

POLITECNICO DI TORINO
Corso di Laurea Magistrale

in Ingegneria Elettronica

Tesi di Laurea Magistrale
Differences between CUDA and OpenCL through a SAR focusing system

Relatore Candidato

Prof. Claudio Passerone Ten. Ing. Alberto Matta

Anno Accademico 2019/2020

A mia moglie,

per il continuo e fondamentale sostegno che mi ha dato, senza la quale non

avrei raggiunto questo risultato. Lei è la ragione che mi spinge sempre a migliorarmi.

Index

Introduction 1

Chapter one: GPUs

1.1 Introduction 2

1.2 GPU Architecture 3

1.3 CPU vs GPU 5

1.4 GPGPU 7

1.5 Stream Processing 10

1.6 The future and challenges 14

Chapter two: CUDA and OpenCL

2.1 Introduction 17

2.2 CUDA 17

2.2.1 CUDA development model 22

2.2.2 CUDA toolchain 22

2.2.3 C for CUDA kernel programming 23

2.3 OpenCL 24

2.3.1 OpenCL development model 30

2.3.2 OpenCL toolchain 30

2.3.3 C for OpenCL kernel programming 30

Chapter three: CUDA vs OpenCL

3.1 Introduction 32

3.2 Work environment 34

Chapter four: SAR focusing system

4.1 Introduction 54

4.2 SAR (Synthetic Aperture Radar) 54

4.3 History 54

4.4 The SAR system analyzed 56

4.5 How it works 57

4.6 How SAR pictures the world 62

Chapter five: porting CUDA to OpenCL in SAR focusing system

5.1 Introduction 66

5.2 The initial work 66

5.3 Achievable improvements 78

5.3.1 Porting CUDA to OpenCL 78

5.3.2 Modifying the code 93

Conclusion 96

References 97

1

Introduction

The aim of this work is to highlight the differences and the similarities between two different

platforms for GPUs’ coding, CUDA (Compute Unified Device Architecture) and OpenCL (Open

Computing Language). The work will be explained further through a practical example, exposing

how the code of an actual SAR (Synthetic Aperture Radar) focusing system is organized and showing

the highlights and weaknesses of such system in comparison to a different coding of the same system.

In conclusion, the main key points of the two different approaches applied to the SAR focusing system

will be analyzed.

Currently, both platforms are largely used and each of them has its highlights and weaknesses,

so they are both used but for different aims and targets. The SAR focusing system which will be

analyzed is written in CUDA, and an OpenCL code for it has not been written yet.

In this work I will show why and when it is better to choose one platform or the other, and I

will show which solutions have to be made to porting the CUDA code to OpenCL code for the SAR

focusing system.

Firstly, I will talk in a general way about GPUs, to better frame the topic of interest.

Secondly, I will present in a deeper way the two different platforms, CUDA and OpenCL.

Thirdly, I will compare the two platforms, showing their highlight and weaknesses, and why

and when it is better choosing one or the other.

Fourthly, I will talk in a general way about the SAR focusing system, to better understand the

example and in such a way to better explain the following step.

Fifthly, I will talk about how to porting the SAR focusing system’s CUDA code in OpenCL

code and why doing it could be useful, and why not.

2

Chapter one: GPUs

1.1 Introduction

A GPU (Graphics Processing Unit) is a specialized electronic circuit designed to rapidly

calculate high intensive tasks (as arithmetic ones) in parallel. It is present in very different scenarios,

such as embedded systems, personal computers, smartphones, game consoles and workstations. The

main reason to the rising presence and importance of GPUs is that they are very efficient in doing

high stressful parallel computations; a CPU (Central Processing Unit) doing the same task will take

a lot of more time to achieve the desired results.

The first GPU models were introduced in the seventies, mainly for gaming purposes, in a form

of specialized graphic circuits. The term GPU was introduced by Sony in 1994, in reference to their

32 bit graphic unit (designed by Toshiba) which is part of the PlayStation gaming console. The GPUs

obtained a boost in their performance and utilization starting from the new century. The main actor

of this rising in importance is Nvidia, which in 2007 released the CUDA platform, the very first

widely adopted programming model for GPU computing. The problem with CUDA was that Nvidia

GPUs were the only ones that could run on CUDA, so Nvidia had the monopoly of GPUs. Nowadays,

OpenCL, released in 2009 from Khronos Group, is broadly supported. OpenCL is an open standard

which runs on both CPUs and GPUs of different vendors, so its main feature is the portability. Intel,

AMD, Nvidia and ARM cards are supported, in such a way that OpenCL became the first competitor

of CUDA in GPUs programming.

At the very beginning, GPUs job was intended for graphic processing purposes only. Through

the years, CPUs became more powerful and with a lot of more transistors, more or less following the

Moore’s Law, which says that every two years the number of transistors in a dense IC (integrated

circuit) double up. This is an empirical law, based on observation of an historical trend. So, the

transistors became smaller and smaller (nanometric order of magnitude), to be able to have more and

more of them on the same IC (billions of transistors are present in modern ICs). In addition to that,

the traditional way of improving performance by increasing the microprocessor core clock frequency

leaded to an increase of the energy consumption. The greatest problem with the above solution is the

dissipation of heat: such a concentration of transistors and the increased clock rates lead to a very hot

environment, which is difficult to cool down and dissipate, especially in consumer products with very

tight cost constraints. The heat leads to other problems, such as anomalous behaviors from the IC or

anomalous power consumptions. For these reasons, the market trend has changed and multicore

processors ICs became the most popular solution. Instead of adding more transistors on the same IC,

3

this solution aims to rising the number of CPUs, called cores, in such a way to have an increase in

speed mostly for multithreading and parallel computing techniques. In this scenario, GPU become

more popular not only for graphic purposes, but also for high intensive computational ones. In fact,

GPUs have a lot of space dedicated to arithmetical computations respect to CPUs, and they show a

very big speed up in operations that requires such abilities. For this reasons, GPU which are used not

only for graphic processing tasks are called GPGPU, which stands for General Purpose GPU. In the

environment in which we work there are one or more CPUs, which have to communicate and

collaborate among them, and one or more GPUs, which have to do the hard work to speed up the

required operations. CPUs maintain the control of the environment, while the GPUs are directed on

high parallel computational problems. So, the CPU is called host, while the GPU is called device.

1.2 GPU Architecture

Nowadays, GPUs communicate with the CPU through PCI-Express. Earlier generations used

AGP (Accelerated Graphics Port), which is an extended version of the original PCI I/O bus. Graphics

applications use OpenGL (Segal and Akeley, 2006) or Direct3D (Microsoft DirectX Specification)

API (Application Programming Interface) functions, which is a computing interface that defines

interactions between multiple software, that use the GPU as a coprocessor. The APIs send a variety

of commands, instructions, and data to the GPU through a graphic device driver optimized for the

particular GPU which is used. The graphics logical pipeline is described in the following image. It

consists of different stages, which will be described below.

Figure 1.1 Graphics logical pipeline

An artificial image is synthesized from a model consisting of:

- Geometric shapes and appearance descriptions (color, surface, texture, …) for each

object in the scene

- Environment descriptions, such as lighting, atmospheric properties, …

The result of the synthesis is a 2D representation.

Vertex shader consists in transforming a 3D polygonal (triangle) representation of the object’s

surface to a 2D projection of triangles (translations, rotations and scaling are used). Output vertices

4

also include attributes, like color and surface orientation. So, we have a stream of vertices in 3D space

as input and vertices positioned on screen as output.

Geometry shader consists in assembling vertices into primitives. Additional operations, such

as clipping primitives, are performed to avoid downstream processing that will not contribute to

image. So, we have independent vertices in 2D as input and vertices grouped into primitives as output.

Setup & rasterizer consists in converting each 2D triangle to a collection of pixel fragments,

corresponding to a discrete sampling of the triangle over a uniform grid. Other operations are

performed, such as compute covered pixels, sample vertex attributes and generate a parametric

description of the triangle. So, we have triangles positioned on the screen as input and pixel fragments

as output.

Pixel shader consists in processing each pixel fragment to compute a final color value

(shading). This also include geometric or appearance descriptions related to both object and

environment (e.g. texture mapping to determine material properties or lighting). So, we have

fragments as input and shaded fragments as output.

Finally, resulting shaded pixel fragments are written to a buffer (frame buffer), where depth

buffering is used to determine whether one fragment is closer to the viewer than another at a specific

pixel location (occlusion).

Unified GPU architectures, like the one described above, are based on a parallel array of many

programmable processors, unlike their predecessors which had separate processors, each one

dedicated to different processes. They unify all the shader processes described before and parallel

computing on the same processors. The programmable processor array is firmly integrated with fixed

function processors for texture filtering, rasterization, raster operations, anti-aliasing, compression,

decompression, display, video decoding, and high-definition video processing. These fixed-function

processors significantly outperform more general programmable processors in terms of absolute

performance constrained by area, cost, power budget. In contrast to multicore CPUs, manycore GPUs

are construct in a different architectural way, almost focused on executing many parallel threads

efficiently on many processor cores. For that reason, in GPUs are present many simpler cores,

optimized for data parallel computing among groups of threads. So, while CPUs transistor budget is

balanced among computation, on-chip caches and overhead, GPUs transistor budget is mainly

devoted to computation. Such a multitude of cores are typically organized into multithreaded

multiprocessors, so many processors which each one able to provide multiple threads of execution

concurrently.

5

1.3 CPU vs GPU

Let’s take some initial considerations about these two different processors from one of the

major vendors in that field, Intel[1]. Directly from its website we can make ourself a general idea about

the main differences between CPUs and GPUs.

Constructed from millions of transistors, the CPU can have multiple processing cores and is

commonly referred to as the brain of the computer. It is essential to all modern computing systems as

it executes the commands and processes needed for your computer and operating system. The CPU

is also important in determining how fast programs can run, from surfing the web to building

spreadsheets.

The GPU is a processor that is made up of many smaller and more specialized cores. By

working together, the cores deliver massive performance when a processing task can be divided up

and processed across many cores.

These two processors have a lot in common: both are critical computing engines, both are

silicon-based microprocessors, both handle data. But CPUs and GPUs have different architecture and

are built for different purposes. The CPU is suited to a wide variety of workloads, especially those

for which latency or per-core performance are important. A powerful execution engine, the CPU

focuses its smaller number of cores on individual tasks and on getting things done quickly. This makes

it uniquely well equipped for jobs ranging from serial computing to running databases. GPU began

as specialized ASICs developed to accelerate specific 3D rendering tasks. Over time, these fixed

function engines became more programmable and more flexible. While graphics and the increasingly

lifelike visuals of today’s top games remain their principal function, GPUs have evolved to become

more general purpose parallel processors as well, handling a growing range of applications.

To better understand how CPUs and GPUs are actually made we can have a look to both their

architectures in the following figure, where there are the highlighted main differences between the

two processors.

[1] © Intel Corporation, “CPU vs. GPU: Making the Most of Both”, “CPU vs. GPU: What’s the Difference?”,

https://www.intel.com/content/www/us/en/products/docs/processors/cpu-vs-gpu.html

6

Figure 1.2 CPU and GPU architectural comparison

As we can see, the control and cache parts in the GPUs are undersized to exploit the

computational parts, so the ALUs, due to the fact that GPUs and CPUs tasks are different and they

give their best combined together. We can analyze in a deeper way the difference between the two

electronic circuitries to have a better general overview and understanding:

- Latency intolerance vs latency tolerance

o CPUs are low latency low throughput processors

o GPUs are high latency high throughput processors

o This differences better highlight the two tasks of CPUs and GPUs; the first

have to be very responsive, so they have large caches to minimize the latency,

while the latter have to compute a lot of parallel data concurrently, so they have

a lot of ALUs to maximize the throughput

- Multithreaded cores vs SIMT (Single Instruction Multiple Threads) cores

o In CPUs there are multiple tasks for multiple threads, while GPUs are based

on SIMD (Single Instruction Multiple Data), so the same instruction operates

on many different data

o In CPUs there is a few number of heavy threads running on cores, while in

GPUs there is an high number of lightweight threads running on cores

o For the same chip size, GPUs can have a lot of additional ALUs thanks to the

absence of branch prediction units, speculative units, out-of-order units and

smaller cache sizes. GPUs do not need those units, but they have to be efficient

in what they do: computation.

7

- Task parallelism vs data parallelism

o In CPUs, different instructions operate on different tasks

o In GPUs, the same instruction operates on different data

1.4 GPGPU

The term GPGPU (General Purpose computing on GPU) is the use of a GPU for high parallel

tasks computation. So it can be considered as the exploit of the characteristics of a GPU, which

traditionally was used to handle computations for only computer graphic applications, to perform

computations which were usually handled by the CPU. In this way, the CPU is able to have less heavy

work which takes a lot of time to be completed, giving it to the GPU which employs a lot less time

to complete the same work. The combined use of a CPU with a GPU (or more than one GPU) has

been proved to provide a lot of advantages in terms of performance and throughput. The use of GPUs

as GPGPUs became a reality around 2001, with the advent of programmable shaders and floating

point support on graphic processors. Problems which involved matrices and vectors (of different

dimensions) were easy to translate to a GPU, and the scientific computing community decided to use

GPUs to boost some operations which were computed by the CPUs. This change in analyzing the

computational problems required to reformulate them in terms of graphic primitives, in such a way

to allow the GPUs to handle them. This operation was required due to the fact that, at the beginning,

the two major APIs for graphic processors were OpenGL and DirectX, which were not able to handle

codes in different ways than graphic ones. These APIs were followed by CUDA, which allowed the

programmers to ignore the underlying graphical concept to adopt an high performance computing

concept, in such a way that modern GPGPUs can make use of the speed of a GPU without needing

full and explicit conversion of the data in graphical form. GPGPUs are written through a framework,

such as CUDA or OpenCL, which allows to the code running on a CPU to poll a GPU shader for

return values.

GPUs aim is oriented for graphic purposes, so they are very limited in operations and

programming; for such a reason, they are only effective for problems which can be solved using

stream processes and the hardware has to be set and utilized in specific ways. This stream processing

nature of GPUs was valid in the past, with older APIs (OpenGL and DirectX), as much as it is today

with modern APIs (CUDA and OpenCL), despite the change in programming, i.e. it is no longer

needed to map the computation into graphic primitives. GPUs use stream processing (so they are

called also stream processors, which are processors that can operate in parallel by running one kernel

8

on may records in a stream at once) because they can only process independent vertices and

fragments, but they can do it with many of them in parallel, which become a winning way of work

when is needed to process many vertices or fragments in the same way. A stream is a set of records

which require similar computation processes, and, for their nature, they provide data parallelism. A

kernel is a function which is applied to each element in the stream. To be better understandable, in

GPUs vertices and fragments are the elements in streams and vertex and fragment shaders are the

kernel which run on them. So, in GPGPUs is important to have an high arithmetic intensity (defined

as the number of operations performed per word of memory transferred) to not limit the computational

speedup due to the memory access latency. Ideal characteristics are then large data sets, high

parallelism, minimal dependency between data elements.

Due to the evolution of GPUs into GPGPUs, so with different aims from graphical ones (GPUs

are anyway used also for them), their area of work has expanded in the last years. In particular, GPUs

and GPGPUs are used in:

- Automatic parallelization

- Computer clusters or a variant of a parallel computing

o High performance computing clusters

o Grid computing

o Load balancing clusters

- Physical based simulation and physics engines

- Statistical physics

- Segmentation

- Level set method

- Ct reconstruction

- Fast Fourier transform

- GPU learning

o Machine learning

o Data mining

- K-nearest neighbor algorithm

- Fuzzy logic

- Tone mapping

- Audio signal processing

o Audio and sound effects processing to use a GPU for DSP

o Analog signal processing

o Speech processing

9

- Digital image processing

- Video processing

o Hardware accelerated video encoding and pre processing

o Hardware accelerated video decoding and post processing

▪ Motion compensation

▪ Inverse discrete cosine transform

▪ Variable length decoding

▪ Inverse quantization

▪ In-loop deblocking

▪ Bitstream processing

▪ Deinterlacing

▪ Noise reduction

▪ Edge enhancement

▪ Color correction

- Global illumination

- Geometric computing

- Scientific computing

o Monte Carlo simulation of light propagation

o Weather forecasting

o Climate research

o Molecular modeling on GPU

o Quantum mechanical physics

o Astrophysics

- Bioinformatics

- Computational finance

- Medical imaging

- Clinical decision support system

- Computer vision

- Digital signal processing

- Control engineering

- Operations research

- Neural networks

- Database operations

- Computational Fluid Dynamics

10

- Cryptography and cryptoanalysis

- Performance modeling

o Implementation of Message Digest Algorithm (MD6), Advanced Encryption

Standard (AES), Data Encryption Standard (DES), Rivest-Shaver-Adleman

(RSA), elliptic curve cryptography (ECC)

o Password cracking

o Cryptocurrency transactions processing

- Electronic design automation

- Antivirus software

- Intrusion detection

- Increase computing power for distributed computing projects

1.5 Stream processing

As mentioned in the previous sub-chapter, the GPUs (and so GPGPUs) use stream processing,

which is the reason behind the fact that they are also called stream processors. Stream processing is

a computer programming paradigm, which allows some applications to facilitate the exploit a limited

form of parallel processing and structures programs in a way that allows high efficiency in

computation and communication. These applications can use multiple and different computational

units, e.g. the floating point unit on a GPU or on a FPGA (Field Programmable Gate Array), without

explicitly managing allocation, synchronization, or communication among those units. The stream

processing paradigm simplifies parallel software and hardware by limiting the parallel computation

that can be performed. Given a sequence of data (called stream) of the same type, a series of

operations (called kernel functions) is applied to each element in the stream. Kernel function are

commonly pipelined, and optimal local on-chip memory reusage is attempted, in such a way to

minimize the loss in bandwidth, associated with external memory interaction. Uniform streaming, in

which one kernel function is applied to all elements in the stream, is commonly used. Since the kernel

and stream abstractions are susceptible to data dependencies, compiler tools can fully automate and

optimize on-chip management tasks. Stream processing hardware can use scoreboarding (a

centralized method for dynamically scheduling a pipeline so that the instructions can execute out of

order where there are no conflicts and the hardware is available), for example, to initiate a DMA

(Direct Access Memory) when dependencies become known. The elimination of manual DMA

management reduces software complexity, and an associated elimination for hardware cached I/O,

11

reduces the data area expanse that has to be involved with service by specialized computational units

such as ALUs (Arithmetic Logic Units). Stream processing consists of a tradeoff, driven by a data-

centric model that works very well for traditional DSP or GPU-type applications (e.g. image, video,

and digital signal processing) but that does not work with the same efficiency for general purpose

processing with more randomized data access (e.g. databases). By sacrificing some flexibility in the

model, the implications allow easier, faster and more efficient execution. Depending on the context,

processor designed may be tuned for maximum efficiency or a tradeoff for flexibility. Stream

processing is mostly suitable for applications that exhibit three application characteristics:

- Compute intensity, which is the number of arithmetic operations per I/O or global

memory reference. In many signal processing applications today it is well over 50:1

and increasing with algorithmic complexity

- Data parallelism, which exists in a kernel if the same function is applied to all records

of an input stream and a number of records can be processed simultaneously without

waiting for results from previous records

- Data locality, which is a specific type of temporal locality common in signal and media

processing applications where data is produced once, read once or twice later in the

application, and never read again. Intermediate streams passed between kernels as well

as intermediate data within kernel functions can capture this locality directly using the

stream processing programming model

Some examples of records within streams are:

- In graphics, each record might be the vertex, normal, and color information for a

triangle

- In image processing, each record might be a single pixel from an image

- In a video encoder, each record might be 256 pixels forming a macroblock of data

- In wireless signal processing, each record could be a sequence of samples received

from an antenna

For each record we can only read from the input, perform some operations on it, and write to the

output. It is allowed to have multiple inputs and multiple outputs, but it is never allowed to have a

piece of memory that is both readable and writable.

