POLITECNICO DI TORINO

Master of Science in Electronics Engineering

Master’s Degree Thesis

Quantization Analysis for Face Image Detection
Through Dense Neural Networks

Supervisors:
Prof. Guido Masera

Prof. Giovanni Ramponi

Candidate:

Alessandra Calzoni

Academic Year 2019 - 2020

A mamma e papa,

A mia sorella,

A Christian,

A Flaminia e Camilla,

A tutti quelli che mi sono

stati accanto fino alla fine

Abstract

The range of applications of facial recognition has greatly expanded, especially
in critical fields as crime prevention, bank account access and payments. Ma-
chine learning has greatly helped the development and the diffusion of this
biometric measurement, making it easier to develop and to implement.

The increasing popularity in mobile systems introduces the problem of low-
power networks with high accuracies. This requirement is in contrast to the
current trend of more complex and deeper networks. Many methods have
been proposed to implement less computationally and memory intensive sys-
tems with low accuracy deterioration: knowledge distillation and quantization
are some examples. This thesis focuses on post-training quantization on deep
structures: two versions of a DenseNet architecture have been considered, both

descended from a more complex network through knowledge distillation.

The investigation concentrates on two main families of quantization techniques:
scalar quantization and vector quantization.

Three scalar quantization techniques have been taken into account. Firstly
a reduced bit-width version of Floating-Point has been considered to cut the
required memory with an almost null degradation on the accuracy. To further
reduce the computational complexity, Dynamic Fixed-Point and Power of 2
Weights representations have been adopted.

Regarding vector quantization, K-Means Clustering has been considered. This
method is able to reduce the storage requirement.

All the networks have been implemented in Caffe. Scalar quantization has
been applied thanks to Ristretto framework, an expansion of Caffe, while K-

Means Clustering have been carried out in Python thanks to the sklearn library.

The quantization has been performed taking into account a layer-by-layer ap-
proach. Firstly Convolutional and Fully Connected layers have been approx-
imated. Then the attention moves on Batch Normalization layers, which are

more sensitive to quantization and involves highly computational consuming

operations. To solve this latter issue, Folding has been applied to Batch Nor-
malization layers to avoid complex operation, e.g. division and square root,

with null accuracy degradation.

Each version of the two reference DenseNet networks have been classified in
terms of accuracy through the LFW test, a standard procedure in Neural
Network. To identify the solutions with an acceptable accuracy degradation,
quantized DenseNets have been compared to the reference 32-bit FP networks.
Good results in terms of both accuracy and model compression have been
achieved with reduced Floating-Point, K-Means Clustering and an hybrid ap-

proach between the two:

— 8-bit Floating-Point is characterized by an almost null accuracy degra-
dation (< 0.2) and a compression factor of the network size equal to 4
for both the networks;

- K-Means Clustering reaches good results if each layer is associated to
a different set of 16 clusters. Both the networks achieve a parameter
compression factor higher then 7.9, limiting the accuracy degradation to
2.48 in DenseNet 1.0 and to 4.35 for 2.0 version.

- An hybrid approach between the ones described above restricts accuracy
degradation to 2.45 and 4.45, while the parameter size are decreased by

a factor 8 and the total network size by a factor 5.3.

Power of 2 Weights representation unfortunately introduces too high accuracy
deterioration in all the scenarios. Adopting Dynamic Fixed-Point good re-
sults can be achieved if only Convolutional and Fully Connected layers are
quantized. Nevertheless, when Batch Normalization is taken into account, the

representation format fails to cover the dynamic range of the new parameters.

IT

Contents

Abstract

List of Figures

List of Tables

List of Symbols

1 Introduction

2

1.1

1.2
1.3

Face Recognition
1.1.1 Historical Hints
Problem Statement
Outline.

