ Ellipse then
11: ξr ← C ó If ξr is outside the ellipse, it is set in the center
12: end if
13: R− ← Rot(−θ) ó Rotation matrix with −θ
14: R+ ← Rot(−θ) ó Rotation matrix with θ
15: ξ0 ← R−(ξ − C) + C ó ξ transformation to the ellipse reference frame
16: ξ0

r ← R−(ξr − C) + C ó ξr transformation to the ellipse reference frame
17: ó Intersection between ellipse and line linking ξ0 to ξ0

r

18: if ξ0
r (1) = ξ(1)0 then

19: x_edge1 ← ξ0(1)
20: x_edge2 ← ξ0(1)
21: else
22: ó Find the coefficients of the line y = mx + q

23: m← ξ0(2)−ξ0
r (2)

ξ0(1)−ξ0
r (1)

24: q ← ξ0(2)−m · ξ0(2)
25: ó Intersect line and ellipse, obtaining an equation of the form ax2 + bx +

c = 0
26: a← m2+1/r2

x

r2
y

27: b← 2(−C(1)
r2

x
+ m q−C(2)

r2
y

)
28: c← C(1)2

r2
x

+ q2−2qC(2)+C(2)2

r2
y

− 1

24



High Level Control

29: ó Find the roots
30: x_edge← roots([a, b, c])
31: x_edge1 ← x_edge(1)
32: x_edge2 ← x_edge(2)
33: end if
34: ó Compute the axis-y coordinates
35: y_edge11← C(2) + ry

ñ
1− (x_edge1−C(1)

rx
)2

36: y_edge12← C(2)− ry

ñ
1− (x_edge1−C(1)

rx
)2

37: y_edge21← C(2) + ry

ñ
1− (x_edge2−C(1)

rx
)2

38: y_edge22← C(2)− ry

ñ
1− (x_edge2−C(1)

rx
)2

39: ó Chose the right edge_point0 comparing each direction with the one that
links ξ0 to ξ0

r

40: ó Translate the ellipse in the origin
41: edge_point_centered← edge_point0 − C
42: ó Find the vector e0 orthogonal to the ellipse in edge_point_centered
43: ó Compute e and edge_point in the original frame
44: e← R+e

0

45: edge_point← R+edge_point_centered + C
46: ó Compute r, direction that links ξ to ξr

47: ó Compute the modulation matrix
48: ó Compute matrix E
49: E ← [r, e]
50: ó Compute matrix D
51: d← ||edge_point− ξr)|| ó Denominator of the Γ function
52: h← 1 ó Exponential of the Γ function
53: Gamma← ( ||ξ−ξr||

d
)2h

54: ó Compute D eigenvalues
55: λr ← 1− 1

Gamma

56: λe ← 1 + 1
Gamma

57: D ← diag([λr, λe])
58: M ← EDE−1

59: end procedure
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(a) Example 3

(b) Example 4

Figure 5.4: Potential Energy varying A

The output of the Algorithm 2 is directly the modulation matrix M(ξ). Consid-
ering an ellipsoid-shaped obstacle with rx = 0.5 ,ry = 2, C = [1, 3]T , θ = π

6 and
ξr = C; and applying that matrix to a DS with ξa = [0,0]T , A = 1 and the velocity
of the attractor as ξ̇a = [1,0]T , we obtain the result in Figure 5.6. While in Figure
5.7 ξr = [1.5,2]T , therefore it is not in the center of the obstacle.

It is possible to notice that in both cases the streamlines avoid the obstacles.
The only exceptions regards the points that are already inside the obstacle: in such
cases the mass point would get trapped; the solution has been implemented by [7]
in python, using a repulsive function inside the obstacle. This solves the problem,
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Figure 5.5: DS with moving attractor

Figure 5.6: Modulated DS with moving attractor and single obstacle

but it creates a discontinuity in the final DS that could result in abrupt changes in
the robot motion.

Moreover, until now we have assumed that there are not constraints on the speed
that the mass point can have, this means that if the state ξ is quite far from the
attractor ξa, the resulting velocity could be very high, since it is linearly dependent
on the distance between the two points. An easy way to limit the velocity is to
saturate it: this has to be done after the modulation, otherwise the final result
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Figure 5.7: Modulated DS with moving attractor, single obstacle and ξr /= C

could exceed the limit anyway. The drawback of this approach is evident near the
obstacle, where a consistent stretching is necessary to avoid it; it may happen that
limiting the point velocity brings the point to collide with the obstacle.

Since the obstacle represents a real object that has to be avoided, in order to
avoid the collision different approaches are used:

• the ellipsoid-shaped obstacle is actually bigger than the real object that it
represents; in such a way, even if the mass point collides with the ellipse
and goes inside it, the repulsive function has still some time to correct the
behavior.

• change the Γ(ξ) function in order to sense the presence of the obstacle in
advance.

5.6 Γ(ξ) function variations
Varying the Γ(ξ) function could be a useful method to perceive in advance the
presence of an obstacle. Nevertheless, we have to remember that the this function
has precise characteristics, that can not be modified, otherwise the modulation will
not work. In particular, the function has the form:

Γ(ξ) =
A
||ξ − ξr||

R(ξ)

B2h

And has to be:
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• Γ(ξ) > 1 outside the obstacle;

• Γ(ξ) = 1 on the boundary of the obstacle.

Therefore, even if we want to modify the function, we still have to guarantee
these characteristics.

For instance, using the modified Γ(ξ) function as in Equation 5.30, where c is a
constant value, the over mentioned characteristics are respected, but the effect of
the obstacles are perceived differently.

Γ(ξ) =

1
||ξ−ξr||

R(ξ)

22h
− 1

c
+ 1 (5.30)

Considering again the obstacle with rx = 0.5 ,ry = 2, C = [1, 3]T , θ = π
6 and

ξr = C; and an attractor with ξa = [0,0]T , A = 1 and ξ̇a = [1,0]T .
The results using c = 1, c = 3 and c = 10 are shown in Figure 5.8, Figure 5.9

and Figure 5.10; in this case, Γ(ξ) inside the obstacle is set as 1, in order to avoid
peaks in the function 1

Γ(ξ) .

(a) Γ(ξ) function (b) 1/Γ(ξ) function

(c) DS M(ξ)f(ξ)

Figure 5.8: Γ(ξ) function with c = 1

29



High Level Control

(a) Γ(ξ) function

(b) 1/Γ(ξ) function

(c) DS M(ξ)f(ξ)

Figure 5.9: Γ(ξ) function with c = 3

(a) Γ(ξ) function

(b) 1/Γ(ξ) function

(c) DS M(ξ)f(ξ)

Figure 5.10: Γ(ξ) function with c = 10

In the cases with c > 1 we can notice that the shape of the Γ(ξ) functions are
very similar, but their value decrease as c increases. This stands out especially in
the functions 1/Γ(ξ), because in each of them the maximum value is 1 as expected,
and then they decrease in different way.

The different shapes of Γ(ξ), with c > 1, cause the streamlines to be more
stretched; in particular, the effect of the presence of the obstacle is sensed quite far.
Therefore, the effect is the desired one and the mass point can react in advance;
nevertheless, some issues emerge: using, for instance, c = 10, would cause a strange
behaviour in the states where the obstacle is not present and, most important,
where it is not even close.
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5.7 Moving obstacle
Until now the analysis focused on the modulation algorithm with a single fixed
obstacle and a moving attractor. In this section we will see how a moving obstacle
affects the streamlines and, hence, the DS of the mass point.

Following the procedure mentioned in Section 5.2 and remembering that the
equations for the moving obstacles are Equation 5.13 and Equation 5.14, also this
part of the algorithm has been implemented, in order to understand potential issues
related to the moving obstacle and the moving target.

We can observe the behaviour of the streamlines with moving obstacles of
different shapes, both with a fixed target (ξa = [0,0]T , A = 1 and ξ̇a = [0,0]T ) and
with a moving one (ξa = [0,0]T , A = 1 and ξ̇a = [1,0]T ). The ellipsoid-shaped
obstacles will have rx = 0.5, C = [1, 3]T , θ = π

6 and ξr = C; while we will
consider ry = 2, ry = 1 and ry = 0.5. For all the cases we will consider for the
obstacle a linear velocity of the center ξ̇L,o = [−0.5,−0.5]T and an angular velocity
ξ̇R,o = −π/3.

Figure 5.11 and Figure 5.12 show the results. First of all, we can observe
that, using the algorithm proposed in Section 5.2 with fixed target, we obtain an
expected behaviour: topographically critical points are displaced, for instance the
attractor, because we are not doing a pure modulation of the DS [5]. Moreover,
some streamlines are not able to avoid the obstacle anymore, especially if the
obstacle is very big. This issue has been solved by Dr. Huber including a repulsive
DS inside the obstacle, that force the state to go outside the obstacle; causing the
global DS to be discontinuous though.

For what concern the moving attractor, the problems are basically the same.
From the graphical representation (Figure 5.12) we can assert that this algorithm
works in situations where the obstacles are not too big. Since we want to deal
mainly with obstacles that represent people around the robot, we can expect a
correct behaviour from the robot.

31



High Level Control

(a) ry = 2 function

(b) ry = 1 function

(c) ry = 0.5

Figure 5.11: Moving obstacle
and fixed target

(a) ry = 2 function

(b) ry = 1 function

(c) ry = 0.5

Figure 5.12: Moving obstacle
and moving target
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5.8 Multiple obstacles
When multiple obstacles are present in the environment, the approach to follow is
the one illustrated in Section 5.2 and implemented in Matlab as shown in 3. We
have to compute the modulated DS velocities for each obstacle and then combining
them to obtain the global DS.

We are assuming that all the obstacles have an ellipsoid shape and, therefore,
the convexity assumption is guaranteed. We have to analyze the case in which two
or more obstacles overlap and form a convex obstacle.

Firstly, we can test the algorithm with six different obstacles, without overlapping.
The result is shown in Figure 5.13. As expected, the streamlines are able to avoid
all the obstacles, suggesting us the feasibility of this algorithm.

Moving some obstacles, as shown in Figure 5.14, it is possible to create concave
hulls. In this conditions, to guarantee the obstacle avoidance, the obstacles that
form the hull must have the same reference point inside them. The two obstacles
in the upper part of the Figure 5.14 respect that condition, while the two in the
lower part have different reference points. It stands out that, in the first case
the streamlines avoid both the obstacles, confirming the hypothesis of the same
reference point; in the other one the algorithm is not able to produce a modulated
DS capable of guarantee the obstacle avoidance. In particular, we can notice that
minima are present on the border of the two obstacles; if a mass point was subject
to that DS, it would get stuck and would never reach the desired attractor.

The algorithm that updates the position of the reference points inside the obsta-
cles was not developed in MATLAB. It is a feature of the algorithm implemented
in Python by Dr. Huber. It is worth to mention that this part of the algorithm
represents the bottleneck of the DS modulation. Due to its complexity it slows down
the entire process, making the algorithm unusable in real-time scenario; especially
if there are many obstacles in the environment considered. Of course this represents
a big limitation because, as we have seen, using the algorithm without updating
the reference points produces local minima that can affect the performance of the
whole system.
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Algorithm 3 Modulation algorithm for multiple obstacles mod

1: procedure mod(ξ, target, obs)
2: ó ξ is the state where we compute the modulation
3: ó target is the target we want to reach
4: ó obs is a list with obstacles’ information
5: ó Initialization
6: Γ← [ ]
7: nobs ← length(obs)
8: G← [ ]
9: W ← [ ] ó number of obstacles

10: vel← [0,0]T ó final velocity after the modulation
11: ó Execution
12: if nobs = 0 then
13: vel← f(ξ) ó No modulation is computed
14: else
15: nf (ξ)← f(ξ)
16: for j ∈ nobs do
17: d← ξ − obs[j].c
18: obs_vel← obs[j].lin_vel + obs[j].ang_vel ∗ [d(2), d(1)]T
19: M_matrix[j], Γ[j]←M(ξ, obs[j])
20: Mod_DS[j]←M_matrix[j](nf (ξ)− obs_vel) + obs_vel
21: Magn_Mod_DS[j]← ||Mod_DS[j]||
22: if Magn_Mod_DS[j] = [0,0]T then
23: nMod_DS[j]←Mod_DS[j]
24: else
25: nMod_DS[j]←Mod_DS[j]/Magn_Mod_DS[j]
26: end if
27: end for
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28: for j ∈ nobs do
29: G← Γ− 1
30: G[j]← [ ] ó Remove j-th component
31: num← r(G)
32: den← 0
33: for k ∈ nobs do
34: G← Γ− 1
35: G[k]← [ ] ó Remove k-th component
36: den← den +r(G)
37: end for
38: W [j]← num/dem
39: end for
40: ó Compute the magnitude of the final velocity
41: Magn_DS ← q

W [j]Magn_Mod_DS[j]
42: ó Direction of the original DS
43: if ||nf || /= 0 then
44: nf ← nf/||nf ||
45: end if
46: ó Vector orthogonal to nf

47: ef ← [−nf [2],nf [1]]T
48: ó Orthonormal matrix Rf

49: Rf ← [nf , ef ]
50: n̂← RT

f nMod_DS

51: ó κ function
52: for j ∈ nobs do
53: if n̂[2, j] ≥ 0 then
54: κ← acos(n̂[1, j])
55: else
56: κ← −acos(n̂[1, j])
57: end if
58: end for
59: κ̄← q

W [j]κ[j]
60: n̄← Rf [cos(||κ̄||), sin(||κ̄||)sign(κ̄)]T
61: vel← n̄Magn_DS
62: end if
63: end procedure
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Figure 5.13: Multiple Obstacles

Figure 5.14: Multiple Obstacles with overlapping
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5.9 Attractor inside the obstacle
An aspect of the algorithm that deserves attention concerns the presence of the
attractor inside an obstacle. It is a situation that may happen in the real implemen-
tation, therefore it is worth to analyze it and understand which are the consequences.

Figure 5.15 illustrates four scenarios. In all of them, the obstacles has rx = ry =
0.6 and it is fixed, so ξ̇L,o = [0,0]T and ξ̇R,o = 0. The attractor is ξa = [0,0]T and
has ξ̇a = [1,0]T .

(a) In Figure 5.15(a) the obstacle has C = ξr = [0.1,0.1]T . The attractor is inside
the obstacle, but due to its velocity, all the streamlines converge to a point
that is outside the obstacle. This behaviour does not cause any issue, since
the DS brings the state to avoid the obstacle and to reach the future position
of the attractor, according to it velocity vector.

(b) In Figure 5.15(b), the obstacle has C = ξr = [1.1,0.1]T ; the attractor is outside
the obstacle, but its velocity vector causes the un-modulated DS to bring the
state inside the obstacle. Using the modulation we can see that the streamlines
do not converge inside the obstacle, but on its border. The impenetrability of
the obstacle is therefore guaranteed. Of course, in the real implementation,
the robot could cross this border, but the repulsive force inside the obstacle
would push it away.

(c) In Figure 5.15(c) the obstacle has C = ξr = [0.5,0.1]T ; both the attractor and
its future position are inside the obstacle. Also in this case, the modulation
does not allow the penetration of the obstacle and the streamlines converge to
a point on the border.

(d) Figure 5.15(d) shows a scenario that is very unlikely, but deserves an analysis.
The obstacle has C = ξr = [1,0]T ; the attractor is outside the obstacle, but
its future position, according to its velocity vector, is inside the obstacle
and coincides with the obstacle’s reference point ξr. Differently from the
other scenarios illustrated above, the modulation is not able to guarantee
the impenetrability of the obstacle and all the streamlines point toward the
center of the obstacle. This is a situation that must be avoided, because the
modulation algorithm is invalidated, but realistically it is almost impossible
that this scenario could happen in the real-world implementation.
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(a) Actual attractor on obstacle

(b) Future position on obstacle

(c) Actual attractor and future position on
obstacle

(d) Future position on obstacle reference point

Figure 5.15: Attractor on obstacle
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5.10 Robot Shape and Moving Local Attractor
Until now, the modulating algorithm has been analyzed in its different aspects and
configurations. The main advantages and limitations have been illustrated.

The high level controller, though, is not limited to the computation of the desired
velocity vector. Together with the Obstacle and Target Detection Algorithm,
described in Chapter 7, it has to deal with the information about the target and
the shape of the robot.

5.10.1 Robot Shape
A first consideration that is needed regards the state of the robot ξ where we
apply the modulating algorithm: the state is a mass point and does not take into
account the real dimension of the robot. We can assume that the state that we
are controlling is in the center of the robot. An easy way to take into account the
shape of the robot is to consider a radius, called rrobot, that forms a circle centered
in the robot center and that embraces the robot, as shown in Figure 5.16.

Figure 5.16: QOLO shape and robot radius

Having the information about rrobot, it is possible to enlarge the perceived
obstacles so that the shape of the robot is taken into account. Using Equation 5.31,
where rO

x and rO
y are the radii of an ellipsoid shaped obstacle, we obtain a new set

of obstacles that can be used for the modulation of the mass point in the center of
the robot.

new_rO
x = rO

x + rrobot

new_rO
y = rO

y + rrobot
(5.31)
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Unfortunately, using this method may cause some issues because, if the robot
is not able to have the desired velocity, it may collide with an obstacle. In the
Python implementation of the modulation, if the state is inside the obstacle, a
repulsive force is applied to the state in order to push away it. With the new radii,
computed with Equation 5.31, we can not exploit this feature of the algorithm,
because a collision of the mass point with an obstacle means that the real robot
has actually hit something around it.

To take into account this aspect that is related to safety of the robot user and
of the people surrounding him, we can further enlarge the obstacles by a safety
factor Ôsafe. Equation 5.32 shows how the obstacle radii would change.

new_rO
x = rO

x + rrobot + Ôsafe

new_rO
y = rO

y + rrobot + Ôsafe
(5.32)

Of course, Ôsafe does not guarantee that the robot will never collide with
an obstacle, but using a large enough value, could guarantee a certain level of
confidence.

Other issues related to this method regards the obstacles’ shape itself. Obstacles
that are too big can overlap more easily and, consequently, they may create a single
concave obstacle, formed by more convex obstacles. That does not allow the robot
to travel the more convenient path, even if it would be possible, forcing it to avoid
the whole concave obstacle.

5.10.2 Moving attractor
Having included the dimension of the robot, we have now to deal with the target
to follow. As stated above, the DS modulation is applied to the center of the robot;
we can not simply identify the target and using its center as the attractor ξa.

Here, we assume that the target center ξtar and the target speed ξ̇tar are know.
They are two column vectors; the first one identifies the position of the center of
the obstacle that we identify as the target. ξ̇tar gives us information regarding the
magnitude and direction of the velocity of the target.

From the point of view of the high level controller, also the target to follow must
be considered as an obstacle, in order to avoid collision with it. Therefore, also
this obstacle must be enlarged using Equation 5.32.

