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Abstract
Dipartimento di Elettronica e Telecomunicazioni

Nanotechnologies for ICTs

Carrier transport in nanostructured materials: a NEGF perspective on
localization landscape

by Andrea Marco CARIA

The classic drift-diffusion model is not able to properly simulate struc-
tures like superlattices or quantum wells, because it does not take into ac-
count quantum effects such as tunneling or quantum confinement. The local-
ization landscape theory is a clever mathematical tool that allows accounting
quantum effects inside these types of devices, by replacing the original elec-
trical potential with the effective quantum potential seen by carriers. This
quantity is derived from the solution of a Schrödinger-type equation with an
uniform right-hand side. Employing this theory, it is possible to predict the
localization regions of carriers, their ground state energy, and their local den-
sity of states.
The localization landscape potential is used to determine the carrier densi-
ties, with the Fermi integral. Then, these latter results are introduced in the
well-known Poisson equation, in order to develop a model capable of effec-
tively introduce quantum effects. In order to prove the validity of this model,
the outputs of the simulation are compared to the ones derived from an exact
Poisson-Schrödinger solver, in which the quantum effects are perfectly mod-
eled by the wave nature of the electrons and holes.
The localization landscape potential is introduced into a classical drift-diffusion
solver to directly model carrier transport in a superlattice system. The ob-
tained results are compared with the one found with a non-equilibrium Green’s
function (NEGF) approach, in which the scattering has been introduced by
means of Büttiker probes, finding good agreement. This method is tested for
several one-dimensional structures: quantum wells, ordered and disordered
superlattices with different periodicity and distinct coupling factors.
The obtained results show particular agreement with the existing methods,
especially for high coupled superlattices even when the disorder is intro-
duced, which denote that the localization landscape method is an efficient
tool for the development of devices based on quantum structures.
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Chapter 1

Introduction

In last years, infrared detection is used for an increasing number of appli-
cations, ranging from civil (measurement of body temperature for COVID-
19 detection) to military purposes (night visors). Nowadays, the majority
of these detectors are based on bulk mercury cadmium telluride HgCdTe
(MCT) and InSb [1]. In particular the ones based on MCT are characterise
by high quantum efficiency (>90%)[2] and moreover, they are also able to
cover the whole IR spectral range, indeed the HgCdTe can be tailored for op-
timized detection in any region of the IR spectrum between 1µm and 25µm.
These particular devices are used in wide range of applications, but they also
exhibit some notable drawbacks especially in the mass production process.
One of the main limitations of such devices is the operation temperature,
for LWIR (long wave infrared) detection it has to be cooled to a temperature
near the liquid nitrogen (77 K) while for the MWIR camera is enough to use
the thermoelectric coolers by paying a small performance penalty. Moreover,
the MCT detectors are affected by non-uniform growth defects and the sub-
strate on which they are grown is CdZnTe, a very expensive and available
in limited quantities alloy. A possible solution to this latter problem is to
replace this exotic material substrate with a silicon one, but up to the latest
researches, good performance has been limited to the MWIR band only. Fi-
nally, it has been seen that Hg has a high pressure vapour at the melting point
of HgCdTe leading to the toxicity of material. It is for these reasons that in the
lasts years a higher numbers of researches have been done to overcome the
employment of such material in the IR photodetector. A promising solution
is to use a periodic quantum structure, the superlattice. The most favourable
ones are those based on III-V semiconductors, the modern state-of-arts on
manufacturing processing allows to scale these devices for a high number of
applications, for example, it enables to scale to large format FPAs with a high
degree of spatial uniformity [2]. These devices are characterised by higher
working temperature, higher sensitivity, lower weight and less manufacture
costs.

Superlattices are a periodic system made by two or more materials, that
usually have nearly the same lattice constant. These different materials are
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deposited in a repetitive sequence of thin layers, the width of such layers are
selected in order to give rise to quantum carriers confinement. Indeed, by
shrinking the thickness of the layer the carriers do not behave as free parti-
cles anymore but a purely quantum confinement effect arises in the regions
with lower potential (wells). Moreover, when the carriers de Broglie wave-
length becomes comparable to the barrier thickness of the superlattice, the
wave functions of the confined carriers in the wells tend to overlap due to
tunnelling. This overlap between contiguous layers results in the develop-
ment of minibands in the conduction and valence band. According to in
which part of the device the electrons and holes are confined, it is possible to
classify semiconductor into three types, that sorting can be also defined on
how the valence and conduction band of the two material align when they
are put into contact. If the electron and holes are confined within the same
layer of material it is possible to talk about a type-I superlattice while if the
electrons are confined in a different layer with respect to the holes the super-
lattice is defined as type-II. Moreover, on this latter type, further classification
can be made by considering the edge of conduction and valence band of the
two materials, as an example, if both the valence and the conduction band
edges of the second material are above the band edges of the first material,
it is called a broken type-II band alignment. For detection application both
the type-I [3] and type-II [4] can be used but the latter shows more promis-
ing results and application while the first one can be also used to develop
tunable Brag reflection gratings [5]. In those superlattices the detection of an
incoming photon is done when an electron-hole pair is excited from a lower
energy miniband to a higher one, those minibands can be in the same band
or in two distinct ones (conduction and valence). So in order to properly
describes this kind of device it is fundamental to determine the background
carrier concentrations and to derive the minority carriers’ lifetimes and their
diffusion length. Unfortunately, the quantum effects that give rise to the car-
riers confinement introduces in the modelling a further complexity.

Accounting for carrier localization induced by two semiconductor’s het-
erojunction is a daunting task. A proper description of such structure usually
requires solving the Schrödinger equation to obtain the carrier distributions,
or applying a nonequilibrium Green’s function (NEGF) to describe the be-
haviour of carrier quantum transport. Unfortunately, both these techniques
are very time consuming for multidimensional devices, so a new method
that allows to describe the carriers and their motion with a low computa-
tional time is needed.
One of the earliest solutions was to use the classical drift-diffusion(DD) model,
but its main limitation is the inability to simulate the carrier transport in a su-
perlattice system directly because due to quantum effects, the actual potential
seen by electrons(holes) in a superlattice system is different from the original
potential of the classical Poisson–DD model. If the band structure of a super-
lattice was put directly into the classical Poisson–DD solver, it would behave
like a multibarrier where carrier transport might be forbidden. However, the
models based on the iterative solution of both Poisson and drift-diffusion



Chapter 1. Introduction 3

equations have the main advantage to be fast enough to simulate a multi-
dimensional device. The quantum effects can be introduced in such models
by replacing the potential distribution with an effective one, that introduced
in the classical DD solver, allows to simulate the superlattice system directly.
According to how this potential is defined, different models can be imple-
mented.

One of the first definitions of such potential was given by Bohm in 1952
[6], however, this potential was calculated by solving the Schrödinger lead-
ing to an high computation cost. One of the most promising definitions of
such potential is the relatively recent localization landscape (LL) theory, pro-
posed by Filoche and Mayboroda, in 2012 [7]. The main idea of this method
is to calculate the effective potential, not from the computation expensive
eigenvalue Schrödinger equation, but from a second-order differential equa-
tion derived from a modified version of the Schrödinger one. By doing
so small simulation time is achieved even for high dimensional structures.
In past years, this theory was benchmarked with the Poisson-Schrödinger
solver for different quantum structures with the aim to predict the Anderson
localization due to disorder, [8], showing appealing results. Later on, in 2020
this method was used to simulate the carriers transport in a type II superlat-
tice InAs/InAsSb [9], obtain, even for that case, promising outputs.

In this work, the landscape model was tested for some well-known 1-
dimensional quantum structures, like quantum wells or type-I superlattices.
Moreover the position disorder has been introduced in a selected set of struc-
tures, to understand how it changes the fundamental device property of a
photodetector [10] and if the landscape potential properly described this de-
viation from the ideality. These results have been compared to the one ob-
tained with a Poisson-Schrödinger solver, for the what concerns the equi-
librium simulation, while for out-of-equilibrium simulation the results have
been confronted with the ones obtained with the non-equilibrium Green’s
function approach in which the scattering has been introduced through the
Büttiker probes [11].

After a brief presentation and description of the models used, the results
are presented in two main sections, one for equilibrium simulations while
the other is devoted to the modelling of structures out of equilibrium. For
what concerns the first case, two types of structures are considered, a quan-
tum well (QW) and a superlattice. This theory was applied to a QW in or-
der to give a first validity-check at different confinement potential, these re-
sults have been compared to both the NEGF approach and the Schrödinger
solver. Then, type-I superlattices have been studied, ranging from high cou-
pled structures to low coupled ones (multiple-QW). Even for those cases, the
obtained results are benchmarked with the NEGF and Schrödinger methods,
moreover, a fictitious depositional error has been introduced to describe the
not perfectly periodic SL, for this latter analysis only two meaningful struc-
tures have been simulated.
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Finally, the last chapter of results presentation is devoted to the imple-
mentation of localization landscape theory out of equilibrium, for this study
only the superlattice systems have been considered. On those structures
a small bias has been applied with the aim to derive the current density
and other meaningful quantities, then all these outputs have been compared
to the results obtained with the NEGF approach, showing some interesting
comparison.

Both quantum wells and the superlattice systems are based on the Al-
GaAs/GaAs hetero-junction, which leads to a type-I structure. Nowadays,
those devices based on such materials are not so common in the market be-
cause it is preferable to use type-II superlattice at least for detection purpose,
while type-I superlattices are more common in Brag-grating reflectors. The
reason why not so innovative alloys were taken, is that this study is a prelim-
inary validation of the model, especially out of equilibrium, by considering
these well-known materials all the possible errors derived form the not per-
fect model of the material are removed from the implementation allowing to
understand the true strength of this model.
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Chapter 2

Methods

In this chapter, a theoretical description of the implemented methods has
been provided for all the models and equations used, in particular for the lat-
ter a concise presentation has been given underling the main aspects and ap-
proximations performed. Moreover, for some meaningful equations, a brief
mathematical derivation has been supplied.
As a first step, the Schrödinger model has been described starting from the
discretization of the one-dimensional Schrödinger equation. This implemen-
tation has been very useful to provide a term of comparison for the equilib-
rium simulations, that have been made by introducing the Landscape poten-
tial. Then, this above-mentioned landscape potential has been introduced,
with a brief mathematical description, and then implemented with the Pois-
son equation in order to achieve the wanted landscape-Poisson solver. More-
over, this theory has been introduced in a drift-diffusion model with the aim
to study structures even out of equilibrium.

2.1 Schrödinger Model

As the first step, the one-dimensional Schrödinger equation has to be de-
rived and then discretized in space in order to be able to calculate the carrier
densities for a one dimensional device, later on, this charge distribution has
been introduced in the Poisson equation leading to the Poisson-Schrödigner
solver.
The Schrödinger equation is a linear partial differential equation that re-
solved allows obtaining a set of wave-functions ψn that, with their associated
eigenvalues En, properly describe the electrical proprieties of the system in
study. Given a potential shape φ is possible to solve this equation by ob-
taining the above-mentioned physical quantities from which is possible to
calculate the electrons and holes concentration in conduction and valence
band, respectively. Therefore, by introducing the activated dopants density
and merging all tougher is possible to obtain the net charge density (ρ), that
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has to be introduced in the Poisson equation to obtain the equilibrium po-
tential shape. The basic idea of this solver is to derive the potential distribu-
tion φ(z) and their associated charge density ρ(z), by solving respectively the
Poisson and Schrödinger equations. Unfortunately, these two quantities are
mutually dependent, an iterative method has to be implemented to achieve
a stable solution. By solving the Schrödinger equation is possible to deter-
mine the carrier densities from which the net charge ρ is calculated. This
quantity is the main input of the Poisson equation that allows determining
the potential shape φ, however this new shape of potential, introduced in-
side the Schrödinger equation, changes the electrons and holes distributions,
they further transform the charge density and the potential. It is easy to see
the importance to select a proper initial guess of φ0 to be able to reach the
convergence of results, an improper choice of the initial potential guess can
lead to an unphysical distribution of the carriers at the first loop and so bring
the solver hopelessly to far from the solution preventing convergence from
being achieved.
This iterative method proceeds until the variation of potential, due to the
new charge density, is lower than a certain threshold.
In fig.(2.1) has been depicted a schematic flowchart that summarizes all the
steps described above, adding some important considerations and all the de-
rived equations, which have been described in the following sections. As
soon as the convergence is reached, it is possible to extrapolate further re-
sults, such as the density of state or ground state energy.

Initial Guess
φi(z)Neutrality

Band edges:
Ec(zi) = −qφi + ∆Ec(zi)
Ev(zi) = +qφi + ∆Ev(zi)

Solve discretize
Schrödinger equation

and calculate carrier den-
sities: [H]{ζ} = E[M]{ζ}
with both Dirichlet e Neu-
man bounday condictions

for electron and holes

Average b.t. Dirich-
let and Neuman

boundary condictions:

ni =
nD(zi) + nN(zi)

2

pi =
pD(zi) + pN(zi)

2

Solve:
Aφφ∆φk+1 = rφ and update

φ
(k+1)
i = φk

i + ∆φ
(k+1)
i

Built up :

Fk
i (φ

k
i−1, φk

i , φk
i+1)

and Jacobiam
matrix: Aφφ

nD and nN

• ρi = q[pi − ni + N+
D,i − N−A,i ]

• φi

FIGURE 2.1: Poisson-Schrödinger flowchart
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2.1.1 Derivation of equations

As the first step in the description of the model, the Schrödinger equation
has to be defined. In this master thesis, all the devices in the study have been
considered as one-dimensional structure. Therefore, a generic one dimen-
sional confining potential V is considered, it depends only on the coordinate
z and the associated Schrödinger equation is written as:[

− h̄2

2m∗
∇2 + V(~z)

]
ψ(~r) = Eψ(~r) (2.1)

This is a 3D partial differential equation, but considering the fact that parti-
cles are free to move along the x e y direction the searched wave-function ψ
can be decomposed as:

ψm(~k,~r) = ψm(kx, ky, x, y, z) = Ceikxxeikyyζm(~k, z) (2.2)

where the wave-vector~k depends only on x and y coordinates since the third
component along z direction labelled as kz has being quantized due to the ex-
ternal confining potential and it has been substituted by an integer number
m. On the other hand, along the transversal pathway particles are not sub-
mitted to any potential and their motion is described as a travelling plane
wave. So the three-dimensional wave-function can be seen as a product of
two well-known plane waves along the x and y coordinate and a set of un-
known wave-function ζm along the z direction.
The equation (2.2), if properly normalized, provides information on proba-
bility of the particle to be in a certain position (x, y, z) and to have a certain
momentum (kx, ky, kz), recalling the fact that due to the potential V(z) the
latter component of wave vector have been discretized, the eq.(2.1) can be
written as:

[
− h̄2

2m∗(z)
∂2

∂z2 +
h̄2k2

x
2m∗(z)

+
h̄2k2

y

2m∗(z)
+ V(~z)

]
ζm(~k, z) = Em(~k)ζm(~k, z) (2.3)

Under this formalism the eq.(2.3) should be resolved for each wave-vector~k.
In order to obtain the carrier densities a counting problem has to be solved, as
it done in eq.(2.2) it is possible to separate the contribute of transversal (x, y)
and perpendicular plane (z). For what concerns the latter direction eq.(2.3)
can be solved by fixing a~k value, then with a numerical tool is possible to
obtain the ζm wave-functions and their associated eigenvalues that describe
the confinement along z direction, from this discrete number of eigenvalues
is possible to calculate the carrier densities.
The calculation becomes more complicated when the transversal plane (x, y)
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is taken into consideration. In fact, the wave-vectors have a continuous do-
main because due to open boundary no confination effect arises. Regretfully,
this continuous nature of wave-vector does not allow to solve the Schrödinger
equation, and so it is impossible to obtain a finite number of eigenvalues
needed for the calculation of the electron density.
An important step forward can be performed by introducing a boundary do-
main on both x and y directions, this has two main effects: first of all, it allows
to define an area of normalization in such a way that the |ψm|2 defined in (2.2)
can be viewed as a probability density, secondly, it leads to a quantization of
the wave-vector~k along the transversal direction. So, if the confinement is
introduced also on the transversal direction by means of a box of length Lx
and width Ly and the periodic boundary condition (Born-von-Karman) are
imposed, the component of~k can be written as:

kx = n1
2π

Lx
and ky = n2

2π

Ly
(2.4)

where n1 and n2 are integer numbers that describe quantization state.
A sketch that can help to better visualise this mathematical trick is depicted

FIGURE 2.2: Discretized transverse~k space

fig.2.2, taken from [12], where each of the red points is all the possible mo-
mentum that an electron can assume. Two adjacent states are separated by a
minimum distance equal to kx or ky, this means that it is possible to define an
area equal to:

2π

Lx
· 2φ

Ly
(2.5)
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where only one state is present. That definition allows to determine the factor
C defined in eq.(2.2), by imposing:

∫ Lx

0
dx
∫ Ly

0
dy
∫ Lz

0
dz|ψm(~k, x, y, z)|2 = Lx · Ly

∫ Lz

0
dz |Cζm(~k, z)|2 = 1 (2.6)

It is straightforward to see that

C =
1√

Lx · Ly
:=

1√
A

(2.7)

Now, having imposed the normalization of the probability density, it is possi-
ble to calculate the electrons and holes densities, it is also important to notice
that the |ψm|2 has the dimension 1/m3 perfectly coherent for a density per
unit of volume.