 In the stream programming model, applications are constructed by chaining multiple kernels

together. For instance, implementing the graphics pipeline in the stream programming model involves

writing a vertex program kernel, a triangle assembly kernel, a clipping kernel, and so on, and then

connecting the output from one kernel into the input of the next kernel. In the following figure it is

shown how the entire graphics pipeline maps onto the stream model. This model makes the

12

communication between kernels explicit, taking advantage of the data locality between kernels

inherent in the graphics pipeline.

Figure 1.3 Mapping the stream model

The graphics pipeline is a good match for the stream model for several reasons. The graphics

pipeline is traditionally structured as stages of computation connected by fixed data flow between the

stages. This structure is analogous to the stream and kernel abstractions of the stream programming

model. Data flow between stages in the graphics pipeline is highly localized, with data produced by

a stage immediately consumed by the next stage; in the stream programming model, streams passed

between kernels exhibit similar behavior. And the computation involved in each stage of the pipeline

is typically uniform across different primitives, allowing these stages to be easily mapped to kernels.

The stream model enables efficient computation in several ways. Most important, streams expose

parallelism in the application. Because kernels operate on entire system, stream elements can be

processed in parallel using data parallel hardware. Long streams with many elements allow this data

level parallelism to be highly efficient. Within the processing of a single element, we can exploit

instruction level parallelism. And because applications are constructed from multiple kernels,

multiple kernels can be deeply pipelined and processed in parallel, using task-level parallelism.

Dividing the application of interest into kernels allows a hardware implementation to specialize

hardware for one or more kernels’ execution. Special-purpose hardware, with its superior efficiency

over programmable hardware, can thus be used appropriately in this programming model. Moreover,

allowing only simple control flow in kernel execution (such as the data-parallel evaluation of a

function on each input element) permits hardware implementations to devote most of their transistors

to datapath hardware rather than control hardware. Efficient communication is also one of the primary

goals of the stream programming model. First, off-chip (global) communication is more efficient

when entire streams, rather than individual elements, are transferred to or from memory, because the

13

fixed cost of initiating a transfer can be amortized over an entire stream rather than a single element.

Next, structuring applications as chains of kernels allows the intermediate results between kernels to

be kept on-chip and not transferred to and from memory. Efficient kernels attempts to keep their

inputs and their intermediate computed data local within kernel execution units; therefore, data

referenced within kernel execution do not go off-chip or across a chip to a data cache, as would

typically happen in a CPU. And finally, deep pipelining of execution allows hardware

implementations to continue to do useful work while waiting for data to return from global memories.

This high degree of latency tolerance allows hardware implementations to optimize for throughput

rather than latency.

The stream programming model structures a program in a way that both exposes parallelism

and permits efficient communication. Expressing programs in the stream model is only half the

solution, however. High performance graphics hardware must effectively exploit the high arithmetic

performance and the efficient computation exposed by the stream model. The first strep to build a

high performance GPU is to map kernels in the graphics pipeline to independent functional units on

a single chip. Each kernel is thus implemented on a separate area of the chip in an organization known

as task parallel, which permits not only task level parallelism (because all kernels can be run

simultaneously) but also hardware specialization of each functional unit to the given kernel. The task

parallel organization also allows efficient communication between kernels: because the functional

units implementing neighboring kernels in the graphics pipeline are adjacent on the chip, they

communicate effectively without requiring global memory access. Within each stage of the graphics

pipeline that maps to a processing unit on the chip, GPUs exploit the independence of each stream

element by processing multiple data elements in parallel. The combination of task level and data level

parallelism allows GPUs to profitably use dozens of functional units simultaneously. Inputs to the

graphics pipeline must be processed by each kernel in sequence. Consequently, it may take thousands

of cycles to complete the processing of a single element. If a high latency memory reference is

required in processing any given element, the processing unit can simply work on other elements

while the data is being fetched. The deep pipelines of modern GPUs, then, effectively tolerate high

latency operations.

For many years, the kernels that make up the graphics pipeline were implemented in graphics

hardware as fixed function units that offered little to no user programmability. In 2000, for the first

time, GPUs allowed users the opportunity to program individual kernels in the graphics pipeline.

Today’s GPUs feature high performance data parallel processors that implement two kernels in the

graphics pipeline: a vertex program that allows users to run a program on each vertex that passes

through the pipeline, and a fragment program that allows users to run a program on each fragment.

14

Both of these stages permit single precision floating point computation. Although these additions

were primarily intended to provide users with more flexible shading and lighting calculations, their

ability to sustain high computation rates in user specified programs with sufficient precision to

address general purpose computing has effectively made them programmable stream processors,

which is, processors that are attractive for a much wider variety of applications than simply graphics

pipeline.

1.6 The future and challenges

The migration of GPUs into programmable stream processors reflects the culmination of

several historical trends. The first trend is the ability to concentrate large amounts of computation on

a single processor die. Equally important has been the ability and talent of GPU designers in

effectively using these computation resources. The economies of scale that are associated with

building tens of millions of processors per year have allowed the cost of a GPU to fall enough to

make a GPU a standard part od today’s desktop computer. And the addition of reasonably high-

precision programmability to the pipeline has completed the transition from a hardwired, special

purpose processor to a powerful programmable processor that can address a wide variety of tasks.

- Technology trends:

Each new generation of hardware will present a challenge to GPU vendors.

New transistors will be devoted to increased performance, in large part through

greater amounts of parallelism, and to new functionality in the pipeline. We

will also see these architectures evolve with changes in technology. Future

architectures will increasingly use transistors to replace the need for

communication. We can expect more aggressive caching techniques that not

only alleviate off-chip communication but also mitigate the need for some on-

chip communication. We will also see computation increasingly replace

communication when appropriate. For example, the use of texture memory as

a lookup table may be replaced by calculating the values in that lookup table

dynamically. And instead of sending data to a distant on-chip computation

resource and then sending the result back, we may simply replicate the resource

and compute our result locally. In the tradeoff between communicate and

recompute/cache, we will increasingly choose the latter. The increasing cost of

15

communication will also influence the microarchitecture of future chips.

Designers must now explicitly plan for the time required to send data across a

chip; even local communication times are becoming significant in a timing

budget.

- Power management:

Ideas for how to use future GPU transistors must be tempered by the realities

of their costs. Power management become a critical piece of today’s GPU

designs as each generation of hardware has increased its power demand. The

future may hold more aggressive dynamic power management targeted at

individual stages; increasing amounts of custom or power-aware design for

power-hungry parts of the GPU; and more sophisticated cooling management

for high-end GPUs. Technology trends indicate that the power demand will

only continue to rise with future chip generations, so continued work in this

area will remain an important challenge.

- Supporting more programmability and functionality:

While the current generation of graphics hardware features substantially more

programmability than previous generations, the general programmability of

GPUs is still far from ideal. One step toward addressing this trend is to improve

the functionality and flexibility within the two current programmable units

(vertex and fragment). It is likely that we will see their instruction sets

converge and add functionalities, and that their control flow capabilities will

become more general as well. We may even see programmable hardware

shared between these two stages in an effort to better utilize these resources.

GPU architects will have to be mindful, however, that such improvements do

not affect the GPU’s performance in its core tasks. Another option will be

expanding programmability to different units. Geometric primitives

particularly benefit from programmability, so we may soon see programmable

processing on surfaces, triangles, and pixels. As GPU vendors support more

general pipelines and more complex and varied shader computation, many

researchers have used the GPU to address tasks outside the bounds of the

graphics pipeline. The general purpose computation on GPUs (GPGPU)

community has successfully addressed problems in visual simulation, image

16

processing, numerical methods, and databases with graphics hardware. We can

expect that these efforts will grow in the future as GPUs continue to increase

in performance and functionality. Historically, we have seen GPUs subsume

functionality previously belonging to the CPU. Early consumer level graphics

hardware could not perform geometry processing on the graphics processor; it

was only a few years ago that the entire graphics pipeline could be fabricated

on a single chip. Although since that time the primary increase in GPU

functionality has been directed toward programmability within the graphics

pipeline, we should not expect that GPU vendors have halted their efforts to

identify more functions to integrate onto a GPU. In particular, today’s games

often require large amounts of computation in physics and artificial

intelligence computations. Such computation may be attractive for future

GPUs.

- GPU functionality subsumed by CPU (or vice versa):

We can be confident that CPU vendors will not stand still as GPUs incorporate

more processing power and more capability onto their future chips. The ever

increasing number of transistors with each process generation may eventually

lead to conflict between CPU and GPU manufacturers. The future may reserve

us an environment with the CPU as the core of the newer computer systems,

which could be eventually incorporate GPU or stream functionality on the CPU

itself; or maybe it may reserve us an environment with a GPU as the core of

the newer computer systems, which could be eventually be enhanced with CPU

functionalities.

17

Chapter two: CUDA and OpenCL

2.1 Introduction

CUDA and OpenCL are two different parallel computing platforms and APIs created by two

different vendors, Nvidia and Khronos Group. They are the currently most used interfaces for GPUs

programming and their main difference are:

- Proprietary vs open source

- Homogeneous vs heterogeneous

- Performance vs portability

We will have a deeper look into each of them.

2.2 CUDA

CUDA[2], which stands for Compute Unified Device Architecture, is a parallel computing

platform and API developed by Nvidia in 2007. It allows the programmers to use CUDA compatible

GPUs for GPGPU tasks. It is designed to work with high level programming languages, such as C,

C++ and Python. This peculiarity gives the opportunity to have a larger number of users, due to the

fact that the previous APIs such as OpenGL (Open Graphics Library) required a specified language

to write the programs to be run on GPUs. In this way CUDA increases its accessibility. The CUDA

platform is accessed by programmers via CUDA-accelerated libraries, compiler directives such as

OpenACC (Open Accelerators) and extension to the high level programming languages mentioned

before, so C, C++, Python and others. In particular, C and C++ programmers can use “CUDA C/C++”

compiled to PTX (Parallel Thread Execution) with NVCC (Nvidia CUDA Compiler), an Nvidia’s

LLVM (Low Level Virtual Machine) compiler, used to develop a front end for the programming

language and a back end for the ISA (Instruction Set Architecture). The platform supports also other

interfaces, such as OpenCL and OpenGL. It also provides a low level API (called CUDA Driver) and

an high level API (called CUDA Runtime). It works on all Nvidia’s GPUs (GeForce, Quadro and

Tesla, to quote the most famous ones). It runs on all standard OS (Operating Systems) such as Linux,

Windows and MacOS. Actually, the last released stable CUDA toolkit is the 11.0.

[2] https://developer.nvidia.com/cuda-zone

18

Here below is a list of the main CUDA libraries:

- cuBLAS, CUDA basic linear algebra subroutine library

- CUDART, CUDA runtime library

- cuFFT, CUDA fast Fourier transform library

- cuRAND, CUDA random number generation library

- cuSOLVER, CUDA based collection of dense and sparse direct solvers

- cuSPARSE, CUDA sparse matrix library

- NPP, Nvidia performance primitives library

- nvGRAPH, Nvidia graph analytics library

- NVML, Nvidia management library

- NVRTC, Nvidia runtime compilation library

Using CUDA has some advantages:

- Scattered reads, i.e. the code can read from arbitrary addresses in memory

- Unified virtual memory

- Unified memory

- Shared memory, which is shared among threads

- Fast transfers from and to the GPU

- Full support for integer and bitwise operation

Unfortunately, CUDA has also some disadvantages:

- CUDA source code is now processed according to C++ syntax rules, so older versions

based on simple C could fail to compile or could have a not wanted behavior

- Interoperability with rendering languages is limited; for example, OpenGL can have

access to CUDA memory but not the opposite

- Transfers between CPU (host) and GPU (device) memory could not be so efficient in

terms of performance due to system bus bandwidth and latency

- Threads should run in groups of at least 32 of them to better exploit the GPU’s

performance

- There are nor emulators or fallback functionality for newer revisions

- CUDA-enabled GPUs are available only from Nvidia

19

The last point is the worst, because it means that Nvidia obliges users to buy their GPUs to be

able to use CUDA. Through the years some attempts were made to run CUDA on other GPUs than

Nvidia’s ones, such as:

- Project Coriander, which converts CUDA C++11 to OpenCL 1.2 C

- CU2CL, which converts CUDA 3.2 C++ to OpenCL

- GPUOpen HIP, which converts CUDA from 4 to 11 C++ to AMD cards format

In the following, a list of some applications that use CUDA:

- Accelerated rendering of 3D graphics

- Accelerated interconversion of video file formats

- Accelerated encryption, decryption and compression

- Bioinformatics

- Distributed calculations

- Medical analysis simulations

- Physical simulations

- Neural network training (machine learning field)

- Face recognition

- Distributed computing

- Molecular dynamics

- Mining (crypto currency field)

A CUDA program consists of one or more phases which are executed on either the host or a

device, as it could be the GPU. The phases that exhibit a lot of data parallelism are implemented in

the device code, while the phases that exhibit little or no data parallelism are implemented in the host

code. A CUDA program is a unified source code encompassing both host and device code. The

NVIDIA_C compiler (nvcc) separates the two during the compilation process. The host code is

straight ANSI C code; it is further compiled with the host’s standard C compilers and runs on an

ordinary CPU process. The device code is written using ANSI C extended with keywords for labeling

data-parallel functions, so kernels, and their associated data structures. The device code is typically

further compiled by the nvcc and executed on a GPU device. In situations where no device is available

or the kernel is more appropriately executed on a CPU, one can also choose to execute kernels on a

CPU using the emulation features in CUDA SDK (Software Development Kit). The steps in executing

CUDA programs are:

20

- Device initialization

- Device memory allocation

- Copies data to device memory

- Executes kernel (calling _global_function)

- Copies data from device memory (retrieve results)

Fig. 2.1 CUDA Device model

21

Fig. 2.2 CUDA Execution model

Fig. 2.3 CUDA Memory model

22

2.2.1 CUDA development model

 A CUDA application consists of host program and CUDA device program. The host program

activates computation kernels, which are data parallel routine programs, in the device program, and

they are executed on the device for multiple data items in parallel by device threads. Computation

kernels are written in C for CUDA or PTX (a low level parallel thread execution virtual machine and

instruction set architecture used in Nvidia’s CUDA programming environment); the first adds

language extensions and built-in functions for device programming. It is also present some support

for other kernel programming languages. Then, the host program accesses the device with either C

runtime for CUDA or CUDA Driver API:

- C runtime interface is higher level and less verbose to use than the Driver API

- With C runtime computation kernels can be invoked from the host program with

convenient CUDA-specific invocation syntax

- The Driver API provides more finer grained control

- Bindings to other programming languages can be built on top of either API

Finally, we can say that device and host code can be mixed or written on separate source files, that

graphics interoperability is provided with OpenGL and Direct3D and that Nvidia provides also

OpenCL interface for CUDA.

2.2.2 CUDA toolchain

 The device program is compiled by the CUDA SDK-provided nvcc compiler, which emits

CUDA PTX assembly or device-specific binary code for the device code. PTX is an intermediate

code specified in CUDA that is further compiled and translated by the device driver to actual device

machine code. The device program files can be compiled separately or mixed with host code if CUDA

SDK-provided nvcc compiler is used; moreover, the latter is also required if CUDA custom kernel

invocation syntax is used. Finally, separate compilation can output C host code for integrating with

the host toolchain. In the following image, we can see a generic scheme of the CUDA system

architecture, in which we can recognize some of the features we have talk about previously.

23

Fig 2.4 CUDA System Architecture

2.2.3 C for CUDA kernel programming

C for CUDA kernel programming is based on C programming language with extensions and

restrictions (to be noted that the C language standard version used as base is not defined). Here below

a list of the extensions and restrictions included:

- Extensions:

o Built-in vector data types, but no built-in operators or math functions for them

o Function and variable type qualifiers

o Built-in variables for accessing thread indices

o Intrinsic floating point, integer and fast math functions

o Texture functions

o Memory fence and synchronization functions

o Voting functions (from CC 1.2)

o Atomic functions (from CC 1.1)

24

o Limited C++ language features support: function and operator overloading,

default parameters, namespaces, function templates

- Restrictions:

o No recursion support, static variables, variable number of arguments or taking

pointer of device functions

o No dynamic memory allocation

o Access to full set of standard C library (e.g. stdio) only in emulation mode

- Numerical accuracy:

o Accuracy and deviations from IEEE-754[3] are specified

o For deviating operations compliant, but slower software versions are provided

2.3 OpenCL

OpenCL[4], which stands for Open Computing Language, is a framework for writing programs

which are executed in an heterogenous environment, e.g. composed by a CPU and one or more GPUs.

