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Summary

Nowadays the Machine Learning has a primary role in a lot of aspect of our
life. The model family increasingly has been enriched by new solutions and
algorithms, making possible to generalize very difficult tasks, from Computer
Vision to Medical, from Natural Language Processing to Gaming, just to
mention some.

In particular, the usage of Image classification and Object Detection have
increased significantly and have brought out new challenges and new oppor-
tunities. It is common by now to find these two specific ML applications in
"Mobile environments", such as cars or smartphones. Often mobile devices
can not rely on unconstrained resources, like large-scale distributed systems
of hundreds of servers with computational devices such as GPUs, and main
power grid supplies. Hence, Neural Networks must be optimized for the
available resources, memory, energy consumption and processing capabilities,
while providing high throughput and high accuracy. The attention is now
shifted to minimize and to streamline the most promising neural network
models, that in general are large and deep, with minimum performance loss.

The aim of this thesis work is to explore some optimization techniques
applied on different neural network models and to analyze their performance
against the baselines. In particular, will be analyzed some discretization
techniques, thanks to which it is possible to quantize the model’s variables on
reduced numbers of bits. The techniques have been applied to some neural
network models from a research project at DET called "Indoor human locali-
sation using Capacitive sensing". The models used belong to three different
neural network architectures with the very same aim: to infer and track the
position of a human inside a room using the data coming from capacitive
sensors. Previous works explored the best neural network architectures and
optimized their training. These promising results would need to be deployed
inside an embedded system like an FPGA or a microcontroller to optimize
the localization system. But since these systems are resource-constrained
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devices, the neural networks have to be optimized. The Quantization Tech-
nique explored in this work will achieve memory and processing requirements
optimization, reducing the size of the variable representations and allowing
hardware accelerations. In particular, by representing all the network data on
a few bits, are optimized the multiply-and-accumulate operations, that repre-
sent the main operations inside a Neural Network implementation. The data
size reductions can bring significant improvements in terms of throughput,
since more operations can be executed in parallel inside the same arithmetic
unit, or can be used smaller arithmetic units saving energy and resources,
two crucial aspects of Embedded Systems Design.

The techniques chosen to perform the quantization came from the Ten-
sorflow Model Optimization module provided by the Tensorflow API and
the Tensorlow Lite environment. These specific modules offer different
optimizations, but only two are taken in consideration in this work: Quanti-
zation Aware Training (QAT) and Post-Training Quantization (PTQ). The
approach followed to produce the experimental results is straightforward:
the two techniques have been applied for every neural network that was
performing best in the previous experiment, and the results obtained have
been compared with the results collected in the previous work. In particular,
QAT let us choose the number of bits in the weight and activation represen-
tations and so it has been explored the performance degradation for many
quantization numbers.

The neural networks used belong to these architectures:

• Multilayers Perceptron (MLP)

• 1D-Convolutional Neural Networks (CNN)

Long Short-Term Memory networks were also investigated, but it was not
possible to apply any discretization tecniques becouse Tensorflow optimiza-
tion modules do not yet support Recurrent Neural Networks. The results
collected are promising since the Average Euclidean Distance Error (ADE),
the comparison metric between the model using floating point representation
on 32 bits, already trained, and the quantized integer version, shows minimal
losses for the CNN, within the 5%, and even a performance improvements by
around 10% for the MLP. The remarkable improvements in terms of resource
usage and the promising results in the accuracy demonstrate the advantages
of using these optimization techniques with those networks.
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Chapter 1

Introduction

In order to trace the movements of a person inside a room, it has been chosen
to use low-cost capacitive sensors and suitable Machine Learning algorithms to
covert the noisy and environmental-dependent data coming from the sensors
into the position and trajectory of the person. In the following, a brief
analysis of the Neural Networks used and their functionalities is presented,
followed by the previous work conducted and the thesis contribution.

1.1 Machine Learning
The machine learning activities are increasingly growing in a lot of technolog-
ical and health environments. This thesis work rely on advance optimization
techniques that can improve some aspects of the inference efficiency of the
model. These techniques are strictly connected with the underneath environ-
ment that define and actually makes working a Neural Network, the Machine
Learning algorithms precisely. Hence, in order to proceed with the analysis
and usage of these optimization techniques, it is important to know and
understand the basic concepts behind this branch of Computer Science.

1.1.1 Basic knowledge behind Machine Learning Al-
gorithms

The Machine Learning actually is a set of mechanisms that can make im-
proving the performance of a machine during time. A first formal definition
of this term has been introduce by Arthur Samuel in 1959, inside an article
titled "Some Studies in Machine Learning Using the Game of Checkers" [1].
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Introduction

The mechanism that regulates the learning process can be divided into two
different approaches as explained in [2]:

• Supervised learning: the Model is fed with xi inputs and yj outputs
samples and it has to derive the function f that with those inputs can
reproduce, as precisely as possible, the outputs provided as f(xi) = yj.
The output producds can be of two different types, depending on the
task to be addressed:

– classification tasks, where the outputs produced are discrete and
finite values well defined at start, or continuous values in the form
of a probability for a specific class label. Typical applications can
be the Email spam detector or the Plant species classification, as an
example.

– regression tasks, where the outputs produced are continuous variables
that represent quantities such sizes or amounts. Typical applications
can be House pricing prediction or Speech recognition, as an example.

• Unsupervised learning: the Model is fed only with input values xi

and it has to extrapolate the underneath structure of the data set. The
output produced can be of two forms:

– clustering type, when the input data are grouped in clusters that
share some regularities. Typical applications can be in the Health
branch, like Tumor classification.

– non-clustering type, when the underneath structure has to be found
in the entire data set.

The Supervised learning, used in this thesis, is performed with two subsequent
phases:

1. training: in this step the learning algorithm is fed with the input
samples and the output is adjusted iteratively till convergence, if the
problem is well constructed. During this phase can be provided also a
validation data set to check the learning trend.

2. testing: in this step the Model trained is tested against a test data set
that the Model has never seen before. In this way the effectiveness of
the algorithm to generalize the function f is checked.
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The learning algorithm, in order to improve its output accuracy predictions,
uses a cost function or loss function that provides a value of how much the
output predicted is wrong w.r.t. the ground truth output labels. During
several steps of training, the algorithm minimizes this function Jtrain, actually
bringing the predicted output closer to the target output by tuning its inner
trainable variables. In this phase, it is important to check the quality of the
learning with the validation data set, a restricted data set used only for this
purpose, to avoid two particular generalization issues:

• underfitting the data, e.g. when the complexity of the problem is badly
generalized and both the error on the training and validation data set
are high. To avoid this situation can be enlarged the Network or trained
longer, or migrate it to a different architecture.

• overfitting the data, e.g. when the model is too complex w.r.t. the
problem to generalize and, even if the error on the training data set
is low, the error on the validation data set is high and they are not
following a similar trend. To avoid this situation can be used more data
during the training or some regularization techniques.

The optimization algorithm is in charge to minimize the loss function by
tuning the variables, like the weights and the bias, basing its actions on the
gradients computed by the backpropagation algorithm, a special function
that derives the loss function against each trainable variable, from the output
to the input. The change applied to each variable are fixed by the learning
rate, an important hyper-parameter that actually controls how much the
algorithm can modify the weights from one iteration to an other.

There are several types of built-in loss functions and also custom ones
can be used, but in the thesis work will be used the Mean Squared Error or
MSE, defined as follow:

MSE =
qN

i=1(yi − ŷi)2

N
(1.1)

where y represents the target output, the ŷi is the predicted output and N
is the number of samples provided.

Especially during the test phase, some metrics can be used to control the
model accuracy, depending of what the output represents and what task is
addressed. As better explained in Section 1.2, the models used inside this
thesis work are able to localize a person inside a room. In particular, they
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take four values as input and they provide two output values representing
the X and Y coordinates of the person. The metric used to evaluate the final
Model accuracy is the Average Euclidean Distance error, defined as follow:

ADE =
qN

i=1

ñ
(xpred

i − xref
i )2 + (ypred

i − yref
i )2

N
(1.2)

where xpred
i and ypred

i are the predicted trajectories points, while xref
i and

yref
i are the target ground-truth trajectories points, all in X-Y coordinates.

This metrics actually represents how much the output are far from the target
in m along a trajectory. The usage of this particular metric together with
the MSE is useful to recognize the Models that are generalizing well the task
proposed.