Neural Networks Background

2.1

Convolutional Neural Network
2.1.1 Internal Architecture .
21.2 AlexNet

2.2 Residual Neural Network . . .
2.3 Dense Convolutional Network
2.4 Model Compression
Quantization

3.1 Quantization Types

3.2

Quantization Formats
3.2.1 Mini Floating Point . .
3.2.2 Fixed-Point

VIII

3.2.3 Power Of 2 24

3.3 Examples of Quantized Models 25
3.4 Quantization Tools 25
3.4.1 Tensorflow Quantization: Tensorflow Lite 26
3.4.2 Caffe Quantization: Ristretto 27
Case of Study: DenseNet 29
4.1 Reference Networks 29
4.1.1 Internal Structures 30

4.2 Quantization Strategy oL 34
4.2.1 Scalar Quantization 35
4.2.2 Vector Quantization 36

4.3 Layer-by-Layer Investigation 37
4.3.1 Pooling Layers 37
4.3.2 Convolutional and Fully Connected Layers 38
4.3.3 Batch Normalization Layers 38
434 Folding. 39

4.4 Network Preparation for Ristretto 41
4.4.1 From Tensorflow to Caffe 41
4.42 Classifier 43
Quantized Networks 45
5.1 Labeled Faces in the Wild 46
5.1.1 LFW Test 46

5.2 Original Networks 48
5.2.1 Full Precision 48
5.2.2 Caffe Network Validation 49
5.2.3 Scalar Quantization 49

5.3 Folding 52
5.3.1 Full Precision 53
5.3.2 Scalar Quantization 53
5.3.3 K-Means Clustering 57
5.3.4 Hybrid Quantization: K-Means Clustering and Mini Floating-
Point 59

6 Conclusions

A Ristretto Framework
A.1 Quantization Tool
A.1.1 Ristretto Layers L

A.2 Fine-Tuning

Bibliography

61

63
63
65
68

69

VI

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

An Image of Woody Bledsoe from a 1965 Study [3] 2
Artificial Neuron Structure 5
Basic Architecture of a CNN [12] 6
Convolution Example: 3x3 kernel and stride =2 8
Padding Example o000 8
Fully Connected Structure 10
Maximum Pooling Example 11
Non-Linear Activation Functions 12
AlexNet Structure. 13
ResNet Building Block [14] oo 14
ResNet Structure [14] oo 15
DenseNet Structure [15] L. 16
Floating-Point Bit Division 23
Fixed-Point Bit Division 23
DenseNets 2.0 and 1.0 Internal Partition 30
Input Block in Keras 31
Dense Block in Keras 32
Transient Section in Keras 33
Output Sections in Keras 34
Batch Normalization in Caffe 42
Classifier Architecture 44
Examples of Image Pairs from LFW Database [46] A7

VII

A.1 Ristretto quantize Command Example 64

A.2 Mini Floating-Point Layers 66
A.3 Dynamic Fixed-Point Layers 67
A.4 Multiplier-Free Arithmetic Layers 68

VIII

List of Tables

5.1
0.2

2.3

0.4

2.5

5.6

5.7

5.8

2.9

LEFW test accuracy of original DenseNet 2.0 and DenseNet 1.0 . 49

LFW test accuracy for Caffe versions of DenseNet 2.0 and DenseNet
1.0: Accuracy Difference is computed between the Caffe accu-

racy and the Tensorflow accuracy reported in 5.1 49

Bit Width and Bit Division After Mini FP Quantization on
Conv and FC Layers 50

LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After
Mini FP Quantization on Conv and FC Layers: Accuracy Degra-
dation is computed between the Caffe accuracy and the Tensor-

flow accuracy reported in 5.1 50

Bit Widths After Dynamic Fixed-Point Quantization on Conv
and FC Layers. 51

LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After
Dynamic Fixed-Point Quantization on Conv and FC Layers:
Accuracy Degradation is computed between the Caffe accuracy

and the Tensorflow accuracy reported in 5.1 51

Bit Widths After Power of 2 Weights Quantization on Conv and
FC Layers 52

LEFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After
Power of 2 Weights Quantization on Conv and FC Layers: Ac-
curacy Degradation is computed between the Caffe accuracy

