
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Development and implementation of an
automotive virtual assistant

Supervisor

Prof. Luciano LAVAGNO

Candidate

Andrea CELESTINO

Academic Year 2019-2020

Abstract

This thesis aims to the study of Intelligent Personal Assistants (IPAs) applied in
the automotive field, proposing and testing an implementation.
In the first section, IPAs are studied from the first implementations to the current
state of art, understanding how they became so popular, with an overview on the
advances in speech and voice technologies.
Then an automotive personal assistant is designed and implemented, integrating
some of the most popular technologies and expanding their functionalities.
The proposed approach is based on Alexa, one of the leader virtual assistant AI
on the market; new capabilities, called skills, can be developed and customized
to offer new voice experiences to the speaker and, in this case, the driver. Alexa
will offer vehicle diagnostic and control features, profiles management and other
services to showcase all the possibilities. The skill creation process is explained in
detail with the definition of the interaction model, the voice-user interface, and
the logic handling back-end code. The aim is to create a natural voice interaction,
letting Alexa take some decisions, proposing to the driver assistance and letting the
speaker talk in a more conversational way: for this, two non-canonical approach
are proposed and implemented. Then, this thesis covers also the interaction
between Alexa and the vehicle, with an infotainment system on board based on
Android Automotive. After an overview on this operating system, an Android
app, integrating the Alexa Auto SDk, is expanded to include a car status panel,
providing and intuitive graphical interface through which both the driver and Alexa
can interact.
Since the Alexa Auto SDK capabilities are limited, a communication system based
on DynamoDB, a NoSQL database provided by Amazon Web Services (AWS)
is implemented, so that the two systems can communicate and exchange more
complex data.
Finally, in the last section of this thesis, the proper functioning of all the components
are tested on an Automotive Development Platform, the SA8155P ADP air, with
Android Automotive installed, the results of this project are shown and possible
future implementations are discussed.

Table of Contents

List of Figures iii

1 Intelligent Virtual Assistants 1
1.1 State of Art . 3

1.1.1 Trends with In-Car Virtual Assistants 4
1.2 Overview on speech recognition . 8

1.2.1 Hidden Markov Models . 9
1.2.2 Natural language processing 11

1.3 Proposed implementation overview 12

2 Alexa 14
2.1 "Who" is Alexa? . 14
2.2 Alexa Skills . 16

2.2.1 Alexa Skills Kit (ASK) . 17
2.2.2 Development tools . 19
2.2.3 How to host the service . 22
2.2.4 Alexa Skills Kit Software Developer Kit 24
2.2.5 Other settings . 24

2.3 The interaction model . 25
2.3.1 Invocation name . 25
2.3.2 Intents . 26
2.3.3 Slots . 28
2.3.4 Dialogs . 30
2.3.5 The request . 33

2.4 The logic . 35
2.4.1 Intent handlers . 36
2.4.2 Interceptors . 44
2.4.3 Skill building . 45

2.5 Location services and external APIs 45
2.6 Profile management: skill personalization 47
2.7 Control the vehicle . 48

i

2.8 Complex and natural conversational flow 49
2.9 Alexa Auto SDK . 51

2.9.1 Auto SDK Architecture and Modules 52

3 Android 56
3.1 Android overview . 56

3.1.1 Android Automotive OS . 59
3.1.2 Android Studio and the Apps 59

3.2 The Alexa app . 66
3.2.1 Overview and GUI . 66
3.2.2 Vehicle parameters . 69
3.2.3 Alexa Car section . 73
3.2.4 Notification Fragment . 78
3.2.5 The skill card . 79

4 DynamoDB 82
4.1 What is a NoSQL database . 83
4.2 The connection between DynamoDB and the Android app 84

4.2.1 AWS Amplify . 84
4.2.2 AWS and Amplify configuration 89

4.3 The connection between DynamoDB and the Alexa skill 90

5 Conclusions 93
5.1 Module Testing . 93
5.2 System testing and results . 98
5.3 Future improvement . 99
5.4 Conclusions and Final Remarks . 100

Bibliography 101

ii

List of Figures

1.1 HAL from "2001: A Space Odyssey" 1
1.2 Clippy the Paperclip . 2
1.3 Overview of In-Car virtual assistants 6
1.4 Interest in voice services on vehicle, by demographic 6
1.5 Interest in same brand of in-home voice service on next vehicle . . . 7
1.6 Modify likelihood to buy from a car company instead f a branded

voice service . 7
1.7 Basic block diagram of a speech recognition system 9

2.1 Amazon Alexa logo . 14
2.2 Amazon Echo 1st Generation . 15
2.3 How and Alexa skill works . 17
2.4 Alexa developer console: skill main page 20
2.5 Alexa developer console: test page 21
2.6 Interaction model file . 25
2.7 Some of the intents mapped . 27
2.8 Intent definition with sample utterances and slot 29
2.9 Intent definition in JSON format 29
2.10 Diaologs settings for CheckIntent 32
2.11 A skill request sent by Alexa . 33
2.12 Slot and slot resolution . 35
2.13 Handler implementation for handling CheckIntent requests 37
2.14 Attributes included in a request . 38
2.15 The manual configuration of the DynamoDbPersistenceAdapter . . 39
2.16 Definition of the interceptors to load and save attributes 40
2.17 JSON response body . 41
2.18 JSON request with a CheckIntent 43
2.19 JSON response with a HelpUserIntent 43
2.20 Request flow and interceptors . 44
2.21 Interceptor to log requests. 44
2.22 How a skill is built . 45

iii

2.23 How the Lambda function performs the reverse geocoding given the
coordinates . 46

2.24 How the skill react when an unknown user speaks. 48
2.25 How the skill react when an known user, with a profile already saved,

speaks. 48
2.26 Intent for opening and turning on car component 49
2.27 Flowchart showing intents, variables and directives through which

the conversation could go . 51
2.28 Alexa Auto SDK architecture and (some of the available) modules . 52
2.29 High-level message flow for displaying visuals 54
2.30 The TemplateRuntimeHandler implementation extending the Tem-

plateRuntime . 55

3.1 Android logo. 56
3.2 Android OS architecture . 58
3.3 Vehicle Hal architecture . 59
3.4 Activity lifecycle . 62
3.5 Hierarchy of views . 63
3.6 The same fragment could be reused in different ways 64
3.7 Activity lifecycle with a fragment 65
3.8 Alexa Android app: weather card 66
3.9 Alexa Android app: languages menu 67
3.10 Alexa listening state . 68
3.11 Layer structure analysis . 68
3.12 jsonschema2pojo converter main page 70
3.13 Attributes Java Class . 71
3.14 STATUS Java Class . 71
3.15 Layer structure analysis . 72
3.16 Example use of the set and get methods 72
3.17 Car status panel . 73
3.18 How the alexaCar button is defined in the XML file and how the

fragment layout is displayed as a preview in Android Studio 74
3.19 The button declaration and its click listener 74
3.20 The function that puts the car panel on the screen. 75
3.21 Car status panel main layouts structure. 75
3.22 Car status panel: the fragment layout blueprint 76
3.23 The listener creation. 76
3.24 Setting fragment inflated to control the mirrors 77
3.25 Warning menu fragment inflated. 77
3.26 The notification fragment displayed on the top of the screen. 78

iv

3.27 The function that displays programmatically the notification frag-
ment, setting the argument values. 79

3.28 How the app distinguish between a vehicle-skill card and a generic
card. 80

3.29 The card sent when asking the skill if there is a problem with the
battery, rendered in the car section. 81

3.30 How a simple request is rendered placed in the general section of
the app. 81

4.1 DynamoDB logo. 82
4.2 The DynamoDb console with the available table 83
4.3 The table . 83
4.4 AWS Amplify logo. 84
4.5 GraphQL schema . 85
4.6 VehicleData auto generated class by Amplify 86
4.7 Function to retrieve vehicle parameters from the database. 87
4.8 Function to update vehicle parameters to the database. 87
4.9 How AppSync works . 88
4.10 Subscription creation. 88
4.11 onUpdate behavior. 89
4.12 How the Lambda function performs a GraphQL mutation. 91

5.1 CheckIntent . 93
5.2 The longest conversation possible 94
5.3 GetPositionIntent . 95
5.4 How the skill cards are displayed on any Alexa device with a screen. 96
5.5 How the skill card is displayed on a smartphone 96
5.6 The SA8155P ADP. 97
5.7 The whole system architecture. 98

v

Chapter 1

Intelligent Virtual
Assistants

An intelligent virtual assistant (IVA) is a software agent that assists people to
perform basic tasks or provides services via natural language [1]. They are called
in many different ways: intelligent personal assistants (IPA), digital personal
assistants, voice assistants, or mobile assistants[2]. These entities combine set
of technologies and tasks, such as speech recognition, language understanding,
language creation, dialogue management and speech synthesis, to respond to user
requests [3].
They have always been part of science fiction imaginary, and now they are par of our
everyday lives: voice technologies have always been very fascinating. It is sufficient
to mention Star Trek, HAL, from "2001: A Space Odyssey, or Samantha from "Her"
to understand how they affected our culture and science fiction imaginary, building
expectations and predictions for what speech recognition could look like in our
world. And now, the diffusion of these smart assistants is constantly spreading.

Figure 1.1: HAL from "2001: A Space Odyssey"

1

Intelligent Virtual Assistants

Their development is not new: for nearly 100 years, electronics and computer
industries have tried to reach the goal of voice interaction. In 1911, Radio Rex, a
simple wood toy, was one of the first attempts in using speech recognition: when
the owners would shout "Rex!", a little wooden dog would came out of its house [4].
But the first natural language processing computer program, or chatbot, ELIZA,
was developed by MIT in 1960s, to demonstrate that the communication between
man and machine was superficial [5]. This experiment gave name to the ELIZA
effect, the anthropomorphisation of computer behaviors, assuming unconsciously
that they are analogous to humans ones. From the 90s, digital speech recognition
technology became a feature of personal computers.
And IVAs were already present almost 20 years ago. They were basic assistant and
usually annoying: everybody should remember Clippy the Paperclip, the Microsoft
office assistant [6].

Figure 1.2: Clippy the Paperclip

The first modern digital virtual assistant, integrated on a smartphone, was Siri
introduced by Apple on the iPhone 4S in 2011. Then, many companies decided
to release their assistant,such as Alexa, Cortana, Google Assistant: now they are
used everywhere and they are became part of our common used technologies.
Voice technologies are the natural evolution of human machine interfaces (HMI),
that is a software that presents information to a user regarding the state of a
process, accept commands and execute the operator control direction. Usually,
information is displayed with a graphical user interface, but now voice interaction
is becoming its key technology [7]. As the machine are becoming more complex to
operate, HMI is focusing on reducing the human cognitive workload, to optimize
the human task efficiency.
The new wave of mobile and ubiquitous virtual assistants is connected to the current
shift of the form of interactions,from touch to speech-based interfaces [8] and to the
incorporation of these assistants in “smart” devices such as smartwatches, smart
televisions and smart cars.

2

Intelligent Virtual Assistants

1.1 State of Art
Virtual assistants are becoming more intelligent and complex, but also more and
more integrated within our daily lives. Google Assistant, Apple’s Siri, Amazon’s
Alexa or Microsoft’s Cortana are just some of the more famous ones, integrated
in many devices such as smartphones and speakers. These companies will only
continue to integrate them more and more into the everyday products, fueling the
“Internet of Things” movement. They use different techniques to design their IVA,
based on the application and its complexity [9]. For example, Cortana dialogue
system is improved using the Microsoft Azure Machine Learning Studio, while
Google uses Deep Neural Networks (DNN) to highlight the main component of the
dialogue system and then applies a new deep learning architecture. Alexa’s case,
the main focus of this thesis, will be deeply discussed in chapter 2.
All these companies are trying to focus in the core technologies for their dialogue
systems, such as automatic speech recognition, text-to-speech, synthetic talking
face and dialog management, to improve them more and more. They are also
pushing themselves to multi-modal input modes, using the voice combined with
touch and gesture, to provide a more immersive experience.
With the advance of machine learning and artificial intelligence, now IVAs are
systems capable of learning the interests and behavior of the user and respond
accordingly [10]. They can use AI-based functionalities to proactivly perform action
or, in most cases, suggest contents, that could be interesting for the user based
on the analysis of previous choices. These behavior follows more the concept of
"virtual butler" [11], that simply execute queries. But even in this role, users usually
expect more and exceed the actual performance of IVAs, reducing the willingness
to use them in a broader way [12]. The advances in these fields brought voice
technologies and voice assistants in our lives with variety of applications: they are
not only useful for one specific purpose, but provide many functionalities through
an unified interface, that is very natural, designed for mobile contexts, bringing an
ubiquitous interaction and that is integrate in an IoT ecosystem. [13]
The ease with which is possible interact with them makes the difference: recent
technological developments in robotics, artificial intelligence, natural language
processing (NLP) and user interfaces for mobile and ubiquitous interaction generated
a renewed activity around virtual assistants. And the reasons about this sudden
expansion have to be found in the technological progress that has increased the
quality of results like accuracy, speed and, in particular, capability of recognizing
different speakers on the basis of their accent, dialect, thus establishing a smooth and
intuitive Human-Machine interaction: now a computer is capable of understanding
a human without having to interact with a screen or a keyboard.
Although the technologies about all the virtual assistants are different and complex,
they perform these four essential steps:

3

Intelligent Virtual Assistants

1. Voice Recognition: the voice analog signal is recorded and converted into a
binary file, to be sent to the server.

2. The Speech record is sent to the IVAs server in the cloud: the recordings
contain background and other noises, so the server filters and analyzes it.
All these process are heavy to compute, for this reason it is the server that
accomplishes this task, without weighting on the limited resources of the
device.

3. The meaning is understood: natural language processing is performed, to
interpret the audio.

4. The meaning is transformed into instructions.

So, virtual assistants are found in smartphones and homes, trying to accommodate
user requests and helping them. But, what about cars?

1.1.1 Trends with In-Car Virtual Assistants
HMI technology is used by almost all industrial organization and in every field,
especially in the automotive field: the number of in-vehicle infotainment systems
(IVIS) is rapidly increasing. Those systems offer the potential to greatly enhance
mobility and comfort: they combines traditional car functions with "smart" features,
from the radio, to social networking. One of the most used IVIS is a big screen
based navigation system. Manufacturers can offer various features in their products
by choosing the HMI type that best aligns with their brand attributes and their
customers’ preferences. One of the latest trend is the addition of an increasing
number of screens inside vehicles. All these screens increase the risk for excessive and,
more important, dangerous level of inattention to vehicle control tasks. The majority
of car accidents, about 93%, are caused by human error, with the inattention to
the road as a contributing factor [14]. The development of new advanced driver-
assistance systems (ADAS), combined with the use of the conventional vehicle-safety
measures, such as seatbelts and airbags, offers great potential to improve road
safety, reducing driver errors. Anyway, many studies show that interacting with the
infotainment system divide the attention between the road and the desired task.
For example, studying the glance analysis of the driver eye movement confirms
that, during the radio tuning, the eye focus for longer time off road [15]. Indeed
80% of crashes and 65% of near crashes involve driver distraction form secondary
task [16].
IVIs and user-friendly designs are a challenge that the automotive industry is
facing right now, trying to overcome the potential increase in driver distraction.
For wxample, Driver Distraction Test Rig (DDTR) is used to test protocols for
evaluating the level of driver distraction imposed by infotainment systems [17].

4

Intelligent Virtual Assistants

IVIs innovated HMI systems, altering drivers’ in-car interactions, but new problems
arose. To overcome some of the safety problems with using LCD screens, voice
technologies can be adopted, to reduce the time looking at screens.
Already from the 80s, the use of voice technologies and artificial intelligence to
improve safety and reliability in vehicle was already discussed [18]. Surveys reveal
that car manufacturers are implementing more and more voice-activation systems
[19]. Voice-based interfaces introduce less distractions when executing in-vehicle
secondary tasks, compared with visual an manual interfaces [20]. This improves
vehicle control: for example, reducing the workload and improving the lane keeping
performances [21]. However, compared with the other interfaces, voice interface
has its own disadvantages, such as the lack of intuitiveness. Most of the traditional
voice systems are designed with a limited vocabulary in order to reduce complexity
and errors in the speech recognition processes. This make it difficult to remember
these specific commands, resulting in low usage of voice-activation systems. Using
more intuitive commands, would decrease the time that the driver glance does not
focus at the windscreen: [22].
Virtual assistants, fueled with their advanced AI and machine learning approaches,
could break through this barrier, making the voice interactions more intuitive and
natural, providing all the benefits of this type of interface inside vehicles.
They are already arriving inside the vehicles, but they are not really integrated with
the vehicle. All automotive companies are establishing strategic partnerships with
big ICT companies to deliver virtual assistants. Their deployment follows two main
strategies, namely the integration of existing virtual assistants originally developed
for smartphones and tablets, and the offer of virtual assistants specifically conceived
for the car context. The former approach is currently the most common. They are
focusing on three broad areas:

1. safety-related functionalities related to car navigation (including AI-based
self-driving tasks);

2. customized infotainment;

3. gateway to IoT, such as car controls;

5

Intelligent Virtual Assistants

Figure 1.3: Overview of In-Car virtual assistants

The design of virtual assistants is advancing more and more, however, their perceived
usefulness and related social acceptance is still far from optimal. But the car
industry is confident on the success of in-car virtual assistants, both in their role
of “virtual butlers” supporting users’ requests and in the more advanced role of
proactive agents with autonomous task execution and decision-making capacity
[13].
The interest in voice technologies adopted inside vehicles is increasing as the time
goes by, especially in the young generations, since they allow to maintain focus
while keeping the driver connected to his digital life.