It specifies both the programming languages to be used to setup the devices and the APIs to have

platform control and to execute programs on devices. OpenCL was born in 2009 from the non-profit

technology consortium Khronos Group. It was created as the open source opponent of Nvidia’s

CUDA, and today is its main competitor, not only from a moral point of view (proprietary vs open

source software) but also from the market point of view. Its capability to run on different vendors’

GPUs, so to not be obliged to use an Nvidia’s one, is one of the main reasons of its success.

Computing systems are seen by OpenCL as a collection of devices (CPUs or GPUs) attached to an

host (CPU). Programs are written in a C-like language and the functions to be executed are called

kernels. A single device usually consists of several compute units which, in turn, consists of different

PEs (Processing Elements). So, a single kernel execution can run all the PEs or a substantial number

of them. OpenCL also provides an API which allows host’s programs to launch kernels on the device

and to manage their memory. A key point of OpenCL is its portability not only on devices (GPUs

from different vendors) but also on hosts (CPUs from different vendors and with different

characteristics), so programs in OpenCL are meant to be compiled in run-time (known also as JIT, or

Just-In-Time execution). OpenCL gives also the opportunity to use SPIR (Standard Portable

[3] https://standards.ieee.org/standard/60559-2020.html
[4] https://www.khronos.org/opencl/

25

Intermediate Representation, but actually named SPIR-V, which is natively incorporated in OpenCL

and not more an external extension which used LLVM compiler), useful to programming in other

languages and to protect the kernel source; moreover, now OpenCL supports also SYCL, an high

level programming model used to improve productivity.

The C-like programming language used to write kernels is called OpenCL C and is based on

C99 (which is the informal name of ISO/IEC 9899:1999, an old version of the C language) with some

changes to better run on devices. OpenCL functions are marked _kernel, instead of having a main

function as in C, to indicate the starting point of the devices which have to be called by the host

program. Pointers to the memory hierarchy are marked as _global, _constant, _local, _private, as

seen before. Procedure pointers, bit fields and variable-sized arrays are omitted; moreover, recursion

is not allowed. The C standard library is modified with a custom library to better exploit arithmetical

programming. Currently, OpenCL framework is updated at version 3.0, with a propension to C++-

like programming language respect to C-like one. OpenCL is composed by a set of headers and a

shared library which are loaded at run time. An additional ICD (Installable Client Driver) has to be

installed for every different vendor’s card which has to be used, So, there is an ICD for Nvidia’s

cards, an ICD for AMD’s cards and so on, in order to support different cards from different vendors.

To make it possible, OpenCL headers are used by the consumer application and vendors have to

update their drivers to implement OpenCL calls.

Here below, a list of different implementations from different vendors to allow the OpenCL

usage on their cards:

- MESA Gallium Compute, also known as MESA Clover, implementation for AMD

and Nvidia

- BEIGNET, implementation for Ivy Bridge, Skylake and Android

- NEO, implementation for Intel Ice Lake and Tiger Lake. This replaces the Intel’s

implementation BEIGNET

- ROCm, implementation for AMDs CPUs and APUs (Accelerated Processing Unit)

and Intel CPUs from generation 7th and newer

- POCL, portable implementation for some CPUs and GPUs using CUDA and HSA

(Heterogeneous System Architecture, a cross vendor set of specifications for allowing

integration of CPUs and GPUs on the same bus). It runs also on Mac OS

- Shamrock, porting implementation of MESA Clover for ARM

- FreeOCL, an implementation with an external compiler for a more stable platform

- MOCL, implementation based on POCL for Intel Xeon Phi accelerators

26

As mentioned before, the most important feature of OpenCL is its portability, reached through

its abstraction of memory and the execution model, so it is possible to run any OpenCL kernel on any

implementation which is compliant with the required characteristics. As a trade off, to have such a

portability some waivers have to be done. So performance is not comparable with ad hoc solutions,

such as CUDA. Acceptable levels of performance across different devices have been reached,

otherwise OpenCL would not be taken into account as one of the main platforms for GPU’s

programming. The main reasons between CUDA and OpenCL performance are due to differences in

programming model, different optimizations on native kernels, architecture related differences, and

compiler differences.

In a document of the Delft University of Technology of 2011[5], three researchers concluded

that “there is no reason for OpenCL to obtain worse performance than CUDA under a fair comparison. Several

benchmarks also show the interesting performance gaps. The reasons behind the gaps are analyzed thoroughly

and they can all be essentially related to various behaviors of programmers, compilers and users. We also port

all the real-world benchmarks to other platforms with minor modifications to show OpenCL’s potential for

portability. Since it has been shown in this paper that OpenCL is a good alternative to CUDA, we would like

to develop an auto-tuner to adapt general-purpose OpenCL programs to all available specific platforms to fully

exploit the hardware”.

In another document of D-Wave Systems Inc.[6], another team of researchers say that “the

changing performance for different problem sizes are due to differences in data structure sizes and their

placement in GPU memory. GPU performance is very dependent on these issues. However, these effects are

specific to the algorithm used, so here we focus on the performance difference between CUDA and OpenCL.

For all problem sizes, both the kernel and the end-to-end times show considerable difference in favor of CUDA.

The OpenCL kernel’s performance is between about 13% and 63% slower, and the end-to-end time is between

about 16% and 67% slower. As expected, the kernel and end-to-end running times approach each other in

value with bigger problem sizes, because the kernel time’s contribution to the total running time increases.”
So it is true that OpenCL has worse performance results compared to CUDA, but it is also

true that is a matter of the youthfulness of the framework and the inexperience of the developers in

that environment.

An OpenCL program is similar to a dynamic library, and an OpenCL kernel is similar to an

exported function from the dynamic library. Applications directly call the functions exported by a

dynamic library from their code; however, they can not call an OpenCL kernel directly to a command-

queue created for a device. The kernel is executed asynchronously with the application code running

on the host CPU. The OpenCL specification is defined in four parts, called models, which are:

[5] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, “A Comprehensive Performance Comparison of CUDA and OpenCL”, Parallel and

Distributed Systems Group, Delft University of Technology (Delft, Netherlands), September 2011
[6] K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison of CUDA and OpenCL,” May 2010

27

- Platform model:

o It specifies that there is one processor coordinating execution (the host) and

one or more processors capable of executing OpenCL code (the devices). It

defines an abstract hardware model that is used by programmers when writing

OpenCL functions (the kernels) that execute on the devices.

- Execution model:

o It defines how the OpenCL environment is configured on the host and how

kernels (the code for a work-item; basically a C function) are executed on the

device. This includes setting up an OpenCL context (the environment within

which work-items (the basic unit of work on an OpenCL device) executes,

includes devices and their memories and command queues) on the host,

providing mechanism for interaction between the host and any device, and

defining a concurrency model used for kernel execution on devices. OpenCL

application runs on a host which submits work to the compute devices.

Fig 2.5 OpenCL Execution model

28

- Memory model:

o It defines the abstract memory hierarchy that kernels use, regardless of the

actual underlying memory architecture. The memory model closely resembles

current GPU memory hierarchies, although this has not limited adoptability by

other accelerators.

▪ Global memory, shared by all PEs and with an high latency, marked as

_global

▪ Read only memory, writable only by the host and with a low latency,

marked as _constant

▪ Local memory, shared by only a group of PEs, marked as _local

▪ Per element private memory, the elements’ registers, marked as

_private

It is not compulsory to implement all the hierarchy for all situations; in fact, it

is possible to use only some levels of the hierarchy itself. Moreover, devices

are not obliged to share their memory with the host but, in the case in which

that happen, the host API provides handles to make the transfers from and to

host and devices possible.

Fig 2.6 OpenCL Memory model

29

- Programming model:

o It defines how the concurrency model is mapped to physical hardware.

OpenCL uses Dynamic/Runtime compilation model:

▪ The code is compiled to an IR (Intermediate Representation), usually

an assembler or a virtual machine, known as offline compilation

▪ The IR is compiled to a machine code for execution; this step is much

shorter and it is known as online compilation

The steps in executing OpenCL programs are listed below:

- Query host for OpenCL devices

- Create a context to associate OpenCL devices

- Create programs for execution on one or more associated devices

- Select kernels to execute from the programs

- Create memory objects accessible from the host and/or the device

- Copy memory data to the device as needed

- Provide kernels to command queue for execution

- Copy results from the device to the host

Fig 2.7 OpenCL Device model

30

2.3.1 OpenCL development model

An OpenCL application consists of host program and OpenCL program to be executed on the

computation device; the host program activates computation kernels, which are data parallel routine

programs, in the device program, and they are executed on the device for multiple data items in

parallel by device processing elements (also task parallel and hybrid models are supported). OpenCL

kernels are written with the OpenCL C programming language:

- OpenCL C is based on C99 with extensions and limitations

- In addition the language, OpenCL specifies library of built-in functions

- Implementations can also provide other means to write kernels

The host program controls the device by using the OpenCL C API (bindings to other host

programming languages can be built on top of the C API) and graphics interoperability is provided

with OpenGL.

2.3.2 OpenCL toolchain

An OpenCL implementation must provide a compiler from OpenCL C to supported device

executable code; that compiler must support standard set of OpenCL defined options. The kernels

can be compiled either online (runtime) or offline (build time). In online compilation the host program

provides to the OpenCL API a compiled OpenCL C source text. Runtime compilation is more flexible

for the final application, but may be problematic in some cases:

- Compilation errors need to be extracted through the OpenCL API at development time

- The kernel source code is included in the application binaries

Finally, the host program is compiled with the default host toolchain and OpenCL is used through its

C API.

2.3.3 OpenCL C kernel programming

OpenCL C kernel programming is based on the C programming language with extensions and

restrictions (it is based on the C99 version of the language standard). Here below a resuming list of

the main extensions and restrictions:

31

- Extensions:

o Built-in first-class vector data types with literal syntax, operators and functions

o Explicit data conversions

o Address space, function and attribute qualifiers

o OpenCL-specific #pragma directives

o Built-in functions for accessing work item indices

o Built-in math, integer, relational and vector functions

o Image read and write functions

o Memory fence and synchronization functions

o Asynchronous memory copying and prefetch functions

o Optional extensions: e.g. atomic operations, etc.

- Restrictions:

o No recursion, pointer to pointer arguments to kernels, variable number of

arguments of pointers to functions

o No dynamic memory allocation

o No double-precision floating point support by default

o Most C99 standard headers and libraries cannot be used

o extern, static, auto and register storage-class specifiers are not supported

o C99 variable length arrays are not supported

o Writing to arrays or struct members with element size less than 32 bits is not

supported by default

o Many restrictions can be addressed by extensions, e.g. double-precision

support, byte addressing, etc.

- Numerical accuracy:

o Accuracy and deviations from IEEE-754[7] are specified

o Some additional requirements specified beyond C99 TC2[8]

[7] https://standards.ieee.org/standard/60559-2020.html
[8] ISO/IEC 9899:TC2, http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

32

Chapter three: CUDA vs OpenCL

3.1 Introduction

In this chapter, CUDA and OpenCL platforms will be analyzed to better highlight their

differences and to better understand in which case it is better to use one or the other. Before starting

the analysis on the main differences between the two APIs, let’s see some resuming table to better

highlight the key points of the two platforms.

Table 3.1 Main differences between CUDA and OpenCL

Table 3.2 Toolchain comparison between CUDA and OpenCL

33

Table 3.3 Development model comparison between CUDA and OpenCL

Table 3.4 Kernel programming differences between CUDA and OpenCL

34

3.2 Work environment

Currently, CUDA is the standard platform for GPU programming; it is a largely tested and

working environment which has been used and tried-out for years. Programmers are used to write

through that platform and CUDA was the very first alternative to programming GPU in a more

comfortable way. Moreover, it works well. So, it is clear the reason behind its success. The only

problem is that it sacrifice portability (CUDA works only on Nvidia GPUs) to better exploit

performances (and obviously it is also a matter of money for Nvidia).

OpenCL was released some years after CUDA, and at the time the market was already used

to work with the latter to writing GPUs’ programs. The main difference is that OpenCL was presented

as an open source alternative with a great portability in such a way that every GPU programmer, not

only the ones using Nvidia cards, could program in an efficient and more comfortable way. In fact,

OpenCL shares the main ways of programming of CUDA, so it keeps its easiness with in addition the

major portability. The other side of the coin is the lower performance compared to CUDA; in fact,

the portability does not allow to have specific characteristics to have a more precise environment

based only on one vendor.

To validate the fact that OpenCL shares many things with CUDA, we can analyze the thread

hierarchy of both of them:

- In CUDA, the hierarchy goes in an ascending order through thread, warp, thread

block, grid

- In OpenCL, the hierarchy goes in an ascending order through work-item, work-group,

NDRange

The above items have been written in order, to show their correlation. The second item is a collection

of a group of the first items, the third item is a collection of a group of the second items and so on,

for both CUDA and OpenCL. Grid and NDRange are the macroblocks of all threads or work-items

which are launched during a kernel execution. In OpenCL the correspondence of a CUDA warp is

absent, due to the fact that it does not run on a specific vendor’s card; however, work-items work as

a group, in such a way that we can consider that warps are only theoretically absent, but not in

practice. It means that they work as they formed a warp without actually doing it. So, all the items

work in a very similar way, with only name differences. Considering that, it is important to highlight

that it is a priority considering on which card OpenCL has to run to better exploit the performance of

the software accordingly to the specific vendor’s system (for example, with Nvidia we have warps

and with AMD we have wavefronts; both have to be taken into account to have the better possible

program).

35

CUDA can be used in two different ways, via the runtime API, which provides a C-like set of

routines and extensions, and via the driver API, which provides lower level control over the hardware

but requires more code and programming effort. Both OpenCL and CUDA define kernel as the code

which runs on the GPU (or in a more general way on a device, so not on the host). Setting up the

device for kernel execution differs substantially between CUDA and OpenCL. Their APIs for context

creation and data copying are different, and different conventions are followed for mapping the kernel

onto the device’s processing elements. These differences could affect the length of time needed to

code and debug a device application. OpenCL aims at reaching a portable language for GPU

programming, capable of targeting dissimilar parallel processing devices. Unlike a CUDA kernel, an

OpenCL one can be compiled at runtime, which would add to an OpenCL’s running time. On the

other hand, just-in-time compilation may allow the compiler to generate code that makes better use

of the target GPU. CUDA, however, is developed by the same company that develops the hardware

on which it executes, so it is reasonable to expect it to better match the computing characteristics of

the GPU, offering more access to features and better performance.

The OpenCL API is a C with a wrapper API that is defined in terms of the C API. There are

third-party bindings for many languages, including Java, Python and .NET. The code that executes

on an OpenCL device, which in general is not the same device as the host CPU, is written in the

OpenCL C language, which is a restricted version of the C99 language with extensions appropriate

for executing data-parallel code on a variety of heterogeneous systems. CUDA encourages the use of

scalar code in kernels. While this works in OpenCL as well, depending on the desired target

architecture, it may be more efficient to write programs operating on OpenCL’s vector types, such as

float, as opposed to pure scalar types. This is useful for both, for example, AMD CPUs and GPUs,

which can operate efficiently on vector types. OpenCL also provides flexible swizzle/broadcast

primitives for efficient creation and rearrangement of vector types. CUDA does not provide rich

facilities for task parallelism, and so it may be beneficial to think about how to take advantage of

OpenCL’s task parallelism as you port your application

OpenCL shares a range of core ideas with CUDA: they have similar platform models, memory

models, execution models, and programming models. They share the user’s point of view, such as

that to a programmer the computing system consists of a host (a traditional CPU) and one or more

devices that are massively parallel processors equipped with a large number of arithmetic execution

units. There also exists a mapping between CUDA and OpenCL in memory and execution terms.

Additionally, their syntax for various keywords and built-in functions are fairly similar to each other.

Considering that CUDA and OpenCL shares many concepts (also some of the fundamental

ones), the best way to highlight their differences is to compare their performance. There has been a

36

fair amount of work on performance comparison of programming models for multi-core/many-core

processors.

Rick Weber et al.[9] presented a collection of Quantum Monte Carlo algorithms implemented

in CUDA, OpenCL, Brook+, C++, and VHDL. They gave systematic comparison of several

application accelerators on performance, design methodology, platform, and architectures. Their

result show that OpenCL provides application portability between multi-core processors and GPUs,

but may incur a loss in performance.

Rob van Nieuwpoort et al.[10] explained how to implement and optimize signal-processing

applications on multi-core CPUs and many-core architectures. They used correlation (a streaming,

possibly real-time, and I/O intensive application) as a running example, investigating the aspects of

performance, power efficiency, and programmability. This study includes an interesting analysis of

OpenCL: the problem of performance portability is not fully solved by OpenCL and so programmers

have to take more architectural details into consideration.

In another work[11], the authors compared programming features, platform, device portability,

and performance of GPU APIs for cloth modeling. Implementations in GLSL (OpenGL Shading

Language, an high level shading language with a syntax based on the C programming language),

CUDA and OpenCL are given. They conclude that OpenCL and CUDA have more flexible

programming options for general computations than GLSL. However, GLSL remains better for

interoperability with a graphics API.

In one more work[12], a comparison between two GPGPU programming approaches (CUDA

and OpenGL) is given using a weighted Jacobi iterative solver for the bidomain equations. The

CUDA approach using texture memory is shown to be faster than the OpenGL version.

Kamran Karimi et al.[13], compared the performance of CUDA and OpenCL using complex,

near-identical kernels. They showed that there are minimal modifications involved when converting

a CUDA kernel to an OpenCL kernel. Their performance experiments measure and compare data

transfer time to and from the GPU, kernel execution time, and end-to-end application execution time

for both CUDA and OpenCL. Only one application or algorithm is used in all the work mentioned

above.