and the Tensorflow accuracy reported in 5.1 52

Layers and Parameter Reduction After Folding 53

IX

5.10

5.11

5.12

0.13

5.14

5.15

5.16

5.17

0.18

5.19

5.20

0.21

LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After
Folding: Accuracy Difference is computed with respect to the
Tensorflow accuracy reported in 5.1 53
Bit Width and Bit Division of Folded DenseNet 2.0 and DenseNet
1.0 After Mini FP Quantization 54
LFW test accuracy of Folded DenseNet 2.0 and DenseNet 1.0
After Mini FP Quantization: Accuracy Degradation is com-

puted between the Caffe accuracy and the Tensorflow accuracy

reported in 5.1 54
Bit Widths of Folded DenseNet 2.0 and DenseNet 1.0 After
Dynamic Fixed-Point Quantization 55
LEFW test accuracy of Folded DenseNet 2.0 and DenseNet 1.0

After Dynamic Fixed-Point Quantization: Accuracy Degrada-

tion is computed between the Caffe accuracy and the Tensorflow

accuracy reported in 5.1o 55
Bit Widths of Folded DenseNet 2.0 and DenseNet 1.0 After
Power of 2 Weights Quantization 55
LFW test accuracy of Folded DenseNet 2.0 and DenseNet 1.0

After Power of 2 Weights Quantization: Accuracy Degradation

is computed between the Caffe accuracy and the Tensorflow

accuracy reported in 5.1 L. 56
Optimal number of clusters K 57
Parameters Reduction Memory Due to K-Means Clustering . . . 58
LEFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After
K-Means Clustering: Accuracy Difference is computed with re-
spect to the Tensorflow accuracy reported in 5.1 58
Reduction Rate Due to K-Means Clustering and Mini Floating-

Point 59
LEFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After K-
Means Clustering and Mini Floating-Point Quantization: Ac-
curacy Difference is computed with respect to the Tensorflow

accuracy reported in 5.1 60

List of Symbols

ANN Artificial Neural Network. 5, 6

BN Batch Normalization. I, II, IV, VII, 7, 12, 13, 16, 31-33, 37-42, 45, 49,
52, 54, 56, 57, 61

CNN Convolutional Neural Network. VII, 6, 7, 11-14, 25, 35, 63

Conv Convolutional. I, IV, IX, 7, 9-18, 31-33, 37-40, 45, 4852, 54-57, 63,
64, 6668

DenseNet Dense Convolutional Network. I, II, VII, IX, X, 4, 16, 29-34,
37-45, 47-58, 6062

FC Fully Connected. I, IV, VII, IX, 7, 9-11, 13, 17, 18, 33, 3740, 43, 45,
48-52, 54-56, 63, 64, 6668

FP Floating-Point. I, II, IV, VII-X|, 22-27, 35, 38, 50, 51, 53, 54, 56, 59-66
HW Hardware. 24, 35, 36, 39, 40, 61, 62

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 3, 13, 14
KD Knowledge Distillation. 17, 29

LFW Labeled Faces in the Wild. II, IV, VII, 4, 43, 45-50, 53, 58

LMDB Lightning Memory-Mapped Database. 41
MLP Multi-Layer Perceptron. 43

XI

NN Neural Network. II, 3-6, 9, 11, 12, 17, 18, 21-27, 29, 36, 38, 43, 45, 46

ReLU Rectified Linear Unit. 11, 13, 16, 31, 32, 43
ResNet Residual Neural Network. VII, 14-16, 29, 30

RGB Red, Blu and Green. 6

XII

1 Introduction

1.1 Face Recognition

Facial recognition is a technology capable of determining the identity of a per-
son through the analysis of his, or her, face.

In recent years this biometric measurement has become increasingly popular:
it is the most "natural" way to identify someone, it is simple to be implemented

and it does not require any physical interaction with the person to be identified.

To accomplish face recognition, the processing is typically divided in four steps.
Firstly, face detection is performed in order to detect a face in an image,
separating it from the background. Then an alignment procedure is carried
out in order to increase the accuracy of the system: e.g., the output image
is rotated to have the line joining the eye of the person in parallel with the
horizontal line; moreover, all processed images are resized so that they have
all the same scale. Thanks to this process, in each image the different features
of a face (eyes, nose, mouth and chin) are placed in their typical position.
The third step is feature extraction, in which the facial features of the image,
such as elements position and distance, are measured and a feature matrix is
created. The last step is image recognition, for which the obtained features
are typically compared to a database, in order to determine the person in the

processed image.