A first method that could be used to identify the attractor ξa is illustrated in
Algorithm 4. The attractor in this way is fixed either to the right or to the left of
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the target and moves with it. Then, the assumption regarding the speed of this
attractor is that it is the same of the speed of the target: ξ̇a = ξ̇tar.

Figure 5.17 shows a target person with the moving attractor at its right and
the robot near it. We can notice that using a safety distance Ôsafe = 0.2m and
considering rrobot = 0.4m, the robot tries to reach a point that is sufficiently distant
from the target and the collisions should be avoided.

Algorithm 4 Fixed moving attractor
1: ó Initialization
2: ξtar ó Target center
3: ξ̇tar ó Target Speed
4: rtar

x ó Semi-major axis of the enlarged obstacle
5: rtar

y ó Semi-minor axis of the enlarged obstacle
6: θtar ó Tilted angle w.r.t. fixed reference frame
7: ó Attractor computation
8: ó Choose the position of the attractor w.r.t. the target (Right or Left)
9: ó Compute the rotation angle θrot

10: if Right then
11: θrot = −π/2
12: else
13: θrot = π/2
14: end if
15: ó Compute the rotation matrix R

16: R =
C

cos(θrot) sin(θrot)
−sin(θrot) cos(θrot)

D
17: ó Compute the direction of target
18: ntar = ξ̇tar

ëξ̇tarë
19: ó Compute the orthogonal direction w.r.t the direction of target ntar

20: n̂tar = R · ntar

21: ó Compute the maximum between rtar
x and rtar

y

22: rmax = max(rtar
x , rtar

y )
23: ó Compute ξa

24: ξa = ξtar + rmax · n̂tar

Using this point as attractor is a valid option, but the presence of the other
obstacles is not taken into account. Consequently, some issues arise; for instance, if
the target moves near an obstacle and the attractor is set to be on the same side of
this obstacle, it may happen that the attractor goes on the it. As we saw in Section
5.9, the modulating algorithm does not allow the state to go inside the the obstacle
and virtually moves the attractor on the border of the obstacle. The DS produced
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(a) Target and moving attractor (b) Target and robot

Figure 5.17: Target and fixed moving attractor

could bring the state, and therefore the robot, to avoid the obstacle from the side
opposite to the target. Until now, we have considered a complete knowledge of
the environment, but in the real implementation, the robot can not lose track of
the target; in a situation like the one described above, this may happen. The
algorithm here developed has to take into account also this possible situation and
act in advance.

A possible solution, here developed, exploits the Algorithm 4 to find the ideal
position of the attractor ξa, that we will call ξrest, and takes into account the
presence of the other obstacles to compute the position of ξa. The system will be
modeled as an angular spring that tries to keep ξa at its rest position, i.e. ξrest,
while the obstacles exercise a repulsive force. In this way, if the attractor goes near
an obstacle, the repulsive force tends to push it away, and a virtual angular spring
tends to keep it in position. We are going to use two variables, called kattr and
kattr, to model the spring. Equation 5.33 illustrates the dynamics of θa, which is
the angle formed by the lines that link ξa with ξtar and ξrest with ξtar. θ̇a is used
to change the angle θa to a more suitable position for the attractor. Varying these
two values will change the behaviour of the attractor, therefore a trial and error
tuning is necessary.

θ̇a = −kattr · θa − krep · θ̇rep (5.33)

Algorithm 5 illustrates the procedure.
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Algorithm 5 Moving attractor
1: ó Initialization
2: kattr ó Elastic constant for the attraction
3: krep ó Elastic constant for the repulsion
4: ó Use Algorithm 4 to find ξrest

5: if ξa not defined then
6: ξa ← ξrest

7: else
8: ó Compute the angle θa between the vectors [ξa − ξtar] and [ξrest − ξtar]
9: ó Compute the repulsion caused by each obstacle on ξa

10: Tot_rep← [0,0]T
11: for Obstacles neq Target do
12: rep = ξa − Cobs

13: Tot_rep+ = rep
ërepë ·

1
ërepë ó Closer is the obstacle, stronger is the

repulsion
14: end for
15: ó Tot_rep is a vector that represents the total repulsive force that acts on

ξa

16: ó Compute Tang_ξa, the tangent of the circumference of radius rmax in
the point ξa

17: ó Compute θ̇rep, the angular velocity caused by the Tot_rep in the point ξa

18: θ̇rep ← éTot_rep, Tang_ξaê/rmax

19: ó Compute θ̇a, the angular velocity on the point ξa

20: θ̇a ← −kattr · θa − krep · θ̇rep

21: ó Bound θ̇a to maxθ̇a

22: ó Compute the new angle θa, integrating θ̇a

23: θa ← θa + dt · θ̇a

24: ó Compute the new position of ξa

25: R =
C

cos(θa) sin(θa)
−sin(θa) cos(θa)

D
26: ξa = R · [ξa−ξtar]

ë[ξa−ξtar]ë · rmax + ξtar

27: ó If the new attractor position is ahead the rest position, the attracotr ξa is
set as ξrest

28: ó Compute the angle new_θa between the vectors [ξa−ξtar] and [ξrest−ξtar]
29: if new_θa > 0 then
30: ξa ← ξrest

31: end if
32: end if
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Chapter 6

Low Level Control

Controlling a unicycle is not an easy task due to the non-holonomic constraints,
as a matter of fact the unicycle can not move in the direction orthogonal to the
wheels. In this chapter different approaches for the generation of the control inputs
will be analysed in order to understand the feasibility and the possible benefits.
Moreover, since the low level controller has to be analyzed in relation with the high
level controller, we will see how the interaction works.

It is important to remember that we want to use the information about the
robot state and the high level modulating DS to generate the most suitable inputs.
Hence, we need a low level controller that is able to move the unicycle from an
initial pose to a desired one.

The algorithms used are:

• Differential flatness;

• Stabilized Feedback Control;

• Non-linear MPC - Position control;

• Non-linear MPC - Velocity control;

• MPC - inputs bounding.

44



Low Level Control

6.1 Differential flatness [25] [26]
By definition, the Differential Flatness is a property of non-linear dynamical systems
whose state (ξ) and inputs (u) can be expressed as function of its outputs (y),
called flat, and their derivatives up to a certain order r.

ξ = ξ(y, ẏ, ÿ, ..., yr)
u = u(y, ẏ, ÿ, ..., yr)

(6.1)

Thanks to this property, starting from the temporal evolution of y(t), i. e.
the trajectory of the robot, it is possible to determine the states and the control
inputs that induced that behaviour. Therefore, the planning problem for the input
generation can be divided into:

• Path selection: the geometrical path that the robot should follow, taking into
account the constraints imposed by its structure.

• Timing law definition: timing necessary to accomplish the path.

Considering ξi as the initial state or pose of the robot and ξf the final one, we
want to plan a trajectory ξ(t) from ti to tf . It is possible to describe the path as
ξ(s), with dξ(s)

ds
/= 0 and timing law s = s(t). A good choice for s is the curvilinear

abscissa. As a consequence

ξ̇ = dξ

dt
= dξ

ds
ṡ = ξÍṡ (6.2)

Vector ξÍ lays along the tangent to the path in the configuration space, oriented
towards increasing s; while ṡ regulates the modulus of the velocity.

The geometrical model of the unicycle is:
xÍ = ṽ · cos(θ)
yÍ = ṽ · sin(θ)
θÍ = ω̃

(6.3)

Considering the Cartesian path (x(s), y(s)), the associated state path is ξ(s) =
[x(s), y(s), θ(s)]T , with

θ(s) = arctan2(yÍ(s), xÍ(s)) + kπ, k = 0,1 (6.4)

k can set the direction: k = 1 implies backward drive and k = 0 forward drive.
Moreover, from the geometrical model we can derive the geometric inputs:

ṽ(s) = ±
ñ

(xÍ(s))2 + (yÍ(s))2 (6.5)
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ω̃(s) = yÍÍ(s)xÍ(s)− xÍÍ(s)yÍ(s)
(xÍ(s))2 + (yÍ(s))2 (6.6)

We can notice that the state and the control inputs depend on the Cartesian path
and its derivatives, therefore, the unicycle model has the property of differential
flatness.
To compute the path it is sufficient to interpolate between the initial and final
values xi, yi and xf , yf of the flat output x(s), y(s), using for example Cartesian
polynomials, with s ∈ [0,1]:

x(s) = s3xf − (s− 1)3xi + αxs2(s− 1) + βxs(s− 1)2 (6.7)

y(s) = s3yf − (s− 1)3yi + αys2(s− 1) + βys(s− 1)2 (6.8)

With

xÍ(0) = kicos(θi) xÍ(1) = kfcos(θf ) (6.9)

yÍ(0) = kisin(θi) yÍ(1) = kfsin(θf ) (6.10)

ki and kf are free, nonzero and constrained to have the same sign. Choosing
ki = kf = k > 0 we obtain:

αx = kcos(θf )− 3xf βx = kcos(θi) + 3xi (6.11)

αy = ksin(θf )− 3yf βy = ksin(θi) + 3yi (6.12)

Having the desired path between the initial and final state, we need to define a
temporal law to accomplish this path. We just have to choose a time step T during
which the unicycle should complete the path. Knowing T , it is possible to generate
the control inputs using the formulas in Equation 6.13.

v = 1
T
· ṽ(s)

ω = 1
T
· ω̃(s)

(6.13)
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6.1.1 Algorithm tests
In this section the Differential flatness algorithm will be tested and examined in
order to understand its feasibility and its critical issues.

Test 1

Starting from the initial state ξi = [−6, +4, 0]T , we would like to arrive in the final
state ξf = [2,−4,−pi/4]T in T = 0.02s. The value of the constant ki = kf = k
is k = 10. In this simulation the time T is very small, while the path to cover
is more than 8 meters long. It is not a conventional scenario, but it can be
useful to understand the potentiality of this algorithm. Dividing the time T into
nstep = 10000, we obtain the result shown in Figure 6.1. The unicycle is able
to reach the desired path, following perfectly the geometrical path (S-curve). Of
course, in order to cover the path in such a small amount of time, the control
inputs are huge and therefore unfeasible for the real implementation.

(a) Unicycle path

(b) Control inputs

Figure 6.1: Differential Flatness - Test 1
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Test 2

The scenario is the same as in Test 1, i.e. ξi = [−6, +4, 0]T and ξf = [2,−4,−pi/4]T .
In this case, though, the simulation time is T = 10s with time step dt = 0.05s;
therefore, nstep = T

dt
= 200. The value of the constant ki = kf = k is k = 10. Figure

6.2 shows the results of this test. The shapes of the path and of the control inputs
are the same of Test 1; but in this case the control inputs can be used in the real
implementation; moreover the path of the unicycle differs a bit, especially in the
end, from the geometrical path.

(a) Unicycle path

(b) Control inputs

Figure 6.2: Differential Flatness - Test 2
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Test 3

Test 1 and Test 2 illustrate two scenarios in which the initial and final positions
are known and a path planning is employed to generate the control inputs for the
system. Since we would like to use this controller as a low level controller, we need
to use it together with the high level controller in order to verify its feasibility with
our control structure.

Figure 6.3 illustrates three examples of the integration of the DS algorithm
with the differential flatness controller. The DS is used to generate the next
desired pose and the next desired orientation. In these examples there are no
obstacle, in order to see the behaviour of the unicycle in a simple environment.
Hence, the DS generates a velocity vector that brings the robot to the final goal
ξf = [2,−4,−pi/4]T , starting from ξi = [−6, +4, 0]T .

1. Figures (a) and (b) illustrate the path and control inputs obtained using
nstep = 1.

2. Figures (c) and (d) illustrate the path and control inputs obtained using
nstep = 10.

3. Figures (e) and (f) illustrate the path and control inputs obtained using
nstep = 100.

All the tests show that this kind of low level controller is not useful to produce
feasible control inputs for our purpose. They are too big and do not produce a nice
behaviour.

Considerations

This algorithm seems to be useful if we need a path between two pose that are
not very close one to the other. It is able to generate the inputs in open loop and
respect the non-holonomic constraints of the unicycle. Unfortunately, it is not able
to adapt the path planning to a situation like the one that we should have in the
real implementation: the algorithm tends to produce circular paths between two
consequent poses (generally very close one to the other), in order to make the robot
reach the desired pose with the desired angle, but the outcome is totally unusable.
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(a) Path: nstep = 1 (b) Control inputs: nstep = 1

(c) Path: nstep = 10 (d) Control inputs: nstep = 10

(e) Path: nstep = 100 (f) Control inputs: nstep = 100

Figure 6.3: DS modulation and differential flatness
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6.2 Stabilized Feedback Control
In control theory the feedback control is a methodology that uses the measures
on the outputs of the system to produce control inputs. In this way, possible
discrepancies between the desired behaviour and the real one are taken into account
and can be corrected.

In this section, a Stabilized Feedback Control algorithm will be developed, using
as reference the paper ’Stabilized Feedback Control of Unicycle Mobile Robots’ [27].
The algorithm proposes a controller that produces feedback control inputs to bring
the robot to a final desired state (or pose), starting from a defined initial pose. It
produces a kinematic solution for posture stabilization, using the polar coordinates
to generate the control inputs.

First of all, it is necessary to define the transformations from the Cartesian to the
polar system, remembering that the state of the robot is ξ(t) = [x(t), y(t), θ(t)]T :

ρ =
√

x2 + y2

γ = atan2(y, x)− θ + π

δ = γ + θ

(6.14)

In the polar system, ρ is the distance from the origin of the global frame to
the origin of the robot frame, γ is the angle between the robot’s frame and the
environment frame, which is fixed; and δ is the rotation angle of the robot inside
its frame.

Having ξf = [xf , yf , θf ]T as final pose, we can consider the error vector as:

ẽ(t) =

 x(t)− xf

y(t)− yf

θ(t)− θf

 (6.15)

We transform the error vector ẽ(t) in the reference frame of the target using the
rotation matrix R(θf ):

R(θf ) =

 cos(θf ) sin(θf ) 0
−sin(θf ) cos(θf ) 0

0 0 1

 (6.16)

e(t) =

 ex(t)
ey(t)
eθ(t)

 = R(θf ) · ẽ(t) =

 cos(θf ) sin(θf ) 0
−sin(θf ) cos(θf ) 0

0 0 1

 · ẽ(t) (6.17)

Then we transform the error vector e(t) in the polar-coordinate system, using
Equation 6.14, obtaining ρe, γe and δe. At this point it is possible to define a
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feedback law using a Lyapunov stability analysis. This law is defined such that it
brings the system to the origin of the polar reference system; which means that
the robot state is driven to the target ξf . The control inputs obtained with this
law are:

v = k1 · ρe · cos(γe)

ω = k2 · γe + sin(γe)cos(γe)
γe

· (γe + k3 · δe)
(6.18)

With k1 and k2 > 0.
Particular attention as to be dedicated to the case in which γe = 0. The

calculator may not be able to deal with this situation, due to numerical errors,
therefore, if this situation arises, it would be better to use the Equation 6.19

v = k1 · ρe

ω = k3 · δe

(6.19)

6.2.1 Algorithm tests
Here we present some tests useful to verify the applicability of the Stabilized
Feedback Control with the modulated DS.

Test 1

Here, a test from the paper ’Stabilized Feedback Control of Unicycle Mobile Robots’
[27] is reproduced, therefore, in this case, the controller is not used together with
modulated DS.

The unicycle starts from an initial state ξi = [0,−5, 0]T and wants to reach
the final state ξf = [0, 5,−π/2]T . The constants used are k1 = 0.1 , k2 = 0.3 and
k3 = 1.5. The simulation, shown in Figure 6.5, produces the same output of the
test done in the paper and illustrated in Figure 6.6. The whole simulation lasts
150s, but the unicycle is able to reach the desired pose in 40− 50s. The control
inputs are shown in Figure 6.4; they are feasible with the robot structure and
produce a smooth behaviour.
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Figure 6.4: Stabilized Feedback - Test 1 - Control inputs

(a) Path

(b) Errors

Figure 6.5: Reproduced results

(a) Path

(b) Errors

Figure 6.6: Paper results [27]
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Test 2

In this section a critical issue of this algorithm will be described. The algorithm will
be tested in two situations very similar one to the other, showing two behaviours
that are totally different. The constant k are the same used in Test 1; the starting
pose is ξi = [−6, +4, 0]t for both the scenarios. The only difference is that in the
first case, the final pose is ξ1

f = [0,4,0]T , while in second one, it is ξ2
f = [0,4.1,0]T .

Ideally, in the first experiment, the unicycle should go straight; in the second it
should steer to its left.

Figures 6.7 and 6.8 display the results of the experiments. As expected, the
second scenario shows a smooth behaviour, with the unicycle steering to its left
to reach the desired pose. The whole simulation lasts 250s, but the robot is able
to reach the final position in 60s. Also the control inputs are feasible for the
real system. The main issues arise in the first scenario: the initial and the final
orientation are the same and, as a matter of fact, the error on θ at the time instant
t = 0 is ẽθ = 0; but it immediately start to oscillate. A similar thing happen for
ẽy; moreover, the oscillatory behavior manifests itself also in the control inputs.
This is caused by the fact that the angle γe is not bounded; in this case, it should
be γe = 0, but it ends to be γe = 2π. The consequences are that the behaviour is
totally wrong.

Bounding the angle γe and using the Equation 6.19 when γe = 0, we obtain the
results shown in Figure 6.9. It is the expected behaviour, moreover, the control
inputs are suitable for the QOLO robot and the unicycle reaches the desired pose
in less than 50s.
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(a) Path

(b) Errors

(c) Control inputs

Figure 6.7: Stabilized Feedback
- Test 2 - ξ1

f

(a) Path

(b) Errors

(c) Control inputs

Figure 6.8: Stabilized Feedback
- Test 2 - ξ2

f
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(a) Path (b) Errors

(c) Control inputs

Figure 6.9: Stabilized Feedback - Test 2 - ξ1
f correct behaviour

Test 3

In Test 1 and Test 2 we have verified that the algorithm works and produces
suitable control inputs. Nevertheless, it is necessary to point out that the initial
and the final state were distant one from the other. With this test, we try out the
algorithm using it together with the high level controller, i.e. the modulated DS.

First of all, we consider an environment without obstacles, to see if the two
controllers can work together.

Figure 6.10 displays the results of the simulation, using k1 = 0.1 , k2 = 0.3 and
k3 = 1.5. The unicycle is able to follow the path obtained with the DS modulation,
but it requires too much time, in this case 500s. The control inputs produced are
very small, therefore the movement is very limited at each time-step. Changing the
values of k to k1 = 1.5 , k2 = 1.8 and k3 = 2.5, the robot behaviour is improved, as
shown in Figure 6.11. After 80s the robot reaches the desired final position. Also
the control inputs are feasible for the real implementation.
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The union of these two controller may be a good solution for the final imple-
mentation, but we need to test first their behavior with the presence of multiple
obstacles.