1.1.2 Neural network architectures
Neural Networks used in the following are a particular family of machine
learning algorithms and can address several tasks in many different branches.
Their structure is similar to the brain model and with it they share also
some terminologies. In fact, as inside a brain, the basic element of every
neural network is the neuron, the computational unit that takes the input
(dentrites) and produces the output (axons). Those output are transmitted
to other neurons till a network is formed. In Figure 1.1 is shown the typical
neuron inside a neural network with three input and one output.

The functional role of each term, from left to right, is the following:

• The inputs xi represents the numerical values coming from the external
world, if this neuron is in the first layer, or from other neurons of the
Network.

• The weights wi represents the "amount of attention" to reserve to the
associated input xi

• The Node is the computational part and performs two different operations
in the following order:

1. the "multiplication and accumulation" between each input and their
weights and the biasing of the result with the b term, unique for
every node of the Network.
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Figure 1.1: Typical neuron shape inside a neural network algorithm from
[3]

2. the non-linear Activation function f(z) applied to the previous result,
like sigmoid or ReLU

• the output a propagation

The importance to use non-linear function at the end of each node is justified
by the typical problems to be generalized, that are non-linear by definition,
as reported in [3].
When several of those basic blocks are stacked toghether to form a network,
it is common to call the resulting network Multilayer perceptron. The main
characteristic of these architectures is the grouping of some neurons inside a
so-called hidden layer. As shown in the Figure 1.2, the number of layers and
neurons inside each one, are design parameters and can change the Network
performances.

1.1.3 Convolutional neural network architectures
An other family of Machine Learning algorithm are the Convolutional Neural
Networks, used in the thesis work and analysed in this section.

Their usage is more related to tasks that need to produce the output
basing on sequence of input or input that are related with each other with
some spacial or temporal relationships. Their architecture is then perfect
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Figure 1.2: Multilayer perceptron example layout and connections between
nodes

for image-driven pattern recognition tasks. As explained in [4] and [5], the
convolutional mathematical operation used in some layers gives the name to
this networks. Their backbone is made by several hidden layers stacked one
on the other that can be:

• Convolutional layer : this is the layer that performs the scalar product
between the weights and the region connected to the input volume, hence
no more one input value per weight but several input values that can be
seen as a volume. The typical usage is with 2-D input shapes, but can
be also used with 1-D, in this case it is called temporal convolutional
layer.

• Pooling layer : inside this layer the inputs are downsampled to reduce the
number of parameters that otherwise would grow exponentially. There
are several types of pooling layers, the most common is the MaxPool
that actually takes the maximum value in a certain input region and
creates a new output matrix with those values.

• Fully-connected layer : this is the same layer explained in 1.1.2, with
typical several neurons inside, that produce class scores to be used for
classification.

As an example, the Figure 1.3 shows the common shape of a CNN architecture,
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with several layers stacked together. The width and height of each square
represented are the actual dimensions of the matrices produced by that layer.

Figure 1.3: Commmon structure of a Convolutional Neural Network for
the MNIST recognition provided by [5]

The main advantage coming from the usage of this kind of Networks is
the good generalization of complex task but with higher computational cost
due to the quick-growing number of activations to compute during filtering
with CNN layers.

1.1.4 Long-Short Term Memory architecture

This kind of neural network belongs to the borader family of the Recurrent
Neural Networks. Their main characteristic is the ability to find correlations
inside a stream of data and for this reason are widely used in applications
like speech recognition or time series forecasting.

The unfolded version of this particular network in Figure 1.4 shows the
reuse of the same weight for subsequent data input. In fact, each node takes
as input the new incoming data together with the activation of the previous
data, always with the same function h, and so with the same weights and
bias.
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Figure 1.4: Recurrent Neural Network structure in the unfold version from
[6]

A typical application of RNNs is the Long Short-Term Memory, as reported
by [6]. This particular Networks are also called Gated due to their weighted
paths that link the cell to other input backward in time, as shown in Figure
1.5. The main gates used are:

• Input Gate, allowing the accumulation of the input into the node state.

• Forget Gate, controlling the weight of each input in the inner self-loop.

• Output Gate, forcing the cell output to extinguish if needed

These cells can be stacked together to controls wider input windows.

1.2 Previous work

This thesis work fits in a wide project that combines different knowledge from
different branches, whose aim is to develop an indoor human localization
system for assisted living people. The entire system, represented in Figure
1.6 and explained in [7], is able to measure the capacitance values seen from
each of the four Plates with an oscillator, then to send these values to the
base station trough wireless connection and to post-process the received data.
In the end, thanks to a Machine Learning algorithm, the position of the
person inside the room is inferred.
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Figure 1.5: Typical usage of one LSTM cell with the gated weights from
[6]

Figure 1.6: Main macro blocks for the system extrapolated from [7]
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Several researches have been conducted in each of these macro blocks in
order to find the best implementation or the feasibility of some approaches.

The movement of a person is tracked by the system by an indirect measure
of frequency with a timer-based oscillator, that translates the capacitance
value seen by the plate. Moreover, different kind of Machine Learning algo-
rithms have been tested, in order to prove that this approach can be suitable
to bring good results in the inference of the person position, due to the high
environment noise brought in by the Capacitive sensors [7].

In this direction it has been conducted a deep Design Space Exploration
by [8] to find the best Neural Network architecture and layout to pursuit
the inference. The Models and their parameters are summarized in the
Table 1.1. All of these NNs have been trained and validated with a data
set collected using the four capacitive sensors system for the input labels,
and an ultrasound system with four sensors to produce the most accurate
ground-truth X-Y tuples, as reported by [9] and shown in Figure 1.7.

Each Model it has been trained using Tensorflow v2.2 API and its tools,
like Keras, that actually make simpler the Neural Network development [10].

The provided Models are completed with the architecture layout and pa-
rameters in .py format, the weights trained in .h5 format and the performance
achieved with several .csv documents.

Figure 1.7: The four capacitive sensors positions inside the room during
data collection reported by [7]
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Architecture Main parameters Best MSE(1)

(m2)
Best ADE(2)

(m)
Complexity

(Num. of param.)

MLP
1 hidden layer,
32 neurons,

Adamax optimizer
0.125 0.433 226

CNN

2-layer 1D-CNN,
L2 regularization,
10 sec window size,
32-32 Neurons MLP,

3x1 Kernel size,
64 filters,

Adamax optimizer

0.047 0.273 34818

LSTM
1-layer 2 neurons LSTM,

10 sec window size,
Adamax optimizer

0.056 0.301 62

(1): Mean Squared Error, explained in 1.1
(2):Average Euclidean Distance Error, explained in 1.2

Table 1.1: Summary table of all the "best models" architecture trained and
reported by [8]

1.3 Thesis contribution
The aim of this thesis work is to test whether the Discretization Techniques
can bring good results, even if the Model has lost representational precision.

Among all the Optimization techniques, only the Quantization-aware
Training and Post-training Quantization will be used and tested against
some Models. The reason why to explore this optimization area is to un-
derstand how the performance degrades while using Discretization, in order
to better know how to deploy in the future the Best Models for "Indoor
human localization". In fact, all the Models that have been used during the
development of this Thesis come from a pool of "best-performing" Neural
Networks designed and reported by [8] and summarized in Table 1.1. The
aim of all the Networks is to infer the exact position of a person inside a
room of 3m× 3m using capacitive sensors, as described in [7]. In the end
the entire system will be deployed on a device which will define the available
hardware. Since this device will be an embedded system, it is important
to maintain the computational task under control, in particular avoiding
those arithmetic operations that could be too expensive to a limited device,
like big matrix multiplications and accumulations. In order to optimize this
particular aspect, the quantization of a neural network is the only method
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that can address this particular requirement.
The radical differences in the neural networks archietctures used suggest

to apply the optimization techniques chosen one model at a time, in order
to collect the results and to compare them against the un-optimized ones.
Especially for the Quantization-aware Training method, since the model has
to be re-trained, all the main training hyper-parameters have been left as
reported by the previous work [8]. In this way, it is possible to compare more
closely the results and to effectively see the perfomance trend. In particular,
the metric used to judge the optimized model accuracy is the Mean Squared
Error (MSE) and the Average Euclidean Distance Error on the same dataset
used with the un-optimized ones.

In the folowing parts, firstly will be presented more in detail the Discretiza-
tion Techniques selected, how they are used and how they work, and then
will be shown the optimized models results, in terms of accuracy achieved
for hyper-parameters used.
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Chapter 2

Optimization Techniques

The inference efficiency is a critical concern when it is necessary to deploy a
Machine Learning model in edge-devices, like mobile and Internet of Things
applications. In these cases it becomes crucial other important parameters
like latency, memory utilization and also the power consumption due to the
limited device’s resources.