Finally, now that the probability density is known, the occupation proba-
bility for each states has to be introduced, the latter can be described by the
Fermi-Dirac distribution:

fFD(E, E f ) =
1

1 + exp
{(

E−E f
kBT

)} (2.8)

this function has to be evaluated for each of the eigenvalue Em coming from
the eq.(2.3). By merging together all these considerations, it is possible to
obtain the electron density by counting the state for unit volume. This pro-
cedure can be performed by summing over the total number of states the
double integral of the probability function for each state (which is reduced
to ζm(~k, z) due to the absolute value squared), times the Fermi-Dirac distri-
bution, over the number of states per k-space unit area(A/2π), obtaining:

n(z) =
2

(2π)2

Neig

∑
m=1

∫ ∫
d~k|ζm(~k, z)|2 · 1

1 + exp
{(

E−E f
kBT

)} (2.9)

Two considerations have to be done on this formula: to start with a multipli-
cation factor 2 is introduced in order to consider the effect of spin and Pauli
exclusion principle that is not taken into account in the Schrödinger equa-
tion, secondly the area A disappears from the calculations so, the arbitrary
degrees of freedom introduced normalizing the wave-function and limiting
the transversal domain, does not influence the final result.
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A further simplification has to be performed before going on the im-
plementation of the model, eq.(2.1) can be rewritten if the effective mass is
taken as axially invariant, i.e. the band structure is equal for the radial di-
rection. Within this approximation the component of wave-vector along x
varies in the same way of ky, therefore a radius in k space it can be defined as:
k2 = k2

x + k2
y and the Schrödinger equation becomes:[
− h̄2

2m∗
∂2

∂z2 +
h̄2k2

2m∗
+ V(z)

]
ζm(k, z) = Em(k)ζm(k, z) (2.10)

where the obtained eigenvalues and eigenfunctions do not depend on the com-
ponent of wave-vector but only on its magnitude.
Now, the integral in eq.(2.9) can be evaluated by writing k with polar quan-
tities. By following the steps performed in [12] is possible to write an other,
more implementation-oriented expression of the density of states:

n(z) =
1
π

∫
kdk

Neig

∑
m=1
|ζm(k, z)|2 · 1

1 + exp
{(

E−E f
kBT

)} (2.11)

This equation can be further rewritten introducing a discretization on k vec-
tor in order to perform the numerical integration as:

n(z) ' 1
π

Nk

∑
m=1

Neig

∑
m=1
|ζm(k, z)|2 · 1

1 + exp
{(

E−E f
kBT

)}kn∆kn (2.12)

Following the same steps done for electrons, the holes densities can be writ-
ten as:

p(z) ' 1
π

Nk

∑
m=1

Np
eig

∑
m=1
|ζ p

m(k, z)|2 · 1

1 + exp
{(−E+E f

kBT

)}kn∆kn (2.13)

of course, the two Schrödinger eigenvalue problems have to be defined dif-
ferently if electrons or holes are involved, the main differences are the ef-
fective mass parameter and the potential: conduction band for electron and
valence for holes. The error introduced by this latter approximation it is neg-
ligible if the mesh step (∆k), with which the vector k is discretized is small,
in the limit of a number of mesh point (Nk) equal to infinite the two formulas
are the same.
It is important to recall that in eq.(2.12), the variation of the effective mass
along the z direction is still taken into account within the wave-function ζm,
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the only approximation that has been performed on the masses along the ra-
dial direction (x, y).

2.1.2 Discretization in space

In order to be able to evaluate the Schrödinger eigen-problem with a cal-
culator, a discretization in space has to be performed. Subspace z has been
discretized into Nn node and Nn − 1 element, furthermore, the dependence
on transversal wave-vector k has been moved out the Schrödinger equation,
it has been possible to do so, because the potential V, to which is subjected
the quantum state, can be defined up to a constant value. It can be demon-
strated that if the potential is shifted by a quantity K the obtained quantum
states are also shifted by the same quantity. Taking this into account the eq.(
2.1) can be rewritten as:

[
− h̄2

2m∗
∂2

∂z2
n
++V(z)

]
ζm(k) = Emζm(k) (2.14)

then the dependency on the wave-vector k has been reintroduced on the
found eigenvalues as:

Em(k) = Em +
k2h̄2

2m∗
(2.15)

the term added to the obtained eigenvalues has been derived from the parabolic
approximation of the band near the point k = 0. Due to the above mentioned
proprieties of Schrödinger equation the eigenfunction ζm does not depend
on a constant shift of the potential.

Under this assumption it is possible to discretized the Schrödinger equa-
tion, by following the steps in the first chapter of [13], obtaining a matrix
equation written as:

[H]{ζ} = E[M]{ζ} (2.16)

where the sparse matrix [M] and [H] are the so called Mass and Hamiltonian
matrix of the system. These are tridiagonal matrix with dimension equal to
the square of the number of nodes, in which the space z has been discretized,
they have to be define uniquely for each device and potential distribution.
It is important to notice that performing this discretization Neumann bound-
ary conditions have been imposed at the two contacts of the device, by doing
so the wave functions have null derivate at those point. This hypothesis is
fair enough if a confined state is take into account, in fact it is expected that
the probability of find an electron (|ψ|2) goes to zero outside the confined
region. On the other hand, if a bulk resistor is taken into account, the Neu-
mann boundary conditions lead to an unphysical estimation of charge at the
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contacts. In a bulk semiconductor the solution is expected to have a form
of a momentum eigenstate also in the z direction i.e. a complex exponential,
but the wave-function found with the Neumann boundary condition has an
cosine-like behaviour so what is missing to obtain a complex exponential be-
haviour is the sine-like part. The missing part can be obtained by solving the
eigenvalue problem defined in eq.2.16 where the Dirichlet boundary condi-
tions have been imposed at the two contacts. This new boundary condition
forces the wave-function to be zero at the two edges of the device leading to
a zero charge. Then if this two different solutions have booth computed and
combined the overestimation of the carrier densities at the leads is mitigated.
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FIGURE 2.3: Comparison of carriers densities calculated by im-
posing the Dirichlet or Neumann boundary condition, with
their associated average value, for a bulk resistor made of GaAs
with a constant n-type doping equal to ND = 1018cm−3. The in-
complete ionization model has been introduced so the ionized
doping charges are lower than the dopants densities, leading to

a concentration of carriers lower than ND.

In fig.(2.3) the electron concentration of a bulk resistor, calculated by im-
posing the Dirichlet and Neumann boundary conditions are depicted. At
first glance, it is easy to see that far away from the boundary, in this particular
case z� 0 nm, the two carrier densities are equals and obviously coincident
to their average. By moving closer to the contact the two densities start tak-
ing different values, and at the bulk’s edge they behave in a totally different
way. Here due to the Neumann boundary condition, the red curve is equal to
zero while the blue one overestimates the carrier densities due to the absence
of sine-like part. By performing the average value of the two different curves
a constant result is obtained, meaning that the complex exponential behavior
has been correctly included.
These considerations affect the calculation of charge only at the edges of
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the structure in the study,so this correction is unnecessary for a long device
where the population at the boundary is not important for the description of
the device. Practically speaking, the final carrier densities n is the mathemat-
ical average of the ones found with the two dissimilar boundary conditions.

n(z) =
nD(z) + nN(z)

2
(2.17)

When the results of simulations have been analyzed in the following chap-
ters, the effects of boundary conditions have been no longer stress out, but
it is very important for short device such as quantum wells. For all the ge-
ometry simulated with the Poisson-Schrödinger solver these two different
boundary conditions have been introduced in the model, this new procedure
doubles the simulation time due to the two different eigenvalue problems
that have to be solved, but the simulation time remains acceptable if a one-
dimensional structure is simulated.
Therefore, now it is possible to derive the electron density n(z) and p(z)
knowing the conduction band EC and the valence band EV respectively, from
those quantities the net charge density ρ can be written as:

ρ = q · [p(z)− n(z) + N+
D (z)− N−A (z)] (2.18)

where N+
D (z) and N−A (z) are the donor and acceptor ionized dopant density.

Now, the derived charge density ρ has to be introduced in the Poisson equa-
tion, at thermodynamic equilibrium it can be written as:


d
dz

[
ε(z)

dφ

dz

]
= −ρ(z)

dφ

dz
= 0 z = 0; z = L

ρ(z) = 0 z = 0; z = L

(2.19)

The device is terminated by ohmic contact at the edges (z = 0 and z = L)
so the zero filed condition has been imposed:

E(z) = −dφ

dz

∣∣∣∣∣
contacts

= 0 (2.20)

Dirichlet boundary condition, shown in eq.(2.19), has been introduced in or-
der to overcome the ill-conditioning of the problem, so the potential value has
been fixed at the edges by imposing the neutrality condition, moreover it
reaches this value with a zero derivate, according to the Neumann boundary
condition [16].
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Unfortunately, ρ depends on the potential too and so an iterative solution is
needed, the Newton method has to be implemented.

MATLAB® as any other mathematical environment is not able to deal
with differential equations so the eq. (2.19) has to be discretized, similarly to
what has been done for the Schrödinger equation, with the aim to transform
it into a matrix system that can be easily read in the computer framework.
Calculation performed in chapter 2 of [12] has been used for this implemen-
tation. The first step consists on the discretization of the domain z , where
the ODE(2.19) is defined, into N nodes and N − 1 elements, then the finite-
box method has been applied and this equation has been transformed into
a system of N equations, whose N unknown are the values of the unknown
functions on the mesh nodes. The system (2.19) can be written, using the so
called element-wise paradigm, as:

εi+ 1
2

φi+1 − φi

zi+1 − zi
+ εi− 1

2

φi−1 − φi

zi−1 − zi
+ q[pi − ni + N+

D,i − N−A,i] =

Fi(φi−1, φi, φi+1) = 0
(2.21)

In this formula is possible to easily distinguish two different parts, the first
two terms includes linearly the unknown φ while the latter depends in a non-
linear way on the potential because the charge density is calculated from the
Schrödinger equation that is anything but linear, this difference is crucial in
the calculation of Jacobian matrix.
As explained in [12] (sect.2.3.3) Newton method is an iterative technique that
update the results (φi) at each iteration kth + 1, for every node, stating form
the a potential at kth iteration. Newton’s method is introduced in order to
calculate the variation of the potential between two consecutive iterations.
This method is obtained by writing the first-order Taylor expansionist of the
function that has to be minimized.

∂Fi

∂φ
(k)
i−1

∆φ
(k+1)
i−1 +

∂Fi

∂φ
(k)
i

∆φ
(k+1)
i +

∂Fi

∂φ
(k)
i+1

∆φ
(k+1)
i+1 = −Fi(φ

(k)
i−1, φ

(k)
i , φ

(k)
i+1) (2.22)

The solution of this equation provides the update of the potential for each
point of the discretized domain z. This equation can be now written in a
matrix formalism as:

Aφφ∆φk+1 = rφ (2.23)

Therefore the derivate of eq.)2.21) has to be performed with respect to the
potential in order to obtain the Jacobian matrix A. As stated before F has
a linear and non-linear part, for what concerns the first part the derivate is
straightforward and it contains quantities independent on φ and for sake of
simplicity has not reported here, (the one used for the implementation in
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code is the eq.(2.19) of [12]); On the other hand, the non-linear part has to be
studied carefully.
The non-linear part is tφ = q[pi− ni + N+

D,i−N−A,i], so four different derivates
have to be performed, (this number reduces to two if the full ionization is
considered because in this case the dopant density is constant). First of all,
the derivate of eq.(2.12) has performed following the assumption made in
[15], where it is stated that the wave-functions ζm and the energies of the
bound states Em with respect to the bottom of the well do not change for a
small change in potential φ. So it can be assumed that:

∂|ζ(k)i |
2

∂φi
= 0 and ∂(Em − EF) = −q∂φi (2.24)

and equation 2.12 become:

∂n(zi)

∂φi
' q

kBT
1
π

Nk

∑
m=1

Neig

∑
m=1
|ζm(k, zi)|2 ·

exp
(

E−E f
kBT

)
(

1 + exp
(

E−E f
kBT

))2 kn∆kn (2.25)

For what concerns the holes, staring from eq.(2.13), with the same approxi-
mation, it is possible to obtain a formula very similar to the one depicted for
electrons. Finally, if the incomplete ionization is considered the derivate of
ionized dopant density w.r.t. the potential φ has to be introduced into the
∂ρ/∂φ, the model described in appendix B of [16] has been used for this im-
plementation.

2.1.3 Density of states

The solution of the Schrödinger equation provides a lot of information for
the system in studying, one of them is the integrated density of state (IDOS),
i.e. a function that measures how many electron energy levels can be found
below a given energy per unit volume of a solid. By following this definition
the derivation of this quantity is straightforward.
It has already been seen that the Schrödinger equation gives as results a set
of eigenvalues Em, these quantities provide the allowed set of energy of the
quantum states. Now if these eigenvalues are introduced in a sort of count-
ing problem and integrated within a certain energy it is possible to obtain
a dimensionless number that counts the available states for the electrons in-
dependently of the position, it is important to recall that the Schrödinger
equation does not consider the spin so this result has to be multiplied by 2,
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in formula the IDOS reads:

IDOS(E) = 2 ·
Ei<E

∑
i=0

∫ L

0
|ψi(z)|2dz (2.26)

In a classical framework, these eigenvalues are able to vary continuously
leading to a smooth IDOS on the other hand in quantum mechanics, espe-
cially on confined sub-regions, these values are separated in energy and so
the IDOS behaves as a step-wise function.
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2.2 Landscape Potential

2.2.1 The need of an effective potential

In the last decade’s carrier transport in semiconductor systems has been
mostly described by the classical drift-diffusion(DD). Unfortunately, this model
does not take into account the quantum effects: tunneling and quantum con-
finement, so it is not able to describe devices that work on those effects, such
as modern detectors or LEDs. In other words, the classical DD describes the
carriers as if the whole device is a bulk resistor and so by neglecting the tun-
nelling effects the potential seen by the electrons is different from the real
one.
An earlier solution to this problem is to replace the superlattice with a fic-
titious device characterized by a band gap calculated in an effective way, in
such a way that the superlattice is described by a bulk resistor whit a constant
energy gap EG, in such a way that the barriers, that limit the flow of carriers
in the device, are not present in the calculation of drift-diffusion model. This
was one of the first methods that try to provide a link between the classical
models, developed for the flow of carriers in a bulk resistor, and the quan-
tum confinement due to heterostructure or doping. The main limitation of
this approach is that the physical effects inside the device were not consid-
ered in a direct way, this could lead to quite unphysical behavior and hence
this is a tool that must be handled with care.

The main idea of replacing the real potential with a new one that can be
handled by a classical drift-diffusion model had other implementations, the
difference among them is how this new potential is defined. A new defi-
nition of this potential is done by modeling the physical effects inside the
confinement regions obtaining a position-dependent effective potential φ(r).
For example, if a multiple quantum well is taken into the study, the system is
characterized by a certain number of barriers and wells, if in a specific region
the carriers can tunnel through the original barrier, due to the spatial tail that
crosses the potential barrier, the effective potential will be lower than the clas-
sical one reducing the barrier seen by the carriers. Now at least in theory, if
this new effective potential is introduced in a drift-diffusion model, it will be
able to describe the tunneling current in a classical way. Unfortunately, there
is not yet a model that describe quantum current originates from scattering
events or phonon-assisted hopping between quantum state is still considered
in an effective way by the mobility (µn, µp) [8].

In 1952 Bohn proposed to calculate this kind of potential from the solution
of the Schrödinger equation. But, as it is well known, the Schrödinger equa-
tion is an eigenvalue problem and its numerical evaluation is high time con-
suming especially for a big device with quite a high number of mesh points
or multidimensional system [17].
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Therefore to achieve a fast numerical implementation the Schrödinger
equation does not have to be solved. A possible model, that overcome this
calculation, is the Landscape potential model proposed by Filoche and May-
obara in 2012. [7] The main advantage of this new effective potential is the
tremendous time saving when multidimensional systems are taken into the
analysis, furthermore, even in a 1D simulation, it allows to study long de-
vices even with a fine mesh and still having an acceptable simulation time.
So how this potential is defined and why does it look so promising for the
modelling superlattice or resonant tunnelling diode (RTD)?

