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Abstract

Convolutional Neural Networks (CNNs) are widely used in modern AI systems be-
cause of their superior accuracy, but they require highly parallel hardware structures
to compute their operations efficiently. The computational complexity of convolu-
tion and the high amount of data movement are two key factors to be considered
when designing a hardware accelerator for CNN.
Systolic/Spatial architectures represent an interesting choice for accelerating the fil-
tering operation of the convolution as they do not require stochastic data movement,
but rather a regular and deterministic transfer and access among the different stor-
age hierarchies. Moreover, this kind of architecture is more suitable for dataflow
processing and is commonly employed in ASIC and FPGA-based designs [1].
A good scheduling can exploit the deterministic CNN execution: in most deploy-
ment scenarios the neural networks do not change frequently, so a predetermined
schedule would save many resource and control logic at runtime.
A coherent and efficient Instruction Set Architecture (ISA) is required to maintain
the flexibility of creating such schedules for different CNNs: it consists in some in-
structions that are necessary to cover the data movement and the logic required by
a particular dataflow.
This thesis will show: a flexible Compiler able to map the CNN execution into the
hardware, by providing the schedule of the computations under different configura-
tions of the input parameters; an ISA to encode the schedule in FPGA platforms
and in Versal, a cutting-edge ASIC of Xilinx suitable to accelerate CNN; the test-
ing of the algorithms and instructions and an evaluation of the latency on such
architectures.
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1. Introduction

1.1. Motivation

Deep Neural Networks (DNNs) are strongly adopted in a large number of fields as
speech recognition, image classification and segmentation [2], cancer detection [3]
autonomous driving, [4] and they are currently the foundation for many modern
Artificial Intelligence (AI) applications [1], but the great accuracy and performance
of DNNs comes at the cost of high computation and storage complexity that must
be considered when designing a hardware platform to accelerate the execution of
such networks.
In particular, Convolutional Neural Networks (CNNs) are a common form of DNNs
composed of high-dimensional convolutions [1]. The CNN inference represents the
main limitation in hardware accelerator due to energy efficiency problems and low
throughput. In fact, to provide more accurate results, the size of the CNNs can
grow by adding more neural network layers, thus the huge number of operations
and parameters contribute to make the computational challenge for general purpose
processors more hard.
Therefore, some hardware platforms such as Field Programmable Gate Array (FPGA),
Graphic Processing Unit (GPU) and Application Specific Integrated Circuit (ASIC)
have been employed to improve the inference of CNNs [5], generally by making the
execution parallel, reducing the latency and the power consumption according to
the adopted type of accelerator.
Other important parameters, to meet power and cost constraints, are memory band-
width and buffer sizing [6]. Basically they can be significantly reduced with a good
data reuse pattern that is determined by the dataflow schedule of computation, i.e.
the amount of operations allowed to be partitioned and scheduled for a specific
computation and the data movement in the memory hierarchy [7]. Indeed in spatial
architectures several levels of local memory hierarchy are introduced in order to im-
prove energy efficiency by providing a low-cost data accesses [1]. The considerable
number of possible dataflows and the related choices of hardware implementation
have created a large architecture design space [8].
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1.2. Contribution and Organization

1.2. Contribution and Organization

This work deals the fine-level estimation of CNN, so the execution of CONV lay-
ers in dataflow architecture, focusing in the mapping process for a given input layer
shape. According to previous accelerators like [9, 10, 11], the Output Stationary (OS)
dataflow provides good performance, so it was a good starting point for implement-
ing a Compiler able to translate the high level specification into micro-instructions
at HW level.
Indeed, the first contribution of this work was a scheduling algorithm, in order to
obtain a schedule of atomic instructions that follow a regular pattern within the
spatial array. To find the best schedule, loop scheduling techniques have been ap-
plied in a certain way to support the OS dataflow.
An ISA, studied on purpose for such schedule, was employed to get the instructions
to be dispatched in the spatial array in order to execute a CNN correctly.
Once that the Compiler has been created and verified with proper test, the other
main contribution was the HW implementation for a FPGA-based design, which al-
lowed to have an overview of the HW resources utilization for some configurations.
Moreover, the latency trend for two CONV layer shapes (AlexNet and ResNet) was
measured, obtaining a quasi-ideal behavior of the HW and giving high fidelity to
the designed Modeling tool.
The last part of this research was about an investigation on the implementation of
the same schedule of operations, obtained for the previous design, in Versal plat-
form, namely a new ASIC with high performance for accelerating CNN.

Below, the organization of the next chapters is explained.
The chapter Background gives a brief introduction of DNN, with focus on CNN and
the inference task, with its HW solutions and challenges.

In the chapter Related work, the different dataflows covered in the literature and
the approaches to the design flow of CNN accelerators are analyzed.

The chapter Mapping of CNN into spatial architecture provides a wide overview
of the HW components employed in dataflow architectures for executing CNN, with
an explanation of the most common loop scheduling methods like loop tiling, loop
unrolling and loop interchange.

In the chapter Modeling tool, the functional blocks of the design flow are described,
which comprise the Compiler, its Scheduling algorithm, the Program Code, the pat-
tern of the data involved in the convolution and the final encoding stage through
the ISA; multiple examples are introduced to show the type of instruction schedule.

The chapter Hardware implementation discuss the HW architecture that is possi-

13



1. Introduction

ble to obtain with the proposed schedule for the OS dataflow, moreover this chapter
provides the results obtained with this model.

The last chapter Conclusion and Outlook gives a summary of the entire design
flow followed throughout this work and an evaluation of the results; the potential
future works are also described.

14



2. Background

This chapter is divided in two sections: the first one provides an overview of CNN
as main subfamily of DNN employed in computer vision tasks, the second intro-
duces the state-of-the-art hardware architecture for the CNN inference and the data
movement in such architecture.

2.1. Deep Neural Networks

The employment of DNNs in a wide range of applications is due to their ability
to extract high-level features over a large amount of data to obtain an effective
representation of the input space [1], reaching high performance and accuracy.
Neural Networks (NNs) are biologically inspired algorithms made up of neurons, the
basic computational element, that receive input signals from dendrites and produce
output signal on the axons (single element per each neuron), then the axon out
of a neuron can connect with a synapse to a dendrite of other neurons. Input and
output signals of a neuron are also called activations. The activation xi can be scaled
up or down through the synapse by a factor wi, so all these products xiwi can be
added together with a possible addition of a bias b, following a non linear function
f(.) (or activation function) on the final sum to get the output signal yi. The most
popular activation function is the rectified linear unit (ReLU) that consists in a max
operation with the threshold set to 0.

Figure 2.1.: Model of a neuron

The key characteristic is that the weight wi can be changed to have a different

15



2. Background

response to the input, representing in this way the learning process. Hence the
training or learning of a DNNs consists just in determining the values of weights
and bias, while the inference is the running of the network with the trained weights.
The analysis of the training process goes beyond the scope of this work.

To create a NN, clusters of neurons work together to create layers and a batch of
layers are put in sequence to form the network. Sometime pooling (or subsampling)
is employed to reduce the dimensions of the feature maps, hence reducing the overall
amount of parameters in the network.
In literature there are 2 main categories of NN: feedforward networks, where there
are sequences of computations on the outputs of previous layers, and recurrent
networks, in which some intermediate outputs can be stored internally and used as
next inputs. Anyway only feedforward networks will be considered from now on in
this work. Middle layer of the NN is also frequently called ”hidden layer”.
The types of connections among layers that can be identified in a DNN are fully
connected (FC) and sparsely connected layers, with the former denoting a situation
where all outputs of a layer are connected to all inputs of the next layer, while in the
latter not all the neurons of two adjacent layers are connected each other because
some connections are removed by setting the corresponding weights to 0. Typically,
the FC layer is the last one of the network, used for classifying the features extracted
by the CONV layers.

Figure 2.2.: Simple neural network.

In FC layers a significant amount of storage and computation is required because
of the high number of weighted sum in a layer, so the global efficiency can be
increased by using the same set of weights in the computation of every outputs of
a layer. Convolutional Neural Networks are popular types of DNN that employ

16



2.2. Convolutional layers

weight sharing and organize the computation as a convolution. A more detailed
explanation of this kind of network is provided in the next section.

2.2. Convolutional layers

CONV layers are the basic elements of CNNs, employed in feature extraction and
classification of the input image [12]. A CONV layer is composed by multiple sets
of shared 4D filters of small size that convolve over the 3D input image (called input
feature map or ifmap) in order to generate 3D output feature maps (ofmap).

Figure 2.3.: CONV layer

Shape parameter Description
Nif input channels
Nix ifmap width
Niy ifmap height
Nkx kernel width
Nky kernel height
Nof output channels
Nox ofmap width
Noy ofmap height

Table 2.1.: Notation of the layer shapes

17



2. Background

Basically, the convolution operation consists in sliding a small window of NkyNkx

size (i.e. the kernel) over the input image of larger size (NiyNix) to produce a partial
sum (psum), which is accumulated over the remaining spatial dimension Nif to get
the final output pixel of one channel. The same operation is repeated with a new set
of filters to compute the ofmap of the other output channels along Nof direction. So,
the main operation of the convolution is the multiply-accumulate (MAC ), namely
the element-wise multiplication between the input pixels and the weights, while the
psums are added together to obtain a single value. This operation, starting from the
top-left corner of the ifmap, is repeated again by moving the window by S strides
at a time in one spatial direction (usually towards right) and, when the edge of
the ifmap is reached, the sliding proceeds downwards until the ifmap is completely
scanned [5]. The following example shows the convolution among a 3x3 kernel (on
the left) and a portion of ifmap (in the middle), while the resulting psum is in a
portion of ofmap plane on the right; the stride is 2, so the window (i.e. kernel) slides
by 2 position on the right.

Figure 2.4.: Convolution with focus on two sliding windows. Different colors are
associated to different sliding window (i.e. different psum on the ofmap)

P00 = I00 ·W00 + I01 ·W01 + I02 ·W02

+ I10 ·W10 + I11 ·W11 + I12 ·W12

+ I20 ·W20 + I21 ·W21 + I22 ·W22

P01 = I02 ·W00 + I03 ·W01 + I04 ·W02

+ I12 ·W10 + I13 ·W11 + I14 ·W12

+ I22 ·W20 + I23 ·W21 + I24 ·W22

The MACs required to obtain those 2 partial sums are listed above: the first index
is about the column, the second is for the row.
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2.3. Hardware model for CNN inference

The spatial dimensions of the output and input volume can be computed using the
following formulas according to [13] and adopting the notation introduced in the
table 2.1:

Nox =

⌊
Nix −Nkx + 2Px

Sx

+ 1

⌋
, Noy =

⌊
Niy −Nky + 2Py

Sy

+ 1

⌋
(2.1)

Nix = (Nox − 1)Sx + Nkx , Niy = (Noy − 1)Sy + Nky (2.2)

Thus the dimensions of the ofmap depend strictly on the stride (Sy and Sx) of the
convolution and on the paddings (Px and Py) of the input; throughout this work the
input dimensions are always considered already padded.