Following there will be a small summary about some optimization tech-
niques that can address the previous concerns and which and why some
of them have been chosen in the development of the thesis work. All of
these techniques are available in the Tensorflow v2 API. Then, the methods
selected will be further analysed and discussed, in order to explain their
practical usage.

2.1 Model optimization techniques to con-
trol the inference efficiency

The main techniques adopted to optimize a model can operate in different
ways and directions, basing on which part of the model has to be improved
or modified to fit some constraints. The covered areas are:

• Reduce parameter count

• Update the original model topology to a more efficient one with reduced
parameters or faster execution

• Reduce representational precision

13



Optimization Techniques

The first two techniques are more related to the topology of the model and
their aim is to optimize how the graph is built and how much parameters, e.g.
weights, are necessary to maintain or even improve the model accuracy. The
last one is a more intrusive technique that allows the developer to modify
the structure of the model, migrating to its quantized version.

2.1.1 Sparsity and Pruning technique
The main goal of this technique is to trim the insignificant weights inside the
model, inducing sparsity in a deep neural network. The sparsity regulariza-
tion inside a neural network is nowadays very common, since it can address
alone a sensible reduction in the computational cost with no to minimal loss
in the accuracy.

As reported by [11], there can be different ways to effectively prune the
redundant variables inside a deep neural network. As the Figure 2.1 shows,
this technique can act on the single nodes, e.g. removing from the network
all the connection of that node, or on some connections between different
nodes, e.g. masking some weigths inside the neuron.

The Pruning Technique provided by Tensorflow allows to act on the
weights, and so inducing connection sparsity. At the end, when the desired
level of sparsity has been reached, the model will show significant improve-
ments in terms of Model compression and latency during inference mode,
since all the zeros parameters can be skipped in the calculations. The perfor-
mance of two well-known networks, as reported by [12], are summarized in
the Table 2.1. As it can be seen, this technique is very powerful with larger
networks due to the high number of unnecessary weights that can be easily
stuck-at zero.

The compression factor can reach 6x against the normal model, saving a
lot of memory space.

InceptionV3 MobileNetV1 224
Sparsity

0%
50%
75%
87.5%

Accuracy Non-Zero Parameters

78.1% 27.1M
78% 13.6M
76.1% 6.8M
74.6% 3.3M

Accuracy Non-Zero Parameters

70.6% 4.21M
69.5% 2.13M
67.7% 1.09M

Table 2.1: Performance degradation of InceptionV3 and MobileNetV1 224
tested against Imagenet as reported by [12]
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The better accuracy achieved between large-sparse models and small-dense
ones with the same memory footprint demonstrates that this technique can
bring better results in terms of parameters reduction with minimal loss in
accuracy.

The usage of this optimization is very easy since is embedded in Tensor-
flow Model Optimization Module and can be tuned with very few hyper-
parameters. Accordingly to the scale of sparsity to achieve, the pruning
will be applied during training epochs on the Model’s layers and each weight
too close to zero will be masked and removed after the forward step. This
will be applied gradually during the training, in a even less aggressive way
during the epochs, interleaving some training epochs without pruning further
to allow the model to recover from the killed weights. The Figure 2.2 shows
the trend of the sparsity growth during a training model session and how the
learning rate decays gradually till the very fine-tuning in the last epochs.

Figure 2.1: Feed-forward step inside Neural Networks with different types
of sparsity level reported in [11]

2.1.2 Weight sharing technique
The weight sharing technique inside Tensorflow Model Optimization module
allows the developer to group the weights in a neural network reducing
the number of unique weights. In this way the optimized model will be
compressed further, resulting in a thinner model that can be deployed in
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Figure 2.2: Sparsity and learning rate trends during taining steps for
sparse-InceptionV3 model reported by [12]

such devices with limited resources. As reported in [13] this technique can
be even more powerful if combined with weights quantization and can lead
to significant improvement in terms of memory occupied. These promising
results are collected in the Table 2.2. The models used are well-known
neural networks and have been trained with different number of clusters and
different number of layers selected.

Original Clustered

Top-1
accuracy

Size of
compressed .tflite Configuration # of

clusters
Top-1

accuracy
Size of

compressed .tflite

MobileNetV1

71.02 14.96 Selective (last 3 Conv2D layers) 256,256,32 70.62 (-5.6%) 8.42 (-43.7%)
Full (all Conv2D layers) 64 66.07 (-7.0%) 2.98 (-80.1%)

MobileNetV2

72.29 12.90 Selective (last 3 Conv2D layers) 256,256,32 72.31 (+0%) 7.00 (-45.7%)
Full (all Conv2D layers) 32 69.33 (-4.1%) 2.60 (-79.8%)

Table 2.2: Performance degradation of MobileNetV1 and MobileNetV2
tested against ImageNet as reported by [13]

Weight sharing limits the number of effective weights needed to store by
forcing multiple connections to share the same weight, and then fine-tune
those shared weights during the back-propagation. The compression rate r
grows as the cluster k factor decreases, with n connections inside the Network
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represented by b number of bits, as shown in (2.1) below.

r = nb

n log2(k) + kb
(2.1)

Even if [13] reports the usage of this technique together with the weights
quantization, the only requirement is that the model has to be already
trained and so its weights are already representing a proper value. In fact,
the technique uses the centroid value of the weights cluster to fix the shared
weight value, and then applies this value during the feed-forward and fine-
tunes them during back-propagation, as shown in Figure 2.3. The weights
inside the same layer are grouped together using the within-cluster sum of
squares minimization (2.2), hence the weights w closer to the cluster value ci

will belong to the same cluster.

min
kØ

i=1

Ø
w∈ci

|w − ci|2 (2.2)

It is also important how the centroids values are initialized in order to
avoid clusters initialization in "unfair" points that can bring less accuracy.
Figure 2.4 shows how the proposed initialization methods works with a
representative weights distribution. Since larger weight absolute values play
a more important role than smaller ones, the two over three methods analysed,
forgy and density-based initialization, produces very few centroids with large
absolute value which results in poor representation of these few large weights
and so in the accuracy. Instead, linear initialization does not suffer from this
problem as reported in the experimental results in [13], since it span linearly
in the [min, max] weights range.

2.1.3 Quantization techniques
As reported in [14], the Tensorflow Module from which are taken these
techniques, there are two quite different approaches to effectively make a
Neural Network quantized among a fixed number of bits: Post-training
quantization and Quantization-aware training.

Post-training quantization technique

The easiest and quickest one to use is the post-training quantization, since
it only needs the already trained model and its weights. It is able to
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Figure 2.3: Weight clustering and fine-tune during back-propagation re-
ported in [13]

Figure 2.4: Three different methods to initialize the centroids with a
representative weights distribution

reduce CPU usage and hardware accelerator latency, processing time, energy
consumption and model size, with little degradation in model accuracy using
different quantization modes: Dynamic Range quantization, Full integer
quantization and Float16 quantization. As reported by [15], these different
types of quantization ensure the performance collected in Table 2.3. The
"data requirements" entry represents the need to supply to the method a
representative sample of the input data. In this way the quantization will be
more accurate and will bring better results in terms of accuracy.
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Technique Data requirements Size reduction Accuracy
Float16 quantization No data Up to 50% Insignificant acccuracy loss

Dynamic range No data Up to 75% Accuracy loss
Full integer Unlabelled representative sample Up to 75% Smaller accuracy loss

Table 2.3: Performances summary for different Post-training quantization
types

The way to choose the right modes is related to the characteristics of the
model and the performance to achieve. If the Deployed Device supports
Float32 operations, i.e. it can rely on a GPU, the Float16 quantization will
quantize all the parameters to Float16 and the other operations will remain
to Float32. In this way the computational cost is reduced with negligible
accuracy losses.

On the other hand, in order to migrate to integer operations only, if there
is a representative data set of the inputs, the model can be effectively limited
to Int8 operations, with both weights and activations quantized to integers
thanks to Full integer mode. Finally, if it is not possible to ensure that all
the operations can be limited to integer only, the Dynamic Range mode will
track at inference, with floating point variables, the trend of the weights and
will implement those unsupported operations using Float32. The output will
be still stored using Float32 values.

The technique has been applied to well-known models by [15] and the
results have been collected in Table 2.4.

