
POLITECNICO DI TORINO

Master Degree

in MECHATRONIC ENGINEERING

Master Degree Thesis

Model-based Design of an Automotive Control

Code with a modified V-cycle and Modular

Model approach

Supervisor Candidate

Prof. Stefano Carabelli Martina Coletta

A.A.2020/2021

Summary

The methodology is an important concept that holds in System Engineering. It is
a transdisciplinary and integrative approach that enables the successful realization,
use, and retirement of engineered systems. System Engineering provides facilitation,
guidance and leadership to integrate the relevant disciplines and speciality groups
into a cohesive effort, forming an appropriately structured development process that
proceeds from concept to production, operation, evolution and eventual disposal. It
integrates the Model-based Design approach. Concerning the System Engineering
purposes, the methodology has been developed to enable the interaction among
different disciplines by creating a standard procedure and providing tools, that are
valid for the design of any system. The provided tools are the Hybrid V-cycle
and the Modular Technical Model. The Hybrid V-cycle is a guideline for the
development process and it is composed of different steps that involve the Modular
Technical Model usage. The Hybrid V-cycle is developed as an extended version
of V-cycle. It is used to distinguish the computing platforms that are involved
at each step: DWS (Development Workstation), RCP (Rapid Control Prototyping)
and VMU (Vehicle Management Unit). The Hybrid V-cycle as well as defining the
platforms it describes in details the different models that have to be used at each
step that are based on the Modular Technical Model. The Modular Technical Model
provides a structured architecture composed by a number of parts (modules) that are
intended to define the system components and to differentiate the skills involved in
the development process. As a consequence, the Modular Technical Model specifies
the interfaces between the system parts (and the relative discipline) to enable the
interaction. The idea is to create the Modular Technical Model as a standard layout
with a pre-defined structure that is not dependant on the application and that is
composed by several empty blocks that are the modules.
Using the Hybrid V-cycle and the Modular Technical Model is of a great importance
when dealing with the code generation. The code is automatically extracted from the
Control Logic module (devoted to the control algorithm) and it has to be deployed
on the target hardware. In order to differentiate the target hardware a Control Logic
frame is included into the Control module to represent the platform interfaces. These
are used to create the interaction between the control algorithm and the system.
Then the frame is the only Modular Technical Model component that changes along
with the Hybrid V-cycle steps.
In order to test the methodology accuracy and consistency a ”Filters in series”
application is developed first. Then the ”Vehicle Management Unit code for an
hybrid car” application is considered.
The dSPACE MicroAutoBox II is used as Rapid Control Prototyping system.

Acknowledgement

I would like to express my profound gratitude to the Professor Stefano Carabelli that
supported me and that really encouraged me during the thesis work. I would like also
to thank the PANDA G1 Electrical team for the support. Finally I would express
my gratitude to my family and all the people that believed in me and encouraged
me till the end.

Contents

List of Figures

Table of acronyms

1 Methodology 1

2 V-cycle 2

2.1 V-cycle main characteristics . 3

2.2 Hybrid V-cycle . 5

2.2.1 Hybrid V-cycle description . 6

3 Modular Technical Model 10

3.1 MTM components . 11

3.1.1 Modules . 11

3.1.2 Additional components . 12

3.2 MTM implementation . 13

3.2.1 Simulink implementation details 14

3.2.2 Blocks description . 15

3.2.3 Simulink Template Generation 19

3.2.4 Simulink Template Usage . 19

4 Control module structure 22

4.1 Control module characteristics . 23

4.2 Introduction to the code generation 25

4.3 Multi-task application . 26

4.3.1 Multi-task implementation . 29

4.3.2 Simulink implementation . 30

5 Control code generation 33

5.1 SIL (Software-in-the-loop) . 33

5.1.1 SIL simulation . 34

5.2 PIL (Processor-in-the-loop) . 37

6 HMI module structure 41

7 Rapid Control Prototyping (RCP) 42
7.1 dSPACE TargetLink . 50

7.1.1 MIL simulation with TargetLink 50
7.1.2 SIL simulation with TargetLink 52
7.1.3 PIL simulation with TargetLink 52

8 Tutorial Example 54
8.1 Deeper analysis through the Hybrid V-cycle 54

8.1.1 System Overall Specifications 55
8.1.2 System Design . 56
8.1.3 RCP Code Production . 59
8.1.4 RCP on Test Bench . 60

8.2 Filters in series results . 62
8.2.1 MIL results . 63
8.2.2 SIL simulation . 65

8.3 dSPACE results . 66
8.3.1 Simulated Dashboard components 66
8.3.2 Real Dashboard components 69

8.4 Conclusions . 70

A Automotive application 72
A.1 Concept Model . 72
A.2 Modular Technical Model . 74
A.3 Code Generation . 75
A.4 dSPACE MicroAutoBox II . 75

Bibliography 79

List of Figures

2.1 Theoretical V-cycle . 2
2.2 MATLAB V-cycle [3] . 4
2.3 Hybrid V-cycle . 5
2.4 System Design step . 6
2.5 RCP Code Production step . 7
2.6 RCP on Test Bench step . 8
3.1 General architecture of the Modular Technical Model 10
3.2 Simulink implementation of the MTM as a template 13
3.3 Control Block content . 16
3.4 HMI content . 17
3.5 Button . 17
3.6 Example of a Button connected to a constant value 18
3.7 Content of a generic Monitor . 18
3.8 Template preview . 19
3.9 Example . 20
3.10 Simulink Starting Page . 20
3.11 Templates . 20
3.12 Example . 21
3.13 Template Information . 21
4.1 Control and Control Logic . 22
4.2 Hybrid V-cycle . 23
4.3 Example of dSPACE ADC/DAC modelling [14] 24
4.4 Example of Control Logic frame when considering the dSPACE Mi-

croAutoBox II as RCP platform and when performing the HIL pro-
cedure . 25

4.5 Generic multi-task application . 27
4.6 Example of dSPACE overrun situation [18] 28
4.7 Multi-task application with different task sample rates 29
4.8 Example of a model with Rate Transition blocks - Digital Filters in

series . 30
4.9 Example of Control Logic content that represents a multi-task appli-

cation with three different synchronous tasks and an aperiodic process
modelled by different Stateflow charts 31

5.1 Test Harness Example . 35
5.2 Example of Runs pane . 36
5.3 Control badge . 36
5.4 PIL Verification Mode . 37

5.5 Test Harness error . 37
7.1 dSPACE MicroAutoBox II . 42
7.2 Example of dSPACE AD/DA converters 43
7.3 Math and Data Types . 44
7.4 Simulation Target . 44
7.5 RTI load options . 44
7.6 RTI variable description . 45
7.7 Platforms/Device icon . 45
7.8 Register Platforms . 46
7.9 Procedure . 46
7.10 .sdf file selection . 46
7.11 Measurement Configuration icon . 47
7.12 Measurement Configuration menu . 47
7.13 Properties . 47
7.14 Model Root . 47
7.15 Block selection . 48
7.16 Layout example . 48
7.17 Stop RTP . 49
7.18 Measuring buttons . 49
7.19 dSPACE example of a generic model in MIL simulation mode 51
7.20 TargetLink Plot Overview Window considering a generic dSPACE

example . 51
7.21 dSPACE example of a generic model in SIL simulation mode 52
7.22 TargetLink Main Dialog code informations 53
7.23 dSPACE example of a generic model in PIL simulation mode 53
8.1 V-cycle . 54
8.2 System Overall Specifications step . 55
8.3 Filters in series - concept model . 55
8.4 System Design step . 56
8.5 Control Logic content with the tasks that are executed at different

sample times. A1 ⇒ Asynchronous D1 ⇒ Discrete, sample time 1
D2 ⇒ Discrete, sample time 2 D3 ⇒ Discrete, sample time 3 57

8.6 Filters in series application - Control Logic content without asyn-
chronous source . 58

8.7 RCP Code Production step . 59
8.8 RCP on Test Bench step . 60
8.9 DS1541 - dSPACE I/O board . 61
8.10 Concept model results . 63
8.11 DWS MIL results . 63
8.12 DWS MIL results . 64
8.13 RCP MIL results . 64
8.14 SIL results of the 500 Hz filter . 65
8.15 SIL results of the 100 Hz filter . 65
8.16 Test Bench . 66
8.17 Control content - simulated dashboard components 66
8.18 System OFF . 67

8.19 System ON - Emergency OFF . 68
8.20 System OFF - Emergency ON . 68
8.21 Control content - real dashboard components 69
8.22 System OFF . 69
8.23 System ON - Emergency OFF . 70
8.24 System OFF - Emergency ON . 70
A.1 Wired logic schematic of the vehicle 73
A.2 Inverter logic schematic . 73
A.3 Environment module - road slope . 74
A.4 Plant module - vehicle representation 74
A.5 Control module of the step 2.1 of the Hybrid V-cycle with the frame

and the Control Logic module . 74
A.6 Control Logic module - Supervisor and Task for the torque command

computation . 75
A.7 Frame representing the input signals to the Control Logic module . . 76
A.8 Frame representing the output signals from the Control Logic module 76
A.9 Forward test with an acceleration command that come from the ex-

ternal DC power supply. 77
A.10 Backward Test with the acceleration command that come from the

external DC power supply . 77
A.11 Emergency situation . 78
A.12 AC charger plugged . 78

Table of acronyms

RCP Rapid Control Prototyping
VMU Vehicle Management Unit
MIL Model-in-the-loop
SIL Software-in-the-loop
PIL Processor-in-the-loop
HIL Hardware-in-the-loop

DWS Development Workstation
HMI Human-Machine-Interface
MTM Modular Technical Model
AD Analogical-Digital
DA Digital-Analogical

PWM Pulse-Width-Modulation
ADC Analogical-Digital converter
DAC Digital-Analogical converter
FFT Fast Fourier Transform
API Application Programming Interface
PC Personal Computer
RTI Real-Time Interface
sdf System Description File

RTP Real-Time Platform

Chapter 1

Methodology

The methodology is an important concept that holds in System Engineering. It is
a transdisciplinary and integrative approach that enables the successful realization,
use, and retirement of engineered systems. It makes use of systems principles and
concepts, and scientific, technological and management methods. System Engineer-
ing provides facilitation, guidance and leadership to integrate the relevant disciplines
and speciality groups into a cohesive effort, forming an appropriately structured de-
velopment process that proceeds from concept to production, operation, evolution
and eventual disposal. The approach generates and evaluates alternative solution
concepts and architectures and it focuses on modelling requirements and selected
solution architecture for each phase of the endeavour and performing design synthe-
sis and system verification and validation [1].
System Engineering integrates the Model-based Design approach. It is related to
models that describe the system. Models provide clear structures to deal with the
system complexity. Moreover, they are a simple, understandable and standardized
language for all involved engineers and managers [2]. Models allow simulation and
prediction of behaviour and properties of a generic system in early phases, resulting
in the acceleration of the design process and the increase of the efficiency of the
product development.
Concerning the System Engineering purposes, the methodology has been developed
to enable the interaction among different disciplines by creating a standard proce-
dure and providing tools, that are valid for the design of any system. The provided
tools are the V-cycle and the Modular Technical Model.
The V-cycle aims at defining the process of the system development. It makes a
differentiation of phases (time-based) and stages (content-based) from the System
Requirements to the System Decomposition (based on the Modular Technical Model)
and System Integration and their iteration.
The Modular Technical Model provides a structured architecture composed of a
number of parts (modules) that are intended to define the system components. This
allows to split the skills involved in the system development process. As a conse-
quence, the Modular Technical Model specifies the interfaces between the system
parts (and the relative discipline) to enable the interaction.
The methodology is needed in order to gain in re-usability, safety, system and timing
performances as well as costs trade-off.

1

Chapter 2

V-cycle

Figure 2.1: Theoretical V-cycle

The V-cycle is a guideline that divides the development process into three con-
ceptual phases (Figure 2.1). The phase depicted on the left side of the V-model
describes the transformation of requirements, which are considered as an input when
designing a system. In the second phase the project is split into sub-projects. Each
sub-project is managed by a domain-specific team that can better address the critical
aspects related to that engineering area. The third section integrates the previously
split sub-projects during the system integration, verification and validation. The
result or output of the V-cycle is the product [2].

2

CHAPTER 2. V-cycle 2.1. V-cycle main characteristics

2.1 V-cycle main characteristics

1. Integration of Model-based Development approach.
The model is a system representation and it is designed according to spe-
cific modelling languages. It is the starting point of the software development.
The modelling phase purpose is to generate code for the final application. The
code is generated from the model in an automatic fashion (Automatic Code
Generation) by a transformation tool.
The code generation introduces the Functional Safety concept, i.e., the soft-
ware can include redundant functionalities in order to guarantee safety.
Once the software is developed, it has to be deployed on different target hard-
ware (or computing platforms) that are the RCP device and VMU.