(a) Path

(b) Errors

(c) Control inputs

Figure 6.10: Stabilization Feedback
- Test 3 - old k values

(a) Path

(b) Errors

(c) Control inputs

Figure 6.11: Stabilization Feedback
- Test 3 - new k values
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Test 4

In order to verify the benefits of this controller in combination with the modulating
DS, a simulation in a static environment, with fixed obstacles and a fixed attractor,
is performed. The robot starts from its initial pose ξi = [0.0,−0.5, 0.0]T and has to
reach the desired final position [xf , yf ]T = [10.0, 0.0]T .

Three ellipsoid shaped obstacles are present in the environment, in position C
and with axes:

1. C = [3.5, 0.1]T , rx = 0.3 , ry = 0.4;

2. C = [7,−1]T , rx = 0.3 , ry = 0.7;

3. C = [2, 0]T , rx = 0.7 , ry = 0.3;

The constants K used are:

• k1 = 1.5;

• k2 = 1.8;

• k3 = 2.5;

The simulation time is Tsim = 25s. It is necessary to point out that, in order to
simulate a more realistic behaviour of the system, a random noise has been added
both to the control inputs and to the robot state. The first random noise simulates
the error caused by the motors of the robot; its maximum amplitude is the 5% of
the maximum value for the control inputs:

• 0.05*1.5 = 0.075 m/s for the linear speed;

• 0.05*3.0 = 0.15 rad/s for the angular speed.

The noise on the robot state simulates the noise caused by the sensors, by
the SLAM algorithm and by the delays that can occur. It is modeled using the
Python function numpy.random.normal() [28] [29] [30] which describes a Gaussian
distribution; it takes as inputs the mean and the standard deviation and outputs
a value in relation with the probability distribution. The robot state is therefore
perceived as:

• x = numpy.random.normal(x,0.03);

• y = numpy.random.normal(y,0.03);

• θ = numpy.random.normal(θ,0.04);
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Figure 6.17 illustrates the path of the robot and the computation time. What
emerges is that in 25 seconds the robot is not able to cover a sufficiently long path,
making this method unusable, but further simulations should be done in order to
prove it. On the contrary, the computation time is totally negligible, which means
that the controller could run in real-time without any problem.

The control inputs produced by the controller and shown in Figure 6.19 present
a very bad behaviour, mainly for two reasons:

• The control inputs are very irregular and their values are very low;

• The derivatives of the control inputs, which represent the linear and angular
accelerations are too high to be used on the real robot.

(a) Path

(b) Computation Time

Figure 6.12: Stabilization Feedback - Test 4 - K = [1.5 , 1.8, 2.5]
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(a) Control inputs

(b) Control inputs derivative

Figure 6.13: Stabilization Feedback - Test 4 - K = [1.5 , 1.8, 2.5] - Control Inputs

In order to see how the robot behaviour changes when the K parameters are
varied, we set them as: The constants K used are:

• k1 = 15;

• k2 = 18;

• k3 = 2.5;

In this simulation, the robot is able to follow the desired path and cover a
longer distance and the computation time is still negligible. The main problems
are again connected to the control inputs, especially the angular velocity ω: it is
very irregular and, even if the boundaries on the maximum speed are respected,
the acceleration is totally incompatible with the robot implementation.
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(a) Path (b) Computation Time

Figure 6.14: Stabilization Feedback - Test 4 - K = [15 , 18, 2.5]

(a) Control inputs

(b) Control inputs derivative

Figure 6.15: Stabilization Feedback - Test 4 - K = [15 , 18, 2.5] - Control Inputs
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We have seen that using small constants K the path covered is short, but the
accelerations constraints are more observed; while, using bigger constants K, the
path is more consistent with the desired one, but the inputs accelerations are
inconsistent for the real application.

A grid search analysis has been done in order to better understand the correlation
between the constants K and the control inputs, especially their derivatives and
the effect that they produce on the system. All the three parameters have been
tested using the values [ 0.1 , 4.37, 8.64, 12.91, 17.19, 21.46, 25.73, 30]; which are
eight equally spaced values between 0.1 and 30. A total of 83 = 512 tests have
been run, each of them having Tsim = 25s and describing the same scenario. For
every test, two cost functions have been computed:

1. Distance Cost: it is the sum of the distances between the robot and the final
position at each time step. A smaller value of this cost function indicates that
the robot is able to arrive near the desired position within the 25 seconds.

2. Derivative Cost: we have seen that the accelerations of the control inputs in
the previous tests exceed the limits imposed by the robot. For each test we
compute the accelerations as:

Acceleration = Input(t)− Input(t− 1)
dt

(6.20)

with dt = 0.05 that represents the time step duration. The derivative cost is
computed as:

Derivative Cost =
Ø
ëAccelerationvë+

Ø
ëAccelerationωë (6.21)

Figure 6.16 illustrates the result of the grid search. The aim of the grid search
is to find a set of constant K for which the Distance Cost and the Derivative Cost
have both small values. Having a small value on the Distance Cost means that the
robot is able to reach the desired position; while, a small value on the Derivative
Cost implies that the accelerations are restrained, which does not means that they
observe the limits imposed by the robot, but that they are more suitable. From
the Figure, it appears that the smaller is the cost of the distance from the desired
position, the bigger is the cost for the accelerations.

The grid search proves that with this method, it is not possible to guarantee a
good performance while observing the restriction imposed by the structure of the
system.
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(a) Distance Cost

(b) Derivative Cost

Figure 6.16: Stabilization Feedback - Grid Search

Considerations

The Stabilization Feedback algorithm shows good results in the production of
control inputs needed:

• when it is used alone to reach a desired position when the initial and final
position are quite distant;

• in combination with the DS when the movements are quite simple.

Using this algorithm together with the DS modulation, therefore to avoid the
obstacles, has exhibited many issues: in simulation the kinematics of the robot
does not take into account the real limitations on the accelerations, hence, the
simulated robot is able to follow the desired path using the saturated control
inputs, but exploiting accelerations that could not be implemented on the real
robot. Consequently, this algorithm can not be used as low level controller and
other solutions must be analyzed.
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6.3 Model Predictive Control - Overview [31]

Among the advanced techniques for process control, the Model Predictive Control
(MPC) is one of the most performing, but at the same time one of the most complex
to understand and implement.

It is a digital controller and its most important characteristic concerns the fact
that it is possible to satisfy a set of constraints. The MPC’s main strength is the
optimization: considering a finite time-horizon, the MPC optimizes N steps ahead
in the future, anticipating the events and taking proper control actions. Of the N
control inputs it then uses only the control inputs of the current time-step. Then,
it optimizes again in the next step, repeatedly.

Model predictive controllers rely on dynamic models of the process, most often
linear empirical models obtained by system identification.

The general formulation for a MPC is

u∗(ξ) := argmin
N−1Ø
i=0

(ξT
i Qξi + uT

i Rui) + ξT
NQNξN

ξ0 = ξm measure

ξi+1 = f(ξi, ui) dynamics

g(ξi, ui) ≤ 0 constraints

h(ξN) ≤ 0 constraints on final state

(6.22)

The matrices R, Q and QN allow us to determine a weight for each state and
control variable. They have to be tuned depending on the application. With ξm we
identify the last available measure of the state, so the MPC starts its computation
from a defined state. The function f(ξ, u) is the dynamics of the system, it is
generally linear; nevertheless, the MPC can deal also with non-linear systems,
making this approach incredibly flexible. With g(ξi, ui) and h(ξN ), the constraints
are defined; in particular, g(ξi, ui) defines all the boundaries on the dynamics
during the evolution of the system for N prediction steps , while h(ξN) describes
the constraints after the N -th step, ideally to infinite. The output is u∗(ξ), which
are the N control inputs optimized over the horizon time.

The Non-linear MPC allows to obtain better performances with respect to a
linear MPC, since it takes into account the full dynamic of the system, at the
expense of the computational cost. Due to its complexity, the non-linear MPC is,
in general, slower than the linear MPC.

Remembering Equation 3.3, the unicycle model is described by the differential
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equation:

ξ̇ =

 ẋ
ẏ

θ̇

 = G(ξ) · u =

 cos(θ) 0
sin(θ) 0

0 1

 C v
ω

D
(6.23)

This system is non-linear, so it is possible to use a non-linear MPC to obtain
an optimal performance. Being the MPC a digital controller, it is necessary to
discretize the continuous non-linear system. This can be done using either the
Euler method or the Runge-Kutta4 method. Considering a continuous function

ẏ = f(t, y) (6.24)

with y(t0) = y0, we want to have a discretization step h.

Euler method [32] [33]
Euler method is a numerical procedure of the first order used to solve ordinary
differential equation (ODE) systems, starting from an initial value. It is the simplest
method among the Runge-Kutta algorithms.

It can be used to approximate the continuous functions in Equation 6.24 with
yn+1:

yn+1 = yn + hf(tn, yn)

tn+1 = tn + h
(6.25)

Its simplicity makes this algorithm very fast to use, but we have to pay particu-
lar attention in the choice of the discretization step h: if this value is too large,
the approximation is completely different from the original function, causing the
algorithm to be unusable. On the contrary, choosing a value that is too small,
may slow down the computation and, therefore, it could not be used in real-time
implementation. Moreover, we have to remember that in real application, the
discretization time is constrained by the hardware and by the software that we are
using.

Runge-Kutta [34]
As the Euler method, the Runge-Kutta algorithms are a family of methods for the
approximations of ODE systems. In this case, using the 4-th order approximation,
the result is more consistent with the real shape of the continuous function. More-
over, the problems related to the discretization time of the Euler method have less
effect; in this way we could use a larger value for h, without compromising the
approximation. The disadvantage of this method lies in the computation time that
it requires to run. Therefore, also in this case, it is necessary to consider carefully
the discretization time and the hardware where the algorithm will run on.
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The approximation yn+1 is computed:

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h
(6.26)

With:
k1 = f(tn, yn)

k2 = f(tn + h
2 , yn + 1

2k1h)

k3 = f(tn + h
2 , yn + 1

2k2h)

k4 = f(tn + h, yn + k3h)

(6.27)

Where:

• k1 is the increment of the slope at the beginning of the time interval, like in
the Euler method;

• k2 is the increment of the slope at half of the time interval, computed using
k1;

• k3 is the increment of the slope at half of the time interval, computed using
k2;

• k4 is the increment of the slope at the end of the time interval.

The implementation of the MPC controllers has been done both in Matlab and
Python. The optimization software used is Casadi [35], that allows very good
results and high timing performances.

66



Low Level Control

6.4 Non-linear MPC - Position control
The purpose of this low-level controller is to convert the output of the DS modulation
to suitable inputs for the robot. Here, we are going to consider the complete
kinematics of the systems, therefore a non-linear MPC will be used. The strategy
adopted is the one illustrated in Algorithm 6

Algorithm 6 nMPC - Position control.
1: while System is working do
2: ó Obtain the robot state ξ
3: ó Obtain information about the obstacles
4: ó Compute the desired velocity with the DS modulation
5: ó Integrate the desired velocity to obtain the desired next state ξdes

6: ó Compute the desired orientation
7: ó Optimize the control inputs using the nMPC
8: ó Use Ncontrol inputs to control the robot
9: end while

In the non-linear MPC, the variables to be optimized are the state trajectory,
that we will identify with X, which has dimension 3×N + 1, and the control inputs
U , with dimension 2×N .

X =

 x0 x1 x2 ... xN

y0 y1 y2 ... yN

θ0 θ1 θ2 ... θN

 (6.28)

U =
C

v0 v1 v2 ... vN−1
ω0 ω1 ω2 ... ωN−1

D
(6.29)

The cost function to minimize is:
NØ

i=0
(Xi −Xref )T Gx(Xi −Xref ) +

N−1Ø
i=0

UT
i GuUi (6.30)

The reference state that we want to reach is Xref = ξref = [xref , yref , θref ]T ; it is
obtained through the high level controller that give us the desired next pose using
the modulating DS. Knowing the robot state ξ = [x, y, θ]T and the modulating DS
[ẋ, u̇]T , we compute C

xref

yref

D
=
C

x
y

D
+ dt ·

C
ẋ
ẏ

D
(6.31)

θref = arctan2(ẏ, ẋ) (6.32)
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Gx and Gu are diagonal matrices composed by the gains that we have to set,
depending on the importance of the variable. These gains have to be tuned.

Then we have to define the constraints on the state, on the inputs and the ones
derived by the system’s dynamics.

We do not have any constraints on the state X, while we have limitations on the
linear speed and acceleration and on the angular speed and acceleration. For the
linear and angular acceleration we have to approximate: assuming the acceleration
constraint as |U̇ | < acc_constraints, we can approximate as

|Uk − Uk−1| < h · acc_constraints (6.33)

where k is the time instant and h is the sampling time.
It is also possible to constraint the jerk of the robot, which is linked to the

derivative of the acceleration: in this case we need to approximate the second
derivative of the control inputs:

|Uk+1 − 2 · Uk + Uk−1| < h2 · jerk_constraints (6.34)

Moreover, we have to take into account the last control inputs of the previous
time-step, passing them as Uprev. Then, of course, we have to include the constraints
given by the dynamics of the system, using the discrete function computed at each
prediction step. This makes the nMPC more complex and slower with respect to a
linear MPC.

We have to constraint the optimization variable X so that X0 = ξ0, which is the
initial pose of the robot from the point of view of the nMPC. Basically, X0 must
be the pose of the robot at the time-step at which we use the nMPC.

To sum up, the equations that we are going to use in the nMPC algorithm are:

−∞ < X <∞ (6.35)

−speed_constraints < U < speed_constraints (6.36)

−h · acc_constraints < U0 − Uprev < h · acc_constraints (6.37)

−h · acc_constraints < Ui+1 − Ui < h · acc_constraints (6.38)

With i ∈ [0, N − 2].

−h2 · jerk_constraints < U1 − 2 · U0 + Uprev < h2 · jerk_constraints (6.39)
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−h2 · jerk_constraints < Ui+1 − 2 · Ui + uk−1 < h2 · jerk_constraints (6.40)

With i ∈ [1, N − 2].
X0 = ξ0 (6.41)

Xi+1 = fdiscrete(Xi, Ui) (6.42)

With i ∈ [0, N − 1].

All the constraints can be easily changed, but they are strictly related to the
kinematics under consideration, other than to the structure of the robot and to
the limits imposed by the sensation of comfort that the user should perceive. In
Table 6.1 the values used for the contrarians are listed.

Parameter Value
speed_constraints
linear speed 1.5 m/s

speed_constraints
angular speed 3 rad/s

acc_constraints
liner acceleration 1.5 m/s2

acc_constraints
angular acceleration 3.5 rad/s2

jerk_constraints
liner jerk 0.1 m/s3

jerk_constraints
angular jerk 0.05 rad/s3

Table 6.1: Non-linear MPC - Constraints

The outputs of the nMPC are N control inputs. Generally, only the first inputs
are used and then the optimization is computed again. It would be possible to use
also the other control inputs, in this case, though, the control would be in open
loop.

Depending on the control frequency fcontrol, i.e. the frequency at which we
control the motors of the robot, and on the high level control frequency fDS that
gives us the reference pose for the nMPC, it would be possible to use Ninputs control
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inputs, with
Ninputs = fcontrol

fDS

(6.43)

With the robot that we are going to consider, it would be possible to have
fcontrol = 400 Hz, but having fDS = 20 Hz would produce Ninputs = 20; which
means 20 control inputs in open-loop. Therefore, the frequencies that we will
consider are listed in Table 6.2.

Parameter Value
fDS 20 Hz
fcontrol 20 Hz
Ninputs 1

Table 6.2: Non-linear MPC - Frequencies

6.4.1 Algorithm tests
Here we present some tests useful to verify the applicability of the non-linear Model
Predictive Control with Position control and the modulated DS.

Test 1

A first scenario where this controller can be tested is a static environment with
fixed obstacles and a fixed attractor. The robot starts from its initial pose ξi =
[0.0,−0.5, 0.0]T and has to reach the desired final position [xf , yf ]T = [10.0, 0.0]T
combining the DS modulation and the non-linear MPC.

Three ellipsoid shaped obstacles are present in the environment, in position C
and with axes:

1. C = [3.5, 0.1]T , rx = 0.3 , ry = 0.4;

2. C = [7,−1]T , rx = 0.3 , ry = 0.7;

3. C = [2, 0]T , rx = 0.7 , ry = 0.3;

The non-linear MPC gives us the possibility to impose constraints on the
maximum speeds, on the accelerations and on the jerk of the robot. In this test,
only the constraints on the maximum speeds are taken into account, as shown in
Table 6.1.

The gain matrices used for this simulation are:

Gx = QT ·Q = Q ·Q Gu = RT ·R = R ·R (6.44)
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Q =

 10 0 0
0 10 0
0 0 0.1

 R =
C

0 0
0 0

D
(6.45)

The simulation time is Tsim = 25s. Figure 6.17 illustrates the path of the robot
and the computation time. Both of them are promising results because the robot
is able to follow the ideal path generated by the DS alone, without considering the
kinematics of the robot. Moreover, the computation time is always smaller than
0.05 seconds, that we consider as the limit for the algorithm. This limit is caused
by the control frequency of the robot, which is 20Hz, therefore, 0.05s is the time
between a control action and the next one. The control algorithm must be faster
than this limit in order to output the control inputs correctly for the time step
taken into account.

(a) Path

(b) Computation Time

Figure 6.17: nMPC - Position control - Test 1
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As explained in Section 6.2.1, in order to simulate a more realistic behaviour of
the system, a random noise has been added both to the control inputs and to the
robot state. The first random noise simulates the error caused by the motors of
the robot; its maximum amplitude is the 5% of the maximum value for the control
inputs:

• 0.05*1.5 = 0.075 m/s for the linear speed;

• 0.05*3.0 = 0.15 rad/s for the angular speed.

The noise on the robot state simulates the noise caused by the sensors, by the
SLAM algorithm and by the delays that can occur. It is modeled using a Gaussian
distribution and the robot state is therefore perceived as:

• x = numpy.random.normal(x,0.03);

• y = numpy.random.normal(y,0.03);

• θ = numpy.random.normal(θ,0.04);

Figure 6.18 displays the real path of the robot, the perceived one (i.e. the noisy
positions) and the desired next position starting from the perceived position. What
emerges is that the DS modulation and the non-linear MPC are very robust against
the noise because the control inputs obtained by the optimization, starting from
the information given by the DS, produce a behaviour that is quite smooth and
consistent with the desired path.

This behaviour has been obtained without considering some important con-
straints that affect the user’s experience. Theoretically, the final outcome of the
system can still be comfortable, but we need to analyze the control inputs to
understand it.