Model
Top-1

Original
Accuracy

Top-1
PTQ

Accuracy

Latency
Original

(ms)

Latency
PTQ
(ms)

MobleNetV1-1-224 0.709 0.657 124 112
MobileNetV2-1-224 0.719 0.637 89 98

InceptionV3 0.78 0.772 1130 845
ResNetV2-101 0.770 0.768 3973 2868

Table 2.4: The benefits of Post Training quantization for some selected
CNN Networks as reported by [15]

The main advantages of this technique are the simple use, with very few
code lines it is possible to quantize a Model, and the conversion time, the
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tool only needs to visit all the layers in the model one time and to apply the
quantization. The main disadvantages are the limited quantization options,
only Int8 resolution, and the effectiveness of the quantization, especially for
smaller networks the post-training discretization can bring a huge accuracy
loss.

Quantization-aware Training

The quantization-aware training technique is the best way to achieve the
highest performance with minimal accuracy loss. The method cooperates
during the Training with the Tensorflow API, in order to quantize the Model
during this phase instead after the training has been concluded. Doing so,
the method takes trace of how the weights change over the epoch training
and will better find the best range values to quantize them in.

As shown in the Figures 2.5a and 2.5b, a common convolutional layer is
quantized inserting some fake quantization Tensorflow nodes that perform
the quantization of the weights before the conv layer and after the activation
function action. The bias are maintained on 32bit. This graph structure is
maintained during the training phase only, since during inference the graph
is converted in the fully-integer shape as shown in Figure 2.5c.

Unlike the post-training technique, it is possible to choose on how many
bits the weights have to be quantized, in the range [2− 8] bits. As reported
by [16], the results coming from well-known models, listed in Table 2.5 are
really promising with very minimal accuracy loss.

Model Top-1 Accuracy
non-quantized

Top-1 Accuracy
8-bit quantized

MobileNetV1 224 71.03% 71.06%
ResNetV1 50 76.3% 76.1%

MobileNetV2 224 70.77% 70.01%

Table 2.5: The benefits of quantization-aware training for some selected
CNN networks as reported by [16]

The main advantages of this technique are the accurate model quantization,
since it is performed during the training, and the performance achieved,
with minimal loss in the accuracy especially for smaller networks. The
disadvantages are the needed to perform a complete training session, even
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(a) Common layer without
quantization

(b) Quantized common layer
layout during training (QAT)

(c) Quantized common
layer layout during inference
(QAT)

Figure 2.5: Quantization steps for a common Convolutional layer during
Quant-aware training reported by [17]

for models already trained, and the substantial amount of code lines to add
and to integrate in the training scripts.

2.2 Discretization techniques

With the promising results reported by [15] and [16] and reported in the
Tables 2.4 and 2.5, the post-training quantization and the quantization-aware
training techniques will be now analysed. In particular will be reported the
basic concepts under these methods and how their hyper-parameters affect
the performances.
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2.2.1 Post-training quantization analysis
The main function of this method is to quantize all the variabes inside the
model under-optimization to integer 8-bit values using the following formula:

real_value = (int8_value− zero_point) ∗ scale (2.3)
where the real_value represents the value in floating point to be quantized,
int8_value the value after the quantization, zero_point the position of
the zero in the range [−128, 127] and the scale factor that represents the
effective passage from real to integer and it depends on the input data. The
effective values of the scale and zero_point represent a freedom degree
during the conversion of the model from the fully-float32 to the int8. Thanks
to the TFLiteConverter module provided by Tensorflow Lite, during the
conversion all the weights are forced to fall inside the int8 range, with the
zero point strictly equal to 0. This symmetric structure ensures to reduce
the computational cost as demonstrate below. Taken

A as a m× n matrix of Activations values,
B as a n× p matix of Weigths values,

during inference the matrix product is computed as follow:

aj · bk = qn
i=0 a

(i)
j b

(i)
k = qn

i=0(q(i)
a − za)(q(i)

b − zb) =
nØ

i=0
q(i)

a q
(i)
b −

nØ
i=0

q(i)
a zb −

nØ
i=0

q
(i)
b za +

nØ
i=0

zazb (2.4)

The qa,za and qb,zb are the quantized values and the zero-points for A
and B respectively.
The final four terms of the product evolution represent the computational
cost of every neural networks but some optimizations can improve the total
cost. In fact, the

nØ
i=0

q
(i)
b za

and
nØ

i=0
zazb

represent only products between constants that are the same every time
the model has to produce the prediction, and thus can be pre-calculated.
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Instead, the
nØ

i=0
q(i)

a zb

term can be avoided if the zero-point of the weights is equal to 0. Hence,
thanks to the symmetry, it is possible to reduce the computational cost to
only the un-avoidable term

nØ
i=0

q(i)
a q

(i)
b .

.
For the scale factor, the tool applies two different optimizations depending

on the actual operation the tensor represents, the per-axis and per-tensor
quantization. The first one uses the same scale factor and/or the zero-point
per slice in the tensor, ensuring more granularity in the quantization, while
the second one uses the same scale factor and/or the zero-point for all the
tensor values.

In order to produce a quantized model, it is necessary to got the trained
neural network and to convert it with the TFLiteCoverter module to a
Tensorflow Lite Model. Then, some parameters have to be tuned depending
on the results to achieve.
Firstly, the tf.lite.Optimize settings, that actually tells the module in what
direction has to optimize the model. Even if there are three choices, in the
last version they have been grouped all in one, the tf.lite.Optimize.DEFAULT,
that directs the optimization strategy toward size and latency reduction.
The other parameter to set is the tf.lite.OpsSet, the Operations available to
generate the quantized model. Actually, there are four different operations
list:

• the TFLITE_BUILTINS default that allows to use only the Tensorflow
Lite built-in operations that make the model quantized using Int8 ops
when allowed and Float32 when not, without any error message;

• the TFLITE_BUILTINS_INT8 that allows to use Integer-only opera-
tions on 8 bits throwing an error if some operations are not supported

• the experimental EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS
_INT16_WEIGHTS_INT8 that allows to use the built-in "Integer-only"
operations but with the weights quantized to Int8, the activations to
Int16 and the bias to Int64. This last particular optimization setting
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is designed to those models that have particularly noisy input or hard
tasks, like image de-noising, HDR reconstruction and super-resolution,
but it is only compatible with CPU execution;

• the SELECT_TF_OPS that uses the current operations defined in
Tensorflow, so without any quantization.

The other settings concern the inference_input_type and the infer-
ence_output_type that informs the TFLiteCoverter module the types to
use for the input and output Tensors between tf.int8, tf.uint8 and default
tf.float32. The first two are reserved for "Full-integer" quantization only,
while the default setting is intended to maintain the interface between the
float32 external environment and the quantized Model.
In Table 2.6 are summarized the performance achievement with these differ-
ent settings.

2.2.2 Quant-aware training analysis
The main aim of this method is to make a Keras description model quantiza-
tion aware and then to perform a training session during which the Model
will be quantized effectively. Unlikey for the post-training quantization, this
technique allows the developer to even choose the actual representational
precision to quantize the model in.

Actually Tensorflow Model Optimization module offers three different
quantizers. The mathematical base on which it relies every single quantizer
is very similar as reported in (2.3), with the only difference that, except for
the default settings, the integer value is not fixed to 8 bits, but can be in the
range [2,8] bits and the scale factor is chosen with different strategies [18].

• The LastValueQuantizer takes the max and the min values for the input
tensor during the training and uses this interval to quantize the output
tensor.

• The MovingAverageQuantizer takes the max and min values for the
input tensor and calculate the effective range using the average among
the last values

• The AllValuesQuantizer takes the max and the min values during ini-
tilization and continues to use those for all the input tensors, all the
time is called to quantize.
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tf.lite.converter Attributes tf.lite Settings Performance

optimizations

Optimize.DEFAULT Optimization strategy for memory
and latency reduction

Optimize.OPTIMIZE_FOR_SIZE Deprecated, same ad DEFAULT

Optimize.OPTIMIZE_FOR_LATENCY Deprecated, same ad DEFAULT

target_spec

OpsSet.SELECT_TF_OPS Allow the normal Tensorflow operations
without apply quantization

OpsSet.TFLITE_BUILTINS Apply quantization to Int8 when supported,
otherwise on Float32 without any message

OpsSet.TFLITE_BUILTINS_INT8 Applies quantization with ONLY Int8
operations, throwing an error otherwise

OpsSet.EXPERIMENTAL_TFLITE_BUILT
INS_ACTIVATIONS_INT16_WEIGHTS_INT8

Applies quantization with Int8 weights,
Int16 activations and Int64 bias

inference_input_type

tf.float32
Default setting, maintain the input dtype
accepted to float32 even if the model is

quantized differently

tf.int8
Accept input only with Int8 dtype, ensu-

ring compatibility with integer only devices
(preferred option for symmetric quant.)

tf.uint8 Accept input only with uInt8

inference_output_type

tf.float32
Default setting, produces the output
dtype to float32 even if the model is

quantized differently

tf.int8 Output produced to Int8

tf.uint8 Output produced to uInt8

Table 2.6: Main settings for post-training quantization using Tensorflow
Lite module and their impact on the model

Actually, there is also a "blank" quantizer, the Quantizer that can be used to
take control over the quantization strategy and to implement a custom one.