The canonical form of the CNN is evaluated by the 7D nested for-loops [14]:

for (ba=0; b<B; b++)

for (no=0; no <Nof; no++)

for (y=0; y<Noy; y++)

for (x=0; x<Nox; x++)

for (ni=0; ni <Nif; ni++)

for (ky=0; ky <Nky; ky++)

for (kx=0; kx <Nkx; kx++)

psum[no; y, x] += ifmap[ni; y*S+ky , x*S+kx]

* weight[no , ni , ky , kx]

Listing 2.1: Nested convolutional loops

These nested loops can be broken down by applying loop optimization techniques
[15] such as loop unrolling, tiling and interchange (or interleaving) leading to a large
design space: there are different choices for implementing parallelism, sequencing
the order of computations and especially partitioning the large amount of data into
smaller chunks to fit a memory hierarchy level [14], with the purpose of improving
the efficiency of the CNN inference step.
One main focus of this work, which is depicted in next chapters, is setting the nested
loops of the convolution according to a particular dataflow, the Output Stationary,
in order to have the best schedule of the computation and the best reuse of the
involved data.
Indeed the inner loops of the convolution may iterate many times on the same
portion of a volume of data, thus some data are required several times in different
iterations, offering various data reuse opportunities and reducing as a consequence
the communication between different levels of memory to exchange data.

2.3. Hardware model for CNN inference

In CNN, more than 90% of the operations involve convolutions [16], i.e. MACs,
therefore acceleration schemes should focus on the management of parallel compu-
tations and the organization of data storage and access across multiple levels of
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2. Background

memories [14].
CNN algorithms involve a large amount of data, so a unique level of memory is not
suitable to store all ifmaps, weights and psums. In a typical CNN accelerator there
are 4 levels of storage hierarchy:

1. off-chip memory (usually a DRAM)

2. on-chip global buffer (GLB)

3. array (inter-PE communication)

4. register file (RF), or scratchpad (SPAD), associated to the processing element
(PE)

Basically, chunks of data are fetched from the external memory to the GLB, then
they are transferred to the RFs within the multiple processing elements through a
Network on Chip (NoC). After that the computations are over, the results are sent
back from the PEs to the GLB and also to the DRAM if necessary.
It is important to highlight that the energy cost, associated to a read/write opera-
tion, is higher at the DRAM than at the RF, so having an efficient accelerator in
terms of energy consumption implies to optimize the number of accesses to the levels
of storage. The multiple levels of memory hierarchy provides low cost data accesses:
fetching data from RF or neighbour PEs will cost one or two orders of magnitude
lower energy than from DRAM [1].

Figure 2.5.: Spatial architecture

Spatial architectures, or 2D Systolic array [17], is made up of an on-chip buffer
and an array of PEs, connected to the GLB through Interconnects. Each PE has
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2.3. Hardware model for CNN inference

a local scratchpad (RF) for storing data, an ALU datapath for MACs and other
types of operations, a control logic for handling the data and for interfacing to the
Interconnect.
The focus of this works is mainly in the PE array section of the accelerator and
the aim is to develop, according to an offline compiler, a smart deployment of the
instructions to the systolic array.
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3. Related work

Prior works have proposed several hardware designs for CNN acceleration, providing
simulation results [18, 19, 20, 9] and measured results from fabricated chips [12, 21,
22]. By now there are several variants of cutting-edge accelerators with multiple
levels of storage hierarchy, sharing the same concepts as dataflow mapping, inter-
layer scheduling (i.e. pipelined execution of layers) memory scheduling (defined also
as loop blocking techniques) and differing in the underlying hardware platform and
employed dataflow inside it.
These accelerators are based on analytical memory bandwidth models, to optimize
the loop-nest algorithm for CNN and to find a suitable dataflow schedule targeting
the lowest communication bandwidth according to the memory constraints. Having
a reduction in the memory bandwidth means having also a reduction in the power
consumption, because the total number of accesses to fetch data is lower.

CNN mapping methods in hardware architectures A flexible architecture has to
be able to support different ways of scheduling operations and staging data on the
same architecture [8]. The infrastructure Timeloop has evaluated and explored, in a
systematic way, the architecture design space of DNN accelerator through a model,
for describing performance and energy efficiency, and a mapper to configure the ac-
celerator to the optimal feature. Conversely, other works have dealt the architecture
design space problem within the scope of their specific design [12, 23, 24, 25].
Similarly, the DNNWeaver framework generates a custom synthesizable accelerator
on FPGA, starting from the high level specification, through its novel ISA that rep-
resents a macro dataflow graph of the DNN [26]. The mentioned tool comprises:
hand-optimized template designs to match the needs of the DNN and the available
resources on the FPGA; algorithms to find the best tradeoff between schedule of the
instructions and memory accesses.
The Cambricon ISA, inspired by the RISC-ISA design principles, has a comprehen-
sive and descriptive capacity over a broad range of NN techniques, showing that
the ISA design is a fundamental step that can limit both flexibility and efficiency of
NN accelerators [27]. In fact, customizable hardware accelerators such as [9, 28, 29]
adopt a more straightforward instructions set but can support a small set of NN
techniques, because as the NN techniques grow up, the design complexity and the
area/power overhead become unacceptable.
On the other hand, ASICs are also used as accelerator for CNN inference, but the
majority of them targets single-hardware design point. The Gemmini framework is
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an open source and agile systolic array generator, enabling systematic evaluations
of deep-learning architectures [22] and targeting ASIC and FPGA implementations.
It takes into account all the design parameters from software frontend and hardware
backend: layer dimensions or model size impact strictly on the mapping and schedul-
ing of a workload into a particular HW architecture [30]; instead, on the hardware
side, the system-level integration parameters such as power, area and maximum
clock frequency are affected by pipeline depth, employed dataflow, banking strat-
egy, memories capacity and bandwidth. Therefore, a model-based methodology is
useful in the HW/SW codesign process for deep learning workloads.

Dataflow categories Generally, the memory access represents the bottleneck for
processing data. A dataflow can increase data reuse within the PE array, in order to
reduce the number of accesses to memories and the energy consumption associated
to them. It also takes into account the storage capacity of the low cost memories,
which cannot fit all the data to be processed for a certain CNN. The taxonomy
introduced in [1] can be used to classify DNN dataflows in works like [18, 28], based
on their data handling characteristics [12]:

• Weight Stationary (WS) minimizes the energy consumption of reading weights
by keeping them in the PE, whereas the ifmaps are broadcast to it for the
convolution and the psums are spatially accumulated through the PE array.

• Output Stationary (OS): each PE of the array holds a psum for the same
output activation value, while the ifmaps are streamed across the array and
the weights are broadcast to all PEs. Possible variants of OS dataflow can
be adopted depending on the organization of the way the 7D nested loop
algorithm: these techniques will be discussed in the next chapter P

• No Local Reuse (NLR): no data is stationary in the PE and they are always
fetched from the on-chip memory, which has a larger storage capacity.

• Row Stationary (RS) dataflow, proposed the first time by Eyeriss accelerator,
maximizes the reuse and accumulation of all types of data at PE level, by
keeping rows of filter weights in the RF and then the ifmaps are streamed into
PEs of the array along the diagonal direction, implying an accumulation of
the psums across the vertical direction.

The above taxonomy used techniques already mentioned, like loop interchange and
unrolling, to get a different order of the CNN nested loops and way of iterating
over the feature maps. Moreover, dataflows are meant to be static, namely a CNN
layer has to be mapped using a particular dataflow, but the possibility of choosing
a suitable dataflow for each layer could lead to a better execution of the layer itself.
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3. Related work

Design flow of CNN accelerators What comes out from the above works is that
the operation of DNN accelerators is analogous to that of general-purpose proces-
sors [7]: in a standard computer system, the compiler translates the program into
machine-readable binary codes for the executable, given a specific HW architec-
ture (x86 or ARM), while in the processing of DNNs the layer shape and size are
translated by the mapper into a HW-compatible schedule of computations, given a
specific dataflow. Similarly the HW architecture has to be flexible and adaptive to
the layer shape configuration, rather that hardwired to process certain shapes, in
order to improve throughput and energy efficiency.
Anyhow, selecting an energy-efficient scheduling for a CNN is challenging and re-
quires an extensive search of loop schedules. What has been done in [31] and [32]
addresses exactly the first steps of the mapping process of CNN:

• the optimization of data movement is carried out in the former work by a
design space exploration framework, which provides some hardware metrics
like communication schedules and memory statistics that can be used in the
SW/HW codesign process; to determine efficient communication patterns for
the memory usage (across different layer configurations), the framework ex-
ploited loop optimization techniques and inter-layer tiling and reuse strategies

• the HW requirements are considered in the latter work, which aims in finding
the optimal resource binding strategy for a given network and architecture; in
this case, an HW model provides a high level description of the main architec-
tural parameters like number of cores and memory size, thus they are used in
an energy and latency model to find optimized and valid solutions of mapping

So the first works deals the optimization methods for the off-chip communication,
while the second one focuses more on the on-chip communication with the PE array,
dealing both with strided convolution mostly and also GEMM algorithms.
This thesis represents a continuation of these works, therefore the main topic will
be the schedule of the operations at the PE array level and the corresponding HW
implementation, namely the last step of the design process for CNN accelerators.
From now on, only strided convolutions will be considered.
The dispatch of data and instructions through the Network on Chip (NoC) to the
PEs in the systolic array (SA) has been studied in parallel to this work [33].
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4. Mapping of CNN into spatial
architecture

As explained in previous chapter, this thesis is focused on providing a proper sched-
ule of operations to execute a generic CNN layer on a PE array, thus it is related
to the lowest part of the hierarchy in a systolic accelerator. It is important to plan
the design flow from SW to HW, considering all the parameters that can affect
the mapping. Before doing that, the dataflow within the systolic array needs to
be analyzed in order to understand the correlation between HW architecture and
high-level system parameters (section 4.2). This breakdown is carried out only for
the OS dataflow, so the parameters that describe it are related only to this type of
dataflow.
A detailed overview on the HW blocks in a systolic architecture is given in section
4.1. From the SW side, the loop blocking techniques can affect the HW implemen-
tation, so section 4.3 provides a review of the most common methods.
Then, everything is put together in section 4.4 in the mapping step of CNN into
spatial array.

4.1. Spatial architecture

4.1.1. Overview on HW implementation

Generally there are two types of Systolic/Spatial accelerator: coarse-grained SAs
(like multi-core processors), made up of tiled arrays of ALU-style PEs connected
together through an on-chip network [34, 35], basically implemented in ASIC; fine-
grained SAs (like SIMD processors) usually employed in FPGA.
The first type of SA has better performance than the second one, due to its HW
uniformity and higher parallelism that can favour the execution of large number of
MACs. Consequently, if from one side ASIC are more specialized to a PE array
datapath only for CNN execution [10, 36], on the other side the FPGA can be also
used to build a CNN accelerator by exploiting integrated DSP slices to construct
the PE datapaths [18, 20]. Certainly in both type of design the main challenge is
finding the right mapping of the CNN acceleration into the SA, in terms of latency
and energy efficiency.
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4. Mapping of CNN into spatial architecture

4.1.2. Processing Element

The Processing Element is the computational core of the array and it comprises a
local small memory (i.e. RF), typically below 1kB, one or more ALU datapath able
to perform MACs operation, a control logic to interface with the Interconnect and
the neighbour PEs.
The RF can be exploited to have a low cost data reuse for the ALU; it can store all
types of data, namely ifmap, weight and psum during the accumulation.