2.2.2 Landscape Potential

In this section has been described the main aspects of the Localization
Landscape theory presented for the first time in [7].
Filoche introduced this potential with the aim to solve a well-known prob-
lem, the localization due to Anderson disorder, without care too much about
the physical mechanism that gives rise to it. Practically speaking, his aim is
to find a model that, given a geometry and its potential distribution, predicts
in which subregions one can expect localized standing waves to appear, and
at which energy.

In addiction, it is well known that a localized state is a standing wave
that is maintained in a small sub-space of domain Ω, usually this wave and
its vibrational energy E can be rigorous derived by solving the ordinary
Schrödinger equation with Dirichlet boundary condition define of the con-
tour of domain ∂Ω.

Ĥψ = − h̄2

2me f f
∆ψ + Vψ = Eψ (2.27)

where:
u|∂Ω = 0 (2.28)

This equation is an eigenvalue problem that can be solved numerically
performing a discretization of the domain, as it has been shown in sec.(2.1),
this procedure becomes computationally infeasible for high numbers of mesh
point or more than one-dimensional device. It is also easy to notice, that from
the shape of potential V it is impossible to extract any kind of information
about the profile of quantum state or even less on areas of confinement.

The remarkable intuition of Filoche et. al. is to do not solve anymore an
eigenvalue problem, but to replace the right-hand side of eq.(2.27) with an
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unitary quantities, obtaining the equation:

Ĥu = − h̄2

2me f f
∆u + Vu = 1 (2.29)

where:
u|∂Ω = 0 (2.30)

By performing this substitution the eq.(2.29) is not anymore an eigenvalue
problem and so it can be resolved easily and with low computational time
even for large systems.
It is important to spend some word about the sign of Hamiltonian operator
and on the sign of solution u: Ĥ is an elliptical second-order operator, which
is positive only if V(x) is positive everywhere and in this case the solution
u will be positive as well. If these conditions are met u, as it is described in
[7], is the sought landscape potential and it is demonstrated that the subre-
gions hosting localized eigenfunctions are delimited by the valley lines of the
graph of u.

The main reason of this behaviour can be understood if the following
inequality, that it is satisfied by any normalized eigenfunction ψ of Ĥ with
eigenvalue E, is taken into account: (for mathematical proof: APPENDIX)

|ψ(r)| ≤ Eu(r)

where E is the mode energy and ψ is the mode amplitude normalized. There-
fore, this inequality forces the modules of ψ to be small where the potential
u has a minimum, this locus of points is called valleys. According to the di-
mensionality of domain, these valleys can be surface, lines, or single points
if a 3- 2 or 1-dimensional device is investigated, respectively. So with this
potential is possible to define subregions, that are a partition of the whole
domain, wherein each of these subregions the carriers are localized and the
strength of this localization can be extrapolated from the peaks of function u.
The reason of this "fancy" name, localization landscape potential, can be bet-
ter understand if an other function is introduced [8]

W(~r) = 1/u(~r)

first off all, it is importance to notice that the physical dimension is equal to
an energy, since u is a solution of eq. (2.29), W is indeed homogeneous to an
energy and so it can be consider as an effective confining potential. There-
fore, W is essentially the inverse of u, in this case, the peaks determine the
confinement of quantum state inside a certain region, following the analogy
explained above, these peaks can be seen as watersheds that confined water in

https://www.pnas.org/content/pnas/suppl/2012/08/22/1120432109.DCSupplemental/Appendix.pdf
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a jagged montane landscape.

By reformulating this concept in a more formal way it is possible to say
that the localization subregions at energy E can be calculated by filling the ef-
fective potential W up to the height E, and then observes the extent of flooded
basins. Within this new framework, the exponential decay length of the An-
derson can be derived but it is out the purpose of this thesis.
In summary, the quantum confinement due to the inferential pattern of waves
in the potential V can be described in a classical way adopting the new effec-
tive potential W.

This potential will be implemented into a semi-classical Poisson and
drift-diffusion model and compared to already existing models that take
into account the wave nature of electrons. At equilibrium the explained
Poisson-Schrödinger solver is used as a term of comparison while out of equi-
librium a model that includes quantum effect such as the tunneling current
is needed: the non-equilibrium Green’s function formalism (NEGF) has been
selected. A better description of how this model has been implemented is
given in the following sections.

2.2.3 Eigenvalue estimates

It has been shown that effective potential W properly describe the con-
finement of carriers due to an external potential or molecular disorder, but it
can be proved [8] that this new developed mathematical tool can be used to
give an estimation of the effective value of quantum energy ground-state.
By decomposing eq.(2.29) on the basis formed by the eigenfunction ψi of the
Hamiltonian is possible to prove that in each localization subregion labelled
as σm and ψ

(m)
0 the associated ground state can be derived with the equation:

u '

〈
1
∣∣∣ψ(m)

0

〉
Ej

0

ψ
(m)
0 (2.31)

From eq.(2.31)is possible to write that ψ
(m)
0 is almost proportional to the lo-

calised function u in that subspace, then with a few steps and introducing
W ≡ u−1 is possible to write for a 1D device:

E(m)
0 =

∫
σm

u(z)dz∫
σm
|u(z)|2dz

(2.32)

Therefore it is possible to directly estimate the value of fundamental energy
by knowing the shape of localization landscape potential u(z).
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2.2.4 Density of states and carrier densities

In conclusion, it is essential to understand how this new landscape poten-
tial can be used to calculate the carrier densities. To do so, some consideration
on the local density of state (LDOS) has to be performed.
The density of states gives the number of allowed electrons (or holes) states
per volume at a given energy, if a non infinite bulk device is taken into analy-
sis no confinement occurs and the classical local density of state can be easily
derived by expressing the available states per unit energy in the k−space
obtaining:

LDOS(E,~r) =
1

2π2

(
2m∗e
h̄2

) 3
2 √

E− EC(~r) (2.33)

By definition, it is possible to find the electrons(holes) density by integrating
the number of allowed states per volume (LDOS) multiplied by its probabil-
ity of occupation at a given energy described by the Fermi function:

n(~r) =
∫ +∞

Ec(~r)

1

1 + exp
(

E−EF
kBT

) LDOS(E,~r) dE (2.34)

If the local density of state is equal to eq.(2.33) this integral can not be solved
analytically, the eq.(2.34) can be re-written introducing the Fermi integral of
order 0.5 (F 1

2
).

n(~r) = NCF 1
2

(
EF − EC

kBT

)
where NC = 2

(
m∗e kBT
2πh̄2

) 3
2

(2.35)

The model described above is a classical description that allows predicting
the carrier densities inside a semiconductor without taking into account the
quantum effects that can arise due to confinement.
It has been shown that in the landscape potential all these effects are consid-
ered effectively by introducing a new potential and the carriers under this
potential behave as classical particles. By following the hypothesis made in
[8] it is possible to replacing the original potential (EC) with WC in eq.(2.33)
to accurately estimate the local density of state of a confined system by.

LDOS(E,~r) =
1

2π2

(
2m∗e
h̄2

) 3
2 √

E−WC(~r) (2.36)
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The physical meaning of this expression is, for a given device, the local den-
sity of state is equal to the one of an infinite medium with identical material
composition and a parabolic band whose minima energy would be W(~r).

Moving to a 3D system where a confining potential is present along the z
direction there is a translational invariance in the two other directions x, y, so
it is possible to show that quantum states are products of 1D and 2D states.
The total density of states can be found by convolving the 1D and 2D LDOS
[8], the derivation of these last formula is very similar to the 3D LDOS and
for sake of simplicity will not be reported here:

LDOS3D(E, z) =
1

4π2

(
2m∗e
h̄2

) 3
2 ∫ E

WC

dE1√
E1 −WC(z)

=
1

2π2

(
2m∗e
h̄2

) 3
2 √

E−WC(z)

(2.37)

It is straightforward to seen that the above expression is identical to the one
found for the bulk device so the carriers can be calculate by the formula
shows in eq.(2.34) where the potential EC has been replaced by WC.

n(~r) = NCF 1
2

(
EF −WC

kBT

)
(2.38)

This is one of the most important steps in the delineation of the Localize
Landscape model, by calculating the carries in this way leads to a tremen-
dous reduction of simulation time w.r.t a Schrödinger equation and further-
more the system in the study can be considered as a classical one. By doing
so, all the already existing models for classical simulation can be used, just
by replacing the previous classical potential with the localization landscape
potential. In the following section, it has been explained how this potential
can be introduced inside a Poisson drift-diffusion iterative model to simulate
a quantum structure out of equilibrium.

Integrated Density of State

To provide a coherent comparison between the Landscape model and the
already explained Schrödinger-Poisson solver, also in this case the integrated
density of State (IDOS) has to be defined. By considering the uncertain prin-
ciple, for a 1-dimensional geometry, ∆z∆k ' 2π the one-particle quantum
state spreads in phase space with a volume equal to 2π, following [8], is
possible to show that the number of energy states below given energy, that
is the wanted IDOS, has an asymptotic behavior so-called Weyl’s law. This
law states that the asymptotic behaviour of IDOS is equivalent to V(E)/(2π)
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where V is the volume in the phase space determine by Ĥ < E. Tacking in
mind the above considerations mede for this new potential WC is possible to
write Hamiltonian as:

H(z,~k) =
h̄2k2

2m∗e
+ WC(z) (2.39)

then introducing the spin factor, IDOS can be calculated from:

IDOS(E) =
2

2π

∫
z

∫
H<E

dkdz

=
2
π

∫
z

√
2m∗e (E−WC(z))

h̄2 dz
(2.40)

Before going on, it is important notice that the classical formulation of IDOS
can be obtained simply replacing the landscape potential by the conduction
band edge, furthermore if the holes are considered instead of the electron the
developed localization landscape model still works properly, if the necessary
substitution of terms are performed.

2.2.5 Potential reference

A crucial proprieties of Landscape potential that have to be underlined
before proceeding in further calculations and analysis is the effect that an off-
set has on the final calculated effective potential W. Considering the Schrödinger
equation (2.27), if an offset is introduced inside the potential V(~r) the only
visible effect on the energy eigenvalue is that has been shifted by the same
offset introduced (this propriety has already used to deal with the transversal
energy component)
On the other hand, If a constant value K is introduced in the eq.(2.29) be-
comes:

− h̄2

2me f f
∆uK + (V + K)uK = 1 (2.41)

leading to a potential WK = u−1
K very close to K, furthermore if the inequality

|ψ| ≤ (E + K)uK

is considered the product K · uK become close to 1 and this inequality is al-
most always satisfy, and therefore uK is not anymore able to describe the
localization of states in certain subregion of the domain. The reference of po-
tential V(z) should be chosen as the smallest possible but in such a way that
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the Hamiltonian remains a positive operator.
In this thesis, both the conduction and the valence have been minimized be-
fore proceeding to the calculation of WC(WV) and then the subtracted offset
is readded later to WC.

2.3 Out-of-equilibrium

The considerations and models described above hold only at equilibrium,
where no external field has been applied. From a practical point of view,
those analyses will not be very useful if real working devices, like lasers or a
photodetector, are taken into study.
Classically, a bulk resistor out of equilibrium can be studied by resolving
the well known Poisson equation coupled with drift-diffusion, this model
is commonly used to describe the transport and optical properties, by treat-
ing the carriers as semi-classical particles with a renormalized effective mass.
However, it is also possible to introduce implicitly many results of quantum
theory as energy levels, the density of states, quantum Fermi-Dirac statis-
tics, and transport parameters, such as carrier mobilities and diffusion coef-
ficients.
The optical proprieties usually is taken into account by means of the ABC
model for total recombination rate in semiconductor photonic devices. This
is an empirical model that consider the non-radiative recombination (e.g.
thermal in the lifetime approximation) and the Auger nonradiative recombi-
nation (proportional in quasi-neutrality to the cube of carrier concentration)
and express the total recombination rate as:

Rtot = A · n + B · n2 + C · n3 (2.42)

The coefficients A B and C describe the Thermal, Radiative and Auger respec-
tively. These parameters has been considered in the following as given pa-
rameters and non-further consideration has been done on this model.
Moreover, the coupled Poisson and Drift-Diffusion equations system, if no
further changes are made, is not able to consider the quantum transport of
carriers inside the device, for example, if a resonant tunnel diode is simulated
the current found with this technique will be very small due to the presence
of barriers that block the flowing of electrons and holes, this can be explained
considering the inability of the model to consider tunneling effects caused by
the spatial tails of the eigenstates that cross the potential barriers.

In literature, the non-equilibrium Green’s function formalism (NEGF) has
been introduced to overcome this problem, in fact, it provides a proper de-
scription of the quantum effect, as for example the tunneling current. Unfor-
tunately, this model is practically unusable for high-dimensionally or long
device due to its extremely high computational time. In this study NEGF out
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of equilibrium has been implemented for a 1D structure by means of Büt-
tikers probes, (an exhaustive description of implementation is given later)
in order to have a term of comparison for the new Landscape model out of
equilibrium proposed in [17].

The main idea proposed by Filoche is to introduce the well-described
Landscape potential into a semi-classical Poisson drift-diffusion solver, in
such a way that all the quantum effects are encoded inside this effective po-
tential. If this hypothesis is valid it is possible to consider whatever device as
a classical bulk one where all the non-classical effects are taken into account
by this new potential.

2.3.1 Description of the model

In the following after a brief recap of the classical drift-diffusion model
and its solution technique, it is explained how the Landscape potential WLL
has been introduced in this system of equations.

Focussing on a stationary 1-dimensional problem, it is possible to show
that the Poisson Drift-Diffusion problem (from now on labelled as PDD),
reads: 

∂

∂z

(
ε

∂φ

∂z

)
+ q(p− n + N+

D − N−A ) = 0

−1
q

∂Jn

∂z
+ Un = 0

+
1
q

∂Jp

∂z
+ Up = 0

(2.43)

where the drift-diffusion constitutive relation derived from the Boltzmann
transport equation are:


Jn = −qnµn

∂φ

∂z
+ qDn

∂n
∂z

Jp = −qpµp
∂φ

∂z
− qDp

∂p
∂z

(2.44)

Un and Up are the recombination rate for the electron and holes, their full
description is without the purpose of this thesis.
By introducing eq.(2.44) into eq.(2.43) is possible to see that this problem is a
system of partial differential equations, namely Poisson’s electron continuity
and hole continuity, with three unknowns:

• the electrostatic potential φ: solution of the Poisson equation.

• the electron density n, from which is possible to calculate the current
density Jn.
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• the hole density p, equivalently to electron density determines the hole
current density Jp.

Similarly as before, this problem will be treated by a generalized Newton’s
method leading to a matrix equation:

 ¯̄Aφφ
¯̄Aφn

¯̄Aφp
¯̄Anφ

¯̄Ann
¯̄Anp

¯̄Apφ
¯̄Apn

¯̄App

 ·
∆φ̄

∆n̄
∆p̄

 =

rφ

rn
rp

 (2.45)

This matrix problem has been written by following the notation described in
[12], where each sub-matrix ¯̄A has two different sub-scripts: the first one is
related to the equation to be assembled while the second indicates the un-
known considered. For example the matrix ¯̄Aφn contains the coefficients of
derivate of the Poisson equation w.r.t. the electron density. For sake of no-
tation, both the electron density and electron continuity equation are labeled
with the same letter.
The vector quantity ∆u embodies the incremental of the unknown quantities
at the subsequent iteration, until convergence is achieved, while vector r is
the residual of the minimization problem defined in eq.(2.43).
The definition of these matrix terms is out of the purpose of this master the-
sis, the results obtained in [12] has been used for the implementation, and for
sake of simplicity, it will not be reported here.

The main advantage of this method is the speed, it can be seen that for
a one-dimensional device, it reaches the convergence within few steps if a
good initial guess is provided, usually if the bias is not so high is enough to
choose equilibrium’s condition to assemble u0.
Whit the aim to use this method to describe quantum devices the landscape
potential has to be introduced, but how can it be done?