Figure 1.4: Interest in voice services on vehicle, by demographic

6

Intelligent Virtual Assistants

The familiarity with the voice technology is also an important component in this,
because the desire to carry the same brand of in-home service on the vehicles is
higher.

Figure 1.5: Interest in same brand of in-home voice service on next vehicle

They showed also more interest in remaining loyal to the same branded voice service
other than to the specific vehicle brand.

Figure 1.6: Modify likelihood to buy from a car company instead f a branded
voice service

So, interest in voice technologies on vehicle is growing as the younger generation,
that are the most interested ones. Automakers are aiming on this, to fidelize the
young generations. [23] Summing up, virtual assistants are moving the first steps

7

Intelligent Virtual Assistants

inside cars, being directly integrated in the infotainment system, connected to the
vehicle from the smartphone, or with dedicated devices, such as Echo Auto. In this
last case, most of the customers complained when it was released for the absence
of real automotive features: it was simply an echo speaker, with minimal actual
integration with the car. As all the others implementation, they still are not well
integrated.
So, in this thesis work, it will be shown how to implement an automotive virtual
assistant that is an actual component of the infotainment system and that can
interface with the car, being able to provide diagnosis features and others useful
for automotive applications and to control the vehicle

1.2 Overview on speech recognition
Before moving on with the development of this thesis work, some basic information
to explain how speech recognition work is essential to deeply understand the subject,
even though the tools provided to developers allows to build voice experiences
actually do not require this knowledge.
Speech recognition, also known as automatic speech recognition (ASR), is a cross-
disciplinary subject, with the voice as the research object: the voice signal is
converted into commands that a machine can understand. It involves many fields
of knowledge, such as psychology, linguistics, acoustics, phonetics, signal processing
and computer science, but also mathematics and statistics. The ultimate goal is
to achieve natural communication between man and machine. It is considered to
be one of the most complex area of computer science [24].The variety of human
speech makes development of this technology very challenging.
It can be achieved in many different ways, but the more advanced solution ex-
ploits artificial intelligence and machine learning, integrating grammar, syntax,
composition of audio and voice signals to process human speech.
Speech recognition is essentially a pattern recognition system [25], consisting of four
essential units:

1. a feature extractor, for selecting and measuring the most important properties
of raw input data in a reduced form;

2. a pattern matcher, to execute comparison between the input pattern and a
reference patterns using a distance measure;

3. a reference templates memory, against which the input pattern is compared;

4. a decision maker, to make the final decision as to which reference template is
the closest to the input pattern.

8

Intelligent Virtual Assistants

The voice is recorded through a microphone, transforming the voice signal into
an electrical signal. The system recognize a voice model according to the human
voice characteristics, then analyzes the input signal, extracts required features and
decides a template of speech recognition. The computer is used to compare the
voice template and the characteristics of the input signal.

Figure 1.7: Basic block diagram of a speech recognition system

There are various algorithms and methods to recognize speech and improve the
accuracy to transcript it into text. this. Two of the most used will be discussed, to
give a general overview on these approaches. These two are at the fundamental
pillars of Alexa, that is the main focus of this thesis work.

1.2.1 Hidden Markov Models
Hidden Markov Models (HMM), is a statistical model applied to the modeling of
acoustic signal. Founded in the 1970s, so far, it is still considered to be the most
reliable approach to achieve fast and accurate speech recognition.
In engineering, one of the most relevant problem is the representation of a signal of
the physical world with a mathematical model, that allows to predict its behavior.
There two types of models , given a fixed time instant t0 and a signal represented
by x(t) [26]:

• deterministic models: given t0, the signal takes the value x(t0) that is a priori
known;

• statistical models: the value taken x(t0) is describable only from a statistical
point of view, by means of a stochastic variable and its probability density
function.

Human voices can be modeled with the latter one and HMM is one of them.
This model compares the waveform of a single word against what comes before,
what comes after and against a dictionary, to figure out what has been said.

9

Intelligent Virtual Assistants

Markov Chains

A Markov Chain, at the basis of the construction of the HMM model, is a model
that describes a sequence of possible events [27]. Markov chain makes a strong
assumption: the probability of transitioning to any particular state depends only
on the current state. The states before the current one are not relevant.
It is characterized by:

• Q = q1, q2, ..., qN a set of N states, where qi is a state variable;

• A = a11, a12, ..., an1, ..., ann a transition probability matrix, where aij is the
probability of passing from state i to j;

• π = π1, π2, ..., πN an initial probability distribution, where πi is the probability
that the chain starts in state i.

At each time instant, the Markov assumption is valid: when predicting the future
state, the past does not matter; it matter only the current state. So the probability
P of being in state qi is

P (qi|q1, ..., qi−1) = P (qi|qi−1)

and a state transition takes place in this way:

aij = P (qt+1 = j|qt = i)

The entire process is observable as each state corresponds to a physical observable
event.

The Hidden Markov Model

The HMM makes it possible to predict the probability of a certain sequence of states,
considering not only the observable events, as in traditional Markov chain, but
also hidden ones. It allows to incorporate hidden events, such as a tag associated
to a part of the speech, into a probabilistic model [24]. Thus the observed events
are the words in input, while the hidden events are what part of the speech that
word is associated to. Labels, such as words, syllables, sentences, are assigned to
the input sequence, mapping the input signal and allowing to determine the most
appropriate label sequence.
This model is characterized by:

• Q = q1, q2, ..., qN a set of N states, where qi is a state variable;

• A = a11, a12, ..., an1, ..., ann a transition probability matrix, where aij is the
probability of passing from state i to j;

10

Intelligent Virtual Assistants

• O = o1, o2, ..., oT a sequence of T observation, each drawn from a vocabulary
V = v1, v2, ..., vV ;

• B = bi(ot) a sequence of observation likelihoods, the emission probabilities,
each expressing the probability of an observation ot being generated from a
state i;

• π = π1, π2, ..., πN an initial probability distribution, where πi is the probability
that the chain starts in state i.

Other than the Markov assumption:

P (qi|q1, ..., qi−1) = P (qi|qi−1)

A second essential assumption is made, the output independence, that implies that
the probability of an output observation oi depends only on the state that produced
the observation qi and not on any other states or any other observations:

P (oi|q1, ..., qi, ..., qT, oi, ..., oT) = P (oi|qi)

In 1989 [26], it was introduced the idea that HMM should be characterized by
three fundamental problems:

1. Likelihood: Given an HMM λ = (A,B) and an observation sequence O,
determine the likelihood P (O|λ).

2. Decoding: Given an observation sequence O and an HMM λ = (A,B), discover
the best hidden state sequence Q.

3. Learning: Given an observation sequence O and the set of states in the HMM,
learn the HMM parameters A and B.

Summing up, the HMM is a complete expression of the acoustic model of the voice,
using statistical methods to create a voice recognition search algorithm that obtain
good results and that can be used for continuous speech recognition. The drawback
are the long and sophisticated calculations and the long training sequence [28] [29].

1.2.2 Natural language processing
NLP is not a specific algorithm. Instead, it is the area of artificial intelligence which
focuses on the interaction between humans and machines through language through
speech and text. It gives the computers the ability of understanding in the same
way humans can. NLP combines computational linguistics, in other words, the
modeling of human language with rules, with statistical models, machine learning

11

Intelligent Virtual Assistants

models and even deep learning models. In this way, a machine can process human
language, "understanding" its meaning.
Human language is full of ambiguities [30], but natural language-driven application
should recognize and understand it even with the presence irregularities such as
homonyms, idioms, metaphors, homophones, grammar exceptions and variations.
Human speech or text is broken down and analyzed. Some of the task to accomplish
this is are [31]:

• Speech recognition or speech to text;

• Grammatical tagging, to determine which word is which part of the speech.

• Word sense disambiguation, to distinguish the sense of a word based on its
context;

• named entity recognition, or NEM, that identifies words and phrases as useful
entities.

• Natural language generation, that is the opposite of speech recognition.

1.3 Proposed implementation overview
This master thesis project has been developed in collaboration with Marelli Europe
and had as a goal to continue the development of an automotive infotainment
system based on Android.
The main goal is to develop an automotive virtual assistant using one of the most
used and famous virtual assistant AI, Amazon Alexa. The initial integration steps
were already carried out by Marelli, with the development of an Alexa app for
Android that provides Alexa’s core functionalities. The aim is to implement a
functioning system capable of interact with a vehicle with an Android system on
board: Alexa must be able to retrieve data from a vehicle to allow the user to
detect malfunctions and errors. Alexa becomes the voice interface between the user
and the car, providing information about the status of the vehicle and, in some
cases, assistance. This system aims specifically to overcome the base functionalities
provided by Amazon and to provide the diagnosis aspects and features, to make
it is possible to check the status of the car and of specific components, detecting
if something is not working correctly. But the same infrastructure will be used
also to actively control the vehicle, both from inside and outside the car, giving
the possibility to remote control it. Also, to expand the experience of having a
personal automotive assistant, additional features will be implemented to retrieve
some information about the surroundings.
This project is composed by 3 components:

12

Intelligent Virtual Assistants

1. The Alexa skill, that implements the voice-user interface.

2. The Android app, that runs on the vehicle: collects and provides data; it also
to provides the graphical user interface for the driver.

3. The connection between the two through a database, DynamoDB, a NoSQL
database, to which both the skill and the app are connected.

The proposed approach exploits all services offered by Amazon. This is only one
of the many possible ways to implement a system like this, but it is one of the
most intuitive and reliable way, because it relies on Amazon services that are well
interconnected and integrated between each other.
The main features that are proposed are:

• Check if a single component works properly, giving information about possible
source of the problem and possible solutions;

• check the whole vehicle to verify If something Is wrong;

• verify the status of a car part, for example, if the vehicle is locked;

• ask more detailed information for a warning message;

• helping find a solution for some car malfunctions;

• ask information of the car, as the date of the next car service;

• control the vehicle, remotely or not;

• personalize the driver experience by selecting and setting a driver profile,
depending on the user speaking;

• location based features;

• general purpose; these are implemented to show the possibilities of an Alexa
skill and expand the feeling of a personal assistant; since it can do HTTP
requests, it can retrieve information from any APIs. In this case, some APIs
of HERE Map are used.

After the definition of the proposed features, the design of the automotive virtual
assistant can begin. The first step of the implementation of a voice assistant is the
voice user interface, how the user can actually interact with the vehicle just by
speaking. Alexa’s capabilities must be expanded and customized.

13

Chapter 2

Alexa

2.1 "Who" is Alexa?
“Alexa is Amazon’s cloud-based voice service available on hundreds of millions of
devices from Amazon and third-party device manufacturers”.[32]
Alexa is the virtual assistant AI technology developed by Amazon, arrived in 2014
with the launch of the smart speaker Amazon Echo, inspired by the Star Trek
computer, with the aspiration of revolutionizing daily convenience using artificial
intelligence. And now, in 2020, it is possible to say that they did it since now it
is really common to have one of the Alexa powered devices at home. In just five
years, Amazon has sold more than 100 million Alexa-powered devices.

Figure 2.1: Amazon Alexa logo

Alexa can be considered the leader between assistants at home. But the goal is not
becoming the best assistant as a whole, competing with Siri and Google Assistant
as mobile assistants, it is focusing on the idea of an “ambient user interface”. So
Alexa started with the home, and now it is headed to cars. Amazon is focused on
the places where it could make sense to speak out loud. The goal is to get as many
devices to use Alexa as possible, and to make those devices do as much as possible.
The focus, going forward is to make Alexa more conversational and become less
awkward to use. [33]
Echo ushered in the convenience of voice-enabled ambient computing: Alexa-
powered Echo broke the human-machine interaction paradigms, shifting how cus-
tomers interact with lots of services, like find information on the Web and control
smart devices.

14

Alexa

Figure 2.2: Amazon Echo 1st Generation

What really made the difference in the launch of Alexa was how good she was in
these four fundamental AI tasks [34] :

• Wake word detection: detect the keyword “Alexa” to get AI’s attention;

• Automatic speech recognition (ASR): convert audio streamed to the Amazon
Web Services (AWS) cloud into words;

• Natural-language understanding (NLU): extract the meaning of the recognized
words; in this way Alexa can take the appropriate action to satisfy customers’
requests

• Text-to-speech synthesis (TTS): convert Alexa’s textual response into spoken
audio.

From the beginning, Alexa is continuously improving, reducing recognition errors,
errors in NLU and even the gap in the naturalness between Alexa’s speech and
human speech. All of this was achieved by combining machine learning, in particular,
deep learning, with large-scale data and resources available through AWS.
Alexa is becoming more and more smarter, by reducing the reliance on supervised
learning, i.e., building ML models on manually labeled data. Most of the advances
in AI have been result of supervised deep learning, in which neural networks learn
by analysing thousands of training examples labeled by a human annotator. Lately,
Alexa uses a new self-learning paradigm that enables Alexa to automatically correct
ASR and NLU errors without an annotator in the loop [35]. In this approach,
ML is used to detect potentially unsatisfactory interactions with Alexa, detecting
when a customer is unsatisfied with the response and interrupts the response and
rephrase the request. Alexa is now self-correcting millions of defects per week.

15

Alexa

Alexa’s responses are becoming more natural, since neural networks are being used
for text-to speech synthesis, resulting in more natural-sounding speech and making
easier to adapt Alexa’s TTS system to different speaking styles.
Thus Alexa, powered with these advanced technologies, provides assistance in out
every day lives. It is capable of voice interactions, setting alarms, playing music,
provide real-time information and also control smart devices, becoming a home
automation system.
But how can Alexa deliver so many features?

2.2 Alexa Skills
Alexa’s capabilities are called skills: the ability to look for something on the web,
enjoying an audio book, or playing games are skills.[36]
It is also possible to teach Alexa new skills, to which customers can access. They
are the equivalent of an app for a smartphone, a specific set of features, triggered
by voice interactions. In the Alexa Skills Store, new skills can be discovered via
the Alexa companion app on a smartphone and only if the user enables it, he can
actually invoke it and use it. The skill is linked to the amazon account and it and
can be invoked by any device associated to that account.
But skills can be installed by voice too or even Alexa can propose them to satisfy
the customer requests, when she thinks that a particular skill could satisfy the
customer requests. Thus, Alexa’s capabilities can be continuously expanded.
When a customer speaks, Alexa processes the speech to determine the customer
request, providing a response. The voice recording is sent over the internet to the
Alexa Voice Services (AVS), the Amazon cloud-based service that is the real brain
of Alexa. This converts the audio recording into commands: the AVS breaks the
recording down to convert into instructions, detecting essential words, compatible
with skills or functions, and invoking those skills; than the request is processed and
a response is sent back, allowing Alexa to speaks out with the relevant information.
Everything is done within a fraction of a second.