In Figure 6.19 it is possible to notice immediately that there is an undesired
behaviour in the control input ω. The constraints on the maximum angular speed
allowed are respected, but this control input changes a lot in a very rapid manner.
This would cause the robot to oscillate and to produce a very bad experience for
the user.
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(a) Path with noise (b) Angle with noise

Figure 6.18: nMPC - Position control - Test 1 - Noise analysis

(a) Control inputs

(b) Control inputs derivative

Figure 6.19: nMPC - Position control - Test 1 - Control Inputs
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Test 2

The previous simulation has shown that the non-linear MPC used in combination
with the DS modulation produces good results, but the control inputs can not be
used in the real implementation. In this test, the scenario and all the parameters
are the same, but we will add the constraints on the accelerations. For the moment,
the constraints on the jerking are still ignored.

Figure 6.20 displays the path and the computation timing. The first thing
that stands out is that the robot is not able to reach the desired position. The
simulation time is the same as in the previous test, but the constraints on the
accelerations, slow down the whole system.

As for the control inputs, Figure 6.19 shows that the control input ω presents a
behaviour that should be avoided, even if the acceleration constraints are observed.
Having that kind of control inputs do not guarantee a nice user experience, for this
reason the jerking constraints must be taken into account. Nevertheless, considering
the results of this test, the addition of other constraints will probably worsen the
behaviour of the robot, rather than improving it.

(a) Path

(b) Computation Time

Figure 6.20: nMPC - Position control - Test 2
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(a) Control inputs

(b) Control inputs derivative

Figure 6.21: nMPC - Position control - Test 2 - Control Inputs

Test 3

Following Test 1 and Test 2, also in this simulation the scenario is the same, as the
parameters used to define the nMPC. In addition, though, the jerking constraints
are present, in order to see if a consistent improvement is accomplished. Figure
6.22 displays the results.

As expected, the robot’s behaviour gets worse: as a matter of fact, in the same
time it is able to cover more or less 2 meters, while in the first test, the path covered
was more than 10 meters long. Of course, the DS modulation works properly, but
the non-linear MPC is not able to produce control inputs adequate for this scenario.

If we compare the control inputs in Figure 6.23 with the ones obtained in the
previous test in Figure 6.21, a slight improvement can be seen, but also in this case,
using those inputs on the robot, especially ω, would cause the robot to oscillate
while moving, producing an unpleasant sensation.
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(a) Path (b) Computation Time

Figure 6.22: nMPC - Position control - Test 3

(a) Control inputs

(b) Control inputs derivative

Figure 6.23: nMPC - Position control - Test 3 - Control Inputs
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Considerations

The low level controller illustrated here shows several strengths, such as the
possibility to bound the control inputs without saturating them. It is also able to
work together with the high level controller and avoid the obstacles that are on
the path of the robot. The controller respects also the timing constraints of the
robot’s hardware.

The main disadvantages, though, are linked with the inability of the robot to
accomplish the path in a reasonable time. Moreover, even with the most restricted
limits, the control inputs are very rough producing a very disturbing experience.

To conclude, this controller help us understanding the method of operation of
the non-linear Model Predictive Control, its limitations and its strengths. In the
next section, a modified version of the non-linear MPC will be presented, that
starts from this controller and tries to overcome its main issues.
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6.5 Non-linear MPC - Velocity control
In this sections, as in the Section 6.4, the complete kinematics of the system is
considered, therefore, we will present another non-linear MPC controller. Differently
from the nMPC with position control, the controller will use directly the modulated
velocity to optimize the control inputs. Algorithm 7 illustrates the control strategy.

The state trajectory X has dimension 3×N + 1, and the control inputs U have
dimension 2×N . These are the variables used for the optimization; as in Equations
6.28 and 6.29 they are defined as

X =

 x0 x1 x2 ... xN

y0 y1 y2 ... yN

θ0 θ1 θ2 ... θN

 (6.46)

U =
C

v0 v1 v2 ... vN−1
ω0 ω1 ω2 ... ωN−1

D
(6.47)

Algorithm 7 nMPC - Position control.
1: while System is working do
2: ó Obtain the robot state ξ
3: ó Obtain information about the obstacles
4: ó Compute the desired velocity with the DS modulation
5: ó Compute the desired orientation
6: ó Optimize the control inputs using the nMPC
7: ó Use Ncontrol inputs to control the robot
8: end while

The cost function to minimize is:qN
i=0(θi − θref )T Gθ(θi − θref )

+qN−1
i=0 [(vi · cos(θi)− Vrefx)T GV x(vi · cos(θi)− Vrefx)

+(vi · sin(θi)− Vrefy)T GV y(vi · sin(θi)− Vrefy)]

+qN−1
i=0 UT

i GuUi

(6.48)

Gθ, GV x, GV y and Gu are gain matrices that we have to set, depending on the
importance of the variable and have to be tuned.
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Vrefx and Vrefy are the components of Vref = [ẋ, ẏ]T , which is the reference
velocity that we want the robot to have; it is obtained through the high level
controller, using the modulating DS.

θref is the desired heading angle and it can be obtained in different ways:

1. Using the modulated velocity, we can compute the angle that the vector forms
with the fixed frame.

θref = arctan2(ẏ, ẋ) (6.49)
The problem of this approach is that, the heading angle of the robot is forced
to be the same of the velocity vector, hence, the robot is not able to go
backwards, but tends to rotate completely when the velocity points to the
opposite site with respect to the head of the robot.

2. Using the velocity of the target.

θref = arctan2(ẏtarget, ẋtarget) (6.50)

In this way the robot tries to have always the same heading angle of the target
that wants to follow. This method is very useful when the robot is already very
close to the target and does not have to perform abrupt movements. During
the obstacle avoidance it could cause some problems because the heading
angle of the target may be very different from the angle of the modulated
velocity, causing the robot to get stuck near a fixed obstacle. Moreover, it
really depends on the weight Gθ that we chose: a smaller weight implies that
the real heading angle can differ quite a lot from the desired one, while a larger
weight constraints the real heading angle to be very close to desired one.

3. Using a combination of the previous methods. When the robot is very close
to the target, it would be better to use as reference the angle obtained from
the velocity of the target itself. On the contrary, if the robot has to reach the
attractor or if there are some obstacle to be avoided, the modulated velocity
angle is more suitable. Nevertheless, there is a situation that would be better
to be avoided: we are already using the information of the desired velocity to
impose the direction of movement; using also the information of the orientation
of this vector could cause the robot to spin in order to follow the desired
velocity with the head of the robot in the same direction. This behaviour can
be unnecessary and potentially dangerous because the robot could lose track
of its position and could collide with the obstacles in the environment.
In order to solve this issue, the sign of θmod, which is the angle obtained from
the modulation, is changed if the difference between it and θtarget is bigger
than 180ř, with θtarget that represents the heading angle of the target.

θtarget = arctan2(ẏtarget, ẋtarget)
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θmod = arctan2(ẏ, ẋ)

If ëθmod − θtargetë > π
2 , θmod = −θmod

θref = θmod ·
1

1 + e−s·d + θtarget ·
1

1 + es·d (6.51)

The function in Equation 6.52 is called Sigmoid function and it is used to
guarantee a smooth transition between θmod and θtarget. The parameter s is
the slope of the function; we can use it to define how smooth the transition
should be, as shown in Figure 6.24. The parameter d is defined as in Equation
6.53; the vector [xattr, yattr]T is position of the moving local attractor and n
is a value that represents the distance at which the sigmoid function is 0.5.
We can use n and s to define the distance at which the sigmoid starts the
transition process.

1
1 + e±s·d (6.52)

d =
.....
C

x
y

D
−
C

xattr

yattr

D.....− n (6.53)

Figure 6.24: Sigmoid Function

Then, as in Section 6.4, we can define the constraints on the state, on the inputs
and the ones derived by the system’s dynamics. Their values are the one listed in
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Table 6.1.

−∞ < X <∞ (6.54)

−speed_constraints < U < speed_constraints (6.55)

−h · acc_constraints < U0 − Uprev < h · acc_constraints (6.56)

−h · acc_constraints < Ui+1 − Ui < h · acc_constraints (6.57)

With i ∈ [0, N − 2].

−h2 · jerk_constraints < U1 − 2 · U0 + Uprev < h2 · jerk_constraints (6.58)

−h2 · jerk_constraints < Ui+1 − 2 · Ui + uk−1 < h2 · jerk_constraints (6.59)

With i ∈ [1, N − 2].
X0 = ξ0 (6.60)

Xi+1 = fdiscrete(Xi, Ui) (6.61)

With i ∈ [0, N − 1].
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6.5.1 Algorithm tests
Here we present some tests useful to verify the applicability of the non-linear Model
Predictive Control with Velocity control and the modulated DS.

Test 1

In order to test the performance of the non-linear MPC with velocity control, a
first simulation is performed in a static environment, like the simulations done in
the Section 6.4. The robot starts from ξi = [0.0,−0.5, 0.0]T and the desired final
position is [xf , yf ]T = [10.0, 0.0]T .

Three ellipsoid shaped obstacles are present in the environment, in position C
and with axes:

1. C = [3.5, 0.1]T , rx = 0.3 , ry = 0.4;

2. C = [7,−1]T , rx = 0.3 , ry = 0.7;

3. C = [2, 0]T , rx = 0.7 , ry = 0.3;

Also this non-linear MPC gives us the possibility to impose constraints on the
maximum speeds, on the accelerations and on the jerking of the robot. We will
consider all the constraints listed in Table 6.1.

The gain matrices used for this simulation are:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (6.62)

qθ = 2 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(6.63)

The simulation time is Tsim = 25s. Figure 6.25 illustrates the path of the
robot and the computation time. All the constraints are taken into account but,
differently from the tests done in 6.4, the robot is able to accomplish the path in
the given simulation time. The path that the robot really covers is slightly different
from the ideal one, but still, it is an acceptable behaviour that allows the robot
to avoid the obstacles. Also the computation time constraints are respected: it is
always smaller than 0.05 seconds, that is the threshold due to the control frequency.

As in the simulations done in the previous section, a random noise has been
added both to the control inputs and to the robot state, to simulate the error
caused by the motors of the robot, by the sensors, by the SLAM algorithm and by
the hardware delay. On the control inputs, a random noise is added, with maximum
amplitude:

• 0.05*1.5 = 0.075 m/s for the linear speed;
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• 0.05*3.0 = 0.15 rad/s for the angular speed.

The noise on the robot state is computed as:

• x = numpy.random.normal(x,0.03);

• y = numpy.random.normal(y,0.03);

• θ = numpy.random.normal(θ,0.04);

(a) Path

(b) Computation Time

Figure 6.25: nMPC - Velocity control - Test 1

Figure 6.26 displays the real path of the robot, the perceived one (i.e. the noisy
positions) and the desired next position starting from the perceived position. Also
in this case, it is possible to notice the robustness against the noise obtained by
the combination of the DS modulation with the non-linear MPC. The first one
produces a velocity vector that is barely affected by the noise on the position; while
the nMPC produces control inputs very optimized that can be slightly changed
(adding the noise for instance) without compromising the behaviour of the robot.
The most important thing that can be noticed concerns the control inputs them
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self, that are illustrated in Figure 6.27. Particular relevance has the control input
ω, because in the previous tests with other controller was the one that caused the
main issues. In this case it is much smoother with respect to the previous tests.
It still presents some abrupt changes, but they respect the limits imposed by the
accelerations constraints and the jerking constraints.

(a) Path with noise

(b) Angle with noise

Figure 6.26: nMPC - Velocity control - Test 1 - Noise analysis
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(a) Control inputs

(b) Control inputs derivative

Figure 6.27: nMPC - Velocity control - Test 1 - Control Inputs
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Test 2

The previous test confirmed that the combination of DS modulation and the
non-linear Model Predictive Controller with Velocity control is feasible in a fixed
environment. This simulation tests its behaviour in an environment with fixed
obstacles, but moving target.

As first thing, it is needed to remember that during the target following, the
attractor is not set inside the area of the target, because this last one is also
considered as an obstacle, in order to avoid collisions. The attractor in called
"moving attractor" as explained in section 5.10, and the procedure illustrated in
Algorithm 5 is used to move the attractor in a coherent way, depending on the
obstacles present in the environment. In this case the value used for the constants
in Equation 5.33, are set as:

• kattr = 3

• krep = 5

The target moves with a constant velocity ξ̇tar = [0.3, 0.0]T m/s2. The prediction
horizon is N = 7, the simulation time is set as Tsim = 35s and the gain matrices
are:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (6.64)

qθ = 1 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(6.65)

The desired heading angle can be chosen using between different methods. In this
case it is given by Equation 6.50, therefore we exploit only the information on
the heading angle of the target to generate the desired heading angle of the robot,
while the modulated DS is used to generate the desired velocity vector.

Figure 6.28 shows the results of this simulation.
The robot is not able to follow the target in an ideal way: it goes very close to

the obstacle in the center of the figure and it also collide with it. This is a situation
that does not create problem if the obstacle is enlarged and a safety margin is
considered. At this point the robot gets stuck because of the discontinuity of the
DS on the border of the obstacle and because of the desired heading angle. Due to
these two factors, the robot tends to go inside the obstacle, then the DS wants to
push it away, but the heading angle does not allow the robot to steer in a proper
manner. The robot moves forward and backward until the steering angle allows it
to pass the obstacle from the opposite side.
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(a) Path

(b) Computation Time

Figure 6.28: nMPC - Velocity control - Test 2

This kind of behaviour is also caused by the gain Gtheta related to the heading
angle, because bigger is this value, higher will be the effort of the nMPC to follow
the desired heading angle, that in this case is always zero, as illustrated in Figure
6.29.

It is also possible to notice that, when the robot gets stuck, the computation
time of the non-linear MPC tends to increase. This is probably cause by the fact
that the desired velocity varies a lot (it points forward for some time steps and
then backward for some others) and the optimization process of the nMPC requires
more time to output the correct control inputs. These latter can be observed in
Figure 6.30: with the exception of the time steps during which the robot is stuck,
the control inputs show a nice behaviour, but further tests need to be done in order
to overcome the issues related to the heading angle.

87



Low Level Control

(a) Angle with noise

Figure 6.29: nMPC - Velocity control - Test 2 - Noise analysis

(a) Control inputs

(b) Control inputs derivative

Figure 6.30: nMPC - Velocity control - Test 2 - Control Inputs
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Test 3

In order to verify the correct behaviour of the controller, a test with the same
settings as Test 2 is done, i.e. Tsim = 35s, N = 7 and gain matrices:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (6.66)

qθ = 1 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(6.67)

In this case the heading angle is computed using Equation 8.19.
The heading angle is therefore computed using both the information on the

heading angle of the target and on the desired velocity. The parameters used in
the Sigmoid function are:

• s = 20;

• n = 0.5;

Figure 6.31 illustrates the results of this test. In this case the robot is able to
follow the target while avoiding the obstacles. The computation time respects all
the constraints imposed by the hardware.

(a) Path (b) Computation Time

Figure 6.31: nMPC - Velocity control - Test 3

As for the control inputs, all the constraints on the maximum value allowed,
the maximum speed and the maximum jerking are observed. In Figure 6.32 it
is possible to observe a quite smooth behaviour that can be used on the real
implementation.
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(a) Control inputs

(b) Control inputs derivative

Figure 6.32: nMPC - Velocity control - Test 3 - Control Inputs

Test 4

In the previous tests it has emerged that using N = 7 is a good trade off because
produces good control inputs and respect the time constraints. From a theoretical
point of view, using a larger horizon time should produce better results because
the controller optimizes the inputs having more information about the future of
the robot. In order to test this assumption, a simulation with the same settings as
Test 3 is done, i.e. Tsim = 35s and gain matrices:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (6.68)

qθ = 1 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(6.69)

This time, though, the horizon time is doubled: N = 15 The Sigmoid function is
used again to obtain the heading angle, with the parameters:
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• s = 20;

• n = 0.5;

Figure 6.33 illustrates the results of this test. They are very similar to 6.31; the
main difference, as expected, is the computation timing. The time needed for the
optimization of the control inputs is excessive, therefore this horizon time can not
be used on the real robot.

(a) Path

(b) Computation Time

Figure 6.33: nMPC - Velocity control - Test 4

As for the control inputs, all the constraints are observed. In Figure 6.34 it is
possible to observe a better behaviour with respect to the control inputs obtained in
the previous test and displayed in 6.32. This is a consequence of the larger horizon
time: the nMPC is able to better optimize the control inputs and, consequently,
make the inputs smoother, more robust against the noise and more suitable for the
user experience.
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(a) Control inputs

(b) Control inputs derivative

Figure 6.34: nMPC - Velocity control - Test 4 - Control Inputs

Considerations

The tests in the static and dynamic conditions validate the low level controller
described in this section. It appears that it can be used in both the scenarios with
optimal outcomes. The control inputs do not have strange behaviours and they
are able to drive the robot nicely, respecting the imposed constraints. Therefore,
abrupt movements should be avoided, guaranteeing a nice experience for the user.
The considerations on the computation time are the same done also in the previous
sections and chapters: from a theoretical point of view, this controller is fast enough
and can be used on the real robot, but it entirely depends on the actual hardware.
Moreover, as expected, the computation timing depends on the prediction horizon:
the larger is the prediction horizon, the more time is required to compute the
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optimal inputs.
It is worthy to notice that this controller has a fine response to the noise: the

simulated noise on the sensors (i.e. the pose of the robot) is compensated by the
ability of the controller to produce control inputs as continuous and smooth as
possible.

Until now, this controller is the most promising one and can be easily used in
combination with the modulating algorithm.
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6.6 MPC - Inputs Bounding
Differently from the methods used in Sections 6.4 and 6.4, the Model Predictive
Controller used in this section does not use the kinematics of the robot to produce
the optimal inputs for the control.