The other parameters that can be set are common for all the quantizers
and they are summarized in Table 2.7 below.
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Arguments Usage

num_bits Number of bits for quantization in the range [2,8].
Default 8bits

per_axis
Boolean to make the quantization per-axis (True) or per-tensor

(False) aware (1).
Default False

symmetric

If True makes the quantization range symmetric between the upper
and the lower limit, otherwise calculates the Max and the Min with the

selected strategy.
Default False

narrow_range
In case of 8bit resolution only, forces the range to be [−127,127]
to induce abetter symmetry with the 0 exact in the center (2).

Default False
(1): as reported by [15] and the Section 2.2.1, the per-axis quantization can bring better
results inducing more granularity since the range resolution is calculated for every Tensor
slices in the last dimension instead of using only one range for all the Tensor slices.
(2): forcing the symmetric quantization, especially for the weights, can bring better performance
in the computational cost as reported by [17] and explained in Section 2.2.1 equation 2.4

Table 2.7: Hyper-parameters for the Tensorflow Quantizers and their effects
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Chapter 3

Model optimizations

In this chapter will be analysed the experimental results obtained from the
models quantized with the two optimization techniques described in Chapter
2 Section 2.2. The models used in this Section come from the best performing
models in [8], one for each different architecture:

• Multilayer Perceptron, 1 hidden layer, 32 and 41 neurons;

• Convolutional Neural Network, 2 hidden layers with 1D-CNN with kernel
size 3 and 64 filters, 2 hidden layer MLP with 32 neurons;

• Long Short-Term Memory, 1 hidden layer with 2 LSTM cells

For each model will be applied both techniques, except for the LSTM
becouse the last version of Tensorflow used during the development of this
thesis (tf v2.2) does not yet offer support for this kind of recurrent neural
network, both for quant-aware training and for post-training quantization.
The results collected will be compared with the un-optimized reference
models. Before the optimizations, it has been conducted a data analysis
in order to find the best hyper-parameters settings for both the techniques,
while all the other parameters have been left as reported by [8]. In this
way, all the results collected can be compared with the ones obtained in the
previous work.

A Design Space Exploration (DSE) with the MLP has been conducted at
the start of this work, in order to be familiar with the Tensorflow API and
its tools.

The data set used in all the experiments belongs to the data-acquisition
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campaign conducted during 2016 and reported in [9] and it is divided as
follow:

• Training set: composed of 976 training examples used only during the
DSE with MLP networks and QAT

• Validation set: composed of 325 validation samples, used to choose the
best model during DSE and QAT

• Test set: composed of 325 test samples, used in the test phase to evaluate
the performance of the model after the optimizations and for the DSE
with MLP

The entire data set is composed by 4 values for the input and 2 values for
the output. The input labels represent the values coming from the capacitive
sensors, while the output labels represent the ground truth X and Y positions
of the person inside the room coming from the ultrasound sensors.

The training, during DSE and QAT, is performed for 1000 epochs without
any regularization, like "early-stopping", to bring the model to the full
convergence, action suggested especially during QAT to better quantize the
parameters and to leave the model the time to recover from the loss of
representational precision. During the test phase some curves have been
produced to see the performances trend of the Mean Squared Error parameter
and the Average Euclidean Distance Error, the comparative terms between
the un-optimized models and the quantized ones. These two metrics have
been explained in (1.1) and (1.2).

3.1 Multi-layer perceptron neural network
design space exploration

In this section are shown some results related to a design space exploration
conducted with the MLP neural network architecture. In particular, it has
been explored one hidden layer layout and tested with different number
of neurons inside, in order to check if the "best-model" reported in [8] was
thoroughly optimized. The experiments have been conducted in the following
order:

1. Parameterization of the MLP in terms of neurons per layer
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2. Autonomous training session with the number of neurons spanning into
[22,52]

3. Results analysis

3.1.1 Neural network parameterization
The model layout with only 1 hidden layer is shown in Figure 3.1. In order to
make easier the exploration, some parameterization on the neural network has
been conducted, in particular the number of neurons inside the layer. Every
model has 4 input nodes and 2 output nodes, with a Keras Dense layer in the
middle. The kernel initializer chosen is the keras.initializers.glorot_uniform().
The other training parameters, like the number of epochs fixed to 1000 and
the Adamax optimizer with learning rate lr = 1e−4, are the same reported
by [8] during the experiments.

Figure 3.1: MLP layout with one hidden layer and multiple input/output
nodes

3.1.2 Automated design space exploration
With the NN parameterized and the help of some scripts, it has been possible
to describe and train different NNs at the same time. For every model layout
with different number of neurons inside, the training has been conducted 10
times in order to remove sporadic results due to the random initialization of
the variables. The results collected are the loss curves for the training and
validation data set, to check the quality of the training, and the values of the
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best MSE (1.1) and best ADE (1.2) on the test dataset. Also the trajectories
inferred have been printed out to better check the quality of the trained
models.

3.1.3 Result analysis
The results collected have been summarized in Table 3.1 below. The in-
teresting point from all those slightly different models performances is the
relationship between the number of neurons and the improvements in the
ADE, the main quality parameter. This relationship is underlined in Figure
3.2.

Figure 3.2: DSE results for every MLP models with different number of
neurons in terms of Average Distance Error

As it can be seen, there is actually no correlation between the number of
neurons and the ADE achieved. The best model is the one with 45 neurons.
Except for the first iterations, from 22 to 29 neurons in which it is possible
to recognise a more regular path, increasing the number of neurons does not
decrease the ADE, as could be expected. In fact, even if the best model
is with 45 neurons, this is only a local optimum with no evidence that, if
trained for more time, also other points could achieve lower ADE values.

Another important evidence of lack of correlation is the linear regression
line, represented in Figure 3.2 by the dotted line. This line has a slope so
near to 0 that actually represents the mean value, since it is almost flat.

The loss function, reported in Figure 3.3a, shows a good convergence of
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Neurons Best epoch Test MSE Test ADE N. of parameters
(m2) (m)

22 230 0,123 0,433 156
23 462 0.117 0,425 163
24 241 0,117 0,422 170
25 415 0.124 0.427 177
26 203 0,117 0,421 184
27 253 0,115 0,410 191
28 307 0,113 0,412 198
29 332 0,107 0,400 205
30 395 0,123 0,429 212
31 268 0,111 0,407 219
32 193 0,125 0,433 226
33 278 0,108 0,408 233
34 352 0.114 0.413 240
35 198 0.120 0.428 247
36 265 0.114 0.415 254
37 240 0.110 0.409 261
38 225 0,128 0,436 268
39 343 0,118 0,424 275
40 243 0,124 0,433 282
41 317 0,110 0,410 289
42 216 0,115 0,419 296
43 252 0,107 0,400 303
44 307 0.124 0.434 310
45 229 0.104 0.397 317
46 282 0,118 0,418 324
47 340 0,119 0,422 331
48 239 0,113 0,414 338
49 168 0,124 0,433 345
50 165 0,108 0,403 352
51 169 0,130 0,441 359
52 177 0,119 0,426 366

Table 3.1: Design space exploration results for multilayer perceptron net-
work with 1 hidden layer and neuron numbers from 22 to 52
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the training curve, e.g., the error the optimizer minimizes among the epochs.
The validation curve, drawn looking at the error distance among the epochs
for the validation data set, follows the training curve only for the first 100
epochs and then starts to diverge form the training curve. This divergence
between validation and training curves shows the presence of the overfitting
problem, i.e. when the model starts to not generalize enough the task and to
stop learning from the training example. Even if the training is performed for
1000 epochs, at he end of each epoch only if the model has a lower validation
loss value is saved and evaluated, otherwise it is discarded. This method
allows to effectively produce the best model with the lowest validation loss,
and so with the minimum overfitting problem. The model with 45 neurons
learns better the task compared with the 32-neurons model, but anyway it
does not represent the best model to use in order to generalize the task, since
it stops quite soon to learn from the training examples.

The aim of these experiments was only to explore the space around 32
neurons optimum reported by [8] and collected in Table 3.2. In fact, the
reported model was not the best model layout and, even if with a not standard
number of neurons (45), the found model can infer more precisely the indoor
human location.