2. Life cycle representation.
The V-cycle illustrates the whole life cycle of the system development starting
from the requirements up to the final product, describing accurately each step
and how it has to be performed.

3. Sequential or iterative approach.
The V-cycle steps have to be carried out in the right order, following the
V-shape. During the verification and validation phases some discrepancies
between the expected output and the obtained one might be detected. To solve
these inconsistencies, the process has to be restarted from the phase in which
the problems may have originated. It may also happen that the development
process has to be started again from the beginning of the V-cycle.
The iterations are grouped in the ’-in-the-loop’ procedures, that are:

• Model-in-the-loop.
The system is designed and simulated non in real-time. Real-time means
that a system must respond to external events both correctly and within
a finite, specified period of time called deadline. Being in a non real-time
application means that fulfilling the deadline is not mandatory, but the
correctness of the output must be guaranteed.

• Software-in-the-loop.
It is the process used to develop the software as a result of the automatic
code generation and to check whether it behaves as expected. The idea
is the same as the MIL approach, but the system is simulated non in
real-time along the code resulting from the code generation process.

• Processor-in-the-loop.
This procedure aims at integrating the software into the target hardware.
Then the software behaviour is checked, being executed non in real-time
on the hardware.

• Hardware-in-the-loop.
In general the Hardware-in-the-loop procedure has a first step in which a
dedicated hardware or emulation hardware is used to mimic the physical
interfaces. In this way a virtual real-time implementation of physical
components is created and then simulated to check the system behaviour.

3

2.1. V-cycle main characteristics CHAPTER 2. V-cycle

Then, all the system components are tested in real-time using Test Bench
that physically reproduce the system.

4. Verification and validation.

• Verification: evaluation of whether or not a product, service, or system
complies with a regulation, requirement, specification, or imposed condi-
tion. It is often an internal process.

• Validation: assurance that a product, service, or system meets the needs
of the customer and other identified stakeholders. It often involves ac-
ceptance and suitability with external customers.

Figure 2.2: MATLAB V-cycle [3]

There are different interpretations of V-cycle that share the same features described
in Section 2.1. Expanded versions of V-cycle can be found in literature, e.g., Figure
2.2 that have the purpose of highlighting further critical aspects. Another example
concerns the V-model of the United States Department of Transportation (DoT)
(U.S. Department of Transportation, 2009) that emphasizes the meaning of a careful
preparation and definition of the verification process by arrows pointing from left to
right [2].
Taking into account the above considerations, the idea is to create a Hybrid V-cycle
as another expanded version of V-cycle to distinguish the computing platforms and
the different models that have to be used at each step.

4

CHAPTER 2. V-cycle 2.2. Hybrid V-cycle

2.2 Hybrid V-cycle

Figure 2.3: Hybrid V-cycle

It is composed by several steps that are carried out considering different com-
puting platforms and different models:

• DWS (Development Workstation).

It is intended for design and simulation purposes. The first step consists
in modelling the system non in real-time, without any considerations on the
target hardware. After that, the model is designed including all the target
hardware characteristics and then it is simulated.

• RCP (Rapid Control Prototyping)

This platform is used to repeat the MIL simulation. Then it is needed to
perform the SIL and PIL simulations with the system non in real-time and
then for testing (HIL), considering the system in real-time. As a final step the
system behaviour is analysed to verify whether it fulfils the requirements.

• VMU (Vehicle Management Unit)

The approach is the same as RCP, but using the VMU.

• Concept Model
It is a model developed by the customer and it is used to collect the system
specifications neglecting the implementation details.

• Modular Technical Model
This model is used as a standard architecture when considering the imple-
mentation details and the hardware characteristics. The different Hybrid V-
cycle steps use different versions of MTM. The frame is the only element that

5

2.2. Hybrid V-cycle CHAPTER 2. V-cycle

changes among the versions. The frame is a MTM component responsible of
the interfaces between the system and the control algorithm. The control al-
gorithm (or control law) is the code that implements the control logic of the
system.

2.2.1 Hybrid V-cycle description

1. System Overall Specifications
In this phase the concept model is produced by the customer and it has to be
implemented. The platform that is used to develop the concept model is not
relevant. No particular procedure is applied at this step and the concepts of
real-time and non real-time can be neglected.

2. System Design
The System Design step involves only the DWS as computing platform. The
system is considered always non in real-time and the Modular Technical Model
is used as a standard architecture to perform the MIL and SIL procedures.

Figure 2.4: System Design step

2.0 Project Environment
It is a preliminary step intended to prepare the project environment.
The idea is to use a predefined project as an architecture that contains
folders associated to the different Hybrid V-cycle steps. This means that
each step has to be carried out using the corresponding folder. As a
consequence the skills involved in the system development can be split.

2.0.1 Model-in-the-loop
The procedure consists in developing a model that includes all the de-
tailed characteristics of the system and then to simulate that model to

6

CHAPTER 2. V-cycle 2.2. Hybrid V-cycle

check the system behaviour. The results have to match those of the con-
cept model. At this step generic interfaces have to be included into the
frame. They are still not associated to the RCP platform. This is needed
to detect the requirements that are used to choose the most appropriate
RCP platform among all the available devices.

2.0.2 Software-in-the-loop
The procedure is composed of two steps which are respectively mandatory
and recommended. First the code that implements the control logic of
the system has to be automatically generated and compiled. During
this procedure the control algorithm runs on the DWS and the DWS
System Target File is selected. The System Target File is related to the
transformation tool that is used to extract the code from the model. Then
the SIL simulation can be run to check the results of the code generation
as an additional procedure.

2.1. RCP Code Production
The RCP Code Production step involves both the DWS and the RCP platform.
The system in considered always non in real-time and the Modular Technical
Model is used as a standard architecture for the MIL, SIL and PIL procedures.

Figure 2.5: RCP Code Production step

2.1.0 Model-in-the-loop
The model designed at the step 2 is modified including all the character-
istics of the RCP hardware. The MIL procedure is repeated because the
RCP interfaces have to be included into the frame substituting those of
the step 2. Then the model is simulated in order to check whether the
MIL results are compatible with those of the MIL simulation performed
at the step 2.

7

2.2. Hybrid V-cycle CHAPTER 2. V-cycle

2.1.1 Software-in-the-loop
The control algorithm runs on the DWS. The first step consists in check
whether the code can be produced and compiled considering the RCP
System Target File. Then the SIL results can be checked by means of a
specific RCP tool.
The DWS is not connected to the RCP platform.

2.1.2 Processor-in-the-loop
The control algorithm runs on the RCP platform physically connected to
the DWS. The RCP System Target File is selected and the procedure is
carried out using the specific RCP tool.

2.2. RCP on Test Bench
The RCP on Test Bench involves both the DWS and the RCP platform that
are physically connected. The system is considered in real-time and it is
represented by the Test Bench (real interfaces). The part of the Modular
Technical Model that represents the frame and the control algorithm is only
considered.

Figure 2.6: RCP on Test Bench step

2.2.0 Build
The control algorithm runs on the RCP platform. The RCP System
Target File is selected and the code implementing the control algorithm
is automatically generated and compiled.

2.2.1 Hardware-in-the-loop
The code is deployed on the RCP device and the system is tested by

8

CHAPTER 2. V-cycle 2.2. Hybrid V-cycle

means of the Test Bench. A specific RCP software is used to handle the
platform and its signals.

2.3. VMU Selection
This is conceptually equal to the step 2. The MIL procedure is repeated con-
sidering the VMU characteristics. This allows to identify the more appropriate
VMU among all the available devices for the specific application.

3. VMU Procurement & Code Production
The model developed at the step 2.3 is used to perform the SIL and PIL pro-
cedures as the step 2.1 but considering the VMU instead of the RCP platform.

4. VMU on Test Bench
The VMU is physically connected to the DWS. The control algorithm is de-
ployed on the VMU in order to test the system that is represented by the Test
Bench in real-time (HIL).

5. Prototype
Vehicle tuning with Log & Tune real-time interfaces.

9

Chapter 3

Modular Technical Model

Dashboard

Control Monitor

Environment

Plant Plant Monitor

Control LogicControl Logic

Control

HMI HMI Monitor

User

Figure 3.1: General architecture of the Modular Technical Model

The Modular Technical Model is as a standard layout (Figure 3.1) with a pre-
defined structure that is not dependant on the application and that is composed
by several empty blocks that are the modules (subsystems). They just need to be
filled with the desired system characteristics. The result is a standard and reusable
architecture that needs to be implemented.
The model is technical. This means that it contains all the detailed characteristics
of the system, e.g., sampling times, tasks, quantization intervals that the concept
model does not take into account. In fact the Modular Technical Model is used
along with the Hybrid V-cycle steps needed to translate the requirements provided
by the customer into an effective representation of the system.
The model is modular. It is composed of different modules associated to the
parts that derive from the system decomposition. They own specific characteristics
that are analysed by different speciality groups. The result is the separation of
all the disciplines involved in the design of the system components, as the System

10

CHAPTER 3. Modular Technical Model 3.1. MTM components

Engineering approach suggests. The Modular Technical Model is represented as a
main model. It is intended to collect all the modules including the monitors and
the dashboard components. The purpose is to provide a model that describes the
whole system and that allows to easily access the content of the subsystems. It is
mainly used to create the interaction among the modules through the interfaces.
In particular, the main model comprises the Control that includes the frame used
to contain all the target hardware interfaces, e.g., converters. They are needed
to make the Control Logic compatible with the system. The other system parts
interact through simple connections (lines) that can be associated to physical cables
in reality. They are interfaces as well. Moreover, when simulating the main model
all the system performances can be evaluated. They are the result of the modules
interaction. As a consequence the effectiveness of the modules development can be
checked. This can be achieved by means of the monitors that are inside the Plant,
Control, and HMI modules.

Modularity also means that the different modules are potentially independent of
the main model. This results in storing the subsystems content in models that are
separated from the main one. Nevertheless, the different parts are still visible in the
main model because the separation is needed to differentiate the skills involved in
the system design. Then it allows a split modules development that is performed in
the apposite models. The result is that the modules are used for design purposes
while the main model is needed to create the interaction between the subsystems.
Figure 3.1 shows the monitors that are intended to check the modules behaviour
and then they are included into the different subsystems. Another important aspect
regards the dashboard. It represents specific HMI components, e.g., buttons used to
translate the user actions into signals for the Control subsystem.

3.1 MTM components

The Modular Technical Model is composed of different modules that are: Environ-
ment, Plant, Control, Control Logic and User. It also comprises additional compo-
nents that are the monitors and the dashboard.

3.1.1 Modules

Environment

The Environment is the set of noises, disturbances and loads. The module comprises
continuous (analogue) signals.

Plant

The Plant is used to characterize the system that has to be controlled and it com-
prises continuous signals. It also contains the Plant monitor.

11

3.1. MTM components CHAPTER 3. Modular Technical Model

Control & Control Logic

The Control Logic comprises discrete (digital) signals. It is intended to define a
control law that has to be applied on the Plant, in order to obtain a certain sys-
tem behaviour that has to be checked, to verify whether it is equal to the desired
behaviour as much as possible. The module has a frame that is represented by the
dashed line (Figure 3.1). It decouples an I/O device from the control algorithm.
In particular, the frame is a layer that enables the interaction between the Control
Logic and the target hardware by including device specifications without affecting
the control law. In this way the MTM is adapted to the target hardware. These
considerations are of great importance when dealing with the code generation pro-
cess that extracts from the Control Logic module the application code.
The Control module is the set of the Control Logic, the frame and the Control
Monitor. It comprises analogue and digital signals depending on the application.

HMI

The HMI comprises either continuous signals or discrete signals. It is the Human
Machine Interface, therefore it is intended to translate the user action into a signal
for the Control module. It contains also the dashboard components and the HMI
monitor.

User

The User is a collection of multiple possible user actions.

3.1.2 Additional components

Monitors

The monitors are used to check the system behaviour and in particular that of the
different modules. In fact they are included in the Plant, Control, HMI subsystems
to respectively detect their functioning. The monitors are connected to specific
components inside the subsystems to create a virtual link between the monitor and
the module.

Dashboard

The dashboard is intended to represent the HMI components responsible of the
interaction between the user and the system. As an example, the push button is a
dashboard element that if pressed it causes a system reaction.

12

CHAPTER 3. Modular Technical Model 3.2. MTM implementation

3.2 MTM implementation

Simulink has been chosen as modelling language for the MTM implementation,
creating a template that comprises all the MTM characteristics. The template is
a particular Simulink object that can be used to create control project with model-
based design and automatic code generation for RCP and VMU platforms with and
from the same model.

Figure 3.2: Simulink implementation of the MTM as a template

The structure in Figure 3.2 is the MTM implementation. It consists in 5 subsystems
that represent the parts that compose a general system.