16

Alexa

how

Figure 2.3: How and Alexa skill works

In other terms, Alexa is just an interface between the user and the skill logic:
she allows developers to use a powerful and complete system to recognize and
understand natural speech and to speak back to the user, without having to actually
have deep knowledge of machine learning techniques and voice technologies.
In this process, it is possible to see how the voice interface and the logic-handler
are two separate entities. Indeed, they are the two main components of a skill: one,
the interaction model, that defines the voice user interface; the other is the skill
logic, the back-end code. Alexa’s job is to collect the data required to compose a
correct request through the interaction model and then to send it to the back-end
code.
Alexa communicates with the skill service via a request-response mechanism using
HTTP over SSL/TLS. When the skill is invoked, the service receives a POST
request, consisting of a a JSON body and generates a JSON-formatted response.
Thus, to expand Alexa capabilities, a new skill is needed for this project. Amazon
allows everyone to create and publish new skills with the Alexa Skill Kit (ASK),
providing guidelines for the skill creation.[37]

2.2.1 Alexa Skills Kit (ASK)
The ASK is a collection of the self-service APIs, tools, and sample codes that allows
an easy and quick way to develop an Alexa Skill.
The first step is deciding what the skill should do. There are different types of skill
that can be created, depending which functionalities are wanted: this determines
how the they integrate with the Alexa service and what is needed to be built [38].
The ASK supports the creation of many types of skills, that differ both in the final
goal and in the implementation of the interaction model, but they can be grouped
in two main categories:

1. Skills with a pre-built model, as Smart Home Skill API, Video Skill API, Flash

17

Alexa

Briefing Skill API and Music skill API. These skills types give less control over
the user’s experience, but the development is simplified because the voice user
interface does not need to be created and take advantage of pre-built model.
They are also easier to be invoked by users, because they don’t need to be
“activated” with an invocation name: they are invoked with simple requests,
such as “Alexa, turn off the lights”. These are skills with functionalities
very limited in a specific field, like controlling a smart home device or select
and listen to audio content streamed through an Alexa-enabled device. The
developer, in this case, has just to define how the skill responds to a particular
directive or provides the data needed for the user.

2. Custom skill with a custom interaction model. It gives the most control over
the user’s experience and it can handle any type of request, as long as the
developer define the words users say to invoke the requests and create the
code to fulfill them. It is the most versatile type of skill, but also the most
complex, since the interaction model has to be built from scratch.

Due to the nature of this project, a custom skill is the best choice: it allows to
personalize as much as possible the user experience and can be used to satisfy any
type of request: an automotive personal assistant should be as versatile as possible.
The components of a custom skill are:

• The interaction model, the voice user interface by which the user can commu-
nicate with the skill. It is the mapping between sets of samples utterances
that a user can say to invoke the intents.

• The intents, part of the interaction model, are the actions that user can invoke,
the core functionality of the skill. They are the requests that the skill can
handle.

• The invocation name, the name that Alexa uses to identify the skill and is
included by the user when initiating a conversation with the skill.

• Set of images, audio files and video files to be retrieved when they are wanted
to be included in the skill; they must be stored on a publicly accessible site by
a unique URL.

• A cloud-based service that accepts those intents as a structured request and
elaborates them. It must be accessible over the internet. The skill is linked to
this service.

• A configuration that connects all the above components together, so that
Alexa, when detecting the invocation of the skill, can interpret the speech
according to the interaction model, routing the requests to the service of the

18

Alexa

skill, the back-end code, set as endpoint. This is created in the developer
console.

When speaking to an Alexa-enabled device, this is what happens:

1. The user’s speech is recorded and sent to the Alexa service in the cloud.

2. Alexa recognizes that the recording contains an intent for a specific skill.

3. Alexa structures this information into a request and send it to the cloud-based
service defined for the skill.

4. The service gets the request and elaborates it

5. The service sends back to Alexa a structured response, with text to speak to
the user.

6. The Alexa-enabled device speaks the response back to the user.

2.2.2 Development tools
Skills can be created in many different ways, so it is worth spending some words to
sum up all the different methods and tools that can be used, to show the differences
and the advantages of each approach.

Alexa Developer console

It is the first resource that can be used and it is the most intuitive and easy way
to create and manage skills. It guides the developer, providing a streamlined
experience to create, manage and publish skills.

19

Alexa

Figure 2.4: Alexa developer console: skill main page

It allows to set up all the skill configurations, the interaction model and specify
the endpoints of the service, where the skill code is. This console let define the
interaction model and manage all permissions required in an easy and intuitive
way. It can also let the developer code online, but only for a specific type of skill,
an Alexa-hosted skill: in this case, the backend code is completely managed by
Alexa and Amazon services, but this will be explained better later. The problem is
that only this type of skill code can be accessed through the console. Indeed, for
any other option, this console feature is not accessible and the development must
relays on other tools.
The developer console also allows to test all the skills with either text or voice,
submit them for certification and also use analytics to review metrics, such as
number of customers and intents invoked.

20

Alexa

Figure 2.5: Alexa developer console: test page

Considering that there are limitation for the coding part, but remembering that the
interaction model and the logic-handler code are two separate entities, the Alexa
Developer Console remains the best tool for the voice-user interface design for its
ease to use. Usually it is used in combination with Alexa Skills Kit Command Line
Interface (ASK CLI).

Alexa Skills Kit Command Line Interface (ASK CLI)

The ASK CLI is a tool for managing a skill and the related resources, such as AWS
lambda functions, Programmatically from the command line. It can be configured
with AWS credentials if AWS services, such as AWS Lambda, are used to host the
skill backend logic.
The ASK CLI allows to create new skills and deploy them to the developer console;
if the skill is configured to use AWS Lambda, it can deploy and upload the skill
code directly. It allows also to test skills and submit for certification and publishing
by command line. Through the ASK CLI, developers can create a skill starting
from scratch or from a model and can manually set every detail of the skill by
changing the correct files. The developer has complete freedom over the skill, but
needs to know very well how a skill is composed, all its parameters and how it
works: every permission, configuration, must be correctly formatted in the right
files. The drawback is that it is not user-friendly at first and developer has to have
a little experience with the skill management in the console.

21

Alexa

A combination of the developer console and ASK CLI can be one of the best
options, to exploit the first one to configure easily a skill and create the interaction
model, while using the latter one to manage the code in any way wanted.

Skill Management API (SMAPI)

The Skill Management API (SMAPI) provides RESTful HTTP interfaces for
creating new skill or updating an interaction model. It allows any developer to
build tools or services that can create and update Alexa skills.
The ASK CLI is one of such tools.

Others

Amazon is continuously expanding the ways in which is possible to create a skill,
releasing and integrating new services to make them: recently an extension for
Visual Studio Code, one of the most used code editor was released, the Alexa Skills
Toolkit, that provides a dedicated workspace for Alexa skills; but it is also possible
to use many AWS clouded-based tools, such as AWS CodeStar, a cloud-based
development service to develop and deploy applications on AWS.

2.2.3 How to host the service
The logic handler consists of a web service, capable of process incoming requests to
provide an appropriate response. The cloud-based service of the skill can be host
in three main ways:

• The skill can be a web service, as a server running on a computer, listening
for requests over the network. It can be host with any hosting provider. The
web service must to accept request over HTTPS and can be written in any
language. Alexa sends the request to the web service and it sends back a
response.

• AWS Lambda, an Amazon Web Service offering, is a service that runs the code
in the cloud only when it’s needed and there is no need to manage servers. The
Lambda function, the code that is run on AWS Lambda, is executed only in
response to Alexa voice interactions and automatically managing the compute
resources. It can be written in Node.js, Java, Python, C# or Go. It is the
easiest way to host the service for a skill. The developer needs only to upload
the code to a Lambda function and Lambda does the rest. It eliminates the
complexity of setting up and managing an own endpoint. In this way, the
developer does not have to take care of:

– Managing the compute resources of the service;

22

Alexa

– An SSL certificate: SSL is a protocol for encrypting Internet traffic and
identify server identity that make an HTTP address an HTTPS, which is
more secure. [39]

– Verifying the requests coming from the Alexa service, because accesses
are controlled automatically.

– It is up to Alexa to encrypt the communication with lambda (Using TLS)

The Lambda function must be able to handle the request sent to the skill by
Alexa. When the Lambda function is created, the developer must connect the
function to the skill, to let it know where I has to send the requests, by updating
the endpoint field in the skill configuration. Since the Lambda function is
invoked through a trigger generated by events and requests, the invocation
permissions to trigger the function must be granted to Alexa, usually by the
skill ID verification: in this way, the function can be invoked only if the skill
ID in the Alexa Skills Kit request matches the skill ID configured in the trigger.
Most of these steps are guided and automatized using the ASK Command
Line Interface (ASK CLI)

• Alexa-hosted skill, through the Alexa developer console: it is up to Alexa to
store the code and all the resources used; it is the fastest way to create an
Alexa skill and it is possible to access the code through the Alexa developer
console in an online code editor. Alexa provides all the AWS resources needed,
including a Lambda function. But, in this case, the developer does not have to
take care of connecting the Alexa skill to the endpoint. This service is provided
as free, but there are some usage limits, as the number of free requests, 1
million, or the amount of free compute time per month, 3.2 million seconds.
To reduce perceived latency when accessing a skill, Alexa provisions 3 AWS
Lambda endpoints, in 3 different regions. This makes the creation of an Alexa
skill very easy, because the developer does not have to take care of everything
that is behind the VUI and the logic handler code.

Regarding the development of the skill, the Lambda function and Alexa-hosted
options are the easiest, especially the latter one, they are essentially the same thing.
The creation of a Lambda function is very versatile and allows the developer to
manage the resources used by the function, such as the quantity of memory allocated
for compilation and number of acceptable requests, without the complexity of the
management of the web service.
An Alexa-hosted skill has less flexibility, and the lambda function code is strictly
linked to the skill and the Alexa developer console; the ASW resources are stored
in an individual account, separate from the other users. But one of the biggest
advantages, discovered in the development of this thesis work, is the management
of the dependencies and the time used to upload the code to the Lambda function.

23

Alexa

Basically, when updating the code of a lambda function, all the files have to be
compressed in an archived before the upload. Before the upload, all the required
module and dependencies have to be downloaded and zipped. The problem is that
there can be modules very heavy, from 40MB to 100MB. This makes the zipping
and the upload process really slow: it arrived up to 8 minutes. This mean that
every time the code had to be changed, to build and simulate to see if everything is
working fine, the process has to be repeated. Every single change or error correction
is really slow, making the development and debug process really slow.
An Alexa hosted skill completely avoid this problem. Alexa provide AWS CodeBuild,
a fully managed build service in the cloud that compiles, runs unit tests and produces
artifacts that are ready to deploy. It automatically runs NPM as part of the build
script, adding the libraries and dependencies only wen the skill has to be deployed,
directly in the cloud. Thus, the skill code can be directly written in the online code
editor and all the dependencies are managed by the AWS CodeBuild. This allows to
dramatically reduce the waste of time due to the download of the missing libraries,
that could be very big, and the zipping process. Through the Alexa console and an
Alexa-hosted skill, the same code with the same dependencies takes up to less than
a minute to upload and deploy. This obviously speed up the development process.

2.2.4 Alexa Skills Kit Software Developer Kit
Regarding the code, Amazon provides the Alexa Skills Kit (ASK) SDKs, a set of
software development tools and libraries that gives programmatic access to Alexa
features, making easier the process of building an Alexa skill. It is available for
Node.js, Java and Python.
As showed before, Alexa build a request containing the information about what
intent the user wants to trigger and the optional slots required. Every interaction
between Alexa and the skill code essentially is an exchange of a JSON object. So
the skill code must to be able to handle the request in the correct way, capturing
the data and processing them: it must recognize each incoming request and return
and appropriate response. The SDK makes this process easier and more intuitive.
By including the ASK SDK in the Node.js project as an NPM module, it is possible
to access all the functionalities provided.[40]

2.2.5 Other settings
The skill creation process consists also of additional settings that must be configured,
all shown in the main page of the skill in the developer console. As well as all
the model components, the most important settings to be configured are - the
Endpoint: specify the endpoint of the skill, “where” Alexa sends the requests when
the user invoke the skill. - Permissions: If a permission is enabled, the skill can

24

Alexa

ask the user for permission to access specific information or perform certain tasks;
the skill does not actually obtain this permission until the skill user consents to it.
For example, the skill must be enabled to ask to access the name of the user, the
device address, or to send reminders.

2.3 The interaction model
The interaction model consists of a file in JSON, JavaScript Object Notation, a
lightweight format for storing and transporting data; the JSON format is syntacti-
cally identical to the code for creating JavaScript objects. Each data consists of
a pair key/value, like JavaScript properties. The interaction model will have this
format:

Figure 2.6: Interaction model file

2.3.1 Invocation name
The first and one of the most important design choices is the invocation name: the
user will say the it to begin an interaction with the custom skill. It is the actual
identifier of the skill. The user can use a phrase including the invocation name to
fullfill a request: the user can combine the invocation name with an action or a
command, to invoke a specific command, an intent, of a specific skill.
There are many requirements for the invocation name: for example, it “ must not
infringe upon the intellectual property rights of an entity or person”, “One-word
invocation names are not allowed, unless” “The invocation name is unique to your
brand/intellectual property with proof of ownership established through legitimate
documentation”, “Invocation names that include names of people or places (for
example, "Molly", "Seattle") are not allowed”,” The invocation name must not
contain the wake words "Alexa," "Amazon," "Echo," or the words "skill" or "app"”
and so on.[41]
In this case “Marelli car” has been chosen and the user can start interactions
with the skill in 3 ways:

25

Alexa

• By invoking the skill with a request:
"Alexa, ask Marelli car to check my car"

• Invoking the skill without any particular request:
"Open Marelli car"

• Just using the invocation name:
"Alexa, Marelli car"

Only the first way to invoke the skill will accomplish a specific task that the user
wants. The other two do not trigger any specific intent. It is a special request
that the Alexa skill can receive, a LaunchRequest, that inform the code that a user
made a request without an intent, so it must be managed accordingly. Usually,
it is used as “welcome” intent. It allows the skill to be invoked and, in the next
requests, it is possible to call the skills intents without the need of specifying the
invocation name.
So, there are two ways of asking Alexa to do something:

1. By doing a specific request to a specific skill:
User: “Alexa, ask Marelli car to check my car”

2. Launching first the skill, then making the request:
User: “Alexa, open Marelli car”
Alexa: “Welcome, how can I help you with your car?”
User: “Is my car ok?”

Note: Amazon is working to make the invocation of a skill more natural: an
additional feature, released as a public preview and beta lately, only for English
(U.S) skills, allows users the Name-free Interactions: this enables customers to
interact with Alexa without invoking a specific skill by name, helping the users
because they do not always know which skill is appropriate to accomplish a task.
When Alexa receives a request without an invocation name specified, Alexa looks
for skills that might fullfil the request, handing the request to the selected skill.

2.3.2 Intents
After the selection of the invocation name, it is time to convert the features outlined
in the overview in intents to build the interaction model.
Summing up the functionalities to be implemented, this is the list with a generic
phrase that the user could say to trigger them [42]:

26

Alexa

• Ask Alexa to do the diagnostic of the vehicle :
“Is my car ok?”

• Ask to check the status of a specific component:
“Is there any problem with the battery?”

• Setting a driver profile in the vehicle with personalized settings:
“set my profile”

• Control the vehicle, from inside and outside the vehicle:
“Lock my car”

• Retrieve some information:
“When is the next revision?”

• General purpose features: to showcase how Alexa can interact with external
APIs to offer even more complex features
“Save my location”
“Where’s my car?”
“Are there any parking lots nearby?”

Figure 2.7: Some of the intents mapped

Each of them is represented as an intent
in the interaction model. For example,
the will of the user to do a complete di-
agnosis of the vehicle is mapped to the
CheckUpIntent: when the user says “Is
my car ok?”, Alexa composes a request
containing as intent value CheckUpIn-
tent. Or, if the user wants to retrieve
the location of his car by saying “where
is my car”, the request contains the Get-
ParkingLocationIntent.
In the creation of a new custom intent,
the developer provides a name and a
list of utterances, phrases, that the user
would say to trigger it. To allow Alexa
to understand what the user wants, the
developer has to insert as many varia-
tions as possible of what the user can
say to Alexa and mapped them to the

27

Alexa

intents. There should not be any differ-
ence if the user says “where is my car?”
or “where did I left my car?”: Alexa must be able to detect the GetParkingLoca-
tionIntent in both cases. The sample utterances must be unique and there can not
be duplicate sample utterances mapped to different intents.

“Is there any problem with the battery?” => CheckIntent

The Alexa Skills Kit also includes a library of built-in intents that can be used and
do not need sample utterances. They are classified in many categories, depending
on what is their goal: there are Calendar intents, for asking about calendars
and schedules, Weather intents, for requesting weather reports and forecasts and
Standard Built-in intents, for general actions such as cancelling, stopping and
asking for help; the latter one are required in every skills, because the user must
always be able to interrupt or exit every skills. There are also Yes and No intents,
already defined: in this way, the skill can be able to manage assertive or negative
responses to Alexa’s answers.
Note: the built-in library of intent does not actually add functionalities to the skill:
they are simply pre-built voice models, that allows to avoid the design of the voice
user interface for those specific intents, since they are already defined. For example,
if Yes intent is included, the skill will recognizes when the user says “yeah”, “yes”,
“sure” without the need to manually provide them as sample utterances. More
important, if a developer includes them in the skill, he has still to specify in the
back-end code what to when the intent request arrives.

