
POLITECNICO DI TORINO
MASTER OF SCIENCE IN ICT FOR SMART SOCIETIES

Master’s Degree Thesis

Machine Learning Based Prediction of MIDI Signals for
Networked Music Performance Applications

Supervisors:
Dott.ssa Cristina ROTTONDI
Prof. Andrea BIANCO

Candidate:
Paolo GRASSO

December, 2020

A B S T R A C T

Networked Music Performance (NMP) is envisioned as a potential game
changer among Internet applications: it aims at revolutionising the tradi-
tional concept of musical interaction by enabling remote musicians to inter-
act and perform together through a telecommunication network.

Ensuring realistic performative conditions, however, constitutes a signifi-
cant engineering challenge due to the extremely strict requirements in terms
of audio quality and, most importantly, network delay. Unfortunately, such
requirements are rarely met in today’s Internet. When an audio signal is
streamed from a source to a destination, audio data is divided into pack-
ets; the delivery of packets to the destination is subject to an unavoidable
delay due to transmission and propagation over the physical medium, plus
a variable jitter. Therefore, some or even most packets may not reach the
destination in time for the playback, which causes gaps in the audio stream
to be reproduced.

This thesis proposes the adoption of machine learning techniques to con-
ceal missing packets carrying MIDI audio signals, by predicting future events
that will be generated by the MIDI source.

Results show that the proposed approaches based on feedforward and
recurrent artificial neural networks increase performance up to 20% in term
of proposed metrics with respect to a baseline model whose task is repeating
the last played notes given as input.

iii

A C K N O W L E D G E M E N T S

I would like to express my gratitude to all the people who have helped me
with my thesis; in particular, I would like to thank Alessandro Giusti and
Juan Andrés Fraire for assisting me throughout the project and giving me
advice and suggestions for my work.

I want to thank all my friends who have been with me during these years;
a big thank goes to Marco and Matteo, with whom I have shared wonderful
experiences and who have always believed in me from the very beginning
of this journey.

A very special thank goes to my dear Francesca with whom I have spent
a lot of beautiful moments and shared most of the projects over these years;
thank you for being with me throughout this adventure.

A final thank goes to my family and my relatives who have always been
proud of me and have always encouraged me throughout my studies; all
your support has been very appreciated. Thank you.

iv

C O N T E N T S

1 introduction 1
1.1 Motivation 1
1.2 Thesis objectives 2
1.3 Thesis outline 2

2 related work 3
2.1 History of networked music performance 3
2.2 Works related to this thesis 4

3 background 6
3.1 Musical data 6

3.1.1 Piano roll representation 6
3.1.2 Beat resolution 7
3.1.3 Datasets 7

3.2 Introduction to artificial intelligence 7
3.3 Artificial neural networks 10

3.3.1 Artificial neurons 10
3.3.2 Activation functions 11
3.3.3 Loss function, backpropagation and optimisers 11
3.3.4 Feedforward neural networks 13
3.3.5 Recurrent neural networks 14
3.3.6 Vanishing and exploding gradients 16

4 proposed framework 17
4.1 Proposed solution 17

4.1.1 System architecture 17
4.1.2 System parameters 18

4.2 Neural networks models 19
4.2.1 Feedforward model 20
4.2.2 Recurrent model 20

4.3 Baseline model 22
4.4 Prediction postprocessing 23

4.4.1 Thresholding 23
4.4.2 Reshaping 23

5 numerical assessment 24
5.1 Evaluation metrics 24

5.1.1 Precision, recall and F1 score 24
5.1.2 AUC-ROC 25
5.1.3 Consonance perception 26

5.2 Prediction of one timestep 26
5.3 Prediction of multiple timesteps 30
5.4 Downsampling and data augmentation 30

5.4.1 Data preprocessing 30
5.4.2 Model predictions 34

5.5 Different keyboard sizes and datasets 36
5.5.1 Keyboard sizes 36
5.5.2 Datasets 36

v

contents vi

5.6 Recurrent models comparison 38
5.7 Consonance perception evaluation 40
5.8 Examples of predicted piano rolls 40

6 conclusion 46
acronyms 48
bibliography 49

L I S T O F F I G U R E S

Figure 3.1 Beat resolution in converted MIDI files 8
Figure 3.2 Relationship among AI, ML and DL 9
Figure 3.3 Functioning of an artificial neuron 10
Figure 3.4 Common activation functions in neural networks 11
Figure 3.5 Derivative of the sigmoid function 12
Figure 3.6 Minima of a 3-D function 13
Figure 3.7 Feedforward neural network 14
Figure 3.8 Recurrent neural network 15
Figure 3.9 SimpleRNN cell diagram 15
Figure 3.10 GRU cell diagram 15
Figure 3.11 LSTM cell diagram 16
Figure 4.1 Filling gaps in MIDI track 17
Figure 4.2 Model processing diagram 18
Figure 4.3 Input and output windows 18
Figure 4.4 Piano roll downsampling 19
Figure 4.5 Different baseline models for prediction tasks 22
Figure 5.1 Precision and recall: graphical representation 25
Figure 5.2 AUC-ROC metric: graphical representation 25
Figure 5.3 Prediction of one timestep: loss and F1 score 28
Figure 5.4 Prediction of one timestep: precision and recall 28
Figure 5.5 Different batch sizes: F1 score vs epochs 29
Figure 5.6 Prediction of multiple timesteps: AUC-ROC heatmap 31
Figure 5.7 Prediction of multiple timesteps: mean AUC-ROC 31
Figure 5.8 Downsampling and augmentation: loss, AUC-ROC 32
Figure 5.9 Downsampling and data augmentation: AUC-ROC 33
Figure 5.10 Predictions on the C major chord 34
Figure 5.11 Predictions on a Minuet in G major 35
Figure 5.12 Predictions on Fantasien Op. 116 35
Figure 5.13 Different keyboard sizes comparison: loss function 36
Figure 5.14 Different keyboard sizes comparison: AUC-ROC 37
Figure 5.15 Different datasets comparison: loss function 37
Figure 5.16 Different datasets sizes comparison: AUC-ROC 38
Figure 5.17 LSTM model: loss function and AUC-ROC 39
Figure 5.18 Recurrent models: AUC-ROC on Classical Piano 39
Figure 5.19 LSTM model: AUC-ROC on different datasets 40
Figure 5.20 Performance on consonance perception metric 41
Figure 5.21 Prediction on Classical Piano dataset 43
Figure 5.22 Prediction on Nottingham dataset 44
Figure 5.23 Prediction on J. S. B. Chorales dataset 45

vii

L I S T O F TA B L E S

Table 2.1 Width of stability for two-tone intervals 5
Table 3.1 MIDI note numbers 6
Table 3.2 Common note duration values 7
Table 5.1 Values of consonance perception 27
Table 5.2 Prediction of one timesteps: metrics 27
Table 5.3 Different batch sizes: metrics 29

viii

1 I N T R O D U C T I O N

1.1 motivation

Networked Music Performance (NMP) is a type of music performance where
musicians play together from different places and music is transmitted over
a telecommunication network to simulate that they were in the same room.
This can be useful for different activities: let’s think about a music school
where educators could teach students from distance, or a music band whose
members could rehearse together from their homes, or even live stream a
show.

Such approach requires very low latency transmissions with the minimum
amount of errors since the music track has to be played and reproduced in
real-time for all musicians. They, in fact, should be able to keep up with
the music playback in order to be synchronised with each other and execute
their parts in the exact same moment. It is very crucial for musicians to
listen to music parts generated by the other members they are playing with,
since they have to fit together the arrangement of the song, and it would not
be doable without a constant feedback from other players.

The main problem is that telecommunication networks like Internet are
known to be unreliable; it is not possible to build up a reliable infrastructure
based only on such networks since they are very subjected to congestions, jit-
ters and delays which can easily make the networked performance infeasible.
Standard protocols and algorithms for error correction and packet retrans-
mission are not well suited since they cannot keep up with the real-time
playback of a song, due to the introduction of delay to perform the error
correction procedures. Some protocols, like User Diagram Protocol (UDP),
succeed in maintaining the real-time flow by ignoring errors and disregard-
ing packet retransmissions; however, when packet losses and delays occur,
the musicians would not be able to listen to the music stream and they would
be forced to play without a feedback until the stream is resumed.

A possible solution to address these problems can be researched in de-
veloping a framework in which the music stream is coded and decoded
into Musical Instrument Digital Interface (MIDI) format, which drastically
reduces the amount of data to be transmitted with respect to a stream of
real sounds, and therefore reduces the possibility of congestions and delays.
With MIDI protocol, music data can be coded into very lightweight structured
archive files, which include information like notations, pitches, velocity, vi-
brato, stereo panning and clock signals of the track. The small size of these
archives lies in the fact that they do not contain audio recordings, but only
a transcription of the track, similar to a digital sheet music.

Such extremely small sizes of MIDI signals compared with raw audio sig-
nals make them suitable for applications like NMP where transmitting a low
amount of data can be crucial to preserve bandwidth and avoid congestions.

1

1.2 thesis objectives 2

In spite of this, it is not realistic to assume a completely fluid transmission of
signals without incurring in packet losses which cause gaps in the playback.

1.2 thesis objectives

This thesis focuses on the development of a machine learning model based
on artificial neural networks to fill audio playback gaps generated by trans-
mission errors, in order to ensure a continuous music stream without inter-
ruptions. Such model is able to take as input the MIDI events occurred in a
window of several timesteps and return as output the predictions about MIDI

events that are likely to occur in future timesteps. Hence, possible gaps in
the playback are filled using predictions which the model generates based
on the audio data received in the time instants previous to the moments
when errors occur. This can be exploited for different applications: in par-
ticular, the model could be integrated with a streaming system to improve
the quality of the playback. Therefore, the proposed model does not aim
to be a stand-alone system already functional to reproduce the audio data
streamed during a networked music performance, but a support to improve
an already existing audio streaming system.

Performance is evaluated using commonly adopted metrics such as F1
score, AUC-ROC and a custom metric based on values which quantify the
consonance perception to human hearing. In all cases the proposed model
outperforms a simple baseline model whose task is repeating the last played
notes from the timestep in which error occurs.

1.3 thesis outline

The rest of the chapters are organised as follows: chapter 2 describes the
state-of-the-art; chapter 3 outlines basic concepts used in developing the
model such as data representation and artificial neural networks; chapter 4
describes in more detail the choices made to implement the model and the
different parameters which have been studied and selected; chapter 5 dis-
cusses the numerical assessment of the proposed prediction models; in the
end chapter 6 contains a conclusive summary.