2.3.2 Moving to Landscape potential

At equilibrium, the landscape potential has been introduced inside the
Poisson solver just by replacing the classical potential EC(EV), in the carrier
densities calculation, with the new WC(WV). However, in this new iterative
problem, the carriers can not be calculated by the eq.(2.38) because electron
and hole densities are both unknowns of the system, so a different modus
operandi has to be used.
The coupling between Poisson and drift-diffusion described in the previous
section was the more general approach possible, where just a discretization
along the dimension z has been introduced, but for an effective stable numer-
ical implementation further correction and considerations have to be done.
First of all, for this numerical implementation the Fermi statistic has been
used instead of the Boltzmann one, and on the second-hand devices in the
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study all are made up by heterostructure and a correction on the definition of
the potential has to be introduced, finally the Scharfetter-Gummel discretiza-
tion scheme is needed to achieve a stable solution of the iterative Newton-
method.

Above all, it can be interesting and illustrative to spend some words on
the Scharfetter-Gummel discretization, a method that has been proposed in
order to overcome the numerical instability (in particular for device discretized
with not so high numbers of mesh point or a strong electric field) of the gen-
eral method described in the previous section. The need for this new dis-
cretization method can be better understand if the dependence of electrons
concentration on the potential φ is taken into account: by using the Boltz-
mann approximation is straightforward to see that the electrons concentra-
tion depends exponentially on the potential, so using the same discretization
step for both two quantities do not look like a cleaver approach. Further-
more, it has been shown, from fluid dynamic studies, that when two physical
phenomena are competitive in a convective flow eq.(2.44) drift and diffusion
standard numerical approach are unstable.
The purpose of Scharfetter-Gummel discretization model is to provide a sta-
ble discretization of the drift-diffusion constitutive relations and so be able to
determine the current density between two nodes, the unknown will not be
anymore the carrier densities n and p but the current density Jn and Jp where
a linear variation between two nodes is still a fair discretization. The formula
for continuity equations within this new frameworks reads:


Jn,ij = q

Dn

li

[
njB

(
φj − φi

VT

)
− niB

(
φi − φj

VT

)]
Jp,ij = q

Dp

li

[
piB

(
φj − φi

VT

)
− pjB

(
φi − φj

VT

)] (2.46)

where B(x), the Bernoulli function, is define as:

B(x) =
x

exp(x)− 1
(2.47)

The unknowns Jn and Jp do not have an exponential dependence on the
other unknown of the problem the potential φ, moreover, it has to notice that
within this new formalism it is not possible to distinguish the drift and diffu-
sion contribute to the total current density.

These method was derived by considering an homogeneous material and
Boltzmann statistic. Now if the Fermi statistic and heterostructure is intro-
duced in the model it is still possible to show that the continuity equation
for electrons and holes current can be expressed with eq.(2.44), where the po-
tential has been modified by a new correction terms. The new potential is:
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φ
(n)
eq = φ +

[
χ

q
+

kBT
q

ln(NC) +
kBT

q
ln(γn)

]
(2.48)

the correction therms are those inside the square brackets, the first two terms
are coming from the introduction of heterostructure, while the last one is
due to the consideration of Fermi statistic, the factor γn is simply the ration
between population of electron calculated with Fermi statistic divided by the
one found with Boltzmann. The eq.(2.46) coupled with the potential defined
in eq.(2.48) has been used to built-up the matrix for the Newton iteration
technique. It has to be reminded that the method discussed so far is still the
classical one, it does not yet take into account the quantum effects. With the
aim to include them the Landscape potential has to be somehow introduced.
Before going on, it is relevant to discuss the so-called diffusion coefficient
Dn, p introduced in eq.(2.46) defined as:

Dn = µnkBT

The mobility µ define with Einstein relation is a bulk mobility, that do not
obviously consider tunneling effects, so the transport of carriers is described
classically, even in the following when landscape potential is introduced. The
mobility is still considered as a bulk one and all the quantum effects are en-
coded only in the potential. Hence tunneling current will be described by the
lowering of the effective potential, instead, there is no model jet able to de-
scribe with a full quantum model for the quantum-current originated from
the phonon-assisted hopping between different eigenstates and this effect
has to be described through effective mobility, the effects of this latter contri-
bution to the current will not be discussed.

It has already been discussed that the landscape potential works properly
only if its offset has been minimized and the relative Hamiltonian is positive,
out of equilibrium the classical potential seen by the carriers is difficult to
minimize due to the external electric field that bends the band diagram. It
can be decomposed into two contributes: the one due to the heterostructure,
usually with a higher frequency variation, and the one due to the external
electrical field with a larger and smother variation. A possible solution to
overcome this problem, which has also the positive effect of speed up the
simulation, is to apply the localization landscape theory only on the compo-
nent of potential independently on the externally applied bias, and regain
the total one just by summing the two contributes.
In others words the electrostatic potential φ of the Poisson equation and the
uncorrected one of eq.(2.48) will not be directly influenced by the LL potential
but all the quantities derived from it (conduction and valence band, correct
potential..) will be reshaped with the potential ∆ELL

C found at equilibrium.
So this model can be seen as if a classical Poisson drift-diffusion has been
applied to a device where the conduction and valence band are described by
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this new smoother version of potential obtained from Landscape theory.
As an example, the factor γn is defined as :

γn =
n
nb

here both the electron density calculate with Fermi and the one with Boltz-
mann needed a conduction band edge and it will obtained with:

EC = φ + ∆ELL
C

Where ∆ELL
C is the effective correction of the potential at equilibrium, where

all the confinement effects are encoded. It straightforward to notice that also
the first two factors inside the square bracket in eq.(2.48), that are constant
and depend only on geometry, has been reshaped by the Landscape poten-
tial. For the valence band and the hole concentration, all the considerations
and the corrections terms introduces so far are still valid with the proper sub-
stitutions.
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2.4 NEGF and Buttiker probes

Finally, the NEGF approach has been considered. This method has been
used for both equilibrium and out-of-equilibrium simulation with the aim to
provide a further term of comparison for the results obtained with the land-
scape potential. Non-equilibrium Green’s function (NEGF) method is one
of the most popular employed models to describe carrier dynamics in open
quantum systems. In literature, this approach has been applied to a con-
siderable collection of devices leading to a successful prediction of carriers
transport and optical proprieties. However, all these promising studies are
characterized by the same problem: the NEGF approach is very high time-
consuming and its mathematical formalisms can be tricky and complex.
In this section, a brief explanation of the used NEGF method is presented
underlining the approximation performed made to reduce the complexity of
equations and to achieve a reasonable simulation time. Furthermore, it is im-
portant to recall that this method has been introduced in this thesis just to
perform a comparison, and it has been applied to already existing results, so
depending on the methodology used for the analysis NEGF should be able to
adapt its parameters or inner approximation in such a way that there is a per-
fect match in the frameworks of two different study. All these considerations
will be better explained in chapter 3 where the simulations results are shown.

Usually, in NEGF calculation all the scattering processes are set to zero,
and the system is described as a ballistic device. This first approximation is
fair enough if very short devices with high mobility and low temperature are
taken in the study but unfortunately, this is not the case. Therefore, scattering
events have to be introduced into the model. The Büttiker probes approach,
in which the individual physical scattering event is replaced by global energy
and momentum self-energy described by a scattering Fermi level [21], seams
to be a reasonable choice. For a complete description of the NEGF approach
one usually has to achieve an iterative solution with the Poisson equation,
similarly to what has been done in sec. 2.1 for the Landscape model, an ex-
pert reader can quickly understand that a self-consistent solution requires a
definition of boundary conditions and the insertion of coupling with the con-
tacts, increasing the complexity of implementation and the simulation time.
Moreover the obtained results, as for example the conduction band, coming
from this iterative solution can not be mutually consistent with the one found
with the Landscape potential, leading to an inconsistent comparison. For the
following simulations, the input potential and Fermi level of the contacts
reservoir are those found with the iterative LL-PDD or Poisson Schrödinger
simulation. The only iterative procedure presents in the NEGF implementa-
tion is the inner-loop implemented for the conservation of current inside the
Büttiker probes.
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2.4.1 NEGF

Firstly, the NEGF formalism has to be defined, for a geometry discretized
along the heterostructure’s growth direction z. It has already been under-
lined in eq.(2.2) that the wave-function of a quantum states can be decom-
posed into a product of plane wave and a shape function that slowing vary-
ing along the direction of confinement. Here, only the latter contribute has
been used for the derivation of NEGF matrix formalism. By using the ap-
proach described in [13] is possible to write down a set of uncoupled equa-
tions that allows to derive physical observable, such as the carriers and cur-
rent densities, these matrix can be written as:

GR(~k, E) = [EM− H(~k)− ΣR(~k, E)]−1 (2.49a)

GA(~k, E) = (GR(~k, E))† (2.49b)

G≶(~k, E) = GRΣ≶GA (2.49c)

Where GR is the retarded green function, G≶ the lesser and grater green func-
tions, and finally Σ≶ is the greater and lesser self energy that can be derived
from:

Σ< = i[ fFD(E(~k)− µ)Γ(~k, E)] (2.50a)

Σ> = i[ fFD(E(~k)− µ)− 1]Γ(~k, E) (2.50b)

where the broadening factor Γ is:

Γ(~k, E) = i[ΣR(~k, E)− ΣA(~k, E)] (2.51)

in this latter formula the retarded and advanced self energy [GA := (GR)†]
have been introduced. It is easily detectable that both the Green’s and Self
energy matrices depend on the energy and on the wave-vector (k).
It important to underline that the Hamiltonian Ĥ of the system does not de-
pend on transversal energy level (E), while in the retarder self energy ΣR are
encoded the information of the coupling with the left and right reservoir and
the self energy of the Büttiker probes. All Green’s functions and self-energies
are matrices derived from the discretization in space over the direction z, fur-
thermore in the MATLAB implementation they have been built up as sparse
matrix to further reduce the computation cost.
It is possible to show that, from the retarded Green function all the physi-
cal quantities like carrier densities or current density can be derived, here is
reported the used formula to calculate the electron spectral density and the
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current spectral density for a 1-dimensional device:

n(zi, E) = −2
∆k
2π

i ∑
kj

k jG<
i,i(k j, E) (2.52a)

J(zi, E) =2
q
h̄

∆k
2π ∑

kj

[(Hi+1,i(ki)− EMi+1,i)G<
(i+1,i)(k j, E)−

G<
(i,i+1)(ki, E)(Hi+1,i(k j)− EMi,i+1)]

(2.52b)

In these formulas the dependence on transversal vector~k is still consider di-
rectly, as it will better discuss later, this approach has only been used at equi-
librium for short device simulation. The reason under this choice is that,
as soon as the complexity of the structure increases, perform a sum on the
discretized domain k becomes computation unsustainable. So for long de-
vices simulation and for the ones out of equilibrium, where the inner loop on
Büttiker Fermi level is introduced, the integration over the k vector will be
perform analytically.

2.4.2 Scattering

In a ballistic simulation a device is connected at left and right edges at two
reservoirs characterized by their Fermi levels (µL, µR), respectively. They are
able to exchange with the system momentums and carriers, these two re-
gions labeled as Source and Drain injects carriers from a side and recollect
them from the other side. The number of injected and extracted electrons
is the same so the current is conserved. By studying the behavior of these
injected carriers is possible to fill the density matrix and so derive all the
needed physical quantities.

The Büttiker probes are introduced in order to model the dissipative
transport phenomenologically within the device, these probes perturb the
Hamiltonian similarly to what the source and drain reservoirs do. These
probes can be seen as multiple internal reservoirs coupled with the device,
the main difference with respect to the D. and S. is that this new set of reser-
voirs can not exchange particles within the system but only change the mo-
mentum of the electrons in order to bring the system in equilibrium (a ballis-
tic device is as far from equilibrium as it can be).
This process can be seen as if a Büttiker probe extracts electrons from the
device, perturbs those electrons energy and momentum, and then reinjects
them in the device with a different momentum distribution without chang-
ing their number. The associated Fermi level of Drain and Source describes
how they exchange carriers with the device, following this result is possible
to demonstrate that even the Büttiker probes have their own Fermi levels
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(µBP), that describes, similarly to µR and µL, how those fictitious reservoirs
extract and inject electrons into the system. However, it should be notice that
the introduction of scattering events inside the simulation framework does
not have to break the conservation of current. Therefore, those Fermi level
have to be selected in such a way that carriers are conserved at each probe
center leading to a zero probes current, this implies that the total current
density is constant in space. A primal schematic representation of how those
Fermi levels is updated in order to achieve such condition is given in fig.(2.4).

FIGURE 2.4: Schematic representation of the selection of the Büttik-
ers probes Fermi levels at each i-th point of the discretized domain.
Red dots are the position of probes in space while the dotted ar-
rows represent how the value of their associated Fermi level can be
shifted in order to achieve current conservation. The black dots are

the Fermi level of Source (S) and Drain(D) that must not vary.

The retarded Büttiker probe combines all intra-band scattering processes,
such as scattering on various phonons, impurities, and electron-electron scat-
tering into the empirical scattering parameter η, this is a phenomenological
parameters related to the bulk scattering time τ by the relation [18]:

τ =
h̄

2η
(2.53)
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Therefore, η is introduced in the total retarded self energy by defining a self
energy Büttiker matrix ΣR

BP. The element of this matrix reads as:

ΣR
BP(z, z′, E) = δ(z− z′) · ηa if E ≥ EC (2.54)

the parameter η defines the strength of the scattering and has a dimension
of an energy, the parameter a is the mesh step in the discretization of the
domain. Within this formalism total retarded self-energy matrix is a diagonal
matrix derived from the sum of three contributes, the left and right contact
reservoir, and the Büttiker probes.

2.4.3 Fermi function

As already explained, the physical observables can be derived by the
lesser Green’s function, which can be calculated from the greater and lesser
self-energy. These two matrices can be derived by the retarded and advanced
function by putting eq.(2.51) into eq.(2.50). If a ballistic simulation is consid-
ered (η = 0 eV) the Σ< is a sparse matrix with non null terms only at the two
vertex, due to the presence of reservoir. So in this case the only used Fermi
levels are those fixed by the contacts (µL and µR). As soon as the Büttiker
probes are introduced, the self-energy is no longer zero on their diagonal el-
ement and a fFD should has to be calculated on these points.

As stated above, the NEGF model is used to provide a comparison both
at equilibrium and out of it, the introduction of Büttiker probes has further
increased the complexity of the implementation of the model especially out
of equilibrium. In this condition, it can be noticed that is computationally
impossible to consider the integral over the discretized space k directly as is
expressed in eq.(2.52), this is caused by the requirement of an iterative pro-
cedure to determine the Fermi level developed to ensure the current conser-
vation. On the other hand, this Fermi Level at equilibrium can be considered
identically zero and it is still possible to consider the dependence on the wave
vector if the length of the device is acceptable. So the implementation of the
NEGF approach at equilibrium and with an applied bias will be slightly dif-
ferent, in the following the main differences will be underlined.

2.4.4 Equilibrium

At equilibrium, both the Schrödinger model and the localization landscape
theory can be used to simulate the device in the study. Here it has been also
described how the NEGF approach can be used as a further comparison for
the obtained results.



2.4. NEGF and Buttiker probes 35

The retarded Büttiker self-energy used for calculating the lesser Green’s func-
tion at each iteration is written in eq.(2.54). Within this formalism, it is pos-
sible to derive all the spectral physical quantities in interest, such as the
spectral electron density or the local density of states. Schrödinger or land-
scape potential are not able to simulate such spectral quantities so in order to
have results comparable with these models the spectral density coming from
NEGF simulation should be integrated over the energy domain .
As an example the calculation of the electron density [13] has been reported
here:

n(z) =
∫ dE

2π
n(zi, E) ' ∆E

2π ∑
j

n(zi, Ej) (2.55)

An other important result that can be extrapolated by this analysis is the
local density of state, from which is possible to calculate the integrated den-
sity of state (IDOS) already discussed for both landscape and Schrödinger
models.
Similarly to what has been done for the electron spectral density is possible
to define the spectral density of state as:

LDOS(zi, E) = 2
∆k
2π

i ∑
kj

k j · [G>
i,i(k j, E)− G<

i,i(k j, E)] (2.56)

In order to provide a coherent comparison w.r.t. the calculation described
in the previous sections, the integrated density of state should be calculated
from this latter expression; The IDOS(E) counts the number of states avail-
able under given energy and it is a dimensionless number, as a first glance
one can think that these quantities can be calculated just by integrating the
eq.(2.56) over the spatial domain. But by doing so the obtained result has a
physical dimension of

[
J m2]−1, that is equal to the physical dimension of a

2D local density of state. It is possible to notice that by doing this integration,
it has been consider all the states under a given energy in the studied device,
but the desired quantity is the number of states along the direction of con-
finement (in this case z) so the total local density of state should be divided
by the constant local density of state of a 2-dimensional not confined system
equal to [8] :

LDOS2D =
m∗e

h̄22π

here the spin degeneracy has not been introduced because it is already been
considered in the eq.(2.56), so the 1-dimensional LDOS that have to be inte-
grated is:

LDOS1D(zi, E) = 2i
∆k
2π

2πh̄2

m∗n
∑
kj

k j · [G>
i,i(k j, E)− G<

i,i(k j, E)] (2.57)
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The integration has be performed numerically and it can be shown the ob-
tained results is a dimensionless number as expected.