2.3.3 Slots
Intents can optionally have arguments, called slots: these are words or phrases
that represent variable information. For example, the CheckIntent is used to check
the status of a component of the vehicle or a warning. So, Alexa not only needs
to know that the user wants to that intent, but also the specific component. The
set of utterances that are mapped into the intents needs to contain the slot as a
variable, inserting in the phrase the slot name in curly brackets { } :

28

Alexa

Figure 2.8: Intent definition with sample utterances and slot

Figure 2.9: Intent definition in JSON format

In this way the user fills the gap in the sample utterance and Alexa understand
what the user wants as the {car_part} value. This value is going to be part of
the request. In this way, the back-end code can execute different tasks depending

29

Alexa

on the slot value.
Each intent can have more than one slot and not all the sample utterances have
to contains all the required slots: it is possible to delegate Alexa for filling all the
slot values that the user may not provide. Indeed, for each slot, four configurations
must be set:

• Slot type: it determines how the user input is handled and passed on to the
skill. Every slot in each intent is associated to a slot type, set of values that the
customer can say. It is possible to create custom slot types that defines what
the skill expects from the speaker. For example, {car_part} possible values
are “battery”, “engine”, “fuel”. Each of them can have an ID and synonyms
to add variety and flexibility to the user.
Amazon also provides built-in slot type for dates, number, cities.

• Slot filling: this setting makes the slot required to fulfil the intent; if yes, the
developer can specify what Alexa may say to prompt the user for the missing
slot value.

• Slot confirmation: Alexa may ask back the user to confirm if the slot value is
correct before continuing the dialog.

• Validation rule: to validate what the user may say. This avoids that Alexa
misinterprets what the user wants or sets as slot values invalid words, thaa the
skill could not be able to handle. Alexa could rejects values that are not part
of the slot type definition, or rejects values belonging to a set of words; in this
way, Alexa could prompt back asking to make the request again, providing
some examples to clarify to the user what are valid values.

A voice interface cannot prevent users from entering an invalid data and misun-
derstandings in spoken language may introduce errors in slot values. In this way,
Alexa can validate slot values, reprompting and asking a new value.
Through the settings for slots, it is possible to see how Alexa can engage a real
conversation, requesting and validating slot values. It is even possible to ask the
user for confirmation of the whole intent. In this way a dialog between Alexa and
the speaker can take place.

2.3.4 Dialogs
In a skill, a dialog with the user is a conversation with multiple turns in which
Alexa asks questions to the user to collect data. But this conversation is tied to a
specific intent, that represents the overall request of the user. It is intended only
to gather and validate slot values and the whole intent: it continues only until all
slots needed for the intent are filled and, in some cases, the intent is confirmed.

30

Alexa

The dialog model is the part of the interaction model that manages the turns of
the conversation and is represented in the JSON file; it identifies which slots are
required for which intent, what Alexa says to ask for required slots, and all the
settings for the slots mentioned before, such as validation rules. In short, it contains
the structure of the conversation that Alexa carries on if the user does not make a
complete intent request and if something has to be confirmed before sending it. In
this way, it is Alexa that determines the next step of the conversation depending
on what the user says and uses the prompts defined here to ask for the missing
information. This delegation strategy relies on Alexa to manage simple dialogs.
In this way, it is not up to the back-end code to check if the request is complete,
without writing code to ask the user for slot values and confirmations. [43]
The conversation is left to Alexa and the request is sent only when the dialog and
all the information are complete. Indeed, dialogs have a state property, dialogState,
that Alexa uses to keep track of the conversation: STARTED, when the intent is
invoked; IN_PROGRESS when Alexa doesn’t have all the necessary information;
COMPLETE when Alexa has everything to compose a request. Only in the latter
state, the request is actually sent to the skill service.
The dialog can also be manually managed through code, to have more flexiblity
and make run-time decision, to take control of the dialogs and build more complex
conversational flow. This will be discussed later, in the back-end code section with
the Dialog.Delegate directive.
The following image shows how the slot {car_part} is set as required for the intent
CheckIntent and how Alexa can asks some question to fill the incomplete request,
accepting only the values belonging to the car_part type.

31

Alexa

Figure 2.10: Diaologs settings for CheckIntent

While all these settings can be easily configured through the developer console, the
resulting JSON file is much more complex: if done manually, it could be really
time consuming and could lead to errors. For this reason, the console is the best
tool for building complex voice experiences and interaction models.

32

Alexa

2.3.5 The request
All of these settings, sample utterances, intents, slots, slot values, dialog model
build the interaction model, the actual voice-user interface. The user will interact
with the device, and in this case with the vehicle, through Alexa on the basis of
this model, invoking the skill. Then Alexa builds a JSON request, containing what
intent the user has requested, the slot values and all the information required for a
correct request, and sends it to the skill, initiating a new skill session.

Figure 2.11: A skill request sent by Alexa

Alexa can build different types of request. The user may want to invoke some skill
functionalities, such as controlling a device or look for a recipe, or may be Alexa to
send an event to the user [44]. Each type will sends different information and the
code should be able to manage all of them.
The possible types of requests are:

33

Alexa

• LaunchRequest: sent when a user invokes the skill without provideng a
specific command. Usually it is used or a welcome message.

• SessionEndedRequest: sent when the skill currently open sessions is closed.
This happens when the user exits the skill or when an error occurs.

• IntentRequest: sent when a user send a request that maps to one specific
intent. The request includes also the name of the intent.

• Others: there are other types of request, sent when special Alexa interfaces
or functionalities are invoked, such as AudioPlayer directives. But these are
not used for this project.

Other than that, the request contains many other information that the skill service
can access. The main parameters of the request body are:

• "session" object, providing additional context about the request, such as if
the session is new, attributes, a map of key-values, used to persist data during
a session and are passed from responses to requests, or the application ID,
unique for each skill, to very that the request is meant for that service. It
contains also some information about the Amazon account user.

• "context", that contains information about the state of the Alexa device at
the time the request is sent, such as a device ID, the supported interface, like
geolocation properties, and the allowed permissions.

• "request", with every detail of the user’s request, such as the request type
and the intent name. It contains also slots and slot values resolutions, the
results of the slot entity resolution, a process in which Alexa attempts to
resolve what the user said with possible slot values, synonyms and ID. In this
way, when the user’s speech is resolved, the skill receive the "standard" value
defined for that slot type value, the actual value that the user spoke and the
unique ID. This can be very useful, since it makes it possible to map multiple
synonyms to a single ID and use that in the code, allowing more flexibility to
the user speech.

34

Alexa

Figure 2.12: Slot and slot resolution

Now is up to the back-end code to accept the request and process it, providing a
response

2.4 The logic
The back-end code is the logic handler behind the scene. Alexa works simply as an
interface between the user and the skill code, to which the skill is connected by
selecting the endpoint in the skill configuration in the Alexa developer console or
manually with the ASK CLI.
The overall code, built with the ASK SDKs, can be summed up as a list of
intent handlers, one for each intent of the interaction model, that accepts requests
satisfying some requirements, processes them and returns a response. But first,
each request must be identified.
The code needs first to recognize each incoming request to return an appropriate
response. Before accepting a request, the lambda function verify that the request
came from the correct skill. This prevents from configuring a skill with another
endpoint, allowing others to exploit the code by sending own requests to someone
other’s code. Every request includes a unique skill ID, that can be used to ensure
that the request was intended for the service. The ASK SDK can automatically
handle the skill ID verification with a .withSkillID() directive.

35

Alexa

2.4.1 Intent handlers
Each request handler needs first to identify the requests it can handle and then
actually doing it. Usually, handlers accept requests based on the type and/or the
intent requested, specific slot values or any other criteria derived form the data in
the request, but there are also error handlers, responsible for error management
when an unhandled error is thrown during the request processing. A skill must
handle all of the intents defined in the interaction model.
The skill routes an incoming request to a particular request handler, processing
it and returning a response. The code can do whatever the skill needs, such as
analyzing data provided in the user request, calling Alexa APIs to get information
about the user or to perform actions or even calling external APIs.
With the ASK SDK, a request handler can be implemented by using these two
methods:

1. canHandle() method to identify if the incoming request can be processed,
by imposing some conditions.

2. handle() is called by the SDK to take care of processing the data generating
and returning a response. It can also provides the text that Alexa speaks to
the user.

Both take a handlerInput object as input, which contains the complete JSON
request sent to the skill, through which it possible to retrieve data in the request.
This object provides also various entities to process the request. It contains the
requestEnvelope, the whole request body, so that the handler can access every
detail of the request, as well as the responseBuilder , that gives access to helper
method to construct responses.
Once the handler completes its job, it sends a response back, a JSON structure
that tells Alexa what to do next.

36

Alexa

Figure 2.13: Handler implementation for handling CheckIntent requests

Session Attributes

The handlerInput gives also access to the attributeManager , through which
is possible to manage attributes. They consists of a map structure of key and
value pairs that the SDK allows to store and retrieve and that can be included
as a property of a response. When Alexa sends the next request as part of the
same session, the map is included in the request. Intent handlers can retrieve and
elaborate them. For this thesis project, session attributes are essential to retrieve
data of the vehicle, avoiding the need of continuously read values directly from
the database connected to the car. This could lead to some efficiency problem:
in case of connection problems, the skill may suffer from latency caused by the
incapability of retrieving data. Instead, the car information can be loaded just
once at the beginning of the session or just when it is needed, so that Alexa can
elaborate them and answer to the driver requests faster, because all the information
needed are already part of the requests and responses. Thus, once the attributes
are loaded, handlers can execute any logic: it is possible to check the status of a
single car component, execute a diagnosis of the whole vehicle, check how when
is the next car revision and so on and then return an appropriate message to the
driver, implementing most of the wanted features.

37

Alexa

Figure 2.14: Attributes included in a request

Once the session ends, all the attributes are lost: they are a session property and
persist only throughout the lifespan of the skill session.

Persistent attributes

If the skill needs to remember data across multiple sessions, a persistent storage
such DynamoDB or S3, two AWS services, is needed. The Alexa skill can load
persistent attributes from the persistent storage as session attribute, manipulate
them and the saving the new session one as persistent attributes.
So, to prevent the loss of session attributes when the session is closed, in this
case, attributes are loaded to DynamoDB, that will be examined in detail in the
dedicated chapter. But it is worth introducing now how the skill interact with a
database.
Alexa SKD provides thePersistenceAdapter , used by theAttributesManager
to create tables, retrieving and saving attributes. Specifically, it provides the
DynamoDbPersistenceAdapter, the implementation of PersistenceAdapter
using AWS DynamoDB. This can be used in interceptors to automatically load
and save data to a DynamoDB table.

38

Alexa

The DynamoDB table can be automatically created when using an Alexa-hosted
skill, but it also possible to manually link a lambda function to a personal AWS
resource, deciding actually where it can retrieve the data. In order to do this,
the lambda function must be enabled to to access resources modifying the AWS
IAM role, that is a sort of AWS identity that have specific permission policies
to determine what the identity can in AWS. Then, in the code, it is possible
to manually create a a DynamoDB instance with the correct AWS resource role
and scan select the desired DynamoDB table. In the next image, the manual
configuration of the adapter is presented, forcing also the name of the table and
the id.

Figure 2.15: The manual configuration of the DynamoDbPersistenceAdapter

Then the persistenceAdapter is registered in the SkillBuilder, as in section 2.4.3.
Now it is possible to access the persistenceAdapter functionalities to load and save
data in the table with the AttributesManager. One common practice is to use
request and response interceptors to do these operations automatically.

39

Alexa

Figure 2.16: Definition of the interceptors to load and save attributes

These interceptors also check if the session is new, if the skill was stopped, or even
exclude some attributes useful only for the session that do not need to be persisted.
In this way, the Alexa skill is capable of read the vehicle data from the database. This
also allows the skill to send some information to the vehicle. Indeed, the database
is also use to send commands from the skill, just by changing some attributes: by
detecting these changes , the vehicle could react. But the persistenceAdapter is
not sufficient to build a real-time application, to inform the system in some ways
that changes are done. But a solution will be found in chapter 4.

Response building

A lambda function, when used as endpoint, is only responsible to build the response
in order for Alexa to answer to a customer. With the methods provided by
responseBuilder , Alexa can be instructed to speak, to show cards on a display
or call Alexa APIs.
The output speech, set with responseBuilder.speak() command, can be a plain
text or a Speech Synthesis Markup Language (SSML), a markup language that
provides a standard way to mark up text for generation of synthetic speech. It is used
to make Alexa speak with emphasis, change pronunciation and add other effects.

40

Alexa

The response, in JSON format, consists of two main objects: sessionAttributes,
already mentioned in the request definition, will be discussed later, since their
management is very important; the other one is a response object, that actually
define what Alexa has to do next. The latter object contains:

• an outputSpeech object, to set what Alexa must say next.

• a card object. These are graphical cards that describe or enhance the voice
interaction; it contains a text and an image to be rendered on the screen. The
image must be accessible through an URL. Voice responses need to be concise
and look like a conversation. A card can provide additional and useful detail
that would make a voice response too long or verbose.

• a reprompt, containing an outputSpeech to set reprompt message and
instruct Alexa to listen for a response from the speaker. The user has few
seconds, otherwise Alexa closes the session.

• directives, an array of directives specifying action that the device has to take,
such as triggering the AudioPlayer. It can also instruct Alexa about what to
say next with the Dialog interface.

Figure 2.17: JSON response body

The response sent is not always the end of the interaction: sometimes the skill needs
to let the user say something in response, which becomes a new request for the
skill. But if the user doesn’t provide a response in 8 seconds, Alexa stop listening
closing the microphone and, if the a reprompt is specified, Alexa reprompts the
user to speak. In case there is still no answer, the session is closed. Otherwise, if
the user says something that match the interaction model, the conversaion goes on
and the session remains open.
The response can include directives to instruct Alexa to take other actions. Di-
rectives are organized in interfaces and the type determines the properties that

41

Alexa

are needed to be provided. To include directives, the ASK SKD provides helper
methods.
For example, there is the AudioPlayer Interface for playing audio and the Dialog
Interface

Dialog Interface

This interface provides directives for controlling multi-turn conversation [45]. In
the dialog section of the interaction model, it was shown how is possible to let
Alexa complete intent requests when the user does not provide required data and
sending a single request at the end. That was one of the possible strategy, the auto
delegation of the dialogs. This interface allows to override it with a manual one,
defined by code.
With manual delegation, instead of sending an IntentRequest only when the re-
quest is complete and the dialogState is COMPLETE, Alexa sends a request
for each turn of the conversation, when the state is either in STARTED and
IN_PROGRESS . It is possible to manually ask for a slot value or slot confir-
mation, with Dialog.ElicitSlot and Dialog.ConfirmSlot directives, providing
also the prompt messages that Alexa speaks. This can lead to the exact same
behavior and conversation that can be defined dialog model. Instead, with a
Dialog.Delegate it is possible to leave the dialog management back to Alexa and
the dialog model. The right delegation strategy depends on the complexity of the
dialog. Auto delegation is simpler because the conversation does not need to be
handled in the code. Manual delegation is more flexible, allowing the skill to make
run-time decisions and directing the flow of the conversation.
The most important features of these commands is the possibility to manually select
an intent and slot values, giving the code the capability to change the direction
of the conversation. The speaker is not the only one that can request an intent,
by directly invoking it, but Alexa can change the intent and have an active role,
proposing or imposing an intent, as in natural and real conversation both speakers
take decisions.
For example, in the next image, it is shown how the request consisted in an
CheckIntent and then the response shifted the dialog to an HelpUserIntent.

42

Alexa

Figure 2.18: JSON request with a CheckIntent

Figure 2.19: JSON response with a HelpUserIntent

43

Alexa

2.4.2 Interceptors
The last component of the skill code that are worth mentioning are Intercep-
tors. These piece of code are special functions that are executed immediately
before and after an intent handler. There are request interceptors, executed im-
mediately before the handler for an incoming request, and response interceptors,
invoked after. Just like handler, they accept handlerInput as input, so that
they have complete access to the request and attributes and can alter them.
They are very useful for debug e logging each interaction, sending all the re-
quests and responses to Amazon CloudWatch, an AWS service for monitoring
and observability service. But they can also be used to automatize any pro-
cess, such as checking for permissions, saving attributes. All the interceptors
must be registered in the skillBuilder.addRequestInterceptors() and skill-
Builder.addResponseInterceptors().

Figure 2.20: Request flow and interceptors

Figure 2.21: Interceptor to log requests.

For example the interceptor shown in figure 2.21 is used to log every incoming
request to AWS CloudWatch, the only instrument that can be use for logging

44

Alexa

purposes with a Lambda function. There is the equivalent one for incoming requests.
Another important interceptor is the LocalisationInterceptor, that allows the skill
to supports any language. When building a response, all the handlers use a string
containing an identifier for the message instead of the text of the message. All the
message texts are divided by language and stored in a separate file of the lambda
function. and there is the translation of the text in each supported language. The
interceptor, depending on the language, replace the message id providing the correct
string in the correct language to the outgoing response.