2 R E L AT E D W O R K

This chapter describes the history of networked music performance during
the last decades and discusses some works and publications which explore
machine learning techniques in order to analyse and describe features of
musical data.

2.1 history of networked music performance

The concept of a networked music performance has spread and has been
experimented over the last century with the diffusion of electronic devices,
especially personal computers. The first real experiment was performed in
1951 by John Cage using radio transistors as musical instruments by inter-
connecting them and so influencing each other [1].

In the late 1970s, The League of Automatic Music Composers was one of the
first music ensembles to investigate the unique potentials of computer net-
works as a medium for musical composition and performance, by creating
novel forms of music with analog circuits and interconnected computers.

In the 1990s, a more sophisticated experiment by The Hub band consisted
in transmitting MIDI signals over Ethernet to distributed locations via a MIDI-
hub which was functioning as a switchboard for routing those signals to
connected musicians [2]. The choice of transmitting MIDI data instead of au-
dio signals was due to technology and bandwidth limitations of that period,
but when Internet became available to everyone with the World Wide Web,
people started to think about new possible ways to perform music concerts
with musicians connected from different locations.

From the 2000s, more developments of high-speed connections over In-
ternet made high quality audio streaming possible. Researchers made new
experiments by taking advantage of improved network conditions: at Stan-
ford University’s CCRMA, SoundWIRE (Sound Waves on the Internet for Real-
time Echoes) created a project that consisted of transmitting ping signals
as sonar-like sounds in order to ‘hear’ the qualities of bidirectional Internet
connections [3]. In the wake of SoundWIRE experiments, several research
groups developed their own systems for networked music performances:
Distributed Immersive Performance (DIP) studies the technologies to recre-
ate high fidelity channels for audio and video to generate virtual spaces in
which immersive performances take place [4]; SoundJack is a software which
allows low latency audio/video communications on standard computer sys-
tems without particular hardware requirements [5]; DIAMOUSES is an open
framework whose objective is to enable a wide range of scenarios including
master teaching, show rehearsing, jamming sessions and collaborations, for
networked music performance [6, 7].

3

2.2 works related to this thesis 4

2.2 works related to this thesis

This section explores some article and publications which are somehow re-
lated to the purpose of this thesis.

The article [8] proposes an artificial neural network model based on Long
Short-Term Memory (LSTM) networks for prediction of polyphonic MIDI se-
quences. The article is focused on developing a model which can be used
for automatic music transcription which is very similar to speech recognition
where language models are combined with acoustic models to transcribe spoken
words into written text. By applying the same concept it is possible to tran-
scribe music into different representations like MIDI files or piano rolls. The
study evaluates the impact of various parameters on the predictive perfor-
mance of the system; these parameters include the number of hidden nodes,
the learning rate, the sampling rate of the piano roll and data augmentation.
Performance is evaluated using different metrics as precision, recall and F1
score. Results show that the speed of the training phase of the model is
influenced by those parameters, especially the learning rate and number of
hidden nodes, while the quality of prediction is influenced by the sampling
rate, since in the piano rolls there are more self-transitions, i.e. prolonged
notes from previous timesteps.

Reference [9] proposes a neural network model whose focus is learning in-
terval representations of musical sequences in monophonic music. This kind
of model has the ability to perform copy-and-shift operations in order to
repeat musical pattern and transpose melodies. This comes in hand to the
problem of decoupling absolute pitches and music regularities which is usu-
ally overcome by performing data augmentation on the training dataset. The
model uses a recurrent gated auto-encoder (RGAE), which is a recurrent neural
network able to operate on interval representations of musical sequences. By
learning all intervals within a window of n pitches, the system is more ro-
bust to diatonic transpositions. Results about a pattern repetition show that
the RGAE provides a significant improvement over a standard Recurrent Neu-
ral Network (RNN) approach, with a prediction accuracy of above 99% over
the 42% provided by RNN.

In the article [10] the Pulse framework is used to discover a set of revelant
music features which can be utilised for sequential prediction of symbolic
monophonic music. Two different types of features are discovered: viewpoint
features which indicate the presence of a specific sequence of events, and
anchor features which represent the concepts of tonic and mode (key) in
common tonal music. Viewpoint features are generalised versions of classi-
cal n-grams: they do not necessarily contain contiguous sequences of basis
features, and they may be composed of basis features derived from different
alphabets. Anchor features are defined with respect to an anchor tone and
not with respect to the previous tone, and therefore they carry information
from the very first tone in the piece. The training of the model is also helped
by a regularisation process which prevents overfitting by limiting the growth
of the feature set. The system is then combined with different approaches
including long-term memory where the model learns the characteristics of an
entire dataset, short-term memory where the model learns the properties for a
single piece of the dataset, and a hybrid version of the two methods. Results

2.2 works related to this thesis 5

show that all approaches outperform the current state-of-the-art models on a
standard benchmark corpus of folk songs and chorales by Johann Sebastian
Bach.

In reference [11] the concepts of consonant and dissonant perception gen-
erated by two-tone intervals between music notes are studied from a mathe-
matical point of view. It is known that in Western culture, the accepted order
of ‘perfection’ is the one proposed by Hermann Helmholtz in [12], which is
reported in table 2.1. The value of ∆Q represents the width of the stability
of a particular interval between two tones within an octave. The widest sta-
bility is reached with the unison, where two tones have the same pitch, while
the smallest stability is reached with minor second and tritone which are so
dissonant that their ∆Q is extremely difficult to evaluate. Lots and Stones
point out several problems with Helmholtz’s theory, arguing that ‘it remains
controversial and fails to explain a number of non-trivial aspects central to
musical psychoacoustics’. However, even though the purpose of their work
was to criticise the use of Helmholtz resonance theory in cases where it can-
not be applied coherently, the reported table gives a light description of what
intervals are considered more consonant, for example fifths and fourths are
more pleasant to hear with respect to major sevenths and minor sevenths,
and therefore this can be exploited to create a basic evaluation metric for
music prediction models.

Interval’s evaluation Interval’s name Interval’s ratio ∆Q

Absolute consonances
Unison 1 : 1 0.075
Octave 1 : 2 0.023

Perfect consonances
Fifth 2 : 3 0.022
Fourth 3 : 4 0.012

Medial consonances
Major sixth 3 : 5 0.010
Major third 4 : 5 0.010

Imperfect consonances
Minor third 5 : 6 0.010
Minor sixth 5 : 8 0.007

Dissonances

Major second 8 : 9 0.006
Major seventh 8 : 15 0.005
Minor seventh 9 : 16 0.003
Minor second 15 : 16 —
Tritone 32 : 45 —

Table 2.1: Width of stability for two-tone intervals according to Helmholtz

3 B A C KG R O U N D

This chapter describes general concept about music data representation and
artificial neural networks which will be covered in the following chapters.

3.1 musical data

3.1.1 Piano roll representation

For this thesis, musical data consists in music pieces which are stored in
MIDI files whose standard is defined in [13]. Each MIDI file contains notes
whose pitches are defined by a number from 0 to 127 according to table 3.1,
along with other parameters like duration and velocity. All those numbers
can be converted to a piano roll representation: a piano roll is a P× T matrix
M where M (p, t) denotes if a note of pitch p is played at timestep t. As said
before, P is equal to 128, equivalent to the number of pitches in a MIDI file,
but the piano roll can be cropped by reducing P to a value of 88, in order to
include only the grand piano keyboard [A0, C8], which correspond to MIDI

numbers [21, 108] or even smaller size keyboards, for example 64 or 49 keys.
Every cell of the piano roll has a value in range [0, 127] which represents

the velocity of the note. Velocity corresponds to the intensity of the played
note, i.e. how loud it sounds. By replacing all non-zero velocity values with
1s it is possible to obtain a binary piano roll which can be more suitable as
input to a machine learning algorithm, since volume dynamics are removed
from the list of features.

Octave C C\ D D\ E F F\ G G\ A A\ B

−1 0 1 2 3 4 5 6 7 8 9 10 11
0 12 13 14 15 16 17 18 19 20 21 22 23
1 24 25 26 27 28 29 30 31 32 33 34 35
2 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59
4 60 61 62 63 64 65 66 67 68 69 70 71
5 72 73 74 75 76 77 78 79 80 81 82 83
6 84 85 86 87 88 89 90 91 92 93 94 95
7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 118 119
9 120 121 122 123 124 125 126 127

Table 3.1: MIDI note numbers. A standard piano keyboard covers the range of
notes [A0, C8].

6

3.2 introduction to artificial intelligence 7

3.1.2 Beat resolution

Notes in musical pieces can assume different values or durations which con-
tribute to the rhythm of the song; the most common are reported in table 3.2.

Figure 3.1a shows a three-measure sheet music that has been coded into
a MIDI file and then converted into a piano roll with different beat resolu-
tions. It is visible that a beat resolution of 10 is not enough to represent the
demisemiquavers which are played beats 1–2. Also the semiquavers in beats
3–4 seem to be represented with some inaccuracy.

A beat resolution of 16 or 24 is enough to preserve all these types of notes;
a resolution of 16, however, introduces a lot of silence among the notes which
does not appear when using a higher resolution such as 24. The resolution
must be set in order to prevent smaller notes to disappear and also to limit
an excessive number of timesteps which implies single notes to appear in
several consecutive occurrences.

Name Relative value Symbol

semibreve 1 ¯
minim 1/2 ˘ “
crotchet 1/4 ˇ “
quaver 1/8 ˇ “(
semiquaver 1/16 ˇ “)
demisemiquaver 1/32 ˇ “*

Table 3.2: Common note duration values

3.1.3 Datasets

The datasets used for predictions are collections of musical pieces stored in
MIDI files [14], already divided into training, validation and test sets. Differ-
ent collections are available, including:

classical piano Archive of classical piano songs; Total duration: 8:20:29

nottingham Collection of 1200 folk tunes; Total duration: 18:34:42

jsb chorales Entire corpus of 382 four-part harmonized chorales by Jo-
hann Sebastian Bach; Total duration: 3:51:20

Nottingham and J. S. B. Chorales contain pieces which are similar to each
other from a melodic point of view, whereas such homogeneity is less de-
tectable in the Classical Piano dataset.