It is important to notice the IDOS can be calculated only and only if the
integration over the discretized k-vector domain is performed. As soon as the
analytical integration is introduced in the model all this kind of information
is lost, and the obtained Local density of states is the one calculated for k = 0,
useful for mini-band definition.

2.4.5 Analytical integration of transversal wave-vector

Before going on the description of the procedure, the analytic integra-
tion of the transversal wave-vector~k has to be introduced. This procedure is
needed in order to reduce the simulation time when long devices or out of
equilibrium simulations are performed. With the aim to eliminate the depen-
dence on this parameter, the sum over all the possible value of k in eq.(2.52)
has to be replaced by an analytic evaluation of the integral. To do so, all the
dependences on the transversal energy component have to be moved into
the Fermi function fFD, and then integrating it:

FFD(E, µ) = ∑
k

fFD(E + ek − µ) =
m∗kBT

πh̄2 ln
(

1 + exp
(

µ− E
kBT

))
(2.58)

Introducing this result in eq.(2.50) is possible to remove the dependence
on k even for the derivation of physical observables. This approximation in-
troduces a huge save of simulation time, it has been seen that in the equilib-
rium case in a NEGF simulation both the energy domain and the transversal
wave-vector are discretized with a different number of point, NE and Nk re-
spectively, for each value of Energy the above-defined matrices should be
calculated for each value of k leading to a total number of iteration equal to
N = NE · Nk, by introducing the analytical integration over k, the total num-
ber of iteration N is simply equal to NE speeding up the whole simulation. It
is important to notice that without this approximation the numerical evalua-
tion of the Jacobian defined in appendix A would be impossible.
On the other hand, the introduction of this analytical integral does not longer
allow expressing the Büttiker as defined in eq.(2.54), because the dependence
on the energy E at which the electrons are injected into the device from the
contacts have been lost. Therefore, it is not possible to build up a ΣR

BP that
depends on energy, but it has to be defined constant on the whole energy
domain. As it has been described in the following chapters this could lead
to an overestimation of charges in determining regions, but do not change
significantly the current calculation.
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2.5 Out-of-equilibrium

Now it is possible to define the implementation done in order to achieve a
self-consistent solution for the scattering Fermi level introduce in the Büttiker
probes.
First of all, the function that has to be minimize have to be defined, within
the round-trip approach the spectral current derivate w.r.t. to the coordinate
z can be written as:

∂J
∂z

(E, zi) =
q
h̄
[
HG<(E)− G<(E)H

]
i,i (2.59)

Where the subscript (i, i) means that only the diagonal elements have to be
considered, furthermore all the dependence on k has consider with the ap-
proximation previously described.
By integrating eq.(2.59) with respect to energy is possible to obtain the cur-
rent derivate eq.(2.60), this formula is the starting equation used to determine
µBP, by imposing that in each point of the domain eq.(2.60) is below a certain
small threshold.

F(zi, µBP) =
∂J
∂z

(zi) =
∆E
2π ∑

j

∂J
∂z

(Ej, zi) (2.60)

At the first glance, the problem that has to be resolved in order to ensure
the current conservation seems to be similar to the minimization problem de-
fined for the previously describe iterative procedure. However a deeper anal-
ysis shows that the function defined in eq.(2.60) does not depends explicitly
on the unknown µ, and so the Jacobian needed for the implementation of the
Newton method can be defined analytically. A possible solution to overcome
this problem is to define the Jacobian by means of a numerical procedure, a
proper description of this technique and a possible improvement by means
of the Broyden method has been reported in appendix A.

Finally, with this procedure is possible to determine the Fermi levels that
ensure the conservation of the current, knowing them all the wanted physi-
cal quantities can be derived and used to compare with the landscape model,
unfortunately by introducing the analytical integration over the wave-vector
a the physical quantities are calculated for k = 0 leading to a loss of informa-
tion in the spectral quantities.
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Chapter 3

Equilibrium simulations

In the following chapter, several structures have been studied at the equi-
librium condition, in order to demonstrate the power of the localization land-
scape model.

In the first case, a quantum well has been taken into account. A quan-
tum well (QW) is a heterostructure with a nanometric dimension, where due
to an energy gap mismatch the potential seen by carriers is not uniform in-
side the structure but depends on the mismatch between the two different
values of the energy gaps. QW is the simplest geometry where has been ob-
served quantum confinement and the discretization of the allowed energy
levels. Within these levels, a particle is free to mode along the two transver-
sal directions but it is confined along the z-coordinate. Usually, the thickness
of the confinement region should be lower than a few nanometres in order
to be smaller than the de Broglie wavelength of the carriers. For following
analysis a layer of GaAs 2 nm wide has been sandwiched between two long
(40 nm) resistors made of AlxGa(1–x)As. For these simulations, the molar frac-
tion has been modified between 0 and 0.5 in order to study how the LL model
behaves for different height of the potential barrier. A schematic view of the
described device is depicted in fig.(3.1).

FIGURE 3.1: Schematic backbone of quantum well used in the
simulation
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This quantum well has been analyzed only at equilibrium condition, and
without solving the Schrodinger-Poisson problem, by doing so the charge ef-
fects at the hetero-junctions are neglected obtained a flat conduction band.

Then, a more complex device has been simulated, a superlattice. Just
as a reminder, a superlattice (SL) is a periodic structure of layers of two or
more materials, one of the two has a high energy bandgap while the other,
where the confinement arises, is characterized by a lower band gap value.
Similarly as before, GaAs has been chosen as the low bandgap material and
AlxGa(1–x)As as the one with a higher band gap. Dissimilar to the QW analy-
sis the molar fraction has been taken as constant and equal to x = 0.5 for all
the simulations. Furthermore, the thickens of confinement regions has been
taken as constant and equal to Twell = 2.5 nm, on the other hand, the width of
the barriers Tbarrier, that determines the coupling between wells in the active
area of SL, has been varied in order to understand how the landscape po-
tential predicts those effects. For this analysis a 31-periods superlattice has
been considered, this means that there are 31 wells inside the active region
and each of these is separated one from the others by a barrier of thickness
Tbarrier.

Moreover, for a particular set of simulations, the positional disorder has
been introduced in such structures. The implementation of such phenomena
has been described formally in the presentation of the associated results. Fi-
nally, similarly to the QW case the active region been sandwiched between
two bulk resistors of width 40 nm, which are the Source and Drain contacts.
A schematic view of the considered perfectly periodic superlattice has been
depicted in fig.(3.2).

FIGURE 3.2: Schematic view of superlattice structure used in
the simulation

Before going on, it is important to recall that the GaAs and AlGaAs has
been considered as perfectly lattice-matched, and furthermore, the disper-
sion relation of electrons and holes have been described with a parabolic ap-
proximation with an effective mass constant for both the two material, inde-
pendent on molar fraction, and equal to the one of GaAs.
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For all the described structures the used approach is almost the same:
the device is defined as a discretized domain along the z direction where
for each node physicals materials parameters have been defined.Then after
having created the backbone of the structure, an initial guess potential is cal-
culated from the neutrality condition and introduced in the self-consistent
Poisson-Schrödinger solver explained in sec.(2.1). By solving iteratively that
procedure, it is possible to obtain the shape of the potential φ from which is
possible to calculate the conduction band edge with the following relation:

EC = −qφ +
EG

2
+ χ +

kBT
2

ln
(

NC

NV

)
(3.1)

Now, the found conduction band EC is introduced in the landscape model,
where none iterative upgrade of the potential is done in order to have the
same initial condition w.r.t the Schrödinger calculus, then EC is also intro-
duced in the NEGF approach.
All the outcomes of simulations are stored and post-processed in order to ob-
tain the graphs and values that have been discussed in the following lines.

3.1 Quantum well

In this first part of equilibrium analysis, the simplest quantum structure
is taken into the study: a quantum well. The molar fraction x of AlxGa(1–x)As
can be tuned between zero and one, by doing so it is possible to change the
mismatch in band gap values (∆EG) leading to a different confining poten-
tials. Anderson’s rule has been used to determine how ∆EG is separated
between the conduction band offset (∆EC) and valence band offset (∆EV). It
is known that the energy gap is the difference between the lower edge of the
conduction band and the upper edge of the valence band, hence by align-
ing the vacuum levels of the two materials (Anderson’ rule) it is possible to
write, for two semiconductor labeled as 1 and 2:

∆EC = χ2 − χ1 (3.2)

where χ is the electrical affinity. Similarly the valence band offset can be
defined as:

∆EV = E2
G − E1

G − ∆EC (3.3)

By looking at the material parameters, it can be seen that the affinity of GaAs
is fixed while the one of AlGaAs depends on the molar fraction (x). By substi-
tuting those values in eq.(3.2) and eq.(3.3) it can be seen that the conduction
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band offset depends on the molar fraction too. The analytical function that
describes the dependence of the conduction band offset on the molar fraction
(x) can be derived and written as:

∆EC = +0.839x− 1.4370x2 + 1.310x3 (3.4)

Form eq.(3.4) it is possible to notice that between x ∈ [0, 1] the conduction
band offset is a monotonic increasing function, so for a higher value of x, the
conduction band offset and therefore the potential barriers seen by the elec-
tron increase. It has to notice that this analytical expression has been derived
just to give to the reader a quick understanding of the behavior of conduc-
tion band offset, but the function used in implementations does not have this
form, in order to do not introduce numerical errors. In the table (3.1) has
been depicted the conduction and valence band offset for the four different
values of the molar fraction used for the following simulations, moreover, it
has to be recalled that those values depend neither on the doping nor on the
length of the device so they are also valid for the superlattice simulations.

x ∆EC ∆EV ∆EG ∆EC/∆EG

0.1 0.0713 eV 0.0530 eV 0.1243 eV 57,36%
0.2 0.1218 eV 0.1060 eV 0.2268 eV 53,47 %
0.3 0.1590 eV 0.1592 eV 0.3182 eV 49,97%
0.5 0.2240 eV 0.2650 eV 0.4890 eV 45,81%

TABLE 3.1: Conduction and valence band offset
for several values of molar fraction(x)

The sign of the conduction and valence band offset are both positive be-
cause a junction between GaAs and AlGaAs is a type-I heterostructure where
the bottom of the conduction band and the top of the valence band are formed
in the same semiconductor layer (GaAs). In this case, the confinement of
electrons and holes arose in the same layer. A higher value of x determines
a bigger barrier seen by electron inside the quantum well leading to higher
confinement. Different values of x have been considered in the following
simulation in order to understand if the landscape potential works properly
for both high or low confined states.

The first geometry in study is a well 2 nm wide made of GaAs enclosed
between two barriers 40 nm wide of AlxGa(1–x)Ar, the simulations have been
performed with four different values of molar fraction x = [0.1, 0.3, 0.5]. In
this geometry doping has been assumed as constant and equal to ND =
1018cm−3 additionally the incomplete ionization model has been introduced
with the aim to describe the activation of doping impurities. Furthermore,
the effective mass for electrons and holes have been considered as constant
for the whole device and equal to me = 0.067m0, mlh = 0.090m0 and mhh =
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0.349m0 these are the electron, light hole and heavy hole effective mass, re-
spectively.
Due to the small total length of the geometry, it possible to selected a fine
mesh step so the z-axis domain has been discretized with a mesh step of
∆z = 0.1nm.

The following simulations have been performed just to give a first in-
troduction of the landscape model and to better understand its proprieties,
therefore the Poisson self-consistent solution has not been calculated for those
simple structures. Hence the landscape method has been applied to a flat
band QW, in order to neglect the space charge effects. To do so the potential
φ, needed to find EC, has been considered as constant and equal to the value
derived from the neutrality boundary condition, then the conduction band
edge has been calculated by introducing this values in eq.(3.1).

The Schrödinger equation has been resolved for such distribution of po-
tential for both electrons and holes. From its solution, as it has been described
in sec.(2.1), two main outputs are obtained: the set of eigenenergies and their
associated wave-functions. Form these it is possible to obtain the electron
density and ground state E0 for the confined states and moreover, the inte-
grated density of states can be derived following the steps described in 2.1.3.

First of all, the conduction band and the associated Landscape potential
have been shown for the four geometries in the study, fig.(3.3), this latter po-
tential has been calculated using the conduction band EC as the potential V in
eq.(2.29) and proceeding as discussed in 2.2. For those geometries, the min-
imization of the potential has been done just by putting at zero the bottom
of quantum well. As it can be easily seen, the shape of landscape potential
is smooth and furthermore, it perfectly matches the conduction band outside
the confinement regions. This shape can be better understood considering
the eq.(2.29), indeed the inverse of the potential u is the solution of a differ-
ential equation in which a second-order derivative is involved, therefore the
function u is C(z)2, this means that u is continuous in the interval z, together
with their derivatives of order 2, leading to this a smooth shape. Going on, it
is interesting to see that the variation of effective potential WC extends far-off
the edge of the well, as soon as this potential is introduced in the Fermi func-
tion, in order to calculate the carrier densities, it originates two main changes
w.r.t the classic calculation: a decrease of carrier densities in the confinement
subregions and a smooth transition between well and the external bulk ma-
terial.

In the same figure (3.3), it is also represented a comparison between the
predicted ground states energies, the black dotted line is the one found by
solving the eigenvalue Schrödinger problem while the red one is the ones
found with the LL potential. In order to calculate the confinement energy
state the eq.(2.32) has been used as the integration domain, σm the whole
space z has been considered, this approximation of σm does not seam to over-
estimate the results. As a first glance, it is possible to see that this new model
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FIGURE 3.3: Comparison between Poisson-Schrödinger conduction band
and its associated Landscape potential (solid line), comparison b.t. ground
state derived from Landscape approximation and Schrödinger eigenvalue

problem, at different values of molar fraction x

exhibits a remarkable agreement w.r.t. the results found from Schrödinger,
especially for high confined states(x = 0.3 and x = 0.5). A further compar-
ison of these values has been performed in tab.3.2, where also the relative
error of LL prediction has been calculated. It has to be notice that the ab-
solute errors between the two results is almost independent of the height of
barriers, and the reduction of the relative error can be explained considering
that a higher confining potential leads to a deeper ground state energy.

x LL [ eV] Schrödinger [eV] abs. relative error

0.1 0.006 eV 0.007 eV 16.66 %
0.2 -0.020 eV -0.018 eV 11.11 %
0.3 -0.032 eV -0.031 eV 3.23 %
0.5 -0.057 eV -0.058 eV 1.72 %

TABLE 3.2: Comparison of the ground state energy for dif-
ferent values molar fraction.
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Then, the potential WC has been introduced in eq.(2.38) in order to compute
the electron density in the conduction band. In fig.(3.4) has been depicted
as a comparison between the results obtained from four different methods
(classical, NEGF, LL, Schrödinger).
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FIGURE 3.4: Electron density, calculated for the four different methods com-
pared to the classical one, at different values of molar fraction x

At a first glance, it easy to notice that the classical results are close the
Schrödinger, landscape, and NEGF curves only at the edges of AlGaAs, where
no quantum effects are present, in fact inside the well classics’ results are al-
most constant and highly overestimate the carrier densities, then they drop
sharply outside not accounting the quantum nature of the electron. In the
following results, the classic calculation has been always depicted in order to
provide a further term of comparison but for sake of simplicity, it has been
no longer commented on, due to its inability to consider the quantum effects.

Going on, the electron density calculated with the LL model perfectly
match the other curves in the bulk region, where the effective potential is
equal to the classic one, in fact far away from the well no quantum effects are
present and the two models are perfectly coherent. By getting closer to the
well, it is possible to observe that the other curves pull away from the classic
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one at distance from the well almost independent of the height of the bar-
rier. Furthermore, it is possible to notice that this length, where the quantum
effects start to affect the electron density, is bigger in the landscape model.
A possible explanation for this effect is that this new effective potential WC
slightly overestimates the tunneling of states from the barrier. This consider-
ation has a further prof if a comparison between the peaks inside the well is
provided. Indeed, it possible to see that the absolute value of electron density
in the well, calculated with the landscape model always underestimates the
carries. Therefore, the effective potential found by the LL model inside the
confinement region is barely too small, leading to a tunneling effect higher
than the one predicted by the Schrödinger simulation. Finally, it has can be
noticed that the results predicted by the NEGF and the Schrödinger method
are perfectly coincident, for these simulations the integration over the dis-
cretized wave-vector domain is still taken into account so it is also possible
to calculate the IDOS.