2.4.3 Skill building

Figure 2.22: How a skill is built

This is how the skill is actually built, registering all components and integrating
all the skill logic. With the skillBuilder it is possible to configure and construct a
correct and complete instance of a skill. It also acts as the entry point for your
skill, routing all request and response payloads to the handlers above. It must
includes all handlers and interceptors defined. The order is important, since they’re
processed from top to bottom.
Once the code is uploaded to the lambda function, the skill is working and can be
used and tested.

2.5 Location services and external APIs
Until now, it was shown how intent handlers can elaborate attributes to determine
the status of the vehicle and accomplish the more basic features. But to provide a
more complex and broad experience, the skill has to do more than that. In this
section, two more complex intents are shown, demonstrating Alexa’s capabilities.
Considering the automotive environment of this skill, location services and location
aware features are really important.

45

Alexa

A skill can ask the user permission to obtain the real-time location of the Alexa-
powered device. Once it is allowed, the geo-coordinates of the device are included
and sent in the request, so that handlers can access them and provide new func-
tionalities [46]. But the plain coordinates do not provide much information. Alexa
skills can interact with remote APIs and web servers to get meaningful data by
making HTTP requests.
In this project, HERE location services are used to process the coordinates: it
provides developers many instruments to build location-aware apps and services.
In particular, handlers access HERE REST APIs. REST is an acronym for Rep-
resentational State Transfer and is an architectural style used for web services,
providing interoperability between computer systems on the internet; one of their
feature is the possibility to retrieve data, a resource, inside a response when doing a
request to a specific URL. HERE provides many APIs and many different features,
such as the Geocoding API and the Off-street Parking API .
The first one is used to retrieve the location of the car, previously saved on the
database. When asking to Alexa "Where is my car?", the GetPositionIntent is
triggered and it sends a request containing the coordinates to the Geocoding
API . Then it receives in response a JSON with the address and builds the message
that Alexa speaks. This can be particularly useful in those situations where the
driver knows the place well enough to be able to orient himself and just needs some
indications to remember where he parked. In this case, he just needs to ask to
Alexa through the smartphone.

Figure 2.23: How the Lambda function performs the reverse geocoding given the
coordinates

The latter API is used to find an available slot in the closest parking facility: it
provides a list of facilities in a range around the received coordinates in order of
distance. The handler check the availability of these facilities, finding the closest
and available one and retrieving its address, so that Alexa can indicate it to the
driver.
Note: these are demo features, to show the endless capabilities of an Alexa skill.
Unfortunately, the location services are not available on all devices. But it is useful
to show how it is possible to retrieve any information and builds a base for future

46

Alexa

implementations.

2.6 Profile management: skill personalization
Alexa can provide personalized experiences [47]for recognized skill users and a
virtual automotive assistant should be able to offer them.
An Alexa device, or in this case, a vehicle, might have two or more speaker who
interact with it. If a skill supports personalization, it can differentiate an individual
user by means voice profiles. Alexa can save voice profiles by listening the user
voice recordings and associates them with the Amazon account.
When a user speaks to Alexa, if the speaker is recognized and if the skill personal-
ization settings are active, the skill can provide personalized content and actions.
Each skill request from that speaker, includes a person object and the skill can
parse the personID form the request. Through that id, the skill can use some of
the person information, without actually passing them to the skill, protecting the
privacy of the user. For example, the developer can include the use of the id in the
intent handlers to retrieve the person name, but he will never have real access to
that information.
In this project, voice profiles are used to set some car configuration as soon as
the driver speaks: it is common that the same vehicle is shared between family
members and everyone may have different preferences regarding the seat position
or the mirrors orientation. Thus, the skill can recognize speakers and setting the
saved preferences before making other requests or propose to save and create a new
driver profile, if it not already defined before. In case the driver does not have a
voice profile, the skill simply welcome the driver.
Drivers can create personalized profiles, saving the current setting of the vehicle,
that will be set every time the they will launch the app. To do that, an attribute
that stores and add all the profiles. In the following images, it is possible to see how,
only when the person value in the input JSON is present in the System parameter,
the speaker is actually recognized.

47

Alexa

Figure 2.24: How the skill react when an unknown user speaks.

Figure 2.25: How the skill react when an known user, with a profile already
saved, speaks.

2.7 Control the vehicle
To control the car with the Alexa skill, some intents detect what the speaker wants
to control and how, then send these information to the database and the android
app will be triggered. The details of how this happens will be explained later.
Now, it is shown only how the lambda function set the commands, writing the

48

Alexa

CTRL attribute values, type and value. The type contains the type of operation,
such as OPEN,CLOSE or SET_PROFILE, while the value holds the ID of the
component to be controlled or the personID of the profile to be set.

Figure 2.26: Intent for opening and turning on car component

2.8 Complex and natural conversational flow
Most of the intents and interaction shown before consists of simple dialogs: the
user asks something, Alexa answer or complete the task. But is it possible to make
more complex and natural conversation? Human speech can vary in forms and
goals: a conversation could start from a point and end somewhere else.
This is not compatible with the “classical” Alexa approach, where all conversations
are aimed to the fulfillment of a single intent requested from the user. Even the
multi-turns dialogs, defined before with the dialog model, have as only goal, the
gathering of data to do a single intent request. So, how is it possible to expand the
conversation possibilities? In this thesis project, two approaches were used:

• Alexa is transformed in a state machine, to keep track of the current state.
Alexa can take the lead of the conversation, switching intents based on the cur-
rent and next possible state. Two new attributes, STATE and NEXT_STATE
are created to keep track of the conversation. The STATE is usually linked
to the current intent requested, while NEXT_STATE value can depends
on the current state, the vehicle data and what the user may choose to do.
This approach let Alexa propose new intents, exploiting Yes/No questions
to advance in states. But since all the "yes" and "no" are mapped to the
same AMAZON.YesIntent and AMAZON.NoIntent, so they are handled by
the same two handlers, states are used to determine the actions that follow.

• Use of “complex” slot types: to avoid using only Yes/No questions to propose

49

Alexa

new intents to the user, Alexa can collect whole utterances as slot value. This
allows to exploit the slot elicitation rules, delegating most of the conversation
to Alexa.
Let’s consider the case in which there Alexa can propose two or more alterna-
tives to the speaker. It would be necessary to ask directly confirmation for
every intent that the user may want or not, in a precise order. If there where
more than two possibilities, this could lead to a long list of Yes/No question.
Instead, Alexa could directly ask which alternative is preferred, allowing a less
awkward conversation with a list of possibilities. This is different from the
simple intent invoking, because the dialag can be left to Alexa, allowing less
coding.

With the combination of these two approaches, multi-turns conversations were
achieved in this project: the skill code can update and change the intent without
the need of the user to actually invoke it. This was used for the vehicle diagnostic,
the most complex conversation of the skill: when a driver asks for the status of
one component or when he asks Alexa to do the diagnosis of the overall vehicle
and a problem is detected, the skill takes control of the situation. It let Alexa asks
the user if he needs assistance, by asking if he wants more information about the
problem or if he needs help to find a solution. In the first case, Alexa explains the
problem in detail and what may have caused it, proposing also a solution if the
driver confirms. In the second, Alexa gives practical advice, inviting in some cases
to look for mechanics or gas station nearby. In the following diagram, the logic
flow and the directives used are shown.

50

Alexa

Figure 2.27: Flowchart showing intents, variables and directives through which
the conversation could go

2.9 Alexa Auto SDK
Before moving on with the development of the Android app, it is worth spending
some words about the Alexa Auto SDK.
This SDK (version 2.3) brings Alexa into the vehicle, adding automotive-specific
functionalities. It includes libraries in C++ and Java that enable the car to process

51

Alexa

audio inputs and to connect with the Alexa service, supporting Android, Linux and
Automotive Grade Linux (AGL). The SDK includes core Alexa functionalities, such
as speech recognition and synthesis, and can make any vehicle an Alexa-powered
device. It is abstract and modular, providing the runtime engine to communicate
with Alexa, but also interfaces to implement platform-specific behavior, such as
media playback, template rendering, phone control and navigation control. This
SDk can be include in the Android project. [48]
The next section is dedicated to the architecture of the SDK, to better understand
how it works, focusing on how it can render data on a display, since it is a
fundamental part of this thesis.

2.9.1 Auto SDK Architecture and Modules

Figure 2.28: Alexa Auto SDK architecture and (some of the available) modules

1. Alexa Auto SDK Engine:it is the runtime implementation of the SDK. Its
capabilities are expanded by the other modules, that implement platform-
specific behavior, abstracted into interfaces called platform interfaces. These
defines the API and how the application communicates with the Engine.

2. Core Module: gives an easy way to integrate the SDK into an application or
a framework. It provides the Engine class, all the platform interfaces and the
infrastructure for audio input and output, for logging, location and network
information. All other modules are dependant from the Core Module.

52

Alexa

3. Alexa Module: includes platform interfaces and support for Alexa features,
such as speech and audio output, media playback, Alexa speaker and template
rendering on screen.

These three contains the core functionalities of the SDK, while all the other module
and extension are optional, such as the navigation and phone control. It is worth
notice that there is a Local Voice Control (LVC) Extension, to provide some Alexa
functionalities without an internet connection, running an Alexa endpoint inside
the vehicle’s head unit. [49]
To create an application based on this SDK, it is necessary to configure and build
an instance of the Engine through the Core module. Then, it is possible to extend
the Auto SDK interfaces by creating custom handlers for each interface wanted,
registering in the Engine.
Since this thesis aims to give some visual feedback to the driver, it is necessary
to understand how the Alexa Auto SDK can render images and cards. The
Alexa module, providing interface for standard Alexa features, gives access to
APIs to interact with the Alexa services, from speech input and output handling,
authentication, to display card templates. Alexa can send visual metadata to be
displayed, the cards mentioned in the Alexa chapter. The template information
are sent and the platform implementation has to render them on the UI. Two main
display card template types are present:

• Templates type, providing visual metadata in response to a user request.
When Alexa wants to display some information on the screen, the Alexa
Voice Service, other that sending a Speak directive, sends a RenderTemplate
directive, to instruct the client to display some visuals. The Render directive
supports these types of template:

– BodyTemplate1, text-only cards.
– BodyTemplate2,for cards that provides alsto an image with the text
– ListTemplate1, to display lists and calendar.
– WeatherTemplate, for weather data.
– LocalSearchDetailTemplate1, for location information of interest.
– LocalSearchDetailTemplate1, gives a list of navigation-based points of
interest.

– TrafficDetailsTemplate, to display travel distance and time.

The last three templates are available only for automotive products.
Each template type sends a unique payload, with parameters specific to the
type of content that must be rendered, such as title, subtitle, text, image URL
and so on.

53

Alexa

• PlayerInfo type, providing visuals aimed to control media playing trough
the AudioPlayer interface, including control buttons.

The following diagram shows how the AVS-enabled product and AVS communicates
to deliver visual metadata. [50]

Figure 2.29: High-level message flow for displaying visuals

The TemplateRuntime class is in charge of rendering skill metadata and can be
extended to implement custom handlers for GUI templates. The handlers take the
the JSON string containing the visual metadata sent by Alexa, the payload, extract
the useful information and then they can display them in a custom UI. [51]

54

Alexa

Figure 2.30: The TemplateRuntimeHandler implementation extending the Tem-
plateRuntime

55

Chapter 3

Android

3.1 Android overview
Android is the most widespread mobile Operating System in the world. Google
launched the first Android commercial device in 2008, and, from that moment,
this platform started its growth till obtaining nowadays the 72.92% of the market
[52]. Android is open source and this made it so popular: the huge ecosystem
of developers, very productive and with a lot potential, made this system so
successful. Although Android is a mobile operating system, it is not only oriented
to smartphone and tablets but also to smartwatch, wearable devices, televisions
(Android TV) and is now coming to cars, with Android auto.

Figure 3.1: Android logo.

This OS is based on a complex architecture built upon a Linux kernel and it has
been designed with the main goal of being easily updatable and flexible [53]. The
architecture is divided in six basic components:

• The Linux Kernel is the base of the Android platform. It manages all the
hardware components, the memories and the drivers, providing the most
fundamental services. It is a monolithic kernel, where all the components
share the same memory, the User Address Space. This implementation of
the memory management allows the system to be faster in executing system
calls or calls between operating systems components, with the drawback of
being less reliable: the amount of code running in kernel mode and the ease

56

Android

with which malfunctions can propagate among the components, corrupting
the whole system, make it less secure.

• The Hardware Abstraction Layer (HAL) handles hardware components.
It consists of multiple libraries that provide standard interfaces that expose the
capabilities of the hardware component to the higher-level Java Api framework.
Basically when an API makes a call to access a hardware component, the
library module for that specific device is loaded, creating an interface.

• A layer composed the Android Runtime (ART) and Native C/C++
libraries. The first is used to compile the code, minimizing memory footprint,
is the application runtime environment used by Android OS; the latter, is a
set of native libraries required from many core system components, such as
ART and HAL. Some of these functionalities are also exposed to apps from
the Java framework API.

• The Java API Framework includes all the set of classes, packages and
interfaces used for creating apps. This layer is the most important one, since
it handles the interface with lower layers and avoids the programmer to taking
care of them. Both official Java APIs and unofficial ones, third-party APIs, can
be used. It contains services that enable access to the Android core features
such as graphical components, activity managers and so on.

• The System Apps, the highest level, is a set of default apps that can provide
key capabilities, to which programmers can access them from their own app.

Most of these layers are not directly used by developers, but it is worth to know
the internal architecture of the system in order to better understand how it works.
In this way, it is possible to develop an app that handles properly the available
resources.

57

Android

Figure 3.2: Android OS architecture

58

Android

3.1.1 Android Automotive OS
Android Automotive OS is an Android-based operating system designed for vehicles:
it is an infotainment platform based on Android, tightly integrated with the
characteristics of a car. The OS is built directly onto cars and, besides the
infotainment, such as navigation, music playback and messaging, it handles vehicle-
specific functions. It provides a driver-optimized experience and allows user to
install apps directly in the car. [54]
Many car subsystems are interconnected with each others and the In-Vehicle
Infotainment (IVI) system through many bus topologies and protocols, such as
Controller Area network (CAN) bus, Local Interconnect Network (LIN) bus, or
automotive Ethernet. The Android Automotive HAL provides a unified interface
regardless of the physical transport layer. A Vehicle HAL (VHAL) module can
be implemented by connecting a specific platform HAL interface with technology-
specific network interface (e.g. CAN bus). For example, it my include a dedicated
MicroController Unit (MCU), running a proprietary real-time operating system to
access the CAN buses, connected to the CPU running Android Automotive via a
serial link. Or, instead of a dedicated MCU, bus access could be implemented as a
virtualized CPU.
Summing up, the vehicle HAL (VHAL) defines the interface between the car and
the vehicle network service, defining the properties that OEMs can implement. It
is based on accessing properties that are an abstraction for a specific function. [55]

Figure 3.3: Vehicle Hal architecture

3.1.2 Android Studio and the Apps
After the overview on the internal architecture of the whole Operating System, it
is worth spending some words on the Integrating Development Environment (IDE)
Android Studio and the applications.
Android Studio includes everything necessary for designing a complete project, such

59

Android

as the Android Software Development Kit (SDK), with all the Android libraries,
and even the infrastructure to test and debug the application, from the Android
emulator, for testing without a real device, to the Android Debug Bridge (adb), a
command-line tool that let communicate with a real device [56]. Android apps can
be written in Java, C++ and Kotlin and, when the Android SDK tools compiles
the code, an Android package, the APK, is generated. The APK contains all the
contents of the app and is the file that Android devices use to install the app.
An Android project is characterized by four components [57]:

• The activities represent a single screen with a graphical user interface and are
the base of each Android project. They are the main Java classes in which all
the actual code is implemented, performing tasks inside the app. Usually, an
Android project contains more than one Activity, to facilitate readability and
to optimise the app callings. Activities work together to provide a cohesive
user experience, but each one is still independent of the others. Most of the
Java code is contained in the activities and links the graphical user interface
implemented in the Layouts with an actual action.

• A service is a component that can run in the background, usually used to
perform long-running operations. It does not provide a user interface.

• A broadcast receiver enables the system to deliver events outside of the regular
user flow: this let an app respond to system-wide broadcast announcements,
waiting for messages. It can generate notifications in the status bar

• Content providers manage the application data that can be stored in many
ways.