3.2 introduction to artificial intelligence

The concept of Artificial Intelligence (AI) describes the ability of a machine
to imitate human beings, perceive environmental events, learn from errors
and maximise the possibility of achieving a certaing goal. Fields that are

3.2 introduction to artificial intelligence 8

(a) Sheet music from which the MIDI file was generated

(b) Piano rolls

Figure 3.1: Comparison among the same MIDI file converted into a piano roll rep-
resentation with different beat resolutions

3.2 introduction to artificial intelligence 9

included in AI are generally relative to tasks that are considered out of or-
dinary, for example understanding human speech or creating self-driving
vehicles. Other tasks, like optical character recognition, have become avail-
able for everyone in routine technologies and they are actually excluded
from applications considered to be AI [15].

One subset of AI is Machine Learning (ML), by which algorithms are
trained on specific datasets in order to create models which can learn from
available data and know how to behave when encountering previously un-
seen data. In ML there are different approaches in teaching a model to behave
in a certain way: in the supervised learning, the model learns how to distin-
guish data by knowing in advance many examples in which solutions are
provided; in the unsupervised learning, the model learns to distinguish among
different classes by only analysing the features of data, without knowing in
advance any examples with provided solutions. ML includes a large variety
of applications like pattern recognition, image elaboration, computer vision
and genetic algorithms [16].

A particular subset of ML is the Deep Learning (DL) where learning meth-
ods are based on artificial neural networks; the adjective ‘deep’, in fact, refers
to the multitude of layers that those networks are made of.

The relationship among AI, ML and DL is depicted in fig. 3.2. This repre-
sentation comes from the concepts explained above, which are very common
definitions but they are not universally accepted: other lines of thoughts in
fact tend to consider AI and ML as two big sets which intersect and DL occu-
pying part of the intersection and part of ML. To summarise:

artificial intelligence Any technique that enables computers to learn
and reason like humans.

machine learning Subset of AI techniques that use algorithms and statis-
tical methods to enable machines to learn with experience.

deep learning Subset of ML in which multi-layer neural networks adapt
themselves and learn from vast amounts of data.

Artificial Intelligence

Machine Learning

Deep Learning

Figure 3.2: Commonly accepted relationship among artificial intelligence, machine
learning and deep learning

3.3 artificial neural networks 10

3.3 artificial neural networks

Artificial neural networks are computing systems inspired by biological neu-
ral networks of animal brains; they try to vaguely simulate the architecture
of a brain, so they are constituted of a series of layers with multiple nodes
called artificial neurons. The nodes of each layer are connected to the nodes
of other layers by connections called edges. Each neuron is usually associated
with a weight which is adjusted with learning; a weight alters the strength
of the signal at an edge. Moreover, neurons can have an activation function
which modifies the emitted signal, for example only if it is above a certain
threshold.

Each layer of the network represents a transformation of the input which
is then sent to the next layers; the overall transformation from the input
layer to the output layer constitutes the mathematical function of the neural
network.

3.3.1 Artificial neurons

Artificial neurons are the elementary units of neural networks. They con-
sist in a mathematical function which aggregates and processes the signals
received as input and returns an output which is sent to other neurons. A
graphical representation is depicted in fig. 3.3.

w2

w1

w0

...

wm

∑︁
φ

x2 z a

x0

bx1

xm

Figure 3.3: Functioning of an artificial neuron

For a given neuron, let there be a set of m inputs with signals x1 through
xm and the respective sets of weights w1 through wm. The output a of the
neuron can be described by eq. (1), where φ is the activation function which
modifies the strength of the output signal. The variable b = w0x0 is a bias
associated to the neuron which shifts the decision boundary away from the
origin and does not depend on input values.

a = φ

⎛⎝ m∑︂
j=0

wjxj + b

⎞⎠ (1)

3.3 artificial neural networks 11

3.3.2 Activation functions

Activation functions are another key element of artificial neural networks
since they are necessary to make the network model nonlinear, thus making
it possible to solve non trivial problems with a small amount of neurons.
Common activation functions are shown in fig. 3.4. These functions are
used in hidden layers and output layers for different purposes, e.g. output
layers usually have an activation function which fits the machine learning
task: multi-class classification will benefit from a softmax activation since
only one class can be correct at a time, whereas multi-label classification will
benefit from the sigmoid which allows several classes to be selected at the
same time.

0

0

z

z

Linear

0
0

1

z

φ
(z
)

Step

0
0

z

m
ax

(0
,z
)

ReLU

0
0

1

z

σ
(z
)

Sigmoid

0 0.5 1
0.005

0.01

0.015

zj

φ
(z
) j

Softmax

0
−1

0

1

z

ta
nh

(z
)

tanh

Figure 3.4: Common activation functions in neural networks. Softmax example is
relative to a vector z made of 100 equidistant elements in range [0, 1].

3.3.3 Loss function, backpropagation and optimisers

The weights of the neurons are calibrated by a loss (or cost) function which
compares the network output values with the real output values (labels) and
returns a value which tells ‘how bad’ the transformation from input to out-
put was made. This loss value is used to adjust the weights of the neurons;
the process is executed by an algorithm called backpropagation which basi-
cally computes the gradient of the loss function and provides weight adjust-
ments from the end to the beginning of the network.

A really basic loss function is the quadratic cost function, shown in eq. (2).
It evaluates the quadratic difference between the network’s output a and
the desired real output y: the closer the two values are, the lower the loss
function is. This kind of loss function, however, has issues regarding the
learning speed of the network, since it tends to provide a very slow learning
when the two output values are very different, i.e. when the neuron’s output
is unambiguously wrong. This happens mainly when the activation function
is a sigmoid σ, since when computing the gradient, the partial derivative

3.3 artificial neural networks 12

with respect to the weight depends on the derivative of the sigmoid σ ′ as
shown in eq. (3), which assumes very low values at tails (fig. 3.5), i.e. when
a and y values are very different.

C =
(y− a)2

2
(2)

∂C

∂w
= aσ ′ (z) (3)

−5 0 5

0

0.5

1

z

Sigmoid and its derivative

σ(z)

σ ′(z)

Figure 3.5: Derivative of the sigmoid function

A more advanced loss function which addresses the slowdown issue is
the cross-entropy, shown for a single neuron with multiple inputs in eq. (4).
It assumes values near 0 when the network’s output a is very close to the
desired output y, and values near 1 when output and desired values are
distant. This functions make sure that the learning speed is higher when
neuron’s output is unambiguously wrong, and lower when it is near the
desired output. This is visible by computing the partial derivative of the
loss function with respect to the weight, as shown in eq. (5): the learning
rate, in fact, depends on σ (z) − y which is just the error in the output. [17]

C = −
1

n

∑︂
x

[y lna+ (1− y) ln (1− a)] (4)

∂C

∂wj
=

1

n

∑︂
x

xj (σ (z) − y) (5)

The weight adjustment during backpropagation is based on the gradient
descent of the loss function; however, since neural networks are usually very
complex, such loss functions are hardly convex with only one minimum
as the one depicted in fig. 3.6a, but they have a complex shape with many
local minima and a single global minimum, as shown in fig. 3.6b. In order
to reach the global minimum, different variations of gradient descent exist:
the most commonly used in neural networks are the Gradient Descent with
Momentum, AdaGrad (Adaptive Gradient), RMSProp (Root Mean Square
Propagation), and Adam (Adaptive Moment Estimation) which are called
optimisers since they optimise the learning rate of the gradient descent and
provide a faster learning.

3.3 artificial neural networks 13

gradient descent with momentum The descent with momentum makes
it possible for the gradient to overcome small slopes near local minima
by increasing the possibility to reach the global one. It can be seen as a
ball that rolls down a slope with a momentum which lets it go uphill
for small distances across the track.

adagrad Variation of the stochastic gradient descent. It uses different learn-
ing rates for different parameters, by increasing it for sparser ones and
decreasing it for ones that are less sparse. It can cause a problem
where the network stops learning due to very small learning rate for
such parameters.

rmsprop It optimises the update of parameters by favouring the movement
in the direction of the weights and reducing oscillations caused by
other parameters.

adam It combines the RMSProp method and the descent with momentum
for a better optimisation algorithm.

(a) Function with one minimum (b) Function with many minima

Figure 3.6: Minima of a 3-D function

3.3.4 Feedforward neural networks

Feedforward neural networks are a type of artificial neural networks where
the connections among neurons do not form cycles; therefore information
from one layer can only go in one direction to next layers and does not
go back. They are considered the first devised and simplest type of artificial
neural networks. They do not keep memory of past events: the output of the
network depends only on the current input. An example of a feedforward
model is depicted in fig. 3.7: it is visible that every layer gets information
from the previous layer and sends information to the next one. Layers in
the middle are called hidden since they are placed between the input and the
output; therefore they are not visible to an external system.

3.3 artificial neural networks 14

...

...
... ...

I1

I2

I3

In

H1

Hn

H1

Hn

O1

On

Input
layer

Hidden
layer

Hidden
layer

Output
layer

. . .

Figure 3.7: Feedforward neural network

3.3.5 Recurrent neural networks

RNNs are a type of artificial neural networks where connections among nodes
form a directed graph along a temporal sequence. They have an internal
state memory that can be used to process input sequences of variable length.
Hence, RNN are particularly used when the dataset is made of data that is
inherently sequential, e.g. speech, text, weather, financial, or, in our case, a
sequence of notes and chords which compose a song.

An example of RNN is represented in fig. 3.8: in this case the hidden layers
keep in memory past information and reuse such information in subsequent
calculations. The network therefore has a ‘memory’ state which is stored
inside recurrent cells of neurons that increases the learning potential. Several
types of recurrent cells exist, which are represented in figs. 3.9 to 3.11 and
described below:

simple rnn It is the simplest recurrent layer; it combines the input with an
hidden state h which stores information about past data seen by the cell.
This state is maintained and used along with the next inputs to keep a
sort of connection among all different instances.

gru (gated recurrent unit) It is an upgraded version of SimpleRNN; it
features an update gate and a reset gate which respectively decide when
to update or reset the hidden state of the system, i.e. which information
is maintained from one process to the another.

lstm (long short-term memory) It is more effective than SimpleRNN
and has some advantages with respect to GRU. Besides the hidden state,
it features also a cell state c which is relative to the activation functions
inside the LSTM cell itself. Moreover, there are a forget gate, an input gate
and an output gate which modify the value of hidden and cell states.
These three gates are able together to retain even more information
when compared with GRU, but the training process is slower due to
the more complex system.

In general, the more complex is the recurrent cell, the higher number of
parameters are trainable inside it.

3.3 artificial neural networks 15

...