1.1.1 Historical Hints

The pioneers of face recognition were Woody Bledsoe, Helen Chan Wolf and

Charles Bisson, which in the 1960s started programming computers to identify

CHAPTER 1. INTRODUCTION

human faces [1][2]. Their work involved a manual measurement of face fea-
tures: an example is shown in figure 1.1. These values were then used by the
computer to compute the distances between the landmarks of the face with the
ones in their database to determine the identity of the person. At the time,

the research was not successful and most of their work was not published.

Nevertheless it was the first fundamental step for the face recognition history.

48 234

Figure 1.1: An Image of Woody Bledsoe from a 1965 Study |[3]

A first improvement was achieved in the late 1980s with the introduction of
linear algebra approaches, in particular the Eigenface method [4]: the human
face is encoded as a weighted combination of eigenvectors, which are then pro-
cessed to identify the person. This was the first attempt for automatic face
recognition and it laid the groundwork for the future researches. During the
1990s and the first 2000s, the efforts focused on the identification of new meth-
ods to increase the accuracy of the system: examples are Local Binary Patterns
[5] and Elastic Bunch Graph Matching [6]. However, the proposed methods
introduced very small improvements on the accuracy and most of them failed

to deal with facial changes, such as expression, lighting, disguise or aging.

CHAPTER 1. INTRODUCTION

The turning point was achieved in the 2010s thanks to deep learning. In these
years, the increasing computing power of computers allowed to support the
training of more complex Neural Networks. Since then, these systems have
been used for a wider range of applications, including face recognition. In
2012 the AlexNet network [7] won the annual ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), with an accuracy of 86.7% and by a margin
of more than 10% from the other proposed systems. From this moment on,
Neural Networks were used extensively in facial recognition, achieving within

few years accuracies above 95%.

1.2 Problem Statement

Nowadays face image recognition can be used in a wide range of applications.
In security services face recognition is adopted for crime prevention and detec-
tion. Together with fingerprints, it is used to verify the identity of a person
during board checks, comparing the digital image on the passport with the
passenger’s face. Identification through face recognition has become a popu-
lar feature in smartphones, game consoles and computers and can be used to
access critical services, as bank account or mobile payment. Also social media
has started to use face recognition algorithm, for example to automatically
identify and tag people on different photos. In the future, this technology is
going to be used in a larger number of applications: hospitality, health-care,
transports, retail are some of the possible fields where face recognition will

rapidly spread.

The growing usage in mobile systems has introduce low-power requirements,
which have called attention to the need of systems less computationally and
memory intensive. On the other hand, the wider number of application where
ID verification is critical, such as bank accounts or trading, imposes a limit on
the degradation of the system accuracy, to avoid errors in the correctness of
the identification.

The research of a trade-off between power consumption and accuracy is still an
unsolved problem. Over time, the accuracy of Neural Networks has increased

together with their complexity and their size: the harder task, the deeper and

CHAPTER 1. INTRODUCTION

the more complex will be the system. But the requirements for an high accu-
racy seems to be incompatible with a low-power system. It is particularly true
for face recognition, in which extremely high-accuracy networks are required.
In the last years, many methods have been proposed to reduce the parameters
and the amount of computations of a system. However, most of the approaches
have been validate on simple networks. This thesis focuses on the analysis of
deeper structures to verify their reaction to quantization, i.e. a particular

compression method.

1.3 Outline

The thesis is organized in 6 total chapters:

- This is Chapter 1, which is the introductory chapter. A brief introduction

on face image recognition is provided to the reader;

- Chapter 2 gives an overview on the basic concepts of Neural Networks.
Among the described architectures there is the Dense Convolutional Net-
work, which is the driving example for the quantization discussion in this
thesis. Lastly, the most important techniques for model compression are
described;

- Chapter 3 illustrates quantization and the different approaches that can

be found in literature;

- Chapter 4 describes the structure of the two driving examples of this
thesis: two Dense Convolutional Networks. Moreover the considered

quantization strategy is depicted;

- Chapter 5 collects the obtained results from the different approaches
and explains the Labeled Faces in the Wild (LFW) test, widely used to

evaluate and compare accuracies;

- Chapter 6 discusses the results and proposes future prospects.