Figure 4.1.: Processing Element block scheme; the different data types are repre-
sented with different colors

4.1.3. Network on Chip

The NoC is in charge to dispatch instructions, which includes data and other pa-
rameters useful to perform the MACs, and to retrieve the final psums from every
PE when the computations are over.
Thanks to the deterministic execution of CNN, the communication with the PE
array does not require necessarily complex routing algorithms, usually supported by
NoCs. A flexible and efficient on-chip Interconnection can be considered to support
broadcast, multicast and unicast transfers to cover different deployment of the in-
structions. So, a Time-Division Multiplexing (TDM) Interconnect can be employed
for this kind of usage, which is able to sustain a dataflow and reduce complexity in
data delivery patterns compared to other more complex and expensive solutions like
those of [37, 38].
In particular, the NoC comprises an array of vertical and horizontal Interconnect
associated to every PE:
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4.1. Spatial architecture

Figure 4.2.: The horizontal and vertical interconnects are depicted in black and grey
respectively. In red, the n2n communication among neighbour PEs

4.1.4. PE array

The PE array allows to reach high compute parallelism by exploiting:

• communication between on-chip buffer and PE array through the Network on
Chip

• point-to-point communication among adjacent PEs, called also neighbour-to-
neighbour communication (n2n), which allows a direct interchange and flow of
data between PEs without passing through the NoC

There is also some control logic and buffers used to interface correctly the PE array
with the GLB and viceversa, but they are not covered in this work.
Each time the computation of a CONV layer starts, the Interconnect deploys in-
structions in the correct order to the target PEs.
Accessing to the global buffer has a certain energy cost, so it is better to minimize
the number of accesses to have a low energy consumption associated to the data
transfers. The n2n communication allows to reuse or accumulate data within the
PE array, without taking them each time from the GLB and relaxing more the NoC
when delivering a message.
Therefore the data reuse and the inter-PE communication needs to be considered in
the scheduling of operations.

27



4. Mapping of CNN into spatial architecture

4.2. Data movement in the spatial array

The main challenge when accelerating a CNN is finding the right trade-off between
energy consumption, throughput and number of computations that can be settled
in the PE array. Although the large number of MACs can be easily parallelized,
the throughput cannot be scaled up in the same way due to bandwidth constraints.
Furthermore, the data movement can be more expensive than the computation itself
[39, 40].
An efficient CNN processing is achieved by defining a proper dataflow that supports
parallel processing, with the minimal data movement and the low cost memory level
usage[41], without compromising the global performance.
The types of dataflows differ each other depending on:

• the way the 3 data types are stored in the storage hierarchy

• the data movement between GLB and array and in the array itself

• the direction of accumulation of the psum during the computation

Hence a dataflow directly affects the schedule of the operations required to compute
the final output pixels of a certain CONV layer. In this work, the designed HW
architecture is conceived to support the Output Stationary dataflow and two variants
of it, according to loop unrolling and interleaving.

4.2.1. Output stationary dataflow

This type of dataflow minimizes the energy consumption associated to reading/writ-
ing operations of psum, since that the accumulation of an output activation happens
locally in the RF of the PE and not spatially in the array.
There is a broadcast/multicast of the weights to the PEs processing the same input
channels of the CONV layer, while the ifmap pixels are streamed along the spatial
direction of the array in order to reuse them efficiently, reducing the number of
accesses to the GLB.

The PE array can process ofmap along different dimensions according to a tax-
onomy defined in [41], which identifies 3 possible variations of the OS dataflow:

• OS Type-A (OSA), suitable for CONV layers, focuses on processing a single
plane of ofmaps at a time, maximizing the convolutional reuse, i.e. ifmap and
kernel are reused several times within a given channel in different combinations.

• OS Type-B (OSB) processes multiple ofmap belonging to different channels
by using multiple pixels of the same ifmap at a time.

• OS Type-C (OSC) is employed mainly for FC layers, because it computes
multiple ofmaps but considering only one pixel at a time.
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4.3. Loop scheduling techniques

Figure 4.3.: Variations of OS dataflow. The darker part is the one being processed

Hence, the type of dataflow adopted in the HW architecture determines which
pixel and weight of the CONV layer have to be allocated in the RF of every PE. In
this work, the HW implementation supports OSA and OSB dataflow, giving more
flexibility to the PE array.

4.3. Loop scheduling techniques

The problem of CNN mapping, given an input CONV layer, can be seen as finding
the optimal architectural configuration of PEs in the array that can compute the
psums efficiently. From an other point of view, this is a loop optimization problem
[42, 43, 44, 45], so techniques like loop unrolling, tiling and reordering/interchange
are applied to the nested convolutional loops to find the best configuration of PEs.
Furthermore, these techniques modifies the data access pattern on the memory levels
in the accelerator and influences also their minimum size, so a good loop schedule
must optimize all these aspects.

4.3.1. Loop tiling

Applying loop tiling to the nested convolutional loop means dividing the execution
into smaller loops, that receive new blocks of data smaller than the total loop di-
mension.
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4. Mapping of CNN into spatial architecture

Figure 4.4.: Tiles in the layer shapes

ifmap kernel ofmap
Tix, Tiy, Tif Tkx, Tky Tox, Toy, Tof

Table 4.1.: Tiling sizes

Loop tiling divides the entire input volume into multiple blocks of data, in this
way the on-chip buffer can accomodate tiles of data sent by the denser off-chip
memory. External memory access happens when going from one tile to the next and
are the most energy expensive, so the data transferred from DRAM to GLB must
be reused as much as possible.
Loop tiling sets also the lower bound on the required on-chip size [14]:

GLB size = ifmap volume + weight volume + ofmap volume

= Tix · Tiy · Tif · Tb · pixel datawidth
+ Tkx · Tky · Tif · Tof · weight datawidth
+ Tox · Toy · Tof · Tb · pixel datawidth

(4.1)

The kernel dimensions are never tiled since that are typically small, so Tkx,y = Nkx,y.
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4.3. Loop scheduling techniques

4.3.2. Loop unrolling and interleaving

Unrolling convolution loops leads to accelerate their execution with an hardware
overhead. The different parallelization of computation affects the optimal PE archi-
tecture with respect to data reuse opportunities and memory access pattern [14].

Figure 4.5.: Unrolling in the layer shapes for the OS dataflow; the darker areas are
the effective ones processed in the PE array

Therefore, the unrolling variables determine the mapping and the schedule of the
parallel MAC operations into the PE array.

1 ≤ P ≤ T ≤ N

Tox,y → Pox,y , Tix,y → Pix,y = (Pox,y − 1) · Sx,y + Tkx,y (4.2)

Loop interleaving [41] is applied to the tiling parameters Tif and Tof , obtaining q
for the input channels and p for the output channels. In this way the computation
in a single channel is halted and resumed along the channel dimension to maximally
reuse data.
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4. Mapping of CNN into spatial architecture

Figure 4.6.: Interleaving and unrolling depicted in the layer shape; the darker areas
are the effective ones processed in the PE array, so it is clear that every
PE needs more data

Furthermore, the usage of loop interleaving causes an increase of the SPAD size
because a higher number of ifmap or weight needs to be hold at PE level. So, loop
interleaving is only beneficial for the energy and not for the memory size.

4.3.3. Loop interchange

Loop interchange decides the processing order of the loop tiles and also the type of
dataflow at the algorithm level, i.e. the pattern of data movement [14] between the
different storage hierarchy.

4.4. Logical and physical mapping

The mapping process of a CNN model in the systolic architecture can be grouped
in 3 steps:

1. finding a feasible and optimal configuration of tiling factors that can be allo-
cated into the storage hierarchy

2. identifying a PE array configuration, according to the dataflow and unrolling
factors, that can theoretically perform the MACs in a parallel way exploiting
as much as possible a local reuse of data
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4.4. Logical and physical mapping

3. mapping these configurations into the physical array, considering the HW con-
straints and the schedule of the operations for each PE

In literature [41], the first step is referred to as logical mapping, while the second
one is called physical mapping : at the beginning the computations are mapped
according only to the dataflow and layer shapes, then the HW parameters are taken
into account and, if the PE array cannot fit all the operations, the schedule of the
computation is serialized in order to find a correct HW implementation.
The mapping steps are done statically before runtime through an offline compiler;
the one employed in this work is explained in next chapter.

4.4.1. PE set

Given a dataflow, a PE set is the minimal block of PEs that processes data in a
parallel way, according to some unrolling parameters and to some logic. If the PE
array size is large enough, multiple PE sets can be replicated in the array in order
to further improve performance.

OS dataflow mapping In this type of dataflow, the accumulation of the psum is
stationary in the PE, so a PE set is responsible for a portion of the ofmap; its width
and height is determined by the unrolling factors Pox and Poy respectively.

Figure 4.7.: Example of 4x4 PE set for the OSA dataflow, with Pox=Poy=4

This first implementation is the OSA dataflow, so the above PE set processes
the output pixel of just one output channel, but it is possible to map in a PE set
also multiple ofmap channels according to the interleaving parameter p, which leads
to OSB dataflow configuration because in one PE set there is an accumulation of
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4. Mapping of CNN into spatial architecture

psums belonging to different channels. In this way the ifmap reuse is favoured with
respect to other data type.

Figure 4.8.: Example of two 3x3 PE sets for the OSB dataflow, with Pox=Poy=3
and p=2. Since that Tof=4, two PE sets are required to process 2 output
channels each (different colors refer to different output channels). The
PEs in grey are clock-gated to save energy

In this example, two PE sets are mapped in the array horizontally, so Pof vertical
is 1 and Pof horizontal is 2: these new parameters are used to map the logical PE
sets, necessary to cover all computations depending on the current dataflow, in the
physical array that is characterized by a limited size.

A further variation of the OS dataflow consists in considering the unrolling factor
q as well as p, which means that the ifmap pixels are fully reused because they
are fetched only one time from the GLB for a specific output pixel of the ofmap.
Furthermore, the more the unrolling factors p and q are taken into account, the
more the complexity and the RF size increase.

Data reuse In a convolution, multiple input pixel belonging to adjacent sliding
windows can be reused within a PE set, if the stride is such that there is an overlap,
by exploiting the n2n communication of neighbour PEs.
In the OS dataflow, the reuse happens only along the horizontal direction of the
array from right to left because of the sliding movement of the kernel over the ifmap
from left to right.
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4.4. Logical and physical mapping

A ping pong buffer can be employed to avoid data conflict and dual-port memory
in the RF. In particular, it is a type of double buffer useful when there is a I/O
operation with data busy in a computation.
The reading/writing operations on the 2 buffers are handled with a switch that
changes when the 2 blocks of data are completely processed, i.e. when the pointer
to the buffer reaches the last filled location. Thus the usage of ping pong buffer
increases the overall throughput and prevents eventual bottlenecks.