...
... ...

I1

I2

I3

In

H1

Hn

H1

Hn

O1

On

Input
layer

Hidden
recurrent layer

Hidden
recurrent layer

Output
layer

. . .

Figure 3.8: Recurrent neural network

tanh

ht−1

xt Input

ht

atOutput

Figure 3.9: SimpleRNN cell diagram. The input xt and the hidden state ht−1 are
simply multiplied together and passed through an activation function.

reset gate

update gate

σ tanhσ

× +

× ×
1−

ht−1

xt Input

ht

atOutput

Figure 3.10: GRU cell diagram. An update gate decides which information of ht

is passed to the next cell, while a reset gate decides how much past
information to forget.

3.3 artificial neural networks 16

σ σ tanh σ

× +

× ×

tanh

ct−1

ht−1

xt Input

ct

ht

atOutput

forget gate

input gate output gate

cell state

Figure 3.11: LSTM cell diagram. A cell state ct contains information of the depen-
dencies among elements in the input sequence; a forget gate decides
what information should be kept or forgotten; an input gate decides
which information is passed to the cell; and an output gate decides
what the next hidden state ht should be.

3.3.6 Vanishing and exploding gradients

A common problem present in artificial neural networks is related to the
gradient descent used in the backpropagation algorithm. As described in
the previous sections, neural networks are generally made of many layers
interconnected with different structures. Layers that are deeper into the
network go through continuous matrix multiplications in order to compute
their derivatives since their neuron’s weights are updated by taking into
consideration how the weights of connected neurons have been previously
updated. Therefore in a network made of n layers, n derivatives are multi-
plied together: if they are small, the gradient computed at the deeper layers
will extremely decrease, causing a vanishing gradient; if they are large, the
gradient at the deeper layers hugely increases, causing an exploding gradient.

vanishing gradient Neurons become not able to meaningly learn due to
extremely low adjustments in their weights which eventually stop the
network from training.

exploding gradient Neurons become not able to effectively learn, caus-
ing system instability and possible overflow in weights which can no
longer be updated due to the appearance of NaN values.

Possible solutions to address the vanishing gradient problem can be: lower-
ing the number of layers, and use the ReLU activation function in hidden
layers [18]. Regarding the exploding gradient, possible solutions consist in
lowering the amount of layers, and limiting the size of the gradient by rescal-
ing it to a lower value when it becomes too large; this last process is called
gradient clipping [19].

4 P R O P O S E D F R A M E W O R K

This chapter describes the framework used to process musical data along
with the implementation of artificial neural network models. Recall that in
case of missing packets in an audio streaming, error correction methods are
not applicable since they would introduce some delay which is not compati-
ble with the purpose of ultra low latency music streaming.

4.1 proposed solution

4.1.1 System architecture

The solution proposed in this thesis consists in a machine learning model
that is able to fill music gaps in the playbacks which occur in correspondence
of packet losses or generic transmission errors. The music stream is therefore
patched with notes generated by the model and resumed so that the listener
does not experience interruptions during the playback. These fillings have to
be musically coherent to what the musicians are expecting to hear, possibly
by maintaining the correct cadence and rhythm of the song.

The model uses a window of timesteps preceding the timestep at which
the error occurs to generate predictions which can be used to patch the
streaming, as shown in fig. 4.1.

MIDI track

error errorerrorerror

window
preceding

error

model

patch patchpatchpatch

time

Figure 4.1: Filling gaps in MIDI track

Since the music stream is made of sequences of MIDI events, the original
track has to be preprocessed in order to be fed into the neural network
model. The track goes through a conversion process that turns it into a
piano roll representation. Such piano roll is then given as input to the model,
which returns another piano roll containing predictions for future timesteps
afterwards the input piano roll. Those predictions can be converted again
into a MIDI format which can be played in place of the original MIDI track in

17

4.1 proposed solution 18

case of packet losses and delays. The flow diagram of the process is depicted
in fig. 4.2.

MIDI window preceding error piano roll

model

predicted piano rollpredicted MIDI window
Patch

Figure 4.2: Model processing diagram

4.1.2 System parameters

Window size

The model handles windows of timesteps whose size depends on the num-
ber of units of the last layer of the neural network, meaning that once the
model is trained, it always takes as input and returns as output the same
number of timesteps. Moreover, the tempo of the song does not influence
the number of notes that are predicted, since it only affects the speed at
which the timesteps are reproduced, but not the amount of them. In the
proposed experiments, windows sizes of 1 and 10 timesteps are tested.

The process of patching the music stream using windows of 10 timesteps
is shown in fig. 4.3: assuming that an error occurs at timestep tn creating a
gap in the playback from that point forward, the model takes the window
composed by timesteps from tn−10 to tn−1 and generates predictions cov-
ering a window from tn to tn+9 which can be used to fill the gap in the
playback. In this way, the 10 predicted timesteps work as a coverage for the
worst case in which the gaps prolongs for several timesteps up to 10. For the
case in which the gap is shorter, only the first predicted timesteps are used.

Hence, supposing that during a music stream the model continuously
generates windows of predicted timesteps, it is due to the application which
uses such model to decide how many timesteps should be taken from each
window in order to fill the possible gaps in the playback.

t
n
−
1
0

t
n
−
9

t
n
−
8

t
n
−
7

t
n
−
6

t
n
−
5

t
n
−
4

t
n
−
3

t
n
−
2

t
n
−
1

t
n

t
n
+
1

t
n
+
2

t
n
+
3

t
n
+
4

t
n
+
5

t
n
+
6

t
n
+
7

t
n
+
8

t
n
+
9

t
n

t
n
+
1

t
n
+
2

t
n
+
3

t
n
+
4

t
n
+
5

t
n
+
6

t
n
+
7

t
n
+
8

t
n
+
9

model

errors

10 timesteps 10 timesteps

P
pi

tc
he

s

P
pi

tc
he

s

Figure 4.3: Input and output windows

4.2 neural networks models 19

System resolution and downsampling

According to what is described in section 3.1.2 regarding the beat resolu-
tion of piano rolls, a good choice would be to set it to 24, i.e. twenty-four
timesteps per beat. In such case, however, a window of 10 timesteps would
be equal to less than half a beat, resulting in a very short temporal range
for predictions, as shown in fig. 4.4a. Some postprocessing can be made in
order to improve quality and usefulness of the predictions: by applying a
downsampling process with a factor of 12, the new piano roll would con-
tain 2 timesteps per beat which means that 10 timesteps are now equivalent
to 5 beats, as shown in fig. 4.4b, which in a common 4

4
time signature is

equivalent to a whole measure and a beat.
After the downsampling process, the system resolution becomes equal to

one quaver (ˇ “(), meaning that predicted notes have a minimum duration of 1/8

of a semibreve (recall table 3.2). This process clearly causes a loss in resolu-
tion since multiple fast notes are aggregated together in the same timestep,
so many ornaments and flourishes are not preserved; however, since the
model should be able generate music that sounds musically pleasant and
coherent, there is no particular need to deal with such fast notes. The only
thing that has to be considered is that an inverse process, called upsampling,
has to be performed to revert the piano roll of predictions into the original
shape in order to fit the original track.

(a) Original (b) Downsampled

Figure 4.4: Piano roll downsampling. The vertical lines delimit the 10th timesteps
in the respective pian rolls.

4.2 neural networks models

The machine learning models that have been trained belong to two different
categories: feedforward and recurrent networks. Both models are imple-
mented with the help of Keras Sequential Class [20], which allows to easily
stack different layers to build the required model. Some of the layers used
in this framework are reported below:

dense Fully connected layer where each neuron has a connection with all
neurons of the previous layer.

4.2 neural networks models 20

flatten Layer that squeezes the dimensions of the previous layer by out-
putting a 1-D reshaped vector.

input Symbolic layer which defines the input shape of the model.

simplernn Implementation of the RNN cell.

gru Implementation of the GRU cell.

lstm Implementation of the LSTM cell.

The chosen loss function is the binary cross-entropy, which is the cross-
entropy reported in eq. (4) adapted to the case where each note can assume
only two values (0 and 1), while the activation function at the output is the
sigmoid, since it suits the multi-label classification problem allowing different
classes (pitches) to be active at the same time.

The optimisation algorithm used for gradient descent is Adam, with a
learning rate η = 0.001.

4.2.1 Feedforward model

The Keras Sequential implementation of the feedforward model is repre-
sented in listing 1. The first Dense layer receives as input an instance that
is made of one or several timesteps, each of them including all pitches in
the piano keyboard. The Flatten layer reshapes the output from the previ-
ous layer to squeeze the 2-D matrix into a 1-D vector. The last Dense layer
returns a vector which is as long as the number of notes of the keyboard
multiplied by the number of future timesteps that have to be predicted, in
this specific case 64 notes multiplied by 10 timesteps.

Listing 1: Feedforward model

Layer (type) Output Shape Param #

===

dense (Dense) (None, 10, 32) 2080

flatten (Flatten) (None, 320) 0

dense_1 (Dense) (None, 32) 10272

Output (Dense) (None, 640) 21120

===

Total params: 33,472

Trainable params: 33,472

Non-trainable params: 0

4.2.2 Recurrent model

The different implementations of the recurrent model are represented in list-
ings 2 to 4. The first actual layer, which is not listed in the summaries, is
an Input layer by which the input shape is defined in order to implement
the recurrent cell as the first processing layer. Such recurrent layer has the

4.2 neural networks models 21

parameters return_sequences and stateful set both to True, meaning re-
spectively that the sequence of predictions is returned after each loop inside
the network and the state of the system is not reset among batches. This
makes it possible to keep information about past data among the different
iterations.

These models have also a larger number of parameters compared with
the feedforward model; this would easily causes overfitting during training,
but this issue can be mitigated by training the models on small number of
epochs or, after the training, by resuming the weights from the point when
the models were performing best.

Listing 2: SimpleRNN model

Layer (type) Output Shape Param #

===

simple_rnn (SimpleRNN) (64, None, 128) 98432

dense (Dense) (64, None, 64) 8256

Output (Dense) (64, None, 640) 41600

===

Total params: 148,288

Trainable params: 148,288

Non-trainable params: 0

Listing 3: GRU model

Layer (type) Output Shape Param #

===

gru (GRU) (64, None, 128) 295680

dense (Dense) (64, None, 64) 8256

Output (Dense) (64, None, 640) 41600

===

Total params: 345,536

Trainable params: 345,536

Non-trainable params: 0

Listing 4: LSTM model

Layer (type) Output Shape Param #

===

lstm (LSTM) (64, None, 128) 393728

dense (Dense) (64, None, 64) 8256

Output (Dense) (64, None, 640) 41600

===

Total params: 443,584

Trainable params: 443,584

Non-trainable params: 0

It can be seen that among all the proposed models, the one featuring the
LSTM cell has the largest number of parameters, followed by the Gated Re-
current Unit (GRU) cell: that is because, as described in section 3.3.5, these

4.3 baseline model 22

recurrent cells are very complex when compared, for example, with a Sim-
pleRNN cell.

