POLITECNICO DI TORINO

Master degree course in Mechatronic Engineering

Master Degree Thesis

Applications of Artificial Intelligence and

Neural Networks to automatic detection of
defects on car bodies

Supervisor: Candidate:
Prof. Massimo PONCINO Letizia Antonia VAIANA

Co-supervisor:
Prof. Daniele JAHIER PAGLIARI

Internship tutors:

Ing. Alessandro TESSUTI
Ing. Cristina CHESTA

December 2020






Acknowledgements

Al termine di questo lavoro di tesi, vorrei ringraziare il mio relatore, il prof. Massimo
Poncino, sempre pronto a darmi le giuste indicazioni in ogni fase della realizzazione

dell’elaborato.

Ringrazio, inoltre, Gerry Nigro, prezioso trade-union tra il mondo universitario e
quello aziendale, senza il quale questo lavoro di tesi non esisterebbe nemmeno. Ringrazio
tutto lo staff di Reply, in cui ho svolto lo stage formativo, per l'ospitalita e per le skills

acquisite sul campo.

Un ringraziamento speciale va a Cristina Chesta, importante punto di riferimento
aziendale, per la sua disponibilita e grande professionalita. Mi ha fatto sentire total-
mente integrata nel team di lavoro in cui sono stata inserita, creando un clima disteso e
formando, cost, un gruppo affiatato e produttivo, anche nei mesi in cui, a causa del lock-
down, non ¢’¢ stata la possibilita di conoscerci e lavorare in presenza, ma solo da remoto.

Un ringraziamento particolare va a Gianluca Moret. Attraverso la sua guida costante
e il suo prezioso supporto, ho imparato ad usare tutti gli strumenti di cui avevo bisogno
per intraprendere la giusta strada e portare a compimento questo lavoro di tesi.

Infine, ringrazio tutte le persone che mi sono state vicine e mi hanno sostenuto du-
rante il mio percorso universitario, la mia famiglia, i miei nonni e © miei amici che mi
hanno sempre supportato, stando al mio fianco in qualunque momento.






Contents

1 Introduction
1.1 Context and project . . . . . . . . ... L.
1.2 Challenges and goals . . . . . . ... .. ... ... ......
1.3 Thesis outline . . . . . . . . ... ...

2 Background
2.1 Overview. . . . . . .
2.2 Neural Networks . . . . ... ... ... 0L
2.2.1 Neuron model and typical activation functions . . . . .
2.2.2  Fully connected Neural Networks . . . .. ... . ...
2.3 Convolutional Neural Network . . . . . . .. ... .. .. ...
2.3.1 General architecture . . . . ... ... ...
2.3.2 Convolutional layers . . . . .. . ... .. ... ....
2.3.3 Pooling layers . . . . . .. ... .o
2.4 Defect detection algorithm . . . . . . ... .. ... ... ...
2.4.1 Deep learning-based anomaly detection . . . . . . . ..
2.4.2 Object detection approach . . . . . . ... ... ....
2.4.3 Single Shot Detector . . . . .. . ... ... ... ...
2.5 Pre-trained models . . . . ... ... 000
2.5.1 Transfer learning and evaluation metrics . . . . . . ..
2.5.2 MobilNet . . .. ...
2.5.3 EfficientDet . . . . . .. ... oo

3 Damage detection
3.1 Case study system architecture . . . . ... .. ... ... ...
3.1.1 High-level system architecture . . . . . . ... .. ...
3.1.2  Acquisition system setup . . . . ... ... ...
3.1.3 Position of the components. . . . . . . ... ... ...

5



3.2 Damage recognition process . . . . . ..
3.2.1 Functional requirements . . . . .
3.2.2 Damage recognition steps . . . .

3.3 Defect detection software development .
3.3.1 Dataset preparation . . . . . ..
3.3.2  Development tools and frameworks
3.3.3 Model training and evaluation . .

4 Experiments and results
4.1 Experiments plan introduction . . . . . .
4.2 First test dataset: “Dataset 2007 . . . .
4.3 Second test dataset: “Dataset 5007 . . .
4.4 Third test dataset: “Dataset 7507 . . . .
4.5 Fourth test dataset: “Dataset 11007 . . .
4.6 Fifth test dataset: “Dataset 1100 new”

5 Conclusion and future works
List of Figures
List of Tables

Bibliography

63

65

67



Chapter 1

Introduction

1.1 Context and project

The digital transformation that our society is undertaking nowadays is driving
most companies to change their current business model by applying digital
capabilities to products, processes and assets, improving efficiency, improving
customer value, managing risk and discovering new income market opportu-
nities.

One of the latest trends is car sharing services as a complementary alternative
to the private vehicle. These companies are in continuous technological adap-
tation and looking for the optimization of resources and processes, to improve
the service provided to its customers every day. From here, it is born the idea
of an automated solution in new vehicle maintenance services to clean the
vehicle and to automatically detect defects on the car body.

The use case analyzed in this thesis, in fact, is part of a wider project called
SAROCA (SmArt RObot for CAr-sharing), whose aim is to reduce main-
tenance costs and optimize workforce for repetitive tasks by involving two
independent components: a robot arm for cleaning the vehicle provided by
Car Sharing Mobility Services and the object /defect recognition implementa-
tion developed by Santer Reply [1].

1.2 Challenges and goals

In details, the area of interest in this thesis is related to the second part of
the above-mentioned macro-project (SAROCA), where the real contribution



Introduction

in the improvement of the operational efficiency in the maintenance processes
is given by Artificial Vision. The automatic detection of eventual damages
and scratches on the car body is not a trivial task, especially in the case in
which they are not so evident and recognizable also by humans, in specific
disadvantageous light conditions. Depending on the product under analysis,
different types of detection systems are applied, which are based on different
kinds of inspection technologies and methods, like visual inspection through
cameras and telecentric and pericentric optics or laser-based inspection.

In this use case, the high- level system architecture involves three main

components: the acquisition system (cameras, motion detection sensors and
video recorder), the processing element (hardware component that allows the
execution of the software), the defect detection software (handles the image
pre-processing and runs the neural network inference).
Focusing on the third component, through the study of the state of art of Al
solutions applied to computer vision, we decided to adopt an object detection
approach, by exploiting image recognition techniques. The latter allow us
to identify people, places and objects in images or videos by combining the
usage of a camera and the implementation of a versatile, self-standing neu-
ral network algorithm. Another additional task covered by object detection
approach with respect to the other available deep learning algorithms, like
semantic segmentation and classification, is the localization of the detected
object, that, in this case, represents a specific damage on the car body.

Approaches based on machine learning algorithms and deep neural net-

works acquired more and more interest during last years, especially with the
growing efficiency of the Convolutional Neural Network into extracting com-
plex and abstract patterns from image data. Following this direction, it was
conducted a survey in Deep Anomaly Detection (DAD) techniques, evaluating
some necessary different aspects: the nature of input data, the availability of
labels, the type of defect/anomaly, the output of DAD techniques and their
corresponding model architectures.
Approximately, we can divide object detection algorithms into two categories:
single-stage detector and two-stage detector. The main difference lies on
whether to pool the feature maps for a second stage and, consequently, the
different process speed. For this reason and after an accurate comparison
between these different typologies of algorithms, also in terms of the most
relevant metrics (like Average Precision, Average Recall), it was decided to
lean toward the SSD (Single Shot Detector) architecture.



1.3 — Thesis outline

On the other side, one of the crucial parts of building deep learning sys-
tems based on neural network algorithm is gathering high quality dataset,
since in general the model is as good as the data it learns from. Therefore, a
relevant effort during the thesis was dedicated to the research of data: since
there is no publicly available labelled dataset for car damage object detection
containing suitable images for this goal, it was created a new personal appro-
priate dataset consisting of images belonging to different sources, that were
manually annotated.

During the dataset collection, different pre-trained models were taken into
account. The core idea was to perform transfer learning to train the chosen
model. That is because typically training from scratch requires a huge amount
of data (quite difficult to obtain to solve the project task) and time. Transfer
learning, instead, allowed us to start from a pre-trained model: it is a model
that has been already trained on a large amount of data (e.g. COCO dataset)
and that represents a good and effective starting point to solve the project
task. In order to deploy a production model, we decided to rely on the
Tensorflow API, developed by Google, that is an open source library that
offers the possibility to develop and train machine learning models.

Tests started using a small but fast model SSD MobileNet: this choice is
associated with the fact that this model can be implemented in a relatively
fast way, thanks to the powerful and efficient frameworks and APIs available
in the context of machine learning systems development.

We also consider another typology of approach, EfficientNet model, that has
gained the new state of the art accuracy with a relevant difference in terms

of architecture size (9.6 times fewer parameters on average), as deepened in
Chapter 2.

1.3 Thesis outline

This thesis work is structured as follows:

o Chapter 2 contains a brief presentation of the main theoretical concepts
in literature, which are at the basis of the implemented system:;

o Chapter 3 introduces the case study, providing a brief overview of the
whole system architecture and describing the defect detection software
through all the steps handled during its development phase;



Introduction

o Chapter 4 presents a description of the experiments performed during
the model training and the evaluation results obtained;

o Chapter 5 presents some final considerations and ideas for future works
in order to further improve the system.

10



Chapter 2

Background

2.1 Overview

Artificial Intelligence (Al) is an important stakeholder in the rapid digital
transformation that our society is undertaking nowadays. The organizations
that want to prepare for an automated future should have a thorough under-
standing of AI. When we look at artificial intelligence, it can be divided into
three different domains: Robotics, Cognitive systems and Machine learning
[2]. The latter deals with the information world and, in particular, it is pos-
sible to say that machine learning algorithms use computational methods to
derive meaning and to “learn” information directly from data without relying
on a predetermined equation as a model [3]. A subset of machine learning
is deep learning, that achieves good performance and flexibility to represent
the data as a nested hierarchy of concepts within layers of the neural network
[4]. The following sections contain a presentation of these main theoretical
concepts more in details, since they are at the basis of the implemented sys-
tem: after a brief introduction to the theory behind artificial neurons and
neural networks, Convolutional Neural Networks (CNNs) are presented, be-
cause they have become one of the most used tool in computer vision field for
solving problems of visual recognition, such as object detection.

11



Background

2.2 Neural Networks

2.2.1 Neuron model and typical activation functions

The area of Neural Networks has originally been primarily inspired by the
goal of modeling biological neural systems. The diagram in Figure 2.1 shows
a symbolic drawing of a biological neuron (left) and a common mathematical
model (right). Each neuron receives input signals from its dendrites and
produces output signals along its (single) axon. The axon eventually branches
out and connects via synapses to dendrites of other neurons.

In the computational model of a neuron, the signals that travel along the
axons (e.g. xp) interact multiplicatively (e.g. wozg) with the dendrites of
the other neuron based on the synaptic strength at that synapse (e.g. wy).
The idea is that the synaptic strengths (the weights w) are learnable and
control the strength of influence (and its direction: excitory (positive weight)
or inhibitory (negative weight) of one neuron on another.

Zo wo
synapse
axon from a neuron
Woo
impulses carried
toward cell body

cell body

Zw,wZ +b

branches

dendrites of axon
axon
axon
nucleus L B I_%@%rmnals

\mpulses carried
away from cell body

f (Zwm +b)

output axon

activation
function

cell body

Figure 2.1: Symbolic representation of a biological neuron (left) and its math-
ematical model (right)

In the basic model, the dendrites carry the signal to the cell body where
they all get summed. If the final sum is above a certain threshold, the neuron
can fire, sending a spike along its axon. In the computational model, we
model the firing rate of the neuron with an activation function f, which
represents the frequency of the spikes along the axon.