[9] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson, “Comparing Hardware Accelerators in Scientific Applications: A Case Study,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 58–68, January 2011
[10] R. van Nieuwpoort and J. Romein, “Correlating radio astronomy signals with Many-Core hardware,” International Journal of Parallel
Programming, vol. 39, pp. 88–114, Feb. 2011
[11] T. I. Vassilev, “Comparison of several parallel API for cloth modelling on modern GPUs,” in Proceedings of the 11th International Conference on
Computer Systems and Technologies and Workshop for PhD Students in Computing on International Conference on Computer Systems and
Technologies, CompSysTech ’10, (New York, NY, USA), pp. 131–136, ACM, 2010
[12] R. Amorim, G. Haase, M. Liebmann, and R. Weber dos Santos, “Comparing CUDA and OpenGL implementations for a Jacobi iteration,” pp. 22–

32, June 2009
[13] K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison of CUDA and OpenCL,” May 2010

37

Ping Du et al.[14] evaluated many aspects of adopting OpenCL as a performance-portable

method for GPGPU application development. The triangular solver (TRSM) and matrix

multiplication (GEMM) have been selected for implementation in OpenCL. Their experimental

results show that nearly 50% of peak performance could be obtained in GEMM on both NVIDIA

Tesla C2050 and ATI Radeon 5870 in OpenCL. Their results also show that goof performance can

be achieved when architectural specifics are taken into account in the algorithm design.

In another work[15], the authors quantitatively evaluated the performance of CUDA and

OpenCL programs developed with almost the same computations. The main reason leading to these

performance differences are investigated for applications including matrix multiplication from

CUDA SDK and CP, MRI-Q, MRI-HD from the Parboil benchmark suite. Their results show that if

the kernels are properly optimized, the performance of OpenCL programs is comparable with their

CUDA counterparts. They also showed that the compiler options of the OpenCL C compiler and the

execution configuration parameters have to be tuned for each GPU to obtain its best performance.

The majority of the above quoted works have used very few applications to compare existing

programming models. A different work[16] observed a large set of different applications to show the

performance differences of CUDA and OpenCL, giving a detailed analysis of the performance gap

from all possible aspects. We will analyze it to better understand the difference in CUDA and OpenCL

from a performance point of view.

Table 3.5 List of selected benchmarks in the [8] work

[14] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From CUDA to OpenCL: Towards a Performance-portable Solution for
Multi-platform GPU Programming,” tech. rep., Department of Computer Science, UTK, Knoxville Tennessee, September 2010
[15] K. Komatsu1, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi1, “Evaluating Performance and Portability of OpenCL Programs,” in

Proceedings of the Fifth international Workshop on Automatic Performance Tuning(iWAPT2010), (Berkeley, USA), June 2010
[16] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, “A Comprehensive Performance Comparison of CUDA and OpenCL”, Parallel and

Distributed Systems Group, Delft University of Technology (Delft, Netherlands), September 2011

38

In order to compare the performance of CUDA and OpenCL, it is defined a normalized

performance metric, called Performance Ratio (PR), which can be described as:

PR = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑂𝑝𝑒𝑛𝐶𝐿

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐶𝑈𝐷𝐴

For PR < 1, the performance of OpenCL is worse than CUDA; otherwise, OpenCL will give a better

or same performance. In an intuitive way, if |1-PR| < 0.1, it can be assumed that CUDA and OpenCL

have similar performance. When it comes to different domains, performance metrics have different

meanings. In memory systems, the bandwidth of memories can be seen as an important performance

metric. The higher the bandwidth is, the better the performance is. For sorting algorithms,

performance may refer to the number of elements a processor finishes sorting in unit time. Floating-

point operations per second (Flops/sec) is a typical performance metric in scientific computing.

Exceptionally, performance is inversely proportional to the time a benchmark that takes from start to

end. For the above reasons, in the work [8], which we are now analyzing, the authors decided to select

specific performance metrics for different benchmarks, as it can be seen in Table 3.1.

 Benchmarks are selected from the SHOC (Scalable HeterOgeneous Computing) benchmark

suite, Nvidia’s SDK, and the Rodinia benchmark suite. The authors also used some self designed

applications. These benchmarks fall into two categories: synthetic applications and real-world

applications:

- Synthetic applications:

o Synthetic applications are those which provide ideal instructions to make full

use of the underlying hardware. The authors selected two synthetic

applications from the SHOC benchmark suite: MaxFlops and DeviceMemory,

which are used to measure peak performance (floating point operations and

device-memory bandwidth) of GPUs in GFlops/sec and GB/sec. In their

work[8], peak performance includes theoretical peak performance and achieved

peak performance. Theoretical peak performance (or theoretical performance)

can be calculated using hardware specifications, while achieved peak

performance (or achieved performance) is measured by running synthetic

applications on real hardware

39

- Real-world applicarions:

o Real-world applications include algorithms frequently used in real-world

domains. The real-world applications selected are listed in Table 3.1. Among

them, Sobel, TranP in both CUDA and OpenCL, and BFS in OpenCL are

developed by the authors (denoted by “SELF”); others are selected from the

SHOC benchmarks suite (“SHOC”), Nvidia’s CUDA SDK (“NSDK”) and the

Rodinia benchmark suite (only BFS in CUDA, denoted by “Rodinia”).

The authors obtained all their measurement results on real hardware using three platforms,

called Dutijc, Saturn, and Jupiter. Each platform consists of two parts: the host machine (one CPU)

and its device part (one or more GPUs). The two following tables shows the detailed configurations

of these platforms and of the attached GPUs.

Table 3.6 Platforms detailed specifications

Table 3.7 GPUs detailed specifications

40

Three different GPUs have been used, which are Nvidia GTX280, Nvidia GTX480, and ATI Radeon

HD5870. Intel® Core™ i7 CPU 920@2.67 GHz (or Intel 920) and Cell Broadband Engine (or

Cell/BE) are also used as OpenCL devices. For the Cell/BE, the authors used the OpenCL

implementation for IBM. Fort the Intel920, they used the implementation from AMD (APP v2.2),

because when they write their paper Intel’s implementation on Linux was still unavailable. In the

following, the performance comparisons and analyses.

- Comparing peak performance

o Bandwidth of device memory:

TPBW (Theoretical Peak Bandwidth) is defined as:

TPBW = 𝑀𝐶 ∗ (
𝑀𝐼𝑊

8
) ∗ 2 ∗ 10−9

where MC is the abbreviation for Memory Clock. Using the above equation

the authors have calculated the TPBW of GTX280 and GTX480 to be 141.7

GB/sec and 177.4 GB/sec, respectively. APBW (Achieved Peak Bandwidth) is

then measured by reading global memory in a coalesced manner. Moreover,

the experimental results show that APBW depends on work-group-size (or

block-size), which has been set to 256. The result of the experiments with

DeviceMemory in Saturn (GTX480) and Dutijc (GTX280) are shown in the

following figure.

Fig 3.1 Peak bandwidth comparison between GTX280 and GTX480

mailto:920@2.67

41

It can be seen that OpenCL outperforms CUDA in APBW by 8.5% on GTX280

and 2.4% on GTX480, respectively.

o Floating point performance:

TPFLOPS (Theoretical Peak Floating Point Operations per Second) is calculated

as:

TPFLOPS = 𝐶𝐶 ∗ #𝐶𝑜𝑟𝑒𝑠 ∗ 𝑅 ∗ 10−9

where CC is short for Core Clock and R stands for maximum operations

finished by a scalar core in one cycle. R differs depending on the platforms: it

is 3 for GTX280 and 2 for GTX480, due to the dual-issue design of the GT200

architecture. As a result, TPFLOPS is equal to 933.12 GFlops/sec and 1344.96

GFlops/sec for the two GPUs, respectively. APFLOPS (Achieved Peak FLOPS)

in MaxFlops is measured in different ways on GTX280 and GTX480. In the

first, a mul instruction and a mad instruction appear in an interleaved way (in

theory they can run on one scalar core simultaneously), while only mad

instructions are issued for GTX480. The experimental results are compared in

the following figure.

Fig 3.2 Peak FLOPS comparison between GTX280 and GTX480

42

It can be seen that OpenCL obtains almost the same APFLOPS as CUDA for

GTX280 and GTX480, accounting for approximately 71.5% and 97.7% of the

corresponding TPFLOPS. Thus, CUDA and OpenCL are able to achieve similar

peak performance (to be precise, OpenCL even performs slightly better), which

shows that OpenCL has the same potential to use the underlying hardware as

CUDA.

- Performance comparison of real-world applications

The real-world applications already mentioned above are selected to compare the

performance of CUDA and OpenCL. The PR of all the real-world applications without

any modification is shown in the next figure. As it can be seen, PR varies a lot when

using different benchmarks and underlying GPUs. Those performance will be

analyzed using the following criteria:

o Programming model differences

o Different optimizations on native kernels

o Architecture-related differences

o Compiler and run-time differences

Fig. 3.3 A performance comparison of selected benchmarks. When the top border of a rectangle lies in the area between

Line {PR = 0.9} and Line {PR = 1.1}, it is assumed that CUDA and OpenCL have similar performance. (On GTX280

the PR for Sobel is 3.2)

43

o Programming model differences:

CUDA and OpenCL have many conceptual similarities. However, there are

also several differences in programming models between them. For Example,

NDRange in OpenCL represents the number of work-items in the whole

problem domain, while GridDim in CUDA is the number of blocks.

Additionally, they have different abstractions of device memory hierarchy,

where CUDA explicitly supports specific hardware features which OpenCL

avoids for portability reasons. Through analyzing kernel codes, the authors find

that texture memory is used in the CUDA implementations of MD and SPMV.

Both benchmarks have intensive and irregular access to a read-only global

vector, which is stored in the texture memory space. The following figure

shows the performance of the two applications when running with and without

the usage of texture memory.

Fig. 3.4 Performance impact of texture memory

As it can be seen, after the removal of the texture memory, the performance

drops to about 87.6%, 65.1% on GTX280 and 59.6%, 44.3% on GTX480 of

the performance with texture memory for MD and SPMV, respectively. The

authors compared the performance of OpenCL and CUDA after removing the

usage of texture memory, which results can be seen in the following figure,

showing similar performance between CUDA and OpenCL. It is the special

support of texture cache that makes the irregular access look more regular.

44

Then, texture memory plays an important role in performance improvement of

kernel programs.

Fig. 3.5 Performance ratio before and after removing texture memory

o Different optimizations on native kernels:

In a document written by Nvidia[17], many optimization strategies are listed,

such as:

▪ Ensure global memory accesses are coalesced whenever possible

▪ Prefer shared memory access wherever possible

▪ Use shift operations to avoid expensive division and modulo

calculations

▪ Make it easy for the compiler to use branch prediction instead of loops

▪ Other strategies

One key optimization to be performed in kernel codes is to reduce the number

of dynamic instructions in the run-time execution. Loop unrolling is one of the

techniques that reduces loop overhead and increases the computation per loop

iteration[18]. Nvidia’s CUDA provides an interface to unroll a loop fully or

partially using the pragma unroll (a compiler optimization which replaces a

piece of code into an unrolled one). When analyzing the native kernel codes of

[17] Nvidia Inc., OpenCL Best Practices Guide, May 2010
[18] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan, “A compiler framework for optimization of
affine loop nests for gpgpus,” in Proceedings of the 22nd annual international conference on Supercomputing, ICS ’08, (New York, NY, USA), pp.
225–234, ACM, 2008

45

FDTD, the authors found out that the two codes are the same except that the

CUDA code uses the pragma unroll at both unroll points a and b, while the

OpenCL code unrolls the loop only at point b.

Fig. 3.6 Loop unrolling in a native kernel code of FDTD

The performance of the application (in CUDA only) with and without the

pragma unroll can be seen in Fig. 3.7. As can be seen, the performance without

the pragma unroll drops to 85.1% and 82.6% of the performance with it for

GTX280 and GTX480. The authors then have removed the pragma at point a

from the CUDA version and have found out the performance comparison

between CUDA and OpenCL, here showed in Fig. 3.8. It can be seen that they

achieve similar performance on GTX480, while OpenCL outperforms CUDA

by 15.1% on GTX280. Moreover, it can be observed that when adding the

pragma unroll at unroll point a of the OpenCL implementation, the

performance degrades sharply to 48.3% and 66.1% of that of the CUDA

implementation for GTX280 and GTX480, once again shown in Fig. 3.8.

46

Fig. 3.7 Performance effects of loop unrolling (CUDA only)

Fig. 3.8 Performance comparison of FDTD with and without loop unrolling at different points (CUDAx represents we

execute loop unrolling at point x, and it is the same for OpenCL)

47

o Architecture-related differences:

Since the birth of the original G80, the Fermi architecture can be seen as the

most remarkable leap forward for GPGPU computing. It differs from the

previous generations by, for example[19]:

▪ Improved double precision performance

▪ ECC (Error Correcting Code) support

▪ True cache hierarchy

▪ Faster context switching

The introduction of the cache hierarchy has a significant impact on Fermi’s

performance. Looking at Fig. 3.3, it can be seen that values diverge remarkably

for Sobel on GTX280 and GTX480. On GTX280, the OpenCL version runs

three times faster than the CUDA one, but it only obtains 83% of CUDA’s

performance when the benchmark runs on GTX480. These differences are

caused by the constant memory and the cache. In the implementation with

OpenCL, constant memory is employed to store the “filter” in Sobel, while it

is not in the CUDA version. After removing the usage of constant memory, the

authors repeated the same experiments on the two GPUs. The execution time

is showed in Fig. 3.9. On the one side, it can be seen that the kernel execution

time drops to one quarter of that without using constant memory on GTX280.

On the other side, there are few changes on GTX480 due to the availability of

the global memory cache in the Fermi architecture. Overall, CUDA and

OpenCL achieve similar performance with and without constant memory on

GTX480.

[19] NVIDIA Inc., NVIDIAs Next Generation CUDA Compute Architecture: Fermi, 2009

48

Fig. 3.9 Performance comparison for Sobel with and without constant memory on GTX280 and GTX480

o Compiler and run-time differences:

Among all the benchmarks, the performance gap between OpenCL and CUDA

is the biggest for the FFT. Their native kernel codes are exactly the same.

However, when looking into their PTX codes, can be found notable differences

between them. A quantitative comparison of these two PTX kernels is

presented in the following table. The statistics are gathered for the “forward”

kernel of the FFT implementation. Again from the table, the differences

between the two PTX codes become visible. The OpenCL front-end compiler

generates two times more arithmetic instructions than its CUDA counterpart.

There are rarely any logic shift instructions in CUDA, while there are 163 such

instructions in the OpenCL kernel. A similar situation happens with the flow-

control instructions: there are many more for OpenCL than for CUDA.

Although there are many more data movement instructions for CUDA, most

of them are mov, simply moving data to or from registers or local memories.

Finally, it can be noted that all time-consuming instructions such as ld.global

and st.global are exactly the same. This situation can be explained by assuming

that the front-end compiler for CUDA has been used and optimized more

49

heavily, thus is more mature, than that of OpenCL. As a result, when it comes

to some kernels like “forward” in FFT, OpenCL performs worse than CUDA.

Table 3.8 Statistics for PTX instructions

BFS is also an interesting example here. It has to invoke the kernel functions

several times to solve the whole problem. Thus, the kernel launch time (the

time that a kernel takes from entering the command-queue until starting its

execution) plays a significant role in the overall performance. The authors’

experimental results shows that the kernel launch time of OpenCL is longer

than that of CUDA (the gap size depends on the problem size), due to the

differences in the run-time environment. The longer kernel launch time may

also explain why OpenCL performs worse than CUDA for applications like

BFS.

50

- A fair comparison

In the above descriptions, it has been shown that the performance gaps between

OpenCL and CUDA are due to programming model differences, different

optimizations on native kernels, architecture-related differences, and compiler

differences. It has been shown that performance can be equalized by systematic code

changes. Therefore, in the following it will be presented an eight step fair comparison

approach for CUDA and OpenCL applications from the original problem to its final

solution, which provides guidelines for investigating the performance gap between

CUDA and OpenCL, if any. In the following figure a resuming flow is presented.

Fig. 3.10 Development flow of GPU kernel programs (the ellipses are the entities such as a program or a description

and the rectangles represent actions on the entities. There are three types of roles participating the whole process:

programmers, compilers, and users

51

1) Problem description:

This step describes what the problem is and what form the solution could be.

2) Algorithm translation:

How to address the problem which is given using certain algorithms. The

algorithms can be described in pseudo-code which is environment-independent

and easier for humans to understand.

3) Implementation:

In this step, the algorithms mentioned above are implemented with different

programming models or languages. As for GPU programs, there are two parts:

one is the host program and the other is the kernel code running on GPUs. On

Nvidia GPUs, CUDA+C and OpenCL+C are usually adopted to implement

GPU programs. If two implementations use similar APIs to access the same

type of hardware resources, then the two implementations can be considered

to be the same. Note that two implementations also have to use the same type

of timers to measure performance.

4) Native kernel optimization:

After implementation, architecture-dependent optimizations on kernel

programs are executed. For example, whether to use the shared memory (or

local memory in OpenCL), whether to employ vectorization, whether to unroll

loops, whether to reduce bank-conflicts, whether to use texture memory in

CUDA, and whether to access global memory in a coalesced, way are decisions

that should be taken into account. On the one side, optimizations on native

kernels is a time-consuming and error-prone job; on the other side, it can

contribute to performance improvement significantly.

5) First-stage compilation and optimization:

The first-stage compiler adopted in CUDA is called NVOPENCC. There is a

similar front-end compiler for OpenCL in this stage. This stage compiles kernel

codes into PTX codes, a low-level parallel thread execution virtual machine

and instruction set architecture developed by Nvidia[20]. Some advanced

optimizations are also executed in this stage.

6) Second-stage compilation and optimization:

PTXAS (the back-end compiler) translates PTX codes into binary format

in this step and it may execute some additional optimizations.