2 Neural Networks Background

An Artificial Neural Network (ANN) [8] is a computing system based on the
biological neural network of the living beings. Its basic block is the artificial
neuron which, as the biological one, is able to make decisions and it is able to

learn when it is wrong.

X4

W1
X4
Wi
Y
° + f
[
@
%n Wn bias

Figure 2.1: Artificial Neuron Structure

An artificial neuron (figure 2.1) can be modeled as a computational unit that
takes decisions from a weighted sum of inputs, which can consider also a bias.
An activation function is then applied to this sum, generating the output sig-
nal of the neuron. Several types of activation functions exist, as described
in section 2.1.1. In a Neural Network (NN) neurons are grouped together to

constitute several independent layers.

The main aspects of a Neural Network are inference and training. The former
is characterized by the forward algorithm describe above: through its weights

and bias, the NN classifies its inputs. The latter allows the network to learn

CHAPTER 2. NEURAL NETWORKS BACKGROUND

how to make decisions. This mechanism is based on an iterative back propa-
gation algorithm [9]: the inputs are forward propagated in the network and a
loss function is computed with respect to the expected values in the training
database; in order to minimize this loss, a gradient method is applied to mod-
ify the weights and the bias in the network, following a backward algorithm.
Commonly used methods are Gradient Descent [10] and Stochastic Gradient
Descent [11].

Taking into account enough training data and a sufficiently large structure, a

Neural Network can approximate any function to arbitrary precision.

2.1 Convolutional Neural Network

- — CAR
\ / — TRUCK
\ — VAN

EAH 8
\\EZD L J——

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN o rerep SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 2.2: Basic Architecture of a CNN [12]

Convolutional Neural Network (CNN) is a particular type of ANN, commonly
used in image analysis. For this reason, the input feature of a CNN is typi-
cally a tensor or a matrix of pixels: an Red, Blu and Green (RGB) image is
represent by a tensor with 3 channels, one for each color, of pixels organized
in matrices of dimension height x width; a grey-scale image is represented by

a matrix, so it has just one channel.

A Convolutional Neural Network is based on the convolution operation, which

is nothing but a filter applied on the input image. Thanks to this operation,

CHAPTER 2. NEURAL NETWORKS BACKGROUND

in CNN parameter sharing and local connectivity are possible: the filter pa-
rameter could be shared among the neurons and each output is related only

to a small portion of inputs.

The standard architecture of a CNN consists on:

Convolutional layer;

Fully Connected layer;

Pooling layer;

Batch Normalization;

Activation Function.

The building blocks of a CNN system are the feature extractor and the clas-
sifier. The former is intended to reduce the redundancy of the input image,
which is transformed into a reduced version containing more relevant infor-
mation. This block typically consists on a combination of Convolutional and
Pooling layers. The latter processes the feature extracted by the previous block
and gives a prediction on the identity of the input image. It is composed of

one or more Fully Connected layers.

2.1.1 Internal Architecture

Convolutional Layer

The Convolutional (Conv) layer is based on the convolution operation, which is
a filtering operation. This procedure involves a square matrix, called kernel or
filter, that select a group of inputs. The convolution (figure 2.3) is computed as
the sum of the dotted products between the kernel and the selected inputs. The
filter slides along the input matrix and the convolution results are collected in
the output feature matrix. The step size used for this procedure is called stride.
A bias can be added to compute the output value. Typically, a Convolutional

layer is made up by a several number of filters.