4.3 baseline model

The baseline is a simple model which is supposed to perform the same task
of the machine learning model, but it does not require a training phase.
Its behaviour is hard coded and always follow some simple rules. Some
possible ways to implement a baseline model for the music prediction task
are listed below:

random The predictions are generated in a random way, spanning the en-
tire set of notes, without constraints about tempo or tonality.

semirandom The predictions are generated randomly from a set of notes
taken from some previous timesteps, in order to keep a certain coher-
ence in the tonality.

holding The predictions consist in the repetition of the last status of the
system. It can be seen has a model that plays a frozen status of the
music stream, from the timestep when an error has occurred.

It is intuitive that a random approach can produce far from satisfactory re-
sults, instead a semirandom baseline could produce something that sounds
remotely pleasant, at least regarding the tonality of the song. The holding
baseline however can produce something that is somewhat more imaginable
since it represents a suspended status of the system when it freezes. These
baseline model behaviours are shown in fig. 4.5: the piano roll on the first
five beats is the original track; at beat 6 an error occurs and the next five
beats are made up by the baseline model.

For this thesis, the artificial neural networks models have been compared
with the baseline that holds the last status of the system.

(a) Random baseline (b) Semirandom baseline (c) Holding baseline

Figure 4.5: Different baseline models for prediction tasks

4.4 prediction postprocessing 23

4.4 prediction postprocessing

4.4.1 Thresholding

After training an artificial neural network model, its output during the test
phase do not necessary respect the desired form, meaning that if a model
is trained to output binary values, it usually outputs values that are very
close to a binary form, e.g. 0.017 and 0.989, but not actual integer binary
values such as 0 and 1. This means that a post-processing of the output via
a thresholding phase has to be performed:

simple threshold For binary-classification problems, an intuitive thresh-
old can be set to 0.5, meaning that every float value between 0 and 1

is converted to the nearest integer value, which in the end produce a
binary output. This is for sure a really fast way to get the output from
the model in the desired form; however it does not necessary fits all
problems like the one proposed in this thesis. In many cases the thresh-
old at the exact half of the sides does not produce satisfying results and
has to be lowered or increased to prevent unbalanced classifications.

validation threshold A similar but more advanced solution can be im-
plemented by using an algorithm which computes the converted out-
put for several different threshold values. This process is usually done
on the validation set. For each threshold value, an accuracy value is
evaluated by comparing the thresholded output with the labels: the
one that provides the highest accuracy can be chosen as threshold
value.

ranked threshold A different approach, which fits multi-label classifica-
tion problems, consists in sorting the samples in each output instance
by their probability, then choosing a number n of those samples and
assigning them the value 1. By doing this, every output instance would
have a predefined number of positive samples, ignoring the concept of
threshold applied to values.

For this thesis, the thresholding phase has been made by using the ranked
threshold method.

4.4.2 Reshaping

Since the neural network models for every input instance return an output
that consists of a single 1-D vector, such vector has to be reshaped in order
to recreate the 2-D window that fits the piano roll representation. This can
be done by simply considering all timesteps in the window as they were put
in sequence one after the other in the 1-D vector. The choice of using the
vector over a matrix as output for the neural networks is due to practical
reasons since Dense layers return for each instance a 1-D output.

5 N U M E R I C A L A S S E S S M E N T

In this chapter, the performance evaluation of the proposed framework is
presented. In particular, several experiments are performed, including pre-
diction of single timesteps and predictions of multiple timesteps using both
feedforward and recurrent neural networks models. The performance of the
models is evaluated using as reference the ground truth which is the piano
roll of the real track; therefore a supervised learning approach is used.

5.1 evaluation metrics

Different metrics are considered: precision, recall and F1 score are used for
the first experiment to evaluate the learning capability of the network in
general; the AUC-ROC is then used to compare the model with the baseline
model and see the difference in prediction quality.

At the end, a metric based on consonance perception is considered to
compare the model with the baseline from a musical point of view.

5.1.1 Precision, recall and F1 score

Precision and recall are common metrics in binary classification since they
can simply describe how well a system retrieves relevant results. Precision
represents the ratio between what the model predicts correctly and what the
model predicts; recall represents the ratio between what the model predicts
correctly and what the labels actually are. Both metrics are mathematically
computable with the help of positives and negatives related variables. A
graphical representation of both metrics is shown on fig. 5.1.

F1 score can instead be evaluated by knowing in advance precision and
recall values. All formulas are reported below.

true positives (tp) Positive values that are correctly classified.

false positives (fp) Negative values that are classified as positives.

false negatives (fn) Positive values that are classified as negatives.

precision = p =
|{correct predictions}| ∩ |{all predictions}|

|{all predictions}|
=

TP

TP+ FP

recall = r =
|{correct predictions}| ∩ |{all predictions}|

|{correct predictions}|
=

TP

TP+ FN

F1 score = 2
p · r
p+ r

24

5.1 evaluation metrics 25

true
positives

false
positives

false negatives true negatives

selected elements

relevant elements

Precision =

Recall =

Figure 5.1: Precision and recall: graphical representation. Precision corresponds to
how many selected items are relevant. Recall corresponds to how many
relevant items are selected.

5.1.2 AUC-ROC

The Receiver Operating Characteristic Curve (ROC) curve is a graphical plot
which illustrates the diagnostic ability of a binary classifier system for dif-
ferent discrimination thresholds. It is created by plotting the True Positive
Rate (TPR) against the False Positive Rate (FPR) at various threshold settings.

The Area Under the Curve (AUC) metric corresponds to the area that is
subtended — in this case — by the ROC curve and it is equal to a number
which is useful to evaluate the bounty of the model. Its maximum value is 1,
meaning that positive values are always retrieved as such and there are no
false positives. A value equal to 0.5 generally means that the classifier is not
able to discern between positive and negative cases, so it behaves like it is
taking random decisions.

0 1

0

1

ran
dom

gue
ssi

ng

FPR

TP
R

AUC-ROC

Figure 5.2: AUC-ROC metric: graphical representation. The curve represents the
ROC, the highlighted area represents the AUC value. An AUC value of 0.5
corresponds to a classifier that takes random decisions.

5.2 prediction of one timestep 26

5.1.3 Consonance perception

The consonance perception metric is based on the width of stability for two-
tone intervals proposed by Hermann von Helmholtz in [12]; in particular,
the values in table 5.1 that come from reference [11] are taken into considera-
tion. These values reflect how much a music interval between two pitches is
considered consonant or dissonant to human hearing. This can be exploited
to evaluate how much the model predictions are considered coherent or not
with respect to the ground truth.

The difference between this kind of metric and the AUC-ROC metric is
that in the latter the errors in predictions are rated so that the model is
penalised more when it generates dissonant notes with respect to the ground
truth.

The idea is taking a note pt from the real track played at timestep t and
finding the nearest predicted note by the model at the same timestep. The
distance between these pitches is converted to a score value according to
table 5.1. This process is repeated for every played note in the track and the
average score is in the end computed. Equations (6) and (7) represent the
formula used for the metric, where:

• Nt: total number of timesteps included in the track

• Npt : total number of ground truth notes active at timestep t

• pt: ground truth note belonging to timestep t

• at: prediction note belonging to timestep t

scorept = f
(︃

min
at

|pt − at|

)︃
(6)

score =
1

0.075
· 1

Nt

⎛⎝Nt∑︂
t=0

1

Npt

·
Npt∑︂
p=0

scorept

⎞⎠ (7)

In this way, eq. (6) evaluates the score associated to a single note of the
ground truth, which represent how well it is predicted by the model. Equa-
tion (7) is the average score over all notes and all timesteps, converted in
percentage: the coefficient 1/0.075 is a normalising constant to convert the
score into the range [0, 1].

It must be said that this metric does not consider the tonality of the song
since this information is not included in the dataset and cannot be explicitly
used during training. For this reason, the concept of consonance is relative
only to the intervals between the notes and not the tonality.

5.2 prediction of one timestep

The simplest experiment consists in training a model that is able to predict a
set of notes at a particular time instant, given the set of notes at the previous
timestep, i.e. using a window size equal to 1. Because of this, the number
of units of the last layer of the network is equal to the keyboard size, in this
case a standard 88-key piano keyboard. Different metrics are considered:

5.2 prediction of one timestep 27

Interval Distance Value
(semitones) f (D)

Unison 0 0.075
Octave 12 0.023

Fifth 7 0.022
Fourth 5 0.012

Major sixth 9 0.010
Major third 4 0.010
Minor third 3 0.010
Minor sixth 8 0.007

Major second 2 0.006
Major seventh 11 0.005
Minor seventh 10 0.003
Minor second 1 0

Tritone 6 0

Table 5.1: Values of consonance perception

F1 score, precision and recall. The beat resolution of MIDI files is set to
24, meaning that every beat of the song is represented by 24 timesteps. In
addition, no downsampling process is performed.

The dataset used is Classical Piano which contains 87 training files, 12
validation files and 25 test files, divided in such a way that songs from the
same composers are spread onto different subsets.

The results for loss function and metrics are reported in table 5.2, from
which it is visible that the model achieves a very low binary cross-entropy
and very high scores for the other metrics, meaning that the predictions can
be considered as accurate. Those results are also reported in figs. 5.3 and 5.4,
where all curves reach a convergence in few epochs.

Hence, the model is very good at predicting one timestep in the future
because it is very likely that notes that are active at timestep t are also active
at timestep t+ 1, due to the high number of repeated occurrences per note,
which is the result of not having applied the downsampling process.

Dataset Loss F1 Score Precision Recall

Training 0.024 0.889 0.927 0.924
Validation 0.028 0.890 0.925 0.920
Test 0.024 0.908 0.925 0.919

Table 5.2: Prediction of one timesteps: metrics

different batch sizes The experiment is then repeated with different
batch sizes, to see how such parameter affects the way the network learns.
Note that batch size are always kept a power of 2 in order to fit the storage
size of processing units.