[20] NVIDIA Inc., PTX: Parallel Thread Execution ISA Version 2.2, October 2010

52

7) Program configuration and start-up:

Before executing the program prepared so far, we need to configure two kinds

of parameters:

• Problem parameters (the parameters of the problem to be solved

such as the size of the matrix)

• Algorithmic parameters (for example, block-size or work-group

size)

Although these parameters do not change the correctness of final results, they

can have a significant impact on the performance of the application.

8) Running on GPUs:

With the help of drivers, the binary codes are finally scheduled to run on the

GPUs.

These eight steps make up the application development flow from an original

problem to its final solution. Based on this, it can be defined that a comparison

between CUDA and OpenCL is considered “fair” when configurations in all

the eight steps of the comparison are the same. According to the analysis in the

previous pages, OpenCL can obtain similar performance to CUDA in the case

of “a fair comparison”. In real-world, programmers are responsible for steps

from (1) to (4) and compilers take charge of steps (5) and (6). Finally, users

will employ the application through steps (7) and (8), as illustrated in Fig. 3.10.

Each of the eight steps is probably executed by different programmers (they

have different programming habits, abilities and choices) or different compilers

(they have different optimizations) or different users (they have different

requirements and investments). All those lead to the difficulty of making sure

that a performance comparison is fair between CUDA and OpenCL.

To final summarize this chapter, which the aim is to highlight the differences between CUDA

and OpenCL, we have to clarify some points:

- CUDA and OpenCL shares many concepts, but they are different APIs/platforms for

GPU/GPGPU programming

- Both of them have weak points and highlights, so not always one is better than the

other

- OpenCL strength is the portability

- CUDA strength is performance on Nvidia’s cards

53

- They do not differ a lot under a performance point of view, if they are analyzed in a

very similar environment

- The best choice is to choose one platform or the other depending on the requirements

of the work to be done

54

Chapter four: SAR focusing system

4.1 Introduction

In this section I will talk in a general way about the SAR (Synthetic Aperture Radar) focusing

system. The system taken into account has been developed with CUDA platform, and in this chapter

we will discuss about the environment in which our example is placed.

4.2 SAR (Synthetic Aperture Radar)

SAR is a typology of radar that allows creating two or three dimensional images of an object,

such as Earth’s topography. It uses the motion of the radar antenna over a landscape to get the spatial

data needed to create the two dimensional images of the landscape itself. For that reason, SAR is

usually installed on a moving platform, e.g. a satellite, and its name derives from the fact that the

radar pulses to return to the antenna the wanted data while the device is in movement over the target

area for a certain amount of time. This is the difference between synthetic and physical aperture: the

fact that the antenna itself is in movement. To create an image, many consecutive pulses are

transmitted over the target area and the return pulses are received and recorded to be processed. While

pulses are received and processed the antenna is in movement and other pulses from different points

are continuously recorded and processed, to finally be merged all together to obtain an high resolution

image of the target zone.

4.3 History

SAR was invented by Carl A. Wiley in 1951 while it was working for the Atlas ICBM program

(ICBM stands for Intercontinental Ballistic Missile); the following year he constructed with some

colleagues a concept validation system for that radar and in that decade the company in which he

worked, the Goodyear Aircraft (than changed in Goodyear Aerospace) gave multiple contributions to

SAR technology. At the same time and with no correlation with Wiley’s work, some trials were

executed at the University of Illinois’ Control System Laboratory on a system very similar to the SAR

one. Both works did the processing of the radar return’s data with electrical circuit filtering methods,

55

using Doppler frequency theory, but the results were not very good due to the limitations of the

technology available in those years. The project was carried on by the Department of Defense, which

was searching new techniques for military reconnaissance and collection of data for the intelligence.

The University of Michigan and University of Illinois gave their contribution, showing new

implementations as a Doppler assisted sub beamwidth resolution and a produced stripmap image.

Later contributions were carried on again by the Defense system, in particular by the Army, Navy

and Air Force combined together, which assigned a project to the University of Michigan. Here a

group known as Radar and Optics Laboratory proposed to take into account not only some particular

Doppler shifts but the entire history of all shifts; that would yield a better resolution quality. It was

proposed to record the received signals useful to the final result in a cathode-ray tube, a vacuum tube

used to display images. Those recording would be after processed in laboratory with a dedicated

equipment. It was chosen a 35 mm film to do the recording, which, without premeditation, showed a

final result with a great diffraction effect, not compatible with a sharp final focusing. A physicist

recognize the opportunity to exploit that problem as an advantage and the recording, until that

moment considered a scalar one, was changed into pairs of opposite sign vector ones of many spatial

frequencies with the addition of a zero frequency bias quantity. This trick, in addition to some changes

in the architecture of the focusing system to allow that, was the key to obtaining only the wanted

beam to pass through a selected frequency band aperture. Moreover, to be coherent with that change,

the light used to illuminate the area to be recoded had to be monochromatic and coherent, so a mercury

vapor lamp passed through a color filter was chosen, the best then available technology; this resulted

in a necessary long exposure to obtain a decent result, due to the weakness of the amount of light.

The following problem was not how to create the radar, an already known topic at that time, but rather

it was how to obtain signal linearity and frequency stability. Different approaches were found by the

above quoted Universities, again with the help of the Department of Defense. Both of them installed

the radar on a C-46 aircraft and they had the possibility to do many flights to continually test and

debug the system. Some results were obtained (15m resolution), such as that an initial conclusion of

the work by the Department of Defense was canceled due to the good news. In the following years

other improvements were applied and in seventies a result of a 30,48 cm resolution was achieved. At

the same time, technology increase in computer processing allowed to achieve finer results,

considering also the possibility to illuminate better, in terms of time and power, the target area under

different degrees, which was not possible before due to antenna limitations. This was called the

spotlight mode. From here in after, it was clear that the SAR was very suitable for spacecraft systems;

in fact, not only the Doppler effect was accurate also at such a distance, but the typical movement of

56

a satellite around an orbit was exactly what the researchers were searching to have specific results. In

the years, technology has scaled up and so has done SAR

construction, whit the possibility to have now great results in term of focusing a certain target zone.

4.4 The SAR system analyzed

The SAR focusing system we are taking into account belongs to the COSMO-SkyMed

(Constellation of small Satellites for Mediterranean basin Observation) Earth-observation satellite

space-based radar system, which is commissioned and funded by the Italian Ministry of Research and

the MoD (Ministry of Defense) and directed by the ASI (Italian Space Agency) for both civilian and

military purposes. It aims to provide data and services for different reasons, such as defense purposes,

environmental monitoring and surveillance applications for the management of exogeneous,

endogenous and anthropogenic risks, provision of commercial products and services.

The system is composed by four equal satellites which are named COSMO-SkyMed 1, 2, 3

and 4 respectively and, obviously, they are all equipped with a microwave high-resolution SAR

operating in X-band, and they operate at more or less 620 km of height over the Earth surface,

repeating their ground track every sixteen days. The operating life of each satellite is estimated to be

five years.

From the COSMO-SkyMed official website are reported the driving mission requirements for

the constellation development, which are:

- Capability to serve at the same time both civil and military users through an integrated

approach (dual use system)

- Large amount of daily acquired images

- Satellites worldwide accessibility

- All weather and day/night acquisition capabilities

- Very short interval between the acceptance of the user request acquisition and the

release of the remote sensing product (system response time)

- High image quality (e.g. spatial and radiometric resolution)

- Intrinsic capability to be a cooperating, interoperable, expandable to the other EO

missions, multimission-borne element providing EO integrated services to large user

communities on a worldwide scale (concepts of expandability, interoperability and

multisensoriality)

57

Figure 4.1 SAR satellite (deployed and stowed configuration)

4.5 How it works

A SAR is a radar for imaging purposes installed on a moving system, which is able to provide

a remote sensing in many situations (all-weather, day and night times) throughout the illumination of

radar beam. Electromagnetic pulses are transmitted and the return pulses are recorded and collected

for the following processing; in fact, unlike optical sensors, a post processing procedure is required

to achieve the desired image from the data obtained. For achieving those purposes, COSMO-SkyMed

satellites uses three different sensor imaging operating modes:

- Two stripmap modes, for metric resolutions over tenth of km images; one mode is

polarimetric with images acquired in two polarizations

- A spotlight mode, for metric resolutions over small images

- Two ScanSAR for medium to coarse (100 m) resolution over large swath

58

Figure 4.2 The three different imaging operating modes

We will analyze all of them for a better understanding but, in the next chapter, only the

stripmap mode and the spotlight will be present in the software analysis.

The stripmap mode is the most common imaging mode and it is obtained by pointing the

antenna towards a fixed direction with reference to the system flight path. The ground is illuminated

continuously by the antenna as the system moves and operates. The acquisition is theoretically

unlimited in the azimuth direction, but the reality is different due to duty cycle limitations of the SAR

system (about 600s, allowing a strip length of 4500 km and more). Two different implementation of

stripmap mode are provided: the Himage and the PingPong. In the first one, the radar transmitting

and receiving configurations are time invariant, allowing to receive from each ground scatterer the

full Doppler bandwidth allowed by the azimuth aperture of the antenna beamwidth. The main

characteristics are a swath width of about 40 km, an azimuth extension for the standard product of

about 40 km (6.5 seconds acquisition), PRF (Pulse Recurrence Frequency) values ranging from a

minimum of 2905.9 Hz to a peak of 3874.5 Hz, a chirp duration in a range between 35 and 40

microseconds, a chirp bandwidth accommodated along range on the basis of the required ground

resolution, spanning from 65.64 MHz at the far range (with a sampling rate of 82.50 MHz) to 138.60

MHz at the far range (with a sampling rate of 176.25 MHz). In the second one, a strip acquisition is

59

implemented by alternating a pair of transmitting and receiving polarization across bursts (cross-

polarization) obtained by mean of the antenna (which may be adjusted to be different on transmit and

on receive). The acquisition is therefore performed in strip mode alternating the signal polarization

between two of possible ones, so the combinations could be VV (vertical transmit and receive), HH

(horizontal transmit and receive), HV (horizontal transmit and vertical receive) and VH (vertical

transmit and horizontal receive). In this parametric burst mode only a part of the SAR length is

available in azimuth and for that reason the azimuth resolution is limited. This mode provides a swath

width value of about 30 km, an azimuth extension for the standard product of about 30 km (5.0

seconds acquisition), PRF values ranging from a minimum of 2905.9 Hz to a peak of 3632.4 Hz, a

chirp duration fixed at 30 microseconds, a chirp bandwidth accommodated along range on the basis

of the required ground resolution, spacing from 14.77 MHz at the far range (with a sampling rate of

18.75 MHz) to 38.37 MHz at the far range (with a sampling rate of 48.75 MHz.

Figure 4.3 Stripmap imaging operating mode

60

In the spotlight mode the antenna is steered (both the azimuth and the elevation plane) during

the total acquisition time to better illuminate the required target for a time period longer than the one

of the standard strip side view, increasing the length of the synthetic antenna and therefore the azimuth

resolution (at expenses of the azimuth coverage). In that configuration the acquisition is performed

in frame mode, so it is limited in the azimuth direction due to the technical constraints deriving from

the azimuth antenna pointing. The two different implementation allowed for this acquisition mode

are SMART (only for defense purposes, not discussed here) and the Enhanced Spotlight. In the latter,

the extension is achieved by an antenna electronic steering scheme requiring the centre of the beam

steering to be located beyond the center of the imaged spot, so increasing the observed Doppler

bandwidth for each target. This mode is characterized by an azimuth frame extension of about 11 km,

a range swath extension of about 11 km, PRF values ranging from a minimum of 3148.1 Hz to a peak

of 4116.7 Hz, allowed chirp duration in a range between 70 and 80 microseconds (depending on

specific access area), a chirp bandwidth (accommodated along range on the basis of the required

ground resolution) ranging from 185.2 MHz to 400.0 MHz and finally (due to the de-ramping

processing) a sampling frequency equal to 187.5 MHz (same for each acquisition configuration.

Figure 4.4 Spotlight imaging operating mode

61

In the ScanSAR mode a larger swath in range compared to the Stripmap mode is provided,

but with a less spatial resolution, obtained by periodically stepping the antenna beam to closest sub-

swaths. Since only a part of the synthetic antenna length is available in azimuth, the azimuth

resolution is hence limited. In this configuration the acquisition is performed in adjacent strip mode,

so it is virtually unlimited in the azimuth direction, but the reality is different due to duty cycle

limitations of the SAR system (about 600s). The two different implementations provided by this

acquisition mode are WideRegion and HugeRegion. In the first one, acquisition is grouped with three

adjacent sub-swaths which permits to achieve a ground coverage of about 100 km in the range

direction. The azimuth extension for the standard product is about 100 km (so forecasted for the

origination of a square frame) corresponding to an acquisition of about 15 seconds. This mode is

characterized by a PRF values which goes from a minimum of 2905.9 Hz to a peak of 3632.4 Hz, a

chirp duration in a range between 30 and 40 microseconds, a chirp bandwidth accommodated along

range on the basis of the required ground resolution and which goes from 32.74 MHz at the far range

(with a sampling rate of 41.25 MHz) to 86.34 MHz at the far range (with a sampling rate of 108.75

MHz) In the latter, acquisition is grouped with up to six adjacent sub-swaths which allows to achieve

a ground coverage of about 200 km in the range direction. The azimuth extension for the standard

product is about 200 km (so forecasted for the origination of a square frame) corresponding to an

acquisition of about 30 seconds. This mode is characterized by a PRF values which goes from a

minimum of 2905.9 Hz to a peak of 3632.4 Hz, a chirp duration in a range between 30 and 40

microseconds, a chirp bandwidth accommodated along range on the basis of the required ground

resolution and which goes from 8.86 MHz at the far range (with a sampling rate of 11.25 MHz) to

23.74 MHz at the far range (with a sampling rate of 30.0 MHz).

Figure 4.5 ScanSAR imaging operating mode

62

4.6 How SAR pictures the world

SAR system transmit microwave signals at an oblique angle and measure the backscattered

portion of the sent signal to be able to analyze characteristics of the surface. This measurement can

be described in a mathematic way with the Radar Cross Section (RCS) term σ, which is equal to the

ratio between the incident and received signal intensity:

σ =
𝐼𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝐼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
∗ 4𝜋𝑅2 [𝑚2]

The RCS recorded by a SAR for specific characteristics of a surface is not always easy to

analyze, due to the fact that it is influenced both by a range of scene characteristics as well as by the

parameters of the imaging sensor. The most important scene parameters driving RCS are surface

roughness hrough and the dielectric properties of the imaged object quantified by its complex relative

dielectric constant εr. While the first parameter describes how much of the scattered radar energy is

directed back to the sensor, the dielectric properties guide whether or not signals may penetrate into

the scattering surface. The fact that both of these parameters are a function of sensor wavelength

explains why the characteristics of the sensor play a role when trying to interpret the measured

signature of real-life objects in a SAR image. The dielectric properties of a medium decide how a

microwave signal of wavelength λ interacts with a scattering medium such as the Earth’s surface.

These properties decide how much of the incoming radiation scatters at the surface, how much signal

penetrates into the medium, and how much of the energy gets lost to the medium through absorption.

In Figure 4.6 an overview of the influence of sensor wavelength λ on signal penetration into a different

surface typologies is provided. The radar signals penetrate deeper as sensor wavelength increases,

due to the dependence of the dielectric constant εr on the incident wavelength, allowing for higher

penetration at L-band (frequencies in the radio spectrum from 1 to 2 GHZ) than at C (frequencies in

the radio spectrum from 4.0 to 8.0 GHZ) or X (frequencies in the radio spectrum from 7.0 to 11.2

GHZ) ones. The rule of increasing penetration with increasing sensor wavelength is valid for

different surface typologies, such as high density vegetation and bar surfaces as alluvium soils and

glacier ice. To quantify penetration depths δp into bare surfaces, information about the dielectric

properties εr of the medium are requested; in that case, it can be approximated as:

δp ≈ λ√
ε𝑟

′

2𝜋ε𝑟
′′

63

where εr’ is the real component and εr’’ is the imaginary one of the complex relative dielectric

constant. In addition to soil density and sensor wavelength, these terms are strongly dependent on the

moisture content of the medium.

Fig 4.6 SAR signal penetration in terms of sensor wavelength λ

With few exceptions, such as dry snow and dry sandy soils, most bare or low vegetation

surfaces allow a very little penetration for microwave radiation, such that surface scattering dominates

the measured radar response. In these cases, the roughness of the scattering surface is the main driver

defining the observed RCS in a SAR scene. For a narrow-band imaging system as it is SAR, if a

surface appears rough or not can only be decided by taking into account the sensor wavelength. If the

scale of roughness of a randomly rough surface is characterized using the standard deviation of the

height deviation h from some mean height ℎ̅ of the surface, then we know how large h has to be for

a surface to appear rough to an observing SAR system. According to the Fraunhofer criterion, a

surface is defined as rough if the height deviations exceed the value hrough, which is defined as:

ℎ𝑟𝑜𝑢𝑔ℎ =
𝜆

32 ∗ 𝑐𝑜𝑠𝜃𝑖

64

The above relationship depends on the signal wavelength λ and indicates that a surface with fixed

height variations h may qualify as rough in X-band but possibly not in C or L ones. This concept of

wavelength-dependent roughness is visualized in the following image, which shows increasing

roughness conditions from left to right and identifies the transition from smooth, to intermediately

rough, to rough surfaces, in accordance with the Fraunhofer criterion in the above equation.

Fig. 4.7 Dependence of surface roughness on the sensor wavelength λ

It can be seen that the amount of backscatter increases (length of blue arrows pointing toward

the sensor) as roughness increases such that rough surfaces (at wavelength λ) have higher RCS than

intermediately rough or smooth surfaces. The wavelength dependence also means that a surface will

look increasingly darker as wavelength increases from X-band through C-band to L-band.