CHAPTER 2. NEURAL NETWORKS BACKGROUND

0 1.0,0 4.0 0 1 0 0 O
o 1 1,0 4.0 0 0.0 1 O
0O 0 o!'o O O O 1.0 0 1
0o 0.0 0 6.1 1 0 0 1 0 171 1 0 2
o 1 0 o0 0.0 0 1.0 0 O 1 0 1 0o 0 1 0 2
o 0 0o 1 0O O O 1.0 0 A1 0 1 0 1 2 0 1 1
o 1t 1 0 1 0 1 0 0 11 0 o0 1 2 3 4 2 2
o 1 0 0 0 1 0 0 1 0 O 0 2 3 3 4
o o o 1 1 0 1 1 1 0 A1
o 0 0o o o 0 O 1 0 1 1
o o o o 1 0 1 1 0 0 1

Figure 2.3: Convolution Example: 3x3 kernel and stride = 2

Zero Padding For a kernel with size higher than one, the height and the
width of the output feature is reduced with respect to the dimensions of the
input feature. However, sometimes it may be required to preserve the input
dimensions and the zero padding mechanism is able to give higher degrees of
freedom in the output size identification: zeros are added on the border of the
input matrix. The amount of rows and columns only containing zeros depends

on stride and on the kernel and input sizes.

0O/0 0|0 |0
0O 0 1 0 O
0 2 0 1 0]
73427
ololololo

Figure 2.4: Padding Example

CHAPTER 2. NEURAL NETWORKS BACKGROUND

Spacial Arrangement The dimensions of the output feature could be con-

trolled by the following hyper-parameters:

Number of Filters, Ny;
Kernel Field Size, K, which identifies the width and the height;
Stride, S

Padding, P, the number of added rows and columns of zeros.

The input feature has a size equal to D; - H; - W;, respectively depth, height
and width. From these quantities, the size of the output feature, D, - H, - W,

are:
D, = Ny (2.1)
H, = w +1 (2.2)
; — K +2P
W, — WT* +1 (2.3)

Fully Connected Layer

In Fully Connected (FC) layers, each output value is a weighted sum of all the

inputs plus a bias term:

yli] = ZD: 2 weightli]]j] - z[j] + bias]i]

i=1 j=1

where N; is the size of input features and N, is the size of output features.

These layers are close to the concept of neuron of Neural Networks: each output
can be seen as an artificial neuron and it is connected to all the neurons in the
previous layer (figure 2.5).

When a FC layer follows a Convolutional or a Pooling layer, it flattens them

into a vector. In fact, the output is always a feature vector of dimension N,.

CHAPTER 2. NEURAL NETWORKS BACKGROUND

Figure 2.5: Fully Connected Structure

Pooling Layer

The Pooling layer is generally used to lower the size of the intermediate fea-
tures. Its insertion among Convolutional layers is helpful to reduce the number
of parameters and computations in the network.

The Pooling kernel can be seen as a window that selects a set of input values
that are combined together to form a new output (figure 2.6). The two main

types of combinations are:

- Awerage Pooling, in which the output is equal to the average of the se-

lected values;

- Mazximum Pooling, in which the output is equal to the maximum input

values.

The hyper-parameters are similar to the ones reported in section 2.1.1: stride,
padding and kernel field size. Number of filters is instead a fixed quantity,
because in a Pooling layer the depths of input and output features are the

same: D, = D,.

10

CHAPTER 2. NEURAL NETWORKS BACKGROUND

0 1.0,0 140 0 1 0 0 O
o 1 1:/0 4.0 0 0.0 1 O
o 0o 0'0 O O O 1.0 0 A1
0 0.0 0 0.1 1 0 0 1 0 1911 1 1
o 1 0 0 0.0 O 4.0 0 O i 0 1 1 1
o o 0 1 0 O O 1.0 0 A1 i 1 . 1 1 1
o 1 1 0 1 0 1 0 0 1 4 i 11 1 1
o 1 0 0 01 0 O 1 0 O o 1 1 1 1
o o o0 1 1 0 1 1 1 0 1
o 0 0 0 00 0 1 0 1 1
o o 0 0o 1 0 1 1 0 0 1