Historically, a common choice of activation function is the Sigmoid func-
tion o, since it takes a real-valued input (the signal strength after the sum)
and squashes it to range between 0 and 1. Actually, the sigmoid non-linearity
has recently fallen out of favor and it is rarely ever used, because it saturates
and “kills” gradients: as it is possible to see in the first graph on the left side
of Figure 2.2, very undesirable property of the sigmoid neuron is that when

12



2.2 — Neural Networks

10

Sigmoid 1 Leaky ReLU
o(z) = e max(0.1z, x)
tanh Maxout
tanh(a:) io o max(uf{x + by, ufgac + b)
RelLU / ELU
0 T x>0
ma.X( 7 :E) : . {a(ew _ 1) r<0 o . 10

Figure 2.2: Commonly used activation functions

the neuron’s activation saturates at either tail of 0 or 1, the gradient at these
regions is almost zero [5].

Similarly, the tanh non-linearity (shown as second example on the left in
Figure 2.2), which squashes a real-valued number to the range [-1, 1], satu-
rates. Instead, a plus point is that, unlike the sigmoid neuron, its output is
zero-centered.

Another typology of activation function, the Rectified Linear Unit (ReLU),
differently from the previous ones, has become very popular in the last few
years, because it has several pros with respect to the cons. From its formula
and graph in Figure 2.2 (the last one on the left), it is immediate to say that
the activation is simply thresholded at zero, it is not computational expen-
sive and it greatly accelerates the convergence of stochastic gradient descent
compared to the sigmoid/tanh functions, due to its linear, non-saturating
shape. The only disadvantage consists in ReLLU units, that could be fragile
during training: a large gradient flowing through a ReLLU neuron can cause
the weights to update in such a way that the neuron will never activate on
any datapoint. In this way, the unit will forever be zero from that point on
and, consequently, it could irreversibly “dies” [5].

One attempt to fix the “dying ReLLU” problem is done by the Leaky ReLUs
activation functions, where, instead of the function being zero when x < 0,
a small negative slope (of 0.01, or so) is introduced, as visible in in the first
graph on the right in Figure 2.2.

A generalization of the latter two reported typologies of activation functions

13



Background

is contained in the Maxout neuron (the second one on the right in Figure
2.2), that represents one relatively popular choice nowadays. In it all the pos-
itive aspects of both ReLLU and leaky ReLLU are enclosed, but it doubles the
number of parameters for every single neuron, leading to a high total number
of parameters [6].

Also the last activation function reported on the right, ELU (Exponential
Linear Unit - Figure 2.2) is characterized by the same problem: even though
it reveals more robustness to the noise, it is computationally expensive.

2.2.2 Fully connected Neural Networks

A neural network is composed of a collection of neurons that are connected
in an acyclic graph and organized in layers. According to this structure, the
outputs of some neurons can become inputs to other neurons, as shown in
Figure 2.3, where the scheme of two example Neural Network topologies are
reported. In details, the displayed neurons organization in Figure 2.3 repre-
sents the most common layer type, fully-connected layer, in which neurons
between two adjacent layers are fully pairwise connected, but neurons within
a single layer share no connections.

output layer
input layer input layer
hidden layer hidden layer 1  hidden layer 2

Figure 2.3: Fully-connected layers in two examples of Neural Networks

Fully Connected Neural Networks, also known as Multilayer Percep-
trons (MLP), are a category of Artificial Neural Network (ANN) which aim
to approximate a function f able to map an input feature x to an output class
(or label) y. The architecture of a generic FCNN is shown in Figure 2.3 and
it is composed by:

e an input layer;

14



2.2 — Neural Networks

e one or more hidden layers;
e an output layer.

Focusing on the latter, unlike all layers in a Neural Network, the output layer
neurons most commonly do not have an activation function, because they are
usually taken to represent the class scores, given by a score function that
maps the raw data [5]. Hence, with an appropriate loss function that quan-
tifies the agreement between the predicted scores and the ground truth labels
on the neuron’s output, we can turn a single neuron into a linear classifier. In
other words, we cast this as an optimization problem in which we will min-
imize the loss function with respect to the parameters of the score function
[6]. The advantage of this parametric approach is that once we learn the
parameters we can discard the training data (unlike other kinds of classifiers,
as for example kNN classifier).

Some possible choices could be: Softmax layer, which converts the previ-
ous layer output to a probability distribution, given a probabilistic interpre-
tation through the Softmax function, as formula shown in Figure 2.4; alter-
natively, another solution could be represented by a max-margin hinge loss
to the output of the neuron in order to train it to become a Multiclass
Support Vector Machine (whose loss for the i-th example is formalized in
Figure 2.5).

efu

Z_j efi

P(yi \ Jii?W) -

Figure 2.4: Softmax function with a probability distribution

L; = Zmax(o, sj— 8y, +A)

7Y

Figure 2.5: Loss function in Support Vector Machine

More specifically, SVMs are based on a representation of the examples as
points in space, so those examples of different categories are divided by a gap
as wide as possible and the goal is to find a decision boundary between two or
more classes that are maximally far from any point in the training data [7].
In fact, referring to Figure 2.6, the Multiclass Support Vector Machine aimed

15



Background

1l 11|, delta + "
I LI score
scores for other classes score for correct class

Figure 2.6: Class scores scheme in SVM

to achieve scores of the correct classes to be higher than all other scores by at
least a margin of delta, so that if any class has a score inside the red region
(or higher), then there will be accumulated loss, otherwise the loss will be
zZero.

The main objective will be to find the weights that will simultaneously satisfy
this constraint for all examples in the training data and give a total loss that
is as low as possible [6].

2.3 Convolutional Neural Network

2.3.1 General architecture

During last years, in the world of machine vision and the image recognition,
approaches that recur to machine learning algorithms and deep neural net-
works acquired more and more interest, especially with the growing efficiency
of the Convolutional Neural Network (CNN) into extracting complex
and abstract patterns from image data relatively quickly respect to other con-
ventional methods. Convolutional Neural Networks, in fact, have become one
of the most used tool in computer vision field for solving problems of visual
recognition, such as image classification, object detection and recognition.
CNN is a kind of Artificial Neural Networks which belongs to the category
of the Feed Forward Neural Networks, i.e. that networks for which the in-
formation flows in only one direction, from the input nodes forward to the
output nodes, passing through some hidden layers as the structure that was
previously shown in Figure 2.3 [§].

16



2.3 — Convolutional Neural Network

B N

Input
(42x50) RelU+ RelU+ RelU+

Max Pooling Max Pooling Max Pooling
Convolutional Convolutional Convolutional Fully Connected Output Layer
Layer 1 Layer 2 Layer 3 Layer (7 classes)
(24 layers) (24 layers) (24 layers)

Figure 2.7: Architecture of the Convolutional Neural Network

The difference between convolutional neural networks and feed-forward
neural networks lies in the initial and central part of the architecture and
consists in the lack of fully connected layers; while, CNNs exploit the con-
volutional operator instead of the general matrix multiplication in at least
one of the layers. Their structure (Figure 2.7) can be divided into two main
blocks:

 the first block, made up of a sequence of convolutional layers inter-
leaved with non-linear functions and some sub-sampling layers (respec-
tively ReLLU and Max Pooling in Figure 2.7), is aimed at learning patterns
and local and spatial features directly from the annotated training images
that are input to the network;

« the second block, used to actually implement the visual recognition task,
is a series of fully connected layers which makes the aggregation of
the previous convolutional map output and get definitive scores output
for a class, through the classification probability distribution.

2.3.2 Convolutional layers

In the first section of a CNN, the convolutional layers are organized in a
sort of hierarchical structure, meaning that the first layers are dedicated to
learning low-level features, such as edges, color, gradient orientation, curves,
while, going up with the layers, the learnt features become more and more
complex, like corners (mid-level), blobs (high-level). The role of the CNN is
to reduce the images into a form which is easier to process, without losing
features which are critical for getting a good prediction [9]. In fact, thanks

17



Background

to the introduction of the convolutional part, CNNs can learn even complex
features of a set of images, that are seen as compositions of simpler features,
directly from the data, without requiring the effort of extracting them man-
ually.

The element implicated in performing the convolution operation in the first
part of a Convolutional Layer is called the Kernel/Filter, as displayed in
Figure 2.8.

d
1 L
Source pixel 0 0
= -{
} L (-1x3)+(0x0)+(1x1)+
6 2 (-2x2)+(0x6)+(2x2)+
] == (-(1x2)+(0Ox4)+(1x1) =-3
ﬁt ,& ]
3 1 ]
g8 T
p8ad =
L1 L~ = //
6 L1 |
|~ w |
C luti { L1 //
onvolution filter 1
(Sobel Gx) / - 1
Destination pixel //
|
//
|1
L

Figure 2.8: Filtering operation in Convolutional layer

Every filter is small spatially (along width and height), it is applied and
slided on the entire extension of the input image in order to learn a specific
feature. Therefore, the convolutional layer’s parameters consist of a set of
learnable filters.

The filtering operation is performed through a series of multiplications and
sums of the input values by some parameters, called weights, whose values
identify the features to be learnt. For example, a typical filter on a first layer
of a CNN might have size 5x5x3 (i.e. 5 pixels width and height, and 3 because
RGB images have depth 3, the color channels).

During the forward pass, we convolve each filter across the width and height
of the input volume and compute dot products between the entries of the
filter and the input at any position: the convolution operation is applied [5].
Then, each intermediate result, given by all the multiplications, is summed in

18



2.3 — Convolutional Neural Network

order to provide the final result. After its storage, it is located into an output
matrix: feature map or activation map.

During the forward pass, we convolve each filter across the width and height
of the input volume and compute dot products between the entries of the
filter and the input at any position. As we slide the filter over the width and
height of the input volume we will produce a 2-dimensional activation map
that gives the responses of that filter at every spatial position.

Actually, three hyperparameters control the size of the output volume:
the depth, the stride and zero-padding.

1. The depth of the output volume corresponds to the number of filters
we would like to use, each learning to look for something different in
the input. For example, if the first Convolutional Layer takes as input
the raw image, then different neurons along the depth dimension may
activate in presence of various oriented edges, or blobs of color. A set
of neurons that are all looking at the same region of the input is called
depth column.

2. The stride is referred to how the filter is going through the input layer.
When the stride is 1 then we move the filters one pixel at a time, while
if the stride is 2 then the filters jump 2 pixels at a time, so that they
produce smaller output volumes spatially.

3. The feature of zero-padding is that it will allow us to control the spa-
tial size of the output volumes, by padding the input volume with zeros
around the border; the main reason of this possible choise is that it is
useful to preserve the spatial size of the input volume, that so the input
and output width and height are the same [10].

N+2P-—F i
— g

Figure 2.9: Computation of the output feature map size

The spatial size of the output volume can be calculated through the formula
reported in Figure 2.9, as a function of the input volume size, in terms of
width /height (), the receptive field size of the Convolutional Layer neurons
(F'), the stride with which they are applied (.S) and the amount of zero padding

19



Background

used (P) on the border [6].

There are two types of results to the operation: one in which the convolved
feature is reduced in dimensionality as compared to the input, and the other
in which the dimensionality is either increased or remains the same. This is
done by applying Valid Padding in case of the former, or Same Padding in
the case of the latter. When the width/height dimension is augmented in
each layer (for example, from a 5x5x1 image into a 6x6x1 image) and then
the 3x3x1 kernel is applied over it, it is evident from Figure 2.10 that the
convolved matrix turns out to be of dimensions 5x5x1 [11]. For this reason,
this kind of computation is called Same Padding.