A SAR is an active instrument with its own source of illumination and it is one of the few

sensing instruments which allows the full control and exploit of the polarization of the signal on both

the transmit and the receive paths. Polarization describes the orientation of the plane of oscillation of

a propagating signal. In linearly polarized systems, the orientation of that plane of oscillation is

constant along the propagation path of the electromagnetic wave. In other systems, such as circular

or elliptical polarized SARs, the orientation of the oscillation plane changes, describing geometric

shapes such as circles or ellipses. Today a lot of SAR sensors are linearly polarized and transmit

horizontal and/or vertical polarized waveforms. Many of the heritage SAR satellites carry single-

polarized sensors, which support only one linear polarization. These sensors predominantly operate

in HH (horizontal polarization on transmit; horizontal polarization on receive) or VV polarization

(vertical polarization on transmit; vertical polarization on receive), while single-polarized sensors

transmitting one linear polarization and receiving the other, such as HV or VH, are rare in practice.

65

More recent sensors provide either dual-polarization or quad-polarization capabilities. In the latter,

the sensor alternates between transmitting H and V polarized waveforms and receiving both H and V

simultaneously, providing HH, HV, VH and VV polarized imagery. Knowing the polarization from

which a SAR image was acquired is fundamental, as signals at different polarizations interact

differently with objects on the ground, affecting the recorded radar brightness in a specific

polarization channel. Let’s see some rules of thumb which should aid in the interpretation of

polarimetric SAR data. For simplicity, it is assumed that a natural scene can be described as a

combination of three types of scatterers: rough surface scatterers, double-bounce scatterers, volume

scatterers, as we can see in the following figure. The first category in made up of low vegetation fields

and bare soils, as well as roads and other paved surfaces. The second category includes buildings,

tree trunks, light poles, and other vertical structures that deflect an initial first forward reflection back

to the sensor. The third and last category is composed by vegetation canopies, as the signals bounce

multiple times as they propagate through the vegetation structure.

Fig. 4.8 Three main scattering types considered for SAR data

It turns out that these scattering types do not contribute to all polarimetric channels equally.

Instead, each polarimetric channel “prefers” certain scattering types such that the scattering power |S|

in the individual polarimetric channels follows the following general scheme:

- Rough surface scattering → |SVV| > |SHH| > |SHV| or |SVH|

- Double bounce scattering → |SHH| > |SVV| > |SHV| or |SVH|

- Volume scattering → Main source of |SHV| and |SVH|

These general rules should help when comparing the RCS in different polarimetric channels. They

can be applied to perform an automatic classification of scattering types if data with all relevant

polarizations (i.e. quad-polarization data) are available.

66

Chapter five: porting CUDA to OpenCL in SAR focusing system

5.1 Introduction

In this last section I will present the changes which have to be applied to porting the SAR

focusing system written in CUDA to OpenCL. Moreover, I will present some improvements which

could be applied to have better performance results in focusing acquisition.

5.2 The initial work

The SAR focusing system was already well working with a CUDA implementation. In

particular, I am referring to the work presented by Prof. Claudio Passerone, together with two

colleagues of his, in a paper called “High Performance SAR Focusing Algorithm and

Implementation”. We will talk about this work and, after that, we will see the improvements which

could be done to reach a finer work with the current technologies and instruments. They implemented

the Stripmap and Spotlight imaging acquisition modes using the RDA (Range Doppler Algorithm)

and the ω-k algorithms. They are both based on the compression of linearly frequency modulated

signals (the so called chirp) along the range and azimuth directions, with the use of a matched filter

in the frequency domain. The chirp in the range direction is generated by the radar antenna itself,

while the chirp along the azimuth direction is generated by the Doppler effect, caused by the change

of relative speed between the radar and the targets.

Figure 5.1 The flow’s differences between the used algorithms

67

The Range Doppler Algorithm performs two separate compressions in the range direction and

in the azimuth one, with the Range Cell Migration Correction performed in the Doppler domain. To

achieve the finest accuracy and resolution the correct estimation of several parameters, such as the

doppler frequency and the azimuth FM rate, is required. These values are not constant within an

image, so polynomial models are used to characterize their variations, and the model parameters have

been directly derived from the image data itself. The input to the algorithm is a W x H image with

complex numbers in 32-bit floating point format (8 bytes for each pixel, 4 for the real part, and 4 for

the imaginary part). This image corresponds to the samples received by the SAR system for each of

the H transmitted pulses, with the high frequency carrier already removed on the spot in the space

system. More auxiliary data are anyway present in the image file, and some of them are extracted for

following processing phases. Among the available data there are biasing and antenna pattern values,

which allow to correct the received samples to obtain a better quality signal with an higher signal to

noise ratio. The corrections are realized using dedicated parallel kernels which operate on pixel values

directly. The first step of the algorithm involves the convolution of each range row with a matched

filter, that depends upon the chirp used during signal transmission. Chirp samples are contained in

the raw image data, and are extracted during the loading phase and stored in the frequency domain,

as the complex product of the spectrum of each range scan line with the conjugate of the spectrum of

the chirp. Then for each line are required, and so performed, an FFT (Fast Fourier Transform), a

complex multiplication, and an inverse FFT. To perform the above operations Nvidia CUDA comes

in help, with a library named CuFFT which provides highly optimized functions to perform Fast

Fourier Transforms. The library is widely used through the entire algorithm and requires the initial

definition of a plan, with all the relevant information for the transformation, e.g. the number of

samples and the direction of the transformation. An additional parameter is the number of concurrent

FFTs to perform, called batch: computation is parallelized over hundreds of cores, so increasing the

opportunities to exploit parallelism is a main target to improve performances. In particular, it emerged

that an 8192 sample FFT takes more or less the same amount of time as a batch of 8 concurrent 8192

sample FFTs; higher values for the batch parameter leaded to a linear increase in the running time.

Thus, in their implementation they have defined three plans: two of them have the batch parameter

equal to H, and differ only for the direction of the transformation (forward and inverse, respectively).

The third one is a forward FFT of a single line, which is applied to a zero padded version of the chirp,

extended to the same size of a range scan line. The whole image is initially forward transformed with

a single call of the FFT library function and, as the raw data is not needed anymore, the transformation

is in place to save memory. Then the complex multiplication takes place: a dedicated pointwise kernel

has been developed to perform it in parallel. At last, a second in place FFT, an inverse one, is applied

68

to the entire image to return to the spatial domain. The original image is lost at this point, and only

the range compressed image is kept for the subsequent processing phases. The SAR concept is based

on the Doppler effect that changes the frequency of the transmitted signals as the system moves with

respect to ground targets. For that reason, a good knowledge of Doppler parameters is a very

important aspect to obtain the highest possible resolution along the azimuth direction. In theory,

Doppler parameters can be computed from the relative geometry of the radar and target system. In

practice, while this is a common practice for airborne SARs, the resulting accuracy for a satellite is

often not adequate enough, as not only the satellite speed and altitude should be precisely known, but

also Earth rotation and curvature should be taken into account. Hence, estimation of the Doppler

parameters from the received data is required.

Two main parameters are estimated, using three different procedures, which share many

similar processing steps:

- Doppler centroid: the Doppler frequency for a ground target when the satellite is at

closest approach. This value is 0 for a SAR with antenna perfectly orthogonal to the

flight path, and it is non-zero otherwise. The estimation is divided in two phases: first,

the fractional part of the Doppler frequency with respect to the PRF is computed, then

the integer part, also known as the ambiguity number Mamb is estimated

- Azimuth FM rate: the rate of change of the Doppler frequency along the azimuth

direction. This value is necessary to derive the correct matched filter for the subsequent

azimuth compression step

In all cases, the estimated values differ slowly with the image location. Hence, for the estimation

process the image itself is divided into several contiguous small blocks, parameters are computed for

each individual block, and smooth polynomial fitting surface is then obtained using the Nelder-Mead

method (a commonly applied numerical method used to find the minimum or maximum of

an objective function in a multidimensional space), initialized with data obtained from geometrical

and orbital parameters. This procedure leads to a better accuracy due to the fact that any error in the

estimation process on a block is averaged with the other blocks. Most computations in the estimation

processes are carried out in the range-Doppler domain (the spatial domain for the range direction)

and in the frequency domain for the azimuth direction. Unfortunately, FFT functions in the CUDA

library did not provide a stride parameter (they used CUDA toolkit 3.5; nowadays, toolkit 11.0 is

available), so the samples of the arrays to be transformed needed to be contiguous in memory.

Transposition of individual blocks, or of the entire image, was hence needed before applying the FFT.

In order to be efficient, parallel matrix should exploit the memory access capabilities of the GPU

https://en.wikipedia.org/wiki/Numerical_method
https://en.wikipedia.org/wiki/Objective_function

69

hardware in such a way to group many main memory transactions (also known as coalescing) in a

single wider transaction to optimize access time. In a linear parallel implementation of transposition,

each thread reads one piece of data from the source matrix, and writes it to the destination buffer.

Anyway coalescing is possible either while reading data or while writing it, not both of them at the

same time, due to the matrix memory layout. An alternative implementation uses shared memory to

accomplish the same task, while exploiting coalescing in main memory in both reading and writing.

Threads are divided in an n x n matrix, where each thread reads a value from an n x n block in the

source image, and stores it transposed in a temporary buffer in shared memory, which is much faster

than main memory, and coalescing is not needed, while reading from main memory enjoys coalescing

because threads read contiguous data. Once the temporary buffer is completely filled in, the

destination main memory image is written. The destination block is in a transposed location compared

to the source block, and threads are organized to store data contiguous in memory, in such a way to

achieve coalescing also in writing. The idea behind this method is that a thread reads a value, but

writes another one read by the transposed thread in the matrix.

Three individual procedures can now be analyzed in a deeper way to better understand how

the mechanism works:

- Fractional Doppler centroid estimation: the range compressed image is divided into a

number of blocks with a size defined by the user. For each block, the Doppler centroid

fractional part is estimated as the peak of the Doppler magnitude spectrum. As the

spectrum for a single azimuth line in a block is very noisy, the magnitude is averaged

over all lines of the block; then, its maximum is found by convolving it with a power

filter with a sinusoidal shape and by looking for the zero crossing. In the following,

there are the detailed steps followed by each block:

o The power filter is generated and its Fourier transform is computed (the power

filter is identical for all blocks, and it is computed only once)

o The block is transposed to get the azimuth direction in the rows, which are then

transformed to the frequency Doppler domain using FFTs in batches equal to

the block height

o The magnitude of each azimuth line is computed, and the average of all lines

gives the Doppler power spectrum. In both situations, pointwise parallel

kernels were developed to increase performances

o The power spectrum is then transformed using a forward FFT, multiplied with

the power filter transform to perform the convolution, and finally inverse

transformed to get back to the Doppler domain

70

o The zero crossing of the convolution is determined on the host, as this

computation is not time critical because it involves a single line

Once all blocks are completed, a first order polynomial surface is fitted to the fractional

centroid values, such that the final outcome of the procedure is given by:

dfrac = d0 +d1r + d2a + d3ra

where r and a are respectively coordinates of the range and azimuth directions. A

second order polynomial model can also be used, with very few modifications and a

slightly higher running time. Before fitting, the signal to noise ratio of the average

power spectrums are also computed, and potentially inaccurate values are removed.

- Azimuth FM rate estimation: one more time, the range compressed image is divided

into user defined blocks, possibly with a different size compared to the fractional

Doppler centroid estimation procedure. Each block is transformed in the Doppler

domain, and decomposed into two looks with non-overlapping spectrum. One by one,

each look is separately compressed along the azimuth axis using a nominal FM rate

Ka derived from orbital data. In the case in which the nominal FM rate is not precise

enough, it results in a mis-registration of the two compressed looks, and the amount

of mis-registrations gives the error on the FM rate. Averaging over all range lines in

the block allows to reduce noise and achieve a better accuracy. The following are the

implemented steps:

o The block is transposed to get the azimuth direction in the rows, and then rows

are transformed to the frequency Doppler domain using FFTs in batches equal

to the block height (if the block size is the same as the one used for the

fractional Doppler centroid estimation, this step can be shared with the second

step of the previous procedure, with a considerable saving in running time)

o The block is compressed along the azimuth direction, using a matched filter

derived by the complex multiplication with the transformed matched filter, and

the result is kept in the Doppler domain at this stage. The matched filter is

computed for each azimuth line separately, as the coefficients change from one

scan line to another

71

o The Doppler spectrum is divided in two looks, which are one by one inverse

transformed back to the spatial domain; the magnitude of each look is also

calculated

o The mis-registration along the range direction of the two magnitude looks is

computed using their mutual cross-correlation. To be able to do so, looks are

transposed, transformed, complex multiplied, and transformed back. The

average of all range lines is computed to reduce noise

o The maximum of the cross-correlation is computed on the host processor; its

position gives the amount of FM rate error ΔKa for the block

A first order polynomial model is used also in this case to get a smoothly varying FM

rate over the entire image. The Nelder-Mead algorithm is started with the nominal FM

rate, with the average FM rate error from all blocks already added to improve

convergence.

- Integer Doppler centroid estimation: the last Doppler parameter which is estimated is

the integer part Mamb of the Doppler centroid. The procedure is similar to the FM rate

estimation, as it is based on the detecting the mis-registration in the range direction of

multiple looks. Anyway, in contrast to the technique described before, it starts from

the range-Doppler image, rather than the range compressed one. Hence, the whole

image needs to be transformed along the azimuth direction. To avoid allocating

memory for the transposed image, the operation is carried out in vertical slices: a slice

is first transposed in a temporary buffer, a batch of FFTs equal to the number of lines

in the transposed buffer is applied, and then the slice is written back in its original

position by transposing it again. After that, the integer Doppler centroid is estimated

using the following steps:

o The estimated fractional part of the Doppler frequency is used to determine the

vertical location of the maximum of the Doppler power spectrum

o The image is divided in slices (which are different and often larger than the

slices used to transform the image in the range-Doppler domain), and for each

one of them a set of pair looks, which are symmetric with respect to the

maximum of the Doppler power spectrum, are defined at increasing distances

from the estimated maximum

72

o Each look is compressed in the azimuth direction by multiplying it with the

frequency domain matched filter and transforming it back to spatial domain;

furthermore, the magnitude of each look is computed

o Magnitudes of compressed looks are compared in pairs to determine the range

mis-registration. The displacement is computed by finding the maximum of

the cross-correlation, averaged over all the lines of the looks to reduce noise.

The cross-correlation is upscaled by a factor of 4 to get an higher accuracy.

Pairs which are further away with respect to the maximum of the Doppler

power spectrum show a linearly increasing displacement, where the rate of

increase is related to the Doppler frequency

o A fitting first order surface without the mutual r x a term is computed, and the

integer part of the Doppler frequency is determined as the coefficient along the

range direction, rounded to the lower integer value

For all three estimation procedures, a magnitude based method has been adopted. The

literature also contains several phase based methods, which were in some cases also implemented.

Anyway, the ones presented in the paper “High Performance SAR Focusing Algorithm and

Implementation” gave the best results from both an accuracy and a performance point of view, so

only some of them had been analyzed, while the others are not discussed.

 Let’s move on the Professor analysis. After estimations are over, the image is in the Range-

Doppler domain, as it was transformed during the evaluation of the Doppler ambiguity number. If

estimations are skipped, the azimuth FFT using coalesced transposition and slicing is carried out

anyway, as it is necessary for the next steps in the algorithm.

- Range Cell Migration Correction (RCMC): Range cell migration occurs because the

distance (range) between the antenna and the target changes along the flight path. This

effect must be compensated, if that does not happen severe smearings appear in the

final focused image. This is best achieved in the Doppler domain, as the spectrum for

a target is also skewed, with the amount of skew depending on the effective Doppler

frequency. Therefore, RCMS usually consists in a remapping of samples in the range-

Doppler domain, using some sort of interpolation mechanism.

The most important detail to an accurate RCMC is the precise knowledge of the

Doppler centroid, given by both the integer and fractional parts estimated in the

73

previous phases. Remapping is along the range direction only, and has been

implemented in two user-selectable ways:

o Using a nearest neighborhood method, to achieve high performance with a

slightly less accurate correction

o Using a weighted sinc interpolator, for maximum accuracy

In both cases, a GPU kernel performs the correction one range line at a time,

concurrently for all pixels of each line. The result overwrites the initial image, in such

a way that at the end of processing a corrected range-Doppler array is available.

- Azimuth compression: the last step in the algorithm performs the final compression

along the azimuth direction. Differently to the matched filter in range, which is

extracted from the chirp data, for azimuth compression the matched filter must be

properly computed, and it depends on both the accurate estimations of the Doppler

centroid and of the azimuth FM rate. Moreover, it changes with range, so different

filters are used for each azimuth scan line.

As the image is already in the Doppler domain, compression corresponds to a complex

multiplication, followed by a last inverse FFT. To reduce the number of transpositions,

the matched filter is computed directly in the frequency domain along range lines, and

complex multiplication directly applied. This is performed using two successive

parallel kernels, but they can in theory be grouped into a single one.

The final IFFT uses the usual coalesced transposition, followed by a batch of IFFTs, and

terminated with a last coalesced transposition which overwrites the initial data. The resulting image

is hence in Slant-range projection, and all pixels carry a complex data. To visualize it, the magnitude

for each pixel must be computed.

Contrary to the RDA, the ω-k algorithm performs all compressions and corrections within the

frequency domain in both range and azimuth directions, and it is able to achieve better accuracy for

large antenna squint angles. The complexity is comparable to the RDA, and many of the processing

steps are shared with it, so the authors of the paper “High Performance SAR Focusing Algorithm and

Implementation” decided to reference them instead of repeat them.

In theory, as before described, the ω-k algorithm consists in a two dimensional FFT, the

product with the reference function followed by the differential Stolt interpolation, and a concluding

two dimensional IFFT. However, their implementation of fractional and integer Doppler centroid

74

parameter estimations required a range compressed and a range-Doppler image respectively. While

in RDA these images are readily available along the standard processing flow, they must be created

ad hoc in the ω-k algorithm flow. Hence, the sequence of steps is different whether estimation of

Doppler parameters from received data is performed or not; it will follow the flow which includes

estimations, but is important to say that the other one is faster because it need less domain

transformations.