A typical Android app contains multiple instances of these components, declared in
the app manifest, an XML file in the root of the project source, that describes the
essential information about the app, listing all the components, the permissions and
the configuration information. Indeed, the Android system implements the principle
of least privilege: each app, by default, has access only to the components that it
requires to do its work and no more. This creates a very secure environment in
which an app cannot access parts of the system for which it is not given permission.
However, there are ways for an app to share data with other apps and for an app
to access system services
Android apps are built on a modular mechanism, to enable the creation of synergies,
avoiding strong interdependencies, but letting them cooperate with each other.
Applications use a particular kind of messages, intents, to activate each others or
to exchange data. Intents define actions to be performed and sets of data on which
to operate,as they are an abstract description of which operation is wanted to be
performed: it is the OS that finds and instantiates the corresponding components

60

Android

that can handle the required action. They are asynchronous messages and are used
in an activity to request an action from another activity, or from some other app
components.

Activities

Activities are the base class that provide GUIs with which users can interact. The
OS creates the activity and manages its life cycle invoking some specific meth-
ods, such as onCreate(), onStart(), onResume(), onPause(), onStop(),
onDestroy() [58]. An activity manages user interactions, acquiring the required
resources, builds and configure the graphical user interface, reacts to events trig-
gered by users, manages notification regarding its own life cycle. It may start
another activity by creating an intent object.
For each task started in the home screen of the device, the OS builds an activity
stack, a memory region to add and remove data in a last-in-first-out manner,
initialized with the default activity. During its lifecycle, an activity may request
the system to start a new activity: the latter is created and inserted on the top of
the stack, becoming visible and interactive; the previous is shifted back and remain
in the background. Android allows the execution of several tasks at the same time
and activities can be interrupted and paused when given events are triggered.
The first method that is called is the onCreate(), in which all the initializations
and most resources allocation have to be done. This method also contains all the
associations between the components created in the graphical Layout and the Java
variables that will be used to perform a specific function. This method is followed
by the onStart() that is called every time the activity becomes visible to the user.
Then, very quickly, the activity enters the Resumed state and the system invokes
the onResume(), called every time the activity starts interacting with the user,
when it is on the top of the activity stack. When the activity has to be moved
to the second position of the stack, it enters the Paused state, and the system
invokes the onPause(). In this particular situation, the activity is going into
the background, releasing all the unnecessary resources, but it has not been killed
yet. The last two methods to be called are onStop() and onDestroy(). The
former is called when the activity is no longer visible to the user because is going
to terminate. The latter is called only and only if the activity has to be destroyed.
This can happen because it has finished its operations or because of memory or
energy optimization. The last method that has to be analyzed is onRestart()
that is separated from the rest of the flow. This method is called after the activity
has been stopped with onStop() as when the user presses the home button in
the application. When this happens onPause() and then onStop() are invoked,
and the Activity is moved to the background without being destroyed. In other
words, it can restores the activity after been in background, without destroying it,

61

Android

reducing access time. As already explained this method can be called only if there
are no problems of memory or energy optimization otherwise the onDestroy()
method is called. Usually, during the development of any Android project, the only
method that has to be written by the programmer is the onCreate() because
all the other methods are handled and optimized automatically by the compiler,
unless specific actions are wanted when one of these other methods is called. In the
onCreate() method, a view must be prepared and made visible: it is in charge of
presenting content to the user and to allow interactions.

Figure 3.4: Activity lifecycle

62

Android

The graphical user interface: Views and ViewGroup

The graphical user interface is usually made of a set of elementary widgets, connected
together to form a hierarchical structure that reflects the usage of space inside the
display. Android, as most of other GUI framework, relies on the composite patter
to model a hierarchy of visual components, display-tree [59].

Figure 3.5: Hierarchy of views

A view is an instance of the View class, the basic building block for user interface
components, such as buttons, texts, switches, images and so on. Views occupy
rectangular areas on the screen and are in charge of visual resources and event
handling. They are also the base class for widgets, the interactive graphical
components. A subclass of the View, the ViewGroup is the base class for layouts,
invisible containers that hold others Views or ViewGroups. Views can be created
programmatically, described in a layout XML file or use a combination of the
two approaches. In the fist approach, the different visual components are directly
instantiated and connected to each other to form the desired hierarchy, configuring
the contents and registering event handlers from the code. This allow more flexibility
and control, but maintenance is very difficult. An XML file to create a view is
easier to maintain and can be visualized and design with the visual editor provided
in Android Studio; the only drawback is that the managing of dynamic contents
might be difficult. With the hybrid approach, the hierarchy is described via the
XML and all the elements can be manipulated from the code. This takes the
advantages of the previous two approaches; the only drawback is that if the visual
hierarchy is very complex, it may be difficult to maintain it.
Each views can have an ID property, an integer associated with them. The ids
are usually assigned in the layout XML file and are used to localize views within
view tree. Then, from an Activity, the element can be instantiated by finding the
associated id. From the Activity, views can be modified: properties can be set, such
as the text for a TextView; they can be hidden or shown using the setVisibility()

63

Android

command; listeners can be set up, allowing clients to be notified when something
happens, as for buttons, to execute some commands when they are clicked.

Fragments

Now that the overview on an android app, activities and the GUI is given, it is
worth spend some words on fragments, that are an essential component of this
project. Fragments are a behavior or a portion of the user interface. Multiple
fragments can be combined in a single activity to build a multi-pane UI for better
maintenance and organization. A fragment can be considered as a modular section
of an activity, with its own lifecycle, its own input events, that can be added or
removed. Fragments encapsulates components in a reusable way, handling all the
user interaction within the component. Fragments must be always hosted within an
activity and are affected from its lifecycle. But when the activity is running, each
fragment can be managed individually. They can be reused in multiple activities
and simplify the task of adapting an interface to different screen types. But it is
up to the activity to keep together the different blocks. They are added as a part
of the activity layout in a ViewGroup inside the activity hierarchy view tree. [60]

Figure 3.6: The same fragment could be reused in different ways

Fragments can be seen as a fusion between an Activity and a View: they have a
complex life cycle, but also owns a hierarchy of views that can become part of the
host activity visual tree. Differently from activities, that are completely managed by
the Android framework, fragments can be manipulated by the programmer, creating,
removing, showing them. When the Android system has to draw the fragment layout,
it calls the onCreateView() callback method of that specific fragment and so here
the layout must be provided. The method must return the root View of the layout:
this can be done by inflating a layout resources defined an an XML. Fragments can
be declared directly inside the activity fragment or can be added programmatically
to an existing ViewGroup with the FragmentTransactionand FragmentManager
APIs. And then, they can be removed with the onDestroyView().

64

Android

Figure 3.7: Activity lifecycle with a fragment

65

Android

3.2 The Alexa app
3.2.1 Overview and GUI
The goal of this project is to integrate the automotive virtual assistant features of
the skill in the Alexa app already developed by Magneti Marelli. As mentioned
before, a skill is automatically active on all Alexa powered devices connected to
the same account. Since this app is based on the Alexa Auto SDK, Alexa’s core
functionalities are already implemented and the skill is usable from the first moment,
once the user logs in with the account on which the skill is activated. But the app
should also provide an interface to expose the information about the vehicle and
give some visual feedback. First, it is necessary to understand the structure of the
app, both from how it works and how the GUI is implemented, to integrate new
functionalities and graphic contents in a coherent and cohesive way.

Figure 3.8: Alexa Android app: weather card

The app is constituted of a single Activity, the MainActivity, that instantiates and
controls all the Alexa modules. All core functionalities are implemented starting
from it.
The GUI consists of a single ViewGroup container that presents many layout inside,
to host other fragments and other Views. The whole main screen consists of a
LinearLayout, a type of ViewGroup layout that can hold others child views aligning
them in a single direction, in this case, vertically. It contains three layers, from
top to bottom: the first one is a Relative Layout, a layout that displays children
in relative positions and it is used so hold the Alexa logo as an ImageView, view
object used to display an image resource, and the two buttons on the sides, used
for selecting the language and logout from the Amazon account. These two are
implemented as simple ImageView objects, but two click listener functions, one for
each of them, describe the behavior and what happens when they are clicked. At the

66

Android

center, a Frame Layout, a viewgroup used to display a single item, is used to show
cards upon an interaction with Alexa or when the bottom grid button are pressed.
These cards are simple XML layouts describing an empty structure for each type
of Alexa interaction that can be displayed, and then they are populated with the
data received in the Alexa response with the TemplateRuntimeHandler , that
receives the JSON payload and, depending from the type, fill the corresponding
XML template. Each type of card has its own XML template, that the Alexa
Auto SDK fill with data, and that the android app shows in the relative section
of the app: there are the weather, the music player, the calendar, and the generic
purpose section for Alexa cards. Hidden inside this frame layout, there is another
FrameLayout used as a fragment container, to hold the fragments of the two menus
for the language and the logout.

Figure 3.9: Alexa Android app: languages menu

One last FrameLayout is present on the bottom of the screen. Usually it holds
the fragment that manages the buttons that allow to switch from one card to the
other, except when the central one: when pressed, it activates Alexa, turning on
the microphone and letting the driver speak. The Alexa state is shown through a
new fragment that enters the screen with an animation from bottom to top, hiding
the buttons grid. Alexa can be in three state, listening, thinking and speaking.

67

Android

Figure 3.10: Alexa listening state

Here, the whole layouts structure is summed up and displayed, showing the
background LinearLayout of the activity, the three ViewGroups hosted and also
the empty fragment container at the center.

Figure 3.11: Layer structure analysis

After this overview on how the app GUI is structured and how everything is
displayed, it is possible to create and add new screens and views and integrate the
Alexa the skill developed before. But first, vehicle information must be modelled
and stored in the app.

68

Android

3.2.2 Vehicle parameters
The app manages the vehicle parameters, that must be abstracted and structured in
a cohesive way with how the VUI could use them. Considering the skill, attributes
were an essential components to provide data to the speaker and to handle data.
The vehicle data should reflect that structure, to avoid the need of converting data
in many different way, and instead to create a unique way of handling them. Here,
it will not be discussed how these parameters are saved or loaded to the database,
just how they are converted from a JSON structure to be represented in the Java
code.
The attributes in JSON format are usually transmitted as string, that can be
converted back to a JSONObject, the Java class used to represent them, that gives
access to put() and get() methods. But JSONObjects lead to boilerplate code: it is
not possible to access directly nested elements and it is necessary to encapsulate all
JSON operation inside a try/catch that throws a JSONException, to indicate a
problem with the JSON API; such problems include attempts to parse or construct
malformed documents, such as NaNs (not a number) or infinities and using an out
of range index or nonexistent name. To simplify the code development but also
the readability, the best choice is to convert the JSONObject into a Java object,
meaning that it is necessary first to build a Java class that can accommodate all
the JSON attributes, and then mapping them to the Java object.

Attributes Java classes

The Java classes, to which the JSON should be converted, could be manually
written, but this could lead to missing some pieces. By analyzing the structure of
the attributes, there are 6 main types of attributes, with 40 parameters in total.
Writing manually the Java classes is not the best idea. And, if any changes is
done to the data structure, such as one single ID change or even the addition of
one value, coulod lead to problems and errors. To solve this, the best way is to
find an instrument capable of converting a JSON structure automatically. Online
there are many tools capabale of doing this. In this case, jsonschema2pojo was
used: it generates Plain Old Java Objects from JSON, that can be copied from the
DynamoDB table. Many settings can be tuned, to decide what the output java
classes will be.

69

Android

Figure 3.12: jsonschema2pojo converter main page

From this, the classes are generated, maintaining the hierarchy of the original
attributes and providing all useful methods. In the next figure, it is possible to see,
on the left, all the auto-generated classes, and how the Attributes class is defined
as a set of sub-classes.For each of them, get(), put(), toString and other useful
methods are defined.

70

Android

Figure 3.13: Attributes Java Class

Figure 3.14: STATUS Java Class

71

Android

JSONObject to Java object conversion

Then, a JSON object can be converted to a java object with ease.

Figure 3.15: Layer structure analysis

From the main activity, the data can be accessed through the methods provided
by the Java classes, easily, with get() and set(). For example, in the next figure,
it is shown how the values in the hidden menu for manually setting the warnings,
the switches values are read and the corresponding attribute is set with ease.

Figure 3.16: Example use of the set and get methods

72

Android

3.2.3 Alexa Car section
First, a new section of the app is added, to be able to find all the vehicle information
in a single panel.

Figure 3.17: Car status panel

To do this, the calendar section of is replaced with a car one for this demo project.
A new button, with the icon of a car, takes the place of the calendar button. It
is implemented as an ImageView in the XML file of the fragment_grid_bottom
layout, that displays the car icon and associates the id alexaCar.
Then in the Java class of the grid bottom fragment, an ImageView object is
instantiated and associated to the one defined in the XML layout through the
id, with R.id.alexaCar , and a click listener is set to detect touches: when the
icon is pressed, if the car status panel is not already displayed on the screen, it
is opened with openFragmentCarStatusFragment(), that displays a newly
created fragment, CarStatusFragment, on the central layout of the main activity,
after.

73

Android

Figure 3.18: How the alexaCar button is defined in the XML file and how the
fragment layout is displayed as a preview in Android Studio

Figure 3.19: The button declaration and its click listener

The function also makes sure to clear the screen to avoid overlapping views.

74

Android

Figure 3.20: The function that puts the car panel on the screen.

In this function, it is possible to see how fragments can be added to an activity
inside a specific ViewGroup: the carstatusfragment, an instance of the CarSta-
tusFragment Java class that defines the fragment, is added to the centerCard
layout of the main activity, with an animation, thanks to a FragmentTransac-
tion object and its native methods.
This fragment, the CarStatusFragment, contains the panel showing the status of the
vehicle. The XML layout of the fragment is made of a GridLayout, a ViewGroup
that places its children equally spaced columns and rows.
Here, it is possible to see the structure and the main activity on the screen once the
status panel is displayed. The blue layout is the actual fragment base GridLayout,
with one row and three columns, each of them containing another layout.

Figure 3.21: Car status panel main layouts structure.

Here, the blueprint of the fragment shows all the single components.

75

Android

Figure 3.22: Car status panel: the fragment layout blueprint

The first is dedicated to the vehicle settings, such as the climate control features
and the mirror, the seat and the steering wheel settings. The fan speed and the
temperature controllers are implemented with a Seekbar, with a draggable thumb:
the user can touch it and drag it, setting the current progress level as desired. For
the other settings, it is possible to access a menu to set the desired position of those
components. Such menus are instantiated as a fragment, that is added in the central
empty container. This demonstrate how the fragments are modular components:
there is only one fragment_settings layout and Java class, used multiple times
with a different implementation. Based on the selected component, the fragment is
personalized with the correct icon and the correct current position of that specific
component is shown. The button is first found in the layout with its id: with
R.id.btnMirror it is possible to access the id, then and the view is found and
associated to a ImageButton object.

Figure 3.23: The listener creation.

The function openSettingFragment(), as the name suggest, is a custom method
instantiated in the Main Activity that opens or closes the fragment_settings. It
takes type as input, a string indicating which component is selected. This value is
passed to the fragment as an argument inside a bundle. The latter is a mapping of
key-value couples, that can be passed to the fragment with the setArguments(),
that supply the construction arguments for the fragment. In the onCreateView()

76

Android

method of the fragment, the type value is read and used to select the correct icon
and values.

Figure 3.24: Setting fragment inflated to control the mirrors

The second column host an image used for decorative purposes and to allow future
implementation, such as adding animations.
In the last column, there is the status panel, showing warnings, some relevant
information such as the next revision date, and the status of the vehicle windows
and the locks. All of these value depends on the vehicle parameters.
In this thesis, these parameters are simulated and inserted manually through a
secret menu accessible by long-clicking the word WARNINGS.

Figure 3.25: Warning menu fragment inflated.

It is worth noting how the button are implemented in these cases, to showcase
some of the Android Views widgets: the first ones are Switches, two states toggle
switch widgets, while the others are Radio buttons, that allow o select only one
option from a set, a Radio Group.

77

Android

3.2.4 Notification Fragment
The Alexa skill is capable of controlling the vehicle and change its parameters,
such as turning on the fans or locking the vehicle. Amazon guidelines suggest that,
when Alexa execute a command to control a device, Alexa should not confirm
the action. But the GUI could notify these commands in some way, to confirm
the correct execution and give a visual feedback, other than changing the vehicle
parameters. To do that, a new fragment is created, mimicking the fragment that
shows the Alexa state at the bottom of the screen, when invoked.

Figure 3.26: The notification fragment displayed on the top of the screen.