This method exploits the feedback linearization of the unicycle [36]: first of all,
a point P is defined that is placed at distance Ô from the robot centre ([x, y]T ) in
the direction of the longitudinal velocity:

xP = x + Ô ∗ cos(θ)
yP = y + Ô ∗ sin(θ)

(6.70)

Differentiating and considering the unicycle dynamics, we have:

ẋP = VP x

ẏP = VP y

(6.71)

We can obtain the values for VP using the modulating DS, applied at the point
P.
Using the formula in Equation 6.72, we have directly the control inputs for the
system. C

v
ω

D
=
C

cos(θ) sin(θ)
−1

Ô
sin(θ) 1

Ô
cos(θ)

D C
VP x

VP y

D
(6.72)

The inconvenient of this method is that we can not take into account the system’s
constraints such as maximum velocity and acceleration. A possible solution is
to use the control inputs computed above, as reference inputs that we want to
reach at each step. In this way we can define a simple MPC model that has state
X = [v, ω]T and input U = [lin_acc, ang_acc]T .
The dynamic that we are considering now is:C

v̇
ω̇

D
=
C

lin_acc
ang_acc

D
(6.73)

Discretizing it, we obtain:

Xk+1 = AdXk + BdUk (6.74)

C
vk+1
ωk+1

D
=
C

1 0
0 1

D C
vk

ωk

D
+
C

h 0
0 h

D C
lin_acck

ang_acck

D
(6.75)

With h = sampling time.
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Thanks to the MPC, it is possible to constraint the state and the inputs in order
to respect the systems limits and avoid abrupt movements:

|Xk| < state_constraints (6.76)

|Uk| < input_constraints (6.77)

We have to give to the MPC the initial state:

X0 = Xprev (6.78)

The dynamic used by the MPC is describe in Equation 6.74.
Finally, we have to define a cost function that has to be minimized:

N−1Ø
i=0

(Xi −Xref )T Q(Xi −Xref ) + (XN −Xref )T QN(XN −Xref ) +
N−1Ø
i=0

UT
i RUi

Q, QN and R are diagonal matrices, that contain the gains to be tuned.
Remembering that in this case X = [v, ω]T and input U = [lin_acc, ang_acc]T ;

after the optimization we have the optimal accelerations and the optimal velocities.
Applying to the robot the optimal velocities, it is guaranteed that the system will
respect the constraints.
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6.6.1 Algorithm tests
Here we present some tests useful to verify the applicability of the Model Predictive
Control and the modulated DS.

Test 1

The first test to verify the characteristics of the controller is done in a static
environment. The robot starts from ξi = [0.0,−0.5, 0.0]T and has to reach the
desired final position in [xf , yf ]T = [10.0, 0.0]T .

Three ellipsoid shaped obstacles are present in the environment, in position C
and with axes:

1. C = [3.5, 0.1]T , rx = 0.3 , ry = 0.4;

2. C = [7,−1]T , rx = 0.3 , ry = 0.7;

3. C = [2, 0]T , rx = 0.7 , ry = 0.3;

The gain matrices used for this simulation are:

Q = QN =
C

1 0
0 1

D
R =

C
0.1 0
0 0.1

D
(6.79)

The simulation time is Tsim = 25s. This controller does not allow us to
constraints the jerking of the robot, therefore, the control inputs might not be
totally suitable for the real implementation, even if they respect the constraints on
the speed and the acceleration. Since the computation effort is drastically reduce
with respect the non-linear controller described in the previous sections, we can
use a prediction horizon of N = 20. The distance Ô is set as Ô = Ôsafe = 0.2m

The results of the simulation are illustrated in Figure 6.35. The path covered
by the robot is very similar to the ideal one and the computation time respects the
limits imposed by the hardware of the robot.

Following the procedure illustrated in the previous section, a random noise has
been added both to the control inputs and to the robot state, to simulate the
error caused by the motors of the robot, by the sensors, by the SLAM algorithm
and by the hardware delay. On the control inputs, a random noise is added, with
maximum amplitude:

• 0.05*1.5 = 0.075 m/s for the linear speed;

• 0.05*3.0 = 0.15 rad/s for the angular speed.

The noise on the robot state is computed as:

• x = numpy.random.normal(x,0.03);
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(a) Path

(b) Computation Time

Figure 6.35: MPC - Test 1

• y = numpy.random.normal(y,0.03);

• θ = numpy.random.normal(θ,0.04).

The control inputs obtained with this procedure respect all the constraints
imposed, but we can not say anything about the jerking constraints since they are
not included in the MPC controller. Nevertheless, they seems very smooth and
suitable for the real robot. Figure 6.27 displays the control inputs of the system:
Figure 6.27(a), in particular, shows the control inputs obtained using the feedback
linearization that act as reference for the MPC, and compare them with the output
of the MPC. Figure 6.27(b) compare the inputs obtained from the MPC and the
inputs with the added noise, that are used on the system. The control inputs
produced by the Model Predictive Controller are way smoother than the reference
controls computed with the linearization.
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(a) Control inputs comparison

(b) Control inputs

(c) Control inputs derivative

Figure 6.36: MPC - Test 1 - Control Inputs

Test 2

With this test we want to verify the behaviour of the controller in a dynamical
environment: as in the previous sections, the obstacles are fixed, while the target is
moving. The parameters of the MPC are the same as in the previous test, N = 20
and Ô = Ôsafe, while the simulation time is Tsim = 35s.

Figure 6.37 illustrates the behaviour of the robot in a dynamic environment and
the results are not promising as the ones in test 1. First of all, the computation
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(a) Path

(b) Computation Time

Figure 6.37: MPC - Test 2

time presents some peaks that exceed the limit imposed of 0.05s. This means that
on the robot the MPC would not be able to compute in time the control inputs,
forcing the system to use either the previous control inputs or control inputs equal
to zero. Generally, this could be permitted if it is just a spurious event; but in this
case consequent time steps present the same issue. Having the robot running in
open loop could cause enormous issues to the safety of the users and of the people
around them.

Moreover, at the beginning of the simulation, the robot almost hits the target
because the initial position of the robot is in front of the attractor, which is moved
backward due to the presence of the obstacles. This cause the robot to move
backwards while steering; at this point, though, there is the main issue: with
this algorithm we are not controlling the center of the robot, but a point that is
positioned at Ô meters ahead, therefore the presence of the obstacle is perceived
from the point of view of this point.

Since we are enlarging the obstacles of Ôsafe = Ô, the repulsive effect of the
obstacle might be perceived when it is too late.

The control inputs shown in Figure 6.30 respect the constraints, but they present
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some strange behaviour at the beginning, for the reasons explained above, and
between time steps 400 and 500, when the robot face the other obstacle. Also in this
case, the control inputs produced by the MPC starting from the reference controls
obtained by the feedback linearization, are smoother. Moreover, it is worthy to
mention that the reference inputs exceed the limits imposed by the system by quite
a lot.

(a) Control inputs comparison

(b) Control inputs

(c) Control inputs derivative

Figure 6.38: MPC - Test 2 - Control Inputs
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Test 3

The same simulation as in test 2 is repeated, but this time with prediction horizon
N = 10. The other parameters of the MPC are are Ô = Ôsafe, and the simulation
time is Tsim = 35s.

(a) Path

(b) Computation Time

Figure 6.39: MPC - Test 3

Figure 6.39 displays the outputs of the simulation. In this case the problems of
the previous test are avoided, but it is not because of the reduction of the prediction
horizon. Simply, the control inputs produced are not able to move the robot fast
enough to go inside the area of the target and therefore the computation time
observes the limits. It may still happen an analogous situation and the computation
time could be higher than the limits. Nevertheless, it is true that reducing the
prediction horizon lower also the computation time: a good trade off has to be found.

In this case, the control inputs, in addition to the compliance to the constraints,
have a smooth trend and react well to the noise, as illustrated in Figure 6.32. As
in the previous tests, the MPC is able to produce smoother control inputs with
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respect the reference ones, which are also not bounded and would produce an
undesired behaviour if used directly.

(a) Control inputs comparison

(b) Control inputs

(c) Control inputs derivative

Figure 6.40: MPC - Test 3 - Control Inputs
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Test 4

The previous tests have explained that one of the main issues of this approach is
the use of Ô that nullify the action of Ôsafe if these two values coincide. Here, two
simulations will be presented, both of them with Ô < Ôsafe, N = 10 and Tsim = 35s.

1. Ô = 0.05m

2. Ô = 0.1m

Both the simulations show very bad performances. The timing constraints are
totally unobserved and the robot behaves in a very poor manner: in the first test,
with Ô = 0.05m, the robot slaloms in order to reach the attractor. While, in the
second case, the robot hits the target and one of the fixed obstacles.

These two tests demonstrate that changing the vale of Ô do not change the
outcome of the simulations in better, but in certain cases it worsen the behaviour
obtained.

(a) Path

(b) Computation Time

Figure 6.41: MPC - Test 4
Ô = 0.05m

(a) Path

(b) Computation Time

Figure 6.42: MPC - Test 4
Ô = 0.1m
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(a) Control inputs comparison

(b) Control inputs

(c) Control inputs derivative

Figure 6.43: MPC - Test 4
Ô = 0.05m - Control Inputs

(a) Control inputs comparison

(b) Control inputs

(c) Control inputs derivative

Figure 6.44: MPC - Test 4
Ô = 0.1m - Control Inputs
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Considerations

This controller presents very interesting features:

• reacts nicely to the noise;

• simple implementation;

• allows a long prediction horizon;

• smooth control inputs.

Nevertheless, the tests done in the dynamic environment prove that it obtains
optimal performances only in very specific cases, while in others, if a small issue
arises, the controller is not able to compensate in a smart way and tends to take a
lot of time to compute the correct control inputs.

The other main issue concerns the position of the point where the modulation
is computed. The enlarged obstacles take into account the robot dimension and a
safety margin, considering the center of the robot the point where the modulation
is applied. A possible solution to overcome this problem could have been to use
Ô < Ôsafe; but the tests done in Test 4 prove that using a smaller Ô do not improve
the performance.
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Chapter 7

Obstacles and Target
Detection Algorithm

In the previous chapters, it was assumed a complete knowledge of the obstacles:
at every time-step the obstacle position was known, as well as its linear velocity,
rotational velocity and its shape. In a real world scenario, we must extract these
information starting from the data obtained from the robot’s LIDARs and the
3D-camera.

An existing algorithm exploits the RGB images to detect the presence of people
and find out their position, orientation and velocity. Unfortunately, it often pro-
duces false positives, which means that a person is detected in a certain position,
even if nothing is present in that precise spot. Moreover, the speed of the algorithm
constraints deeply its utility because it can run at 10 Hz, causing the analysis of
the environment to be too slow to be used in real-time.

In this chapter, some Machine Learning techniques for the environment analysis
will be described. They are used mainly for the obstacle detection and modelling.
The main features that we aim to obtain from these methods are:

1. Speed - the algorithm has to be fast enough to run in real-time on the robot’s
hardware.

2. Accuracy - the modelling of the obstacles has to be as accurate as possible, in
order to identify the centroids of the obstacles, i.e. the presumed center of the
obstacle, that is used for the computation of the velocity.

3. Precision - the identified shape of the obstacle has to be as similar as possible
to the real one, in order to avoid problematic scenarios in which, either the
modelled obstacle covers an area way bigger or smaller than the real obstacle.
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Moreover, since the high level controller works with ellipsoid-shaped obstacles, also
the algorithm should produce this typology of shape, in order to facilitate the
algorithm integration.

The Machine Learning techniques that were analyzed for this purpose are
the Gaussian Mixture Model and the K-means. In the next sections these
algorithms will be explained in detail and their results, benefits and drawbacks will
be analyzed.

7.1 Machine Learning - Overview [37] [38]
"Machine Learning" is a concept that has gained an incredible relevance in the last
decades and it is often used to describe topics, ideas and methods very different one
from the other. From a technical point of view, the Machine Learning is a branch
of the Artificial Intelligence science and its focus are computer algorithms that
exploit the experience to get better in an autonomous way.

Machine learning algorithms differ from the usual algorithm structure because
they are used to solve problems without an organized approach (a programmed
approach). Instead, they make use of data sets and algorithms that exploit both
probabilistic and deterministic methods, to model a certain behaviour and take
actions accordingly.

The fields of application are many:

• Computational statistics - a lot of machine learning algorithms use a proba-
bilistic approach to define a model; they can be useful to predict a behaviour
or an outcome.

• Data mining - analyze enormous data sets is unfeasible for a human being,
machine learning algorithm are used to find features or to categorize.

• Mathematical optimization - machine learning algorithms often require mathe-
matical tools for a fast optimization, and, can also be used for the development
of new mathematical methods.

• Data-driven control - the possibility of building a behaviour, starting from
empirical data allows new control methods that performs surprisingly well,
but often only in very specific conditions.

Generally, the machine learning algorithms are divided into three categories:

• Supervised learning - the machine has to produce a system law starting from
a set of inputs, linked with their outputs. Basically, the computer knows
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that a certain output is caused by a certain input and generate the model
accordingly.

• Unsupervised learning - in this case no previous knowledge is used and nor the
input or the output are labeled. The machine has to find features, relationships
or behaviours by its own. Interesting results could be obtained using this
methods, especially because they can be unforeseen.

• Reinforcement learning - the machine learns by its interaction with a dynamical
environment, using rewards and penalizations. Its goal is to maximise a cost
function and find the optimal behaviour.

7.2 Gaussian Mixture Model [39]
The Gaussian Mixture Model, or GMM, is a clustering algorithm and, therefore,
an unsupervised machine learning technique. A clustering algorithm is a method
used to find clusters with common characteristics in a data set. In particular, we
can distinguish between hard and soft clustering techniques. The first one define a
clear border between the clusters, so a point of the data set can belong either to a
cluster or to another one. The soft clustering, instead, associate to each point a
probability that quantifies how much the point belongs to a cluster.

The GMM is soft clustering method that exploits a Gaussian Mixture, i.e. a
function composed by K Gaussians, where K indicates the number of clusters.
Each Gaussian is described by:

• µ - mean of the Gaussian, that defines its center;

• Σ - covariance matrix, describes the dimensions of the ellipsoid;

• π - mixing probability, is the weight of the Gaussian component and tells us if
the component is small or big.

The mixing probabilities are constrained by Equation 7.1.
KØ

k=1
πk = 1 (7.1)

A Gaussian identifies a probability function, called density function described
by the following Equation:

N (x|µ, Σ) = 1
(2π)(D/2)|Σ|(1/2) exp(−1

2(x− µ)T Σ−1(x− µ)) (7.2)

Where µ and Σ have been defined above, x are the data points under analysis
and D is the dimension of each point.
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We are dealing with multiple Gaussians, therefore multiple density function,
that tell us which is the probability that a point, identified as xn, belongs to the
k− th Gaussian. Identifying a new variable z, called "latent variable", it is possible
to describe the probability that xn is produced by the Gaussian k as:

p(znk = 1|xn) (7.3)
Moreover, the Bayes Rule helps us defining it as:

p(zk = 1|xn) = p(xn)|zk = 1)p(zk = 1)qK
j=1 p(xn)|zj = 1)p(zj = 1)

(7.4)

All the latent variables can be identified as z:

z = {z1, ..., zK} (7.5)

They are independent one from the other and they are equal to 1 only if the point
belongs to the cluster k.

Knowing that, we can re-define the mixing coefficient as in Equation 7.6.

πk = p(zk = 1) (7.6)
Moreover, using the independence property of z, the probability p(z) is:

p(z) = p(z1 = 1)z1p(z2 = 1)z2 ...p(zK = 1)zK =
KÙ

k=1
πzk

k (7.7)

By definition, the Gaussian function tells us which is the probability that a
certain point belongs to it. Therefore, we can identify the probability of observing
a point xn, given z as:

p(xn|z) =
KÙ

k=1
N (xn|µk, Σk)zk (7.8)

Using the Bayes Theorem we can obtain the distribution p(xn|z), from Equations
7.7 and 7.8

p(xn, z) = p(xn|z)p(z) (7.9)
p(xn|z) is called joint distribution; in order to obtain p(xn), which is the

Gaussian Mixture definition itself, we have to marginalize the distribution as shown
in Equation 7.10.

p(xn) =
KØ

k=1
p(xn|z)p(z) =

KØ
k=1

πkN (xn|µk, Σk) (7.10)
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Remembering Equation 7.4 and that:

p(zk = 1) = πk (7.11)

p(xn|zk = 1) = N (xn|µk, Σk) (7.12)

We obtain:

p(zk = 1|xn) = πkN (xn|µk, Σk)qK
j=1 πjN (xn|µj, Σj)

= γ(znk) (7.13)

Having the Mixture Model, we now need to define which are the optimal values
for it. A possible way to do it, is to maximise the likelihood of the problem. The
likelihood p(X) is defined as the joint probability of the data points xn.

p(X) =
NÙ

n=1
p(xn) =

NÙ
n=1

KØ
k=1

πkN (xn|µk, Σk) (7.14)

Working with the ln(p(X)) is easier, so we obtain:

ln(p(X)) =
NØ

n=1
ln(

KØ
k=1

πkN (xn|µk, Σk)) (7.15)

The method used to solve this problem and obtain the correct components is
called Expectation - Maximization algorithm, an iterative method often used
in the optimization problems.

Algorithm 8 illustrates the procedure.
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Algorithm 8 Expectation - Maximization algorithm
1: ó Initialization
2: ó Initialize the parameter randomly or using other algorithm (e.g. K-means)
3: θ = {π, µ, σ}
4: ó Expectation
5: ó Compute Q(θ∗, θ)

Q(θ∗, θ) = E[lnp(X,Z|θ∗)] =
Ø
Z

p(Z|X, θ)ln(p(X,Z|θ∗)) (7.16)

6: ó For the GMM can be rewritten as

Q(θ∗, θ) =
Ø
Z

γ(xnk)ln(p(X,Z|θ∗)) (7.17)

7: ó With p(X,Z|θ∗) being the joint probability of all observations and latent
variables

p(X,Z|θ∗) =
NÙ

n=1

KÙ
k=1

πznk
k N (xn|µk, Σk)znk (7.18)

ln(p(X,Z|θ∗)) =
NØ

n=1

KØ
k=1

znk[ln(πk) + ln(N (xn|µk, Σk))] (7.19)

8: ó Substituting, Q(θ∗, θ) becomes

Q(θ∗, θ) =
NØ

n=1

KØ
k=1

γ(znk)[ln(πk) + ln(N (xn|µk, Σk))] (7.20)

9: ó Maximization
10: ó Compute θ∗

θ∗ = argmax
θ

Q(θ∗, θ) (7.21)

11: ó Include in Equation 7.20 the constraints of πk, using a Lagrange multiplier

Q(θ∗, θ) =
NØ

n=1

KØ
k=1

γ(znk)[ln(πk) + ln(N (xn|µk, Σk))]− λ(
KØ

k=1
πk − 1) (7.22)
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12: ó Derivate Q(θ∗, θ) with respect to π and set it equal to 0

∂Q(θ∗, θ)
∂πk

=
NØ

n=1

γ(znk)
πk

− λ = 0 (7.23)

NØ
n=1

γ(znk) = πkλ⇒
KØ

k=1

NØ
n=1

γ(znk) =
KØ

k=1
πkλ (7.24)

13: ó Since λ = N , we obtain π∗
k

π∗
k =

qN
n=1 γ(znk)

N
(7.25)

14: ó Repeating the process of differentiation for µ and Σ:

µ∗
k =

qN
n=1 γ(znk)xnqN

n=1 γ(znk)
(7.26)

Σ∗
k =

qN
n=1 γ(znk)(xn − µk)(xn − µk)TqN

n=1 γ(znk)
(7.27)
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7.2.1 MATLAB implementation - Approach 1
The Gaussian Mixture Model algorithm has been implemented in MATLAB and
different approaches have been used, in order to test its behaviour.