Figure 4.9.: Ping pong buffer block scheme
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5. Modeling tool

The OS dataflow and the loop optimization techniques provide a particular configu-
ration of the nested loops for CNN. The Compiler introduced in section 5.1 employs
this type of configuration (5.1.1) to translate the high level specifications into the
atomic operations at HW level, which enclose the main features of the dataflow.
Indeed the main purpose of this breakdown is to characterize the figure of merit
(FOM) involved in the mapping process of a CNN layer.
So it is possible to identify a regular Data pattern (section 5.2) for the OS dataflow,
which is used to make a proper ISA able to encode the atomic jobs into few instruc-
tions to dispatch in the PE array. The characteristics of this novel ISA are described
in section 5.3. All these concepts are merged together to make a proper Modeling
tool :

Figure 5.1.: Flow chart of the Modeling Tool

Each functional block of the tool is discussed in next sections.
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5.1. Compiler

5.1. Compiler

The inputs of the Compiler are the tiling and unrolling factors associated to the
layer shape, which are given by the tools developed in prior works [32, 31].
Basically, in CNN there are 3 levels of estimation:

1. Coarse level : high level estimation of the CNN in terms of size of memory
blocks, number of operations and parameters

2. Mid level : off-chip to on-chip movement, it is the estimation of the tiles of
computation

3. Fine level : on-chip movement, namely in-parallel HW processing or spatial
distributed computation

The CNN estimation is carried out in Hardware flow, a HW/SW codesign frame-
work which breaks down the high-level computation graph of a neural network into
a bunch of computation blocks that can be implemented in the hardware.
The Compiler of this work is about the fine level estimation of a CNN: it maps
multiple computations in a parallel HW architecture, considering also the temporal
parallelism such that the sequence of operations is correct and the CNN algorithm
is not violated.

5.1.1. Scheduling algorithm

The algorithm of the compiler is based on the nested convolutional loop (2.2), but
some changes need to be done by using loop blocking techniques in order to increase
the parallelism, process an affordable number of data in memory, iterate in an
efficient way over the layer shapes to have data reuse possibilities and use data
in a smart way.

OS dataflow breakdown The canonical version of the CNN algorithm is already
set to support OS dataflow, indeed the outer loops are about the ofmap volume and
the psum is accumulated in the PE without moving during the computation, which
means that, along the sequence of MAC operations, the index of the psum is fix and
the indexes of the ifmap and weight are being updated as depicted in 2.4.
Being a fine level estimation of CNN, the algorithm of the compiler takes care only
the tiles loaded in the on-chip buffer (table 4.1).
When applying loop unrolling, the input pixels processed at the same time is larger
and it depends on Pix and Piy, i.e. the corresponding unrolling factors of Pox and
Poy. The number of psums that can be computed in parallel is allocated spatially in
a number of PEs according to the horizontal and vertical unrolling factors Pox and
Poy:
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5. Modeling tool

Figure 5.2.: Mapping of the computation in a 2x2 PE set (Pox=Poy=2). The dif-
ferent colors of the sliding windows (3x3 kernel) are associated to a
different overlap with the ifmap, so the four psums of the ofmap

It is worth to highlight that there are 3 pixels that can be shared through the n2n
communication among each couple of adjacent PEs in a row:
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5.1. Compiler

Figure 5.3.: The kernel size and the stride make sure that the second column of
pixels in grey are in common between sliding windows of each row,
thus PE01 and PE11 can send that pixel column to PE00 and PE10
respectively, through a direct point-to-point communication, without
using the Interconnect

Hence, the data dependency is only along a row of PE set, while the vertical n2n
connection is never used in the OS dataflow. In this case, the 1D convolution prim-
itive [12] is strictly related to the horizontal unrolling factors (besides the kernel
dimensions and the stride), which establishes the number of sliding windows (i.e.
kernels) & corresponding ifmap beneath that can be settled into the PEs; then this
schedule is repeated as many times as the vertical unrolling factor in order to fully
exploit the HW resources in the spatial array.

If looking to the first sliding window of the PE set row in the example 5.3, it is
possible to identify an important parameter and its complementary:

overlap = max{0, Tkx − stride} (5.1)

not overlap = Tkx −max{0, Tkx − stride} (5.2)
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5. Modeling tool

In that example, the overlap quantity is 2 while the not overlap quantity is 1 and
corresponds to the column of pixels that can be reused, by exploiting a n2n com-
munication. The usage of these quantities will be more clear in next examples.

A further enhancement consists in mapping more than one output channel in a
PE set, by interleaving the computation of a psum of a channel with other psums of
next channels. In this way the ifmap reuse is maximized but the number of weights
to be sent in a PE is higher because the PE needs multiple weights from different
set of filters.
When considering the interleaving parameter p, the OS dataflow is called OS Smart
(OSS) dataflow.

Figure 5.4.: Mapping of the computation with OSS dataflow.
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In this example, the two colors are associated to different channels and the com-
putation of two psums in PE00 is reported; the data written in the equations are
meant to be in the corresponding RF. it is noticeable the reuse of input pixel when
interleaving P0 00 (i.e. psum of channel 0 at position (0,0) in the ofmap) with P1 -
00, although the number of weights is doubled with respect to the standard case
(i.e. computation of a single output channel).

Smart scan of CONV layer Once applied loop unrolling and loop tiling to the
nested convolutional loop, it is already possible to obtain a schedule of jobs for
the HW architecture. Furthermore, the list of data hold in every PEs needs to be
scheduled in such a way that the control logic, at HW level, is not much complicated
and allows a simple managing of the accesses to the RFs.
The ping pong buffer represents a suitable solution for handling n2n communication
and ifmap reuse, since that one buffer is used to hold the pixels corresponding to
the portion not overlapped with the adjacent sliding window, whereas the pixels of
to the overlapped portion are sent to the other buffer.
This means that the PE processes first the pixel belonging the the not overlapped
portion of the ifmap, then those of the overlapped section.
The next examples show the schedule of the jobs obtained from this smart scan of
CONV layer for the OS dataflow. Every time, a PE set row is taken into account
and all the reasoning on it can be applied in the same way to the next row of PEs.
Different colors are associated to the allocation of the pixel in the ping or pong
buffer.
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Figure 5.5.: Mapping of a 3xTix ifmap with a 3x3 kernel, stride = 2.

The number of the effective memory locations in the ping or pong buffer depends
directly by the number of pixels in the columns of ifmap, which are: sent by the
Interconnect before the computation starts; received from a neighbour PE.
With this mechanism, it is better to scan a ifmap column by column, rather than
the usual row by row, and interleaving at every cycle the weights of different set of
filters with the same ifmap in order to compute psums along the channel dimension.
This type of iteration is critical especially when the stride is equal to 1, as depicted
in the following example:
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Figure 5.6.: Mapping of a 3xTix ifmap with a 3x3 kernel, stride = 1. Load step (i.e.
n2n still not used)

Every ping buffer holds just 1 column of pixel that corresponds to the not overlap
section, whereas the pong buffer is empty at the beginning. When the computation
starts, the neighbour PEs fill up the pong buffer with the next column of pixel of
the corresponding overlapped section:
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Figure 5.7.: The correct second columns of pixel are sent through n2n communica-
tion.

At this point the every PE need to process the third column of pixel: again, the
PE receives this last column by its neighbour PE on the right. Since that the data
in the ping buffer are already used, these incoming columns of pixel are stored in
the ping buffer by overwriting the useless pixel:

Figure 5.8.: Point-to-point communication for sending the last columns of data.

If the kernel was larger on its width, e.g. 3x6 instead of 3x3, the n2n communi-
cation would continue in the same way as before by sending columns of input pixel
to the ping or pong buffer according to its switch position.
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When the stride is 3, in the same example, the situation is easier because there is no
overlap among adjacent sliding windows and the n2n communication never happens,
so the schedule provides only MAC operations.

Figure 5.9.: Mapping of a 3xX ifmap with a 3x3 kernel, stride = 3. Load step

The scheduling algorithm, after applying loop scheduling techniques, is showed
below:

for (no=0; no <Tof -(p-1); no+=p)

init_PEset
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for (y=0; y<Toy -(Poy -1); y+=Poy)

for (x=0; x<Tox -(Pox -1); x+=Pox)

for (ni=0; ni <Tif; ni++)

load_data

for (kx=0; kx <Tkx; kx++)

for (ky=0; ky <Tky; ky++)

for (i=0; i<p; i++)

for (py=0; py <Poy; py++)

for (px=0; px <Pox; px++)

update_RF

MAC

if (ni==Tif -1)

send_output

schedule_n2n

update_PEset_history

Listing 5.1: Scheduling algorithm pseudo-code

The concept of PE set history, i.e. reuse of a logical PE set, is explained in next
sections.

RF dimensions The ifmap RF requires at least Tkx · Tky locations in order to face
all possible situations like in 5.9.
For what concerns the RFs for the weights and psums, the structure is always the
same in all PEs:
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Figure 5.10.: RF size for the weights and psums (the interleaving parameter is equal
to 1 in this case)

The weight RF holds all the weights in the 3x3 kernel used in the convolution
considered in the PE array, so if p > 1 the RF grows up up to p · Tkx · Tky.
The weights stored in this RF are the same in all PEs of the PE set, so the dispatch
of the weights to the array can be accomplished through a Multicast, whereas the
deliver of ifmap needs a Unicast because every RF stores input pixels different from
each other.
The number of locations in the psum RF is at least equal to p.

OSS dataflow - version 2 To sum up, this algorithm provides the schedule of
jobs supporting the OSB dataflow. In this case the other interleaving parameter q,
related to the input channels, is equal to 1, which means that PE sets processes tiles
of ifmap one at a time.
Hence the communication between GLB and PE array is determined by Tif , because
the NoC has to dispatch ifmap and kernel of a new channel at the beginning of the
computation. Although the number of memory accesses could be very large if Tif is
big, the size of the SPAD is small since that the ping pong buffer is limited to few
ifmap pixels.
To reduce the accesses to the GLB, it is possible to consider q > 1 and load multiple
input channels of kernels and ifmap into the SPAD.
The principle of the algorithm remains the same: the ifmap columns of different
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channels are processed first, then the computation proceeds with the next set of
columns.

for (no=0; no <Tof -(p-1); no+=p)

init_PEset

for (y=0; y<Toy -(Poy -1); y+=Poy)

for (x=0; x<Tox -(Pox -1); x+=Pox)

load_data

for (kx=0; kx <Tkx; kx++)

for (ni=0; ni <Tif; ni++)

for (ky=0; ky <Tky; ky++)

for (i=0; i<p; i++)

for (py=0; py <Poy; py++)

for (px=0; px <Pox; px++)

update_RF

MAC

send_output

schedule_n2n

update_PEset_history

Listing 5.2: Second version of the Scheduling algorithm

The drawback of this new version of OS dataflow is that the RF size of ifmap
and weight increases dramatically due to the introduction of Tif channels in both
registers:

Virtual neighbour To have a homogenous movement of data inside the array in the
point-to-point connection, the rightmost PE of the row in the PE set needs a virtual
neighbour from which to receive columns of pixel. The horizontal Interconnect of
that PE can be exploited for this job:

Figure 5.11.: Mapping of a 3x9 ifmap with a 3x3 kernel, stride = 2. The sliding
windows reached the column edge.

In this way all the PEs, in the last column on the right in the PE set, can have
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the same pattern of data and RF requirements of the other PEs.

Program code generation The scheduling algorithm determines the type of it-
eration over the input layer shapes, compliant with the OSS dataflow, to map the
computation in a PE array.
Moreover, the Compiler needs to translate the necessary operations into jobs or
atomic instructions that implements the CNN execution at HW level. To do that,
some commands are introduced in the algorithm in order to generate a proper Pro-
gram Code, just as showed in the pseudo codes of the algorithms (5.1.1 and 5.1.1),
which represents a raw version of the instructions for the HW architecture. It is im-
portant to notice that the commands are placed in specific locations of the scheduling
algorithm according to its HW meaning, so the initialization and update phase of
a logical PE set happens at specific moment of the execution to provide the right
schedule of micro-instructions.