Results are reported in table 5.3 from which it is visible that increasing
batch size significantly reduces computational time; in spite of this, the algo-
rithm cannot reach convergence if the batch size is too large. This behaviour

5.2 prediction of one timestep 28

0 5 10 15 20

2.5

3

3.5

4
·10−2

Epoch

Bi
na

ry
cr

os
s-

en
tr

op
y

Loss

Validation
Training

(a) Loss

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epoch

F1

F1 Score

Training
Validation

(b) F1 score

Figure 5.3: Loss and F1 Score; 20 epochs; batch size equal to 64

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epoch

Pr
ec

is
io

n

Precision

Training
Validation

(a) Precision

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epoch

R
ec

al
l

Recall

Training
Validation

(b) Recall

Figure 5.4: Precision and Recall; 20 epochs; batch size equal to 64

5.2 prediction of one timestep 29

is evident in fig. 5.5 from which it can be supposed that increasing the batch
size actually slows down training, since the number of epochs have to be
increased in order to compensate the slower convergence, even though the
computational times per single epoch are reduced. For this reason, a batch
size equal to 64 has been kept for all experiments.

Batch size Training time (s) Loss F1 Score Precision Recall

64 1205.72 0.028 0.890 0.925 0.920
512 156.03 0.030 0.896 0.925 0.915
4096 21.69 0.037 0.864 0.923 0.847

20 480 7.12 0.077 0.502 0.870 0.340

Table 5.3: Comparison among different batch sizes; 20 epochs; metrics for valida-
tion set

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epoch

F1

F1 Score

Training
Validation

(a) Batch size equal to 64

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epoch

F1

F1 Score

Training
Validation

(b) Batch size equal to 512

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epoch

F1

F1 Score

Training
Validation

(c) Batch size equal to 4096

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epoch

F1

F1 Score

Training
Validation

(d) Batch size equal to 20480

Figure 5.5: F1 score over epochs for different batch sizes. The higher the batch size,
the higher the amount of epochs required to reach a convergence.

5.3 prediction of multiple timesteps 30

5.3 prediction of multiple timesteps

The experiment is then extended to the prediction of multiple timesteps,
given a windows of past timesteps. In particular, the model is trained to
take windows of 10 past timesteps [tn−10, tn−1] as input to predict the next
10 future timesteps [tn, tn+9] assuming that an error occurs at tn (recall
fig. 4.3). To achieve this, the number of units of the last layer of the model
is multiplied by a factor of 10 with respect to the experiment in section 5.2,
since the number of notes that have to be predicted is ten time larger, which
also increases the number of parameters that have to be trained.

For this experiment, the AUC-ROC metric is considered and it is evaluated
for every pitch at every timestep; this allows to build a heatmap which rep-
resents the general behaviour of the model in predicting notes. The model
is also compared with the baseline model that repeats the last status of the
system before the error.

The results are reported in fig. 5.6: every row represents a pitch of the
88-key piano keyboard; every column represents a timestep in the future
which has to be predicted; white rows correspond to notes that are never
played in the test set, so they are not considered by the metric. It is visible
that the model behaves better than the baseline since the graph tends to
lighter colours. Recall that an AUC-ROC value of 0.5 means that the model
is pulling at random if a note is played or not, whereas a value of 1 means
that the model knows perfectly which notes will be played and which notes
will not. From the heatmap it can be inferred that the timesteps closer to the
first one are easier to predict, while the furthest are more difficult; moreover
the central range of pitches seems to be more difficult to model with respect
to lower and higher ends; this could be because lower pitches usually belong
to basslines which have a more predictable pattern, whereas higher ones are
rarely played.

A different representation is depicted in fig. 5.7, which shows the AUC-
ROC averaged over the notes for every future timestep. As said before, it
is reasonable that the timesteps very near in the future are easier to predict
with respect to further ones. For this reason, the AUC-ROC values for both
model and baseline decreases with future timesteps. The baseline model
is more affected since it just provides repetitions of the last timestep in the
input.

5.4 downsampling and data augmentation

5.4.1 Data preprocessing

The issue that emerges from the previous experiment is that, even if the
number of predicted timesteps is equal to 10, those predicted notes are not
so useful in a pratical case since they would correspond to less than half
a beat (recall fig. 4.4). There are some countermeasures that have been im-
plemented to help the training phase and make the model prediction more
meaningful. To make predictions further in the future, without increasing
the model complexity, the downsampling process described in section 4.1.2

5.4 downsampling and data augmentation 31

0 1 2 3 4 5 6 7 8 9
Time (step)

88
85
82
79
76
73
70
67
64
61
58
55
52
49
46
43
40
37
34
31
28
25
22
19
16
13
10
7
4
1

Pi
tc

h

AUC-ROC (prediction)

0 1 2 3 4 5 6 7 8 9
Time (step)

AUC-ROC (baseline)

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.6: Prediction of multiple timesteps: AUC-ROC heatmap. White cells rep-
resent NaN values. Pitch no. 49 is A4 (440Hz)

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

Timestep

A
U

C
-R

O
C

Avg. AUC-ROC per timestep

Prediction
Baseline

Figure 5.7: Prediction of multiple timesteps: mean AUC-ROC averaged over all
notes for different predicted timesteps. Timestep no. 0 is the prediction
given the very last status of the system, so it is supposed to be the most
accurate one.

5.4 downsampling and data augmentation 32

is applied. Such process consists in aggregating many timesteps into a single
one, preserving all notes that are played. In this case the procedure is the
following:

1. Every MIDI file is converted with a beat resolution equal to 24, which
means 24 timesteps per beats in the piano roll representation.

2. The piano roll is then downsampled, with a factor of 12, to 2 timesteps
per beat in order to have one timestep per quaver.

3. Every instance is built with two windows made of 10 timesteps each,
meaning 10 timesteps to predict 10 timesteps. Ten timesteps are now
equal to five beats, more than a complete measure in a common 4

4
time

signature.

Data augmentation is also performed on the training dataset in order to
transpose every batch to a random interval of semitones in the range [−5,+5].
This process largely increases the initial training set size and helps to prevent
overfitting and to reduce the dependency between musical patterns and ab-
solute pitches.

The model is then trained on such modified dataset. Figure 5.8a shows
the loss function from which it is visible that the model is learning and
there is no overfitting, while fig. 5.8b shows the average AUC-ROC which
confirms that the neural network model predictions are always better than
the simple baseline ones. This is also visible in fig. 5.9 where the heatmap of
the baseline is much darker than the one referring to the model.

Comparing the AUC-ROC curve of fig. 5.8b with the previous curve ob-
tained from non-downsampled data in fig. 5.7, it is visible that the new
dataset apparently results in worse predictions; this is because now the pre-
dicted timesteps are covering five beats instead of half a beat, and this makes
accurate predictions harder to be achieved. In spite of this, the predictions
which are now more extended in the future are also more meaningful.

0 10 20 30
0.12

0.14

0.16

Epoch

Bi
na

ry
cr

os
s-

en
tr

op
y

Loss function

Validation
Training

(a) Binary cross-entropy

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

Timestep

A
U

C
-R

O
C

Avg. AUC-ROC per timestep

Prediction
Baseline

(b) Avg. AUC-ROC

Figure 5.8: Downsampling and data augmentation: loss function and AUC-ROC

5.4 downsampling and data augmentation 33

0 1 2 3 4 5 6 7 8 9
Time (step)

88
85
82
79
76
73
70
67
64
61
58
55
52
49
46
43
40
37
34
31
28
25
22
19
16
13
10
7
4
1

Pi
tc

h

AUC-ROC (prediction)

0 1 2 3 4 5 6 7 8 9
Time (step)

AUC-ROC (baseline)

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.9: Downsampling and data augmentation: AUC-ROC heatmap

5.4 downsampling and data augmentation 34

5.4.2 Model predictions

This section shows some model predictions based on the feedforward model
trained on the Classical Piano dataset and visualised through a piano roll
representation. The first part of the piano roll shows the real track which is
played through the music stream; the second part represents the gap that is
filled by model predictions.

Figure 5.10 shows a simple pattern on the C major chord. The error oc-
curs at timestep 25; therefore the model takes as input timesteps 20–24 and
returns a prediction of timesteps 25–30. On the piano roll patched by the
feedforward model, it is visible that the predicted notes include only the
pitches played in the pattern and such pattern is somehow maintained dur-
ing the gap. On the contrary, the baseline model just holds the single note
that was active before the interruption.

Figure 5.10: Predictions on a simple pattern on C major chord

Figure 5.11 shows an extract from the Minuet in G major (BWV Ahn 16)
by Johann Sebastian Bach. It is musically more complex with respect to the
pattern in C major proposed before. In spite of this, the feedforward model
manages to keep track of the tonality of the piece and fill the gap with notes
that are coherent with the melody.

Figure 5.12 shows a piece taken from the test set of Classical Piano. The
predictions of feedforward model cannot be considered as ‘accurate’ with
respect to the ground truth in an absolute way; however, comparing them
with the ones made by baseline model, they are acoustically more pleasant
and coherent, which is also evident by listening to the audio files.

5.4 downsampling and data augmentation 35

Figure 5.11: Predictions on a Minuet in G major by Johann Sebastian Bach

Figure 5.12: Predictions on Fantasien Op. 116 by Johannes Brahms

5.5 different keyboard sizes and datasets 36

5.5 different keyboard sizes and datasets

5.5.1 Keyboard sizes

Another parameter which can be changed is the number of notes included in
the piano rolls used to train the model. For this experiment, the model has
been trained using different keyboard sizes. Considering that the majority
of played notes are in general included in the middle octaves of an 88-key
keyboard, the following reduced sizes have been tested:

88 keys From A0 to C8 (standard Grand Piano keyboard)

64 keys From A1 to C7

49 keys From C2 to C6

From fig. 5.13 it is visible that reducing the number of notes does increase
the loss function; this happens because the loss is evaluated with the binary
cross-entropy which takes into consideration not only correctly predicted
notes, but also how many silent notes are predicted as silence. Supposing
that the larger the keyboard size, the higher is the number of notes that are
never played, this behaviour should be expected.

However, fig. 5.14 shows that the AUC-ROC metric is almost the same
even if the total number of notes is reduced. This means that the model
learns to predict the notes in the correct way, disregarding the number of
always-silent notes. In any case, a piano roll made of 64 pitches seems to
provide slightly better results.