Finally, the integrated density of state (IDOS) has been analyzed, the ob-
tained comparison between the four models in analysis has been depicted in
fig.(3.5). As expected, the Schrödinger integrated density of states is a step
function where for each value of eigenenergy the IDOS counts two states
(the number of states inside the well multiplied by the spin factor),instead
the other two quantities, by definition, have to be continuous.
For high values of energy, the IDOS behaves as a bulk one, following the
Weyl’s asymptotic low. The IDOS calculated from the original potential EC
matches the other simulations only at high energy but totally fails the de-
scription at lower energy, whit a take-off energy too small, equal to the bot-
tom of the conduction band. On the other hand, by considering LL approach
is possible to see that the take-off energy shifts to higher values due to the
introduction in the simulations of quantum effects. Going into detail, it is
possible to observe that in the LL model the IDOS become different from
zero about 10 meV before the Schrödinger curve, this behavior can be ex-
plained considering the definition of IDOS in eq (2.40), this is a continuous
function so in order to reach a certain high for given values of energy it has
to detach at a smaller value of energy w.r.t. a step-wise function obtained
from Schrödinger eq.(2.26)), [8]. A similar behavior it is also observed in
the NEGF’s IDOS, especially for low values of confining potential but on the
other hand, better predicts the results in the confinements region. At higher
energy, the reason for the jagged shape of the IDOS can be attributed to the
discretization of transversal vector k.
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FIGURE 3.5: Integral density of states, calculated for the four differ-
ent methods, compared to the classical one, at different values of molar

fraction x

3.2 Superlattice

In this section, a different kind of geometry is taken into account, a su-
perlattice (SL). This device constituted by periodic structure is widely used
in commercial application as for example LEDs or other optical devices, like
brag mirrors or photodetectors.
An SL is mainly a periodic structure of two or more materials and it can be
considered as a periodic replication of the quantum wells described above.
The first distinction between superlattices can be performed by considering
the width of barriers e, in fact, if this length is small it possible to talk about a
coupled superlattice or simply a superlattice while on the other hand a low
coupled superlattice, or multiple quantum wells, is characterized by wider
barriers. Both of these two cases have been analyzed in order to understand
if the ,landscape model is able to describe such structures.
Then the effect of position disorder has been considered on those superlat-
tices, where further effects of localization can occur due to the Anderson the-
ory.
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3.2.1 Periodic Superlattice

The first geometry considered is a 31-pairs of GaAs/AlGaAs hetero-junction
sandwiched between two bulks AlGaAs. The whole structure has been doped
by an constant donor dopant density equal to ND = 1018cm−3 and the effec-
tive mass has been considered as constant and equal to the GaAs bulk effec-
tive mass.
The simulations have been performed for four different values of barriers
width while the wells regions have been left unmodified. Those thickness
have been varied between 10 nm and 2 nm in order to account all the possi-
ble coupling condition, ranging respectively from a low coupling condition
to an high one.
The external bulk length has been imposed equal to tbulk = 40 nm, the mesh
step has been increase to half a nanometres (∆z = 0.5nm), while as molar
fraction of AlxGa1–xAs the value x = 0.5 has been selected, in such condition
by following the results depicted in table 3.1 the confined potential for the
electron, in the wells regions, is equal to 0.2240eV.

Furthermore, for these simulations, the NEGF approach has been sightly
modified with respect to the quantum well case. Due to the higher length of
the device, computation time has greatly increased. Hence the analytical in-
tegration over the wave-vector k, explained in 2.4.5, has been introduced. It
has to be further notice that, even if the simulation time is still achievable, at
least at equilibrium, this integration was mainly introduced in order to pro-
vide a perfect matching between the simulations performed at equilibrium
and out of it, indeed in the latter, it is impossible to consider the numerical
integration over the k-domain. As already explained, all the physical quanti-
ties that depend on the components of transversal wave-vector, as for exam-
ple the LDOS, has been lost, and that why in the following result the NEGF’s
IDOS has not been depicted.

First of all, the four different conduction bands in the active region of SL
have been depicted, in fig.(3.6), with their associated effective potentials. It
has to notice that the total length of the devices is different in the four cases,
but in order to provide an immediate comparison only two dozen periods
have been depicted and furthermore, the four plots have all the same energy
(y− axis) scale. Usually, the devices based on SL are very long, some µm as
for example in photodetectors, so the most important results are those in the
middle of the periodic region where the conduction band is not affected by
edges and by the space charge bending. For these reasons the following re-
sults has been presented only in this region, according to the geometry taken
into study different parts of the device is considered.
It easy to understand that, by increasing the width of barriers the landscape
potential approaches the classical one in the barriers region, this is because
the quantum effects are weaker and the tunneling between wells is reduced,
as it can be easily seen in fig.(3.6d) or fig.(3.6c) the potential seen by the elec-
tron in the confinement region increases by increasing the barriers width. By
contrast, if small barriers (3.6a and 3.6b) are simulated, the effective potential
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is quite different from the conduction band edge, this effect can be explained
by considering the coupling among wells. In fact, the tunneling between two
confined states effects is higher when the thickness of barriers is small, due
to a higher overlap of the tail of wave functions. By studying those graphs,
it is underlined how this new effective potential is capable of reducing the
barriers seen by electrons in the confinement regions just by introducing in
an effective way quantum tunneling. By comparing fig.(3.6a) and fig.(3.6d)
is possible to see that an electron inside an inner well sees a dissimilar value
of confining potential, even if the height of classical barrier is the same.
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FIGURE 3.6: Portion of conduction band, for the four different values of
barrier width, with the associated effective potential (WC) found with

Landscape model.

Then the behavior of the valence band has been analyzed, valence band
edge has been derived from the obtained conduction band described above
simply subtracting the non-continuous value of energy gap EG(z).

EV(z) = EC(z)− EG(z)

The obtained results have been sketched in fig.(3.7) where the energy scale
on the ordinate is equal to the one used for the conduction band, in order to
perfect compare the two outputs of simulations.
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FIGURE 3.7: Portion of valence band, for the four different values of
barrier width, with the associated effective potential (WV) found with

landscape model.

It can be noticed that the landscape potential behaves differently in the
valence band. Even if the holes confining potential is slightly higher than
the one of the conduction band (∆EV = 0.2650eV), the landscape potential is
closer to the classical one even with small barrier width. The reason for this
behavior can be imputed to the higher value of holes effective mass. First of
all, a higher mass will lead to a lower ground state energy and a higher num-
ber of allowed states in the well, leading to a potential WV close to the bottom
of the well. On the second hand, by recalling that the tunneling probability
decreases exponentially with the mass, holes will have a lower probability to
escape from the well, and they saw a potential that is very close to the classi-
cal one.

Then, in order to better understand the confinement of states in those
superlattices, the IDOS, the integrated density of available states, has been
calculated with the same approach used for the quantum well, obtaining the
results shown in fig.(3.8). For very low coupling between the wells, the IDOS
increased through a series of steps fig.(3.8d), it can be demonstrated that the
first two steps have a height equal to 4, this is because due to band bending
and charge effects the two nearest well to the contacts have different shapes
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and ground states energy with respect to the ones in the flat portion of con-
duction band. Then the IDOS shows a big step of height 58 that is equal to
the numbers of wells in the flat band regions multiplied by the spin factor,
reaching the value of 62 that it is double the periodicity of the multiple-QW.
This behavior can be explained considering the degeneracy in energy level
inside the wells: due to low coupling, the wells behave as a set single quan-
tum wells with all the same ground state leading to this stepwise shape of the
IDOS. This step-wise behavior of IDOS is also present in the case depicted in
fig.(3.8c), in which the transition is not so sharp due to an increased coupling
between wells.
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FIGURE 3.8: Comparison of the Integrated density of states, calculated
with the three different approaches, for distinct barriers width

On contrary, in fig.(3.8a) the IDOS presents a smother shape, in facts here
the SL can not be considered anymore as a set of single QW due to higher
coupling between them. In this case, the degeneracy is lifted and the mini
bands arise. Therefore the IDOS grows with small steps of height 2 that
are not perceptible in the scale of the graph. Due to this smother behavior
the LL prediction of the IDOS is almost coincident to the one obtained with
Schrödinger and entirely match the lift-off energy. On the other hand as soon
as the degeneracy of state increases, the continuous landscape prediction is
not able to follow such a stepwise function so the results are quite different,
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even the lift-off energy starts earlier. At higher energy (more than 100meV)
the states are no longer confined so the IDOS follow Weyl’s asymptotic low
and the three results are equivalent.
Finally, it is possible to state that the landscape prediction of the IDOS per-
fectly matches the Schrödinger results, if a coupled superlattice is taken into
study, while, it is still not able to follow a step-wise function, but it provides
strongly preferable results than the classical prediction.

Subsequently, the carrier densities have been analyzed. The results have
been depicted in fig.(3.9). As already said the region of interest is the central
part where the edge effect is negligible and the conduction band is flat, so
about ten periods of these SLs are depicted, moreover the results are sketched
with the same logarithmic scale in order to immediately appreciate the dif-
ferences.
At a first glance, it is possible to see that for higher barriers the electron den-
sity in the confinement regions is bigger than the one with a lower width of
barriers, this is because, as already explained, a bigger barrier reduced the
tunneling between wells, reducing the rate of electrons that can escape from
the barrier due to tunneling.
Going into details, it is also possible to see that the landscape model properly
describes the carriers inside barriers, the relative error between the peaks is
always lesser than 10 % for all geometries in the study. While the main dif-
ferences are inside the wells, similarly to what has been discussed in QW
analysis, the landscape works better when the state is not so confined, in
fact, is possible to show that the relative error in the peaks of electron density
inside the well is about 30 % in fig.3.9c and decrease to less than 8 % for the
fig.3.9a. Similarly, to what has been described for the IDOS the LL model
seams predicts better results for coupled SL.

Furthermore, by studying fig.(3.9) it is possible to see that the NEGF ap-
proach sightly overestimates the carrier densities, especially in the barrier
regions. This effect has one main reason, that can be explained by recall-
ing the definition of the Büttiker probes for those specific simulations: due
to the high length of the devices it is necessary to introduce the analytical
integration over the k-space defined in eq.(2.58), this will lead, as already dis-
cussed, to a definition of the Büttiker independent on energy, this formalism
has the drawback to introducing some centers of scattering even in the for-
bidden bandgap, by doing so the population of the carriers inside the gap
is not identically zero. This approximation of the probes does not affect the
calculus of spectral quantities such as LDOS or spectral current density, be-
cause the contributes in the bandgap is too small. Therefore as soon as an
integration over energy is performed, as for example, in this case, this small
contributes can lead to some unwanted effects. This overestimation is negli-
gible in the wells regions because the minima integral domain is very close
to the bottom of the well edge.
In conclusion, it has to notice that even for those geometries the classical pre-
diction totally fails the description of such devices.
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FIGURE 3.9: Comparison of the electron density in conduction band,
calculated with the four different approaches, for distinct barriers

width.

As an additional test, the pre-discussed LL method has been applied to
the valence band in order to obtain the density of the minority carriers. Just
as before these results are compared with one found from the Schrödinger-
Poisson method and with the classical prediction. The NEGF method has not
to be implemented for the calculation of holes in order to not further increase
the simulation times.
The obtained output has been depicted in fig.(3.10), the subregion of SL rep-

resented is the same used for the presentation of conduction band results.
At a first glance, the holes behave as expected, the absolute value of concen-
tration density is very small because the device is n-type and holes are the
minority carriers. Furthermore, the holes show strong confinement in the
wells due to the higher effective mass. Even in this case the landscape and
the Schrödinger results are comparable. It can be noticed that for the two
cases with low coupling fig.(3.10c) and fig.(3.10d) the density of the holes ap-
proach the classical ones in the middle of barriers regions, meaning that the
tunneling between wells of such heavy carriers is negligible for these barriers
width.
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FIGURE 3.10: Comparison of the hole density in valence band, calcu-
lated with the three different approaches, for distinct barriers width

3.2.2 Disordered superlattice

To further test the LL model, the positional disorder has been introduced
in the superlattice. By doing so the periodicity of the SL is no longer constant
in the whole device but it has some fluctuation from the original period due
to the random thickness of the barriers and wells.
The disorder has been introduced directly in the geometry delineation. It
has been assumed that this positional disorder comes from the process of de-
position of the layers, by doing so it has been hypnotised that this process
is able to deposit a sheet of material with an absolute error of one layer of
atoms. The lattice constant of GaAs is 5.6533 Å while the one of AlxGa1–xAs
is [5.6533 + 0.0078 · x]Å where x is the molar fraction. As a first approxima-
tion, both values are considered equal to the one of GaAs independently on
the molar fraction. On the second hand, it has to be recalled that the space
domain has been discretized with a mesh of 5Å, so this latter value has been
selected as the precision of this fictitious deposition process. Under this as-
sumption, the original thickness of a single well or barrier can be increased or
reduced by 5 Å with a certain probability. The probability to have a deposi-
tion different from the original one has been set to 40% while no distinction is
done on the probability to have one more or one less layer. Summing up, the
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thickness of a well or a barrier has been described by a uniform distribution
where the probability to have the original expected value T is 60 % while the
one of having t = T + 5 Å is the 20 % equal to the one of having t = T− 5 Å.

Now it is possible to introduce disorder into the superlattices described in
the previous section, for sake of simplicity, in showing the results only two
cases are studied, the first one is the high coupled superlattice depicted in
fig.(3.6a) while the other is the low coupled case fig.(3.6c).
The new obtained geometries are depicted in figure 3.11, it is easy to notice
that the conduction band edge has been reshaped by the disorder and does
not have anymore a flat behavior in the active region. Due to not perfect peri-
odicity of superlattice, confinement of carriers depends on the local structure,
leading to an irregular shape of the potential φ calculated form Poisson equa-
tion.
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FIGURE 3.11: Portion of conduction band of a disordered superlattice,
for the two different average values of barrier width, with the associated

effective potential (WC) found with Landscape model

As expected also the shape of effective potential WC differs from the pre-
vious one, it seems to follow the different strength of tunneling and confining
effects by reducing the potential seen by the electron in subregion where the
barriers have been shrunk in width, au contraire the effective potential has
been reduced in subregions where the GaAs (well) has been deposited with
one more layer.
Now considering that the landscape model seems to properly take into ac-
count the disorder fluctuation of the potential, carrier densities have been cal-
culated and compared to the one obtained with Schrödinger, classical model,
and NEGF, the results have been depicted in fig.(3.12).

It can be noticed that the curves derived from the LL theory follow the
variation of carriers due to disorder, modeled with Schrödinger approach, in
a proper way. The main differences between peaks are in strong localized
confined regions where it has already been demonstrated that the LL model
underestimates the charge density. Even in these cases, it is possible to see
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FIGURE 3.12: Comparison of the electron density in conduction band,
calculated with the four different approaches, for two distinct barriers

width.

the overestimation of the carriers with the NEGF approach.
As a further analysis, the hole density has been sketched in fig.(3.13) with the
aim to once again underling the influence that a higher effective mass has on
the calculation of the effective potential WV .
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FIGURE 3.13: Comparison of the hole density in valence band, calcu-
lated with the three different approaches, for distinct barriers width.

The disorder has been introduced in these simulations with a further aim:
understand how a not perfect periodicity changes the transport proprieties
especially on the definition of mini-band. All these considerations and extra
analysis will be performed in parallel w.r.t. the periodic lattice in the follow-
ing subsection where the spectral results coming from the NEGF simulation
are presented.
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3.2.3 NEGF simulations

The non-equilibrium Green’s function approach is a computation expen-
sive tool but allows to obtain some results that are impossible to achieve
with the classical Poisson-Schrödinger solvers or even less with the land-
scape model. In this section has been presented some meaningful results
derived from the NEGF approach, such as the spectral electron density that
allows describing the mini-bands formation in the superlattice. Mini-bands
are very important in the description of carriers motion in the superlattice,
the dispersion relation of the system defines the allowed energy band where
the electron flows, this is because the electron and holes are delocalized in
the whole region crossed by the miniband.

First of all, the electron spectral density has been depicted in fig.(3.14), in
order to understand how the Büttiker probes allow populating the wells re-
gions. It has been demonstrated that without the introduction of these probes
the NEGF approach considers the device as a ballistic and therefore a prop-
agator injected form left and right contact is not able to reach energy levels
below the Fermi levels of the contacts (µR, µL) and so it is impossible to de-
scribe the confinement of carriers. The Büttiker probes model introduces a
fictitious set of carriers reservoirs inside the device at an energy level lower
than the one of contacts, by doing is possible to extract and inject electron
in the region not accessible from the contacts. Going into details, within this
approach is possible to study the population of carriers due to the scattering
events and furthermore the effects of dissipative transport.