First of all, it was necessary to simulate the the behaviour of the LIDARs starting
from some obstacles in the environment. This was done using the MATLAB toolbox
Mobile Robot Algorithm Design [40]. The step needed to obtain the simulated
LIDAR are:

1. Define the LIDAR position in a global frame;

2. Define the LIDAR radius, i.e. a radius beyond which nothing is perceived;

3. Define the scanning angle, which defines the density of the LIDAR points;

4. Define the obstacle in the environment;

5. Define a blank binary occupancy matrix;

6. Set the occupancy matrix with the obstacles;

7. Use the toolbox to simulate the LIDAR behaviour;

The toolbox outputs two vectors:

1. Scanning angles θlidar - identifies the angle of the measure;

2. Ranges rlidar - identifies the measure, i.e. a distance that tell us how far is a
point.

If there is no obstacle in correspondence of a certain scanning angle, the range
is set as infinite. For convenience reasons, it is better to remove these ranges from
the vector.

Remembering that the robot pose is defined by the vector ξ = [x, y, θ]T , we can
rebuild the LIDAR points in the global frame using Equations 7.28 and 7.29.

R =
C

cos(θ) −sin(θ)
sin(θ) cos(θ)

D
(7.28)

Lidar_points =
C

xlidar

ylidar

D
=
C

x
y

D
+ R ·

C
rlidar · cos(θlidar)
rlidar · sin(θlidar)

D
(7.29)

These points represent the perceived data points of the LIDAR, therefore they
describe the border of the obstacle. Since we want to take into account the
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dimension of the robot rrobot and a safety factor Ôsafe, Equation 7.30 describes
a new set of data points that are closer to the center of the robot exactly of
rrobot + Ôsafe.

C
xlidar

ylidar

D
=
C

x
y

D
+ R ·

C
(rlidar − rrobot − Ôsafe) · cos(θlidar)
(rlidar − rrobot − Ôsafe) · sin(θlidar)

D
(7.30)

We will use these new set of points to model the GMM. As first thing, we assume
to know the position of the centroids of each obstacle. This is plausible because of
the already existing image processing algorithm that detects the people around the
robot.

Knowing the position of the centroids, it is possible to associate each data point
to a centroid using a distance metrics: a data point is assigned to the nearest
centroid. In this way clusters of points are defined.

Using the GMM algorithm on each of this cluster, choosing K = 2 components
for each GMM we obtain the result shown in Figure 7.2.

Figure 7.1: LIDAR simulation - GMM approach 1
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It is important to point out that, in a real situation, the robot does not see the
real obstacles (in Figure the blue ellipses), but only the lidar points (in Figure
the green dots). Therefore, after the use of this algorithm, what we consider as
obstacles are the black shapes in Figure.

We have chosen to use K = 2 so that, for each obstacle, the star-shaped condition
are respected: we only need to chose as reference point for the modulation a point
that is in the common area of the two Gaussians. Some problems could emerge
if two obstacles are so close that the two GMMs overlaps, but also this situation
could be solved using the Python implementation of the modulating algorithm.

The process illustrated above must be repeated at each time step to model the
obstacles. Without the use of some memory process, that algorithm produces very
noisy results, that can hardly be used in a real scenario. Moreover, the resulting
shapes are thinner with respect to the real obstacle, and do not cover an area
comparable with the real obstacle’s one. This issue can be solved increasing the
dimension of the axes of the Gaussian component, but this would mean that the
information about the probability of finding an obstacle in a certain position would
lose their importance.

All these aspects make the algorithm unfeasible for the real implementation,
but suggest us which are the main problems to tackle and improve.

7.2.2 MATLAB implementation - Approach 2
This algorithm, as the one explained in Section 7.2.1, assumes that the centroids’
positions obtained with the image processing algorithm are known. Also in this
case, using the MATLAB Tool Mobile Robot Algorithm Design we simulate
the output of a LIDAR. The Equations used are 7.28 and 7.29.

Differently from the previous approach, we use directly the lidar points, without
moving them toward the robot. Firstly, a labelling algorithm is applied to the data
points in order to assign each of them to a centroid. Then, using the centroid as
reference point, the lidar point of an obstacle are mirrored. This process assumes
that the obstacle has an ellipsoidal shape.

Being lidar_pointj and centroidj respectively the data points and the centroid
of obstacle j, we obtain the mirrored points M_lidar_pointj simply applying
Equation 7.31.

M_lidar_pointj =
C
−1 0
0 −1

D
(lidar_pointj − centroidj) + centroidj (7.31)

Having all the information on the number of obstacles and the data points of
the LIDAR, a GMM algorithm is applied to each cluster. It is possible to choose
between spherical, diagonal and full covariance matrices. Figure 7.2 illustrate the
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output of the algorithm, using spherical covariance matrix. Differently from the
previous algorithm, in this one the learned shape of the obstacle is very similar to
the real one and it is also able to surround the real obstacle. Nevertheless, some
issues must be pointed out:

1. It has not been taken into account the robot dimensions and the safety distance
yet;

2. The shape of the learned obstacle depends on the shape of the real one in a
non-linear way; therefore, if the real obstacle has a large shape, the contour
defined by the GMM may be too big to be used in the real implementation. On
the contrary, if it is too small, the contour may not guarantee the avoidance
of the collision.

Despite the problems above listed, this algorithm shows good potentiality and
further investigations, with real data points obtained from the robot, will be
discussed in the following Sections.

Figure 7.2: LIDAR simulation - GMM approach 2
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7.2.3 Python implementation
In the previous sections the GMM algorithm has been implemented in MATLAB for
didactic purposes; no optimizations were included. In this section we will consider
also the timing constraints imposed by the robot hardware; therefore, a careful
analysis must be done in order to choose an algorithm with the right characteristics.

Since the algorithm on the robot runs on Python, the obstacle detection algo-
rithm, that uses GMM, has been developed also in this language, using the real data
points obtained by the LIDARs. In this case, though, the GMM algorithm used
was already implemented. The scikit-learn [41] library has been used, because
it contains several Machine Learning algorithms that are optimized and can be
adapted to different scenarios.

In particular, two of them have been implemented:

1. sklearn.neighbors.LocalOutlierFactor [42] is an algorithm that excludes the
outliers of a data set. It has been used to filter the lidar points before applying
the GMM algorithm, in order to reduce the noise caused by the presence of
spurious points.

2. sklearn.mixture.GaussianMixture [43] is the algorithm that models the data
points using the GMM.

Outliers exclusion

The outliers exclusion algorithm is not compulsory: it is just a pre-processing
step that could improve the data points to analyse, but could also slow down
the computation or, worse, remove some important information about the envi-
ronment. Being Python an object oriented language, we must define the object
that will deal with the outlier removal. The object is generated from the class
"sklearn.neighbors.LocalOutlierFactor()". The parameters that we are going to
change are:

• n_neighbors - The number of neighbors to get (by default is 20);

• contamination - The proportion of the outliers in the data set considered;

• n_jobs - The number of processors to use for the computation;

• algorithm - Typology of algorithm used to compute the nearest neighbors;

• leaf_size - A parameter peculiar for the algorithm used, it can affect the
speed of the computation.
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The environment perceived by the robot might be very crowded, therefore,
analysing all the data points obtained by the LIDARs could increase the computa-
tion time uselessly if these points are quite far from the robot. For this reason, two
variables are introduced:

• max_view_rad - The maximum distance beyond which the data points are
ignored;

• analysis_rad - The radius that defines the area under analysis.

Considering only the data points withing the analysis_rad, we can observe the
behaviour of the outliers excluder algorithm, in different configurations:

• Test 1 - The parameters are

– n_neighbors = 20;
– contamination = 0.1;
– n_jobs = 1;
– algorithm = ”ball_tree”;
– leaf_size = 30;
– max_view_rad = 6m;
– analysis_rad = 3m.

Figure 7.3 illustrates the results of the algorithm on the left and the com-
putational time on the right. In the image that shows the results, the black
dots represent the output of the algorithm. The performance seems excellent
because all the small clusters of dots are kept out. Moreover, the computation
time, with the exception of very few cases, is very low and compatible with
the timing required on the robot.
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(a) Exclusion Result

(b) Exclusion Time

Figure 7.3: Outliers Exclusion - Test 1
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• Test 2 - The same parameters as in Test 1 are used, but in this case more
cores are used: n_jobs = 4. The results are shown in Figure 7.4. Surprisingly,
the computation timing in this scenario increases. This may be caused by the
fact that a virtual machine is used to run Python or because the calculations
are so fast that the computer takes more time dividing the operations on
multiple cores, rather than doing everything on a single core.

(a) Exclusion Result

(b) Exclusion Time

Figure 7.4: Outliers Exclusion - Test 2
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• Test 3 - Using again a single core (n_jobs = 1) and the same parameters
used in the first two tests, we want to understand if the algorithm is able
to deal also with a larger number of data points. For this reason, we set
max_view_rad = analysis_rad = 6m. The results obtained and shown in
Figure 7.5 are very similar to the one obtained in Test 1. Also in this case,
the computation time at the first step is larger, but in general the timing
constraints are respected. Also the behaviour of the algorithm performs in a
very good way.

(a) Exclusion Result

(b) Exclusion Time

Figure 7.5: Outliers Exclusion - Test 3
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• Test 4 - Figure 7.6 shows a test done on another data set. In this case the
data points from the lidar are quite few and applying this algorithm can cause
different problems: for instance, the points of an obstacle can be lost; if this
happens, the obstacle can not be modelled or can be modelled just partially,
causing a possible dangerous situation.

(a) Exclusion Result

(b) Exclusion Time

Figure 7.6: Outliers Exclusion - Test 4
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GMM implementation

The goal of this Chapter is to model the obstacles around the robot using a
Gaussian Mixture Model. Differently from Sections 7.2.1 and 7.2.2, the assumption
regarding the knowledge of the position of the people around the robot are dropped.
The reasons are simple: firstly, there could be other typologies of obstacles, not
only people, therefore using the centroids of the people may not be sufficient to
model the entire environment. Moreover, and this is the biggest impediment, the
algorithm that produces the centroids of the people is very slow and produces often
false positives. Therefore, using the algorithm described in section 7.2.2 would be
impossible.

Starting from this premise, the algorithm here developed must be able to cluster
the entire environment, not only a partial set of data points. As said above, the
class that has been used is sklearn.mixture.GaussianMixture(). It is possible to
generate an object that models the GMM on a given data set. Before doing so, it
is necessary to understand which are the parameters that compose the class:

• n_components - the number of components K;

• covariance_type - identifies the typology of covariance matrix to use; for our
purpose the typologies that will be taken into account are ‘full’, ‘diag’ and
‘spherical’, that correspond, respectively , to

– full covariance matrix: all the elements are different and it corresponds to
an ellipse that is tilted with respect to the global reference frame;

– diagonal covariance matrix: it has elements only on it diagonal, therefore
it corresponds to an ellipse with the minor and major axes oriented along
the coordinate axes;

– spherical covariance matrix: all the elements on the diagonal are the
same; it corresponds to a circle in a 2D environment, such the one under
analysis.

• warm_start - a Boolean variable that allows the GMM computation to keep
track of the previous runs;

• max_iter - the maximum number of iterations allowed by the system before
interrupting the GMM computation.
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Test 1

Considering the data points obtained from the crowed environment and
max_view_rad = analysis_rad = 6m, we can generate the object that computes
the GMM with:

• n_components = 15;

• covariance_type = ‘full’;

• warm_start = False;

• max_iter = 20.

As it has been explained before, a GMM is composed by a weighted sum of
Gaussians. To simplify the procedure, we will consider the single components,
without the weights and the sum. Therefore, we have K = n_components = 15
components and each of them is considered as an obstacle. A useful feature of the
class that we are using reduces automatically the number of components if these
are not needed; consequently, less than 15 obstacles might be considered.

Of course, not considering the weights and the sum does not allow us to
exploit the full potentiality of the GMM algorithm, because the information on
the probability of the presence of an obstacle are not used correctly. Nevertheless,
Figure 7.7 illustrates which is the output of the GMM algorithm on the data set
under analysis.

The axis dimension of each Gaussian Component is computed starting from the
covariance matrix. Assuming a generic covariance matrix as:

Cov =
C

a b
c d

D
(7.32)

The axes length are:
dx =

√
3a

dy =
√

3d
(7.33)

While b and c gives us information about the tilted angle.
For visualization reasons, if both axes are smaller than 1 meter, the Gaussian

component i represented in blue, otherwise in orange. Figure 7.7 shows that the
components produced are too big because they try to model an environment too
full, with a number of components that is not sufficient. Moreover, the computation
time does not respect the constraints imposed by the robot.
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(a) GMM Result

(b) GMM Time

Figure 7.7: GMM - Test 1
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Test 2

In order to reduce the computation time, we reduce the analyzed area modifying
analysis_rad = 3m. Figure 7.8 shows that, using the same number of components,
the result is much better, both in the performance and in the computation time.

Also in this case there are some components that are quite large, but they fit in
a better way the lidar points.

The computation time is quite feasible with the robot hardware, but it would be
better to reduce it. Moreover, running the algorithm on the data set that changes
over time, produces GMM components that vary quite a lot. This results in a noisy
description of the obstacles.

(a) GMM Result

(b) GMM Time

Figure 7.8: GMM - Test 2
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Test 3

With this test we try to solve the problems mentioned in Test 2, adding the memory
component in the GMM: warm_start = True. In this way, the GMM algorithm
takes trace of the previous calculations, and reduces the computation time. Figure
7.9 confirms the hypothesis. Unfortunately, Figure 7.10 shows that using the
previous values of the GMM to compute the next one does not produce the desired
behaviour. In the first step, the GMM behaves in a correct way, modelling the
lidar points nicely. Nevertheless, this good behaviour is lost very quickly and the
components of the GMM tend to cover the entire environment. As a matter of fact,
when the simulation is over, the number of components is reduced to K = 2, even
if the initial number was K = 15.

The reason is that, probably, this kind of feature (i.e. the memory of the GMM)
performs properly in a semi-static environment, where the data points do not
change very much. In the situation that this project wants to tackle, we have the
opposite scenario: an environment very dynamic that can change very quickly.

Figure 7.9: GMM - Test 3 - Time
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(a) GMM Result - First step (b) GMM Result - Intermediate step 1

(c) GMM Result - Intermediate step 2 (d) GMM Result - Final step

(e)

Figure 7.10: GMM - Test 3
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Test 4

In Test 3 it has emerged that using the memory feature of the GMM class, it
is possible to speed up the algorithm, but at the same time, it is necessary a
semi-static environment.

A possible solution to overcome the problem related to the static constraints of
the environment is to reset the memory every Treset seconds. In this way, for Treset

seconds the GMM uses the information about the previous calculations and speed
up the process; then everything is resetted and the GMM algorithm virtually sees
a new static environment. Of course, Treset has to be short enough to guarantee
the hypothesis on the static environment, but also long enough to avoid a constant
reset of the memory, creating the same situation of Test 1 and Test 2.

Setting Treset = 1s, the simulation results are obtained in Figure 7.11 and 7.12.
The first one illustrates the time necessary at each step to compute the GMM
model. On average, the time constraints are respected, but there are a lot of steps
in which the computation time needed exceed the robot limits. In Figure 7.12 are
shown four consequent time steps; after the first two, the GMM model is resetted
and therefore, new Gaussian Components are considered.

It appears from the tests done until now that the main issues of this algorithm
are related to the presence of walls. The Gaussian components have to model both
the people around the robot and the walls, but this cause the model to be very
imprecise.

Figure 7.11: GMM - Test 4 - Time
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(a) (b)

(c) (d)

(e)

Figure 7.12: GMM - Test 4
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Test 5

In order to test the algorithm without the presence of walls, a new data set, with
only few people has been recorded. Setting max_view_rad = analysis_rad = 6m
we can observe a larger area and take into account the obstacles even if they are
quite far.

The results shown in Figure 7.13 are promising: the computation time is in
the limits, therefore it could be used in real time. Nevertheless, there are still
some problems in the output of the GMM algorithm. Figure 7.14 illustrates four
consequent time step; in each of them the GMM components have different shapes;
moreover, some GMM components fit perfectly the data points corresponding to
a single leg of a person, while other components fit more than one person. The
result is that some components are extremely precise and other cover an area way
too big and that does not correspond to a real obstacle.

The algorithm could ignore the GMM components that have axes’ length bigger
than a given value, but this may lead to a loss on information that could compromise
the safety of the user and of the people around him.

Figure 7.13: GMM - Test 5 - Time
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(a) (b)

(c) (d)

(e)

Figure 7.14: GMM - Test 5

132



Obstacles and Target Detection Algorithm

Test 6

In this test a new approach is tried: first of all, the covariance matrix is set as
’spherical’, in order to model each obstacle as a circle. The number of components
is reduced to K = 10. Then, after the GMM algorithm, a new algorithm is imple-
mented, that merges together all the centroids, and consequently the covariance
matrices, that are closer than a given distance dfuse. In this way, if the GMM
algorithm models the legs of a person separately, the algorithm automatically
produces a single obstacle.

The algorithm structure is described in Algorithm 9. It outputs the fused
centroids and the respective covariance matrices.

Testing this new implementation with the data set containing only people, and
using dfuse = 0.7m we obtain the results illustrated in Figures 7.15 and 7.16. Now
the time constraints are fully respected: this is caused mainly by the reduction of
components used and by the spherical covariance matrices; the GMM algorithm
has to find a single value that describe the dispersion of the data points in the
space, instead of four as in the ’full’ covariance matrix.

As for the results, Figure 7.16 displays four scenarios that are not one after
the other, but represent similar situations. The problem related to the presence
of Gaussian components that cover an area way bigger than the real obstacle to
model is not solved yet.

Figure 7.15: GMM - Test 6 - Time
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Algorithm 9 Fuse algorithm fuse()
1: procedure fuse(means, cov, dfuse)
2: ó means are the centroids of the GMM model
3: ó cov are the covariance matrices of the GMM model
4: ó dfuse is the distance that the algorithm uses to fuse the points
5: ó ret_means is a vector that contains the fused centroids
6: ret_means← [ ]
7: ó ret_cov is a vector that contains the fused covariance matrices
8: ret_means← [ ]
9: ó taken contains information about the centroids that have been merged

10: taken← [False, ..., False]
11: for i = 0:length(means) do
12: if taken[i] == False then
13: count = 1
14: point← means[i]
15: covi ← cov[i]
16: taken[i]← True
17: for j = i+1:length(means) do
18: if ëmeans[i]−means[j]ë < dfuse then
19: point = point + means[j]
20: covi = covi + cov[j]
21: count = count + 1
22: taken[j]← True
23: end if
24: end for
25: point = point

count

26: ret_means← append(point)
27: ret_cov ← append(covi)
28: end if
29: end for
30: ó Return ret_means, ret_cov
31: end procedure
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(a) (b)

(c) (d)

(e)

Figure 7.16: GMM - Test 6
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7.3 K-means [9] [44] [45]
The K-means algorithm is one of the simplest and most known unsupervised
clustering algorithms. It is an hard-clustering algorithm since it does not associate
any probability to the data points of the data set under analysis. It subdivides the
data points in K clusters using a distance metrics, generally reducing the sum of
squares. The final output of the algorithm are a set of centroids, that identify the
center of each cluster, and a set of labels for each data point.