0 5 10 15 20 25 30
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Epoch

Bi
na

ry
cr

os
s-

en
tr

op
y

Loss function

Validation 88
Training 88

Validation 64
Training 64

Validation 49
Training 49

Figure 5.13: Different keyboard sizes comparison: loss function

5.5.2 Datasets

The model is then trained on the three different datasets described in sec-
tion 3.1.3 to find out differences in performance among those.

5.5 different keyboard sizes and datasets 37

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

Timestep

A
U

C
-R

O
C

Avg. AUC-ROC per predicted timestep

Prediction 88
Baseline 88

Prediction 64
Baseline 64

Prediction 49
Baseline 49

Figure 5.14: Different keyboard sizes comparison: AUC-ROC

Regarding the loss functions shown in fig. 5.15, it is visible that the lowest
values are reached with Nottingham database, followed by J. S. B. Chorales
and then Classical Piano. It is also noticeable that the validation losses on
Nottingham and J. S. B. Chorales are very close to the respective training
losses; this means that these datasets are relative easy to model with respect
to Classical piano whose validation and training losses are more distant.

Regarding the AUC-ROC metric represented fig. 5.16, it seems that the one
that provides best results is relative to chorales by J. S. Bach, especially by
looking at the first and last predicted timesteps, whereas the most difficult
to predict is the Classical Piano, probably due to its musical inhomogeneity.

0 5 10 15 20 25 30
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Epoch

Bi
na

ry
cr

os
s-

en
tr

op
y

Loss function

Validation Classical Piano
Training Classical Piano
Validation Nottingham

Training Nottingham
Validation J. S. B. Chorales

Training J. S. B. Chorales

Figure 5.15: Different datasets comparison: loss function

5.6 recurrent models comparison 38

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

Timestep

A
U

C
-R

O
C

Avg. AUC-ROC per predicted timestep

Prediction Classical Piano
Baseline Classical Piano
Prediction Nottingham

Baseline Nottingham
Prediction J. S. B. Chorales

Baseline J. S. B. Chorales

Figure 5.16: Different datasets sizes comparison: AUC-ROC

5.6 recurrent models comparison

The recurrent models are made of a recurrent layer instead of a Dense layers
with respect to the feedforward one, and they feature a significantly larger
number of trainable parameters. Because of that, they are more inclined to
overfitting, which has to been mitigated by limiting the number of epochs
used for training.

Figure 5.17 shows as example the loss function for the recurrent model
which includes the LSTM layer trained on the Classical Piano dataset: it is
visible that the validation curve begins to rise after 100 epochs, i.e. when
the model starts to overfit. In any case, using the weights corresponding
to the lowest validation loss, which during training are saved as checkpoints,
it is possible to test the model using that particular state at which it was
performing best. Results on test set regarding AUC-ROC metric are shown
in fig. 5.17b, where it can be seen that the recurrent model is clearly capable
to beat the baseline model on every future timestep.

The three different recurrent models are trained on the Classical Piano
dataset to find the differences in performance which are shown in fig. 5.18.
It is visible that all models seem to achieve similar results in term of AUC-
ROC; however the LSTM model performs always better than the others: its
recurrent cells, in fact, process useful information in a more efficient way.

The recurrent model featuring the LSTM is then trained on all datasets.
The results are shown in fig. 5.19, the behaviour is very similar to the one of
the feedfoward model (recall fig. 5.16) in which the baseline model is always
outperformed. However it can be noticed that this time the Nottingham
database seems to give better performance than the J. S. B. Chorales, while
for the feeforward model this behaviour was the other way around.

5.6 recurrent models comparison 39

0 100 200

0.2

0.3

0.4

Epoch

Lo
ss

Binary cross-entropy

Validation
Training

(a) Binary cross-entropy

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

Timestep

A
U

C
-R

O
C

Avg. AUC-ROC per predicted timestep

Prediction
Baseline

(b) AUC-ROC

Figure 5.17: LSTM model: loss function and AUC-ROC on Classical Piano database

0 1 2 3 4 5 6 7 8 9
0.7

0.8

0.9

Timestep

A
U

C
-R

O
C

Avg. AUC-ROC per predicted timestep

SimpleRNN
GRU
LSTM

Figure 5.18: AUC-ROC for different recurrent models on Classical Piano dataset

5.7 consonance perception evaluation 40

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

Timestep

A
U

C
-R

O
C

Avg. AUC-ROC per predicted timestep

Prediction Classical Piano
Baseline Classical Piano
Prediction Nottingham

Baseline Nottingham
Prediction J. S. B. Chorales

Baseline J. S. B. Chorales

Figure 5.19: LSTM model: AUC-ROC on different datasets

5.7 consonance perception evaluation

This section shows the performance of the two neural networks model and
the baseline using the metric based on consonance perception described in
section 5.1.3. Regarding the recurrent model, only the one including the
LSTM cell is considered since it is the one that performs best according to
fig. 5.18. Performance is then evaluated on all datasets.

Performance on Classical Piano dataset shown in fig. 5.20a is very similar
for the two artificial neural networks models, while the baseline seems to
perform better on the very first timesteps.

On the Nottingham dataset, shown in fig. 5.20b, results are always in
favour of neural network models which always beat the baseline with a dif-
ference that increases for the furthest timesteps.

Regarding the J. S. B. Chorales dataset, the feedforward model outper-
forms all the other models. It is also noticeable that the LSTM model performs
worse than the baseline for the first two timesteps.

5.8 examples of predicted piano rolls

This section shows some examples of test songs that have been patched by
feedforward, recurrent (LSTM) and baseline models during simulated errors.
All piano rolls show on the left a window of 5 beats that corresponds to the
real track given as input to the models, a middle window of 5 beats where
a gap in the playback is supposed to be and which is filled by the output of
the models, and a last window of the resumed playback corresponding to
the real track.

5.8 examples of predicted piano rolls 41

2 4 6 8 10
0.3

0.4

0.5

0.6

Timestep

Sc
or

e

Assonance Accuracy

FF
LSTM

Baseline

(a) Classical Piano dataset

2 4 6 8 10

0.5

0.6

0.7

0.8

Timestep

Sc
or

e

Assonance Accuracy

FF
LSTM

Baseline

(b) Nottingham dataset

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

Timestep

Sc
or

e

Assonance Accuracy

FF
LSTM

Baseline

(c) J. S. B. Chorales dataset

Figure 5.20: Performance on consonance perception metric

5.8 examples of predicted piano rolls 42

All songs are taken from the test sets of the three datasets and the models
used to fill the gaps in the songs have been trained on the training set of the
same dataset that the song belongs to.

Figure 5.21 shows an extract from Prelude No. 3 in G Major, Op. 28 by
Frédéric Chopin included in the test set of Classical Piano. This song features
a lot of fast notes in succession which are difficult to predict. The models, in
fact, do not manage to replicate the pattern of the melody, but they fill the
gap with some long notes which are somehow coherent with the tonality
of the song. This is certainly a better result than the one provided by the
baseline model; however it is noticeable that the main issue in this case is
that the models are not capable of replicating very fast notes.

Figure 5.22 shows a song taken from Nottingham test set, which is struc-
tured by a melody accompanied by a sequence of chords in regular cadence.
From the piano roll it is visible that both neural network models manage to
recreate a chord accompaniment which corresponds to the real chord; how-
ever they miss the chord change at beat 77 and they add some unnecessary
notes from beat 74 onwards. Both models also try to recreate a melody for
the very first beats, which is then interrupted; this could reflects the fact
that the predictions on first timesteps can be more accurate than the ones on
furthest timesteps.

Figure 5.23 shows a choral from Johann Sebastian Bach which is entirely
made of 4 voices. In this case the feedforward model seems to return more
complex predictions with many note changes with respect to the recurrent
model which holds the same chord for many timesteps. Also this time the
baseline model seems to be outperformed by the neural network ones.

5.8 examples of predicted piano rolls 43

Figure 5.21: Prediction on Prelude No. 3 in G Major, Op. 28 by Frédéric Chopin
from Classic Piano dataset

5.8 examples of predicted piano rolls 44

Figure 5.22: Prediction on a folk song from Nottingham dataset

5.8 examples of predicted piano rolls 45

Figure 5.23: Prediction on J. S. B. Chorales dataset

6 C O N C L U S I O N

In this thesis the concept of networked music performance has been intro-
duced, underlining the major problems in dealing with an audio streaming
with extremely strict requirements in term of latency and delay. Techniques
as packet retransmission and error correction are not suitable due to the in-
trinsic nature of the audio streaming which has to be in real-time in order to
allow musicians to play together in synch.

To tackle such issues, a method for filling possible gaps in the audio play-
back by using predictions generated by machine learning models is pro-
posed. In particular, the models discussed in this work consist of feed-
forward and recurrent neural network architectures, which take as input
a window of timesteps from the audio playback and return as output the
predictions for the next window of timesteps in which the gap may occur.
In this way, predictions generated by the models can be used to patch the
audio playback when it is needed.

To evaluate the performance of the models, they are compared with a base-
line model which repeats the notes from the last available status of the music
track before the gap. More specifically, different metrics are considered: the
AUC-ROC which tells the capability of the models to discern between notes
that are likely to be played and very unlikely to be played; a custom met-
ric based on consonance perception which evaluates the consistency of the
models from a musical point of view, favouring them if they are able to be
‘in tune’ with the real music and penalising them when their predictions are
‘out of tune’.

It is demonstrated that both neural networks models are able to outper-
form the baseline one in almost every situation, providing predictions that
are more complex and musically more consistent to the real track with re-
spect to the notes generated by the simple baseline. Performance may vary
depending on the dataset selected: the Classical Piano dataset is resulted to
be the most difficult to model and predict, while Nottingham and Chorales
by J. S. Bach are resulted easier due to their musical homogeneity and lower
complexity of songs.

The improvement given by artificial neural network models in term of
AUC-ROC is around 20% over the baseline for almost every future timestep,
while the custom metric based on consonance perception shows that the
proposed neural networks models perform better on the furthest timesteps.
Also piano roll representations reflect this aspect, since predictions given
by the machine learning models result to be visually more structured and
complex, which, even if the original melody of the track cannot be correctly
predicted, provide an alternative track from which it is possible to patch the
errors and gaps in the playback of the audio streaming. In addition, the
models are not able to replicate very fast notes or to continue sequences of

46

conclusion 47

single notes like scales and arpeggios, but they are capable to extend chords
and respect the tonality of the song.