Pixel Values
0 0 0ol o 0 0|0 Convoluted Image
0o (1 o] 4| 2 |125] 67 22

Kernel 3 x 3 Pixels

0 8 2 5 4 | 34 (12

1 2 ]
O 20 |13 |25 | 15| 240 2 198

) (2|2 W

1 2 1

i 76 | B 6 6 | 100(| 76

O | 34 | 66 |134 223|201 | 3

0x1=0
B 255 (12318 | 55| 32| 2 0x2=0

0x1=0
0x2=0
1x4=4
0x2=0
0x1=0
8x2=16
2x1=2

0+0+0+0+4+0+0+16+2=22

Figure 2.10: Filtering operation with "Same zero-padding" mode

On the other hand, if we perform the same operation without padding,
specifying "Valid Padding", it means our convolutional layer is not going to
pad at all and, in this way, the input size will not be maintained.

2.3.3 Pooling layers

Referring to the structure explained in general in Section 2.3.1 and in Fig-
ure 2.7, after a nonlinearity (e.g. ReLU) the pooling layer is a new layer
added after the convolutional one. The addition of a pooling layer after the
convolutional layer is a common pattern used for ordering layers within a

20



2.3 — Convolutional Neural Network

convolutional neural network that may be repeated one or more times in a
given model.
The pooling layer operates upon each feature map produced by a certain con-
volutional layer in a separate way in order to create a new set of the same
number of pooled feature maps. The result of using a pooling layer and cre-
ating down sampled or pooled feature maps is a summarized version of the
features detected in the input in order to reduce the amount of parameters
and computation in the network, and hence to also control overfitting. More-
over, they are useful as small changes in the location of the feature in the
input detected by the convolutional layer will result in a pooled feature map
with the feature in the same location. This capability added by pooling is
called the model’s invariance to local translation and it helps to make the
representation become approximately invariant to small translations of the
input. Invariance to translation means that if we translate the input by a
small amount, the values of most of the pooled outputs do not change.
Pooling involves selecting a pooling operation, much like a filter to be applied
to feature maps. The size of the pooling operation or filter is smaller than
the size of the feature map; specifically, it is almost always 2x2 pixels applied
with a stride of 2 pixels. This means that the pooling layer will always reduce
the size of each feature map by a factor of 2. For example, a pooling layer
applied to a feature map of 6x6 (36 pixels) will result in an output pooled
feature map of 3x3 (9 pixels).

Two common functions used in the pooling operation are reported in Fig-
ure2.11 :

« Average Pooling: involves calculating the average for each patch of the
feature map, so this means that each 2x2 square of the feature map is
down sampled to the average value in the square;

« Maximum Pooling(or Max Pooling): implicates the maximum value
for each patch of the feature map, where the results are down sampled or
pooled feature maps that highlight the most present feature in the patch
[12].

21



Background

max pooling
20 30

[112] 37
12120| 30| 0
81121 2|0
34701 37| 4 average pooling
1121100| 25 | 12 \ =1z

(79] 20

Figure 2.11: Average and max pooling oparation schemes

2.4 Defect detection algorithm

2.4.1 Deep learning-based anomaly detection

Deep learning is a subset of machine learning that achieves good performance
and flexibility to represent the data as a nested hierarchy of concepts within
layers of the neural network. In particular, deep learning-based anomaly de-
tection algorithms have become increasingly popular: by analyzing real-world
datasets, their aim is to determine which instances stand out as being dis-
similar to all others and, for this reason, it could represent the key- point for
defect recognition algorithms.

First of all, it is crucial to understand what an anomaly is: it also referred to
as abnormality, deviant or outlier in the data extraction and statistics. The
anomalies appear as few data points which are located further away from the
bulk of the standard data points (inliers), as to arouse the suspicions they
are generated from a different mechanism, and hence are considered anoma-
lies (outliers). “An outlier is an observation in a dataset which appears to be
inconsistent with the remainder of that set of data” (Johnson, 1992). It is
important do not confuse anomalies with novelties, that are not considered
as anomalous data points; instead, they are been applied to the regular data
model. In order to distinguish them it is fixed a certain decision threshold,
so that the points which significantly deviate from this may be considered
essentially as anomalies or outliers.

The choice of a deep neural network architecture in Deep Anomaly Detec-
tion(DAD) methods primarily depends on the nature of input data. Input
data can be broadly classified into sequential (e.g. voice, text, music, time

22



2.4 — Defect detection algorithm

series recognition) or non-sequential data (e.g. images, video detection).

In order to have a general overview, it is shown a scheme in Figure 2.12,
where state-of-the-art DAD research techniques were grouped into different
categories by underlying the features and the various aspects that determine
the formulation of the problem [4].

Looking at Figure 2.12, in the first column, several interesting applications
are reported (e.g. damage detection) and a first classification is made on the
base of the types of the existing anomalies (that could be point anomalies,
contextual or behavioral anomalies, collective or group anomalies).

Matrix
Factorization

* Fraud Detection Variational

= Cyber-Intrusion Detection

* Medical Anomaly Detection

* Sensor Networks Anomaly
Detection

Generative
Adversarial
* \ideo surveillance
+ Internet Of Things

i Reinforcement Feature Extractor +
gz&ilgor?a‘a Ry Autoencoder Learning Traditional

* Collective Algorithms

* Contextual

: One-Class
* Point : ; 2 3
Unsupervised Semi-supervised Hybrid Neural Networks

* Log-Anomaly Detection

* Industrial Damage
Detection

Applications Type Of Anomaly Type Of Model

Figure 2.12: Key components associated with deep learning-based anomaly
detection technique

Focusing on the various types of DAD models, we can distinguish different
categories of techniques: (1) Unsupervised deep anomaly detection (2)
Supervised deep anomaly detection (3) Semi-supervised deep anomaly detec-
tion — based on availability of labels — (4) deep hybrid models (DHM) or (5)
one-class neural network (OC-NN) — based on training objectives.

1. Unsupervised anomaly detection algorithm is identified as a cost ef-
fective technique since it does not require annotated data for training the
algorithms able to distinguish the “normal” regions from the “anomalous”
ones in the original or in the latent feature space producing an outlier
score of the data instances based on intrinsic properties of the dataset

23



Background

such as distances or densities. The computational complexity of this
technique depends on the number of the operation, networks parameters
and hidden layers of the neural networks that characterized the autoen-
coders, which represents the most common unsupervised deep architec-
ture exploited in anomaly detection. Basically, the procedure consists in
reconstructing the input data. When the autoencoders are trained solely
on normal data instances (which are the majority in anomaly detection
tasks), they fail to reconstruct the anomalous data samples; therefore,
they output a large reconstruction error and the data samples which pro-
duce high residual errors are considered outliers [4].

. Supervised deep anomaly detection technique is superior in perfor-
mance compared to unsupervised anomaly detection one, since it uses
labeled samples. Deep supervised learning methods depend on separat-
ing data classes whereas unsupervised techniques focus on explaining and
understanding the characteristics of data. Multi-class classification based
anomaly detection techniques assume that the training data contains la-
beled instances of multiple normal classes such that a classifier is able
to distinguish between anomalous class from the rest of the classes. In
fact, the architecture of this model is composed by two sub-networks: a
feature extraction network followed by a classifier network. Due to lack
of availability of clean data labels and the computational complexity that
could be very high depending on the input data dimension, supervised
deep anomaly detection techniques are less cost effective with respect to
the above-mentioned techniques.

. Semi-Supervised deep anomaly detection techniques learn a dis-
criminative boundary around the normal instances by assuming that all
training instances have only one class label and the single test instance
that does not belong to the majority class is labelled as anomalous. The
computational complexity of semi-supervised DAD methods based tech-
niques is similar to supervised DAD techniques, which primarily depends
on the dimensionality of the input data and the number of hidden lay-
ers used for representative feature learning. Use of labeled data (usually
of one class), can produce considerable performance improvement over
unsupervised techniques, but the hierarchical features extracted within
hidden layers may not be representative of fewer anomalous instances,
hence are predisposed to the over-fitting problem.

24



2.4 — Defect detection algorithm

4. For what concerns the last two techniques classified training objectives
employed, we have the Deep Hybrid Models (DHM), where the rep-
resentative features learned within deep models are input to traditional
algorithms as common classifiers and the features are extracted within
hidden layers of the deep neural network, in order to discriminate the
irrelevant features which can conceal the presence of anomalies.

5. Moreover, the last method presented in the above-mentioned list is One-
class Neural Network (OC-NN), which combines the ability of deep
networks to extract a progressively rich representation of data with the
one-class objective in order to separate all the normal data points from the
outliers. In fact, OC-NN models extract the common factors of variation
within the data distribution, working in the hidden layers of the deep
neural network, and then, the algorithm produces an outlier score for a
test data instance [4].

2.4.2 Object detection approach

In order to carry on the algorithm evaluation suitable for this use case, it
was executed a deep investigation, since today machine learning algorithms
provide a wide set of powerful possible approaches that cover many different
vision tasks.

There are four main different widespread tasks (Figure 2.13) which can be
handled by deep learning algorithms:

« semantic segmentation;
 classification;

« instance segmentation;
« object detection.

The first one, the semantic segmentation, in which the output is a decision
category for each pixel, was not considered. It does not differentiate instances,
only cares about pixels and usually it is not used in machine vision tasks.

Instead, the classification approach could have been proper in order to distin-
guish if the image given as input represents a damaged car or not. In this case,
the problem was represented by the difficulties in the dataset preparation: it
is impossible to collect all the necessary images that cover the huge amount of

25



Background

potential damages, in different light conditions. There are two further possible
methods that can be chosen using this kind of approach: binary classification
and one-class classification. The first one uses a neural network with just two
classes, damaged and non-damaged. The problem is that, in reality, in this
case there are basically a huge amount of possible damages and different light
conditions, therefore, it results impossible to produce a balanced dataset that
provides all the necessary pitures as representative examples for the training
of the neural network. Instead the one-class approach works in a different
way because usually the neural network is trained using a dataset with just
the images that do not present any damage. Also in this case, it is common
to have again a problem in the dataset preparation, because if it does not
include every possible conditions of lights in which the system is working, the
detection could fail. The algorithm knows only what is “correct” from the
provided dataset, it does not have any information of what is a damage. It
is a crucial point, especially in the one-class approach, because, for example,
if an input image is characterized by a specific different kind of illumination,
outside the training dataset, it might be classified as damaged, incorrectly.

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

W

—

S - —

CAT DOG, DOG, CAT DOG, DOG, CAT
\ TREE, SKY '\ FEY Y,
Y Y Y
No objects, just pixels Single Object Multiple Object This inegs s CCOpublc domain

Figure 2.13: Main machine vision approaches (from left): Semantic segmenta-
tion, Classification + Localization, Object detection, Instance segmentation

Also in instance segmentation method there are some problems related to
the dataset preparation: here the labelling is very time expensive, since it is
necessary to provide the algorithm with the precise coordinates of the object
shape, in order to obtain the correct segmentation mask. For this reason,

26



2.4 — Defect detection algorithm

even if the algorithm is able to achieve a better precision in the identification
and in the localization of the desired object, it was discarded for our use case.

The last possible application in the list above-mentioned, object detec-
tion, was revealed the most suitable approach for the task under analysis.
In most of the cases the object detection models are chosen instead of image
classification ones because their first significant advantage consists in recog-
nizing multiple and different relevant objects in a single image, by providing
also their own localization. The localization task is attained drawing boxes
around objects, as it is possible to see in the third image in Figure 2.13 and
it is defined in terms of width/height and box coordinates. On the other
side, dataset creation and labelling are time expensive, but less demanding
with respect to instance segmentation. Although it is still necessary to have
a high quality dataset, this algorithm should be more robust even if it may
not contain information about all the possible damages. From the literature,
in fact, it is come to light that object detection models learn to identify de-
fects and should be independent from the background on which the defects
are found.This peculiarity could represent a very big advantage in this case
study, since the car body is not uniform and this skill could well separate
the situation in which there is the presence of a real damage from an abrupt
inhomogeneity on the external surface of the car.