For this, a new java class is created, the NotificationFragment, extending the
Fragment class. Its onCreateView method returns an XML layout hat will host
an icon and a text communicating what action is being executed, depending on
the value passed to the fragment as arguments. The MainActivity instantiate a
NotificationFragment and, when Alexa control a vehicle component through the
database, the activity is notified: depending on the type of control action, the
fragment is opened object by passing the as arguments the type, such as open or close,
and the valuevalue, such as lock or fans. The fragment is added with an animation,
in this case, entering from the top of the screen, with a FragmentTransaction
object. In addition, the two buttons for logout and languages are deactivated
during the. The fragment is automatically closed after 3 seconds, invoking the
closing fragment function.

78

Android

Figure 3.27: The function that displays programmatically the notification frag-
ment, setting the argument values.

3.2.5 The skill card
In the overview, it is explained how the TemplareRuntime is responsible for rendering
visual metadata coming from Alexa, but only specifics type of templates can be
rendered. The Alexa skill can send a card inside its response, but the Android app
can’t distinguish between the skill card and another card send, for example, when
asking "How far is the moon from the Earth?". All generic cards are mapped as
BodyTemplate1 or BodyTemplate2, so, in theory, there is no distinction between the
vehicle-skill cards and the other ones. But, to provide a coherent user interface, the
custom skill cards should be displayed inside the AlexaCar section. It is necessary
to find a workaround to distinguish the content of the cards.
By analyzing the templates payloads, it is possible to notice that, when a custom
skill sends a card, a string with name of the skill is included in the JSON as a
sub-title: this can be used to create custom functionalities relative to the skill.
Upon receiving a TemplateRuntime.RenderTemplate directive with a card,
the Alexa app can use renderTemplate() to read the skill name inside the JSON
payload and execute different commands.

79

Android

Figure 3.28: How the app distinguish between a vehicle-skill card and a generic
card.

In this way, the app is able to distinguish between any card and the vehicle-skill
ones, and can also display them in different ways, even though they are formally
the same object. The visual metadata is extracted from the payload as a template,
a JSON object, and passed to a viewAlexaCar object, instance of the custom
Java class ViewAlexaCar, that extracts data from the template to populate the
associated XML layout, displaying it on the screen.

80

Android

Figure 3.29: The card sent when asking the skill if there is a problem with the
battery, rendered in the car section.

Figure 3.30: How a simple request is rendered placed in the general section of
the app.

81

Chapter 4

DynamoDB

Both the Alexa skill and the Android app need a place to store the vehicle
information and a way to communicate with each other. The proposed solution
to these problems utilize Amazon DynamoDB, an AWS service. It is a durable,
multimaster and fully managed database. This allows to focus on building the
application, instead of spending time to configure the database and updating it. It
also comes with a built-in security and backup system and in-memory caching for
internet-scale applications. This service can handle more than 10 trillion requests
per day, supporting even peaks of more than 20 million requests per second. It is
used by many big enterprises, such as Toyota and Samsung.[61]
DynamoDB is a NoSQL database, designed to run at high performances even for
that applications that would overburden the classical relational databases. It stores
key-value data and document, usually used for web, mobile, IoT and all other
application that need low-latency accesses.

Figure 4.1: DynamoDB logo.

Through the DynamoDB console, the tables can be easily managed, from creating
them, to adding, deleting and querying data. But it also provides instruments to
connect other types of application to it, with AWS SDKs. DynamoDB stores tables,

82

DynamoDB

a collection a items, that are also collection of attributes. With a primary key,
each item of the table is uniquely identified in a table, and with other additional
secondary keys, it is possible to have more querying flexibility.

Figure 4.2: The DynamoDb console with the available table

Figure 4.3: The table

An application, to work with Amazon DynamoDB, must use Some simple API
operation, for control plane operation, to create and manages tables, for data plane
actions, to execute action on data in a table.
In the next sections, it will be shown how this database is used to store data from
both the Alexa skill and the Android app, creating a link between two different
worlds.
But, before moving on, few words are spent to describe non-relational databases.

4.1 What is a NoSQL database
Relational databases, accessed by SQL, Structured Query language, are the tra-
ditional databases that were predominant until 2000s. From the 70s, when SQL

83

DynamoDB

databases rose in popularity, storage space was very expensive, so developers nor-
malized the databases to reduce data duplication as much as possible.[62] SQL is
the standard language used for relational database management, such as update or
retrieve data. A relational database contains objects called tables, where data and
information are stored, each of them identified with a unique name.
A NoSQL database is built for specific data models with a flexible schema [63]. They
are recognized as one of the most easy to develop, with the most functionalities
and for their performance at scale.
They are non-relational database, that stores data in other formats, not only
relational tables. This does not mean that data can’t have some relationship: they
can store relationship data, just in a different way. NoSQL data models let to nest
all the related data within a single data structure, without the need of splitting
them between tables. The data models are tailored for the specific use case, so they
can support bigger workloads better, providing better performance than relational
ones for the same use case. They are very scalable, making them able to maintain
performances. This means that, with the growing amount of work, the potential of
the system can be enlarged to accommodate that growth.

4.2 The connection between DynamoDB and the
Android app

To connect the Android app to DynamoDB, AWS services help developer with
Amplify.

4.2.1 AWS Amplify
AWS Amplify is a set of tools to build scalable and secure full stack applications
with AWS services, for web and mobile applications [64]. It allows to configure app
backends in an easy and fast way. It will be used to connect the existing cloud
backend to the mobile app. The Amplify libraries and APIs let the android app to
connect to a DynamoDB table: then the car parameters can be loaded, making
them available for the skill. It is available for Android, iOS, Javascript and Flutter.

Figure 4.4: AWS Amplify logo.

The amplify libraries can be installed in the Android project as dependencies in
the build configuration [65]. Then, Amplify must be initialized in an Application

84

DynamoDB

class, that must be included in the manifest of the app. Amplify simplify the
provisiong of backend resources across the different Aws services. This tool provide
also APIs to connect the android app to a DynamoDB table. These APIs provides
interfaces for retrieving and persisting model data, with a built-in support for
AWS AppSync, a fully managed service to develope and handle GraphQL APIs,
connecting to data sources such as DynamoDB: these will provide CRUD operations
(Create, Read,Update, Delete) and also real-time functionalities. Where GraphQL
is a language for APIs to query and manipulate data, providing a description of
the data and a way to retrieve exactly what is wanted. [66] The API category of
Amplify provides solution to make HTTP requests to GraphQL endpoints. Usually,
to integrate AWS AppSync, it is necessary to set up the API endpoint and the
authentication settings, generate the code from the API schema and then write the
code to manipulate the data. Amplify provides all the tools to make this process
really easy.
Everything start with a GraphQL schema, that will be the base model of how the
data are structured. In this case, the schema is really basic, to accommodate the
structure of the Alexa skill attributes in the JSON format:

Figure 4.5: GraphQL schema

From this, Amplify can automatically generate code to manipulate the data in the
format of VehicleData, creating a java class.

85

DynamoDB

Figure 4.6: VehicleData auto generated class by Amplify

With this class, it is possible now to retrieve the data from the backend resource
and convert them in a vehicleData type object, with an ID and a JSON containing
all the attributes. Now it is possible to query data, fetching them from the table
and converting the attributes in a readable JSON with the Amplify framework,
accessing the API.

86

DynamoDB

Figure 4.7: Function to retrieve vehicle parameters from the database.

Figure 4.8: Function to update vehicle parameters to the database.

This framework also provide a very interesting feature: subscription. They allow
to create real-time clients, capable of listening mutations on the data and execute
code only when triggered [67] . This is the key feature to Allow the Alexa skill
to communicate in real-time with the android app, making it capable of control
the vehicle. GraphQl natively support subscription to perform real-time operation
and AppSync can push data to all the clients listening. Thi means that it can
make any data source real-time with no effort, since the connection management is
handled automatically by AppSync libraries. So, whenever the Android app create
a GraphQL subscription operation with the Amplify client, a secure WebSocket
connection is established and will remain connected constantly, allowing to receive

87

DynamoDB

real-time data from the skill, that becomes a data source.

Figure 4.9: How AppSync works

Different types of subscriptions are supported, to detect when data are created,
deleted or updated.
Thus, in the onCreate() method of the MainActivity, the app is subscribed data
updates on DynamoDb:

Figure 4.10: Subscription creation.

and with the behavior of the specific cases are define. With onUpdate, it is
specified what happens when data are updated. The Alexa skill can send commands
through the database, the android app client reacts to it through the subscription,
read the command and execute what it is necessary.

88

DynamoDB

Figure 4.11: onUpdate behavior.

When an update is detected, the DynamoDB table is retrieved and casted first
into a VehicleData object and the attributes JSON is extracted and converted
to a string with the native methods. Then, the attributes string is converted to ad
Attributes object, allowing to use more intuitive methods to access nested elements.
the CTRL attribute is read, to understand what the Alexa skill wants. When all
the operation are complete, the app take care of cleaning the CTRL attribute
values, to be sure that even when the app update the data of the vehicle on the
database, no residual command risks to be triggered.

4.2.2 AWS and Amplify configuration
It is worth spending some words about the AWS configuration necessary to make
Amplify work.
The Amplify Command Line interface (CLI) is the unified toolchain to create cloud
services based on AWS [68]. Once downloaded, the first thig to do is to configure it,
logging into the AWS console using the correct IAM user. Amazon IAM (Identity
and Access Management) is used to manage user and user permissions within AWS
services. The user has to have administrator access to the account to provide all the

89

DynamoDB

resources for Appsync from AWS. This user will be identified with an accessKeyId
and the secretAccessKey and the CLI will connect using these keys. Then, the
CLI is configured and Amplify can be initialized in any project with it running
the correct command from the terminal: all the necessary configuration steps
will be automatically performed. After that, Amplify features can be manually
implemented, such the GraphQL API used here.

4.3 The connection between DynamoDB and the
Alexa skill

The Alexa skill already can communicate with the database with the persistence
adapter, as mentioned in chapter 2.
With the integration of the AWS Amplify framework, it was shown how the
subscription service can automatically detect GraphQL mutations and push data
to all connected clients. But the persistence adapter utilized by the skill lambda
function does not actually execute GraphQL mutation: thus, it is necessary another
way to communicate with the database, when a command is wanted to be sent
from the skill to the car.
A GraphQL mutation must be manually done by the lambda function.

90

DynamoDB

Figure 4.12: How the Lambda function performs a GraphQL mutation.

The GraphQL mutation must be manually written in the correct syntax, then the
lambda function as to do an HTTP request directed to the correct URL of the
AppSync API used by Amplify and the correct credentials must be included in

91

DynamoDB

the request, such as the accessKeyId and the secretAccessKey. In this way, when
this module is invoked, a mutation is executed, uploading the attributes and the
command. When the speaker wants to control the vehicle triggering the correct
intents, one attribute category is set: the CTRL attribute, with a type and a
value, is used to OPEN , CLOSE a component, passed with its ID as a value,
or SET-PROFILE, with the personID.

92

Chapter 5

Conclusions

5.1 Module Testing
All the single components must be tested to verify if they works as a single
components and as a whole system.

Alexa skill

The Alexa skill can be tested almost everywhere with any device. The simulator
on the developer console allows to test the VUI and the backend logic, especially
to achieve the natural conversation as it is implemented in this thesis.
All the intents are checked, to see if they trigger the correct intent handler and
elaborate the data as they should, if they execute the correct API calls. In the
next few images, some of the intents are invoked through the developer console
simulator.

Figure 5.1: CheckIntent

93

Conclusions

Figure 5.2: The longest conversation possible

94

Conclusions

Figure 5.3: GetPositionIntent

The simulator shows also the input and output JSON, as shown in the chapter
dedicated to Alexa. These are also available in AWS CloudWatch, a monitoring
and observability service provided by Amazon. Here, with the interceptor defined,
each JSON request is logged. It makes also possible to use it to log information
from the Lambda function, allowing the debug and troubleshoot of the code. The
vehicle parameters on the database can be manually changed in this phase, to
verify all the cases.
The skill instantly usable on any Alexa-powered device, answering the speaker
requests about his vehicle and sending cards too:

95

Conclusions

Figure 5.4: How the skill cards are displayed on any Alexa device with a screen.

Figure 5.5: How the skill card is displayed on a smartphone

96

Conclusions

Android app

The app is tested with an Automotive Development Platform (ADP), SA8155P,
an embedded solution that provides access to a high-performance automotive
infotainment, advanced driver assist platform for developing, testing, optimizing
and showcasing in-vehicle infotainment solutions. Connecting a microphone, one
speaker and a touchscreen, it provides all the necessary functionalities.

Figure 5.6: The SA8155P ADP.

Android Automotive OS is installed on the platform and, with Android Studio
running on the computer, it is possible to install the app directly on the device, to
test it. The device is connected through the previously mentioned adb, a client-
server program: the client runs on the development machine and sends commands;
a daemon (adb) runs the command on the device, running as a background process
on it; a server, that manages the communication between the daemon and the
client, running as a background process on the development machine [69]. Once
the connection is established, Android studio can install directly the apk on the
device.
The results are the screens shown in chapter 3, that were directly captured from
the screen of this test environment.

97

Conclusions

5.2 System testing and results
To check if all the modules deployed into the final architecture leads to the expected
functionalities, all of them are connected and many tests are run to verify if they
works. In reality, most of the previous tests already had some types of interaction
with other components.
Here, it is presented the final architecture of the whole system, how every compo-
nents and AWS service interact with each others:

Figure 5.7: The whole system architecture.

From the vehicle or the smartphone, with an Alexa app installed, the skill is
invoked and requests are processed by AWS Lambda. Lambda interfaces with many
different services to provide the the skill functionalities: IAM to manage all the
accesses to AWS resources, DynamoDB to retrieve persistent attributes, S3 to load
he images for the cards, CloudWatch to log events; it also execute HTTP requests
to send commands to the vehicle via GraphQL mutations. The vehicle, update
its data on the table through Amplify and Appsync, and detect the mutations
performed by the skill.
As it is possible to see, it is a complex structure with many different components
and services, that works together to present a functioning automotive virtual
assistant. All interconnected, AWS services are capable of interacting with each
other, automatizing some processes.

98

Conclusions

5.3 Future improvement
The one presented in this thesis, it is a functioning system. But many improvement
could be done: during the study and the development, deepening the knowledge of
all of these services, many choices were done because they were the less complex
choice Every component could be implemented in a different way. This application
relies on AWS services as much as possible, gaining reliability and an integrated
environment.
Alexa features are continuously expanded, every month new features are released.
The development should be a continuous process to integrate the new capabilities
to offer a better experience. For example, interaction without using an invocation
name is currently released as a beta feature, as Alexa conversation, a new method
to delegate dialogs to Alexa, to take care of more complex interactions.
Even Alexa Auto SDK are constantly updated, releasing version 3.0 almost at the
end of the development of this project.
Anyway, some future implementation and suggestion related to all the system could
be:

• Increase the number of sample utterances and slot synonyms to increase the
possibility of the VUI.

• Use more external API to offer many different features, all within the same
skill.

• Better management of the skill attributes and GraphQL mutations: essentially,
they do the same thing in different way. But the latter was necessary to use
the real-time features of Amplify.

• Both the skill and the app are manually linked to one DynamoDB table: it
would be better to automatize this process.

• An authorization mode should be implemented to protect the access to table:
as it is now, anybody, with the correct keys, can access it. It is fine only for
development purposes.

• Update from Alexa Auto SDK v2.03 to v3.0.

• Utilize the LVC of the Alexa Auto SDK: at the moment, every command
sent from the skill has to pass from the cloud. The SDK supports local voice
commands, for offline controls, but they would be commands not integrated
within a skill, but with the embedded system on the vehicle.

• Vehicle parameters could be modelled in a more reliable way.

99

Conclusions

• Vehicle data are manually set in this project: they could be generated or
simulated differently.

5.4 Conclusions and Final Remarks
The work done for this master thesis has given the opportunity to evaluate the
potential of Alexa combined with Android, applied to the automotive environment.
As it is, this project shows how to connect very different systems and showcase
some of Alexa’s capabilities, but also demonstrate some of its limitations, that
needed a workaround to achieve what was wanted.
Alexa is a new technology and is moving the first steps in this field, while Android
is new too, compared to others IVI systems, but comes with a great experience
behind it and a large slice of the market for mobile devices such as smartphones
and tablets. This is a great benefit because the end user is already familiar with
the systems components, its applications and its operation, so it will be possible to
find inside the vehicle the same functionalities with which he interacted so far at
home or with its portable devices.
The community of developers, growing more and more, makes it possible to develop
applications for this environment because there are no substantial differences with
what there was before. In this way these developers can reuse their knowledge even
in a new field of application.
The biggest of all the benefits is for the manufacturers that don’t have to develop
an ad-hoc VPA or an operating system, that would entail many a big amount of
resources. So, new experiences can be delivered to the drivers with new products,
using familiar technologies and creating a complex, but user-friendly, system.