Cycle count (MAC) west n2n PE 01 east n2n
load data

cycle 0 sendI[0,0,2] O[0,0,1]+=I[0,0,2]*W[0,0,0,0] receiveI[0,0,4]
cycle 1 sendI[0,1,2] O[0,0,1]+=I[0,1,2]*W[0,0,1,0] receiveI[0,1,4]
cycle 2 sendI[0,2,2] O[0,0,1]+=I[0,2,2]*W[0,0,2,0] receiveI[0,2,4]
cycle 3 O[0,0,1]+=I[0,0,3]*W[0,0,0,1]
cycle 4 O[0,0,1]+=I[0,1,3]*W[0,0,1,1]

... . . .
(send output)

Table 5.1.: Schedule of the atomic instructions of 5.5

Cycle count (MAC) west n2n PE 01 east n2n
load data

cycle 0 sendI[0,0,1] O[0,0,1]+=I[0,0,1]*W[0,0,0,0] receiveI[0,0,2]
cycle 1 sendI[0,1,1] O[0,0,1]+=I[0,1,1]*W[0,0,1,0] receiveI[0,1,2]
cycle 2 sendI[0,2,1] O[0,0,1]+=I[0,2,1]*W[0,0,2,0] receiveI[0,2,2]
cycle 3 sendI[0,0,2] O[0,0,1]+=I[0,0,2]*W[0,0,0,1] receiveI[0,0,3]
cycle 4 sendI[0,1,2] O[0,0,1]+=I[0,1,2]*W[0,0,1,1] receiveI[0,1,3]
cycle 5 sendI[0,2,2] O[0,0,1]+=I[0,2,2]*W[0,0,2,1] receiveI[0,2,3]
cycle 6 O[0,0,1]+=I[0,0,3]*W[0,0,0,2]

. . . . . .
(send output)

Table 5.2.: Schedule of the atomic instructions of 5.6
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Cycle count (MAC) west n2n PE 01 east n2n
load data

cycle 0 O[0,0,1]+=I[0,0,3]*W[0,0,0,0]
cycle 1 O[0,0,1]+=I[0,1,3]*W[0,0,1,0]
cycle 2 O[0,0,1]+=I[0,2,3]*W[0,0,2,0]
cycle 3 O[0,0,1]+=I[0,0,4]*W[0,0,0,1]

. . . . . .
(send output)

Table 5.3.: Schedule of the atomic instructions of 5.9

Schedule of operations Previous examples show that the execution of the atomic
instructions, e.g. MAC or send/receive data through n2n, requires a synchronization
between all PEs in the PE set rows. Indeed there is data dependency horizontally
in the spatial array due to data reuse opportunities.
This uniform movement of data in the spatial, for the OS dataflow, brings to a
schedule of jobs that requires a regular pattern of MAC and n2n operation.

Figure 5.12.: Schedule of 5.5
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Figure 5.13.: Schedule of 5.6

Figure 5.14.: Schedule of 5.9

In these examples, the interleaving parameter p does not occur but, if it does, the
main change is in the schedule of n2n:
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Figure 5.15.: Schedule of 5.5 with p=2. Here different colors refer to different output
channels
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The computation is interleaved at every cycle with psums of different output
channels. In this way the ifmap is reused immediately and it can be overwritten by
the data received on n2n in the next cycles.

5.1.2. Corner cases

The unrolling factors Pox and Poy allow to make parallel the execution of multiple
psums by exploiting the available HW resources. Nevertheless, the maximum and
affordable number of PEs is limited to a certain amount depending on the HW
constraints and, in some cases, in the PE array there might be several PE sets with
few PEs that cannot compute a large ofmap.
The Scheduling algorithm must recognize and handle this unusual situation in which
the sequence of operations is no more regular and the mapping results being different.
The following conditions detects possible corner cases in the mapping process:

1. Pox,y < Tox,y: the logical PE set is reused more than one time with different
data since that the number of available PEs in the PE set cannot process the
entire ofmap at the same time.

2. Tox,y%Pox,y 6= 0: when the sliding window of the convolution reaches the edge
along the row/column of the ifmap, not all PEs are working at the same time;
this requires to introduce some stalls in the schedule in order to turn-off the
functionality of some PEs when this corner case occurs.

3. Tof%p 6= 0 The interleaving factor considered in the schedule of the compu-
tation is not anymore equal to p but to 1: this may happen in the PE set
responsible for the computation of the last output channel, so there are also
less MACs to do than the standard case

When some of these situations comes out, the starting and ending indexes employed
in the scheduling algorithm are changed to new indexes that resume correctly to
computation from the position that has been halted.

Edge cases on the 2D ofmap The first and second type corner cases, mentioned
above, happens in a situation like the following:
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Figure 5.16.: Coverage of an ofmap and handling of all corner cases in the PE set
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The example under consideration takes a 11x11 ifmap, 3x3 kernel, stride=2 and
tries to map the computation of the 5x5 ofmap in a 3x3 PE set (Pox=Poy=3).
What happens is that, when the computation approaches the edge on the row or
column of the ofmap, there is a row or column of PEs that can be turned off since
that there is no psum to map on them.
This situations can be generalized to larger PE sets (i.e. higher unrolling factors
and bigger ofmap) where there might be more than one row or column turned off,
or just one instead that three corner cases.

Edge cases on the ofmap channels In the third type of corner cases, there is no
more uniformity of schedule in all PE sets because the last one deals only the last
output channel, so p is forced to 1 and the number of processed data is lower.

Figure 5.17.: Mapping of 5 output channels in 3 logical PE sets, having p=2. Here
the colors are associated to the same PE set that computes the output
channels.

Reuse of PE set A PE set history is a data structure that holds the schedule of
the convolution corresponding to the number of times the same PE set is reused,
because of the process of the input channels or the corner cases. Indeed, when a
PE set is reused, it needs new data to process even if the sequence of operations is
pretty much the same.
For instance, in 5.16 the PE set history is equal to 4 because the same logical PE
set is reused 4 times. It is obvious that, if the number of physical PE sets in the is
4, each PE set of the history can be mapped in the array. The concept of history is
only a way to group logical PE sets evenly.
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5.1.3. Physical mapping in the array

From 5.17 it comes out that the number of logical PE sets is equal to bTof/pc+Tof%p.
Then the schedule for these ideal PE sets needs to be mapped into the real PE ar-
ray, which could not fit all the PE sets at the same time because of HW resource
limitations.
The physical mapping exploits the parameters Pof vertical and Pof horizontal pro-
vided by HWflow to organize the schedule of the instructions of every PE sets in
a sequential order. Hence, the possible physical number of PE sets in the spatial
array is equal to the number of logical PE sets divided by (Pofh + Pofv).

logical PEset = bTof/pc+ Tof%p (5.3)

physical PEset =
logical PEset

Pofh + Pofv

(5.4)

5.2. Data Pattern

The Figure of Merit provided by the Scheduling algorithm of the Compiler are the
following ones:

1. Schedule of jobs or atomic instructions for every PE

2. All data in the RF involved in the convolution operation

3. Data reused in the neighbour-to-neighbour communication

From this information it is possible to identify a specific data pattern, which deter-
mines the way each data is presented to the PE:

Figure 5.18.: Flattening of data of 5.5 but with p=2.

56



5.2. Data Pattern

Figure 5.19.: Flattening of data of 5.5 but with p=2 and q=2.

Therefore, the Scheduling algorithm flattens all data types in 1 dimension, putting
them in a sequential order in every RF. In this way, the control logic at runtime
is simplified because the further dimensions of the input data are not anymore
considered during the processing step in the HW.
The drawback of having a specific data pattern for the OS dataflow is that the
program code is not general purpose, so a compilation step is necessary every time
the CNN changes.

Visualization of the OS Dataflow The regular and uniform data movement in a
PE set row can be visualized in some charts, which reports the usage of the data
sitting in the RF.
It is interesting to focus more on the ifmap data pattern, since that are the type of
data involved in n2n communication. The data pattern for the psums and weights
is pretty much the same in all the examples.
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Figure 5.20.: Ifmap data pattern of 5.5 with p=3 and Pox=3. Different colors are
associated to columns of ifmap pixel received from the Interconnect in
the load stage, while different markers points out which PE of the PE
set row is processing the data

If looking on the horizontal axis, the PEs of the PE set row retrieve the pixels
in a sequential way from the RF and process them in parallel according to Pox: in
this case, on each vertical line of the grid there are 3 pixels because the horizontal
unrolling factor is equal to 3. The same pixel is also reused as many times as the
parameter p, because the interleaving happens at every cycle.
On the vertical axis it is reported which pixel is processed at which cycle: the pattern
follows the schedule of 5.12 but with p=3. Moreover it is possible to notice the n2n
communication by looking at the pixels with same colors on the same row. The
overlap quantity is 1, so the number of pixel sent through n2n is overlap · Tky = 3
just as showed in the plot.
The PE02 has the Interconnect as a virtual neighbour, thus the last 3 pixels have
different colors with respect to the other ones of its same pattern (red instead that
green), which means that they were not originally sent by the Interconnect in the
load stage.
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Figure 5.21.: Ifmap data pattern of 5.6 with p=1 and Pox=4.

The same previous considerations are valid for the example above, where the
overlap quantity is 2 and there are multiple n2n communications one after the other.
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Figure 5.22.: Mapping of the sliding windows on each PE of the first PE set row for
5.6
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Figure 5.23.: Ifmap data pattern of 5.9 with p=3 and Pox=3.

This is the most simple data pattern because n2n never occurs.

Figure 5.24.: Weight data pattern of 5.5 with p=2 and Pox=2.

The data pattern for the weight is just a sequence of points sitting on a straight
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line, showing the linear behavior of the fetching operation from the RF, which
behaves as a FIFO.

Figure 5.25.: Psum data pattern of 5.5 with p=3 and Pox=3.

The choice of the interleaving at every cycle causes this ”zig-zag” trend of the
ofmap pattern belonging to a PE. Being Pox=3, there are also 3 psums accumulated
in parallel in the PE set row.

5.2.1. Categories of schedule

The data pattern of the OS dataflow (both version 1 and 2) establishes 3 types of
schedule of atomic instructions that strictly depend on the kernel width and stride:

1. The overlap quantity is 0, which means that Tkx ≤ s and there is no n2n;
every PE does the assigned number of MACs independently on the other ones,
so data dependency along one row is not anymore relevant

2. Tkx > s and there is just one overlapped column (overlap = 1), so the n2n
communication happens just one time

3. Tkx > s but there are several overlapped columns (overlap > 1), so the n2n
communication occurs more than one time and there is an intensive usage of
the ping pong buffer, synchronized with the ongoing MAC

PICTURES FOR ALL OF THE 3 CASES??
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5.3. Instruction Set Architecture

The program code is made up of single instruction for each data and describes the
sequence of jobs necessary to accomplish the convolution.
Anyway, it is not possible to directly employ these atomic instructions in the HW ar-
chitecture, otherwise it would be expensive to dispatch so many instructions through
a TDM interconnect and it would require a high bandwidth with the on-chip mem-
ory, which would bring a large power consumption.
Hence an encoding step at compile time is required to get an ISA able to unpack
the jobs with as few as possible instructions (called also messages). By having an
efficient ISA, a smart deployment in the spatial array can be also achieved.