Nowadays, with the rapid development of convolutional neural network, most
object detection algorithms started to use deep learning techniques. Approx-
imately, we can divide them into two categories: single-stage detector and
two-stage detector. The main difference lies on whether to pool the feature
maps for a second stage [13].

SSD (Single Shot Detection), DSSD (Deconvolutional Single Shot De-
tector), YOLO (You Only Look Once) and RetinaNet are some widely used
single-stage object detector with efficient speed. As for two-stage object detec-
tor, the most representative models are Fast R-CNN, Faster R-CNN (Region-
based Convolutional Neural Network) and R-FCN (Region-based Fully Con-
volutional Networks).

2.4.3 Single Shot Detector

The Single Shot Detection method is much faster compared with two-shot
RPN-based approaches.SSD achieves 74.3%- 76.9% mAP. This value outper-
forms Faster R-CNN (73.2% mAP) and YOLOv1 (63.4% mAP). Thus, SSD

27



Background

is one of the object detection approaches to be analyzed. Focusing on its
internal architecture, after going through a certain number of convolutions
for feature extraction, we obtain: a feature layer of size mxn (number of
locations); for each location, we got k bounding boxes, which have different
sizes and aspect ratios; for each of the bounding box, we will compute ¢ class
scores and 4 offsets relative to the original default bounding box shape. Thus,
we got (c+4)kmn outputs. Through this formula, SSD reaches an amount of
bounding boxes which is much more than that of YOLO (Figure 2.14).

No. of
3x3 Conv 4 boxes Classes 4offsets g reat

VGG-16
through Conv5_3 layer Classifier : Conv. (Elasses)

ure Layers
\

- c
Classifier - Conv: 3x3x(6x(Classes+4)) E é
"0
- [
2 a
- g
9 - . > Ar @ |74.3mAP
9 | L
7] e ) < E 59FPS
Convd_3 Conmvé Conv - s \ Conv: 3x3x(dx(Classes+d)) | & £
(FCE (FCT) C y - S 5
300 Com8, o ak- ©
» 18 . % s Conj0 2| Comv11_2 E -
. C 2 w112 1] c
\F| 3 - -0 §
512 | 1024 1024 | 512 128 ko =]
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1
=
2 o
. . 7
YOLO Customized Architecture % 8
et =
was TS R g
-]
S . 18| . |?B3.4mAP
Of | wooe 2 w|— | | 45FPs
c
S £
B
- 8 3
7 g Es
o 0
4 1024 \ / \ =

Ll
Fully Connected  Fully Connected

Figure 2.14: SSD and YOLO architectures

Other interesting characteristics of the Single Shot Detector are related to
its structure. It has mainly two components (Figure 2.15): a backbone model
(layers with white boxes) and SSD head (layers with blue boxes). Backbone
model usually is a pre-trained image classification network as a feature ex-
tractor. The SSD head is just one or more convolutional layers added to the
backbone, and the outputs are interpreted as the bounding boxes and the
classes of objects in the spatial location of the final layers activations.
Instead of using sliding window, SSD divides the image using a grid and have
each grid cell be responsible for detecting objects in that region of the image.
Detection objects simply means predicting the class and location of an object

28



2.4 — Defect detection algorithm

within that region. If no object is present, we consider it as the background
class and the location is ignored.

b Y
ﬁt
|
|
Original Prediction layes

S50 Layers

Figure 2.15: Architecture of a convolutional neural network with a SSD de-
tector

Each grid cell in SSD can be assigned with multiple anchor/prior boxes.

These anchor boxes are pre-defined and each one is responsible for a size
and shape within a grid cell. SSD uses a matching phase while training, to
match the appropriate anchor box with the bounding boxes of each ground
truth object within an image. Essentially, the anchor box with the highest
degree of overlap with an object is responsible for predicting that object’s
class and its location. This property is used for training the network and
for predicting the detected objects and their locations once the network has
been trained. The central premise of the SSD architecture is the receptive
field that enables us to detect objects at different scales and gives in output
a tighter bounding box. Receptive field is defined as the region in the input
space that a particular CNN’s feature is looking at.
The extra step taken by SSD is that it applies more convolutional layers to
the backbone feature map and has at each of these convolution layers output
an object detection result. As earlier layers bearing smaller receptive field can
represent smaller sized objects, predictions from earlier layers help in dealing
with smaller sized objects, like for example very little damages. Because of
this, SSD allows us to define a hierarchy of grid cells at different layers. For
example, we could use a 4x4 grid to find smaller objects, a 2x2 grid to find
mid-sized objects and a 1x1 grid to find objects that cover the entire image
[14].

29



Background

2.5 Pre-trained models

2.5.1 Transfer learning and evaluation metrics

After a first algorithm analysis, the main idea was to apply transfer learn-
ing by adapting the neural network of pre-trained models to this specific
application (see Section 3.3.3). For this purpose, we conducted a survey of
the pre-trained neural networks already available on the literature, in order
to exploit one of them as a starting point.

The existing models are previously trained on huge datasets, containing mil-
lions of images, so that they are able to have good performance in recognizing
hundreds of different objects. The large-scale dataset, in fact, is an important
motivation for the continuous improvement of the object detection algorithms,
especially for deep learning based techniques. Some examples of the earliest
datasets are ImageNet and VOC, but the most recent high-quality dataset
that has an important role in the image classification and object detection
community is COCO (Common Object in COntex). It contains more than
300,000 images (>200K labeled) and 80 object categories [15] and features
object detection tasks using either bounding box output or instance segmen-
tation output [16]. Therefore, all the pre-trained models chosen in our training
phase (for further details, see Section) had made use of COCO dataset.

In order to make a comparison between these different typologies of models,
firstly, it is conducted an analysis in terms of mean Average Precision, mean
Average Recall, where the reported scores are based on small, medium and
large objects in the data (general formulation in Figure 2.16) and they are
really taken into account in object recognition:

- TP TP = True positive
Precision =
TP + FP TN = True negative
p FP = False positive
Recall = ——
TP+ FN

FN = False negative

Figure 2.16: Evaluation metrics formulas

« Average Precision (AP): it indicates the amount of your correct pre-
dictions;

30



2.5 — Pre-trained models

« Average Recall (AR): it measures how good are all the positives you
found.

Another important parameter, that could be useful to analyze among the
outputs during the training phase is the Intersection of Union (IoU) (look
at Figure 2.17).

area of overlap
area of union

Overlap

Figure 2.17: Intersection of Unit scheme definition

The Average Precision, defined previously, is measured at different values
of IoU, which indicates how much our predicted boundary overlaps with the
ground truth (the real object boundary). As standard value, its threshold
should be fixed to 0.5, but during the evaluation phase, often it is present
also the value “0.75” (usually it stands in the range 0.5- 0.95). This factor is
crucial in order to classify if the produced prediction is a true positive or a
false positive, so that it can be inserted in the AP formula.

2.5.2 MobilNet

If we merge both SSD, analyzed previously in Section 2.4.3 and the Mo-
bileNet architecture, that is an example of pre-trained model included in the
lists of models belonging to the Model Garden and Model Zoo of Tensorflow,
we could arrive at a fast, efficient deep learning-based method to object de-
tection. From the moment that, if we combine the MobileNet and SSD, it

31



Background

may get better accuracy with a higher mAP, they represent one pre-trained
model and one of the object detection approaches that might also be worth
investigating. Other architectures, like Resnet or VGG or Alexnet, have a
large network size and the number of computations increases whereas in Mo-
bilenet there is a simple architecture, as reported in Figure 2.18, consisting of
a 3x3 depthwise convolution followed by a 1x1 pointwise convolution [17].

oy

3x3 Depthwise Convolution H 1x1 “Expansion” Layer

Batch Normalization
Batch Normalization

RelU6

RelLUs

\ A

1x1 Pointwise Convolution

Batch Normalization

P S S S S e e e £ S SR S : J
Depthwise Separable
Convolution block e e Bottiensck Residual block

Figure 2.18: MobilNet vl and v2 architectures

MobileNet V2 still uses depthwise separable convolutions. In V1 the point-
wise convolution either kept the number of channels the same or doubled them.
In V2 it does the opposite: it makes the number of channels smaller. This
is why this layer is now known as the projection layer — it projects data
with a high number of dimensions (channels) into a tensor with a much lower
number of dimensions. Using low-dimension tensors is the key to reducing the
number of computations. Let’s compare MobileNet V1 to MobilNet V2
(from Figure 2.19), starting with the sizes of the models in terms of learned
parameters and required amount of computation (MACs) [18].

Version MACs (millions) Parameters (millions)
MobileNet V1 569 4.24
MobileNet V2 300 3.47

Figure 2.19: MobilNet v1 and v2 parameters

32



2.5 — Pre-trained models

From the number of MACs alone, V2 should be almost twice as fast as V1.
Also in terms of parameters, V2 has the advantage too: it only has 80% of
the parameter count that V1 has.

2.5.3 EfficientDet

We also consider another typology of approach, EfficientNet model, that
has gained the new state of the art accuracy for 5 out of the 8 datasets, with
9.6 times fewer parameters on average. From Figure 2.20, we can observe
an analysis in which the authors firstly find out the relationship between the
accuracy and the scaling (size) of a model: initially the accuracy increases
radically (of course along with the computational cost), but after sometime
the curves almost flatten. The red curve displayed EfficientNet models per-
formance on the ImageNet dataset compared with other models of similar

Top-1 accuracy and it is possible to see how EfficientNet models show the
best values.

EfficientNet-B7
AmosbaMet-C ) flicientDet-D6 Al
AmoebaNat-A _ m—==="" L0 -
- o P
e NASNetA ..  'SENet - e |
= - 7. ot
> 3 Pt ot _.-="ResNet + NAS-FPN
2 Le” et ResNext101 o 45.0 e
e
g ,f’ Inception-ResMet-v2 <
= el T 45
& ' Heaption 8
a :
; 2 : oResNet-152 o 00 r."F{ollrmNol | Params Ratio
H
5 Bb ‘DenseNet-201 1 EfficientDet-D1 ™
@ . 2
|1 :: Mask F-CNN perinuNet [24] SIM Rx
ET6 P ResNerso g EfficieniDet- D3 [BLY]
i Res? NASFPN [ 1] 104M  B.7x
I Tnception-v2 36.0 EfficieniDer- D6 517}
741 4 AmochaNet + NAS-FPN [ 7] 209M  4.0x
N.‘\SN(“I-}\
ResNet-34 0 o 1 150 200
i} 20 10 (£} 80 106 120 140 16 150
Number of Parameters (Millions) Parameters (M)

Figure 2.20: EfficientNet accuracy on Imagenet (on the left) EfficientDet AP
on COCO (on the right)

Also on the right (Figure 2.20), where EfficientDet models values are re-
ported, AP shows a visible rise with respect to the others.
Recent works show remarkable performance on image classification by jointly
scaling up all dimensions of network width, depth, and input resolution. In-
spired by these works the keypoint for the construction of EfficientDet mod-
els was to reuse the same width/depth scaling coefficients of EfficientNet-B0

33



Background

to B6. In fact, the considerable difference with respect to the previous works
in object detection field, which mostly scale up a baseline detector by employ-
ing bigger backbone networks (e.g. ResNeXt or AmoebaNet), is the choice
of exploiting the ImageNet-pre-trained checkpoints of EfficientNet-B to B6
models.

Moreover, in Figure 2.21, if we analyze in particular the rightmost column, we
can notice that in FLOPS (the measure of computational power needed) there
is a remarkable difference between EfficientDet models and their comparable
models. Also in this case, we can observe a very low number of architecture
parameters and interesting results relative to the AP, measured at different
values of IoU (Figure 2.17). The latter indicates how much our predicted
boundary overlaps with the ground truth (the real object boundary). Usu-
ally, as standard value, in order to classify if the produced prediction is a true
positive or a false positive, its threshold should be fixed (for example 0.5) and
it is inserted in the AP formula.