13

3.2. MTM implementation CHAPTER 3. Modular Technical Model

3.2.1 Simulink implementation details

• Template created in Matlab release 2020a.

• Two procedures have to be concurrently performed:

– Parametrization
It regards the definition of all the data or parameters that are involved in
the MTM. The data are associated to the different Simulink blocks and
they have to be stored in either MATLAB Script (.m file) or MATLAB
Live Script (.mlx file).

– Modelling
It is the implementation process that uses the Simulink blocks to repre-
sent the system and to describe its functionalities. The implementation
process result is a Simulink model or .slx file.

• The main model is composed of different subsystems that represent the mod-
ules. They are associated to the system parts.

• The contents of the subsystems are stored in separate models to differentiate
the skills involved in the system development process. This allows also to use
different solvers to evaluate the contents of the modules if needed.
In order to store the content of the modules in separate models, the subsystems
have to be converted into either referenced subsystem or referenced model. The
content of the former cannot be simulated thus it cannot be associated to a
different solver with respect to the one of the main model. The content of the
latter is stored in a model that is independent of the main one and then it can
be simulated with the desired solver.
Note: the HMI is neither designed as referenced subsystem or as a referenced
model because the dashboard elements are not supported in these kind of
components.

• Environment, Control, User are blocks that have been rotated for organization
purpose. This seems to be in contrast to the MAB guidelines [12]. However,
the rules are respected since in each subsystem the stream of information is
always guaranteed, from the left (inputs) to the right (output).

• Two different subsystems are linked by only one connection that contains all
the possible signals that are being exchanged between two modules. Then by
using a Signal Routing block all the signals can be packed together and the
general architecture left untouched.

• Sequence Viewer can be added to check the system behaviour and the different
chart transitions with their occurrences and their timing behaviour, in case of
Stateflow usage.

• Environment, User designed as referenced subsystem. This means that a ref-
erence to a reusable group of blocks with a dynamic interface, which can be
visual or functional is created [13]. In this way the content of the User is

14

CHAPTER 3. Modular Technical Model 3.2. MTM implementation

stored in a separate model (.slx). This allows the disciplines to be split as
System Engineering suggests.

• Control, Control Logic, Plant designed as referenced model. The purpose is
to create separate models (.slx) that store the Control and the Plant contents
and with a well-defined interface. It is functional and independent of the main
model. In order to convert a subsystem in a referenced model it has to be
atomic, so that it functionally groups the blocks and executes them together.
Functionally grouping the blocks makes it easier to convert the subsystem to
a referenced model [13]. This is useful when dealing with a subsystem that is
expected to grow.
Note: only subsystem blocks can be converted in referenced subsystem or ref-
erenced model.

• Solver selection. When modelling the Control Logic subsystem the solver has
to be selected as fixed-step because the module comprises digital signals. A
fixed-step solves the model at regular time interval (fixed-step-size) that is
chosen at priori making a trade-off with the simulation accuracy.
When considering the Plant, the solver can be selected as variable-step be-
cause the module comprises analogue signals. A variable-step solves the model
choosing the step-size at each solver iteration. This results in the step-size
adaptation, being high at lower frequency to avoid evaluating the system dur-
ing the transient and then to avoid taking unnecessary steps and being low at
higher frequency to see the dynamics of the system that change much faster.
There are different kinds of solver that can be grouped in two main categories:
continuous solver, that evaluates the model by performing an approximation
in an infinite number of points and discrete solver, that uses a quantized phe-
nomena with a finite approximation.
When evaluating the overall model that includes all the system components,
the fixed-step discrete solver is suggested.

3.2.2 Blocks description

1. Environment
The Environment is implemented as a subsystem containing a block that gen-
erates a noise signal.

2. Plant
The Plant has three inputs. The control-plant input is related to a signal that
has been converted to the Plant domain before entering the subsystem. This is
performed in the Control block. The other inputs are connections with other
modules.
It has also two outputs. The plant-control output is connected to a signal that
enters the Control block and that will be converted in the Control domain.
The other output is a connection with the HMI module.
The Plant module contains also reference signals for the Plant Monitor.

15

3.2. MTM implementation CHAPTER 3. Modular Technical Model

3. Control
The Control module comprises the Control Logic frame and the Control Logic
itself. It is implemented as a set of two nested subsystems to differentiate the
Control Logic module and the frame components.

Figure 3.3: Control Block content

Note: The Control Logic is devoted only to the control algorithm and it is
independent of the target hardware.
The frame represents the interfaces and it strictly depends on the target
hardware. It is the only part of the MTM dependent of the target hardware.

3.1 Frame
Part of the Control module that represents the interfaces needed to create
the interaction between the Control Logic and the other subsystems.

Interface component Description
ADC Analogue input
DAC Analogue output

Digital input I/O Digital input & digital output
• FPGA - based digital I/O
• BIT I/O
• PWM generation/measurements
• Incremental Encoder

Table 3.1: Interface components

Table 3.1 shows different interfaces that have to be included into the
frame depending on the application and on the target hardware.

16

CHAPTER 3. Modular Technical Model 3.2. MTM implementation

4. HMI
The HMI subsystem contains the Dashboard and HMI Monitor including other
elements used to create the virtual connection to those components, e.g., con-
stant blocks.

Figure 3.4: HMI content

Figure 3.4 shows an example of HMI content. The module is almost empty
because the template is considered. The constant block is used to create the
virtual connection to the Button that is a Dashboard element. The Dashboard
is a specific Simulink library that contains control and indicator blocks to in-
teract with simulations. Since the template is being analysed only a Button is
considered as Dashboard component. In a specific application there are mul-
tiple Dashboard components, e.g., led.

4.1 Button
The Button is implemented as a block taken from Simulink Library Browser
⇒ Dashboard ⇒ Push Button.

Procedure:

1. Select the Button and click on the colon in order to connect the block
with the desired signal.

Figure 3.5: Button

2. Double click on the Button to open the window representing the
content of this block.

17

3.2. MTM implementation CHAPTER 3. Modular Technical Model

Figure 3.6: Example of a Button connected to a constant value

5. User
The User is a subsystem that contains the user inputs.
Consider as an example the vehicle as the Plant block. The User module
contains the driver actions described by blocks as the Longitudinal Driver.

6. Monitors
The monitors are included in the Plant, Control and HMI modules.
They are taken from Simulink Library Browser ⇒ Sinks ⇒ Floating Scope.

Procedure:

1. Double click on the Floating Scope in order to open the window repre-
senting the content of the block.

Figure 3.7: Content of a generic Monitor

2. Click on the Signal Selector (in red) in order to connect the scope to the
signals that have to be shown in this block.

• (Optional) Click on View ⇒ Layout in order to show multiple signals
separately with no overlap.

18

CHAPTER 3. Modular Technical Model 3.2. MTM implementation

3.2.3 Simulink Template Generation

1. Open Simulink and create a model.

2. On the Simulation tab, select save ⇒ Template.

3. A window will be opened, called ’Export template-name to Mode Template’.

3.1 Edit the template title, select or create a group, and enter a description
of the template.

3.2 The file location is already present:

’C:Users-username-Documents-MATLAB-untitled.sltx’, rename the title
of the template.

3.3 (Optional) Specify a thumbnail image for the template by clicking Change
and selecting an image file.

3.4 Click Export to save the template.

4. In Simulink Start Page ⇒ My Templates the preview of the exiting templates
will be shown. It includes all the created templates with the above procedure.

Figure 3.8: Template preview

3.2.4 Simulink Template Usage

In order to use a predefined template, there is a procedure that has to be followed:

1. Download the desired template and save it.

(a) In Documents ⇒ MATLAB there will be the template, that is a file .sltx.

19

3.2. MTM implementation CHAPTER 3. Modular Technical Model

Figure 3.9: Example

2. Open Simulink

(a) The following window is shown.

Figure 3.10: Simulink Starting Page

3. Click on My Templates.

(a) This will show the existing templates.

Figure 3.11: Templates

4. Click on the template that is intended to use.

(a) Click on the icon named Create Model.

20

CHAPTER 3. Modular Technical Model 3.2. MTM implementation

Figure 3.12: Example

(b) By clicking the down arrow, a window containing the information about
the template is opened.

Figure 3.13: Template Information

(c) The standard project structure is opened and the model can be designed.

5. The same procedure can be done by clicking directly on the template file .sltx
in the Documents ⇒ MATLAB directory.

21

Chapter 4

Control module structure

The Control module comprises the Control Logic and its frame intended to collect
the target hardware characteristics. This is needed to separate the computing plat-
forms with their I/O devices from the Control Logic module. The Control Logic
module is used for the control law implementation and to generate the code that
has to be deployed on the target hardware.
As mentioned in Chapter 3, the idea is to differentiate the Control module from the
Control Logic one. This allows a clear identification of the interfaces that make the
other system parts and the control algorithm compatible. The distinction between
Control and Control Logic module is needed to identify the target hardware that is
responsible of the Control Logic frame. In order to differentiate the modules two
different subsystems are created: the Control Logic and the Control. The former
inside the latter.

Figure 4.1: Control and Control Logic

Figure 4.1 shows the two different subsystems where the frame is represented by
the coloured areas that are empty because no target hardware is considered. When
the hardware is selected its characteristics have to be included in the Control mod-
ule. In particular, in the apposite areas (Figure 4.1) representing the Control Logic
frame, the target hardware interfaces have to be modelled with the appropriate

22

CHAPTER 4. Control module structure 4.1. Control module characteristics

Simulink library components when dealing with the steps 2, 2.1, 2.3 and 3 of the
Hybrid V-cycle. When performing the steps that involve the Test Bench the inter-
faces that have to be included in the Control Logic frame are related to the specific
hardware libraries, e.g., dSPACE RTI1401 - MicroAutoBoxII DS1513. As a con-
sequence, all the blocks used at the aforementioned steps have to be substituted
with the ones belonging to the specific libraries. In addition, the Modular Technical
Model inputs and outputs have to be removed because the hardware library compo-
nents will constitute the input and the output signals of the computing platforms.
Removing the MTM signals is allowed because the Control is a referenced model
that is independent of the main model. Moreover, when deploying the application
code on the target hardware only the Control Logic subsystem is involved. The
MTM does not add any other contributes. Therefore it is not considered and only
the model that comprises the Control content is used to manage the computing
platforms. In particular, the Control Logic for the code generation and the frame
(Control excluding the Control Logic) to represent the hardware interfaces.

4.1 Control module characteristics

• The control law is not dependent on the development platform.

• The Control content (excluding that of the Control Logic) is the frame and it
is the only part that is dependant on the target hardware.

• The Control Logic subsystem has to be evaluated by means of the fixed-step
solver.

• The Hybrid V-cycle has to be used as a guideline for the Control module
development.

Figure 4.2: Hybrid V-cycle

23

4.1. Control module characteristics CHAPTER 4. Control module structure

2. System Design
The hardware interfaces have to be included in the Control module. Since
the DWS is the only computing platform involved at this step Simulink
blocks are used to model generic interfaces (Table 3.1) that are still not
associated to the RCP platform. This is needed to detect the require-
ments that are used to choose the most appropriate RCP platform, e.g.,
dSPACE MicroAutoBox II among all the available devices. The SIL pro-
cedure is carried out considering the DWS compiler.
The next steps are used to differentiate the RCP platform and the VMU
characteristics starting from the interfaces model of the step 2. The
frame will comprise almost the same components of the Control module
developed at step 2 but with different parameters.

2.1. RCP Code Production
The frame comprises the RCP platform interfaces. The Control model
developed at the step 2 has to be modified considering the device char-
acteristics. The corresponding technical manual is used as a reference.
In the specific case of the dSPACE MicroAutoBox II as RCP platform
either the configuration manual [8] or the brochure [14] can be used.

Figure 4.3: Example of dSPACE ADC/DAC modelling [14]

2.2 RCP on Test Bench
At this step only the model that comprises the Control content is used
regardless of the MTM. All the frame components of the step 2.1 have to
be removed including the MTM inputs and outputs. All these elements
have to be replaced by specific blocks of the RCP platform library. These
blocks are needed to create the interaction between the RCP hardware
and the Test Bench because they represents the physical interfaces. As a
result the Control model will contain the Control Logic and the specific
blocks of the RCP platform library.

24

CHAPTER 4. Control module structure 4.2. Introduction to the code generation

Figure 4.4: Example of Control Logic frame when considering the dSPACE MicroAutoBox
II as RCP platform and when performing the HIL procedure

2.3 VMU Selection
This is conceptually equal to the step 2 but considering the VMU. The
interfaces have to be modelled and included into the frame. In the specific
case of Ideas & Motion VMU the Compass ECU - Product Brief [15] can
be used as a reference.