Considering possible future developments, since the datasets used for
training and testing the artificial neural networks influence the final perfor-
mance of the models, it could be useful to include more data in the database,
possibly incorporating more musical genres like pop, rock or blues to have
a more accurate view of the general behaviour of such models. Moreover,
since the framework proposed in this thesis has concerned only the part of
prediction and music generation starting from MIDI tracks in the form of pi-
ano roll representation, the system by which those tracks are streamed and
patched has to rely on an external software which has not been treated in
this work. Such external software would be in charge to decide when to
ask predictions from the model, e.g. at every timestep or after some inter-
val, and decide which timesteps from the output window should be used to
fill the gaps. For these reason, a next step would include integration of the
model architecture with a streaming system by which it would be possible
to perform more advanced and practical tests using a real-time approach.

A C R O N Y M S

AI Artificial Intelligence
Intelligence demonstrated by machines which imitate human
behaviour.

AUC Area Under the Curve
Definite integral of a curve, representing the underlying area.

DL Deep Learning
Machine learning methods based on artificial neural networks.

FPR False Positive Rate
Ratio between the number of negative samples classified as positives
and the number of negative samples.

GRU Gated Recurrent Unit
Gating mechanism in recurrent neural networks that controls which
information from the past is preserved during training.

LSTM Long Short-Term Memory
Mechanism in recurrent neural networks which combine short-term
memory blocks to create a long-term memory.

ML Machine Learning
Techniques and statistical methods which enable machines to learn
from experience.

MIDI Musical Instrument Digital Interface
Connectivity standard for transferring digital instrument data.

NMP Networked Music Performance
Real-time interaction over a computer network that enables musicians
in different locations to perform as if they were in the same room.

RNN Recurrent Neural Network
Type of artificial neural network that involves directed cycles in
memory.

ROC Receiver Operating Characteristic Curve
Graphical plot which illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied.

TPR True Positive Rate
Ratio between the number of positive samples classified as positives
and the number of positive samples.

UDP User Diagram Protocol
Connectionless communication protocol used for purposes where error
checking, error correction and packet retransmission are not necessary.

48

B I B L I O G R A P H Y

[1] Alexander Carôt, Pedro Rebelo, and Alain Renaud. “Networked Music
Performance: State of the Art”. In: 30th AES International Conference on
Intelligent Audio Environments (Saariselkä, FI, Mar. 15–17, 2007). New
York, USA: Audio Engineering Society, Mar. 2007.

[2] Chris Brown and John Bischoff. Idigenous to the Net: Early Network Mu-
sic Bands in the San Francisco Bay Area. 2002. url: http://crossfade.
walkerart.org/brownbischoff/IndigenoustotheNetPrint.html (vis-
ited on 11/2020).

[3] Chris Chafe et al. “A simplified approach to high quality music and
sound over IP”. In: COST G-6 Conference on Digital Audio Effects (DAFx-
00) (Verona, IT, Dec. 7–9, 2000). Dec. 2000, pp. 159–164.

[4] Alexander A. Sawchuk et al. “From remote media immersion to Dis-
tributed Immersive Performance”. In: Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence (Berkeley, California, USA). ETP
’03. New York, USA: ACM Press, Nov. 2003, pp. 110–120. isbn: 978-1-
58113-775-0. doi: 10.1145/982484.982506.

[5] SoundJack: Real Time Online Music. url: https://ianhowellcountertenor.
com/soundjack-real-time-online-music (visited on 12/2020).

[6] Chrisoula Alexandraki et al. “Towards the implementation of a generic
platform for networked music performance: The DIAMOUSES approach”.
In: International Computer Music Conference (Belfast, Norhern Ireland,
GB, Aug. 24–29, 2008). Michigan Publishing, Aug. 2008, pp. 251–258.

[7] Chrisoula Alexandraki and Demosthenes Akoumianakis. “Exploring
new perspectives in network music performance: The DIAMOUSES
framework”. In: Computer Music Journal 34 (2 June 2010), pp. 66–83.
issn: 0148-9267. doi: 10.1162/comj.2010.34.2.66.

[8] Adrien Ycart and Emmanouil Benetos. “A study on LSTM networks
for polyphonic music sequence modelling”. In: Proceedings of the 18th
International Society for Music Information Retrieval Conference (National
University of Singapore Research Institute, Suzhou, CN, Oct. 23–27,
2017). Ed. by Sally Jo Cunningham et al. California, USA: ISMIR, Oct.
2017, pp. 421–427. isbn: 978-981-11-5179-8.

[9] Stefan Lattner, Maarten Grachten, and Gerhard Widmer. “A Predictive
Model for Music Based on Learned Interval Representations”. In: 19th
International Society for Music Information Retrieval Conference (Cité Inter-
national Universitaire de Paris, Paris, FR, Sept. 23–27, 2018). California,
USA: ISMIR, Sept. 2018, pp. 26–33. arXiv: 1806.08686 [cs.SD].

49

http://crossfade.walkerart.org/brownbischoff/IndigenoustotheNetPrint.html
http://crossfade.walkerart.org/brownbischoff/IndigenoustotheNetPrint.html
https://doi.org/10.1145/982484.982506
https://ianhowellcountertenor.com/soundjack-real-time-online-music
https://ianhowellcountertenor.com/soundjack-real-time-online-music
https://doi.org/10.1162/comj.2010.34.2.66
https://arxiv.org/abs/1806.08686

bibliography 50

[10] Jonas Langhabel et al. “Feature Discovery for Sequential Prediction
of Monophonic Music”. In: Proceedings of the 18th International Society
for Music Information Retrieval Conference (National University of Singa-
pore Research Institute, Suzhou, CN, Oct. 23–27, 2017). Ed. by Sally
Jo Cunningham et al. California, USA: ISMIR, Oct. 2017, pp. 649–656.
isbn: 978-981-11-5179-8.

[11] Inbal Shapira Lots and Lewi Stone. “Perception of musical consonance
and dissonance: an outcome of neural synchronization”. In: J. R. Soc.
Interface 5 (11 June 2008). Ed. by Richard Cogdell, pp. 1429–1434. doi:
10.1098/rsif.2008.0143.

[12] Hermann Ludwig Ferdinand von Helmholtz. On the Sensations of Tone
as a Physiological Basis for the Theory of Music. Trans. from the German
by Alexander John Ellis. 3rd ed. London, GB: Longmans, Green, and
Co., 1895. 576 pp.

[13] MIDI 2.0 Specifications. url: https://midi.org/specifications-old/
category/midi-2-0-specifications-v1-1 (visited on 12/2020).

[14] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent.
“Modeling Temporal Dependencies in High-Dimensional Sequences:
Application to Polyphonic Music Generation and Transcription”. In:
Proceedings of the 29th International Conference on Machine Learning (ICML-
12) (University of Edinburgh, Scotland, GB, June 26–July 1, 2012). Ed.
by John Langford and Joelle Pineau. ICML ’12. Madison, Wisconsin,
USA: Omnipress, June 2012, pp. 1881–1888. isbn: 978-1-4503-1285-1.
arXiv: 1207.4676 [cs.LG]. url: https://www-etud.iro.umontreal.
ca/~boulanni/icml2012 (visited on 12/2020).

[15] Wikipedia: Artificial intelligence. url: https://en.wikipedia.org/wiki/
Artificial_intelligence (visited on 12/2020).

[16] Wikipedia: Machine learning. url: https://en.wikipedia.org/wiki/
Machine_learning (visited on 12/2020).

[17] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2015. url: https://neuralnetworksanddeeplearning.com/ (vis-
ited on 12/2020).

[18] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rec-
tifier Neural Networks”. In: Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (Fort Lauderdale, Florida,
USA, Apr. 11–13, 2011). Ed. by Geoffrey Gordon, David Dunson, and
Miroslav Dudík. Proceedings of Machine Learning Research. JMLR,
Apr. 2011, pp. 315–323.

[19] Kurtis Pykes. The Vanishing/Exploding Gradient Problem in Deep Neu-
ral Networks. May 2017. url: https : / / towardsdatascience . com /

the - vanishing - exploding - gradient - problem - in - deep - neural -

networks-191358470c11 (visited on 12/2020).

[20] Keras Sequential class. url: https://keras.io/api/models/sequential/
(visited on 12/2020).

https://doi.org/10.1098/rsif.2008.0143
https://midi.org/specifications-old/category/midi-2-0-specifications-v1-1
https://midi.org/specifications-old/category/midi-2-0-specifications-v1-1
https://arxiv.org/abs/1207.4676
https://www-etud.iro.umontreal.ca/~boulanni/icml2012
https://www-etud.iro.umontreal.ca/~boulanni/icml2012
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://neuralnetworksanddeeplearning.com/
https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-neural-networks-191358470c11
https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-neural-networks-191358470c11
https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-neural-networks-191358470c11
https://keras.io/api/models/sequential/

	Titlepage
	Titleback
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis objectives
	1.3 Thesis outline

	2 Related Work
	2.1 History of networked music performance
	2.2 Works related to this thesis

	3 Background
	3.1 Musical data
	3.1.1 Piano roll representation
	3.1.2 Beat resolution
	3.1.3 Datasets

	3.2 Introduction to artificial intelligence
	3.3 Artificial neural networks
	3.3.1 Artificial neurons
	3.3.2 Activation functions
	3.3.3 Loss function, backpropagation and optimisers
	3.3.4 Feedforward neural networks
	3.3.5 Recurrent neural networks
	3.3.6 Vanishing and exploding gradients

	4 Proposed Framework
	4.1 Proposed solution
	4.1.1 System architecture
	4.1.2 System parameters

	4.2 Neural networks models
	4.2.1 Feedforward model
	4.2.2 Recurrent model

	4.3 Baseline model
	4.4 Prediction postprocessing
	4.4.1 Thresholding
	4.4.2 Reshaping

	5 Numerical Assessment
	5.1 Evaluation metrics
	5.1.1 Precision, recall and F1 score
	5.1.2 AUC-ROC
	5.1.3 Consonance perception

	5.2 Prediction of one timestep
	5.3 Prediction of multiple timesteps
	5.4 Downsampling and data augmentation
	5.4.1 Data preprocessing
	5.4.2 Model predictions

	5.5 Different keyboard sizes and datasets
	5.5.1 Keyboard sizes
	5.5.2 Datasets

	5.6 Recurrent models comparison
	5.7 Consonance perception evaluation
	5.8 Examples of predicted piano rolls

	6 Conclusion
	 Acronyms
	 Bibliography