5.3.1. Instruction encoding

The FOM identified by the data pattern describe the OS dataflow and the processing
of data. One key feature of this pattern is that the scheduling algorithm puts the
data in a sequential order in each register file of the PE, so it is possible to leverage
this for considering only the information about 1 dimension in the implementation.
In this way, all the MAC operations of one PE can be grouped in one global MAC
instruction, which establishes the maximum number of computation with those data.

The main information enclosed by the data pattern are represented by the follow-
ing ISA:

Type of
command

Command
Type of

data
Input
data

Max
iteration

Step
range

Data
reuse

Virtual
n2n

Send
output

It is possible to notice the similarity with a VLIW (Very Long Instruction Word)
ISA. Indeed, just as in a VLIW processor architecture, in this implementation the
Compiler has a full information about everything and the identification of parallel
instructions is done statically before runtime.
Nevertheless the main drawback of having a such specific ISA is the no portability
of the generated code.

Below it is explained the meaning of each field:

• Type of command identifies the category of command, which can be either an
instruction for loading data or an operational (OP) instruction with informa-
tion about the MACs.

• Command specifies the command itself, namely the main operations supported
by a PE that are MAC and load.
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• Type of data establishes if the input data belongs to ifmap, weight or psum;
in OS dataflow the psum type is never used because it is available only at the
output after the computation.

• Input data is a list of all pixel values currently in the message.

• Max iteration can be the total number of MACs or the number of pixels to be
loaded in the RF.

• Step range corresponds to the interleaving factor, i.e. the amount of cycles in
which the same ifmap pixel is reused across different filters.

• Data reuse is the number of ifmap pixel in common, between 2 adjacent sliding
windows, that can be reused in neighbour PEs.

• Virtual n2n determines whether the PE has a virtual or real neighbour, i.e.
Interconnect or east n2n connection.

• Send output enables the final write back of the psum in the GLB.

These fields are used to get 2 types of instructions, one for loading the necessary
data and the other for computing the psum in the correct way. In the instruction
there are some unused fields that are ignored in the decode phase.

Load instruction This instruction is the first that the PE needs to receive since
that it holds all the data required to compute a psum. Generally, the minimum
numbers of messages with this type of instruction is two (one for the weights and
one for the ifmap ideally), but there might be more than 2 messages to deliver all
the data because of the limited number of data transferred by the Interconnect in
just one instruction.

Type of command DATA
Command load

Type of data ifmap / weight
Input data I[ni; iy, ix], ... / W[no; ni, ky, kx], . . .

Max iteration q*Tky*(Tkx-max{0, Tkx-s}) / q*p*Tky*Tkx

Table 5.4.: Load instruction

In theory, the compression of the atomic instructions is of 1 instruction/data type
instead of 1 instruction/data.
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MAC instruction The sequence of MACs between ifmap pixel and weight can be
wrapped efficiently by using just 1 instruction/convolution instead of p · q · Tky · Tkx

instructions/convolution:

Type of command OP
Command mac

Max iteration q*p*Tky*Tkx
Step range p
Data reuse q*Tky*max{0, (Tkx-s)}
Virtual n2n 0/1
Send output 0/1

Table 5.5.: MAC instruction

The usage of those field can be seen in another way in the following pseudo-code:

for (j=0; j<instr.max_iteration; j+= instr.step_range)

for (i=0; i<instr.step_range; i++)

psum[i] += ifmap[j]* weight[i+j];

if (send_output ==1)

commit_stage;

Listing 5.3: Pseudo code of the execution stage

for (i=0; i<instr.data_reuse; i++)

if (virtual_n2n ==1)

receive_from_virtual_neighbour;

else

receive_from_eastN2N;

send_n2n_data

Listing 5.4: Pseudo code of the n2n operation

Thus the step range field is necessary especially when interleaving occurs, whereas
the number of cycles where the N2N communication is working is determined by
the data reuse field.

5.4. Tester

Given the layer shape, the Modeling tool provides a suitable data pattern for the OS
dataflow and a list of instructions encoded with the current ISA. After the compile
phase, a Tester verifies the correctness of the program code and final instructions:
it builds a Golden Model of the convolution, according to the input tiling and un-
rolling factors provided by HW flow, and it compares the correct output volume with
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that obtained from a SW emulation which follows the schedule of the Modeling tool.

Figure 5.26.: Working principle of the Tester. The Unit Under Test (UUT) is com-
pared with the Golden model.

Doing that, the program code and the ISA are validated and the sequence of
instructions can be used correctly in the next HW implementation.
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The previous chapters gave a detailed explanation of the scheduling algorithm and
mapping techniques employed by the Modeling tool, which basically provides the
schedule of instruction for a given layer shape. The next step in the design flow of
a CNN accelerator is to build the spatial array, starting from the single processing
element.
The HW implementation has been done in VHDL in Vivado Design Suite.
Section 6.1 describes the implementation of a PE and explains the functionality of
each building block inside it, then an overview of the complete PE array with all
the connections is given in section 6.2.
Once having the HW architecture, the post-synthesis results of Vivado are reported
in section 6.3, for a given PE array configuration.
This HW implementation is then compared with the ideal one, i.e. fully pipelined,
by running some simulations and measuring the number of cycles to process a de-
termined input layer shape provided by HWflow.
What discussed so far is about a FPGA-based design, but, in the last section of this
chapter, the same schedule of instructions is implemented in Versal ACAP (Adap-
tive Compute Acceleration Platform), namely a new cutting-edge ASIC of Xilinx
for accelerating CNN. In this case the spatial array has been programmed in C++
by using the corresponding SW tools.
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6.1. Microarchitecture of the Processing element

The high-level block diagram of a PE is depicted below:

Figure 6.1.: Microarchitecture of a PE

Starting from the outside, there are all the point-to-point connections with neigh-
bour PEs, according to the literature of systolic array, even if the real connections
used in the OS dataflow are the incoming east n2n and the outcoming.
Moreover, each Interconnect is made up of the instruction, encoded with the current
ISA, and additional signals:

1. en (enable signal) to indicate that the interconnect has a new message.

2. conv en (convolution enable signal), used to start the convolution inside the
PE

3. req en (request enable signal) and req ack (request acknowledge signal) em-
ployed to implement a handshake among interconnect and PE in the final
commit stage

The output is the request of the PE which holds the output pixels and the locations
of the GLB for storing them.

68



6.1. Microarchitecture of the Processing element

The register file is made up of 4 block RAM (BRAM), one for the weights, the
psums, the ping and pong buffer of the ifmap; the RAM has on asynchronous read
port and one synchronous write port.
However, a detailed description of the functionality of each building block is provided
below, considering the typical instruction cycle of a CPU: fetch-decode-execute-
commit.

Fetch In this first stage the data are fetched from the on-chip memory and, after
being through some logic meant to form the instruction, they are dispatched to the
target PE.

Decode First the State Machine Interconnect listens over the horizontal and ver-
tical interconnect and so, if there is an enable on one of them, it means that there
is an new incoming instruction.
Based on the tran type field, if there is an OP instruction, the state machine sends
directly it to the Instruction Handler, otherwise if there is a LOAD (5.4) the state
machine looks at the data type and decides in which location store the payload of
the message. In this last case, the storing phase is handled with the help of two cir-
cular buffers, one for the weight RF and the other for the ifmap RF (i.e. ping pong
buffer), to interface correctly with the memory elements. In fact the data packet in
the instruction comprises multiple data, so a buffer is required to send one data per
cycle to the correct location, one after the other.
Basically the RF behaves as a FIFO, so all the data are put in a sequential order
in the correct memory location. For what concerns the ifmap RF, the ping buffer is
always filled up with the data received by the Interconnect, while the pong buffer
is involved later for the n2n communication, as explained in several examples of
previous chapter.
On the other hand, the Instruction Handler has an internal FIFO to hold the OP
instruction, so in this case just one location is sufficient because there is always one
MAC instruction for every PE, nothing more. In other types of dataflow it would
be necessary to make larger this FIFO.
When conv en is set to 1, the Instruction Handler starts to unpack the instruction
in its FIFO, selecting the useful fields of the ISA to get the MAC instruction (5.5),
so it also triggers the state machines involved in the Execute stage.

Execute This stage comprises the Compute State Machine and the N2N Commu-
nication State Machine, both running in parallel. Indeed, as soon as the enable
to start the MAC is set, the n2n state machine prepares to receive and send data
through horizontal point-to-point connections with the correct timing. If the cur-
rent PE belongs to the right-most column of the PE set, it needs to receive data
from the Interconnect (behaving as a virtual neighbour) and not from the east n2n
connection; this distinction is done by using the virtual n2n signal.
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6. Hardware implementation

Usually the N2N state machine finishes its job after a small number of cycles and
then it goes back to the idle state, whereas the compute state machine continues
with the accumulation of psum.
When the computation is over, the compute state machine checks if the send output
field is set, which means that the psums are ready to go back to the GLB; in the
opposite case, the psum needs to be further accumulated and all the state machines
go in an idle state, waiting to receive new data to process.

Commit If send output becomes high, the Write Out State Machine starts the
final commit stage. The output pixels are retrieved from the RF by using a circular
buffer, which reads a psum at a time and, once that all psums are in the buffer, they
are used to make the output request and the req en signal is set.
At this point the state machine waits until the Interconnects takes the request with
the psums, which happens when the Interconnect raises up the req ack signal. When
this event takes place, the state machine lowers the req en signal and the commit
stage is done.
If the interleaving parameter is large enough, there might be more than one commit
stage to send all psums over the Interconnect. It is a symmetrical situation of the
loading phase.

6.2. PE array implementation

The processing elements are put all together in a PE array, where several PE sets
can be allocated depending on the type of logical and physical mapping of the sched-
ule. The north, west, south and east point-to-point connections in both directions
are made, even if the PE employs only the horizontal n2n connections in the OS
dataflow.
Instead of having routers, which are computational expensive, for handling the com-
munication between GLB and PE array, there are horizontal and vertical intercon-
nects connected to a Scheduler that decides what data send over the interconnect.
Thus, the PEs do not need to talk with a router because a PE already knows how
to work thanks to the ISA.
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6.2. PE array implementation

Figure 6.2.: Systolic accelerator with the Scheduler

The overall architecture is parametric, so it is possible to define all the wanted
HW parameters. In this work, the following parameters have been considered:

• data width = 32 bit, i.e. the number of bit supported by the Interconnect for
a data

• ifmap bits = weight bits = 16

• psum bits = 32

• burst size = 10, i.e. the number of data supported by the Interconnect

• psum RF depth = 16

• ifmap ping or pong buffer depth = 12

• weight RF depth = 224

Particularly, all these variables are given by HWflow, which ensures the validity of
them for specific tiles of data and unrolling/interleaving factors.

Testbench Just as the previous Tester 5.26, a test of the PE and spatial archi-
tecture is carried out to check the respect of the design specifications and interface,
the correct functionality of the HW implementation, the validity of the schedule
provided by the Modeling tool.
A wrong dispatch of data/instructions to the PEs, a missed synchronization between
Compute and N2N state machines during the Execution stage, or an incorrect in-
terface with the Interconnect in the final Commit stage, are all errors that can be
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6. Hardware implementation

detected through a suitable testbench.
Basically this HW testbench feeds the Unit Under Test (UUT), i.e. the PE array,
with the schedule of instructions obtained from the input stimuli and check whether
the output pixels are the same computed by the Reference model.
The test takes into account also the dispatch of the data in several instructions,
according to the burst size of the interconnect, and the correct retrieve of the final
output pixel computed by every PE.