100

Bibliography

[1] C.W. Kim and C.K. Suh. «Factors Affecting the Intention to Use the Intelligent
Personal Assistant». In: Proceedings of International Academic Conferences
(No. 5807971). 2017 (cit. on p. 1).

[2] M. McTear. «The Dawn of the Conversational Interface». In: Switzerland:Springer
International Publishing (2016) (cit. on p. 1).

[3] N. Pantidi B.R. Cowan. «What can I help you with?: infrequent users’ ex-
periences of intelligent personal assistants?» In: Proceedings of the 19th
International Conference on Human-Computer Interaction with Mobile De-
vices and Services (2017) (cit. on p. 1).

[4] Tom Krazit. Google finding its voice. url: https://www.cnet.com/news/
google-finding-its-voice/ (cit. on p. 2).

[5] W. D Epstein J; Klinkenberg. «From Eliza to Internet: a brief history of
computerized assessment». In: Computers in Human Behavior (2001) (cit. on
p. 2).

[6] L. Swartz. «Why people hate the paperclip». In: Labels appearance behavior
and social responses to user interface agents (2003) (cit. on p. 2).

[7] Yu Tiecheng. «The current development of speech recognition». In: Commu-
nication World (2005) (cit. on p. 2).

[8] M. McGregor M. Porcheron J. E. Fischer. «Talking with conversational agents
in collaborative action». In: Companion of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social Computing (2017) (cit. on
p. 2).

[9] Gamal Bohouta Veton Këpuska. «Next-generation of virtual personal assis-
tants (Microsoft Cortana, Apple Siri, Amazon Alexa and Google Home)».
In: 2018 IEEE 8th Annual Computing and Communication Workshop and
Conference (CCWC) (2017) (cit. on p. 3).

[10] A. Deotale L. Manikonda and S. Kambhampati. «What’s up with Privacy?»
In: User Preferences and Privacy Concerns in Intelligent Personal Assistants
(2017) (cit. on p. 3).

101

https://www.cnet.com/news/google-finding-its-voice/
https://www.cnet.com/news/google-finding-its-voice/

BIBLIOGRAPHY

[11] S. Payr. «Virtual butlers and real people: styles and practices in longterm
use of a companion». In: Your Virtual Butler. 2013 (cit. on p. 3).

[12] E. Luger and A. Sellen. «The Gulf between User Expectation and Experience
of Conversational Agents». In: Proc. of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16) (2016) (cit. on p. 3).

[13] G. Lugano. «Virtual assistants and self-driving cars». In: (2017) (cit. on pp. 3,
6).

[14] T. A. Dingus V. L. Neale. «An overview of the 100-car naturalistic study
findings». In: (2005) (cit. on p. 4).

[15] Sodhi. «Glance analysis of driver eye movements to evaluate distraction». In:
Behavior Research Methods, Instruments, & Computers (2002) (cit. on p. 4).

[16] Liang. «Nonintrusive Detection of Driver Cognitive Distraction in Real Time
Using Bayesian Networks». In: Transportation Research Record (1988) (cit. on
p. 4).

[17] D. Shirley; A. Greenwood; C. Böttcher; Zhenwei Cao. «Driver Distraction Test
Rig for HMI studies». In: 2009 IEEE International Conference on Systems,
Man and Cybernetics (2009) (cit. on p. 4).

[18] S.S Awad. «Voice technology in the instrumentation of the automobile». In:
IEEE Transactions on Instrumentation and Measurement (1988) (cit. on p. 5).

[19] SBD. «European Telematics & ITS: HMI trends in Europe - balancing
functionality with safety». In: SBD Report SBD/TEL/950 (2006) (cit. on
p. 5).

[20] J. L. Harbluk T. A. Ranney and Noy Y. I. «Effects of voice technology on test
track driving performance: Implications for driver distraction». In: Human
Factors (2005) (cit. on p. 5).

[21] N. Yoshitsugu K. Itoh Y. Miki. «Evaluation of a voice-Activated system using
a driving simulator». In: SAE paper 2004-01-0232 (2004) (cit. on p. 5).

[22] P. Zheng; M. McDonald; C. Pickering. «Effects of Intuitive Voice Interfaces
on Driving and In-vehicle Task Performance». In: 2008 11th International
IEEE Conference on Intelligent Transportation Systems (2008) (cit. on p. 5).

[23] A. Walker. Looking into the Future of Voice Services in the Car. url: https:
//developer.amazon.com/en-US/blogs/alexa/alexa-auto/2019/05/
looking-into-the-future-of-voice-services-in-the-car (cit. on
p. 7).

[24] Speech Recognition. url: https://www.ibm.com/cloud/learn/speech-
recognition (cit. on pp. 8, 10).

102

https://developer.amazon.com/en-US/blogs/alexa/alexa-auto/2019/05/looking-into-the-future-of-voice-services-in-the-car
https://developer.amazon.com/en-US/blogs/alexa/alexa-auto/2019/05/looking-into-the-future-of-voice-services-in-the-car
https://developer.amazon.com/en-US/blogs/alexa/alexa-auto/2019/05/looking-into-the-future-of-voice-services-in-the-car
https://www.ibm.com/cloud/learn/speech-recognition
https://www.ibm.com/cloud/learn/speech-recognition

BIBLIOGRAPHY

[25] Fatih A.Unal. «Neural Networks and Pattern Recognition». In: Proc. of the
2016 CHI Conference on Human Factors in Computing Systems (CHI ’16)
(1998) (cit. on p. 8).

[26] L. R.Rabiner. «A tutorial on hidden markov models and selected applications
in speech recognition». In: 1989 (cit. on pp. 9, 11).

[27] D. Jurafsky and J. H. Martin. «Speech and language processing». In: 2019
(cit. on p. 10).

[28] Zhang Qiong Zhang Ping. «Based on HMM and BP neural network for speech
recognition». In: 2008 (cit. on p. 11).

[29] Haoquan Zhao Jianliang Meng Junwei Zhang. «Overview of the Speech
Recognition Technology». In: (2012) (cit. on p. 11).

[30] Y. Goldberg. «Neural Network Methods in Natural Language Processing».
In: 2017 (cit. on p. 12).

[31] Natural language processing. url: https://www.ibm.com/cloud/learn/
natural-language-processing (cit. on p. 12).

[32] What Is Alexa? url: https://developer.amazon.com/en-US/alexa (cit.
on p. 14).

[33] Dieter Bohn. AMAZON SAYS 100 MILLION ALEXA DEVICES HAVE
BEEN SOLD — WHAT’S NEXT? url: https://www.theverge.com/2019/
1/4/18168565/amazon- alexa- devices- how- many- sold- number- 100-
million-dave-limp (cit. on p. 14).

[34] Rohit Prasad. Alexa at five: looking back, looking forward. url: https://www.
amazon.science/blog/alexa-at-five-looking-back-looking-forward
(cit. on p. 15).

[35] Chenlei Guo. How we taught Alexa to correct her own defects. url: https:
//www.amazon.science/blog/how-we-taught-alexa-to-correct-her-
own-defects (cit. on p. 15).

[36] What Are Alexa Skills? url: https://developer.amazon.com/en-US/
alexa/alexa-skills-kit (cit. on p. 16).

[37] Get Started with the Guide. url: https://developer.amazon.com/en-
US/docs/alexa/alexa-design/get-started.html (cit. on p. 17).

[38] Build Skills with the Alexa Skills Kit. url: https://developer.amazon.
com/en-US/docs/alexa/ask-overviews/build-skills-with-the-alexa-
skills-kit.html (cit. on p. 17).

[39] AWS Lambda. url: https://aws.amazon.com/lambda/ (cit. on p. 23).

103

https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://developer.amazon.com/en-US/alexa
https://www.theverge.com/2019/1/4/18168565/amazon-alexa-devices-how-many-sold-number-100-million-dave-limp
https://www.theverge.com/2019/1/4/18168565/amazon-alexa-devices-how-many-sold-number-100-million-dave-limp
https://www.theverge.com/2019/1/4/18168565/amazon-alexa-devices-how-many-sold-number-100-million-dave-limp
https://www.amazon.science/blog/alexa-at-five-looking-back-looking-forward
https://www.amazon.science/blog/alexa-at-five-looking-back-looking-forward
https://www.amazon.science/blog/how-we-taught-alexa-to-correct-her-own-defects
https://www.amazon.science/blog/how-we-taught-alexa-to-correct-her-own-defects
https://www.amazon.science/blog/how-we-taught-alexa-to-correct-her-own-defects
https://developer.amazon.com/en-US/alexa/alexa-skills-kit
https://developer.amazon.com/en-US/alexa/alexa-skills-kit
https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://aws.amazon.com/lambda/

BIBLIOGRAPHY

[40] ASK SDK for Node.js. url: https://developer.amazon.com/en- US/
docs/alexa/alexa-skills-kit-sdk-for-nodejs/overview.html (cit. on
p. 24).

[41] Choose the Invocation Name for a Custom Skill. url: https://developer.a
mazon.com/en-US/docs/alexa/custom-skills/choose-the-invocation-
name-for-a-custom-skill.html (cit. on p. 25).

[42] Create Intents, Utterances, and Slots. url: https://developer.amazon.
com/en-US/docs/alexa/custom-skills/create-intents-utterances-
and-slots.html (cit. on p. 26).

[43] Delegate the Dialog to Alexa. url: https://developer.amazon.com/en-
US/docs/alexa/custom-skills/delegate-dialog-to-alexa.html (cit.
on p. 31).

[44] Request and Response JSON Reference. url: https://developer.amazon.
com/en-US/docs/alexa/custom-skills/request-and-response-json-
reference.html (cit. on p. 33).

[45] Dialog Interface Reference. url: https://developer.amazon.com/en-
US/docs/alexa/custom-skills/dialog-interface-reference.html (cit.
on p. 42).

[46] Location Services for Alexa Skills. url: https://developer.amazon.com/
en- US/docs/alexa/custom- skills/location- services- for- alexa-
skills.html (cit. on p. 46).

[47] Add Personalization to Your Skill. url: https://developer.amazon.com/
en- US/docs/alexa/custom- skills/add- personalization- to- your-
skill.html (cit. on p. 47).

[48] Alexa Auto Sodtware Development Kit. url: https://developer.amazon.
com/en-US/alexa/devices/alexa-built-in/development-resources/
auto-sdk (cit. on p. 52).

[49] Auto SDK Architecture and Modules. url: https://github.com/alexa/
alexa-auto-sdk (cit. on p. 53).

[50] TemplateRuntime 1.2. url: https://developer.amazon.com/en-US/docs/
alexa/alexa-voice-service/templateruntime.html#rendertemplate
(cit. on p. 54).

[51] Handling Display Card Templates. url: https://github.com/alexa/alexa-
auto-sdk/blob/2.3/platforms/android/modules/alexa/README.md#
handling-display-card-templates (cit. on p. 54).

[52] Mobile Operating System Market Share Worldwide. url: https://gs.statc
ounter.com/os-market-share/mobile/worldwide (cit. on p. 56).

104

https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-nodejs/overview.html
https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-nodejs/overview.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/choose-the-invocation-name-for-a-custom-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/choose-the-invocation-name-for-a-custom-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/choose-the-invocation-name-for-a-custom-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-intents-utterances-and-slots.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-intents-utterances-and-slots.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-intents-utterances-and-slots.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/delegate-dialog-to-alexa.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/delegate-dialog-to-alexa.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/request-and-response-json-reference.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/request-and-response-json-reference.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/request-and-response-json-reference.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/dialog-interface-reference.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/dialog-interface-reference.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/location-services-for-alexa-skills.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/location-services-for-alexa-skills.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/location-services-for-alexa-skills.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/add-personalization-to-your-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/add-personalization-to-your-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/add-personalization-to-your-skill.html
https://developer.amazon.com/en-US/alexa/devices/alexa-built-in/development-resources/auto-sdk
https://developer.amazon.com/en-US/alexa/devices/alexa-built-in/development-resources/auto-sdk
https://developer.amazon.com/en-US/alexa/devices/alexa-built-in/development-resources/auto-sdk
https://github.com/alexa/alexa-auto-sdk
https://github.com/alexa/alexa-auto-sdk
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/templateruntime.html#rendertemplate
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/templateruntime.html#rendertemplate
https://github.com/alexa/alexa-auto-sdk/blob/2.3/platforms/android/modules/alexa/README.md#handling-display-card-templates
https://github.com/alexa/alexa-auto-sdk/blob/2.3/platforms/android/modules/alexa/README.md#handling-display-card-templates
https://github.com/alexa/alexa-auto-sdk/blob/2.3/platforms/android/modules/alexa/README.md#handling-display-card-templates
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

BIBLIOGRAPHY

[53] Platform architecture. url: https://developer.android.com/guide/
platform (cit. on p. 56).

[54] Android Automotive OS. url: https://developers.google.com/cars/
design/automotive-os (cit. on p. 59).

[55] Android Automotive OS architecture. url: https://source.android.com/
devices/automotive (cit. on p. 59).

[56] C. Aliferi. Android programming cookbook. 2016 (cit. on p. 60).
[57] Application Fundamentals. url: https://developer.android.com/guide/

components/fundamentals (cit. on p. 60).
[58] Activity Lifecycle. url: https://developer.android.com/guide/compone

nts/%20activities/activity-lifecycle.html (cit. on p. 61).
[59] Layouts. url: https : / / developer . android . com / guide / topics / ui /

declaring-layout (cit. on p. 63).
[60] Fragments. url: https://developer.android.com/guide/components/

fragments (cit. on p. 64).
[61] DynamoDB overview. url: https://aws.amazon.com/dynamodb (cit. on

p. 82).
[62] Lauren Schaefer. NoSQL Explained. url: https://www.mongodb.com/nosql-

explained (cit. on p. 84).
[63] url: https://aws.amazon.com/nosql (cit. on p. 84).
[64] AWS Amplify. url: https://aws.amazon.com/amplify (cit. on p. 84).
[65] AWS Amplify SDK for Android. url: https://docs.amplify.aws/lib/q/

platform/android (cit. on p. 84).
[66] The GraphQL language. url: https://graphql.org/ (cit. on p. 85).
[67] Ed Lima. New features that will enhance your Real-Time experience on AWS

AppSync. Nov. 2019. url: https : / / aws . amazon . com / blogs / mobile /
appsync-realtime (cit. on p. 87).

[68] Amplify CLI. url: https://docs.amplify.aws/cli (cit. on p. 89).
[69] Android Debug Bridge (adb). url: https://developer.android.com/

studio/command-line/adb (cit. on p. 97).

105

https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developers.google.com/cars/design/automotive-os
https://developers.google.com/cars/design/automotive-os
https://source.android.com/devices/automotive
https://source.android.com/devices/automotive
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/%20activities/activity-lifecycle.html
https://developer.android.com/guide/components/%20activities/activity-lifecycle.html
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/components/fragments
https://developer.android.com/guide/components/fragments
https://aws.amazon.com/dynamodb
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
https://aws.amazon.com/nosql
https://aws.amazon.com/amplify
https://docs.amplify.aws/lib/q/platform/android
https://docs.amplify.aws/lib/q/platform/android
https://graphql.org/
https://aws.amazon.com/blogs/mobile/appsync-realtime
https://aws.amazon.com/blogs/mobile/appsync-realtime
https://docs.amplify.aws/cli
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb

	List of Figures
	Intelligent Virtual Assistants
	State of Art
	Trends with In-Car Virtual Assistants

	Overview on speech recognition
	Hidden Markov Models
	Natural language processing

	Proposed implementation overview

	Alexa
	"Who" is Alexa?
	Alexa Skills
	Alexa Skills Kit (ASK)
	Development tools
	How to host the service
	Alexa Skills Kit Software Developer Kit
	Other settings

	The interaction model
	Invocation name
	Intents
	Slots
	Dialogs
	The request

	The logic
	Intent handlers
	Interceptors
	Skill building

	Location services and external APIs
	Profile management: skill personalization
	Control the vehicle
	Complex and natural conversational flow
	Alexa Auto SDK
	Auto SDK Architecture and Modules

	Android
	Android overview
	Android Automotive OS
	Android Studio and the Apps

	The Alexa app
	Overview and GUI
	Vehicle parameters
	Alexa Car section
	Notification Fragment
	The skill card

	DynamoDB
	What is a NoSQL database
	The connection between DynamoDB and the Android app
	AWS Amplify
	AWS and Amplify configuration

	The connection between DynamoDB and the Alexa skill

	Conclusions
	Module Testing
	System testing and results
	Future improvement
	Conclusions and Final Remarks

	Bibliography