3 VMU Procurement & Code Production
The frame is the same as the one of the 2.3 step.

4 VMU on Test Bench
The content of the frame has to be changed removing the components
included at the step 2.3. The specific VMU blocks have to be used to
represents the physical interfaces (as in the 2.2 step). As a result the
Control will contain the Control Logic and the specific VMU components.

• The Control Logic subsystem is used to automatically extract the code (Figure
3.1).

4.2 Introduction to the code generation

The Automatic Code Generation is the outcome of the following procedures:

• Model-in-the-loop
The system is modelled and simulated on the DWS non in real-time. This type
of simulation lets verify the control algorithm design and log the simulation
results as a reference for the next verification step (SIL).

• Software-in-the-loop
The code implementing the control algorithm is automatically extracted and
compiled. Then it can be simulated to check the results. This type of simula-
tion allows the fixed-point effects analysis like quantization error or saturation
and overflows.

25

4.3. Multi-task application CHAPTER 4. Control module structure

• Processor-in-the-loop
The generated code is compiled with target compiler and simulated on target
hardware (RCP, VMU) non in real-time. This type of simulation lets perform
final verification on the target processor, e.g., any target related issues. In ad-
dition, informations on the code size, stack consumption and execution time
of the generated code can be determined.
When performing the PIL procedure the DWS and the target hardware are
physically connected. The Control Logic code is deployed on the RCP platform
and VMU. During the simulation the evolution of the model is not constant.
The different iterations (samples) are executed whenever the DWS communi-
cates with the target hardware.

• Hardware-in-the-loop
The system behaviour is checked by means of dedicated Test Bench, being
executed in real-time. During the HIL testing the target hardware is synchro-
nized with the system. The frame is represented by the real interfaces (Figure
4.4) that are used to create a connection between the Control Logic responsi-
ble of the control algorithm and the external instruments. Those instruments
are the Test Bench and they are used to represent the physical system which
is no longer simulated on the DWS.

4.3 Multi-task application

The Control Logic module can be designed in different ways. The idea is to model
the Control Logic as a multi-task application. In this case, some considerations
have to be taken into account. A multi-task application is a set of separate tasks
or processes with priorities that can be assigned arbitrarily in relation to the im-
portance of the single task. The tasks are periodic or synchronous and aperiodic or
asynchronous. There is also a background task that is not a task in the common
sense, meaning that it has no priority.
The Control Logic is composed of a generic number of tasks that are responsible
of the system functionalities and that are regularly executed if an interrupt does
not stop them. The interrupt is a request for the execution of a particular task
and it can come from different sources, e.g., I/O device. Interrupts can be internal
or external events and periodic or aperiodic. They can also be differentiated into
software interrupt triggered by the timer device on the processor and hardware in-
terrupt triggered by external events. Each model has at least a task driven by an
interrupt block [16].
Each task is associated to a state, e.g., running, ready, idle. It defines the process
working condition during its execution in fact as a task runs it changes the state.
This leads to define the scheduler of the processor. The scheduler implements the
task state transitions. It performs two operations that are: a scheduling algorithm
that is used to decide the state of the tasks and a context switch needed to imple-
ment the actions that the scheduling algorithm has to perform to change the process
that is running.
An example of scheduler is the priority-based preemptive that supports the rate-

26

CHAPTER 4. Control module structure 4.3. Multi-task application

monotonic scheduling (RMS) strategy. By means of the priority of a task, the
scheduler decides whether it should be started immediately or if it has to wait until
a higher-priority task is completed. Hence, higher-priority tasks interrupt lower-
priority tasks. This is the scheduler of the dSPACE MicroAutoBox II platform.

Figure 4.5: Generic multi-task application

Figure 4.5 shows a dSPACE generic multi-task scenario with two periodic tasks
(T1 and T2), a background task and asynchronous interrupts.
Depending on the priorities and current states of the tasks, the scheduler executes
them according to the following rules:

• A high-priority task that is triggered always suspends a low-priority task that
is currently running.

• If no high-priority task is triggered, the suspended low-priority task resumes
execution.

• Tasks of the same priority do not suspend each other if they are triggered, but
follow a first come, first served policy.

• As long as all other tasks are idle, the background task is executed [17].

When designing a multi-task application an overrun situation can occur. This means
that a task is requested to start but has not finished its previous execution yet [18].

27

4.3. Multi-task application CHAPTER 4. Control module structure

Figure 4.6: Example of dSPACE overrun situation [18]

Considering the Figure 4.6 between the first and the second timer interrupt
there is no overrun, but if the hardware-interrupt-block-driven task THW needs to
be calculated, there is not enough time for the timer task TT imer to finish until
it is requested to start again. To avoid overrun situations time values have to be
correctly setted. For each task the sample time has to be greater than the sum of
the task-switching time that is the delay between the occurrence of an interrupt on
the hardware and the execution of the corresponding task’s first statement and the
turnaround time that is the time that passes between the triggering and the end of
the task execution. (It can include the time required by higher-priority tasks that
interrupt it), [18].
In order to make the application more compliant with the Control Logic, the tasks
have to be accurately differentiated:

• Synchronous tasks
The periodic tasks are used to characterize the system. The amount of tasks
depends on the application.

– Supervisor
It is a synchronous task that starts or stops the application. In particular,
it manages the execution of the other synchronous tasks responsible of
the system functionalities.

• Asynchronous tasks
An aperiodic task interrupts the execution of all the tasks, mainly during
emergency situations. This is important for safety reason: an application
must be stopped if a misbehaviour is detected.

28

CHAPTER 4. Control module structure 4.3. Multi-task application

Background Task
t [s]

Task 2 - 100 Hz

Task 1 - 1 kHz

Supervisory Task - 10 kHz

Emergency Task

Interrupt

Figure 4.7: Multi-task application with different task sample rates

Figure 4.7 shows the multi-task application that has to be implemented. It
consists in three synchronous tasks that are the Supervisor, the Task 1 and the
Task 2 and an asynchronous task that is the Emergency Task. The priorities are:
Emergency Task > Supervisor > Task 1 > Task 2.
The Emergency Task is used to stop the application in case of potential dangerous
situations. It is sporadically run during the execution of the periodic tasks. It is
invoked when the interrupt signal is generated. The interrupt informs the processor
that an emergency task must be executed as soon as possible. At the end of the
Emergency Task the task queue is cleared and restored depending on the priority of
each task.
The application that has to be implemented has the Emergency Task that runs
in response to an asynchronous interrupt generated by external components, e.g.,
toggle switch.

4.3.1 Multi-task implementation

• periodic or synchronous ⇒ by default the blocks with the fastest sample rates
are executed by the task with the highest priority, the next fastest blocks are
executed by a task with the next higher priority, and so on. Time available
in between the processing of high-priority tasks is used for processing lower
priority tasks [5].
The periodic tasks has to be included into the design process to define the
system functionalities. The most important synchronous process is the Su-
pervisor. It is devoted to the tasks management and it is used to handle the
external events and commands, e.g., it receives the signals from buttons. In
particular, it responds to two different types of external phenomena. The
external signal can come from a push button that is used as an ON/OFF
strategy to enable the system and the corresponding periodic tasks. Therefore
this scenario is related to the user dynamics represented by the HMI module.

29

4.3. Multi-task application CHAPTER 4. Control module structure

As the push button is activated by user actions, the Supervisor receives the
corresponding signal through the HMI. It reacts to the user commands by en-
abling (ON) or disabling (OFF) the synchronous tasks.
The external signals can also be generated by sporadic events related to poten-
tial dangerous situations. As the event is produced an asynchronous interrupt
reaches a task specially created for emergency reasons. This emergency task
generates a signal that is received by all the tasks including the Supervisor
and that is used to stop their execution.

• aperiodic or asynchronous ⇒ there may not necessarily be a relationship be-
tween sample rates and task priorities. The tasks with the highest priority
need to have a sample rate that is not necessary the fastest one. The sense of
what priority numbers mean can be switched by selecting or deselecting the
Solver option Higher priority value indicates higher task priority [5].
The aperiodic task that is related to emergency situations has to be included
into the system development for safety reasons. This is sporadically executed
in response to asynchronous interrupts triggered by external events. The
events are related to specific switches used in case of dangerous situations.
In order to ensure safety, the emergency task has to be associated to the high-
est priority so that when the event is generated the execution of all the other
tasks is stopped and it can be resumed only when the emergency is terminated.

4.3.2 Simulink implementation

The procedures needed to correctly implement a Simulink multi-task application
have to be differentiated.

Modelling phase

When modelling a multi-task application there are two main approaches that can
be used to handle the tasks. The explicit approach includes all the processes in
the same model and at the same level (Figure 4.8). This means that the user can
directly interact to all the tasks.

Figure 4.8: Example of a model with Rate Transition blocks - Digital Filters in series

The processes may have different sample rates and then the Rate Transition
Blocks have to be used with the Ensure data integrity during data transfer and
Ensure deterministic data transfer (maximum delay) options on. This allows the
interaction among all the tasks both synchronous processes and asynchronous ones.

30

CHAPTER 4. Control module structure 4.3. Multi-task application

The implicit approach uses Stateflow to define the processes. Each task is repre-
sented by a Stateflow chart. This allows to clearly separate the periodic processes
without using the Rate Transition blocks. When dealing with asynchronous tasks
the Rate Transition blocks have to be used to create the interaction between the
aperiodic processes and the periodic ones.

The chart settings have to be selected:

• Open the chart.

• Click on Modelling ⇒ Chart Properties.

• Click on Update method ⇒ Discrete ⇒ Sample Time ⇒ write the desired
value.

Figure 4.9: Example of Control Logic content that represents a multi-task application with
three different synchronous tasks and an aperiodic process modelled by different Stateflow
charts

Configuration phase

• Click on Configuration Parameters ⇒ Solver.

– Solver Selection ⇒ Type ⇒ select Fixed-step ⇒ restrictions:

∗ The sample rate of a block must be an integer multiple of the base
(that is, the fastest) sample period.

∗ When Periodic sample time constraint is Unconstrained, the base
sample period is determined by the Fixed-step size.

∗ When Periodic sample time constraint is Specified, the base rate
fixed-step size is the first element of the sample time matrix that
you specify in the companion option Sample time properties.

31

4.3. Multi-task application CHAPTER 4. Control module structure

∗ Continuous blocks execute by using an integration algorithm that
runs at the base sample rate. The base sample period is the greatest
common denominator of all rates in the model only when Periodic
sample time constraint is set to Unconstrained and Fixed-step size is
Auto.

∗ The continuous and discrete parts of the model can execute at differ-
ent rates only if the discrete part is executed at the same or a slower
rate than the continuous part and is an integer multiple of the base
sample rate [5].

– Solver Selection ⇒ Solver ⇒ a possible solution is auto. If the latter is
selected, the model has to contain at least two different sample times, to
create a multitasking environment.

– Solver details ⇒ Fixed-step size ⇒ a possible solution is auto. If this
quantity has to be associated with a particular value, it has to be different
with respect to the discrete sample time in a model containing continuous
and a discrete sample time. Otherwise the model runs in single-tasking
mode.

– Solver details ⇒ Tasking and sample time options ⇒ select Treat each
discrete rate as a separate task [5].

32

Chapter 5

Control code generation

The code of the Control Logic module has to be automatically generated and com-
piled. Then the results of the code generation can be checked to verify whether the
code behaves as expected.
Procedures:

• SIL (Software-in-the-loop).

• PIL (Processor-in-the-loop).

When dealing with target hardware that have a different System Target File with
respect to that of the DWS, a specific tool has to be used to perform the SIL and PIL
simulations. The RCP platform has a tool devoted to the SIL and PIL simulations.

5.1 SIL (Software-in-the-loop)

The Software-in-the-loop aims at generating and compiling the code implementing
the control algorithm of the Control Logic module. It is related to the steps 2, 2.1
and 3 of the Hybrid V-cycle. In order to perform the SIL process, the first step
consists in check whether the code can be produced. Not all the Simulink blocks can
be used for code generation because they may not be supported for that functionality.
Then the code can be compiled. In order to accomplish the task, the Simulink
configuration parameters have to be correctly setted:

• Hybrid V-cycle step 2
In Code Generation ⇒ System Target File ⇒ select the DWS compiler, e.g.,
grt.tlc (Generic Real-Time Target).

• Hybrid V-cycle step 2.1
In Code Generation ⇒ System Target File ⇒ select the RCP compiler, e.g.,
rti1401 (dSPACE MicroAutoBox II).

• Hybrid V-cycle step 3
In Code Generation ⇒ System Target File ⇒ select the VMU compiler.

33

5.1. SIL (Software-in-the-loop) CHAPTER 5. Control code generation

The Control Logic code has to be generated and compiled. Simulink allows to
generate and compile the code by clicking the apposite ”Build” icon.