EfficientDet models consistently achieve better accuracy and efficiency than
the prior art across a wide spectrum of resource constraints. In particular, it
achieves state-of-the-art accuracy with much fewer parameters than previous
object detection models [19].

test-dev val Latency (ms)
Model AP AP;y; AP;; | AP || Params Ratio FLOPs Ratio || TitianV V100
EfficientDet-D0 (512) 3.6 530 371 | M43 kA | 1x 2.58B Ix 12 10.2
YOLOv3 [#4] 33.0 579 344 - - - 71B  28x - -
EfficientDet-D1 (640) 405 9.1 43.7 | 40.2 6.6M 1x 6.1B 1x 16 13.5
RetinaNet-R50 (640) [ 7] 39.2 58.0 423 | 39.2 34M  6.7x 97B 16x 25 -
RetinaNet-R101 (640)[ 2] 399 585 430 | 398 53M  B.0x 127B  21x 32
EfficientDet-D2 (768) 439 62.7 47.6 | 435 8.1M 1x 11B 1x 23 17.7
Detectron2 Mask R-CNN R101-FPN [ 1] - - - 429 63M  7.7x 164B 15x - 56
Detectron2 Mask R-CNN X101-FPN [ 1] - - - 44.3 107T™M 13x 277B 25x - 103*
EfficientDet-D3 (896) 47.2 0659 51.2 | 46.8 1ZM Ix 258 Ix 37 29.0
ResNet-50 + NAS-FPN (10241) [10] 44.2 - - 60M  S5.1x 360B  15x 61 -
ResNet-50 + NAS-FPN (1280) [10] 448 - - - 60M  5.1x 563B 23x 99
ResNet-50 + NAS-FPN (1280@384)[10] || 45.4 - - - 104M  8.7x 1043B  42x 150
EfficientDet-D4 (1024) 49.7 684 539 | 493 21IM Ix 55B Ix 65 428
AmoebaNet+ NAS-FPN +AA(1280)[15] - - - 48.6 185M 8.8x 1317B  24x 246 -
EfficientDet-D5 (1280) 51.5 705 561 | 513 34M 1x 1358 Ix 128 725
Detectron2 Mask R-CNN X152 [ 1] 50.2 - 2344
EfficientDet-D6 (1280) 526 715 572 | 522 52M 1x 226B 1x 169 92.8
AmoebaNet+ NAS-FPN +AA(1536)[17] - - - 50.7 2090M  4.0x 3045B 13x 489 -
EfficientDet-D7 (1536) 537 724 584 | 534 52M 325B 232 122
EfficientDet-D7x (1536) 551 743 599 | 544 7™M 4108 285 153
We omit ensemble and test-time multi-scale results [ 10, 17]. RetinaNet APs are reproduced with our trainer and others arc from papers.
*Latency numbers with ' are from detectron2, and others are measured on the same machine (TensorFlow2.1 + CUDA10.1, no TensorRT).

Figure 2.21: EfficientDet performance on COCO

34



Chapter 3

Damage detection

3.1 Case study system architecture

3.1.1 High-level system architecture

The scenario where the system will be working is characterized by a designated
garage placed in Madrid, Spain, that is the city where Zity headquarters is
located and operational and maintenance activities take place [20].

Processing Element

Image

acquisition

e e e e e o e e e e e e e e e e o =

Figure 3.1: High-Level System Architecture

The high level system architecture is described in Figure 3.1 and includes:

e Acquisition system: including cameras, motion detection sensors and
video recorder.

e Processing element: hardware component that allows the execution of
the software.

e Defect detection software: handles the image pre-processing and runs
the neural network inference.

35



Damage detection

In the next sections (Section 3.1.2, Section 3.1.3 and Chapter 3) each
component and its own position are further detailed.

3.1.2 Acquisition system setup

The setup of the acquisition system required to make decisions regarding:

e The selection of the cameras taking into account the technical character-
istics (resolution, frame rate, connectivity, etc.) as well as considerations
related to cost and robustness.

o The identification of the optimal position considering the field of view,
the distance from the car, the light conditions.

After analysing different possibilities, the best choice regarding hardware com-
ponents to run the defect detection software seemed to be a video surveillance
kit WiFi from DSE, including an NVR and four cameras.

The IP cameras have a resolution of 8MP (4K) and 15 fps that provides a
good level of detail. They support H265 video compression formats to record
high quality video stream with the minimum bandwidth requirement. The
cameras come with 3.6mm. wide-angle lens and a built-in infrared illumina-
tor, which makes it possible to monitor in the dark up to 30m. The optical
sensor is 1/2.5" CMOS 2704x1950 pixel The video signal between the cameras
and the NVR, the control unit of the system, is WiFi, without wires. The
latest generation WiFi modules allow an excellent range: up to 300 m. with-
out obstacles and 4/5 cameras indoor, but it is possible to extend the range
through a WiF'i repeater.

The motion detection sensor is directly integrated in the cameras and allows
to activate the video recording when motion is activated.

3.1.3 Position of the components

Considering several aspects such as the light conditions, the position of avail-
able Ethernet connection and electric cabinet, we decided to position the NVR
in the available office, and the four cameras (CH1, CH2, CH3, CH}) along
the ramp in the four angles of the walls respectively, as shown in Figure 3.2a.
In this way, every car will inevitably go through the AOV (angle of view) of
all the four cameras and the WiFi connection between cameras and NVR is
good.

36



3.1 — Case study system architecture

e cHL
Lo Max. 30 m.
H |- o
W >
1 —:(leirhlid{:
R
(a) Position of NVR and cameras <b) Optimal angle of the cameras

Figure 3.2: Position of the components

The optimal angle relative to the direction of travel of the vehicles is
about 30 degrees (Figure 3.2b). In this way, you limit the night glare of
the headlights. The maximum distance from where a human face can be
detected is 4.9m, while from an optimal distance (calculated using the link
https://www.dseitalia.it/calcolatore__obiettivi.htm) of 1.5m an area of 2.4m x
1.8m can be framed. From a practical point of view, it has been seen that
the best position of cameras was about 1.2 m (Figure 3.3), since the damages
are usually localized in the central-lower part of the car body and empirically,
from the dataset analysis, the best results have been obtained in these condi-
tions (for more details, see Chapter 4).

8701214872497 2 - 2020/11/30 00:54:45 0 bps
3 e

Imposta I'ora

o/ fine
30.11.2020 (=]

Figure 3.3: Real view from the cameras

37



Damage detection

3.2 Damage recognition process

3.2.1 Functional requirements

Focusing on the part of the whole structure dedicated to the maintenance
activities, the main general functional requirements of the specific case study
are the following.

e The solution should be able to identify the presence of any new defects

that the body car may have.

e The solution should to be able to localize the recognized defects, in order

to give also an idea about their own approximate extension.

e The solution should be able to send an alert to the operator in case a

new damage is identified.

3.2.2 Damage recognition steps

The damage recognition process is illustrated in Figure 3.4 and summarized

below.

1. When the car passes in the range of a camera, a sensor detects the move-
ment and activates the camera recordings.

2. The camera takes a picture or video of the car.

3. The defect detection algorithm processes the picture/video and identifies
if a damage is present.

4. Optionally a license plate identification algorithm identifies the plate
number.

5. Optionally the information collected from multiple cameras nearly at
the same time and then associated to different views of the same car is
aggregated.

6. If a damage is detected on at least one of the sides, a notification including
the information is sent to the operator.

7. The information is optionally also saved in a DB for further analysis [20].

38



3.3 — Defect detection software development

— o —— — — = — -y

I . |
I Insertion

|
| Licenseplate | |

7=-7j identification F--; | in DB i
b I L1 ;
TR | L i
cer Motion Image or i ¢ | Information | !
arrives at || detection 1l video ' ! agEregation
the gate acquisition | |
Defect | | T T T T Notification
detection tothe
Operator

Figure 3.4: Damage detection flow chart

3.3 Defect detection software development

3.3.1 Dataset preparation

One of the crucial parts of building deep learning systems based on neural net-
work algorithm is gathering high quality dataset, since in general the model
is as good as the data it learns from. For this reason, a significant effort was
dedicated to the research of data.

Since there is no publicly available dataset for car damage object detection
containing suitable images for our task, we created our own dataset. This
included images belonging to different sources, both because at the beginning
of the project we didn’t have the camera system installed in the final location
and because the objective was to obtain a general model.

At first, some damaged car photos were collected from web (www.kaggle.com,
google images). We selected in detail images with proper characteristics for
the training dataset (look at Figure 3.5): their resolution (Figure 3.5d) and
their sharpness have to be sufficient in order to well distinguish also small
damages, as requested in the project; they must not contain labels (Figure
3.5a), or people, or other kind of elements that overlap the damages of the
shot car, so that they can be clearly visible; the zoom level in the framing of
the subject (Figure 3.5b) has to be approximately constant and comparable
with the data acquired by the cameras placed in the ramp of the garage, de-
pending on their own position (Figure 3.5¢).

39



Damage detection

(a) label overlapped (b) too zoomed in picture (C) right point of view (d) right resolution

Figure 3.5: Examples of: discarded images (a)-(b) and included images (c)-(d)

Moreover, most of the images are taken empirically by hand, trying to
follow the above-mentioned features, including also similar light conditions
with respect to the internal space of the garage and the color of the car body
of Zity cars.

All the images were collected, resized through a square shape and a resolution
of 1080x1080 pixels.

Afterwards, they were manually annotated by the annotation tool Labellmg
(shown in Figure 3.6, because we have not available labelled images for our
use case. For object detection data, we need to draw the bounding box on
the object (Figure 3.6a) and we need to assign the textual information to
the object (Figure 3.6b), with the possibility to include multiple relevant
objects in a single image. Even though it was not requested in the project,
we generated two different classes of labels ( “scratch” and “dent”, see Figure
3.6¢) to better identify the several characteristics of each kind of bounded
damage, with the aim to obtain good results during the following phases. For
simplicity, initially we have chosen only two classes, because they are the two
most common cases of damages in our dataset.

40



3.3 — Defect detection software development

(C) list of the classes of label: “scratch” and “dent”

Figure 3.6: Labelling steps representation

Starting from this initial set of images, we have carried out subsequent
cycles of experiments, analysis of the results (as reported in Chapter 4) and
collection of new sets of images with the objective to solve some of the iden-
tified issues and then improve the performances of the system.

Firstly, we noticed that the results corresponding to the dent recognition are
less precise with respect to the scratch detection. For this reason, during the
preparation of a second round of photos (about 500), we tried to increase
the number of pictures relative to damaged cars containing dents on the car
body, by providing more labelled images as samples corresponding to the sec-
ond class of the model ( “scratch”), in order to obtain a more balanced effect
during the training.

In addition, in a third dataset collection (about 750 images), we also in-
cluded car images in light conditions that seemed to be closer to the real
situation in the garage: most of the photos were shot in the evening, with
street light switched on or inside underground car parking.

In this way, we enlarged our dataset integrating new photos with similar fea-
tures until about 1000 images (fourth dataset), by following a linear increase

41



Damage detection

in the amount of the added ones.

In the initial plan, we have scheduled a further extension of the dataset, also
including about 100-200 pictures showing the Zity cars in final pilot setting,
so that the final complete dataset (fifth dataset) contains about 1200 im-
ages.