Model Neurons Best Epoch Test MSE Test ADE N. of parameters
(m2) (m)

MLP from [8] 32 193 0.125 0.433 226
MLP from DSE 45 229 0.104 0.397 317

Table 3.2: Comparison between the performance from [8] and the best
model found during design space exploration

3.2 Quantizer and setting parameter opti-
mization for the quant-aware training

In order to understand the best usage of the quantizers offered by Tensorflow
model optimization module and how their hyper-parameters affects the re-
sults, it has been conducted a design space exploration among all the different
settings. The model used to perform this exploration is the convolutional
neural network reported by [8] with these characteristics:

• 2-layer 1D-Convolutional,
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(a) Training and validation loss functions for 45 neu-
rons network

(b) Loss and validation function for 32 neurons net-
work

Figure 3.3: Comparison between the training and validation loss function
for the multilayer perceptron network with 45 and 32 neurons

• kernel size 3 × 1,

• 64 filters,

• window size of 10 s (30 input data at a time processed)
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• 2-layers MLP with 32 neurons,

• L2 regularization

The quantizers analysed are reported in Chapter 2 Section 2.2.2. In order to
optimize the exploration and not to waste resources, only some number of
bits have been chosen as a reference. In particular, weights and activations
resolutions that are the more promising for hardware implementation, e.g. 4
bits in the weight and 4, 8, 16 bits in the activation. With these quantization
schemes it is possible to exploit better the hardware resources, allowing
parallel execution or reducing the bit parallelism in the arithmetic unit.

The parameters explored are:

• symmetric, to force the quantization range to be symmetrically dis-
tributed around the 0 position or asymetrically if not;

• narrow_range, to force the quantization range with 8 bits only to span
uniformly between [−127,127] with the 0 positioned exactly in the center;

• quantizer, actually the LastValue quantizer that calculates the scale
factor using the last values range or the MovingAverage quantizer that
calculates the scale factor based on the average among the previous
quantized tensors.

The quant-aware training has been performed 10 times for each parameters
combinations to search an optimal training. The results are collected in
Table 3.3 below.

From these results, the best choice is to use the MovingAverage quantizer
for the weight and the LastValue quantizer for the activation. The quantizers
actually affect more the result than the other parameters. In the case of
the weight quantization, the quantizer selected is more suitable to track the
variation among the epochs in a slighter way since it uses an average value.
For the activation, instead, the best choice is to track only the last value
from the previous epoch.

The other parameters concern the internal shape of the quantization range.
Looking at the results, it seems that the symmetric quantization on the
weigth brings better results, additionally to the asymmetric quantization
on the activation. This difference is partially discussed in [17], where the
symmetric quantized weights together with the asymmetric qauntized acti-
vations have already brought better results. The last parameter refers to
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Weight quantizer Activation quantizer weigth-activation
(#bits)

Test ADE
(m)symmetric narrow_range symmetric narrow_range

MovingAverage MovingAverage 4-4 0.360
4-8 0.338

True True False False 4-16 0.315
MovingAverage MovingAverage 4-4 0.344

4-8 0.353
False True False True 4-16 0.330

MovingAverage MovingAverage 4-4 0.329
4-8 0.353

False False False False 4-16 0.285

LastValue LastValue 4-4 0.354
4-8 0.344

False True False True 4-16 0.340
MovingAverage LastValue 4-4 0.321

4-8 0.291
True True False False 4-16 0.304

MovingAverage LastValue 4-4 0.323
4-8 0.307

False False False False 4-16 0.302
MovingAverage LastValue 4-4 0.350

4-8 0.324
True True True True 4-16 0.329

Table 3.3: Different quantization settings results for convolutional neural
network with 4-4, 4-8, 4-16 bits in weight-activation

the 8bit quantization only, and in fact performs better when enabled in the
int4-int8 weight-activation resolution model.

The best way to perform the quantization using the quant-aware training
approach is summarized in the list below, and used in the rest of experiments:

• MovinAverage quantizer for weight, with symmetric and narrow_range
parameters enabled

• LastValue quantizer for activation, with symmetric parameter disabled
and narrow_range parameter enabled
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3.3 Multilayer perceptron quantization opti-
mization

In this section the optimization techniques described in Section 3.2 will be
applied to the Multilayer Perceptron neural network with 1 hidden layer and
32 neurons.

3.3.1 Post-training quantization
The results collected from the post-training quantization are summarized
in Table 3.4. As expected, the average distance error increases due to the
reduced representational precision, but around 1% worse than the float32
model.

ADE Error
Ground-truth vs float32

(m)

ADE Error
Ground-truth vs int8

(m)

ADE Error
Int8 vs float32

(m)

.h5 Model

(KB)

.tflite Model

(KB)
0.433 0.438 0.0254 23.688 2.096

Table 3.4: Post-training quantization results with int8 resolution for multi-
layer perceptron model

The quantization has been conducted with a representative data set span-
ning into the complete training data set and tf.lite.SetOps.TFLITE_BUILTINS
_INT8 selected. The good performance achieved by the quantized model
can be easily seen in Figures 3.4a and 3.4b, where the float32 model and the
int8 model predictions are compared side by side and they appear almost
identical. Since the model is used in a floating point environment, the model
has an input quantizer that converts to int8 the incoming float32 data and
an output de-quantizer to float32 to produce floating-type data.

3.3.2 Quant-aware training
In order to better explore the entire design space, an automatic design space
exploration has been developed with these parmeters:

• Moving average quantizer for the weight, with symmetric quantization
and narrow range enabled.
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(a) X trajectory inference comparison
int8 vs float32

(b) Y trajectory inference comparison
int8 vs float32

Figure 3.4: Trajectories comparison between the fully-integer 8 bits quan-
tized model and the float32 model

• Last value quantizer for the activation, with asymmetric quantization
and narrow range disabled

• Number of bits spanning from to 2 to 16 bits for weights and activations
for a total of 225 different trained models

The training settings are the following:

• Adamax optimzer with learning rate lr = 0.0001

• 1000 epochs per training session, repeated 10 times per model

Since this kind of network is not so promising, in order to save processing
time, the training is performed only 10 times to search the optimum training,
and 30 times for the most hardware-interesting couple of weight-activation
bits resolution like 4-4, 4-8 and 4-16.

The Figure 3.5a shows the performance trend for the quantized models
from 2 to 8 bits resolution in weights. The general behaviour is a quite
flat repsonse for all the models, within the [0.39,0.45] range for the ADE.
Only for the 2 and 3 bit weight quantization the trend is always over this
range, actually reaching unacceptable accuracy loss values. The flatness
of this curve also suggests that with this network and those quantization
parameters, there is no substantial difference in term of ADE value between
the analysed models, allowing to select networks with very low resolution
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with similar accuracy achievement.
The Figure 3.5b, on the other hand, shows the performance trend of

quantized models within the range [9,16] bits weight resolution. Here, the
flatness of the curves is granted from about 4 bits in the activation resolution.
After this limit, the ADE values for all the models is within the [0.40,0.45]
threshold, as for the previous models. The shapes appears more regular with
those models, thanks to a better representational precision in the weights.

(a) Performance comparison for weight in the range [2,8] bits

(b) Performance comparison for weight in the range [9,16] bits

Figure 3.5: Performance comparison for all the multilayer perceptron
models quantized during the design space exploration

In Figure 3.6, the performance surface for all the models is presented.
Since the compactness of the network (only one hidden layer with 32 neurons),
could be convenient to look also to the models with higher resolutions, since
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the bits saving is still good but with more accuracy during inference. It can
be seen that the blue region, the one with the best ADE values, is more
concentrated in the range [5,7] bits in the weight, with some local optimum
also with higher bits number, but more isolated and less interesting since the
ADE achievement in those points is comparable with the previous region
with less resolution.

Figure 3.6: Performance surface for all the quantized models

Thanks to Figure 3.7 it is possible to explore the best performance achieved
for every bits number in the activation. The labels on the line represent
the number of bits in the weight (upper value) and the ADE value achieved
(lower value). From these data we can deduce that:

• the weight resolution is more important than the activation resolution,
since it significantly affects a lot of models;

• too low resolution in the activation brings always bad results, but in the
[4− 16] bits range the performance is stable.

In Table 3.5 are summarized the results obtained with this network
architecture using the quant-aware training technique, compared to the
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Figure 3.7: Best performance comparison between all quantized multilayer
perceptron models

performance obtained by the float32 model from [8]. The ADE values
produced by this technique are really promising since it achieves better
results than the float32 model using less bits. The reason is in the lower
resolution itself, that makes the inferred trajectories sharper and more
oscillating and so nearer in average to the ground truth traces ( see Chapter
4 for details).