5.1.1 SIL simulation

The SIL simulation is used to verify the behaviour of the production source code.
The output of software-in-the-loop code have to match that of the Control Logic
subsystem. This procedure can be executed at the steps 2, 2.1 and 3 of the Hybrid
V-cycle.
The following procedure cannot be executed considering the RCP platform. A spe-
cific RCP tool has to be used to perform the SIL simulation.

Procedure

1. Open the MTM.

2. Consider the subsystem (Control Logic block) that is intended to be used for
the SIL simulation and set the correct parameters.

• In Block Parameters ⇒ Main ⇒ select Treat as atomic unit.

3. In Configuration Parameters ⇒ Code Generation ⇒ System target file ⇒
select ert.tlc.

4. Create a SIL Verification Harness

(a) Enable signal logging for the model. At the command prompt, enter:

1 set param (bdroot , ’ S igna lLogg ing ’ , ’ on ’ , ’ SignalLoggingName ’ , . . .
2 ’ S I L s i g n a l s ’ , ’ SignalLoggingSaveFormat ’ , ’ Dataset ’)

(b) Right-click the input signals into Controller ports, and select Properties.
In the Signal Properties dialogue box, for the Signal name, enter a desired
name (e.g. ’in1’, ’in2’, etc). Select Log signal data and click OK.

(c) Right-click the signals out of Controller ports, and select Properties. In
the Signal Properties dialogue box, for the Signal name, enter a desired
name (e.g. ’out1’, ’out2’,etc). Select Log signal data and click OK.

(d) simulate the model.

(e) Get the logged signals from the simulation output into the workspace.
At the command prompt, enter:

1 out data = out . get (’name o f the model ’) ;
2 c o n t r o l i n 1 = out data . get (’name o f the input s i g n a l o f the

c o n t r o l l e r ’) ;
3 c o n t r o l o u t 1 = out data . get (’name o f the output s i g n a l o f the

c o n t r o l l e r ’) ;

34

CHAPTER 5. Control code generation 5.1. SIL (Software-in-the-loop)

These statements are written assuming only one input and one output.

(f) Create the SIL test harness.
Right-click the Controller subsystem and select Test Harness ⇒ Create
Test Harness (Controller).

(g) set the Harness properties

Name : e.g. SIL harness
Sources and Sinks : Inport and Outport
Select ⇒ Open harness after creation
Advanced Proprieties⇒Verification Mode: Software-in-the-loop (SIL)

(h) Click OK. The resulting test harness has a SIL block.

Figure 5.1: Test Harness Example

5. Configure and Simulate a SIL Verification Harness

(a) Configure the test harness to import the logged controller input values.
From the top level of the test harness, in the model Configuration Param-
eters dialogue box, in the Data Import-Export pane, select Input. Enter
control in1.V alues (considering one input signal) as the input and click
OK.

(b) Enable signal logging for the test harness. At the command prompt,
enter:

1 set param (’ harness name ’ , ’ S igna lLogg ing ’ , ’ on ’ , ’
SignalLoggingName ’ , . . .

2 ’ h a r n e s s s i g n a l s ’ , ’ SignalLoggingSaveFormat ’ , ’ Dataset ’)

(c) Right-click the output signals of the SIL block and select Properties. In
the Signal Properties dialogue box, for the Signal name, enter a desired
name e.g. SIL block out. Select Log signal data and click OK.

(d) simulate the harness.

6. Compare the SIL Block and Model Controller Outputs

(a) In the test harness model, in the Review Results section, click Data In-
spector to open the Simulation Data Inspector.

(b) In the Simulation Data Inspector, click Import. In the Import dialogue
box,

Set Import from to: Base workspace.

35

5.1. SIL (Software-in-the-loop) CHAPTER 5. Control code generation

Set Import to to: New Run.
Under Data to import select Signal Name to import data from all
sources.

(c) Click Import.

(d) Select the output signals of the SIL model and of the Controller in the
Runs pane of the Data Inspector window.

Figure 5.2: Example of Runs pane

If the 2 signals overlap, there is an equivalence between the SIL code and
the Controller code. This is the expected result.

(e) Close the test harness window. This results into a return to the main
model.
The badge on the Controller block indicates that the SIL harness is as-
sociated with the subsystem [6].

Figure 5.3: Control badge

36

CHAPTER 5. Control code generation 5.2. PIL (Processor-in-the-loop)

5.2 PIL (Processor-in-the-loop)

The PIL simulation is used to verify the compiled object code that is intended to
be deployed in production. The PIL object code is run on real target hardware
(dSPACE, VMU). It is performed at the steps 2.1 and 3 of the V-cyle in order to
check the technical model that considers the RCP (step 2.1) and VMU (step 3)
characteristics.
The following procedure cannot be applied on the dSPACE RCP platform, a specific
tool belonging to the RCP software has to be used.

Procedure

The procedure is the same as the SIL simulation, except for a Harness property:

Advanced Properties ⇒ Verification Mode: Processor-in-the-loop (PIL)

Figure 5.4: PIL Verification Mode

Figure 5.5: Test Harness error

A very common error can occur during the simulation (Figure 5.5) and to solve
this problem an intermediate step has to be performed.

Configuration of Processor-In-The-Loop (PIL) for a Custom Target

This procedure is used to create a target connectivity configuration by using target
connectivity APIs. With a target connectivity configuration PIL simulations can be
run on custom target hardware.
The idea is to start from a model configured for SIL simulation and then create a
target connectivity configuration, so that the model can be simulated in PIL mode.
The procedure is performed considering the DWS characteristics to keep complexity
low.

37

5.2. PIL (Processor-in-the-loop) CHAPTER 5. Control code generation

1. Preliminaries

• Add a folder to the search path. Create the folder path.

1 s l c u s t o m i z a t i o n p a t h = f u l l f i l e (matlabroot , . . .
2 ’ too lbox ’ , . . .
3 ’ rtw ’ , . . .
4 ’ rtwdemos ’ , . . .
5 ’ p i l demo ’) ;

• If this folder is already on the search path, remove it.

1 i f s t r f i n d (path , s l c u s t o m i z a t i o n p a t h)
2 rmpath (s l c u s t o m i z a t i o n p a t h)
3 end

• Reset customizations.

1 s l r e f r e s h c u s t o m i z a t i o n s

2. Test Generated Code with SIL Simulation

• Simulate a model configured for SIL. Verify the generated code compiled
for the host computer by comparing the SIL simulation behaviour with
the normal simulation behaviour.

3. Target Connectivity Configuration

• Start work on a target connectivity configuration for PIL.

• Make a local copy of the target connectivity configuration classes.

1 s r c d i r = . . .
2 f u l l f i l e (matlabroot , ’ too lbox ’ , ’ coder ’ , ’ s imul inkcoder ’ , ’+coder

’ , ’+mypil ’) ;
3 i f e x i s t (f u l l f i l e (’ . ’ , ’+mypil ’) , ’ d i r ’)
4 rmdir (’+mypil ’ , ’ s ’)
5 end
6 mkdir +mypil
7 c o p y f i l e (f u l l f i l e (s r c d i r , ’ Launcher .m’) , ’+mypil ’) ;
8 c o p y f i l e (f u l l f i l e (s r c d i r , ’ TargetApplicationFramework .m’) , ’+

mypil ’) ;
9 c o p y f i l e (f u l l f i l e (s r c d i r , ’ ConnectivityConFigurem ’) , ’+mypil ’

) ;

• Make the copied files writeable.

1 f i l e a t t r i b (f u l l f i l e (’+mypil ’ , ’ ∗ ’) , ’+w ’) ;

• Update the package name to reflect the new location of the files.

38

CHAPTER 5. Control code generation 5.2. PIL (Processor-in-the-loop)

1 coder . mypil . U t i l s . UpdateClassName (. . .
2 ’ ./+ mypil / ConnectivityConFigurem ’ , . . .
3 ’ coder . mypil ’ , . . .
4 ’ mypil ’) ;

• Verify that you now have a folder +mypil in the current folder, which
has the files Launcher.m, TargetApplicationFramework.m, and Connec-
tivityConFigurem.

1 d i r ’ ./+ mypil ’

4. Review Code to Launch the PIL Executable

• The class that configures a tool for launching the PIL executable is
mypil.Launcher. Open this class in the editor.

1 e d i t (which (’ mypil . Launcher ’))

Review the content of this file. The method setArgString supplies ad-
ditional command-line parameters to the executable. These parameters
can include a TCP/IP port number. For an embedded processor imple-
mentation, you can choose to hard-code these settings.

5. Configure the Overall Target Connectivity Configuration

• View the class mypil.ConnectivityConFigure

1 e d i t (which (’ mypil . Connect iv i tyConf ig ’))

Review the content of this file. You should be able to identify:

– The creation of an instance of rtw.connectivity.RtIOStreamHost
Communicator that configures the host side of the TCP/IP commu-
nications channel.

– A call to the setArgString method of Launcher that configures the
target side of the TCP/IP communications channel.

– A call to setTimer that configures a timer for execution time mea-
surement.

To define your own target-specific timer for execution time profiling, you
must use the Code Replacement Library to specify a replacement for the
function code profile read timer. Use a command-line API or the crtool
user interface.

6. Review the Target-Side Communications Drivers

• View the file rtiostream tcpip.c.

1 r t i o s t r e a m t c p i p d i r= f u l l f i l e (matlabroot , ’ too lbox ’ , ’ coder ’ , ’
r t i o s t r eam ’ , ’ s r c ’ , . . .

2 ’ r t i o s t r e a m t c p i p ’) ;
3 e d i t (f u l l f i l e (r t i o s t r e a m t c p i p d i r , ’ r t i o s t r e a m t c p i p . c ’))

39

5.2. PIL (Processor-in-the-loop) CHAPTER 5. Control code generation

Scroll down to the end of this file. See that this file contains a TCP/IP
implementation of the functions rtIOStreamOpen, rtIOStreamSend, and
rtIOStreamRecv. These functions are required for the target hardware
to communicate with the host computer. An implementation for each of
these functions has to be provided. This is specific to the target hardware
and communication channel.

7. Add Target-Side Communications Drivers to the Connectivity Configuration

• The class that configures additional files to include in the build is mypil.Target
ApplicationFramework. Open this class in the editor.

1 e d i t (which (’ mypil . TargetApplicationFramework ’))

8. Use sl customization to Register the Target Connectivity Configuration
To use the new target connectivity configuration, an sl customization file has
to be provided. The sl customization file registers the new target connectivity
configuration and specifies the required conditions for its use. The conditions
specified in this file can include the name of the system target file and the
hardware implementation settings.

• You can view the sl customization file.

1 e d i t (f u l l f i l e (s l cu s tomi za t i on pa th , ’ s l c u s t o m i z a t i o n .m’))

• Add the sl customization folder to the search path and refresh the cus-
tomizations.

1 addpath (s l c u s t o m i z a t i o n p a t h) ;
2 s l r e f r e s h c u s t o m i z a t i o n s ;

9. Test Generated Code with PIL Simulation

• Run the PIL simulation as the SIL one.

40

Chapter 6

HMI module structure

The Human-Machine-Interface (HMI) is a subsystem that represents the interfaces
between the user and the Control module. It is related to all those instruments that
can be used by humans to interact with the Control module, e.g., Dashboard and
Sinks components.
As mentioned in Section 2.2, different target hardware are needed to develop a
generic application. It is important to remember that the model of the system is
always inherited from Simulink. When considering the dSPACE RCP platform it is
always imported to the specific software related to the dSPACE device. This means
that the Simulink model has to be adapted to the hardware (Chapter 4).
Concerning the Dashboard instruments (e.g., Push Button) there are two approaches,
i.e., the components can be either simulated or physical. In the simulated case on
the DWS, no particular attention have to be paid except for the choice of the com-
ponents that are gained to be used (e.g., Simulink Push Button block is used to
model a real button). Concerning the software that is used to manage the target
hardware, the situation is exactly the same as the Simulink approach on the DWS.
The RCP software has an Instrument Selector window in which several tools are
available to be used for the specific purpose, e.g., Push Button and Knob. From
those blocks, which simulate the behaviour of the instruments, the signal will be
sent to the corresponding target hardware.
In the second approach, the simulated instrument of the Simulink model is substi-
tuted with blocks belonging to the specific target hardware library. Then, other
considerations have to be taken into account. Noise, disturbances and tolerances
affect the real instruments. When modelling an analogue button with the Push
Button block in Simulink, no particular care is taken on the voltage (within rea-
sonable limits) during the MIL simulation. Considering that the real instrument
is connected to the target hardware, there is a tolerance that has to be considered
(it depends on physical components). As a consequence, it has to be modelled in
Simulink by means of additional blocks (e.g., Relays between the specific platform
blocks and the Control module). After that all the previous considerations have
been addressed, the target hardware can be used in conjunction with the external
real Dashboard instruments.