(A) tbarrier = 2nm (B) tbarrier = 6nm

FIGURE 3.14: Electron spectral density depicted for a dozen period in
the middle region of an ordered SL, at two different barrier width.

For ordered superlattices, it possible to observes how the population of
electrons inside the wells is confined above the lift-off energy found from the
IDOS. It is straightforward to notice that the shape of electron confinement
is periodic with the same periodicity of the SL. This quantity integrated over
the energy allows to obtained the carrier densities depicted in fig.(3.9). By
comparing the two different superlattices, (3.14a and (3.14b), it is possible
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to notice the effects of higher confinement in the multiple-QW where the
spectral electron density is almost restricted within the wells. The coupling
tunneling effects are quite weak and the population in barriers regions is or-
ders of magnitude smaller than the ones in the wells. On the other hand, the
device with smaller barriers behaves differently, the maximum value inside
the confinement regions is lower and there is a strong coupling between the
wells with a not negligible population even in these high potential regions.

(A) tbarrier = 2nm (B) tbarrier = 6nm

FIGURE 3.15: Electron spectral density depicted for a dozen period in
the middle region of an disorder SL, at two different barrier width. The

colourbar scale is fixed to the one of ordered case.

For disorder superlattices the spectral electron density are depicted in
fig.(3.15). Here, it is possible to notice how the disorder changes not only
the strength of carrier confinement but also their eigenvalues. This result
is very important in describing the differences between order and disorder
SL miniband. In those figures is possible to see how the disorder broke the
alignment of the confinement state reducing the coupling due to tunneling
between the wells. By considering fig.(3.15a), the electron concentration is
no longer constant inside the confinement regions, furthermore a change in
the width of the wells determine a shift of the ground state energy, a higher
width leads to deeper confinement conversely the ground state has higher
energy if the well is reduced. Although all this consideration, the disorder is
not able to decouple the well because their distances are still small.
In fig.(3.15b) due to a lower coupling, the effects of misalignment of ground
states are more evident and it further reduces the coupling between the wells.
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Chapter 4

Out-of-equilibrium simulations

The simulations performed in the previous sections confirm that at equi-
librium the landscape potential is able to predict the carrier densities and
their region of confinement with good accuracy, just by reshaping the classi-
cal potential in an effective way. The best results have been achieved for long
geometries (SL) where confined states are quite coupled one to the others.
Thereafter, this effective potential has been used to simulate a device out of
equilibrium. In chapter 2, it has been explained how it is possible to intro-
duce such potential into a classical Poisson drift-diffusion solver, in which
both corrections due to heterostructure and Fermi statistic have been consid-
ered. For the following analysis, two superlattices have been taken into the
study, both of them have been simulated considering perfect deposition pro-
cesses and one affected by the positional disorder. Therefore, four different
geometries have been simulated out of equilibrium.

For all the devices in the study, a small bias has been applied Vbias = 0.1 V
in order to do not further bent the band diagram of the system. Then, results
obtained with the landscape potential drift-diffusion solver (LL-PDD) have
been compared to the ones obtained with a classical Poisson drift-diffusion
(PDD) and with a non-equilibrium Green’s function approach (NEGF), with
the aim to validate this new model.

Before going on the presentation of results, some consideration on the
carrier mobility (µ(n,p)) has to be done. In order to perform a PDD electron
mobility has to be defined, usually, in a classical implementation, the mo-
bility is chosen equal to the bulk one that is derived from outer models that
calculate it by introducing in an effective way different physical effects, as
for example scattering. It has been seen that one of the main advantages of
the landscape potential is to model a quantum structure as if it was a bulk
device, where all the quantum effects are enclosed in this effective potential
WC. However in order to provide a comparison between the NEGF approach
and the LL model the bulk mobility introduced in the LL-PDD model has to
be compatible with the description of carriers flow defined in the NEGF ap-
proach, where the mobility parameter has not been used at all. In fact, in
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the latter model scattering has been introduced through the Büttiker probes
defined by the empirical scattering parameter η. It has been seen that this
parameter is related to the bulk scattering time τ with the relation expressed
in eq.(2.53). By knowing τ is possible to define a bulk mobility:

µ = q
τ

m∗
(4.1)

Similarly to what has been done at equilibrium, for all the simulations η has
been imposed equal to 10meV leading to a mobility of:

µe = 863.93 cm2V−1s−1 (4.2)

This bulk mobility calculated form η, has been introduced in both the clas-
sical PDD and in LL-PDD implementations, and it has been considered as
constant for the whole device.

The NEGF results have been obtained by introduced in the algorithm the
conduction band shape derived with the LL-PDD, and then perform the it-
erative inner loop in order to find the Büttiker Fermi level that ensures the
current conservation.

4.1 Superlattice

The first geometry that has been considered is the one depicted in fig.(3.6a),
a uniformly doped n-type (ND = 1018) superlattice with 31 periods. In this
first section of results presentation, this particular geometry has been studied
with both perfect periodicity and with the introduction of positional disor-
der, the two devices have been presented in parallel with the aim to better
compare results and understand how the disorder modifies carriers trans-
port.

First of all, the LL-PDD solver has been applied to the equilibrium poten-
tial found in the previous simulations. After a few steps, the Newton loop
converged providing the wanted outputs. One of them is the potential φ that
solves the Poisson equation and it can be used to derive and sketch the band
diagram of these structures out of equilibrium. In fig.(4.1) is possible to see
that for both the devices the difference between the conduction band at the
left and right contacts is equal to the bias applied. A small part of the poten-
tial drops on the two bulks contacts too, due to the constant doping profile.
In the active regions, the potential drops almost linearly from left to right,
where the charge effects do not influence the potential. Going into details,
by comparing the two band diagram, the one affected by disorder presents
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FIGURE 4.1: Out of equilibrium conduction band and its associated
effective potential (WC) of a superlattice with barriers thickness equal
to tbarrier = 2 nm depicted both with perfect periodic structure and af-

fected by numerical disorder.

an uneven behavior, perfectly followed by the landscape potential. Even out
of equilibrium the variation of effective potential between confinement and
barriers regions is small meaning that the superlattice is coupled and the
miniband is large.

By proceeding on simulations, those conduction bands have been intro-
duced in the NEGF approach and the Fermi level needed for the Büttiker
probes has been calculated. The Fermi level µBP has to be defined in such a
way the net current through the probes is zero. To do so an inner iterative-
method has to be performed as the initial guess of the Fermi level calculated
from the LL model has been selected. The above-described procedure is high
time demanding due to the high number of mesh point and the numerical
derivation of the Jacobian matrix, explained in appendix A. Just to give to
the reader a rough idea of the time required to do such simulation, the LL-
PDD takes less than 2s to derive all the outputs, while the NEGF takes more
than five hours(' 24s) to reach the convergence, so the simulation time sav-
ing introduced by the localized potential is huge, with this new landscape
method the results are achieved with a time 4 order of magnitude lower than
the NEGF.

The comparison between the obtained Büttiker Fermi level and the ini-
tial guess is depicted in fig.(4.2). It is important to notice that the new shape
of µBP has been found by imposing the boundary condition at the contacts,
here the Fermi levels have been set equal to the ones of reservoirs. This new
found Fermi level exhibits quite important propriety, that the quasi-Fermi
level derived from charge distribution in the LL-PDD does not have. Due
to the fact that µBP has been derived from the current density distribution,
it has the ability to give an actual representation of how the potential drops
between source and drain [19]. The behavior of this curve depends on the
conductivity of the device, especially on the one of the active region. It can
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FIGURE 4.2: Quasi-Fermi level (red curve) derived from LL-PDD used
as initial guess to derive the Büttiker Fermi level (ochre curve)

be demonstrated that a high conductivity leads to a lower voltage drop in the
SL region, leading to a flatter Büttiker Fermi level. The big voltage drops at
the two interface between the bulks regions (source and drain) and the active
region can be explained considering the contact resistivity at the interface
due to charge effects, this interface is strongly out of equilibrium in order to
maintain a large current flow. This high resistivity will be the main limitation
of current in the device.

Then carrier densities in the active regions found with the three described
methods has been compared by limiting the analysis just to the center of the
device, where the charge effects are negligible. For ordered and disorder
geometry the results are depicted in fig.(4.3).
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FIGURE 4.3: Electron concentration in conduction band calculated with
four different approaches, in an ordered and a disordered superlattice.
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In these figures is possible to see how the landscape predictions are still
valid out-of-equilibrium matching the outputs of NEGF in a proper way. Go-
ing into details, it can be seen that the NEGF approach still slightly overes-
timates the carrier density due to the broadening of Green’s functions. Fur-
thermore, the ballistic (η = 0 meV) results are depicted in order to give fur-
ther proof of the need to introduce the Büttiker probes in order to describe the
confinement effects. In fact, as it can be easily seen, the green curve shows an
underestimation of carriers values both in the barriers and confinement re-
gions, this is because the lack of Büttiker self-energy does not allow reaching
the thermal equilibrium needed to populate the states inside the confinement
regions. Finally, even out of equilibrium the classical prediction of carriers to-
tally fails in the description of such geometry.

Before preceding on the comparison of current density between the two
models, it is interesting to understand how the disorder affects the shape of
the spectral current density, this quantity has been depicted in fig.(4.4).

(A) Perfect periodicity (B) Disordered

FIGURE 4.4: Electron spectral current density, calculated with NEGF
approach for the two cases of SL in study. They are depicted only in a
dozen periods leaving unchanged the colour-bar scale and energy axis.

By looking at both graphs it is straightforward to notice that the electron
spectral current density is not independent of the spatial coordinate, but the
energy spectrum of the current moves downward as points closer to the left
contact are considered. The introduction of Büttikers probes in the model
breaks the conservation of energy and momenta of the electrons injected from
the contacts leaving unaltered their number, so due to thermalization phe-
nomena, the injected electron loses any information about the initial energy
leading to asymmetrical current density spectra. By comparing the obtained
electron spectral current for a device with perfect periodicity and one affected
by positional disorder is possible to see that in the latter case the width of the
band, where the transport occurs, depends on the position while is almost
constant for the periodic superlattice. This non-uniform shape depends on
the alignment of allowed states, in which the electrons have non-null proba-
bility to be found. Due to the high coupling between the wells the disorder
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does not greatly modify the calculated total current density.
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FIGURE 4.5: Cut perpendicular to the z-axis of the electron spectral
current at two different position at the left (tLeft = 60 nm) and right

(tLeft = 190 nm) edge of ordered superlattice.

Further proof of the dissipative transport introduced by the Büttiker probes
has been done considering the plot in fig.(4.5). Here, only for the order case, a
2-dimensional plot of the spectral electron current has been sketched as func-
tion of energy for two different points, the edges of x-axis depicted in fig.(4.4)
equal to zLeft = 80 nm and zRight = 190 nm. In this graph is possible to notice
the two main changes in the spectral current density due to the introduction
of Bütiiker probes, the first one is that the peak shifts to a lower value of en-
ergy by moving from right to left and secondly it reduces its magnitude. This
latter effect can be explained by recalling that the divergence of the energy
current is equal to the power dissipated due to scattering, [18] and so the
energy current decreases in the distance. If a ballistic transport is considered
the two curves should be coincident and they do not depend on the spatial
coordinate.

Now after having properly described how the electrons flow inside the
device within the NEGF approach, the current density obtained from this
latter method has been compared to the one calculated with LL and the clas-
sical PDD. The obtained result are depicted in fig.(4.6). Here, two different
curves are reported for the NEGF procedure: the constant solid curve derives
from the integration over energy domain of the previously described electron
spectral current density, while the non-constant red dotted curve is the cur-
rent evaluated at the first loop of the inner iterative NEGF solver, where the
Büttiker Fermi level is coincident with the one obtained with the LL-PDD
solver, depicted in red in fig.(4.2). Thereafter, it easy to see that the classical
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FIGURE 4.6: Current density as function of coordinate z for the perfect
periodic case, depicted for all the implemented method.

result extremely underestimates the current because it does not consider the
tunneling and quantum effects, indeed the classical prediction is two order of
magnitude lower that the NEGF one. In this graph also the ballistic current
density has been depicted in order to provide a further comparison, as it has
been underlined in the description of carriers, the ballistic simulation is able
to populate the localized states only with the tunneling of the injected carri-
ers from the contacts, neglecting all the scattering thermalization process. In
this geometry, the barriers are quite small and the contribution of tunneling
current is not so irrelevant, but it is orders of magnitude lower than the one
obtained with the introduction of the scattering. Finally, the blue curve is
the results obtained from the LL-PDD model, as expected is constant in the
whole device but it slightly overestimates the NEGF one, for this particular
geometry the LL prediction is 1.81 time higher than the NEGF.

Following the same scheme of presentation the results for disordered su-
perlattice has been reported in fig.(4.7). Even in this case, the classical cal-
culation is two order of magnitude lower than the NEGF prediction, and as
expected does not change in magnitude between the order and disordered
case, because the disorder does not change the unconfined states that deter-
mine the classical current. The same considerations can be applied to the
calculation of ballistic current where, even in this case, its value is not af-
fected by the disorder. Finally, the disorder reduces the value of current
calculated with the NEGF and LL approaches, it can be seen that both the
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FIGURE 4.7: Current density as function of coordinate z for the superlat-
tice affected by positional disorder, depicted for all the implemented

methods.

constant curves have been shifted to a lower value. As expected, the disor-
der slightly reduces the flowing of the current within the NEGF approach,
this can be explained considering the fig.(4.4b) where the width of miniband
is shrunk. The landscape potential has modeled the disorder by changing
the shape of effective potential according to the fluctuation of the deposition
process, this new effective potential characterized by higher peaks reduce the
current. Going into details, the NEGF approach predicts a factor of current
decreasing equal to 1.03 while the current calculated form LL-PDD i is less
influenced by the disorder, it has been reduced only by 1.01 times.
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4.2 Multiple-QW

Subsequently, another resistive structure characterized by higher barriers
width has been taken into the study, the geometry describes in fig.(3.6c) has
been considered. Similarly to the previous section, results have been pre-
sented by comparing a perfectly periodic structure and one affected by the
positional disorder. On these two devices a bias equal to V = 0.1 V has been
applied in order to bring the structure out of equilibrium. All the other pa-
rameters such as the mobility or the discretization mesh step have not been
modified. Due to the higher length the number of mesh points will be consid-
erably bigger leading to an increasing in the simulation time, the LL model
still performs all the simulations steps in time smaller than a few seconds, on
the other hand, the NEGF increases drastically the time required to assemble
numerically the Jacobian matrix. The total iterative simulation required more
than 12 hours.

Following the same style of results presentation used above, the obtained
band diagram has been depicted in fig.(4.8).
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FIGURE 4.8: Out of equilibrium conduction band and its associated
effective potential (WC) of a superlattice with barriers thickness equal
to tbarrier = 6 nm depicted both with perfect periodic structure and af-

fected by numerical disorder.

Even in those devices, the potential drops linearly in the active regions,
and as expected for the not periodic geometry the conduction band edge ex-
hibits an uneven behavior. Furthermore, the effective potential derived with
the landscape approach exhibits bigger variation with respect to the high
coupled case, because the potential seen by the electron is higher due to the
wider barriers.

Then these found potentials have been introduced in the NEGF iterative
loop in order to find the Fermi level of the Büttikers probes that ensure the
vanishing derivative of the current. For the periodic SL the obtained results
have been depicted in fig.(4.9). In this graph is possible to observe that the
Fermi level of the Büttiker probes is almost coincident to the ones found with
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the iterative LL-PDD procedure, meaning that the motion of carriers is ap-
proaching the diffusive transport limit.
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FIGURE 4.9: Quasi-Fermi level (red curve) derived from LL-PDD used
as initial guess to derive the Büttiker Fermi level (ochre curve)

Later on, the electron density found with the three different approaches
has been depicted in fig.(4.10). Due to the higher effective confined potential,
the carrier densities in the barriers are close to the classical prediction, the
latter overestimates the results just by only a factor two. For what concerns
the landscape and the NEGF approaches, the two curves are very similar for
both the simulations with and without the positional disorder. Going into
details, as expected the discrepancy between the two models is higher than
the previous geometry, this behavior has been observed also at equilibrium,
where it has been discussed how the landscape approach behaves better for
high coupled superlattices than the low coupled ones. It has to notice that
for sake of simplicity the ballistic results have not been depicted.