Test MSE (m2) Test ADE (m)
weight: int6; activation: int11 0.098 0.393 3rd

weight: int5; activation: int7 0.096 0.391 2nd

weight: int6; activation: int6 0.097 0.390 1st

⇑ −9.9%
float32 0.125 0.433

Table 3.5: Performance comparison between the best float32 model and
the best three multilayer perceptron quantized models

The training and validation curves from this three models are reported
in Figure 3.8 below. The validation loss curve is extremely noisy for all the
trained models and shows a good learning in the first epochs and then a
quick stabilization and even a slight divergence from the optimal value for
Fig. 3.8a. If compared with Fig. 3.3b, the float32 model already trained,
the curves reach better values with a more stable trend but with a higher
variance.
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(a) Loss curves for int6 weight and int11
activation model

(b) Loss curves for int5 weight and int7
activation model

(c) Loss curves for int6 weight and int6
activation

Figure 3.8: Training and validation loss curves for the best three multilayer
perceptron models

3.3.3 Multilayer perceptron optimization results sum-
mary

The optimization techniques used bring very interesting results, since the
accuracy loss with the quantized model not only is negligible using the post-
training method (around 1% less precision), but also improves significantly
using the quant-aware training method. In Table 3.6, the comparison between
the float32 model and the quantized models with the two techniques is shown.

Since all the training parameters, like the optimizer, the learning rate
and even the number of training repetition, have been kept equal to [8], this
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Test MSE Test ADE
(m2) (m)

float32 0.125 0.433
post-trained model:

int8 0.127 0.438 (+1.15%)

quant-aware trained model:
int6 0.097 0.390 (-9.93%)

Table 3.6: Multilayer perceptron network optimization results summary

method is really effective not only to reduce the resolution of the variables,
but also to improve the performances of the network. To better understand
how these promising results change with quantization, Figure 3.9 shows the
distribution of the models quantized with this method during the DSE. 67%
of all the trained models actually have improved their accuracy or at least
they achieve the same ADE value w.r.t. the float32 model. This shows of the
effectiveness of this method that, with this kind of network, behaves really
good.

Figure 3.9: Models distribution with percentage performance comparison
between all the multilayer perceptron quantized models and the float32 model
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ADE Error
Ground-truth vs float32

(m)

ADE Error
Ground-truth vs int8

(m)

ADE Error
Int8 vs float32

(m)

.h5 Model

(KB)

.tflite Model

(KB)
0.273 0.284 0.057 454.160 44.752

Table 3.7: Post-training quantization results for convolutional neural net-
work model

3.4 Convolutional neural network quantiza-
tion optimization

In this section will be applied the same optimization techniques to a convo-
lutional neural network with this specifications:

• 2-layer 1D-Convolutional,

• kernel size 3 × 1,

• 64 filters,

• window time of 10 s (30 input data at a time processed)

• 2-layers MLP with 32 neurons,

• L2 regularization

3.4.1 Post-training quantization

The results collected after the post-training quantization are summarized in
Table 3.7. Also with this neural network, the post-training technique brings
excellent results in terms of ADE error, within 4% of the float32 reference.
The compression rate instead reaches 90% less of memory occupied.

In this case, the inferred trajectories by the quantized model are similar
to the float32, as we can see in Figures 3.10a and 3.10b.

Even if quantized, the model is still producing and accepting floating point
data type.
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(a) X trajectory inference comparison
Int8 vs Float32

(b) Y trajectory inference comparison
Int8 vs Float32

Figure 3.10: Trajectories comparison between the fully-integer 8 bits
quantized CNN model and the float32 CNN model

3.4.2 Quant-aware training
Due to the amount of possible number of bits to quantize in the model during
the quant-aware training, a design space exploration has been conducted in
order to find the best quantization implementation.

The DSE has been conducted with these specifications:

• Moving average quantizer for the weigths, with symmetric and nar-
row_range parameters enabled.

• Last value quantizer for the activations, with symmetric parameter
disabled and narrow_range enabled.

• Number of bits spanning from 2 to 16 bits for both weight and activation,
with a total of 225 different quantized models.

The training has been performed with:

• Adamax optimizer with learning rate lr = 0.0001

• Training session during 1000 epochs, repeated 30 times for each model

During the exploration with the quantizers and their settings (Section 2.2.2),
several training sessions have been conducyed with the CNN model. Thanks
to this addditional trainigs, the models with 4 bits in weights and multiples
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of 4 in activations, have been quant-aware trained for a total of 90 times.
For graphical reasons, all the models results have been split in half, the

first ones with the activation resolution within [2,8] range and the second
ones within [9,16] range. In Figures 3.11a and 3.11b the direct comparison
between the models results is proposed. The ADE error trend, as expected,
assumes a quite regular dropping while the activation resolution starts to
grow for every different training. Moreover, the most consistent accuracy
loss is quite always constrained in the range [2,4] bits resolution for the acti-
vation, while after this limit all the models reach a more stable performance
improvement.

(a) Models performance comparison for weight in the range [2,8] bits

(b) Models performance comparison for weight in the range [9,16] bits

Figure 3.11: Performance comparison for all the convolutional neural
network models quantized during the design space exploration

The most promising models for hardware implementation, thanks to their
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lower representational precision, are the ones in Figure 3.11a. The worst
model, as expected, is the one with only 2 bits in the weight representation:
the lack of resolution is the reason why the ADE curve for this model is
always higher than the others. All the other models have similar performance
in the range [8,16] bits for activation, within the range [0.30,0.35]m for the
ADE. This means that, with almost the same performance, it is possible
to choose a model with lower representational precision, saving hardware
resources.

Even more clearly, in Figure 3.12 it is presented the performance surface
for the previous models. This 3D graph underlines the presence of a "pool" of
local minimum points (orange region) where it is more convenient to quantize
the CNN model.

Figure 3.12: Performance surface for quantized models with [2,8] bits in
the weight

In Figure 3.13 are summarized the best performances achieved by all
the quantized models. In order to build this graph it has been taken the
minimum ADE value for each model with progressively high number of bits
in the activation. Actually, the points indicated are all local optimum for the
selected couple weight-activation resolution. In each label on the line have
been inserted the number of bits used in the weight (upper value) and the
ADE achieved (lower value). It is interesting to notice that the best ADE
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values have been achieved by lower representetional precision, demonstrating
that higher quantization resolution it is not always a good solution. In fact,
the general trend among all the models is to have better results if quantized
on fewer bits, actually using less than 10 bits in the activation and 8 bits in
the weight. From this graph it is also possible to extrapolate some general
rules while choosing the number of bits to quantize the model variables in:

• too low resolution in the activation brings too much accuracy accuracy
loss, while it is acceptable in the range [5− 16];

• the activation resolution should be at least equal to the weight resolution,
with better results when it is about double;

Figure 3.13: Best performance achieved by every quant-aware trained
convolutional neural networks

In order to compare the obtained results with the float32 model, the Table
3.8 summarizes the best three models performance discussed in this section
and the best float32 CNN model from [8].

The interesting aspect from this result is the good performance achievement
with only 6 bits in the weight and activation, actually using about 5× less
memory and make feasible the usage of this kind of network inside an
embedded system.

The training quality comparison between the float32 model and the quant-
aware trained models is shown in Figures 3.14 and 3.15. The quantized
models show higher variance in the validation curve, but with the same
overfitting problems affecting also the float32 model. The validation curve
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Test MSE (m2) Test ADE (m)

weight: int6; activation: int12 0.061 0.292 3rd

weight: int4; activation: int8 0.058 0.291 2nd

weight: int6; activation: int6 0.057 0.287 1st

⇑ +5%
float32 0.047 0.273

Table 3.8: Performance comparison between the best float32 CNN model
and the best three quantized CNN models

does not follow the decreasing training loss and, after an initial increase, it
stabilizes around a certain value after a few hundreds epochs. In fact, all
these quant-aware trained models stop learning in the very first epochs, as
the float32 model.
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(a) Loss curves for int6 weight and int12
activation model

(b) Loss curves for int4 weight and int8
activation model

(c) Loss curves for int6 weight and int6
activation

Figure 3.14: Training and validation loss curves for the best three convolu-
tional neural networks

3.4.3 CNN optimization results summary

The results coming from both the techniques are promising since they show
an accuracy loss from the fully-float model within 5%, allowing to save
memory and resources without damaging too much the inference precision.
In Table 3.9 are summarized the best results obtained.