41

Chapter 7

Rapid Control Prototyping (RCP)

This Chapter shows how to handle a RCP platform. There are different types of
device, in this case the dSPACE MicroAutoBox II is considered.

Figure 7.1: dSPACE MicroAutoBox II

1. Configuration

This step is necessary to connect the dSPACE platform to the DWS.

• Power the dSPACE, considering the acceptable voltage range and check the
colour of the corresponding led. It must be red.

• Power off the platform and connect it to the DWS via Ethernet, performing
the following steps:

– Disconnect the DWS from the network.

– Open the Control Panel.

– In the Control Panel select ⇒ Network and Internet ⇒ Network Con-
nections and Sharing Centre ⇒ Change adapter settings.

– Double click on Ethernet ⇒ Proprieties ⇒ double click on TCP/IPv4.

– Click on Use the Following IP address.

42

CHAPTER 7. Rapid Control Prototyping (RCP)

– In the IP Address edit field⇒ enter a value in the range 192.168.140.2 ...
192.168.140.254.

– In the Subnet Mask edit field ⇒ enter the value 255.255.255.0, [8].

– Power the dSPACE platform and check the connection to the DWS, look-
ing at the host PC led. It must be green and lamping.

2. Verifications

This step is based on very simple models that are intended to verify that the results
coming from the hardware testing match the characteristics reported on the technical
manual of the dSPACE. Models that can be used for verification:

• Sending signal from a generator to the dSPACE.

• Receiving signal on the oscilloscope from the dSPACE.

• Sending signal from a generator to the dSPACE and receiving that signal on
the oscilloscope.

3. dSPACE usage

A procedure has to be followed to use the MicroAutoBox II both at the verification
step and then with the desired application.

1. Replace the Control Block converters.

(a) Open the dSPACE RTI14041 Library.

• This can be accessed via Simulink Library or via MATLAB, writing
on the Command Window rti1401 (the latter method is suggested).

(b) Use the dSPACE library components to model the interfaces.

• The blocks are associated to different DS numbers (e.g. DS1513),
that depend on the platform connector.

Figure 7.2: Example of dSPACE AD/DA converters

43

CHAPTER 7. Rapid Control Prototyping (RCP)

(c) Connect the interface blocks to the Control Logic module, that contains
the algorithm that is intended to be deployed on the dSPACE platform.

2. Change the settings in the Configuration Parameters

(a) In Solver ⇒ Solver selection ⇒ choose ⇒ Fixed-step discrete

(b) In Math and Data Types ⇒ deselect the following statement (recom-
mended):

Figure 7.3: Math and Data Types

(c) Simulation Target ⇒ deselect the following statements:

Figure 7.4: Simulation Target

(d) In Code Generation ⇒ System target file ⇒ Browse ⇒ choose rti1401.tlc

(e) In Code Generation ⇒ RTI simulation options ⇒ Initial simulation state
⇒ select RUN

(f) In Code Generation ⇒ RTI load options ⇒ deselect the following state-
ment (not mandatory) to avoid loading the application on the dSPACE
platform before using the ControlDesk:

Figure 7.5: RTI load options

44

CHAPTER 7. Rapid Control Prototyping (RCP)

(g) In Code Generation ⇒ RTI variable description ⇒ follow the instructions
(recommended):

Figure 7.6: RTI variable description

3. Generate the system description file (.sdf).

• Build the model by pressing ctrl+B or by clicking the appropriate button.

– If ’Load application after build’ option is selected the dSPACE has
to be switched on before building the model.

4. Open the ControlDesk software and use it to manage the signals and the
dSPACE platform.
The ControlDesk is the dSPACE experiment software for seamless ECU de-
velopment. It performs all the necessary tasks and gives you a single working
environment, from the start of experimentation right to the end [19]. In par-
ticular, it can be used as the ’real-time version’ of the Control Monitor for
model validation.

(a) Register the platform.

i. Click on Platform/Devices icon, at the bottom of the main window.
A blank window will be opened.

Figure 7.7: Platforms/Device icon

ii. Right click on the blank window ⇒ click on Register Platforms.

45

CHAPTER 7. Rapid Control Prototyping (RCP)

Figure 7.8: Register Platforms

iii. Start the registration procedure and choose the MicroAutoBox II.

iv. If ’Load application after build’ option is selected the dSPACE is
automatically registered in the ControlDesk.

(b) Click on New ⇒ Project+Experiment ⇒ perform the red steps:

Figure 7.9: Procedure

i. A single project can contain different experiments. If a project al-
ready exists only the experiments will be created as new components.

ii. At the Select Variable Description step, import the desired .sdf file.

Figure 7.10: .sdf file selection

(c) Click on Measurement Configuration ⇒ Acquisition ⇒ Platform ⇒ Host-
Service to check whether the Sampling period (on the Properties window
that appears on the right) match that of the Simulink model.

46

CHAPTER 7. Rapid Control Prototyping (RCP)

Figure 7.11: Measurement Configuration icon

Figure 7.12: Measurement Configuration menu

Figure 7.13: Properties

(d) Click on the Variables icon (Figure 7.7)⇒Model Root to see the Simulink
blocks.

Figure 7.14: Model Root

47

CHAPTER 7. Rapid Control Prototyping (RCP)

i. Click on the block that is intended to use to make the MicroAutoBox
II and the DWS interact, e.g., a scope.

ii. Drag the corresponding line on the window on the right to the empty
grey space that is the ControlDesk layout.

Figure 7.15: Block selection

iii. This opens a short menu, containing the ControlDesk instruments
that can be associated to the Simulink blocks. In that case, the
Time Plotter is suitable, because the objective is to see the time
behaviour of the signal exiting the dSPACE platform.

iv. A further example is related to the button simulation. A button can
be simulated via DWS and the signal can be sent to the MicroAuto-
Box II. The Push Button signal is modelled as a constant block in
Simulink and associated to the ControlDesk Push Button (or Knob),
located in the Instrument Selector window (on the right). Running
the simulation the button is activated and, if pushed, it allows to
check the dSPACE platform behaviour.

Figure 7.16: Layout example

Figure 7.16 shows an example of layout. In this case, the used buttons
are simulated and they are associated to knobs, to see the value that
makes the application start.

48

CHAPTER 7. Rapid Control Prototyping (RCP)

v. The ControlDesk intruments have different properties. On the lay-
out, click on the desired instrument to open its properties (on the
right, under the Instruments Selector as in Figure 7.16) and to man-
age them.

vi. Concerning the Time Plotter, the X and Y axes can be calibrated
and subdivided in the desired range. Click slightly under the X axis
and slightly left to the Y axis, when a particular shape of the mouse
cursor appears.

Then on the Properties window (on the right), the axes settings will
be opened.

(e) Click on the Devices/Platform icon ⇒ right click on ds1401 ⇒ click on
Stop RTP (the led near the connector will become red).
Before starting the measurements, it is recommended to stop the com-
munication between the platform and the I/O board. (It depends on
whether the ’Load application after build’ option is selected).

Figure 7.17: Stop RTP

(f) Click on Start Measuring

Figure 7.18: Measuring buttons

• The application will run on the dSPACE platform. Use the instru-
ments in the layout to handle the hardware.

(g) Click on Stop Measuring to stop the application.

49

7.1. dSPACE TargetLink CHAPTER 7. Rapid Control Prototyping (RCP)

• Click again on Start Measuring to resume the application.

• Click on Go Offline and then on Stop RTP, to stop the MicroAutoBox
II.

(h) If no measuring instruments are included in the ControlDesk layout, the
’Start Measuring’ button will be not available. Clicking on ’Go Online’
and then on ’Go Offline’ will be sufficient to respectively make the appli-
cation start and stop.

7.1 dSPACE TargetLink

TargetLink is a production code generator that generates highly efficient C code
straight from MathWorks Simulink/Stateflow and allows early verification through
built-in simulation and testing. It supports efficient, modular development [9]. In
particular, TargetLink allows the code generation for MATLAB code contained in
Simulink blocks, a faster testing and validation of production code in real environ-
ment and new features for improved distributed development [10].
For test and verification purposes early in the development process, TargetLink
provides a powerful 3-steps built-in simulation support:

• Model-in-the-loop (MIL) simulation.

• Software-in-the-loop (SIL) simulation.

• Processor-in-the-loop (PIL) simulation.

Switching between the different simulation modes requires just one mouse click
and thanks to the integrated data logging and plotting concept there is no need of
a separate test model, manually insertion on doing a test harness model or writing
the own plotting script. Furthermore, SIL and PIL simulation can be enhanced by
code coverage analysis to identify code branches that were never executed or tested
[11].
In order to use the dSPACE TargetLink, the corresponding library in the Simulink
Library Browser has to be opened. The library contains all the needed blocks to
perform the different mentioned simulations.

7.1.1 MIL simulation with TargetLink

In order to use TargetLink to perform a MIL simuation, the corresponding Target
Link subsystem should be in model-in-the-loop simulation mode.

50

CHAPTER 7. Rapid Control Prototyping (RCP) 7.1. dSPACE TargetLink

Figure 7.19: dSPACE example of a generic model in MIL simulation mode

For a quick overview of the simulation results TargetLink blocks have an in-
tegrated data logging functionality. This means that the model should not to be
modified and the block dialogs can be used to specify if and how the output signal
is logged during the simulation. As a result, during the next simulation run the
TargetLink Plot Overview Window is displayed, showing the simulation results of
all the logged signals.

Figure 7.20: TargetLink Plot Overview Window considering a generic dSPACE example

A MIL simulation can serve, for instance, as a reference for overflow detection
and autoscaling of fixed-point models or as a reference of subsequent production
code simulations, e.g., SIL simulation [11].

51

7.1. dSPACE TargetLink CHAPTER 7. Rapid Control Prototyping (RCP)

7.1.2 SIL simulation with TargetLink

In SIL simulation the generated code of the Control Logic module is compiled and
simulated again on the DWS. With this simulation, the fixed-point effects can be
analysed, e.g., quantization errors or saturation and overflows. To perform the SIL
simulation, first a suitable application has to be built. This is easily done in Tar-
getLink by double-clicking the SIL mode button.

Figure 7.21: dSPACE example of a generic model in SIL simulation mode

The following steps are then executed automatically: the production code for the
TargetLink subsystem is generated and the files are compiled and linked to a sim-
ulation application. The TargetLink subsystem is then in software-in-the-loop sim-
ulation mode and when the model is simulated again, the generated code of the
Control Logic module is simulated instead of the Simulink blocks.
In the Target Plot Overview Window, the SIL simulation results are plotted on top
of each MIL simulation result. Several helpful features are available, e.g., signals can
be quickly compared by dragging them from one subplot to another. For detailed
signal analysis, the additional plot windows can be opened showing, e.g., details on
deviations of the SIL simulation from reference simulation, the numerical values of
two compared signal amplitudes over time and much more.

7.1.3 PIL simulation with TargetLink

In PIL simulation, the generated code of the Control Logic module is compiled with
the target compiler and simulated on the target hardware. Performing a PIL simu-
lation is very easy with TargetLink. First, the target hardware has to be connected
to the DWS and in the TargetLink Main Dialog, the appropriate combination of
target compiler and target hardware have to be selected.

52

CHAPTER 7. Rapid Control Prototyping (RCP) 7.1. dSPACE TargetLink

Figure 7.22: TargetLink Main Dialog code informations

For execution time and/or stack consumption of the generated code informations,
the corresponding checkbox has to be selected (Figure 7.22).
Double click the PIL mode button in the model to generate the production code and
compile it for the PIL simulation. TargetLink automatically manages the download
and communication process between the DWS and the target hardware, so no further
user interaction is required. The TargetLink subsystem is now in processor-in-the-
loop simulation mode.

Figure 7.23: dSPACE example of a generic model in PIL simulation mode

This means the generated code of the Control Logic module is simulated on the
target hardware. In the TargetLink Plot Overview Window, the PIL simulation
results are plotted on top of the previous simulation results. Additional subplot
show the execution time and stack consumption if the corresponding checkboxes
have been previously selected. TargetLink also provides a code summary, listing
the size of each generated C file as well as the RAM and ROM consumption of the
generating code [11].

53

Chapter 8

Tutorial Example

The tutorial example is used both to guide the user to the development process of a
generic system and to test the methodology consistency. It has the following general
characteristics:

• Filters in series as multi-task application.

• dSPACE MicroAutoBox II is the RCP platform.

• Template used to guarantee a defined architecture.

• V-cycle used as a guideline for the development process.

8.1 Deeper analysis through the Hybrid V-cycle

Figure 8.1: V-cycle

54

CHAPTER 8. Tutorial Example 8.1. Deeper analysis through the Hybrid V-cycle

8.1.1 System Overall Specifications

Figure 8.2: System Overall Specifications step

In this phase the concept model is produced by the customer with the desired
system specifications. The computing platform used by the customer is not relevant
because it will be considered along with the next Hybrid V-cycle steps. The concept
model has to be implemented by means of the engineering activities.