Presentation of the results continued by depicting the electron spectral
current, fig.(4.11), in here it is possible to see that the width of the band where
transport occurs is smaller than the previous case. Furthermore, by noting
that fig.(4.4) and fig.(4.11) have been depicted with the same colourbar scale,
it possible to see that even the maximum value of current density in the cen-
tral region of the band has been reduced. The cause of these effects is the
bigger width of the barriers, which reduces the tunneling current and lowers
the coupling strength. As already been stated, if the coupling between wells
is low the SL behaves as a set of independent quantum well with eigenstates
all at the same energy, as soon as a bias is applied these energy levels shift
leading to a very narrow alignment between them. This latter effect is even
more visible in the disordered case, fig.(4.11b), where the misalignment due
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FIGURE 4.10: Electron concentration in conduction band calculated
with three different approaches, in an ordered and a disordered super-

lattice.

to the fluctuation of the layer’s width further reduces the tunneling effect
between states, leading to an uneven electron spectral current.

(A) Perfect periodicity (B) Positional disorder

FIGURE 4.11: Electron spectral current density, calculated with NEGF
approach for the two cases of SL in study. They are depicted only in a
dozen periods leaving unchanged the colourbar scale and energy axis.

Now, just to provide a further comparison, the two-dimensional cut of the
electron spectral current at the begging and at the end of the active region has
been depicted in fig.(4.12). Even in this case, the value of the peak decreases
by moving from right to left due to dissipative transport. For this device
it is also possible to see two more peaks at higher energy, these peaks arise
because the not confined electrons flow due to drift at energy higher than the
edge of the conduction band. This contribution is not visible in the fig.(4.5)
because due to the smaller total length has been shifted to higher value of
energy and reduce in magnitude.

Finally, the comparison of the current density has been depicted for both
the periodic and disordered SL in fig. (4.13) and fig.(4.14) respectively.
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FIGURE 4.12: Cut perpendicular to the z-axis of the electron spectral
current at two different position at the left (tLeft = 60 nm) and right

(tRight = 315 nm) edge of ordered superlattice.

To start with, the results obtained for the periodic superlattice have been
commented and compared to the ones obtained in the previous section.
At a first glance, it is possible to notice that even for this device the current
density obtained with the landscape method is higher than the one calculated
with the NEGF approach, in particular, it is 2.09 time higher, this overestima-
tion factor is bigger in this low coupled SL. Furthermore, it has to notice that
the current is smaller w.r.t. the previous case due to the higher width of the
barriers and the worst alignment in the states due to poor coupling. The
classical prediction is still not able to describe the motion of carriers in such
a quantum structure, strongly underestimates the current.

Similarly to the coupled structure, the introduction of disorder does not
modify the classical current density because a not uniform periodicity does
not change the unconfined carrier’s transport. On the other hand, ballistic
current behaves differently, in fact in this lower coupled device the ballistic
current decreases where a positional disorder is introduced. This can be ex-
plained, recalling the fact that in ballistic transport the factor η has been set
equal to zero, neglecting the scattering process, hence the carriers can flow
toward the active region only by tunneling between the allowed states, in-
troducing the disorder determines a misalignment of these states, leading to
a lower tunneling current. No further comment has been done on this effect
because is out of the purposes of this thesis.
Moving on, the PDD-LL and the NEGF results have been taken into anal-
ysis. As expected even for this superlattice the disorder makes the current
decrease for both the LL-PDD and the NEGF simulations, but they model
this behavior with a different scaling factor. For what concerns the LL-PDD
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FIGURE 4.13: Current density as function of coordinate z for the perfect
periodic case, depicted for all the implemented methods.

current density is 1.03 times smaller while for the NEGF it is 1.24 smaller.
Similar to the previously considered superlattice, the reduction of the cur-
rent due to the disorder is higher in the NEGF approach while the LL-PDD
is not able to follow such a change of the current density.

The LL-PDD implements the disorder in the device just by reshaping
the effective potential seen by the electrons in the active regions. On the
other hand, the NEGF approach, where the scattering has been introduced by
means of the Büttiker probes, describes how the carriers, injected and recol-
lected form the reservoirs and from the inner probes, flow within the device,
properly describing the transport inside the mini-band. The introduction of
disorder breaks the formation of the mini-band, as it can be seen by looking
at fig.(4.11b), where a not perfect alignment of the allowed stated drastically
reduced the current. Unfortunately, this information of the state’s alignment
can not be introduced inside the landscape potential approach, which, as al-
ready stated, can model the disorder just by reshaping the effective potential
seen by the carriers, leading to a further overestimation of the current. The
above considerations are valid also for the coupled superlattice, where even
in that case the reduction in the NEGF approach is higher than the one pre-
dicted by LL-PDD even if the discrepancy between the two results is not so
high. In this case, instead, the two results are quite different. The main rea-
son for these two behaviors can be understood by recalling the consideration
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performed at the equilibrium simulation, for what concerns the coupled SL
the degeneracy of state is very poor and the disorder is not able to totally
decoupled the wells.
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FIGURE 4.14: Current density as function of coordinate z for the su-
perlattice affected by positional disorder, depicted for all the imple-

mented methods.
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Chapter 5

Conclusion

In this work, different simulation techniques and models have been applied
to several quantum structures in order to provide an exhaustive benchmark
for the localized landscape potential. As a first validation check, the localiza-
tion landscape model was applied to four quantum wells characterized by
different confinement potential. For these geometries, carrier densities and
integrated density of state have been compared to the ones obtained with
both NEGF and Schrödinger models, obtaining a slight underestimation of
charge in a confinement region especially for high confined states. Moreover,
the ability of LL model to predict the ground state energy has been tested by
comparing those results with the ground states found with the Schrödinger
equation, obtaining even for this case promising results, unfortunately, the
precision of the model is not good enough to properly describe the cut-off en-
ergy for a detector, therefore this analysis has dropped off for more complex
devices. Then the landscape model has been used with the aim to describe
the confinement of carriers in a longer quantum structures, characterized by
a higher coupling between the confined states. Even for these geometries,
the results have been compared to the ones obtained with the NEGF and
Schrödinger approaches. In this study, it has been seen that the landscape
model predicts better the carriers confinement for a quite high factor of cou-
pling between the wells. In particular, for high coupled SL the LL theory
shows a satisfactory prediction of the density of state and carrier densities,
while still slightly underestimate the carriers confinement in the multiple-
QW case. Those geometries have been also simulated considering the not
perfect periodic case, obtaining promising results.

Subsequently, the superlattices have been simulated with a small applied
bias (0.1V), and the outputs have been compared to the ones obtained by the
NEGF approach, in which the scattering has been introduced by means of
the Büttiker probes. For what concerns the carrier densities and density of
state the results are still excellent, on the other hand, the current calculated
with the LL approach seems to slightly overestimate the value obtained with
the NEGF method. However, the current prediction is far more closer to
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the NEGF results than the ones obtained with a classical drift-diffusion ap-
proach. It has to recall that the LL current is less than two times bigger than
the one found with the NEGF approach, while the classical one is orders of
magnitude lower. Finally, even out-of-equilibrium the effect of disorder has
been studied too. The landscape model is able to describe the reduction of
current due to disorder but, especially for not so coupled quantum well, the
reduction factor of current is lower than the ones observed with the NEGF
approach.

In conclusion, the main advantage of this theory is the speed, by using
this technique for a relative long one-dimensional superlattice the simula-
tion time is 3 order of magnitude lower than a NEGF algorithm out of equi-
librium. Moreover, the simulation results show an appealing agreement with
the ones obtained with more conventional methods. Further tests of this
model can be performed by simulating a more application-oriented type-II
superlattice or higher-dimensional devices. By considering the results ob-
tained in this work, it is possible to state that this effective potential properly
describes the quantum effects at least for a one-dimensional case and it can
be a powerful tool that gives an immediate estimation of the carriers localiza-
tion and the current density in a quantum structure, without involving high
time-consuming algorithms.
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Appendix A

Numerical evaluation of NEGF

Jacobian and Broyden iterative

method

NEGF method needs an iterative procedure that ensure the current conserva-
tion within the device, purpose of this iterative procedure is to find the Fermi
level of the Büttiker probes for each node defined with the discretization of
the space domain.
In this appendix has been depicted how this procedure has been implemented.
Regrettably, the derivate of current density along the z direction, that is the
function that has to be minimized, does not explicitly depend on the un-
known vector µBP. Consequently, the derivative of the latter formula, with
respect to Fermi levels of the probes can not be performed analytically, and
so the Jacobian needed fo the Newton method has to be defined in a differ-
ent way. With the aim to overcome this obstacle the Broyden method has
been used, in which as initial guess of the Jacobian a numerical derivation
has been performed.

First of all the function that express the derivative of the current density
with respect to the coordinate z has been reported here in eq.(A.1)

f(µ) =
∂J
∂z

= <
[

∆E
2π ∑

j

2q
h̄
(

H · G(Ej)
< − G(Ej)

< · H
)
(i,i)

]
(A.1)

This function has been implemented in the MATLAB code in order to
determine numerically the value of current derivative for each node, as a
function of Fermi level (µBP). This function takes the shapes of Fermi level
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defined at each node as input and produces the vector f(µBP) as output, in
order to ensure the current conservation, this vector has to be theoretically
imposed equal to zero, but for this implementation is enough to impose its
norm smaller than a certain threshold. In order to resolve this non linear sys-
tem the Broyden method has been introduced.

The Broyden method in numerical analysis is a quasi-Newton method
that allows to find the roots of a function f. Differently from the Newton’s
method, that calculate from scratch the Jacobian matrix at each iteration’s
step, this quasi-Newton’s method computes the whole Jacobian only at the
first iteration and then updates it with a procedure based on the secant equa-
tion. Hence, this new iterative procedure does not totally remove the tricky
calculation of the Jacobian but it only limits it to the first step of the algorithm.

Hence, before going on the description of the Broyden’s method, the com-
putational steps performed to find numerically the Jacobian has been de-
scribed. Form definition the Jacobian of a vector-valued function in several
variables is the matrix of all its first-order partial derivatives. Given a func-
tion f: Rn → Rn such that any of its first-order partial derivatives exist on
Rn, its Jacobian (J) is defined as a square matrix n× n written as:

J =



∂ f1(x)
∂x1

· · · ∂ f1(x)
∂xn

... . . . ...

∂ fn(x)
∂x1

· · · ∂ fn(x)
∂xn


(A.2)

The underscore of function f indicates at which node the derivative of the
function with respect to the variable xn is calculated. In order to be able to
determine this matrix for the eq.(A.1), definition of numerical partial deriva-
tive for more than one variable has been introduced.
For a generic function f derivable in the whole domain, it is possible to ex-
press the partial derivative with respect to the variable xi as:

∂ f (x)
∂xi

=
f (x1, x2, ..., xi + ∆i, ..., xn)− f (x1, x2, ..., xi, ..., xn)

∆i
(A.3)

Where ∆i is a fixed positive small number different from zero. The eq.(A.3)
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provides a vector quantity that is equal to the i-th column of Jacobian ma-
trix defined in eq.(A.2), to fill the whole matrix this procedure has to be per-
formed N times, where N is the number of nodes.

1 delta = (1e-13)*q; %increment to compute the numerical
Jacobian [J]

2 [NEGF] = f_NEGF(muN ,muL ,muR ,zvet ,Evet ,Ec,meffn ,T,
eta ,0,mm ,dd);

3 rvet =NEGF.eDivCurrent;
4 Jmat = sparse(nn ,nn);
5 % Start from the muN at the previou iteration
6 muN_inc = muN*ones(1,nn);
7 % The numerical Jacobian is obtained , one by one ,

the elements of muN ,
8 % computing; stored in matrix just to enable using

MATLAB parallel
9 % toolbox to speed -up computations

10 for indJ = 1:nn
11 muN_inc(indJ ,indJ) = muN_inc(indJ ,indJ)+delta;
12 end
13 % Parallel for loop: each worker (thread) computes

a different column
14 parfor ind=1:nn
15 % Computing NEGF with ind -th element with

relative increase delta
16 [NEGF] = f_NEGF(muN_inc(:,ind),muL ,muR ,zvet ,

Evet ,Ec,meffn ,T,eta ,0,mm,dd);
17 rvet_inc = NEGF.eDivCurrent;
18 % Computing the ind -th column of the numerical

Jacobian
19 Jmat(:,ind) = (rvet_inc -rvet)./( delta);
20 end
21 % Enforcing boundry conditions: muN (1) = muL , muN(

end) = muR
22 Jmat (1,:) = 0; Jmat (1,1) = q;
23 Jmat(end ,:) = 0; Jmat(end ,end) = q;
24 rvet([1,end]) = 0;

FIGURE A.1: MATLAB implementation for the numerical definition of the Jacobian

Returning to the NEGF problem, how this numerical definition of the
Jacobian can be introduced in the NEGF implementation? A solution is to
use the formula describe in eq.(A.3) where the function f is one defined in
eq.(A.1) and the vector of variable x is the initial guess of Fermi-level found
from the LL-PDD iterative procedure. By doing so, the NEGF solver has to
be called N-times, for N different Fermi-level shapes, in order to built the
initial guess of the Jacobian. The absolute increment (∆) used to compute the
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numerical Jacobian has been set equal to 10−13 eV and the MATLAB func-
tion parfor, that allows to execute loop iterations in parallel, has been used
to speed up the calculations.

In fig.(A.1) a section of the implemented MATLAB code has been reported
in order to make those comments more accessible to an interested reader.
Function f_NEGF is the main script for the NEGF approach that gives as an
output a structure where all the physical quantities in interest is enclosed,
as for example the current density (NEGF.eDivCurrent). It is possible to see
how the function parfor has been used in such a way that all the numerical
evaluation of the columns of Jacobian are done in parallel. Then the bound-
ary condiction has been enforced because the Fermi levels at the contact are
fixed and equal to the ones of the reservoirs.

Now that the initial guess of the Jacobian matrix has been calculated, the
Broyden algorithm can be introduced to update both the solution and the
Jacobian matrix. By following the approach depicted in sec.(1.3) of [22], it
is possibel to states that knowing both the residual vector and the Jacobian
matrix at the k-th iteration is possible to predict the Jacobian matrix at the
(k+1)-th iteration by the following formula:

Jk+1 = Jk +
(y− Jk · ∆x) · ∆xT

‖∆x‖ (A.4)

where
y = f(xk)− f(xk−1) (A.5)

and ∆x is the update of the solution found with Jk

Now, by having select an initial estimate of the Fermi level µ0
BP ∈ Rn and

determine the initial guess of the Jacobian (J0) by the procedure described
above, it is possible to define the Broyden algorithm; by setting k = 0 and
repeat the following sequence of steps until ‖f‖ < toolerance it reads as:

1. ∆µ = - f(µk
BP)/Jk

2. µk+1
BP = µk

BP + ∆µ

3. yk = f(µk+1
BP )− f(µk

BP)

4. Jk+1 = Jk + ((y− Jk · ∆x) · ∆µT)/(‖∆µ‖)

5. k = k + 1

A possible implementation of this algorithm in MATLAB framework has
been reported in fig.(A.2).

The Broyden algorithm introduce a huge time saving in the NEGF method.
In this implementation the time consuming NEGF solver is used just one time
for iteration, while if the Jacobian has to be defined from stretch the NEGF
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solver is called N-times for each iteration. This procedure becomes compu-
tational impossible for long devices or for ones with a fine mesh step. For
all the simulations that involve the NEGF approach the Broyden algorithm
has been used, the main limitation to this implementation is still the numeri-
cal definition of the initial guess of Jacobian which practically constitutes the
totality of the simulation time.

1 while iter <dd.iterMax && (norm(Delta_muN)/q)>dd.
tolInNEGF

2 [R,C] = dgsequ(Jmat);
3 Jmat_bal = R*Jmat*C; % balanced Jacobian
4 res = norm(R*rvet); % residual
5 % Solving the system
6 Delta_muN = - C*( Jmat_bal \(R*rvet));
7 % Updating the solution
8 muN1 = muN + Delta_muN;
9 [NEGF] = f_NEGF(muN1 ,muL ,muR ,zvet ,Evet ,Ec,meffn ,T,

eta ,0,mm ,dd);
10 rvet1 = NEGF.eDivCurrent;
11 rvet1([1,end]) = 0;
12 % Updating the Jacobian
13 y = rvet1 -rvet;
14 delta_J = ((y-Jmat*Delta_muN)*Delta_muN ')/(

Delta_muN '* Delta_muN);
15 Jmat = Jmat + delta_J;
16 Jmat = sparse(Jmat);
17 % B.C.
18 Jmat (1,:) = 0; Jmat (1,1) = q;
19 Jmat(end ,:) = 0; Jmat(end ,end) = q;
20 %
21 rvet = rvet1; muN = muN1;
22 iter = iter +1;
23 if (norm(Delta_muN)/q)<dd.tolInNEGF
24
25 disp('----- Converged!-----');
26
27 end
28 end

FIGURE A.2: MATLAB implementation of Broyden method for the iterative problem
of minimization of derivative current density.
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