The post-training technique is able to maintain, even with this large
network, the accuracy loss within 4%, but it relies to an already trained
model and so to the quality of the previous training. The quant-aware
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Figure 3.15: Training and validation loss curves for the convolutional
neural network float32 model from [8]

training, on the other hand, it is able to choose how to quantize this large
model and, with a custom training session, achieve the best accuracy loss
around 5% w.r.t. the float32 model.

Test MSE (m2) Test ADE (m)

float32 0.047 0.273

post-trained model:
int8 0.061 0.284 (+4.03%)

quant-aware trained model:
int6 0.057 0.287 (+5.13%)

Table 3.9: Convolutional neural network optimization reasults summary

In Figure 3.16 it is show the distribution of all the quantized models with
the QAT technique in terms of percentage distance from the best float32
model ADE value. The majority of the quantized models achieve an accuracy
within 30% from the best float32 model, demonstrating that, if the loss is
acceptable, this convolutional neural network can be quantized on less bits.
The graph groups together the quantized models that achieve an ADE value
bigger than 70% of the float32 model, since the accuracy loss in that region
is unacceptable.

Even if in the theory discussion the quant-aware training technique was
presented as the most accurate method to actually quantize a neural network,
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here the results show that the post-training technique achieves the best
results, considering also the processing time needed to convert the model into
the quantized version. The reason could rely on the network depth, that is
not so high to actually justify the fine-tuning with the quant-aware training
method since the post-training is able to manage well this kind of network.

Figure 3.16: Models distribution with percentage performance comparison
between all the quantized models and the float32 model

From the promising results reported above, it is also interesting to sum-
marize the good results obtained from weigth-activation resolution couples
that are more suitable to the final hardware implementation: the 4-4, 4-8
and 4-16 quantized models. In Table 3.10, the training results have been
summarized and compared with the float32 model, in terms of percentage
difference between the ADE value from the quantized model and the float32
model. Actually, the model that performs better is the one with 4 and 8
bits in the weight and activation respectively. It is worse than the float32
for less than 7%, but looking at how many resources can be saved with this
quantization scheme, this is a remarkable result. Moreover, this model is the
second best model among all the others, and not so far from the post-training
quantized model, that actually uses int8 quantization for both weight and
activation.
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4 bits weight

Test MSE (m2) Test ADE (m) Deterioration (%)

ac
ti
va
ti
on 4 bits 0.068 0.321 17.58%

8 bits 0.058 0.291 6.59%

16 bits 0.068 0.304 11.36%

Table 3.10: Models results using best quantization scheme for hardware
deployment
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Result summary

In this chapter all the results coming from the optimized models have been
summarized and commented. In Table 4.1 the best results from both the
techniques are shown. The best quantization scheme for both the quant-
aware trained models is with 6 bits in the weight and in the activation and,
in the case of the CNN model, performs as the post-training quantized model,
or even better than PTQ method with the MLP model. The main goal of
these techniques was to reduce the resolution of the varaibles, keeping the ac-
curacy losses at minimum. Looking at the results, this goal has been achieved.

Neural network Optimization technique Test MSE
(m2)

Test ADE
(m)

weight-activation
(bits)

MLP
PTQ 0.127 0.438 8-8
QAT 0.097 0.390 6-6

foat32 reference MLP model 0.125 0.433

CNN
PTQ 0.061 0.284 8-8
QAT 0.057 0.287 6-6

foat32 reference CNN model 0.047 0.273

Table 4.1: Results summary with all the optimized models and the reference
models

The results already presented are the best quantization points produced
by the optimization techniques, but they do not represent the entire explored
space. In order to show the relationship between the number of bits used
during quantization and the performance achieved, the quantized models
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from both neural network architectures have been filtered using these criteria:

• the minimum ADE value on the test data set achieved

• the minimum number of bits used, summing up the resolution in both
weight and activation

The resulting models have been collected in the graphs below. Figure 4.1
contains the pareto-points of the explored space together with the other
local optimum points (grey crosses). The orange squares represents the
hardware optimum points, e.g. the 4-4, 4-8, 4-16 quantization schemes that
are more suitable for hardware deployment, while the green dot represent the
result coming from the post-training quantization method. All the points
under the light-orange line are performing better than the float32 model,
the reference neural network. Looking at the graph, all the three hardware
optimum points performs better using less bits than the float32 and, for this
reason, they can be considered as the best choices.

Figure 4.1: Best quantization points collected from the experiments for
the multilayer perceptron network

Figure 4.2 shows the X and Y trajectories inferred by the three hardware
optimum models and the ground truth reference. The smoothest trace is
the 4-16 and even the more similar to the reference. Actually, the 4-4 trace
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is really sharp due to the lower resolution and, even if the training results
report a better ADE value, this quantization scheme could not be acceptable
for the indoor tracking task.

(a) X-axis predicted trajectories and ground truth

(b) Y-axis predicted trajectories and ground truth

Figure 4.2: Inferred trajectories by hardware promising quantized multilayer
perceptron models

In Figure 4.3 the same trajectories graphs are shown but with the 2 models
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(a) X-axis predicted trajectories and ground truth

(b) Y-axis predicted trajectories and ground truth

Figure 4.3: Inferred trajectories by pareto quantized multilayer perceptron
models

in the pareto-points under the reference line reported before, the 6-6 and 5-3
quantized models. The 5-3 traces discretize too much the output and with
too much oscillating behaviour. Instead, the 6-6 model traces are the most
promising till now, because they are the closest to the reference and also the
smoothest. The post-training quantization traces have a similar quality but

56



Result summary

they are farther from the reference than the 6-6, that actually uses less bits.
Anyway the poor precision achieved by all these models is caused by the
model itself, since the MLP architecture was already less suitable for the task.

The same discussion is done also for the convolutional neural network,
the most promising architecture so far analysed. In Figure 4.4 is shown the
graph with all the optimum points together with the pareto points and the
hardware optimum.

Figure 4.4: Best quantization points collected from the experiments for
the convolutional neural network

For this neural network architecture, the quantized models perform slighty
worse than the float32 reference, as expected. The three hardware optimum
points are really close to the pareto points, as for the 4-8, or even they are
themselves pareto points, as the 4-4 and 4-16 models. Even for this network
architecture, the hardware optimum points can be labeled as best choices,
since they perform really similar to other quantization schemes but they are
more suitable for hardware deployment.

In Figure 4.5 are shown the X and Y traces inferred by the hardware
optimum models. The stair shape in traces for models quantized on few
bits it is always present, as for the MLPs. In particular, for the 4-4 model
the inferred trajectories are affected too much by this bad behaviour, while
the other two models shows more smooth traces and so can be suitable for
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hardware deployment.

(a) X-axis predicted trajectories and ground truth

(b) Y-axis predicted trajectories and ground truth

Figure 4.5: Inferred trajectories by different hardware promising quantized
convolutional neural networks

Looking at Figure 4.6 the only model that can be competitive with the
others already presented, is the post-training quantized one, that shows
smoother traces and also closer to the reference.

The reason why a lot of quantized models perform better than the float32,
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(a) X-axis predicted trajectories and ground truth

(b) Y-axis predicted trajectories and ground truth

Figure 4.6: Inferred trajectories by pareto quantized convolutional neural
networks

looking at the MSE and ADE, is of poor resolution itself: degrading the
representational precision, the quantized models in average start to be wrong
less than the float32 thanks to their stair shape inferred trajectories. For
this reason it is not convenient to look only at these metrics to evaluate
the quality of the quantization, but also to look at shape of the trajectories
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produced during the test phase.
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Conclusion

The main results obtained with quantization techniques applied to convolu-
tional neural network and multilayer perceptron network are:

• with the small MLP network the quantized version with the QAT
technique performs better than the PTQ method using less bits

• for the larger CNN model the PTQ technique performs slightly better
than the QAT, but this last one uses less bits

The quantization techniques analysed are very different in their general
behaviour and brings different performance loss. For the QAT, about 220
different quantized MLP and CNN models have an accuracy within 10%
from the float32 reference model. In particular, about 150 MLP networks
were performing better than the reference, but the trajectories inferred have
too high first and second derivatives. So, even if with a loss of accuracy,
the quantization techniques explored can be used effectively to optimized
the proposed models in a faster and cheaper implementation, that uses less
hardware resources and reduces the latency.

Future work can be focused on trying other quantization algorithms with
other neural network architectures. In particular, it can be exploited better
the Tensorflow "blank" quantizer that can be used to implement a custom
quantization algorithm.
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