Example of concept model:

Figure 8.3: Filters in series - concept model

55

8.1. Deeper analysis through the Hybrid V-cycle CHAPTER 8. Tutorial Example

8.1.2 System Design

Figure 8.4: System Design step

2.0 Project Environment

(a) Click on the project that is intended to be used (.mlproj file in ”Modular
Technical Model – template” folder).

(b) Extract the project to the desired location.
All the folders will be created.

(c) Under Details change the name of the project.

2.0.1 Model-in-the-loop

(a) Use the Modular Technical Model to develop the system with the detailed
characteristics.
The idea is to use the MTM as a predefined architecture (template) and
fill the different subsystems (modules) with the needed blocks that aims
at representing the system specifications.

• Located into ”2.0 System design MTM ”⇒ ”2.0.1 MIL” folder.

(b) Fill the MTM modules and the Live Scripts with the data.
The multi-task application model can be designed according to different
approaches, that have been already discussed. In this case, a combina-
tion of Simulink and Stateflow has been used so that the Stateflow charts
are associated to the different tasks. As mentioned in Section 4.3, there
are multiple tasks that are involved in the application. The Supervisor is
synchronous and it is used to manage the overall behaviour of the system.

56

CHAPTER 8. Tutorial Example 8.1. Deeper analysis through the Hybrid V-cycle

In this example, it is needed to start and stop the application. The other
periodic tasks are the 500 Hz and 100 Hz filters.
When the application has to run, the Supervisor makes the first filter
(500 Hz task) and the second filter (100 Hz task) start. In particular, a
push button has to be pressed in order to activate the Supervisor which
enables the other tasks.
The application must be stopped if a misbehaviour is detected. Then all
the tasks receive an emergency signal when the toggle switch is activated.
This component stops the execution of the Supervisor and it acts on the
outputs of the other tasks if an emergency situation occurs. The toggle
switch activation is an external event that triggers the asynchronous in-
terrupt. The interrupt enables the Emergency Task that produces the
emergency signal for the Supervisor and for the other tasks. In particu-
lar, it makes the output of the filter tasks equal to zero meaning that it
disconnects the outputs.

Figure 8.5: Control Logic content with the tasks that are executed at different sample
times. A1 ⇒ Asynchronous D1 ⇒ Discrete, sample time 1 D2 ⇒ Discrete, sample time
2 D3 ⇒ Discrete, sample time 3

Figure 8.5 shows the Control Logic content with the asynchronous source
that is represented by the asynchronous interrupt. As a consequence the
Emergency Task is aperiodic. The other tasks are synchronous. Then
the Rate Transition block is used to create the interaction between the
aperiodic task and the periodic processes. Since the simulation of a ref-
erenced model that comprises interrupt blocks cannot be executed, the
MTM cannot be simulated with the asynchronous source unless some
modifications on the MTM itself are performed. These are not allowed
because the MTM structure of Section 3.2 has to be respected. In order
to overcome this inconvenient the content shown in Figure 8.5 can be
simulated considering only the Control model that is generated by the

57

8.1. Deeper analysis through the Hybrid V-cycle CHAPTER 8. Tutorial Example

conversion of the module into referenced model. This is reasonable be-
cause the code that has to be deployed on the target hardware is the one
related to the Control Logic. Since the Control module is a referenced
model it can be simulated and built independently of the main model
that is the MTM.

Figure 8.6: Filters in series application - Control Logic content without asynchronous
source

In order to simulate the Modular Technical Model that comprises all the
system parts the asynchronous source has to be removed (Figure 8.6).

• Modules (except Control and Control Logic) located into ”2.0 System
design MTM ” ⇒ ”0 MODULES” folder.

• Control module for MIL simulation located into ”2.0.1 MIL” ⇒
”CONTROL INTERFACE” folder with contain the frame of the con-
trol logic.

• Control Logic module located into ”0 Control Logic” folder. It is in
the root folder because the control algorithm does not change among
the computing platforms.

(c) Fill the frame with generic hardware interfaces (Table 3.1) to detect the
most appropriate RCP platform among all the available devices.

(d) Simulate the model (non in real-time) and compare the results to those
of the concept model.

2.0.2 Software-in-the-loop
The code related to the Control Logic module has to be automatically gener-
ated and compiled.

(a) Set the “2.0 System design MTM ” ⇒ “2.0.2 SIL” ⇒ “0 CODE” folder.
The code will be saved in this location.

(b) Click on Build to generate and compile the code.

• Click on View Code to review the code.

58

CHAPTER 8. Tutorial Example 8.1. Deeper analysis through the Hybrid V-cycle

• Click on Open Report for further details about the code generation
process.

(c) (Recommended) Create the Test Harness to check the SIL results and
whether they match those of the MIL model (Section 5.1.1).

8.1.3 RCP Code Production

Figure 8.7: RCP Code Production step

2.1.0 Model-in-the-loop
This step consists in replacing the frame components of the Modular Technical
Model (step 2.0.1) with the RCP interfaces.

(a) Use the Modular Technical Model located into the ”2.1 CODE PRO-
DUCTION ” folder.

(b) Change the frame with the RCP characteristics.

• Fill the Live Script in the ”0 DSPACE interfaces” folder with the
RCP parameters.

(c) Simulate the model and compare the results to those of the System De-
sign.

2.1.1 Software-in-the-loop
A first step consists in check whether the Control Logic code can be produced
and compiled. Then the SIL simulation can be performed to check the results
of the code generation.

(a) Click on Build to generate and compile the code.

• Click on View Code to review the code.

59

8.1. Deeper analysis through the Hybrid V-cycle CHAPTER 8. Tutorial Example

• Click on Open Report for further details about the code generation
process.

(b) Perform the SIL simulation to check the results of the code generation.

• The TargetLink has to be used.

• This step is not performed because the TargetLink is not included in
the license.

2.1.2 Processor-in-the-loop
This step is needed to deploy and simulate the extracted code on the target
hardware. This means that the code of the Control Logic is deployed on the
RCP platform that is physically connected to the DWS. If the ’Load applica-
tion after build ’ option is selected, the code will be deployed on the dSPACE
MicroAutoBox II. However, to execute the PIL simulation and check the re-
sults the TargetLink has to be used.
The simulation is not performed because the TargetLink is not included in the
license.

8.1.4 RCP on Test Bench

The step that involves the emulation hardware is skipped. The HIL approach con-
siders the system in real-time. The frame of the Control Logic module has to be
modified according to the dSPACE MicroAutoBox II characteristics. Then the sys-
tem can be tested in real-time by means of the Test Bench representing the real
interfaces.

Figure 8.8: RCP on Test Bench step

60

CHAPTER 8. Tutorial Example 8.1. Deeper analysis through the Hybrid V-cycle

2.2.0 Build
This procedure is used to generate and compiled the code to be executed on
the dSPACE platform. The code can be also directly deployed on the hardware
if requested.

(a) Change the frame of the Control Logic (”2.2 RCP on Test Bench HIL”
folder).
The Control subsystem has to be considered (not only the Control Logic
one) because it will contain the real dSPACE interfaces used to create the
interaction between the control algorithm and the system. The Control
module has been designed as a referenced model. This means that the
content is stored in a different model that can be simulated separately and
independently of the main model. As a consequence all the needed oper-
ations can be made on the Control model leaving the MTM untouched.
The input and the output signals of the frame are now dSPACE signals.
This is the reason why the dSPACE library has to be used. It contains
interface modules that have to be inserted into the Control model in place
of the MTM interfaces, inputs and outputs. The result is an independent
model used specifically to deploy the Control Logic code on the dSPACE
platform.

(b) Change the configuration parameters (Chapter 7).

(c) Prepare the Test Bench.

i. Connect the dSPACE to the I/O board (DS1541) to the external in-
struments. The I/O board represents an interface device that makes
the connection between the MicroAutoBox II and the external in-
struments simpler. The board has several pins corresponding to the
input and output signals. The external instruments have to be linked
to the appropriate pins to establish the physical connection to the
dSPACE.

Figure 8.9: DS1541 - dSPACE I/O board

61

8.2. Filters in series results CHAPTER 8. Tutorial Example

ii. Switch on all the instruments.

(d) Click on Build to generate and compile the code (”2.2 RCP on Test
Bench HIL”⇒ ”0 CODE” folder).
This produces the system description file for the ControlDesk that is used
to manage the dSPACE signals.

• If ’Load the application after build ’ option is selected the code will
be also deployed on the dSPACE MicroAutoBox II.

2.2.1 Hardware-in-the-loop

(a) Open the ControlDesk.

(b) Import the .sdf file into the ControlDesk.
From now on the ControlDesk is used to manage the signals (Chapter 7)
and to produce the results.

8.2 Filters in series results

The results are related to the different Hybrid V-cycle steps. The MIL simulation
performed at the step 2 considers the DWS. The results have to match those of the
concept model.
The MIL procedure of the step 2.1 considers the RCP platform characteristics. The
outcomes have to match those of the MIL simulation of the step 2.
The results of the SIL simulation are related to the step 2 performed on the DWS.
The SIL simulation that implies the dSPACE compiler is not carried out. The same
consideration applies on the PIL simulation with the dSPACE compiler.
The HIL results (step 2.2) consider two different scenarios:

• Simulated dashboard components

• Real dashboard components

When considering the MIL and the SIL simulations of the step 2 performed with
the DWS, the Control Monitor results are shown. This is sufficient because the
Plant is only represented by the signal generator and the HMI contains the signals
of the buttons. Moreover, the Plant results are already shown at concept model
level.
The ControlDesk is used to show the HIL results that are related to the dSPACE
MicroAutoBox II.

62

CHAPTER 8. Tutorial Example 8.2. Filters in series results

8.2.1 MIL results

In order to check the consistency of the MIL results of the step 2 of the Hybrid
V-cycle they have to be compared with the ones of the concept model.

Figure 8.10: Concept model results

Figure 8.11: DWS MIL results

The concept model has continuous filters while the MIL results comprise digital
signals. Moreover, in the MIL scenario a delay seems to be present. The signal
is not filtered exactly since the simulation starts. This is reasonable because it
represents the button functioning. Only when the button is activated the system
is enabled and the filters can start filtering the signal. This occurs at about 0.04 s
in this case. Nevertheless the results are acceptable and they are exactly as expected.

Note: the ’not filtered ’ signal is the sinusoidal wave of the generator. The ’fil-
tered signal 1 ’ is associated to the 500 Hz filter and the ’filtered signal 2 ’ represents
the 100 Hz filter.

63

8.2. Filters in series results CHAPTER 8. Tutorial Example

The MIL simulation of the step 2.1 of the Hybrid V-cycle considers the RCP
characteristics. The results have to be compared to those of the MIL simulation
performed at the step 2 of the Hybrid V-cycle.

Figure 8.12: DWS MIL results

Figure 8.13: RCP MIL results

As shown the MIL results of the steps 2 and 2.1 of the Hybrid V-cycle are
identical. Then they are acceptable.

64

CHAPTER 8. Tutorial Example 8.2. Filters in series results

8.2.2 SIL simulation

The SIL results (that are the ones of the extracted Control Logic code) have to be
compared with those of the MIL procedure.

Figure 8.14: SIL results of the 500 Hz filter

Figure 8.15: SIL results of the 100 Hz filter

As shown the SIL and the MIL the results are almost identical then they are
acceptable.

65

8.3. dSPACE results CHAPTER 8. Tutorial Example

8.3 dSPACE results

Figure 8.16: Test Bench

The dSPACE MicroAutoBox II is used to perform the HIL procedure and it is
a component of the Test Bench (Figure 8.16).

8.3.1 Simulated Dashboard components

Figure 8.17: Control content - simulated dashboard components

Figure 8.17 shows the Simulink model used to generate the code for the dSPACE
platform. In particular, it is the content of the Control subsystem. The frame
has been changed according to the dSPACE library modules to represent the real
interfaces. The button, the switch and the led are still modelled with Simulink
library components because they have to be simulated. This model can be used
to investigate the dSPACE library modules and the ControlDesk instruments that
have to be used to simulate the dashboard components in particular the ControlDesk
Instrument Selector. Moreover, this model can be used to manage complex systems

66

CHAPTER 8. Tutorial Example 8.3. dSPACE results

that may have several dashboard components and to directly interact with those
elements to analyse the behaviour of the system in different scenarios.
Building the model results in the system description file generation. It will be
imported into the ControlDesk to manage the dSPACE signals. In order to simulate
the dashboard components the Simulink blocks representing those elements have to
be associated to the ControlDesk instruments.