Over the several experiments carried on during the training, validation and
test phases featured more in details in the final part of Chapter 4, we observed
that the introduction of the Zity cars may make it necessary to reconsider the
number and the typology of classes set in the earlier labelling operation. This
reassessment is due to the substantial difference in specific features which
characterized Zity cars from the other samples included in the previous ver-
sions of dataset. In particular, the two additional elements we have focused
on during the analysis of the whole dataset are: the front fog lamp character-
ized by an uncommon shape with respect to the other inserted cars and the
presence of any trace of text, specifically the text Zity on the frontal, rear and
lateral side of the car body. Therefore, a new labelling action was performed
on the last added photos and two further classes of label (“Zity” and “front
fog light”) were added into the list previously mentioned in Figure 3.6¢c.
Labellmg tool produces an output file (it is possible to choose between Pas-
calVoc XML or YOLO format) for each labelled image that contains informa-
tion about the class of each bounded object, the relative coordinates of the
bounding boxes and also the width/length depending on the format selected
for the annotation files. An example of a typical output file (PascalVoc XML
format), including more than one object simultaneously assigned to different
labels of the final class list, is reported below (Figure 3.7): the annotation file
inform us that in the image of the car named Car1170 are present three ob-
jects belonging to “front fog light”, “Zity” and “scratch” classes with their own
coordinates corresponding to the relative bounding boxes manually drawn.

42



3.3 — Defect detection software development

- <annotation>
=folder=Images</foldar>
<filename>=Carl170.jpg</filename=>
=path=E:\Datasets\\Fifth test Dataset\Images\Carll70.jpg</path=

- <source>
<datzbass>Unknown </database>
</source>
- “Eize>
<width =497 </ width>
<height=308</height>
<depth>3</depth>
<fsize»
<segmented >0</segmented >
- =object>
<name>front fog light</name=>
<pose>Unspecified</pose
<truncated=0</truncated >
<difficult>0-</difficult=
- <bndbox=
<xmin® F4-< fxmin>
<ymin>243<ymin>
<xmax>116</xmax>
<ymax=293 < ymax>
</bndbox>
</object>
- =object>
<name>Zity</name>
<pose>Unspecified</pose>
<truncated>=0</truncated >
<difficult>0-</difficult=
- <bndbox=>
<xmin>303< xmin>
<ymin>241</ymin=
<xmax=408</xmax>
<ymax=291<ymax>
</bndbox>
<fobject>
- <object>
<name>scratch</name=
<pose>Unspecified</pose>
<truncated>0</truncated >
<difficult= 0, difficult=
- <bndbowx=>
<xmin> 190 xmin>
<ymin>=272<ymin>
<xmax=285</xmax>
<ymax>=295</ymax>
</bndbox=>
=/object>
<fannotation>

Figure 3.7: Example of Labellmg output file in PascalVoc XML format

43



Damage detection

3.3.2 Development tools and frameworks

During the model training and evaluation phase described in Section 3.3.3,
several tools and frameworks were exploited. For this reason, we have provided
a brief introduction of all of them in the following subsections, by describing
their relative main features.

Google Colaboratory

Colaboratory from Google is a platform that provides a free Jupyter notebook
environment to run code entirely in the cloud. In its environment some of the
most common libraries for deep learning applications development are avail-
able, such as Keras, Tensorflow, PyTorch and others. Also, it makes available
GPU, which accelerates workloads, where significantly higher amounts of data
have to be analyzed faster than traditional CPUs, in applications from energy
exploration to deep learning, that is the case study of this thesis. In addition,
NVIDIA accelerators provide the power needed to run larger simulations with
speeds never achieved before. NVIDIA GPUs provide the high performance
required for desktops, applications, and virtual workstations.

Keras

Keras is a high-level and open-source API (Application Programming In-
terface) for neural network development. It supports both CNN and RNN
(Recurrent Neural Network) and also other arbitrary network architectures
(multi-input or multi-output models, layer sharing, model sharing). This
means that Keras is suitable for developing any deep learning model. It
is written in Python and can run on top of Tensorflow. It also allows to
easily import and integrate well known and pre-trained Neural Networks in
a project; in fact, Keras Applications include efficient deep learning mod-
els (like MobileNet, RetinaNet, EfficientNet and others) available with pre-
trained weights that can be employed for prediction, features extraction and
fine-tuning purposes.

Tensorflow and Pytorch

TensorFlow is an end-to-end open source deep learning framework. It has a
comprehensive, flexible ecosystem of tools, libraries and community resources
that lets researchers push the state-of-the-art in ML and developers easily

44



3.3 — Defect detection software development

build and deploy ML powered applications. There is also another popular
framework for deep learning that is diffused more and more, Pytorch, there-
fore it is done a brief comparison, by analyzing which one to choose out of
the two.

The two frameworks had a lot of major differences in terms of design, paradigm,
syntax. Both work on fundamental data type called Tensors which are nothing
but multi-dimensional arrays, amenable to high performance computation.
Both represent computation as a directed acyclic graph often called Compu-
tation Graph [21]. For this reason, the Tensorflow API was very difficult to
start with; while Pytorch API felt like writing native Python code and imme-
diate to debug.

Pytorch is faster than Tensorflow, but it presents less features, lower level
function, smaller scale applications, it needs to Python support or specific
interface and requires more documentation with respect Tensorflow, which
collects several previous use cases, examples and tutorials.

Tensorflow 2.0

Recently it is introduced another major milestone, TensorFlow 2.0, that fo-
cuses on simplicity and ease of use, featuring updates like :

o Easy model building with Keras and eager execution;
e Robust model deployment in production on any platform;
« Powerful experimentation for research;

o Simplifying the API by cleaning up deprecated APIs and reducing duplication[22].

The new architecture, describing TensorFlow 2.0, is shown in the concep-
tual diagram in Figure 3.8

45



Damage detection

TRAINING DEPLOYMENT

~

Read & Preprocess Data ( TensorFlow Serving i
tf.data, feature columns Cloud, on-prem

TensorFIowk
) ‘H—Ub/ ( TensorFlow Lite J

’ Sty ) Android, i0S, Raspberry Pi
tf.keras -
L Estimators SavedModel
TensorFlow.js
Distribution Strategy I L Browser and Node Server
A ) Other Language Bindings
CPU } GPU { TPU C, Java, Go, C#, Rust, R, ...
& l y J ] J i

Figure 3.8: Tensorflow 2.0 architecture

Over the last few years, there have been a number of versions and API
iterations, while with TensorFlow 2.0, these will be packaged together into a
comprehensive platform that supports machine learning workflows from train-
ing through deployment. With the rapid evolution of ML, the platform has
grown enormously and now supports a diverse mix of users with a diverse mix
of needs; TensorFlow 2.0, offers the opportunity to clean up and modularize
the platform.

3.3.3 Model training and evaluation

In order to deploy a production model, it was decided to rely on the Tensor-
flow API (look at Section 3.3.2), developed by Google . The core idea was to
perform transfer learning to train the chosen model. That is because typically
training from scratch requires a huge amount of data (quite difficult to obtain
to solve the project task) and time. Transfer learning, instead, allowed us to
start from a pre-trained model, that is a model that has been already trained
on a large amount of data.

Therefore, the idea was to exploit a model that has already “learned” how to
extract main features from an image. Even if the model has been trained for
a different task and have different classes, it constitutes a good and effective
starting point to solve the project task. For example, in the one trained on
COCO dataset (described in Section 2.5.1), we have changed only the last
layers to have just two classes we need to solve the problem, that were not

46



3.3 — Defect detection software development

present in the pre-trained model. Tensorflow provides what they call the "Ten-
sorflow Model Garden" (for Tensorflow 2 described in Section 3.8). This last is
a collection with the state-of-the-art models, pre-trained on COCO dataset,
that can be used for computer vision tasks like image classification, object
detection, and segmentation. At the beginning of the project, the choice was
forced to use the old Tensorflow 1 release, even though Tensorflow 2.x was
already available, because there was no support for the object detection API.
As previously described, after several considerations, it was decided to build
a four-class model (look at the label map in Figure 3.9), with the following
classes (look at Section 3.3.1 for more details):

e dent;
e scratch;
o Zity;

o front foq light;

item {
id: 1
name: 'dent'

item {
a o [
name: 'scratch’

item {
ide. 3
name: 'Zity'

item {
id: 4
name: 'fromt fog light'

Figure 3.9: Label map containing all the classes

The pipeline to perform the training operation can be divided in steps as
follows:

1. collect data (images in our case) to build the dataset;

2. label such data with bounding boxes;

47



Damage detection

3. split the dataset in three sections: training, validation and test;
4. create the record file for each partition of the dataset;

5. set correctly the configuration and the hyperparameters both of the
model and for the training phase

Concerning the first two points, they are deeply analyzed in Section 3.3.1.
Regarding the subdivision of the dataset, we have three groups of data that
are exploited for different aims in different phases in building a model:

« training dataset consists in all the samples used to fit the model during
the learning process of the model,

« validation dataset is made of all the samples used to provide an unbi-
ased evaluation of a model fit on the training dataset and to fine-tune and
to update the model hyperparameters during the “development” stage of
the model;

» test dataset provides the gold standard used to evaluate the model and
it contains all the samples used to provide an unbiased evaluation of a
final model already completely trained.

Due to the small size of the entire dataset and the models with a not huge
number of hyperparameters (see Chapter 2), we decided to reduce the size
of the validation set in this case study, so that it was a partition complying
with the following dimensions: the training dataset and the validation dataset
contains respectively about 90% and 10% of the whole number of the image
data.

Moreover, as regards the test dataset preparation, we referred to a new col-
lection of images out of the previous ones, so that we test properly the models
on an amount of pictures, comparable with respect to the validation dataset.
During the test phase, firstly, we also exploited some videos containing cars
in similar conditions relative to the real set in Zity garage, and then, we had
the possibility to test the models on the recording Zity cars in the definitive
cameras position. In this way, we have been able to get an idea of the process-
ing time corresponding to the different models and their own behavior also in
the object detection on videos.

In order to start the training of the model, it was necessary to produce the
record file for each partition of the dataset, because it is a particular file
format required by Tensorflow serializing both data images and annotations.

48



3.3 — Defect detection software development

The starting point was represented by the annotation files in PascalVoc XML
format (see Section 3.3.1 and Figure 3.7) which are first converted in CSV
(Comma Separated Values) in order to have a complete overview of all the
objects labelled in the images by means of a table. In the structure of the
produced file, in each row the following information are reported: the file-
name corresponding to the specific image, the width and the height of the
bounding box drawn, its relative class label and its coordinates (zmin, ymin,
Tmax, ymax).

From this conversion we implemented a script (reported in Figure 3.10), by
following the Tensorflow hints, aimed to provide the final proper record files.
The final step to start the training and evaluation phase was to set correctly
the configuration file relative to the model. First of all, it was necessary to
modify the number of classes with respect to the pre-trained model, as above-
mentioned. Focusing on the training and the evaluation configuration, it was
important to indicate the right paths corresponding to the record files of the
different partitions, to the label map (previously shown in Figure 3.9) and to
the fine tune checkpoint, by specifying also its typology, that in this case is
“detection”.

During the training phase specified in the configuration file, there are other
fundamental hyperparameters of gradient descent, which consists in an iter-
ative optimization process; in particular, we have the batch size and the
number of steps. The former controls the number of training samples to
work through before the model’s internal parameters are updated and both
are strictly linked to the measure of the number of epochs, which represents
the number of passes of the entire training dataset that the machine learning
algorithm has completed. Just to give an example of the relationship between
all these terms, if you have 1,000 images and use a batch size of 4, an epoch
consists of: 1,000 images / (4 images / step) = 250 steps.

Depending on the model, these hyperparameters are set properly and we can
see these choices more in detail in the next Chapter 4, where all the experi-
ments are reported.