6.3. Experimental results

This section shows the validation of the Modeling tool, namely the schedule of
the instructions provided by its Compiler, for 2 input layer shapes given by the
Scheduler/Mapper of HWflow (see the Appendix for the dimensions). As remarked
several times, the OS dataflow is the only one considered in this work, which is quite
expensive in energy but not so bad in latency and it keeps all the PEs busy (i.e.
100% of utilization of the array) typically. According to HWflow, it provides better
results than WS dataflow.
For what concerns the HW implementation, the focus is on 3 configurations of the
PE array, which have been synthesized in Vivado, in a Xilinx Zynq UltraScale+
MPSoC (active device xczu9eg-ffvb1156-2-e), and employed in logic simulation to
measure the latency and make some comparisons with the ideal HW architecture.

6.3.1. Post-synthesis results

The HW implementation of the single PE and PE array has been synthesized in
”out-of-context” mode, so preventing the insertion of I/O buffers.
The only design constrain considered was the clock of 200 MHz, which ensured no
timing violations (i.e. setup and hold time) in this design.
The post-synthesis result of one PE is depicted below:
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6.3. Experimental results

Figure 6.3.: Utilization summary of one Processing Element; the HW resources
considered are Digital Signal Processors, BRAMs, Flip-flops, Look-up-
tables

The HW utilization is below 1%, so the result is reasonable. The LUT utilization
is the higher because of the high control logic employed in the PE, in order to han-
dle correctly the state machines correctly. The DSP used by one PE, for the MAC
operation, is just 1.

This PE is employed to build three configurations of PE array : 4x4, 6x6 and 8x8
array.
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6. Hardware implementation

Figure 6.4.: Overview of the 3 configurations considered for the synthesis

After the synthesis, the results are the following ones:

Figure 6.5.: Utilization summary of the 3 configurations for the spatial array
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6.3. Experimental results

As expected there is a general increase of the HW resources as the PE array grows
up. The trend of the 4 types of HW resources is the same in all configurations, with
a pretty high LUT utilization reaching almost 45% in the 8x8 array, whereas the
other two configurations have a overall HW utilization that is low.

6.3.2. Logic simulations

The two input layer shapes considered are AlexNet and ResNet20; moreover, for
each of it, HWflow provides the schedule of tiling and unrolling factors for the 3 PE
array configurations.
Generally, the number of multiplication operations for a layer shape [14], without
considering loop tiling and unrolling, are:

Nmul = Nif ·Nky ·Nkx ·Nof ·Noy ·Nox (6.1)

This value can be compared with the number of computing cycles, under different
loop unrolling and tiling dimension, necessary in the spatial array for a specific layer
shape employing the OS dataflow:

ComputingCyles ideal = Tif · Tky · Tkx · Tof ·
⌈
Toy

Poy

⌉
·
⌈
Tox

Pox

⌉
(6.2)

This quantity is nothing else that the required number of cycles to process the data
stored in the GLB through the PE array.
It is worth to point out how the unrolling parameters strongly affect this quantity
due to their presence at denominator, while the interleaving parameter is beneficial
only for the energy consumption and it does not affect that quantity.

The number of computing cycles per each layer, in the HW implementation of
this work, is given by:

ComputingCyles real = Tif · (Tky · Tkx · Tof + 4) ·
⌈
Toy

Poy

⌉
·
⌈
Tox

Pox

⌉
(6.3)

The introduction of that constant is due to:

• 3 cycles at the beginning of the computation, of which 2 cycles required to
unpack the instruction from the Instruction Handler + 1 cycle to start the
MAC and the n2n communication

• 1 cycle at the end of the computation for having the psums ready to be sent
back to the GLB

A high fidelity of the Modeling tool must ensure a similar trend between ideal and
real number of computing cycles. The next paragraphs provide and estimation of
these quantites for 19 CONV layers of ResNet20 and 5 CONV layers of AlexNet.
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6. Hardware implementation

ResNet20 The order of magnitude of the total number of multiplications, without
applying loop unrolling and tiling, is around 106:

Figure 6.6.: Nmul of ResNet20

The adoption of loop scheduling techniques must provide a reduction of this quan-
tity:
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6.3. Experimental results

Figure 6.7.: ResNet20 trend of the computing cycles; the dashed line is the ideal
number of computation, while the colored lines are for the real trend of
the three PE array configurations

Now, the maximum number of computing cycles is around 8 · 104, so there is a
reduction of 2 orders of magnitude. The trends of the real and ideal number of
computations are very similar each other, in fact the average relative change is of
1.68% in every PE array configuration.

AlexNet The overall number of multiplications required for these CONV layers
are around 108:
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Figure 6.8.: Nmul of AlexNet

Also in this case, there is a reduction of 2 orders of magnitude in the computing
cycles after applying loop scheduling techniques:
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6.3. Experimental results

Figure 6.9.: AlexNet trend of the computing cycles; the dashed line is indistinguish-
able from the colored lines because ideal and real behaviour are nearly
coincident

These trends are almost equal to the ideal ones: the average relative changes are
below 1%, so negligible for all configurations.

Remarks The Execute stage of the PE has the particular feature of having the n2n
and compute state machines running in parallel, which allows to have a HW model
as similar as possible to a fully pipeline HW, where there is no additional latency
during the execution.
Although the 8x8 PE array has the highest resource utilization, it provides the
lower number of computing cycles per layer with respect to the other configurations,
reaching a large parallel execution of CONV layer through its 64 PEs.
Conversely the 4x4 array provides the lowest HW utilization but a latency trend high
enough. On the other hand, the 6x6 array represents a good trade-off for latency
and HW resources utilization.
Therefore, depending on the type of target application, a PE array configuration
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6. Hardware implementation

could be more suitable than the others.

6.4. Versal design

The Xilinx Versal ACAP (Adaptive Compute Acceleration Platform) is a new
heterogeneous compute architecture [46] that comprises Scalar/Vector processing
elements tightly coupled with a programmable logic. This platform is SW pro-
grammable in C or C++ with proper frameworks.

AI engine One of the main feature is the presence of a dataflow architecture for
parallel computation of massive data. Indeed, the AI engine (AIE) corresponds
to the PE of the previous implementation and multiple AI engines are grouped
together in a AIE array, so it is possible to implement the OS dataflow in this type
of architecture considering the current data pattern.
The AIE is suitable for vector-based algorithms, providing flexible custom compute
and data movement [47]. The main characteristics are:

• single instruction multiple data (SIMD) processor

• VLIW ISA up to 6-way instruction parallelism

Scheduling algorithm mapping in the AIE The scheduling algorithm of the Com-
piler changes the data representation by handling just 1 index:

Figure 6.10.: Flattening of 5.6, achieved through the ISA, with focus on 3 sliding
windows

The computation required by those 3 sliding windows can be easily mapped in
three PEs (Pox=3) laying on 1 row of the PE set. If looking the ifmap and the
kernel in 1D, the result is the following:
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6.4. Versal design

Figure 6.11.: 1D representation of the ifmap and kernel, the pixel in grey is the
starting one of the computation

Hence, what happens is that the the weight array slides over the ifmap by shifting
of overlap · Tky = 3 positions at every PE. The equation of the psums computed
with this pattern is given by:

psum[k] =
Pox−1∑
k=0

N−1∑
i=0

= weight[i] · pixel[i + k · C] (6.4)

It is worth to highlight the similarity of it with the FIR (Finite Impulse Response)
filter equation:

y[n] =
N∑
k=0

c[k] · d[n + k] (6.5)

Hence the data samples are the ifmap pixels, the coefficients of the filter are the
weights, while the step at every cycle is not anymore by 1 but it is C = overlap ·Tky,
which is a constant depending on the stride and the kernel height. By exploiting the
scalar/vector processor of the AI engine, it is possible to schedule the computations
of 6.5 in just one AIE, obtaining:
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Figure 6.12.: Schedule of 3 psums in one AIE, showing the sliding window at every
iteration over the ifmap

This type of schedule allows to map a PE set row, made up of Pox PEs, in just one
AI engine, achieving the best reuse of ifmap pixel since that the n2n communication
happens within the engine:

Figure 6.13.: New type of mapping in the AIE

These considerations can be applied when having larger unrolling factors, achiev-
ing a high compression of the PEs inside one AIE.
Nevertheless the limitations come out when dealing with greater shift of the sliding
window, like with a stride=2: the offset applied at the ifmap at every iteration, to
get the right overlap with the sliding window, is not always straightforward to apply
to the buffer that holds the data. When things start complicating, the scalar process
of the AIE can be employed to handle more complex offset schemes, even though
the vector processor is definitely more efficient with parallelizable computations.
Moreover, the maximum number of PEs in one AIE depends on the number of data
that can be stored in the registers inside the AIE, which are fixed to certain amounts.
In fact, it is better to employ q = 1 and p = 1 in this application, in order to keep
low the number of necessary data in one AIE.
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7. Conclusion and Outlook

7.1. Summary

The mapping of the CNN execution in dataflow architecture is a challenging task
that requires an extensive analysis, which takes into account all possible SW and
HW parameters affecting the performance of the accelerator. The HW/SW code-
sign process of CNN accelerator has started in HWflow framework and this work
proposed mainly a Compiler that provides a correct schedule for a possible HW
implementation.
The breakdown of the OS dataflow helps in identifying all the relevant features of
the architecture, leading to a homogeneous and regular data pattern in the spatial
array. This uniformity in the data movement contributed to make an efficient ISA
to encode all the micro-instructions, required by the dataflow, in only 2 types of
instructions, basically one for loading the necessary data and the other for the ef-
fective computation. Moreover, the schedule obtained through this ISA does not
require a high usage of the horizontal and vertical Interconnect, just as wanted from
the beginning of the design, which is oriented to a low power implementation.
All these concepts are grouped together in a sole Modeling tool, able to link SW
and HW implementation of CNN. However, this work dealt only the OS dataflow,
so the program code and the schedule of instructions generated at compile time is
not general purpose but they can be employed for this particular dataflow, which
showed good performance in the prior evaluations of HWflow.
Furthermore, the HW implementation showed an almost ideal behaviour of the Ex-
ecute stage, giving a high fidelity to the Modeling tool. The post-synhtesis results
and the utilization summaries provide an idea on what HW configuration is better
to adopt for the target application.
Finally, the same Compiler and type of schedule is adopted in a new design with
the Versal platform. The scalar processor of the AI engine provides a flexible im-
plementation of the schedule, especially when the CONV layer shape is irregular,
whereas the vector processor is suitable for a more regular layer and leads to a high
improvement of the performance.
To wrap up, it is important to highlight that suitable testbenches were prepared to
check the correctness of each design step, especially the final HW implementation.
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7.2. Future works

The approach followed in this works, to analyze the OS dataflow and use it in the
mapping process, can be extended to the other types of dataflow like WS, IS and
RS. In fact HWflow provides the schedule also for those dataflows, so a final com-
parison of the trends and HW utilization can be made. To implement an other type
of dataflows it is sufficient applying loop ordering technique to get the right schedule
of computations, and employing the unrolling and interleaving factors suggested by
HWflow.
Regarding the implementation carried out in this work, the HW can be easily
changed to obtain the wanted spatial architecture that is more suitable for a given
CNN execution. Thus this custom PE array can be integrated with the other HW
components of the systolic accelerator, such as the horizontal and vertical Intercon-
nect, the GLB, the DRAM and also some additional logic to improve the dispatch
of the instructions in the array.
An interesting outlook is the usage of the AIE array of Versal for accelerating large
CNN layers, by using the same type of Compiler and data pattern. Moreover, the
vector processor of the AI engine is suitable to process in parallel the psums sched-
uled for a PE set row of the OS dataflow, providing a high acceleration ratio and a
smart schedule of n2n within the engine.
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A. Layer shapes

This appendix contains all the dimensions about the layer shapes employed for the
HW evaluation.