ControlDesk results

Figure 8.18: System OFF

Figure 8.18 shows that the system is not enabled because the push button has
not been activated. This means that the filters do not produce any filtered signal.

67

8.3. dSPACE results CHAPTER 8. Tutorial Example

Figure 8.19: System ON - Emergency OFF

In Figure 8.19 the push button is activated while the emergency switch is off.
The result is that the system is enabled and it correctly filters the input signal. As
a consequence the led becomes green.

Figure 8.20: System OFF - Emergency ON

Figure 8.20 shows the emergency situation. The corresponding switch is acti-
vated. As a consequence the system is stopped although the push button is still on.
Moreover, the led becomes red.

68

CHAPTER 8. Tutorial Example 8.3. dSPACE results

8.3.2 Real Dashboard components

At this step the Test Bench (Figure 8.16) represents the whole system. The dash-
board elements are real and then they are represented by physical components: led
and a generator used for the push button and the switch.

Figure 8.21: Control content - real dashboard components

In Figure 8.21 the Control content comprises synchronous tasks and it does not con-
tain any asynchronous source. This means that the Emergency Task is synchronous.
The system does not behave exactly as mentioned in Section 4.3. Nevertheless this
model can be used as a first representation of the system and it can be used to
investigate the dSPACE library modules for the real dashboard components. Next
experiment will include also the asynchronous source.
The frame considers the real interfaces represented by the dSPACE library modules.
In this case also the button, the switch and the led are real.

ControlDesk results

Figure 8.22: System OFF

Figure 8.22 shows that neither the push button or the emergency switch are
activated. This means that system is not filtering any signal.

69

8.4. Conclusions CHAPTER 8. Tutorial Example

Figure 8.23: System ON - Emergency OFF

In Figure 8.23 the system is enabled by the push button and it correctly filters
the input signal.

Figure 8.24: System OFF - Emergency ON

Figure 8.24 shows the emergency situation in which the system is stopped by
means of the emergency switch activation.

8.4 Conclusions

The ”Filters in series” application is an example used to test the methodology
accuracy. As it shown the methodology allowed to properly define the system com-
ponents with their characteristics and the interfaces needed to create the interaction
among all the system parts including the Control Logic frame. The frame represents
the computing platforms and then if it is correctly developed and configured it will
allow the user to manage the platforms for testing the application in real-time. Then
the main purpose of the methodology is the automatic code generation that results
in the code implementing the control algorithm. It has to be deployed on the target
hardware.
The code of the ”Filters in series” application is correctly generated, compiled and

70

CHAPTER 8. Tutorial Example 8.4. Conclusions

deployed on the dSPACE. As a consequence the dSPACE MicroAutoBox II results
are exactly as expected. This means that the methodology provides effective pro-
cedures and tools for the system development process when dealing with relatively
simple applications. In order to ensure the robustness of the methodology, it is
applied on a more complex scenario that involves automotive issues (Appendix A).
The result is that the methodology is really effective, accurate and robust because
it allowed to achieve quite acceptable outcomes (from the automotive prospective)
in a relatively short while. From the System Overall Specifications to the RCP on
Test Bench steps of the Hybrid V-cycle.
Next objectives are related to applications that will be developed to investigate the
dSPACE MicroAutoBox II details, e.g., HW interrupt. This will allow to produce
even more sophisticated systems. Then the Hybrid V-cycle will be used as a guide-
line till the final step to introduce the VMU and to complete the system development
process.

71

Appendix A

Automotive application

The application aims at producing the Vehicle Management Unit code for an hybrid
car [20]. In order to accomplish this task the methodology is used as a guideline from
the collection of the system specifications to the testing phase that involves the Test
Bench and in particular the dSPACE MicroAutoBox II. The Hybrid V-cycle and
the Modular Technical Model are used for the development process. This allows to
obtain an effective and accurate application. Using the methodology during a more
complex application development allows to ensure the robustness of the methodology
itself.

A.1 Concept Model

The concept model and the system specifications are provided by the customer. The
wired logic schematic of the vehicle and the inverter logic schematic.

72

CHAPTER A. Automotive application A.1. Concept Model

Figure A.1: Wired logic schematic of the vehicle

Figure A.2: Inverter logic schematic

73

A.2. Modular Technical Model CHAPTER A. Automotive application

A.2 Modular Technical Model

The modules are filled with the system characteristics as described in the Hybrid
V-cycle. Some modules are shown.

Figure A.3: Environment module - road slope

Figure A.4: Plant module - vehicle representation

Figure A.5: Control module of the step 2.1 of the Hybrid V-cycle with the frame and the
Control Logic module

74

CHAPTER A. Automotive application A.3. Code Generation

A.3 Code Generation

The code is automatically generated and compiled when clicking the Build icon.

Figure A.6: Control Logic module - Supervisor and Task for the torque command compu-
tation

Figure A.6 shows the content of Control Logic module responsible of the code imple-
menting the control algorithm. It will be deployed on the dSPACE MicroAutoBox
II.

A.4 dSPACE MicroAutoBox II

The Control module is used to deploy the Control Logic code on the dSPACE
MicroAutoBox II. The frame is composed of the real interfaces represented by the
dSPACE rti1401 library. They have to be considered when dealing with the code
generation in order to enable the interaction between the platform and the other
Test Bench instruments.

75

A.4. dSPACE MicroAutoBox II CHAPTER A. Automotive application

Figure A.7: Frame representing the input signals to the Control Logic module

Figure A.8: Frame representing the output signals from the Control Logic module

Figure A.7 and Figure A.8 show a combination of real interfaces and simulated
dashboard components due to the great amount of dashboard elements that are
needed to create the interaction between the user and system.
Building the model results in the generation of the system description file that have
to be imported into the ControlDesk. The ControlDesk is used to perform several
tests to check the application functioning. The ControlDesk layouts will be shown.
They represent the most relevant scenarios.

76

CHAPTER A. Automotive application A.4. dSPACE MicroAutoBox II

Figure A.9: Forward test with an acceleration command that come from the external DC
power supply.

In Figure A.9 the Enable switch is on meaning that the traction is enabled and
the corresponding led becomes on. The HV ready switch is on meaning that the
battery pre-charge has been completed. The corresponding led is activated. As the
Forward button is pushed the Torque CMD (normalized torque command) becomes
positive.

Figure A.10: Backward Test with the acceleration command that come from the external
DC power supply

In Figure A.10 the Backward button is on, consequently the corresponding led is
on. This results in a negative Torque CMD.

77

A.4. dSPACE MicroAutoBox II CHAPTER A. Automotive application

Figure A.11: Emergency situation

Figure A.11 shows the emergency situation. When the emergency switch is
activated the application is stopped. No signal can be detected.

Figure A.12: AC charger plugged

In Figure A.12 the AC Plugged switch is on. This means that the vehicle is charging
and then it cannot be driven. As a consequence the Buzzer and the L1A Red chg
led become red as a warning to the user.

78

Bibliography

[1] International Council on Systems Engineering (INCOSE). System Engineering.
https://www.incose.org/about-systems-engineering/system-and-se-
definition/systems-engineering-definition

[2] I. Graessler, J. Hentze and T. Bruckmann. V-MODELS FOR INTERDIS-
CIPLINARY SYSTEMS ENGINEERING. Julian Hentze, Research Assistant,
Paderborn University, Heinz Nixdorf Institut,Germany, 2018.

[3] The Mathworks Inc. Validation and Verification for System Development.
https://www.mathworks.com/help/ecoder/gs/v-model-for-system-
development.html?s tid=srchtitle

[4] The Mathworks Inc. Create a Template from a Model.
https://www.mathworks.com/help/simulink/ug/create-a-template-from-a-
model.html

[5] The Mathworks Inc. Modeling for Multitasking Execution.
https://www.mathworks.com/help/rtw/ug/modeling-for-multitasking-
execution.html?s tid=srchtitle

[6] The Mathworks Inc. SIL Verification for a Subsystem.
https://www.mathworks.com/help/sltest/ug/silpil-verification-for-a-
subsystem.html

[7] The Mathworks Inc. Configure Processor-In-The-Loop (PIL) for a Custom
Target.
https://www.mathworks.com/help/ecoder/ug/configure-processor-in-the-loop-
pil-for-a-custom-target.html

[8] dSPACE. MicroAutoBox II Hardware Installation Configuration. Germany, 2018.

[9] dSPACE. TargetLink.
https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm

[10] dSPACE. dSPACE TargetLink 4.4 Provides New Functionalities: Production
Code Generator Supports MATLAB Code in Simulink Models.
https://www.dspace.com/en/pub/home/news/dspace pressroom/press/201903001.cfm

[11] dSPACE. Simulating and Testing TargetLink Code.
https://www.dspace.com/en/pub/home/medien/videos/productvideos/video-
tl-simulation.cfm

79

https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-definition
https://www.mathworks.com/help/ecoder/gs/v-model-for-system-development.html?s_tid=srchtitle
https://www.mathworks.com/help/ecoder/gs/v-model-for-system-development.html?s_tid=srchtitle
https://www.mathworks.com/help/simulink/ug/create-a-template-from-a-model.html
https://www.mathworks.com/help/simulink/ug/create-a-template-from-a-model.html
https://www.mathworks.com/help/rtw/ug/modeling-for-multitasking-execution.html?s_tid=srchtitle
https://www.mathworks.com/help/rtw/ug/modeling-for-multitasking-execution.html?s_tid=srchtitle
https://www.mathworks.com/help/sltest/ug/silpil-verification-for-a-subsystem.html
https://www.mathworks.com/help/sltest/ug/silpil-verification-for-a-subsystem.html
https://www.mathworks.com/help/ecoder/ug/configure-processor-in-the-loop-pil-for-a-custom-target.html
https://www.mathworks.com/help/ecoder/ug/configure-processor-in-the-loop-pil-for-a-custom-target.html
https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm
https://www.dspace.com/en/pub/home/news/dspace_pressroom/press/201903001.cfm
https://www.dspace.com/en/pub/home/medien/videos/productvideos/video-tl-simulation.cfm
https://www.dspace.com/en/pub/home/medien/videos/productvideos/video-tl-simulation.cfm

[12] The Mathworks Inc. MAB Modeling Guidelines.
https://www.mathworks.com/help/simulink/mab-modeling-guidelines.html

[13] The Mathworks Inc. MAB Modeling Guidelines.
https://www.mathworks.com/help/simulink/ug/types-of-model-
components.html

[14] dSPACE. dSPACE MicroAutoBox-II-Brochure 2020-08 01 200811 E. Ger-
many, 2018.

[15] Ideas & Motion S.r.l. Compass ECU - Product Brief - Rev 02. Italy, 2019.

[16] dSPACE. Handling Task - Introducing Task Handling. Germany, 2018.

[17] dSPACE. Handling Task - Task States and Execution Order. Germany, 2018.

[18] dSPACE. Handling Task - Overrun Situation and Turnaround Time. Germany,
2018.

[19] dSPACE. ControlDesk.
https://www.dspace.com/en/pub/home/products/sw/experimentand
visualization/controldesk.cfm

[20] Serrano Thesis. Project for the implementation and validation of the Vehicle
Management Unit (VMU) code of a hybrid car following the V-Cycle development
strategies described in ISO 26262. Italy, 2018.

80

https://www.mathworks.com/help/simulink/mab-modeling-guidelines.html
https://https://www.mathworks.com/help/simulink/ug/types-of-model-components.html
https://https://www.mathworks.com/help/simulink/ug/types-of-model-components.html
https://www.dspace.com/en/pub/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dspace.com/en/pub/home/products/sw/experimentandvisualization/controldesk.cfm

	List of Figures
	Table of acronyms
	Methodology
	V-cycle
	V-cycle main characteristics
	Hybrid V-cycle
	Hybrid V-cycle description

	Modular Technical Model
	MTM components
	Modules
	Additional components

	MTM implementation
	Simulink implementation details
	Blocks description
	Simulink Template Generation
	Simulink Template Usage

	Control module structure
	Control module characteristics
	Introduction to the code generation
	Multi-task application
	Multi-task implementation
	Simulink implementation

	Control code generation
	SIL (Software-in-the-loop)
	SIL simulation

	PIL (Processor-in-the-loop)

	HMI module structure
	Rapid Control Prototyping (RCP)
	dSPACE TargetLink
	MIL simulation with TargetLink
	SIL simulation with TargetLink
	PIL simulation with TargetLink

	Tutorial Example
	Deeper analysis through the Hybrid V-cycle
	System Overall Specifications
	System Design
	RCP Code Production
	RCP on Test Bench

	Filters in series results
	MIL results
	SIL simulation

	dSPACE results
	Simulated Dashboard components
	Real Dashboard components

	Conclusions

	Automotive application
	Concept Model
	Modular Technical Model
	Code Generation
	dSPACE MicroAutoBox II

	Bibliography