The ω-k algorithm starts with range compression (a range FFT, the chirp matched filter

multiplication, and a range IFFT). It follows a fractional Doppler centroid estimation, as the image is

now in the range compressed state. The integer Doppler centroid estimation requires the image to be

in the range-Doppler domain, so a coalesced transposition and an azimuth FFT are executed before

invoking the estimation procedure. Up to this stage, the algorithm is actually identical to the RDA,

except that the Doppler rate estimation is not performed, as it is not needed in the following steps.

The RDA and ω-k algorithm diverge at this point. As the image is currently in the range-

Doppler domain, a forward range FFT is needed to transform it from range time to range frequency.

RDA does not need it, as both RCMC and azimuth compression are performed in the range-Doppler

domain. The reference multiply and differential Stolt interpolation are then executed.

- Reference function multiply: the complex reference function is computed for each

scan line with a parallel pointwise kernel, using the estimated Doppler centroid two

dimensional model at a reference range, corresponding to the middle of the image

swath. This function consists of a phase term only (magnitude equal to 1), and its full

formulation includes a square root; to improve performance, the square root is actually

implemented using its second order Taylor approximation, with all intermediate

computations carried out in double precision, and the final value converted to a single

precision floating point complex value.

After computing the reference function, a second pointwise kernel performs the actual

complex multiplication, and this is repeated for all range lines in the image. The final

output is an image in both the range and azimuth frequency domain, which is correctly

focused at midrange, but still has a residual error along the range frequency direction,

due to how the reference function has been computed.

It has to be noted that the reference function multiplication is applied to an already

range compressed image, rather than the original one transformed in the two

dimensional frequency domain. The reason is that parameter estimations were carried

out before this step. Anyway, this is acceptable, as this step is invariant with respect

75

to range compression, and it allows to save the memory required to store the original

image, while keeping the compressed one only.

- Stolt interpolation: as the residual error after the reference function multiplication

depends on range frequency, rather than range time, it can be eliminated with a

mapping interpolation along the range frequency dimension. This step, called Stolt

interpolation, finally focuses the whole image.

At first, a vector containing the value of range frequencies is computed. This is useful,

as the interpolation is azimuth dependent, but range frequencies are not, so they can

be stored and reused for all lines without modifications.

Then, looping on all lines of the image, a parallel kernel computes the amount of

displacement of each range frequency, as a floating point number, again using an

approximation of the exact function, which includes a square root. All displacements

are stored in a vector in the device memory, which is used as the input of an

interpolation kernel, that generates the new line using a nearest neighborhood

approach. A linear interpolation has also been implemented, but it did not show an

appreciable better accuracy in the final result.

Following the Stolt interpolation, the image is focused but still in the two dimensional

frequency domain. A range IFFT, followed by a transposition and an azimuth IFFT

brings the image back in the spatial domain, where each pixel is a complex value in

the Slant-range projection. Similarly to the RDA, a visible image is obtained by

computing the magnitude at each pixel.

The whole system for focusing using both the RDA and the ω-k algorithm had been

implemented on a Tesla C1060 GPU with 4 Gbyte of main memory, on an Intel i7 host processor

with 8 Gbyte of memory, running a 64 bit Linux operating system. It had been used the CUDA toolkit

version 3.5. The system performance is better highlighted as follows:

- The transfer of a 1 GByte image from host to device memory (or the opposite

direction) takes around 270 ms, with a throughput of more than 3.5 GByte/s

- The most used kernels are the one about Fourier transforms and transpositions.

- The range compression of a 16384 x 8192 image takes 330 ms (including forward

FFT, complex multiplication and IFFT).

- The compression along the azimuth direction takes 3.9 s, with an initial transposition,

forward FFT, matched filter multiplication, IFFT and final transposition

- In general, the FFT library reaches more or less 140 Gflops performance.

76

- For a 400 Mpixel input image the system takes about 20 s to complete the processing,

with an equivalent throughput of 20 Mpixel/s

- The results show similar timing performance for both RDA and ω-k algorithms, with

no very big differences between the two both in stripmap or spotlight mode.

Fig. 5.1 Bulk compression without and with differential Stolt interpolation

77

Fig. 5.2 Focusing of a stripmap image using the ω-k algorithm

78

The images above are the result of the optimum work done and explained in the paper “High

Performance SAR Focusing Algorithm and Implementation”. They are virtually indistinguishable to

the ones from the Cosmo-SkyMed official processing toolchain.

5.3 Achievable improvements

The work which has be done is actually stunning, but some time has passed from that work

so technology has improved and the same system could be improved not only to obtain a better

performance but also to obtain a better portability. This is the key point of the thesis: how to improve

both performance and portability all at once?

The idea is to porting the actual CUDA software in OpenCL, adding new features such as the

use of a pipeline for memory transfers and a pipeline among kernels, doing the padding of the image

not only on powers of two, using the new cuFFT library which allows to do the stride also in the

vertical direction, and using more than one GPU at the same time.

5.3.1 Porting CUDA to OpenCL

Porting CUDA to OpenCL could seem an easy task, since actually some little changes appears

to be applied. The reality is quite different and consequently, two different approaches could be used.

The first one is to use automatic converting tools which read the code and change it accordingly to

the requested characteristics; the second one is to manually change the code.

The principal automatic converting tools actually known are Project Coriander, CU2CL,

GPUOpen HIP. They are a reliable and quick method to convert an existing CUDA file in an OpenCL

one, which allows programmers who already know CUDA to easily translate their job, but they have

some disadvantages. The principal ones are that each one of them works with different versions of

OpenCL and some of them do not have constant updates, so they do not run together with OpenCL

updates. This is a limit to the potentiality of those methods. The first and the second methods are

available on GitHub, while the third it is now called AMD ROCmTM Open Ecosystem which is

property of AMD but anyway an open source tool. Let’s have a deeper look inside one of those tools,

the CU2CL one. CU2CL, which stands for CUDA-to-OpenCL, is a translator implemented as a Clang

tool, a C language family fronted for LLVM. The tool interface is able, with a single invocation, to

translate all the CUDA source files which will create a complete and working executable. CU2CL

79

uses Clang’s CUDA front-end to perform preprocessing, parsing, and abstract syntax tree generation,

using a certain number of Clang’s libraries through the translation process, which provide core

functionalities to the translator such as file management, abstract tree traversal and information

retrieval, the tool interface, preprocessor token access, and rewriting mechanisms.

Figure 5.3 CU2CL architecture

CU2CL performs a translation process called “AST-Driven, String Based Translation”, which

uses the AST generated by Clang to identify sections of source code which contain CUDA code

which has to be translated. After the identification, the translator recurses into each individual

component of the code searching for further sub-code structures which may need translation. After

that all the code has been checked, the translator performs highly localized string based rewrites of

the CUDA code from the bottom up. In the following, an example of how it works explained through

different images, directly taken from the CU2CL website[21]:

A typical CUDA kernel math function, the native power.

21 http://chrec.cs.vt.edu/cu2cl/overview.php#translation

80

CU2CL identifies that a CUDA kernel function has to be translated.

CU2CL identifies which are present two children, for its first and second parameter.

These are standard C arrays which do not need to be translated. Anyway, CU2CL has to check if their indices

are CUDA structures which, in that case, are the CUDA specific threadIdx structures.

As the array indices were structs, CU2CL recurses one step further to determine the specific fields which are

referenced.

81

After reaching the AST leaf nodes, the translator must rewrite the text for each of these nodes that is either a

CUDA structure or contains a child which is a CUDA structure. Upon returning from each recursive call the

rewritten text corresponding to child nodes is integrated with the rewritten text from the current node, and

returned to the parent. So, for the native power translation, CU2CL first rewrites the threadIdx fields for each

of the arguments.

The rewritten zero and one are then passed upwards to their parent nodes, which rewrites the threadIdx

structure into the corresponding OpenCL get_local_id call, using the zero and one as parameters to the call.

This rewritten structure is the passed upwards to the parent nodes associated with the x and y arrays. No

special rewriting is performed on the arrays themselves, but new strings are returned to the parent node with

the original CUDA threadIdx indices replaced.

82

Finally, after receiving the rewritten strings for both function parameters, CU2CL translates the _powf function

itself.

Once the CUDA structure is fully translated it is then inserted into the source code as a direct replacement to

the original structure, without modifying the surrounding code. By providing this highly localized translation

mechanism, the original formatting and commenting in source code is preserved, significantly simplifying

maintenance of the automatically translated OpenCL code.

In a work done by Wu Feng[22], it has been highlighted how using CU2CL (or in general

automatic porting tools) is far better than manually porting the code. He showed that OpenCL has a

too low level API compared to CUDA, so it is much easier to start with CUDA. He concluded that

automatic translated code and manually translated code from CUDA to OpenCL yields the same

performance and that OpenCL performance is not as good as CUDA as implementations are not as

mature (but he also pointed out that the performance could be raised thanks to optimization).

On the other hand there is the manual porting of the code, which, in theory, allows to have

always an updated code in correspondence to the last releases in such a way to have a final better

result, but it takes time and it requires a certain knowledge in the porting itself.

Actually, already having the no bug code in CUDA is a great news, because you have already

worked out how to split up the problem you had to solve to run effectively. Nevertheless some

changes are needed. The first ones to be done are the ones about the different terms in the code which

have to be changed, as we can see in the following:

[22] How To Run Your CUDA Program Anywhere - A Perspective from Virginia Tech’s GPU-Accelerated HokieSpeed Cluster, W. Feng and M.
Gardner, November 2011

83

CUDA terms OpenCL terms

Terminology

Thread Work-item

Thread block Work-group

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Local memory Private memory

Qualifiers

global function _kernel function

constant variable declaration _constant variable declaration

device variable declaration _global variable declaration

shared variable declaration _local variable declaration

Indexing

gridDim get_num_groups()

blockDim get_local_size()

blockIdx get_group_id()

threadIdx get_local_id

Synchronization

_syncthreads() barrier()

_threadfence_block() mem_fence()

Import API Objects

CUdevice cl_device_id

CUcontext cl_context

CUmodule cl_program

CUfunction cl_kernel

CUdeviceptr cl_mem

Important API Calls

cuDeviceGet() clGetContextInfo()

cuCtxCreate() clCreateContextFromType()

cuModuleGetFunction() clCreateKernel()

84

cuMemAlloc() clCreateBuffer()

cuMemcpyHtoD() clEnqueueWriteBuffer()

cuMemcpyDtoH() clEnqueueReadBuffer()

cuParamSeti() clSetKernelArg()

cuLaunchGrid() clEnqueueNDRangeKernel()

cuMemFree() clReleaseMemObj()

Table 5.1 CUDA vs OpenCL terminology changes

Porting to OpenCL requires to change both host and device code. By default, CUDA initializes

the GPU automatically, while OpenCL requires an explicit device initialization, due to its portability,

so the code must know which device has to be used. Let’s start from the host program.

The host program is the code which runs in the host to setup the environment for the OpenCL

program and to create and manage kernels. In general, it is created in this way: first, you define the

platform where you are operating, so how many and which devices are used, the context and the

queues; then, you create and build the program (with dynamic libraries for kernels); after that, you

have to setup the memory object and to define the kernel (to link arguments to kernel functions);

finally, you submit the commands (and so it happens the transfer of memory objects and the execution

of kernels).

When you define the platform you have to build up also the context and the queues. The

context is included in the program object, which includes also the program kernel source or binary

and the list of target devices and build options. For that reason, you have to use the C API build

process to create a program object, either clCreateProgramWithSource() or

clCreateProgramWithBinary(). Note that OpenCL uses runtime compilation, due to the fact that the

details of the target devices are not known from the beginning. The queues (command-queues)

include the kernel execution, the memory object management and the synchronization. They are a

main feature of the program, because the only way to send command to devices is through them. Each

command-queue points to a single device within a context and multiple command-queues can feed a

single device (e.g. to define independent streams of commands which do not require synchronization).

They can be configured in two different ways to manage how commands execute. In the in-order

queues the commands are enqueued and complete in the order they appear in the program, while in

the out-of-order queues the commands are enqueued in program-order but can execute and complete

in any order. Then you have to create and build the program, better if including some error messages

85

to perform a check on the creation itself. The following step is to setup memory objects; the difference

between CUDA and OpenCL to perform this operation are listed in the following:

 CUDA OpenCL

Allocate float* d_x;

cudaMalloc(&d_x, sizeof(float)*size);

cl_mem d_x=

clCreateBuffer(context,

CL_MEM_READ_WRITE,

sizeof(float)*size, NULL, NULL);

Host to

Device

cudaMEMcpy(s_x, h_x,

sizeof(float)*size,

cudaMemcpyHosttoDevice);

clEnqueueWriteBuffer(queue, d_x,

CL_TRUE, 0, sizeoff(float)*size, h_x, 0,

NULL, NULL);

Device to

Host

cudaMemcpy(h_x, d_x,

sizeof(float)*size,

cudaMemcpyDeviceToHost);

clEnqueueReadBuffer(queue, d_x,

CL_TRUE, 0, sizeof(float)*size, h-x, 0,

NULL, NULL);
Table 5.2 Memory objects

The following step is to define the kernel and, in contrast with CUDA where you have to

specify the number of thread blocks and threads for each block, in OpenCL you have to specify the

problem size and, optionally, the number of work-items for each work-group. The last step is to

enqueue commands: once again, here is a table with the differences between CUDA and OpenCL.

CUDA OpenCL

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,

threads_per_block>>>();

const size_t global[2]={300,200};

const size_t local[2]={30,20};

clEnqueueNDRangeKernel(queue, &kernel, 2,

0, &global, &local, 0, NULL, NULL);
Table 5.3 Enqueue commands

The host program is now complete and working. The last step is to modify the device program,

which should be easier than the host one. This is true for simple programs, but usually it is the same

also for more complex ones. To better understand and highlight the above concepts, I will attach here

an example of a vector addition done from Piero Lanucara, from SCAI (SuperComputing

Applications and Innovation) in a work called “From CUDA to OpenCL”. The vector addition is a

86

good example, such as it stands for parallel computing as the program “hello world” stands for basic

language programming. At first, I will attach CUDA host and device program (this last one

highlighted in bold inside the program), then the separate OpenCL host and device programs.

CUDA host and device vector:
/**
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/

/**
* Vector addition: C = A + B.
*
* This sample is a very basic sample that implements element by element
* vector addition.
*/

#include <stdio.h>

// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
/**
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C. The 3 vectors have the same
* number of elements numElements.
*/
__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)
{

C[i] = A[i] + B[i];
}

}
/**
* Host main routine
*/
int
main(void)
{

// Error code to check return values for CUDA calls cudaError_t err = cudaSuccess;

// Print the vector length to be used, and compute its size int numElements = 50000;
size_t size = numElements * sizeof(float);
printf("[Vector addition of %d elements]\n", numElements);

// Allocate the host input vector A
float *h_A = (float *)malloc(size);

87

// Allocate the host input vector B
float *h_B = (float *)malloc(size);

// Allocate the host output vector C
float *h_C = (float *)malloc(size);

// Verify that allocations succeeded
if (h_A == NULL || h_B == NULL || h_C == NULL)
{

fprintf(stderr, "Failed to allocate host vectors!\n");
exit(EXIT_FAILURE);

}

// Initialize the host input vectors
for (int i = 0; i < numElements; ++i)
{

h_A[i] = rand()/(float)RAND_MAX;
h_B[i] = rand()/(float)RAND_MAX;

}

// Allocate the device input vector A float *d_A = NULL;
err = cudaMalloc((void **)&d_A, size);

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// Allocate the device input vector B
float *d_B = NULL;
err = cudaMalloc((void **)&d_B, size);

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// Allocate the device output vector C
float *d_C = NULL;
err = cudaMalloc((void **)&d_C, size);

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// Copy the host input vectors A and B in host memory to the device input vectors in device memory
printf("Copy input data from the host memory to the CUDA device\n");
err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

88

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);
vectorAdd<<>>(d_A, d_B, d_C, numElements);
err = cudaGetLastError();

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// Copy the device result vector in device memory to the host result vector in host memory.
printf("Copy output data from the CUDA device to the host memory\n");
err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// Verify that the result vector is correct
for (int i = 0; i < numElements; ++i)
{

if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5)
{

fprintf(stderr, "Result verification failed at element %d!\n", i);
exit(EXIT_FAILURE);

}
}

printf("Test PASSED\n");

// Free device global memory
err = cudaFree(d_A);

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

err = cudaFree(d_B);

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

err = cudaFree(d_C);

89

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// Free host memory
free(h_A);
free(h_B);
free(h_C);

// Reset the device and exit
// cudaDeviceReset causes the driver to clean up all state. While not mandatory in normal operation, it is a
// good practice. It is also needed to ensure correct operation when the application is being profiled. Calling
// cudaDeviceReset causes all profile data to be flushed before the application exits

err = cudaDeviceReset();

if (err != cudaSuccess)
{

fprintf(stderr, "Failed to deinitialize the device! error=%s\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

printf("Done\n");
return 0;

}

OpenCL host vector:
// Fill vectors a and b with random float values
int i = 0;
int count = LENGTH;
for(i = 0; i < count; i++){
h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
}

// Set up platform and GPU device

cl_uint numPlatforms;

// Find number of platforms

err = clGetPlatformIDs(0, NULL, &numPlatforms);
checkError(err, "Finding platforms");
if (numPlatforms == 0)
{

printf("Found 0 platforms!\n");
return EXIT_FAILURE;

}

// Get all platforms
cl_platform_id Platform[numPlatforms];
err = clGetPlatformIDs(numPlatforms, Platform, NULL);
checkError(err, "Getting platforms");

// Secure a GPU
for (i = 0; i < numPlatforms; i++)
{

err = clGetDeviceIDs(Platform[i], DEVICE, 1, &device_id, NULL);

90

if (err == CL_SUCCESS)
{

break;
}

}

if (device_id == NULL)

checkError(err, "Finding a device");

err = output_device_info(device_id);
checkError(err, "Printing device output");

// Create a compute context
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
checkError(err, "Creating context");

// Create a command queue
commands = clCreateCommandQueue(context, device_id, 0, &err);
checkError(err, "Creating command queue");

// Create the compute program from the source buffer
program = clCreateProgramWithSource(context, 1, (const char **) & KernelSource, NULL, &err);
checkError(err, "Creating program");