Algorithm 10 illustrates the procedure.

Algorithm 10 K-means
1: ó Initialization
2: ó Choose a number K of clusters
3: ó Randomly initialize K centroids
4: ó Define a maximum number of iterations maxiter

5: ó Define a precision threshold for the centroids centroidsth, i.e. a measure of
how much the centroids change between two consecutive iterations

6: niter = 0 ó Initialize the iteration number
7: while niter < maxiter or precision > centroidsth do
8: ó Compute the distance of every point from the centroids
9: ó Assign each point to the nearest centroid

10: ó Compute the mean of every cluster
11: ó Update the centroids position
12: centroids← means
13: ó Compute the precision
14: ó Update niter

15: niter ← niter + 1
16: end while

As in the previous sections, the K-means algorithm was not developed from
scratch: the Python library "sklearn.cluster.k_means" [46] was used because it
is able to optimize the process. The parameters considered for the implementation
are:

• n_clusters - the number of clusters to compute, it corresponds to K;

• max_iter - is the maximum number of iteration before stopping the computa-
tion;

• n_init - number of runs of the algorithm, changing the initial guess for the
centroids.
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Differently from the GMM, the K-means algorithm does not associates circles
or ellipsoid to each centroid, therefore, it is necessary to build a shape staring from
the centroids and the labels associated.

Three methodologies are used and, for simplicity, we call them with the same
name of the covariance matrices of the GMM:

• ’full’ - the Numpy function Numpy.cov() [47] is used to compute the covariance
matrix of a cluster. As for the GMM case, the matrix obtained is of the form:

Cov =
C

a b
c d

D
(7.34)

From that matrix we can build an ellipse with axes length:

dx =
√

3a

dy =
√

3d
(7.35)

And the parameters b and c give us information about the tilted angle of the
ellipse.

• ’diagonal’ - also in this case the function Numpy.cov() is used. The matrix
obtained is:

Cov =
C

a 0
0 d

D
(7.36)

Therefore, Equation 7.35 can be used to compute the length of each axis; the
ellipse is not tilted.

• ’spherical’ - the cluster is modeled with a circle and the radius is computed as
the maximum distance between the center of the cluster (the centroid) and
each of the cluster points:

r = max(ëcentroid− cluster_pointsë) (7.37)

The strategy of the algorithm implemented for the clustering and the modelling
of the obstacle is straightforward:

1. Define the maximum number of obstacle that can be detected; it corresponds
to K number of clusters for the k-means. This number affects the speed of
the algorithm and the performance.

2. Define n_init and max_iter.

3. Generate the object for the k-means modelling.
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4. Fit the data point of the lidar with the k-means.

5. Fuse the centroids that are closer than a given distance dfuse using Algorithm
11.

6. Change the labels of the obstacles to be consistent with the previous time
step using Algorithm 12.

7. Model the obstacle as ellipses or circles.

A particular focus is needed for the 6th step of the algorithm. Firstly, we need to
specify that the obstacles considered are always K; if the algorithm that fuses the
centroids produces Ncen < K centroids, the K −Ncen centroids are set as [inf, inf].
Together with the fused centroids, a vector called link_labels is produced that
containts the information that links the un-fused centroids and the respective cluster
labels with the fused centroids. To be more concrete: if the k-means produces 3
centroids, all the lidar points will be labeled with a number l ∈ [1,2,3]; if l = 1,
the data point is associated to centroid 1, and so on. After the algorithm that
fuse the centroids, the new centroids could be just 2, hence, the vector link_labels
is needed to guarantee that all the labels of the un-fused centroids are used in a
correct way; for instance, if the original centroids 2 and 3 are merged into a single
centroid, the link_labels will be [1,2,2]. In this way l = 1→ l = 1; l = 2→ l = 2
and l = 3→ l = 2.

The algorithm’s aim is to produce a set of obstacles that is consistent at each
time step. Therefore, from a time step to the next one, we would like to have
obstacles labeled in the same way, if they correspond to the same obstacle in
reality. The k-means and the fusion algorithm do not guarantee that feature; hence,
Algorithm 12 is introduced. Assuming again to have K = 3 and also Ncen = K = 3;
at time step i the centroids obtained with k-means, called old_vect, could be: 1 0

3 3
−5 4


While at time step i + 1 the centroids new_vect could be: 1.1 0

−5.2 3.9
2.7 3.1


Algorithm 12 transforms new_vect into: 1.1 0

2.7 3.1
−5.2 3.9
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This function uses a distance metrics to change the position (the index) of the
current centroids, in order to be in accord with the previous ones. Of course, it has
also to modify the link_labels vector in order to take into account the changes of
the indexes.

Algorithm 11 Fuse algorithm fuse()
1: procedure fuse(centroids, dfuse)
2: ó centroids are the centroids of the K-means model
3: ó dfuse is the distance that the algorithm uses to fuse the points
4: ó ret_centroids is a vector that contains the fused centroids
5: ret_centroids← [ ]
6: ó label is the vector that contains the new labels
7: labels← [1, ...,1]
8: ó lab is a value that identifies the label number
9: lab = 1

10: ó taken contains information about the centroids that have been merged
11: taken← [False, ..., False]
12: for i = 0:length(means) do
13: if taken[i] == False then
14: count = 1
15: point← means[i]
16: covi ← cov[i]
17: taken[i]← True
18: label[i]← lab
19: for j = i+1:length(means) do
20: if ëcentroids[i]− centroids[j]ë < dfuse then
21: point = point + centroids[j]
22: count = count + 1
23: taken[j]← True
24: label[j]← lab
25: end if
26: end for
27: lab = lab + 1
28: point = point

count

29: ret_means← append(point)
30: end if
31: end for
32: ó Return ret_means, labels
33: end procedure
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Algorithm 12 Changing labels algorithm changelabels()
1: procedure change_labels(new_vect, old_vect, labels, n)
2: ó new_vect are the centroids of the K-means model at current time step
3: ó old_vect are the centroids of the K-means model at previous time step
4: ó label is the vector that contains the labels at current time step. The labels

identify the correspondence between the fused centroids and the un-fused ones
5: ó n is the number of maximum obstacles allowed
6: la = length(new_vect) ó Length of the new vector
7: lb = length(old_vect) ó Length of the old vector
8: ó new_vect and old_vect must have length n
9: new_vect← append(Inf · ones(n− la,2))

10: old_vect← append(Inf · ones(n− lb,2))
11: ó Compute the norm of each point in new_vect with each point of old_vect
12: norms← ënew_vect, old_vectë
13: ó Associate the to each element of new_vect the nearest of old_vect
14: ó Change the position of centroids in new_vect so that:
15: for i = 0:n do
16: new_vect[i] is nearest to old_vect[i]
17: end for
18: ó Change the labels in labels so that they can still associate the un-fused

centroids to the fused ones
19: ó Return new_vect, labels
20: end procedure

In order to test the algorithm, the data set with few people was used; more-
over, we set max_view_rad = analysis_rad = 6m, n_clusters = K = 10,
max_iter = 20, n_init = 3 and the cluster is modeled using the ’spherical’
method.

This means that we are always considering 10 obstacles, but some of them can
be set in position [inf, inf], therefore they are not considered.

Figure 7.17 shows that the computation time of the algorithm respects the limits
imposed by the real system, therefore it could be used in real-time.

Figure 7.18 illustrates four consequent time instants. The algorithm is able to
identify precisely the position of the obstacles and it is also able to use the same
label to reference it.

Until now this is the best result obtained. Analysing the total simulation, it
never happens that some modelled obstacles are bigger than the real ones or that
a modelled obstacle covers a large area on the map.
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Figure 7.17: K-means - Test - Time

Having reliable information on the centroids, it is possible to compute the
velocity vector of each obstacle. The procedure is straightforward: being ci(t) the
i − th centroid at instant t and ci(t − 1) the same centroid at the precious time
step, the velocity vector is computed as in Equation 7.38, with dt time step.

ċi(t) = ci(t)− ci(t− 1)
dt

(7.38)

The velocity computed in this way is subject to a lot of noise caused by the fact
that the centroids are computed using lidar data, which present some noise them
self, and because the k-means do not take trace of the previous computation.

In order to smoothen the behaviour of the velocites vectors, a temporal filter is
introduced. Choosing Tfilter as the number of time steps to filter, we can memorize
the previous Tfilter velocity vectors and compute the velocity at the current step
doing a weighted sum:

ċi(t) =
TfilterØ

k=0
w(Tfilter − k) · ċi(t− k) (7.39)

The weights w can be chosen in different ways, but they have to respect the
constraints:

TfilterØ
k=0

w(k) = 1 (7.40)
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(a) (b)

(c) (d)

(e)

Figure 7.18: K-means - Test
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In this case, a linear filter has been chosen:

w = [0, ... ,1]

w = wq
w

(7.41)

Repeating the simulation and applying also the velocity filter, the results shown
in Figures 7.19 and 7.20 are obtained. The first one describes the computation
time of the k-means algorithm, combined with the fusion algorithm that merges the
centroids; with the algorithm that changes the lables in order to track in a smart
way the obstacles and with the algorithm that computes and filter the velocity of
each obstacle. With this results, the algorithm respects the constraints imposed by
the robot’s hardware, namely a computation time smaller than 0.05s.

Figure 7.20 illustrates six consequent time steps. Again, the algorithm works
properly and it is able to define the obstacle and track them during the simulation.
Moreover, the velocity vectors are smooth and describe finely the direction of
movement of the obstacles.

Having all these information, it is possible to use the algorithm in combination
with the High Level Controller 5 and the Low Level Controller 6.

Figure 7.19: K-means - Test with velocity - Time
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(a) (b)

(c) (d)

(e)

Figure 7.20: K-means - Test with velocity
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Chapter 8

High Level Control, Low
Level Control and Detection
Algorithm integration

The previous chapters focused on the different algorithms that compose the control
structure that this thesis aims to analyse. In particular, a study regarding the
dynamical systems based control and the modulation algorithm has been conducted
in order to understand how it works and which are the main advantages and the
main issues of this method.

Then, several low level controllers have been developed, in order to take into
account the non-holonomic constraints of the robot. Many of these methods can
be used by them self to plan a path and produce the control inputs for the system;
nevertheless, the purpose of the low level controller is to work using the information
obtained from the high level controller, i.e. the modulating algorithm. Using the
low level controllers together with the high level controller has often shown poor
results, especially if the robot’s constraints on the speed and accelerations were
taken into account. Fortunately, some of the control algorithm proposed are able
to produce suitable control inputs, starting from the information given by the
modulating algorithm. The principal low level controller that has shown good
result is the non-linear Model Predictive Control with Velocity control, but also
the Model Predictive Control used together with the Feedback Linearization can
be used, if some precautions are used.

Finally, an algorithm for the obstacle detection has been developed. It exploits
Machine Learning techniques and the raw data from the LIDAR sensors. The first
method implemented, i.e. the Gaussian Mixture Model, was full of expectations,
but the results obtained with this methods are quite noisy and imprecise. Then, a
K-means based algorithm has been implemented, showing that it is able to detect
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in a very precise way the clusters and to track them. The possibility to monitor
the evolution of the obstacles allow us also to compute their velocity, which means
that we have more information to rely on.

In this Chapter, all the three algorithm will be used together. In Chapter 6 we
have already analyzed the high level controller in combination with the low level
one, but the knowledge of the obstacles was total: the obstacles had a defined shape
and their velocities were always known. Here, we will use the information obtained
with the obstacle detection algorithm and several simulations will be implemented
in order to verify the benefits and the issues of the three algorithms together.

8.1 Simulated Target
The LIDAR data points used for the tests are obtained from a recording session
in which the robot is not moving and three people move around it. The center
of the global frame is considered to be the rear LIDAR of the robot. The control
algorithm is tested on a simulated robot that has to move in the environment built
from the LIDAR data points. In this section, also the target is simulated, therefore,
another obstacle, that we totally know, is introduced, in addition to the obstacles
detected by the Obstacle Detection algorithm.

A clarification is needed before starting the tests: the modulating algorithm
implemented in Python is the one developed by Dr. Lukas Huber [7] with some
modifications in order to take into account the moving target. That algorithm
exploits many optimization methods and it is able to merge together the obstacles as
said in Section 5.8; moreover, it is able to automatically update the reference points
inside the obstacles in order to guarantee the conditions for the convergence and the
impenetrability of the border. In particular, the function update_reference_points()
deals with the problem of merging the obstacles. If the obstacles are few, the
function works properly, while, if the obstacles are quite a lot (for instance, 10
obstacles), the function requires to much time to compute the border of the merged
obstacles and the common reference point. This represents a huge bottleneck: this
function is very important, especially in the situations that this project wants to
deal with. The detected obstacles are enlarged and they might collide, without
this functions, discontinuities in the DS might arise, causing wrong behaviours.
Nevertheless, in many of the tests that will be conducted, this function will not
be used because of the timing constraints: the control algorithm has to run in
real-time and the above mentioned function slows down the computation so much
that a real-time implementation is not possible.
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In addition, another important problem that has emerged in the tests con-
cerns the impossibility to update the velocities of the obstacles. This information
is used by the modulation algorithm to take into account the movement of the
robots and act accordingly. Without this knowledge, the performance of the mod-
ulation algorithm is therefore reduced. Consequently, the information about the
obstacles’ speed computed using the algorithm described in Section 7.3 are not used.

For all the tests, unless differently stated, the parameters and the features used
are:

• Control frequency fDS = 20Hz;

• Time step dt = 0.05;

• Number of obstacles K = 10;

• Additional obstacle to take into account the target for the modulation;

• Maximum number of iterations max_iter = 20;

• Number of runs of the K-means n_init = 3;

• Fusion distance dfuse = 0.7m;

• Obstacle typology ’spherical’;

• Filter time for the obstacles’ velocities Tfilter = 15;

• Low level controller typology: non-linear MPC with velocity control;

• Horizon time N = 7;

• Robot radius rrobot = 0.3m

• Safety margin Ôsafe = 0.2m
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Test 1

The aim of this first test is to prove that the computation time is unusable on
the robot if the function update_reference_points() is active. The time needed to
process that function is included in the computation time of the K-means, since it
is used to model the obstacles.

As said above, the target is simulated and acts as the K + 1 obstacle. Its shape
is circular with radius rtarget = 0.3m, that gets enlarged using the Equation:

rtarget = rtarget + rrobot + Ôsafe (8.1)

The target starts from position ξtar = [−6.,−4.]T and its dynamics is described by
the Equations 8.2 and 8.3.

ξ̇tar =
C

0.3 + 0.2 ∗ cos(0.3 ∗ t)
0.3 + 0.2 ∗ sin(0.3 ∗ t)

D
(8.2)

If
...ξ̇ref

... > maxds, with maxds = 0.5m/s

ξ̇ref = maxds ·
ξ̇ref...ξ̇ref

... (8.3)

The attractor ξa is computed using the methodology described in Section 5.10
and the constants used in Equation 5.33 are

• kattr = 3

• krep = 6

All the modelled obstacles have a circular shape with radius given by Equation
7.37 here reported

rO = max(ëcentroid− cluster_pointsë)

That are then enlarged using Equation:

rO = rO · 1.1 + rrobot + Ôsafe (8.4)

The radius computed with the K-means is multiplied by 1.1 in order to take
into account the errors caused by the LIDARs’ noise and avoid modelling a smaller
obstacle than it really is.

The initial robot pose is ξ = [−5.,−4., π/2]T and the gain matrices used for the
non-linear Model Predictive Control with Velocity control are:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (8.5)
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qθ = 1 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(8.6)

Using such matrices suggests that the most important thing for the robot to do
is following the velocity vector. As a matter of fact qV x = qV y > qθ, that implies
that the nMPC controller gives more importance to the velocity reference, rather
then to the heading angle reference.

In Section 6.5 we have seen how to produce the heading angle reference for the
robot: we can choose between the angle of the desired velocity vector, the angle of
the target’s velocity or a combination of the two using the Sigmoid function. Ideally,
choosing a qθ smaller than the others gains implies that the robot should try to fol-
low the reference, but with not too effort. Consequently, this could be useful if used
with the second typology of heading angle reference, i.e. the the angle of the target’s
velocity, because the robot aims to keep the same heading angle of the target, but
if it is needed, it can differ in order to avoid an obstacle. Therefore, the heading
angle reference is given by the target velocity, which is totally know at every instant.

The results of the simulation are shown in Figures 8.1, 8.2, 8.3 and 8.4. The
first one illustrates the path covered by the robot and the angle compared with the
desired one. The first thing that emerges is that for almost a half of the simulation,
the heading angle of the robot is way different with respect to the reference. This is
not necessarily an error, because this might occur during the obstacle avoidance. In
this case though, the behaviour of the robot is completely wrong, as shown in Figure
8.4. The four images display different time instants at 0.75 seconds one from the
other; in Figure 8.4(a) the robot is following the target and an obstacles is in front of
the robot. After 0.75 seconds the robot collide with the obstacle as shown in Figure
8.4(b). Due to the repulsive force inside the area of the enlarged obstacle, the robot
is pushed away (Figure 8.4(c)) , but its heading angle is the opposite of the desired
one; moreover, from that position it would be difficult for the robot to see the
target. In conclusion, the robot then starts moving backwards to reach the attractor.

The behaviour above illustrated can not be used in the real implementation,
even if the control inputs constraints are observed, as displayed in Figure 8.3.

Another aspect that is worth to mention concerns the computation time of
the K-means algorithm and of the nMPC optimization. Figure 8.2 illustrates
both of them: the time required to optimize the control inputs and generate a
feasible control action respects the limit of 0.05s. On the contrary, the computation
time for the K-means, which includes also the time necessary to run the function
update_reference_points(), is in the order of tenths of a second: completely unusable
for a real time application.
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(a) Path (b) Angle comparison

Figure 8.1: Simulated Target - Test 1

(a) Computation time K-means

(b) Computation time nMPC

Figure 8.2: Simulated Target - Test 1 - Computation Time
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(a) Control inputs

(b) Control inputs derivative

Figure 8.3: Simulated Target - Test 1 - Control Inputs
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(a) (b)

(c) (d)

(e)

Figure 8.4: Simulated Target - Test 1 - Simulation
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Test 2

In this second test, the same situation of Test 1 is presented, but in this case the
function update_reference_points() is not used. This means that at every time
instant, the reference point inside the obstacle coincide with its center.