49



Damage detection

#Generating TF records
def class_text to_int(row_label)
if row_label == ‘dent':
return 1
if row_label == "scratch’:
return 2
if row_label == "Zity':
return 3
if row_label == 'front fog light':
return 4
else:
None

def split(df, group):
data = namedtuple('data’, ['filename’, 'object'])
gb = df.groupby(group)
return [data(filename, gb.get group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]

(a) Tf record generation: cell 1

def create_tf_example(group, path)

with tf.io.gfile.GFile(os.path.join(path, "{}'.for
enceded_jpg = fid.read()

encoded_jpg_io = ic.BytesIo(encoded_jpg)

image = Image.open(enceded_jpg_io)

width, height = image.size

filename = group.filename.encode('utfs')

image format = b'jpe’

t{group.filename)), "rb') as fid

tig

xmins = []

¥maxs = []

ymins = []

ymaxs = []
classes_text = []
classes = []

for index, row in group.cbject.iterrows():
xmins.append{row[ 'xmin'] / width)
xmaxs.append{row[ 'xmax'] / width}
ymins.append{row[ 'ymin'] / height)
ymaxs.append{row[ 'ymax'] / height}
classes_text.append{row[ 'class'].encode{ "utfs")})
classes.append{class_text_to int{row['class']))
tf_example = tf.train.Example({features=tf.train.Features(feature={
image/height': dataset_util.inte4 feature(height),
age/ th': dataset_util.inté4 feature(width},
mage/filename': dataset_util.bytes_feature(filename),
age/source_id"': dataset_util.bytes_feature(filename},
image/encoded’: dataset_util.bytes_feature{encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
‘image/object/bbox/xmin': dataset_util.fleoat_list_ feature(xmins),
'image/object/bbox/xmax': dataset_util.fleat_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.fleat_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.fleat_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
‘image/object/class/label': dataset util.inte4 list feature(classes),
19}
return tf_example|

(b) Tf record generation: cell 2

#creates tfrecord for both csv's
for csv in ['train_labels', "test labels']:
writer = tf.io.TFRecordWriter(data_base_url + csv +
path = os.path.join(image_dir)
examples = pd.read_csv(data_base_url + csv + '.csv')
grouped = split{examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer. write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), data base_url + csv + ".record’)
print('successfully created the TFRecords: {}'.format(data_base url +csv + '.record’))

.record’)

(C) Tf record generation: cell 3

Figure 3.10: Script sections for the record file generation

50



Chapter 4

Experiments and results

4.1 Experiments plan introduction

As explained in the previous section 3.3.1, the dataset was in continuous
expansion. In general, it was decided to follow a linear increase in the amount
of the added pictures, by fixing some partitions to be tested on the path
(except for the last one, where we made some different modifications regarding
the labelling operation, fully detailed in section 4.6):

e Dataset200;

Dataset500,;

Dataset750;

Dataset1100;

Dataset1100 _ new.

4.2 First test dataset: “Dataset 200”

Tests started on a first version of dataset of about 200 images, using a small
but fast model, already analyzed in Section 2.4.3 (SSD MobileNet).

The result were satisfactory compared to the expectations, but following the
literature on the state-of-the-art models for machine learning (as explained
deeply in Section 2.5), we decided to take into account the object detection
API support for Tensorflow 2 and to concentrate our efforts on pre-trained

o1



Experiments and results

models on COCO dataset, as EfficientDet models.

Figure 4.1: Model based on EfficientDetD2 (Dataset 200)

This was a crucial step: the initial dataset, we built, was producing the
first results (look at Figure 4.1 and Table 4.1) and we could focus building a
larger one in order to improve them significantly.

Pre-trained model | mAP(%) | mAR(%)
EfficientDetDO 7.7 11.5
EfficientDetD1 8.6 11.9
EfficientDetD2 9.1 14.0

Table 4.1: Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset 200

4.3 Second test dataset: “Dataset 500”

Carrying on with a larger dataset, of about 500 images, prevents us to train
more accurate models (e.g. EfficientDetD3).

Within this second image dataset, in general, more pictures relative to dam-
aged cars containing dents on the car body were included, in order to obtain
a more balanced effect during the training between the two classes ( “scratch”

52



4.4 — Third test dataset: “Dataset 7507

and (“dent”). Most of them were collected from web sources, with a different
resolution with respect to the rest of the other photos taken manually. It
could be this, the reason why the improvement visible in the obtained values
reported in Table 4.2 did not result as meaningful as expected.

Pre-trained model | mAP (%)) | mAR(%)
EfficientDetD0 10.9 20.1
EfficientDetD1 12.3 18.2
EfficientDetD2 15.0 28.4
EfficientDetD3 14.9 23.2

Table 4.2: Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset 500

4.4 Third test dataset: “Dataset 750”

During the tests made by exploiting a third version of dataset (with an amount
of 750 pictures), we obtained results which point out the improved quality
(and quantity, of course) of the dataset.

Figure 4.2: Object detection on a sample using SSD EfficientDetD2 - on the left -
the ground truth bounding boxes made during labelling, used for training - on the
right

53



Experiments and results

In Figure 4.2, it is possible to observe a comparison between the detections
performed by the neural network and the ground truth, that is a real sample,
labelled by hand for Dataset 750. This kind of comparison is done on the
validation set, to evaluate the performance of the network and obtain the
evaluation metrics reported on Figure 4.3a.

In Figure 4.3b is reported the same image of Figure 4.1, processed with Ef-
ficientDetD2 network after being trained on Dataset 750. To be noted the
improvement in the detection and in the superposition of the bounding boxes
(considering that often the damages are a combination of dents and scratches).

Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.149
Average Precision (&AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.391
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.086
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.411
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.135
Average Precision (RP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.1l¢64
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.135
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.253
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.299
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.421
Average Recall (BR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.28¢
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.308

(a) Model evaluation metrics

G scratch: 98%

.

scratc; 160% g

(b) Model behaviour on a test sample

Figure 4.3: Model based on EfficientDetD2 (Dataset 750)

We managed to build a dataset for any generic kind of car, in generic
light conditions, both inside (e.g. in a garage) or outside. In the former
case, during the test on the Dataset 750, we started working to improve the
accuracy, even though the results show still a low performance. This could
be due to lack of samples in those specific conditions within the dataset used
during the training phase and, furthermore, in a closed place with artificial

54



4.4 — Third test dataset: “Dataset 7507

lights, reflexes created on some car surfaces can be easily mistaken and be
interpreted as scratches (keeping in mind that also for a human this task is
not so easy, as in Figure 4.4).

Figure 4.4: Object detection on a car surface with the presence of reflexes
(model based on EfficientDetD2)

In the following table (Table 4.3) an overview of the best average results
obtained on Datast 750 is presented, in terms of evaluation metrics, corre-
sponding to all the implemented models.

Pre-trained model | mAP(%)) | mAR(%) Data augmentation notes
EfficientDetD1 18.6 29.1 Random horizontal flips
Random horizontal flips
EfficientDetD1 17.0 30.1 Random scale, crop , pad to square
Random rgb to gray
EfficientDetD2 23.5 28.1 No data augmentation
EfficientDetD2 22.7 29.0 Random horizontal flips
Random horizontal flips
EfficientDetD2 17.4 30.1 Random scale, crop, pad to square
Random rgb to gray
EfficientDetD3 25.1 28.7 Random horizontal flips
EfficientDetD4 11.6 26.7 Random horizontal flips

Table 4.3: Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset 750

59



Experiments and results

As it is possible to notice in Table 4.3 some tests were made by introduc-

ing in the configuration file also an important regularization technique, that is
data augmentation. It is a widely adopted procedure used to increase the
diversity of the dataset by applying some pre-processing methods. Commonly
they are applied randomly, but they have to be meaningful and realistic for
the current use case. As example, firstly we tried to apply only the random
horizontal flips, because it makes sense for a car, while vertical flip is quite
unrealistic. In a second moment, we have taken into account also the random
scale, crop and pad to square and the random rgb to gray, but, from the re-
sults, it is evident that they are not proper for this use case.
Moreover, even if there are no strict timing constraints during execution, we
performed a lot of tests and decided to evaluate a comparison between the
processing time distinguishing each model. In the table below (Table 4.4),
some results are reported regarding the time to process a test video of 38
seconds (resolution 1280x720, 30 fps) on an 17-8550-U Intel processor. Con-
sidering 30 frames per seconds, in 38 seconds we have 30x38=1140 images,
thus, just to give an example, for the case of EfficienDetD2, the inference time
for a single image is (60x21)/1140, that is about 1.1 sec.

Model Processing time [minutes]
EfficientDetDO ~ 7
EfficientDetD1 ~ 12
EfficientDetD2 ~ 21
EfficientDetD3 ~ 39
EfficientDetD4 ~ 68

Table 4.4: Processing time relative to all the implemented models — the video
resolution is 1280x720, 30 fps and it lasts 38 seconds

From Table 4.4, it is possible to observe the huge amount of processing time
corresponding to the model EfficientDetD4; for this reason, after some con-
siderations, we have analyzed a trade-off between speed and accuracy and we
have discarded this model in the following test described in the next sections.

56



4.5 — Fourth test dataset: “Dataset 1100”

4.5 Fourth test dataset: “Dataset 1100”

In a fourth dataset collection of about 1100 images, we tried to enlarge our
dataset integrating new photos with similar features to the previous one. Fol-
lowing a linear increase in the amount of the added pictures, we included car
images in light conditions that seemed to be closer to the real situation in
the garage. Most of the photos were shot in the evening, with streetlights
switched on or inside underground car parking in order to improve this fea-
ture in the learning process of the neural network.

The gained results are reported in the following table (Table 4.5).

Pre-trained model | mAP (%)) | mAR(%) | Data augmentation notes
EfficientDetD1 11.9 24.6 Random horizontal flips
EfficientDetD2 15.3 29.2 No data augmentation
EfficientDetD2 13.3 26.6 Random horizontal flips
EfficientDetD3 10.5 22.1 Random horizontal flips

Table 4.5: Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset 1100

As the low values in almost all the parameters, in spite of the improvement
both in quality and in quantity of the dataset, we decided to make some modi-
fications in the preparation of the next dataset version ( “Dataset 1100_new”,
section 4.6).

4.6 Fifth test dataset: “Dataset 1100 new”

In the last collection of images, we observed that the introduction of the
Zity cars pictures led to reconsider the number and the typology of classes
set in the earlier labelling operation, as previously specified in Section 3.3.1.
As visible in Figure 4.5, the two additional elements that caused problems
were: the front fog lamp, characterized by an uncommon shape, and the
presence of the text “Zity” on the car body. Therefore, during the preparation
of (Dataset 1100_new), the labelling action, performed on the new added
photos, included two further classes of label (“Zity” and “front fog light”), as
previously shown in the label map in Figure 3.9.

57



Experiments and results

Figure 4.5: Object detection on a Zity car sample where the front fog light and the
text are recognized as scratches (model based on EfficientDetD2)

After these modifications and a further cleaning of the previous versions
of dataset (we just deleted most of the images with too low resolution down-
loaded from the web), we obtained satisfactory results, as reported in Table
4.6 and displayed in Figure 4.6.

Pre-trained model | mAP (%)) | mAR(%) | Data augmentation notes
EfficientDetD1 34.8 38.7 No data augmentation
EfficientDetD1 38.2 42.6 Random horizontal flips
EfficientDetD2 35.4 38.9 No data augmentation
EfficientDetD2 46.4 49.9 Random horizontal flips
EfficientDetD3 44.8 51.5 Random horizontal flips

Table 4.6: Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset 1100 _new

58



4.6 — Fifth test dataset: “Dataset 1100 new”

Figure 4.6: Object detection on a Zity car sample where the object detection is
performed correctly (model based on EfficientDetD2)

59



60



Chapter 5

Conclusion and future
works

The study presented in this thesis showed that the image recognition and
detection approach selected is pretty functional from a point of view of the
accuracy performance, even if the task was very challenging. The choice
of transfer learning as starting point, made after an accurate comparison
between the different typologies of object detection algorithms (single-stage
detector/two-stage detector) and pre-trained models on huge datasets (COCO
dataset), as deepened in Section 2.5, proved to be suitable for this use case.
In particular, we observed that EfficientDet pre-trained models(D0, D1, D2,
D3, D4) obtained good performances, in terms of the most relevant evaluation
metrics (like Average Precision, Average Recall).