// Build the program
char options[] = "-cl-mad-enable";
err = clBuildProgram(program, 0, NULL, options, NULL, NULL);
if (err != CL_SUCCESS)
{

size_t len;
char buffer[2048];
printf("Error: Failed to build program executable!\n%s\n", err_code(err));
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
printf("%s\n", buffer);
return EXIT_FAILURE;

}

// Create the compute kernel from the program
ko_vadd = clCreateKernel(program, "vadd", &err);
checkError(err, "Creating kernel");

// Create the input (a, b) and output (c) arrays in device memory
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, &err);
checkError(err, "Creating buffer d_a");

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, &err);
checkError(err, "Creating buffer d_b");

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, NULL, &err);
checkError(err, "Creating buffer d_c");

// Write a and b vectors into compute device memory
err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0, sizeof(float) * count, h_a, 0, NULL, NULL);
checkError(err, "Copying h_a to device at d_a");

err = clEnqueueWriteBuffer(commands, d_b, CL_TRUE, 0, sizeof(float) * count, h_b, 0, NULL, NULL);
checkError(err, "Copying h_b to device at d_b");

// Set the arguments to our compute kernel
err = clSetKernelArg(ko_vadd, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &d_c);

91

err |= clSetKernelArg(ko_vadd, 3, sizeof(unsigned int), &count);
checkError(err, "Setting kernel arguments");

double rtime = wtime();

// Execute the kernel over the entire range of our 1d input data set
// letting the OpenCL runtime choose the work-group size
global = count;
err = clEnqueueNDRangeKernel(commands, ko_vadd, 1, NULL, &global, NULL, 0, NULL, NULL);
checkError(err, "Enqueueing kernel");

// Wait for the commands to complete before stopping the timer
err = clFinish(commands);
checkError(err, "Waiting for kernel to finish");

rtime = wtime() - rtime;
printf("\nThe kernel ran in %lf seconds\n",rtime);

// Read back the results from the compute device
err = clEnqueueReadBuffer(commands, d_c, CL_TRUE, 0, sizeof(float) * count, h_c, 0, NULL, NULL);
if (err != CL_SUCCESS)
{

printf("Error: Failed to read output array!\n%s\n", err_code(err));
exit(1);

}

OpenCL device vector:
const char *KernelSource = "\n" \
"#pragma OPENCL EXTENSION cl_nv_compiler_options :
enable \n" \
"_kernel void vadd(\n" \
"_global float* a, \n" \
"_global float* b, \n" \
"_global float* c, \n" \
" const unsigned int count) \n" \
"{ \n" \
" int i = get_global_id(0); \n" \
" if(i < count) \n" \
" c[i] = a[i] + b[i]; \n" \
"} \n" \
"\n";
//------------

We have just seen a practical example of how the porting of a CUDA code into an OpenCL

one has to be done. The presented example is very easy, but it can highlight at best the changes which

have to be done in the software, which could appear quite simple but for longer and more difficult

software are challenging, mostly due to the fact that a manual porting could probably lead to many

typing errors. In the following, a table to compare the differences in the usage of the host API that

can be also be seen in the code above.

92

Table 5.4 Host API usage compared

Transporting the above analysis into the SAR focusing system software, there is the possibility

to reach the portability achievement. It would be interesting to compare the two software at this state

to see which one obtains the better performances, but maybe this reasoning is fallacious. I will explain

myself better. To compare the two software under a performance point of view, we would have both

of them running on the same architectures, so Nvidia’s ones because we are obliged by CUDA

limitations. From that perspective, obviously CUDA would exit victorious, due to all the native

arrangements made ad hoc for its GPUs. So, they can not simply be compared, but they are both good

GPU’s programming platform which can do their best in different situations. If we have the need to

program for different vendor’s architecture, then OpenCL is the better choice to take. If we aim to

have the maximum performances and we are comfortable in using Nvidia’s architecture, then the

better choice is CUDA. Now we can move on the implementations which could improve the actual

work.

93

5.3.2 Modifying the code

As said at the beginning of subchapter 5.2, there are some improvements which could be

applied to the actual software, thanks to the improvements in technology, not only for the hardware

part, so the GPU itself, but also for the updates to the APIs used to programming the environment.

The listed improvements (using a pipeline for memory transfers and a pipeline among kernels, doing

the padding of the image not only on powers of two, using the new cuFFT library which allows to do

the stride also in the vertical direction, and using more than one GPU at the same time) are all

correlated to CUDA platform, and it is not taken for granted that the same changes could be applied

using OpenCL.

Let’s take the first two improvements, so using a pipeline for memory transfers and one among

kernels. As we can learn directly from Nvidia developer’s website, this is possible with CUDA. Some

rules have to be followed and some constraints have to be applied, I quote them as it follows:

- The device must be capable of “concurrent copy and execution”. This can be queried

from the deviceOverlap field of a cudaDeviceProp struct, or from the output of the

deviceQuery sample included with the CUDA SDK/Toolkit. Nearly all devices with

compute capability 1.1 and higher have this capability.

- The kernel execution and the data transfer to be overlapped must both occur in

different, non-default streams.

- The host memory involved in the data transfer must be pinned memory.

The resulting code is then obtained breaking up an array of a certain size N into many blocks

of streamSize elements, which can be processed separately since the kernel operates separately on

each one of them. The number of [non-default] streams used us nStreams=N/streamSize. Different

approaches can be found to implement the domain decomposition of the data and processing as, for

example, looping over all the operations for each block of the array.

for (int i = 0; i < nStreams; ++i)
{

 int offset = i * streamSize;
 cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes, cudaMemcpyHostToDevice, stream[i]);
 kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);
 cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, cudaMemcpyDeviceToHost, stream[i]);
}

Or, for example, batching similar operations together, issuing all the host to device transfers

first, then all kernel launches, and finally all device to host transfers.

94

for (int i = 0; i < nStreams; ++i)
{

int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes, cudaMemcpyHostToDevice,
cudaMemcpyHostToDevice, stream[i]);

}

for (int i = 0; i < nStreams; ++i)
{

int offset = i * streamSize;
 kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);
}

for (int i = 0; i < nStreams; ++i)
{

int offset = i * streamSize;
cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToHost, stream[i]);

}

The full code done by Mark Harris can be found on GitHub[23]. On the other hand, with

OpenCL, the preferred way is to create separate command queues for data transfers and compute and

to use events to create dependencies among steps. Then, at each iteration, have to be enqueued the:

- Upload of N+1 (the fragment of data which will be processed)

- Processing of N (the actual fragment)

- Download of N-1 (the old fragment is sent back)

So in both APIs it is possible to do this step, with some differences between the two platforms.

Another improvement which could be done is using the new cuFFT library which allows to do the

stride also in the vertical direction without transposing the data. Due to the fact that azimuth

transformations are used quite extensively in the current implementation and constitute a main

bottleneck, there should be a substantial decrease in running time by adopting the new toolkit. In

CUDA this is directly appliable, while OpenCl has another library for operating with Fast Fourier

transforms, which is called clFFT. Also this library supports vertical strides, as reported in the library

description[24] “clFFT expects all multi-dimensional input passed to it to be in row-major format. This

is compatible with C-based languages. However, clFFT is very flexible in the organization of the

input and output data, and it accepts input data by letting you specify a stride for each dimension.

This feature can be used to process data in column major arrays and other non-contiguous data

formats. See clfftSetPlanInStride() and clfftSetPlanOutStride().” A further change in the software

should be the possibility to use (so communicate and interact) multiple GPUs (so one host and

multiple devices), in such a way to divide the whole work upon the devices to speed up the entire

23 https://github.com/NVIDIA-developer-blog/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu

24 https://clmathlibraries.github.io/clFFT/

https://clmathlibraries.github.io/clFFT/clFFT_8h.html#a917a9af0591da63e64434d11ef149e6c
https://clmathlibraries.github.io/clFFT/clFFT_8h.html#aac2e3c6cc25d7d2a2550d9c882d53411

95

process. Divide et impera approach. This could be done by both platforms; in particular, in OpenCL

the way to follow is to create a context, fetch all devices that you need, place them in an array, and

use that array for building your kernels, and create one command_queue for every device in them.

OpenCL (clBuildProgram) supports in fact multi-device compilation, so the whole job can be split

among devices. The last point is about doing the padding of the image not only on powers of two.

This point deserves an initial consideration, which is that it is necessary to do a study based on the

right dimension based on the FFT performance. In theory, clFFT supports lengths that are any

combination of powers of 2, 3, 5, 7, as well as cuFFT. The fact is that, in any case, FFT of any length

is information preserving, but programmers tend to use radix 2 transforms due to they easiness. So,

it is possible to use others padding compared to the one powered by two, but, first of all, it is necessary

to see if the performance increases and, then, if the actual work works well, there is not a real necessity

to change it.

96

Conclusion

This thesis has been conceived as a work to highlight an actual existent software and see what

types of changes could be applied to it to improve its performance and portability. The initial

consideration are encouraging, and some work could be made on it to actual realize a new software

with the new features. Which one to choose between CUDA and OpenCL? From the different works

seen in Chapter three, in particular the last one, which has been massively explained, it has been

shown that both platforms are able to obtain similar performance results under some constraints. So

the real question is: which one to choose between CUDA and OpenCL for the SAR focusing system

environment? On the one hand, choosing OpenCL may bring the advantage of an heterogeneous

system, which could be the winning point due to the possibility to configure the best system possible

to reach the best performance, and also the possibility to run the system onto different computing

configurations, such as different computers or the same computer with different hardware

configurations. On the other hand, choosing CUDA may bring the advantage of running on a platform

which has great performance results and a lot of programmers which already know how to write it in

a very efficient way. It is also true that, as it is written in Chapter three, CUDA works very well with

the Fast Fourier Transform library, compared to OpenCL. The SAR focusing system uses a lot this

library, which is of main importance in both the algorithm used for the focusing (the Range Doppler

Algorithm and the ω-k algorithm). This last point is a very strong reason to prefer CUDA platform

instead of OpenCL one. It is also true that automatic porting tools are becoming more efficient and

more powerful. In particular, the idea of using already written CUDA software and the porting it into

OpenCL could be a very efficient way to take the best features of both platforms. The growing of this

tools could be, in the future, the turning point in the choice of which platform would be better to use.

In conclusion, it is a matter of choice of what is really needed between the two different platforms,

taking into account also the differences between them, and maybe considering the idea to use an

automatic porting tool (which are becoming better and better) to use CUDA and porting it into

OpenCL, in such a way to have already expert programmers able to write efficient codes, with also

the strong point of CUDA platform and libraries, but having also the possibility to run that code on

different architectures or an architecture with different hardware configurations.

97

References

- A. W. Love, "In Memory of Carl A. Wiley", IEEE Antennas and Propagation Society Newsletter,

pp 17–18, June 1985

- Africa Ixmucane Flores-Anderson, Kelsey E. Herndon, Rajesh Bahadur Thapa, Emil Cherrington,

“The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass

Estimation”, “Chapter 2: Spaceborne Synthetic Aperture Radar: Principles, Data Access, and

Basic Processing Techniques”, April 2019

- Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton, Deming Chen, Jason Cong,

Wen-Mei W. Hwu, “FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs”,

IEEE 7th Symposium on Application Specific Processors (SASP), 2009

- Ashu Rege, “An Introduction to Modern GPU Architecture”, Nvidia Corp., 2008

- ASI Agenzia Spaziale Italiana / Italian Space Agency, “COSMO-SkyMed System Description &

User Guide”, Doc. No: ASI-CSM-ENG-RS-093-A, May 2007

- Bala Dhandayuthapani Veerasamy, G. M. Nasira, “Exploring the contrast on GPGPU computing

through CUDA and OpenCL”, September 2014

- Bogdan Oancea, Tudorel Andrei, Raluca Mariana Dragoescu, “GPGPU Computing”, Challenges

of the Knowledge Society. IT

- C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, "Some Early Developments in Synthetic

Aperture Radar Systems", IRE Transactions on Military Electronics, April 1962, pp. 111–115

- Claudio Passerone, Claudio Sanso, Riccardo Maggiora, "High Performance SAR Focusing

Algorithm and Implementation", Department of Electronics and Telecommunications,

Politecnico di Torino

- David A. Patterson, John L. Hennessy, “Computer Organization And Design, The

Hardware/Software Interface: RISC-V Edition”, Morgan Kaufmann Publishers, 2018

- Denis Demidov, Karsten Ahnert, Karl Rupp, Peter Gottschling, “Programming CUDA and

OpenCL: a case study using modern C++ libraries”, 2013

- FirePro Graphics AMD, “OpenCLTM: The Future of Accelerated Application Performance Is

Now”, 2011

- Giuseppe Bilotta, Emiliano Tramontana, Roberto Spina, “Porting (CUDA/OpenCL) del software

MagFlow per la simulazione dei flussi lavici dell’Etna (MagFlow Porting Software

(Cuda/OpenCL) for Simulation Lava Flows of Etna), July 2014

- Guido Masera, “ISA: Integrated Systems Architecture Part 3-C Processor architecture”,

Politecnico di Torino, 2018-2019

98

- Håkon Kvale Stensland, “GPU & CUDA”, Simula Research Laboratory

- Hiroyuki Takizawa, Shoichi Hirasawa, Makoto Sugawara, Isaac Gelado, Hiroaki Kobayashi,

Wen-mei W. Hwu, “Optimized Data Transfers Based on the OpenCL Event Management

Mechanism”, Hindawi Publishing Corporation, Volume 2015, Article ID 576498

- How To Run Your CUDA Program Anywhere - A Perspective from Virginia Tech’s GPU-

Accelerated HokieSpeed Cluster, W. Feng and M. Gardner, November 2011

- ISO/IEC 9899:TC2, WG14/N1124, Committee Draft, May 2005

- Jeff Larkin, “GPU Fundamentals”, Nvidia Corp., November 2016

- Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, “A Comprehensive Performance

Comparison of CUDA and OpenCL”, Parallel and Distributed Systems Group, Delft University

of Technology (Delft, Netherlands), September 2011

- K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison of CUDA and OpenCL,”

May 2010

- K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi, “Evaluating

Performance and Portability of OpenCL Programs,” in Proceedings of the Fifth international

Workshop on Automatic Performance Tuning(iWAPT2010), (Berkeley, USA), June 2010

- M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P.

Sadayappan, “A compiler framework for optimization of affine loop nests for gpgpus,” in

Proceedings of the 22nd annual international conference on Supercomputing, ICS ’08, (New

York, NY, USA), pp. 225–234, ACM, 2008

- Matt Harvey, “Experiences porting from CUDA to OpenCL”, Imperial College London CBBL

IMIM, December 2009

- Matt Pharr, “GPU gems 2 : programming techniques for high performance graphics and general-

purpose computation”, Randima Fernando series editor, April 2005

- Nvidia Corp., “OpenCLTM Programming Guide for the CUDATM Architecture”, Version 4.2,

September 2012

- NVIDIA Inc., NVIDIAs Next Generation CUDA Compute Architecture: Fermi, 2009

- Nvidia Inc., OpenCL Best Practices Guide, May 2010

- NVIDIA Inc., PTX: Parallel Thread Execution ISA Version 2.2, October 2010

- P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From CUDA to OpenCL:

Towards a Performance-portable Solution for Multi-platform GPU Programming,” tech. rep.,

Department of Computer Science, UTK, Knoxville Tennessee, September 2010

- Piero Lanucara, “From CUDA to OpenCL”, SuperComputing Applications and Innovation

99

- R. Amorim, G. Haase, M. Liebmann, and R. Weber dos Santos, “Comparing CUDA and OpenGL

implementations for a Jacobi iteration,” pp. 22–32, June 2009

- R. van Nieuwpoort and J. Romein, “Correlating radio astronomy signals with Many-Core

hardware,” International Journal of Parallel Programming, vol. 39, pp. 88–114, Feb. 2011

- R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson, “Comparing Hardware

Accelerators in Scientific Applications: A Case Study,” IEEE Transactions on Parallel and

Distributed Systems, vol. 22, pp. 58–68, January 2011

- Sami Rosendahl, “CUDA and OpenCL API comparison”, Presentation for T-106.5800 Seminar

on GPGPU Programming, Spring 2010

- T. I. Vassilev, “Comparison of several parallel API for cloth modelling on modern GPUs,” in

Proceedings of the 11th International Conference on Computer Systems and Technologies and

Workshop for PhD Students in Computing on International Conference on Computer Systems

and Technologies, CompSysTech ’10, (New York, NY, USA), pp. 131–136, ACM, 2010

- http://chrec.cs.vt.edu/cu2cl/overview.php#translation

- http://www.cosmo-skymed.it/en/index.htm

- https://clmathlibraries.github.io/clFFT/

- https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/

- https://developer.nvidia.com/cuda-zone

- https://en.wikipedia.org/wiki/C99

- https://en.wikipedia.org/wiki/COSMO-SkyMed

- https://en.wikipedia.org/wiki/CUDA

- https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units

- https://en.wikipedia.org/wiki/Graphics_processing_unit

- https://en.wikipedia.org/wiki/OpenCL

- https://en.wikipedia.org/wiki/Parallel_Thread_Execution

- https://en.wikipedia.org/wiki/Scoreboarding

- https://en.wikipedia.org/wiki/Stream_processing

- https://en.wikipedia.org/wiki/Synthetic-aperture_radar

- https://github.com/hughperkins/coriander

- https://github.com/NVIDIA-developer-blog/code-samples/blob/master/series/cuda-cpp/overlap-

data-transfers/async.cu

- https://standards.ieee.org/standard/60559-2020.html

- https://www.amd.com/en/graphics/servers-solutions-rocm

https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Parallel_Thread_Execution
https://github.com/NVIDIA-developer-blog/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu
https://github.com/NVIDIA-developer-blog/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu

100

- https://www.intel.com/content/www/us/en/products/docs/processors/cpu-vs-gpu.html

- https://www.khronos.org/opencl/

- https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html#_introduction

- https://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-

imagery-products/educational-resources/9567

https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html#_introduction