The initial target position is again ξtar = [−6.,−4.]T , and its velocity vector ξ̇tar

is computed using Equations 8.2 and 8.3. The shape of the obstacle is the same as
in Test 1

The initial robot pose is ξ = [−5.,−4., π/2]T and the gain matrices used for the
non-linear Model Predictive Control with Velocity control are:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (8.7)

qθ = 1 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(8.8)

In this case, Figure 8.5 displays a different behavior with respect to the one
obtained from Test 1. The heading angle in this case is more similar to the desired
one ad this reflects also in the simulation shown in Figure 8.8. Also in this case
the images describe four instants spaced in time of 0.75 seconds. Differently from
the previous case, the robot is able to avoid the obstacles and track correctly the
target. Also the timing constraints are respected, as illustrated in figure 8.6: both
the K-means algorithm and the non-linear MPC requires less than 0.05 seconds to
run.

In conclusion, also the constraints on the control inputs are matched, as expected
thank to the non-linear MPC.
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(a) Path (b) Angle comparison

Figure 8.5: Simulated Target - Test 2

(a) Computation time K-means

(b) Computation time nMPC

Figure 8.6: Simulated Target - Test 2 - Computation Time
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(a) Control inputs

(b) Control inputs derivative

Figure 8.7: Simulated Target - Test 2 - Control Inputs
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(a) (b)

(c) (d)

(e)

Figure 8.8: Simulated Target - Test 2 - Simulation
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Test 3

From the Test 2 it appears that using the gain matrices

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (8.9)

qθ = 1 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(8.10)

in combination with the DS modulation, without the function update_reference_points()
that merges together the obstacles, produces very good results. Therefore, it sug-
gests that using a gain qθ smaller than qV x and qV y is a good idea. In order to
prove this hypothesis, another test is conducted.

The scenario is the same as in the previous two tests, but in this case the radii of
the obstacles are computed in a different way. The choice of this metrics is totally
arbitrary and it is described by the Equations:

rO = max(ëcentroid− cluster_pointsë)

rO =
√

rO + rrobot + Ôsafe (8.11)

Setting the initial target position as ξtar = [−6.,−4.]T and the initial robot pose
as ξ = [−5.,−4., π/2]T , and using Equations 8.2 and 8.3 for the dynamics of the
target, the results are illustrated in Figures 8.9, 8.10, 8.11 and 8.12.

(a) Path (b) Angle comparison

Figure 8.9: Simulated Target - Test 3
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As in Test 1, the robot goes on the enlarged obstacle. This situation should be
avoided for two reasons:

1. The robot inside the obstacle represents a potential dangerous situation, due
to the possibility of collisions;

2. The modulated DS is not continuous on the border of the obstacle, which means
that the desired velocity changes suddenly. The non-linear MPC can force the
robot to respect the constraints on the velocity and of the accelerations, but
the overall behavior can be compromised.

(a) Computation time K-means

(b) Computation time nMPC

Figure 8.10: Simulated Target - Test 3 - Computation Time

Nevertheless, the safety margin Ôsafe is introduced precisely for this reason: if
the robot crosses the boundary of the enlarged obstacle, there is sufficiently space
to avoid a collision. The four instants in Figure 8.12 show that the repulsive
force produced by the obstacles forces the robot to rotate abruptly (respecting
the constraints). Having a small qθ allows the robot to rotate despite the desired
heading angle, but this produces as drawback the behaviour described in Figure:
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the robot prefers to move backwards rather than rotate, because it is easier for it
following the desired velocity.

As a matter of fact, Figure 8.9 displays the differences between the real heading
angle and the desired one, showing that the robot moves backwards until it reaches
the attractor and then rotates.

Such a behavior has to be avoided because it is not comfortable at all for the
users to move backward, especially if they are trying to follow a friend.

In spite of the results obtained, the single sub-algorithms that compose the
control algorithm show again good results. The control inputs are able to respect
the constraints even if the sudden change in the velocity direction caused by the
discontinuity on the obstacles’ border. Moreover, both the K-means algorithm and
the non-linear MPC are fast enough to respect the timing contraints.

(a) Control inputs

(b) Control inputs derivative

Figure 8.11: Simulated Target - Test 3 - Control Inputs
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(a) (b)

(c) (d)

(e)

Figure 8.12: Simulated Target - Test 3 - Simulation
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Test 4

From the previous tests it has emerged that using a value for qθ quite smaller than
qV x and qV y does not produce a good behaviour for the robot, because the heading
angle can be very different from the desired one. Hence, this test implements
different gain matrices:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (8.12)

qθ = 4 qV x = 8 qV y = 8 R =
C

0.5 0
0 1.5

D
(8.13)

The shape of the obstacles is computed using the Equations:

rO = max(ëcentroid− cluster_pointsë)

rO = rO · 1.1 + rrobot + Ôsafe (8.14)

Equations 8.2 and 8.3 describe the dynamics of the target, that starts from
position ξtar = [−6.,−4.]T . The initial pose of the robot is, as in the previous tests,
ξ = [−5.,−4., π/2]T .

(a) Path (b) Angle comparison

Figure 8.13: Simulated Target - Test 4

161



High Level Control, Low Level Control and Detection Algorithm integration

Also in this simulation, the robot enters into one of the obstacles, as displayed in
Figure 8.16. Differently from the previous examples, though, the control algorithm
does not make the robot rotate suddenly. In this case, the heading angle tries to
track the desired heading angle in a stronger way. Thanks to that, the robot brakes
when it enters the obstacle, as displayed in Figure 8.14, where a steep deceleration
can be noticed. Then it goes backward a bit and starts again to follow the target,
while avoiding the obstacles. Moreover, always in Figure 8.14, the acceleration
signals have a nicer shape with respect to the previous tests. This translate into a
better experience for the users.

(a) Control inputs

(b) Control inputs derivative

Figure 8.14: Simulated Target - Test 4 - Control Inputs

Also in this simulation, the timing constraints are respected as shown in Figure
8.16. An interesting aspect concerns the computation time of the non-linear MPC;
it requires more time in correspondence of the collision with the obstacle. Of
course, this is expected mainly because the non-linear MPC uses information of
the past control actions to produce the control inputs; the previous control actions
depend on the velocity reference, that are guaranteed to be continuous outside the
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obstacles. When the robot enters in the area of the enlarged obstacle, the velocity
reference is totally different from the previous one, therefore, the nMPC requires
more time to optimize the control inputs.

(a) Computation time K-means

(b) Computation time nMPC

Figure 8.15: Simulated Target - Test 4 - Computation Time
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(a) (b)

(c) (d)

(e)

Figure 8.16: Simulated Target - Test 4 - Simulation
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Test 5

It is worth to test the same control algorithm in the same situation, using the
Sigmoid function to generate the desired heading angle. In all the previous tests,
the desired heading angle was given only by the direction of the target, but as we
already saw, the contribution given by the modulated velocity, especially in the
presence of obstacles or far from the attractor, can be very relevant. Therefore, in
this test we will focus mainly on the robot beahviour, rather than on the control
inputs or the computation time, since it is clear from the previous tests that all
the constraints are observed.

The initial target position is again ξtar = [−6.,−4.]T , while the initial robot pose
is ξ = [−5.,−4., π/2]T . Equations 8.2 and 8.3 describe the dynamics of the target.

The gain matrices are:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (8.15)

qθ = 4 qV x = 8 qV y = 8 R =
C

0.5 0
0 1.5

D
(8.16)

(a) Path (b) Angle comparison

Figure 8.17: Simulated Target - Test 5
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The behaviour is very similar to the previous test: the robot is not able to
avoid immediately the obstacle in front of it. Firstly, the robot crosses the obstacle
border and then the repulsive force pushes it away. This is mainly caused by two
reasons:

1. the function that updates the reference points inside the obstacles is not used,
therefore if the obstacles overlap, the modulation is not able to guarantee the
obstacle avoidance.

2. the Sigmoid function generates the weights for the angle obtained from the
modulated velocity direction and the angle of the target velocity. When
the robot is near the attractor, the weight of the target velocity is bigger
then the other, therefore the contribution given by the modulation is almost
negligible, causing the robot to go straight into the obstacle until the attractor
is far enough to allow the angle obtained by the modulated velocity to be the
reference angle.

Of course, this behaviour presents some benefits when there are no obstacles
and the robot has just to follow the target. In that case, using the Sigmoid function
or directly the target’s velocity as reference produces a very nice behaviour that
can not be obtained using the modulated velocity for the reference angle.
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(a) (b)

(c) (d)

(e)

Figure 8.18: Simulated Target - Test 5 - Simulation
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8.2 Detected Target
The previous tests described a scenario in which the target was simulated and all its
characteristics were totally known. In this section, the target will be chosen among
the detected obstacles, using the information obtained by the people detection
algorithm, already implemented on the robot. The procedure its straightforward
and it is illustrated in Algorithm 13. The output of this algorithm is simply the
label that identify an obstacle as the target and, until the robot is able to track
that particular obstacle, it is able to identify it as the target.

Knowing the obstacle that acts as target, we have also the information on
its velocity; therefore, it is possible to apply the same algorithm used with the
simulated target. The following tests will describe the behaviour of the QOLO
robot in this scenario.

Algorithm 13 Target choice
1: ó Initialize the flag attractoron that tells us if the target has been identified
2: attractoron ← 0
3: ó Initialize the variable attractorlab that stores the value of the target label
4: attractorlab ← 0
5: while System is working do
6: if attractoron == 0 then
7: ó Compute the distances between the K-means centroids and the cen-

troids obtained with the people detection algorithm Dcentroids−people

8: ó attractorlab stores the label of the minimum distance
9: attractorlab ← where(min(Dcentroids−people))

10: attractoron ← 1
11: else
12: ó Check if the target still exists
13: if Obstacle(attractorlab) does not exists then
14: ó Reset the variables
15: attractoron ← 0
16: attractorlab ← 0
17: end if
18: end if
19: end while
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Test 1

A clarification is needed before analyzing the results of this tests: the situation here
described is quite unrealistic because the data points obtained during the record
session describe three people that move randomly around the robot. It would be
necessary to test the robot in real-time using the real data points while the robot
is moving to verify the actual functionality of the whole system. Nevertheless, this
test can help us understanding some of the issues that may arise using this algorithm.

The initial pose of the robot is, as in the previous tests, ξ = [−5.,−4., π/2]T .
The Sigmoid function is used to compute the heading angle and the gain matrices
here used are:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (8.17)

qθ = 4 qV x = 8 qV y = 8 R =
C

0.5 0
0 1.5

D
(8.18)

(a) Path (b) Angle comparison

Figure 8.19: Detected Target - Test 1
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Figure 8.19 and Figure 8.20 display the behaviour of the robot that tries to reach
the attractor. The robot is not able to go straight until it reaches the attractor or
meets an obstacle: it tends to steer even if it is not necessary.

What emerges is that the algorithm that computes the heading angle, in this
situation can not be used with the given gain matrices. The reason is that, far
from the attractor, the heading angle is given by the direction of the modulated
velocity, but it also depends on the heading direction of the target. As explained
in Section 6.5, the equations that determine the reference heading angle are:

θtarget = arctan2(ẏtarget, ẋtarget)

θmod = arctan2(ẏ, ẋ)

If ëθmod − θtargetë > π
2 , θmod = −θmod

θref = θmod ·
1

1 + e−s·d + θtarget ·
1

1 + es·d (8.19)

Since in this simulation, the target changes direction very rapidly, the angle
θmod changes sing quite often, causing the robot to steer uselessly.
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(a) (b)

(c) (d)

(e)

Figure 8.20: Detected Target - Test 1 - Simulation

171



High Level Control, Low Level Control and Detection Algorithm integration

Test 2

This second test aims to verify the assumption on the heading angle done in the
previous test. For this reason, the same scenario is repeated, but in this case, the
gain matrices are:

Gθ = q2
θ GV x = q2

V x GV y = q2
V y Gu = R ·R (8.20)

qθ = 1 qV x = 10 qV y = 10 R =
C

0.5 0
0 0.5

D
(8.21)

We have already seen that these matrices give more relevance to the velocity
vector, rather than the desired heading angle; therefore, the expected behaviour
should be more consistent and smooth in the first part, but this method may cause
the robot to go backwards in other situations, as illustrated in Section 8.1 Test 3.

Figure 8.19 and Figure 8.20 display the behaviour of the robot that tries to
reach the attractor. In this case, as expected, the robot reaches smoothly the
target. The main problem is, of course, linked to the movement of the target itself,
that rotates too much, forcing the robot to move in a very uncomfortable way.

Nevertheless, as said at the beginning of this Section, the scenario here presented
is not very realistic, but it is very useful to understand the main limits of this
algorithm and the scenarios that should be avoided.

(a) Path (b) Angle comparison

Figure 8.21: Detected Target - Test 2
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(a) (b)

(c) (d)

(e)

Figure 8.22: Detected Target - Test 2 - Simulation
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Chapter 9

Conclusions, limits and
future development of the
work

The thesis project described in the previous Chapters has proved to have achieved
several good results. As first thing, the addition of the attractor’s velocity in the
modulation algorithm, described in Chapter 5, represents a novel feature that can
be used to better model a dynamic environment. Using the DS modulation alone,
with a moving attractor, allow us to obtain local information on the needed velocity
to reach the attractor, taking also into account its the movement. This feature acts
as a predictive characteristic that anticipate the future behaviour of the target.

Another interesting aspect that emerges from this project concerns the dynamic
of the local moving attractor, described in Section 5.10. It is a procedure that
allows an attractor to move around a defined target depending on the presence of
the obstacles in the environment. It is a useful tool that helps the modulation and
therefore the robot, to avoid inconvenient situations in which the attractor goes
inside an obstacle, even if there could be enough space behind the target to avoid
the obstacle.

In addition, the study of the non-linear Model Predictive Control with velocity
control, as illustrated in Section 6.5, represents another excellent achievement of
this work. Differently from other control algorithms used for the unicycle, some
of which also tried during the project, this controller does not use a position as
reference, but a velocity. It also uses the desired heading angle, but this is an
addition to force the robot to move facing a desired direction. The real interesting
aspect is the possibility to impose a desired behavior to the unicycle, in this case
the reference velocity, while including in the computation the kinematics of the
robot and all the constraints that we can think about. In particular, in this project

174



Conclusions, limits and future development of the work

the non-linear MPC has been exploited to guarantee that the control inputs would
observe the limits imposed by the robot structure, such as the maximum speed
and acceleration allowed by the motors, and that the overall experience of the
users would be as comfortable as possible. The main drawback of that controller
is the computation time: a longer prediction horizon could improve the system
performances, avoiding unnecessary overshoots in the control inputs, but it requires
a considerable computation effort.

Another good characteristic of the algorithm here developed is its versatility.
The three sub-algorithms can work independently one from the other, therefore, if
a better Low level controller was developed, it would be possible to remove the
non-linear MPC and add a new Low level controller quite easily. Moreover, it would
be possible to change completely the system: the robot taken into account for the
thesis can be modeled as a unicycle, and the Low level controller deals with this
kinematics. However, the algorithm developed in this work can be adapted also to
other kinematics, for instance to a bicycle kinematics. The High level controller
and the Obstacle detection algorithm would be the same, and it would be necessary
to modify only the Low level controller in order to include the the new kinematics
and the new constraints.

As for the obstacle detection algorithm, the results obtained with the K-means
algorithm seems very promising, both from the point of view of the performance and
from the point of view of the computation time. One of the limits of the algorithm
already implemented on the robot is the computation time itself: it requires too
much time to be used in a real-time scenario. The algorithm developed in this
project is for sure faster and lighter, also because it does not use any information
from the 3D cameras, but exploits only the raw data from the LIDAR sensors.
The main limitation is therefore that it can not be used to distinguish the people
from the other elements in the environment, such as walls or other static obstacles.
Nevertheless, the aim of the thesis work was to identify a method to be used on
people, hence, the results, obtained by the K-means algorithm in an environment
where only people were present, are more than satisfying.

Considering all the sub-algorithms and how they work together, it is possible
to assert that the objective of the development of a DS-based control has been
achieved. No planning strategies are used to compute the control inputs for the
system and only local information are needed to produce such actions. Neverthe-
less, it is worth to mention that the Low level controller, and in particular the
non-linear MPC, acts as a filter for the control inputs because it is able to im-
pose acceleration constraints between the previous control inputs and the next ones.

Despite the several benefits obtained during the Master Thesis work, some issues
must still be solved and some inaccuracies in the control strategy have to be better
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tackled.
A first aspect to point out is for sure the impossibility, for the control strategy,

to take into account, in advance, the non-holonomic constraints. This affects the
obstacle avoidance performance because the DS-modulation is applied on the center
of the robot as if it was a mass point; from the point of view of this point, certain
actions to avoid the obstacles can be taken quite near the border. Of course,
changing the direction when the obstacle is quite close or when the obstacle shape
change constantly (due to the obstacle detection algorithm), can be a problem
for a robot that has non-holonomic constraints, other then speed and acceleration
constraints. Due to the delay in the reaction of the robot, this one can cross the
border of the obstacle. As explained in the previous chapters, it should not be
a problem because we are considering enlarged obstacles with a safety distance
that allows the robot to brake. Nevertheless, the main issue of the robot that
crosses the obstacle border is the discontinuity of the DS. This is actually a huge
problem because the desired velocity produced by the High Level Controller changes
abruptly, forcing the Low Level Controller to produce control inputs that push
away the robot without considering the presence of the attractor.

In order to solve this problem, the future developments of this project will focus
on the production of a modulated DS without discontinuities. In such a way, even
if the robot enters in the area defined by the obstacles, it is pushed away in a
continuous way and the attractor reference is not lost. A possible solution could
be to use the Gaussian Mixture Model to shape the obstacles and exploits the
information on the probability distribution of the obstacles to compute a continuous
modulation. In this way it could be possible to avoid the definition of the obstacles’
border and therefore, to produce a smoother behaviour and a more consistent
control action that relies on the robot’s sensors.

Implementing such a solution would require to use a GMM algorithm for the
obstacle detection, rather then the K-means here implemented. Chapter 7 describes
which are the main difficulties of this strategy, but further researches could find
a feasible solution for a dynamic environment, without the need of a serious
computation effort.

Finally, we have seen that the choice of the reference heading angle can be a
non-trivial task, that can cause minor problems when the robot is very close to the
attractor and an obstacle approaches. For sure, using a continuous modulated DS
would improve also this characteristic of the algorithm, especially considering that
the main issues related to the angle definition have emerged when the robot goes
inside an enlarged obstacle, causing the reference angle to change suddenly.
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