A.1. AlexNet

Layer Nif Nix Niy Nkx Nky Nof Px Py Nox Noy stride
1 3 224 224 11 11 96 5 5 56 56 4
2 96 27 27 5 5 256 2 2 27 27 1
3 256 13 13 3 3 384 1 1 13 13 1
4 384 13 13 3 3 384 1 1 13 13 1
5 384 13 13 3 3 256 1 1 13 13 1
6 256 1 1 1 1 4096 0 0 1 1 1
7 4096 1 1 1 1 4096 0 0 1 1 1
8 4096 1 1 1 1 1000 0 0 1 1 1

Table A.1.: Layer shape and computing cycles

Layer Tif Tix Tiy Tkx Tky Tof Tox Toy stride
1 3 15 15 11 11 96 2 2 4
2 48 7 31 5 5 64 3 27 1
3 32 15 15 3 3 128 13 13 1
4 48 15 15 3 3 128 13 13 1
5 48 15 15 3 3 128 13 13 1

Table A.2.: Tiles for a 4x4 spatial array
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A.1. AlexNet

Layer Poy Pox p Pofv Pofh
1 2 2 1 2 2
2 4 1 8 1 4
3 1 2 16 4 2
4 1 2 16 4 2
5 1 2 16 4 2

Table A.3.: Unrolling factors for a 4x4 spatial array

Layer Tif Tix Tiy Tkx Tky Tof Tox Toy stride
1 3 15 15 11 11 96 2 2 4
2 32 7 7 5 5 128 3 3 1
3 32 15 15 3 3 192 13 13 1
4 32 15 15 3 3 192 13 13 1
5 16 15 15 3 3 256 13 13 1

Table A.4.: Tiles for a 6x6 spatial array

Layer Poy Pox p Pofv Pofh
1 2 2 1 3 3
2 3 3 8 2 2
3 1 3 16 6 2
4 1 3 16 6 2
5 2 2 15 3 3

Table A.5.: Unrolling factors for a 6x6 spatial array

Layer Tif Tix Tiy Tkx Tky Tof Tox Toy stride
1 3 15 15 11 11 96 2 2 4
2 32 7 31 5 5 128 3 27 1
3 32 15 15 3 3 128 13 13 1
4 48 15 15 3 3 128 13 13 1
5 48 15 15 3 3 128 13 13 1

Table A.6.: Tiles for a 8x8 spatial array
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A. Layer shapes

Layer Poy Pox p Pofv Pofh
1 2 2 1 4 4
2 4 1 8 2 8
3 1 7 16 8 1
4 1 7 16 8 2
5 1 7 16 8 1

Table A.7.: Unrolling factors for a 8x8 spatial array

A.2. ResNet20

Layer Nif Nix Niy Nkx Nky Nof Px Py Nox Noy stride
1 3 32 32 3 3 16 1 1 32 32 1
2 16 32 32 3 3 16 1 1 32 32 1
3 16 32 32 3 3 16 1 1 32 32 1
4 16 32 32 3 3 16 1 1 32 32 1
5 16 32 32 3 3 16 1 1 32 32 1
6 16 32 32 3 3 16 1 1 32 32 1
7 16 32 32 3 3 16 1 1 32 32 1
8 16 32 32 3 3 32 1 1 16 16 2
9 32 16 16 3 3 32 1 1 16 16 1
10 32 16 16 3 3 32 1 1 16 16 1
11 32 16 16 3 3 32 1 1 16 16 1
12 32 16 16 3 3 32 1 1 16 16 1
13 32 16 16 3 3 32 1 1 16 16 1
14 32 16 16 3 3 64 1 1 8 8 2
15 64 8 8 3 3 64 1 1 8 8 1
16 64 8 8 3 3 64 1 1 8 8 1
17 64 8 8 3 3 64 1 1 8 8 1
18 64 8 8 3 3 64 1 1 8 8 1
19 64 8 8 3 3 64 1 1 8 8 1
20 64 1 1 3 3 10 0 0 1 1 1

Table A.8.: Layer shape and computing cycles
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A.2. ResNet20

Layer Tif Tix Tiy Tkx Tky Tof Tox Toy stride
1 3 6 34 3 3 16 4 32 1
2 16 6 34 3 3 16 4 32 1
3 16 6 34 3 3 16 4 32 1
4 16 6 34 3 3 16 4 32 1
5 16 6 34 3 3 16 4 32 1
6 16 6 34 3 3 16 4 32 1
7 16 6 34 3 3 16 4 32 1
8 16 33 33 3 3 32 16 16 2
9 32 4 18 3 3 32 2 16 1
10 32 4 18 3 3 32 2 16 1
11 32 4 18 3 3 32 2 16 1
12 32 4 18 3 3 32 2 16 1
13 32 4 18 3 3 32 2 16 1
14 32 9 17 3 3 64 4 8 2
15 64 4 6 3 3 64 2 4 1
16 64 4 6 3 3 64 2 4 1
17 64 4 6 3 3 64 2 4 1
18 64 4 6 3 3 64 2 4 1
19 64 4 6 3 3 64 2 4 1
20 64 1 1 3 3 10 1 1 1

Table A.9.: Tiles for a 4x4 spatial array
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A. Layer shapes

Layer Poy Pox p Pofv Pofh
1 3 6 8 2 1
2 3 6 8 2 1
3 3 6 8 2 1
4 3 6 8 2 1
5 3 6 8 2 1
6 3 6 8 2 1
7 3 6 8 2 1
8 6 2 6 1 3
9 6 2 6 1 3
10 6 2 6 1 3
11 6 2 6 1 3
12 6 2 6 1 3
13 6 2 6 1 3
14 2 2 4 3 3
15 2 2 4 3 3
16 2 2 4 3 3
17 2 2 4 3 3
18 2 2 4 3 3
19 2 2 4 3 3
20 4 4 16 1 1

Table A.10.: Unrolling factors for a 4x4 spatial array
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A.2. ResNet20

Layer Tif Tix Tiy Tkx Tky Tof Tox Toy stride
1 3 18 34 3 3 16 16 32 1
2 16 18 34 3 3 16 16 32 1
3 16 18 34 3 3 16 16 32 1
4 16 18 34 3 3 16 16 32 1
5 16 18 34 3 3 16 16 32 1
6 16 18 34 3 3 16 16 32 1
7 16 18 34 3 3 16 16 32 1
8 16 5 33 3 3 32 2 16 2
9 32 4 18 3 3 32 2 16 1
10 32 4 18 3 3 32 2 16 1
11 32 4 18 3 3 32 2 16 1
12 32 4 18 3 3 32 2 16 1
13 32 4 18 3 3 32 2 16 1
14 32 4 5 3 3 64 1 2 2
15 64 4 4 3 3 64 2 2 1
16 64 4 4 3 3 64 2 2 1
17 64 4 4 3 3 64 2 2 1
18 64 4 4 3 3 64 2 2 1
19 64 4 4 3 3 64 2 2 1
20 64 1 1 3 3 10 1 1 1

Table A.11.: Tiles for a 6x6 spatial array
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A. Layer shapes

Layer Poy Pox p Pofv Pofh
1 3 6 8 2 1
2 3 6 8 2 1
3 3 6 8 2 1
4 3 6 8 2 1
5 3 6 8 2 1
6 3 6 8 2 1
7 3 6 8 2 1
8 6 2 6 1 3
9 6 2 6 1 3
10 6 2 6 1 3
11 6 2 6 1 3
12 6 2 6 1 3
13 6 2 6 1 3
14 2 2 4 3 3
15 2 2 4 3 3
16 2 2 4 3 3
17 2 2 4 3 3
18 2 2 4 3 3
19 2 2 4 3 3
20 4 4 16 1 1

Table A.12.: Unrolling factors for a 6x6 spatial array
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A.2. ResNet20

Layer Tif Tix Tiy Tkx Tky Tof Tox Toy stride
1 3 10 34 3 3 16 8 32 1
2 16 10 10 3 3 16 8 8 1
3 16 10 10 3 3 16 8 8 1
4 16 10 10 3 3 16 8 8 1
5 16 10 10 3 3 16 8 8 1
6 16 10 10 3 3 16 8 8 1
7 16 10 10 3 3 16 8 8 1
8 16 33 33 3 3 32 16 16 2
9 32 6 10 3 3 32 4 8 1
10 32 6 10 3 3 32 4 8 1
11 32 6 10 3 3 32 4 8 1
12 32 6 10 3 3 32 4 8 1
13 32 6 10 3 3 32 4 8 1
14 32 9 17 3 3 64 4 8 2
15 64 4 10 3 3 64 2 8 1
16 64 4 10 3 3 64 2 8 1
17 64 4 10 3 3 64 2 8 1
18 64 4 10 3 3 64 2 8 1
19 64 4 10 3 3 64 2 8 1
20 64 1 1 3 3 10 1 1 1

Table A.13.: Tiles for a 8x8 spatial array

93



A. Layer shapes

Layer Poy Pox p Pofv Pofh
1 8 8 16 1 1
2 8 8 16 1 1
3 8 8 16 1 1
4 8 8 16 1 1
5 8 8 16 1 1
6 8 8 16 1 1
7 8 8 16 1 1
8 4 8 16 2 1
9 8 4 16 1 2
10 8 4 16 1 2
11 8 4 16 1 2
12 8 4 16 1 2
13 8 4 16 1 2
14 8 4 16 1 2
15 8 2 16 1 4
16 8 2 16 1 4
17 8 2 16 1 4
18 8 2 16 1 4
19 8 2 16 1 4
20 4 4 16 1 1

Table A.14.: Unrolling factors for a 8x8 spatial array
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B. HW resource utilization

This appendix shows the post-synthesis results of the FPGA-based design.

Resource Available utilization
LUT 274080

LUTRAM 144000
FF 548160

DSP 2520

Table B.1.: Available HW resource utilization of the device used in the synthesis

Utilization
Resource PE 4x4 array 6x6 array 8x8 array

LUT 1929 28642 64501 114707
LUTRAM 128 2048 4608 8192

FF 1892 30272 68112 121088
DSP 1 16 36 64

Table B.2.: Utilization summary

Utilization %
Resource PE 4x4 array 6x6 array 8x8 array

LUT 0,70 10.45 23.53 41.85
LUTRAM 0,09 1.42 3.20 5.69

FF 0,35 5.52 12.43 22.09
DSP 0,04 0.63 1.43 2.54

Table B.3.: Percentage utilization summary
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