The proposed method was carried out by growing up the dataset by successive
subsets, collected, on the basis of the results (reported in Chapter 5) achieved
along the path: it was possible to notice that the optimal preparation of the
whole dataset have represented the key of the improvement for the final re-
sults (highlighted in Table 4.6) . The turning-point it has been seen especially
in the introduction of realistic images (“Dataset 1100_new”, section 4.6) in
the initial version of datasets, where the neural network had the possibility
to train the specific features belonging to the real cases.

The final results show that, thanks to the quality of gathered dataset and the
refinement technique, the built models are able to improve by about 25% the
mean Average Precision (mAP) and the mean Average Recall (mAR) score
with respect to the starting values. This is a relevant goal, because they are
the standard accuracy scores that provide an idea of the amount of possible

61



Conclusion and future works

false positive or false negative cases during the object detection implementa-
tion.

In fact, during the experiments we have seen that also the bounding boxes
drawn on images samples have identified the objects more precisely, avoid-
ing other elements representing false positive (e.g. reflexes, front fog lights,
labels/text on the car body surface). In particular, meaningful results have
been given by the models based on the pre-trained models EfficientDet D2
and EfficientDetD3, where the confidence score reached very high value as
previously displayed in Figure 4.6 (Section 4.6).

In spite of the main objective of the project has been successfully achieved,
some improvements should be investigated to enhance the system for a refined
application.

Working toward that, from a dataset point of view, a further research of
images could be achieved in order to act on its quantity and its quality: the
total number of the Zity car pictures, specific for this use case, should be
increased with respect to the rest showing the generic cars typologies and
also their resolution should be improved.

In addition to an high-quality dataset, it could be useful investigate some
other common neural network "tricks', including both further regularization
techniques (e.g. dropout) or the implementation of a variety of optimization
algorithms, such as mini-batch gradient descent, RMSprop, Adam, so that
the models already gained could be further customized in terms of efficiency
and best performance.

62



List of Figures

2.1

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

2.13

2.14
2.15

2.16
2.17
2.18
2.19
2.20

2.21

Symbolic representation of a biological neuron (left) and its

mathematical model (right) . . .. ... ... ... ... ... 12
Commonly used activation functions . . . ... ... ... .. 13
Fully-connected layers in two examples of Neural Networks . . 14
Softmax function with a probability distribution . . . . . . . . 15
Loss function in Support Vector Machine . . . . . . . . . . .. 15
Class scores scheme in SVM . . . . .. .. ... ... .. ... 16
Architecture of the Convolutional Neural Network . . . . . . . 17
Filtering operation in Convolutional layer . . . . . . . . . . .. 18
Computation of the output feature map size . . . . . . . . .. 19
Filtering operation with "Same zero-padding" mode . . . . . . 20
Average and max pooling oparation schemes . . . . . .. ... 22
Key components associated with deep learning-based anomaly

detection technique . . . . . . . . ... ... ... 23

Main machine vision approaches (from left): Semantic seg-
mentation, Classification + Localization, Object detection, In-

stance segmentation . . . . . ... 0oL L. 26
SSD and YOLO architectures . . . . . ... ... ... .... 28
Architecture of a convolutional neural network with a SSD de-

tector . . . ... 29
Evaluation metrics formulas . . . . ... ... ... ... ... 30
Intersection of Unit scheme definition . . . . . . . .. ... .. 31
MobilNet v1 and v2 architectures . . . . . . . ... ... ... 32
MobilNet v1 and v2 parameters . . . . . . . ... ... .... 32
EfficientNet accuracy on Imagenet (on the left) EfficientDet

AP on COCO (on theright) . . . ... ... ... ... .... 33
EfficientDet performance on COCO . . . . . ... ... .. .. 34

63



List of Figures

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10

4.1
4.2

4.3

4.4

4.5

4.6

High-Level System Architecture . . . . . . . .. .. ... ... 35
Position of the components . . . . . . . ... .. ... ... .. 37
Real view from the cameras . . . . .. ... ... ... ..., 37
Damage detection flow chart . . . . . . ... ... ... .. 39
Examples of: discarded images (a)-(b) and included images

(0)-(d) . o o 40
Labelling steps representation . . . . . . . ... ... .. ... 41
Example of Labellmg output file in PascalVoc XML format . . 43
Tensorflow 2.0 architecture . . . . . . . ... ... .. ... .. 46
Label map containing all the classes . . . . . . . ... ... .. 47
Script sections for the record file generation . . . . .. . . .. 50
Model based on EfficientDetD2 (Dataset 200) . . . . . . . .. 52

Object detection on a sample using SSD EfficientDetD2 - on the left
- the ground truth bounding boxes made during labelling, used for

training - on the right . . . . . . . . ... 0L 53
Model based on EfficientDetD2 (Dataset 750) . . . . . . . .. 54
Object detection on a car surface with the presence of reflexes

(model based on EfficientDetD2) . . . . ... ... ... ... 55

Object detection on a Zity car sample where the front fog light and
the text are recognized as scratches (model based on EfficientDetD2) 58
Object detection on a Zity car sample where the object detection is
performed correctly (model based on EfficientDetD2) . . . . . . . . 59

64



List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset
200 . . . .
Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset
500 . .« . e
Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset
T50 . . oo
Processing time relative to all the implemented models — the
video resolution is 1280x720, 30 fps and it lasts 38 seconds . .
Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset
1100 . . . . o
Mean values of the evaluation metrics - Average Precision (AP)
and Average Recall (AR) - relative to models trained on Dataset
1100 mnew . . . . . . . s

65



66



Bibliography

[1]
2]

[12]

[13]

[14]

P. SAROCA, “DO01 - early bird activity report,” 2019.

“How to prepare for an automated future: 7 steps to machine learning.” https://
vanrijmenam.nl/prepare-for-automated-future-7-steps-machine-learning/,
2019.

“What is  machine learning?”  https://www.mathworks.com/discovery/
machine-learning.html.

R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: a survey.” https:
//arxiv.org/pdf/1901.03407.pdf, Jan 2019.

“Convolutional neural networks for visual recognition.” https://cs231n.github.io/
neural-networks-1/, 2020.

“Neural networks: a modern introduction.” https://compsci682.github.io/notes/
neural-networks-1/, 2020.

“Support  vector machines (svms).” https://medium.com/@aaaanchakure/
support-vector-machines-svms-4bcccbd78369, 2019.
“Explained: Deep learning in tensorflow — chapter 07 https://

towardsdatascience.com/explained-deep-learning-in-tensorflow-chapter-0-acae8112a98,

2019.

“You only look once (yolo) real-time object detection.” https://www.cpp.edu/
~honorscollege/documents/convocation/EGR/ECE_Keil.pdf.

“Cnn convolutional layer in depth.” https://sameerbairwa07.medium.com/
convolutional-layer-ab60395b8b27.

“A comprehensive guide to convolutional neural net-

works - the elib way.” https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53,
2018.

“A gentle introduction to pooling layers for convolu-

tional neural netwoks.” https://machinelearningmastery.com/

pooling-layers-for-convolutional-neural-networks/, 2019.

Z. L. Shuai Shao, “Objects365: A large-scale, high-quality dataset for object
detection.” https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_
Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_
ICCV_2019_paper.pdf, 2019.

“How single-shot detector (ssd) works?.” https://developers.arcgis.com/python/
guide/how-ssd-works/.

67


https://vanrijmenam.nl/prepare-for-automated-future-7-steps-machine-learning/
https://vanrijmenam.nl/prepare-for-automated-future-7-steps-machine-learning/
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://arxiv.org/pdf/1901.03407.pdf
https://arxiv.org/pdf/1901.03407.pdf
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://compsci682.github.io/notes/neural-networks-1/
https://compsci682.github.io/notes/neural-networks-1/
https://medium.com/@aaaanchakure/support-vector-machines-svms-4bcccbd78369
https://medium.com/@aaaanchakure/support-vector-machines-svms-4bcccbd78369
https://towardsdatascience.com/explained-deep-learning-in-tensorflow-chapter-0-acae8112a98
https://towardsdatascience.com/explained-deep-learning-in-tensorflow-chapter-0-acae8112a98
https://www.cpp.edu/~honorscollege/documents/convocation/EGR/ECE_Keil.pdf
https://www.cpp.edu/~honorscollege/documents/convocation/EGR/ECE_Keil.pdf
https://sameerbairwa07.medium.com/convolutional-layer-ab60395b8b27
https://sameerbairwa07.medium.com/convolutional-layer-ab60395b8b27
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf
https://developers.arcgis.com/python/guide/how-ssd-works/
https://developers.arcgis.com/python/guide/how-ssd-works/

Bibliography

[15] https://cocodataset.org/.

[16] O. Liu, L., “Deep learning for generic object detection: A survey.” https://link.
springer.com/ONLINE/10.1007/s11263-019-01247-4, 2020.

[17] “Single shot object detection ssd using mobilenet and opencv.” https://honingds.
com/blog/ssd-single-shot-object-detection-mobilenet-opencv/.

[18] “Mobilnet version 2.” https://machinethink.net/blog/mobilenet-v2/.

[19] R. P. Mingxing Tan, “Efficientdet: Scalable and efficient object detection.” https:
//arxiv.org/abs/1911.09070, Jul 2020.

[20] P. SAROCA, “D03 - report on technical specification for the real-time object/defect
recognition solution,” Sep 2020.

[21] “Pythorch  vs  temsorflow in 2020 https://towardsdatascience.com/
pytorch-vs-tensorflow-in-2020-fe237862fael, 2020.

[22] “Tensoflow 2.0.0” https://github.com/tensorflow/tensorflow/releases/tag/
v2.0.0, 2019.

68


 https://cocodataset.org/
https://link.springer.com/ONLINE/10.1007/s11263-019-01247-4
https://link.springer.com/ONLINE/10.1007/s11263-019-01247-4
https://honingds.com/blog/ssd-single-shot-object-detection-mobilenet-opencv/
https://honingds.com/blog/ssd-single-shot-object-detection-mobilenet-opencv/
https://machinethink.net/blog/mobilenet-v2/
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1911.09070
https://towardsdatascience.com/pytorch-vs-tensorflow-in-2020-fe237862fae1
https://towardsdatascience.com/pytorch-vs-tensorflow-in-2020-fe237862fae1
https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0
https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0

	Introduction
	Context and project
	Challenges and goals
	Thesis outline

	Background
	Overview
	Neural Networks
	Neuron model and typical activation functions
	Fully connected Neural Networks

	Convolutional Neural Network
	General architecture
	Convolutional layers
	Pooling layers

	Defect detection algorithm
	Deep learning-based anomaly detection
	Object detection approach
	Single Shot Detector

	Pre-trained models
	Transfer learning and evaluation metrics
	MobilNet
	EfficientDet


	Damage detection
	Case study system architecture
	High-level system architecture
	Acquisition system setup
	Position of the components

	Damage recognition process
	Functional requirements
	Damage recognition steps

	Defect detection software development
	Dataset preparation
	Development tools and frameworks
	Model training and evaluation


	Experiments and results
	Experiments plan introduction
	First test dataset: “Dataset 200”
	Second test dataset: “Dataset 500”
	Third test dataset: “Dataset 750”
	Fourth test dataset: “Dataset 1100”
	Fifth test dataset: “Dataset 1100_new”

	Conclusion and future works
	List of Figures
	List of Tables
	Bibliography