Figure 2.6: Maximum Pooling Example

Activation Functions

As explained at the beginning of this chapter, activation functions are part
Neural Networks. In CNN, non-linear functions are typically adopted. This
kind of functions introduces non-linearity in the network. This is an important
characteristic to model complex relations between inputs and output: this
property allow the network to learn better and more precisely how to classify

complex data, e.g. images. The most used non-linear functions (fig. 2.7) are:

- Sigmoid
1
y(z) = e
- Hyperbolic Tangent
et — e
= tanh(z) = ——
(@) = tanh(a) = S

- Rectified Linear Unit (ReLU)

y(z) = max(0, z)

ReLU is the most used function because it is able to reduce the training time
of the network without a significant loss in the accuracy. Activation functions

are adopted after Convolutional and FC layers.

11

CHAPTER 2. NEURAL NETWORKS BACKGROUND

Sigmoid Hyperbolic Tanget RelLu

08

06

04

0z

6 - ® w s oo

0 5 5 0 5 5 a

Figure 2.7: Non-Linear Activation Functions

Batch Normalization

Batch Normalization (BN) [13] is an important method used to obtain a faster
training and a simpler initialization of the parameters in the network. In
fact, BN stabilizes the features inside the network, reducing their changes,
thus making easier the identification of the hyper-parameters of the overall
network. It is typically performed after an activation function or between a
Convolutional layer and an activation function.

A batch is a subset of input samples processed before updating the internal
network parameters. Typically in Neural Network, when the batch size is more
than one sample and less than the size of the input dataset, this subset is called
mini-batch. During training each input feature in a mini-batch of the entire
training set is normalized through its mean and variance. The normalized

feature has zero mean and unit variance.

1 m
NB:E;SQ

m

1
op = m Z(ﬂ% — pp)?
=1
Ty — UB

where € is an arbitrary small constant.

T; =

The normalization procedure may reduces the non-linearity property of the
CNN, lowering the representation power of the network. For that reason a
scaling and a shifting procedure are considered to adapt the normalization.
The scale () and shift (8) parameters are updated during the training, as the

12

CHAPTER 2. NEURAL NETWORKS BACKGROUND

other hyper-parameters of the network.

The final output of the Batch Normalization is:
Yyi=7-%+p

During inference all the batch parameters are fixed, including the mean and
the variance. Typically, during the training, the moving averages of these two
quantities are updated after each mini-batch and the resulting average values

are considered in the inference, together with the trained v and f.

2.1.2 AlexNet

AlexNet [7] is a CNN proposed in 2012 by Alex Krizhevsky, Ilya Sutskever and
Geoffrey Hinton. In the same year it won the ILSVRC with an error rate of
the 15.3%, far ahead of its opponents. Its structure (figure 2.8) was designed
considering five Conv layers, two Local Response Normalization layers, three
Maximum Pooling Layers and three FC layers. Compared to the architectures

of the time, it was very large with its 60 millions parameters.

D Convolutional Local R{.:spc?nsc D Max Pooling Fully Connected
Normalization

Figure 2.8: AlexNet Structure

AlexNet introduced two main innovations:

- ReLU was used as activation function, replacing the sigmoid and tanh
functions which were used as a standard at that time. The ReLLU allowed

for faster training of the network;

- Training on multiple parallel GPUs was supported, further lowering the

training time.

13

CHAPTER 2. NEURAL NETWORKS BACKGROUND

2.2 Residual Neural Network

Residual Neural Network (ResNet) [14] was proposed in 2015 for the ImageNet
Large Scale Visual Recognition Challenge, winning the first place with an error
rate of 3.57%.

Since AlexNet, CNN architectures were becoming deeper and deeper. The
depth increasing had introduced a problem related to accuracy saturation:
during training the backward propagation along big networks, may produce
infinitely small gradients, preventing the weights from changing. This phe-
nomenon is called gradient vanishing and its effect is a saturation, or even a
degradation, of the accuracy with respect to the network depth.

ResNet architecture was proposed to overcome this problem. Shortcuts con-
nections are added to the classic CNN architecture, to skip typically two,
or three, layers. During training gradients are back-propagated through the
shortcuts, reducing the gradient vanishing issue. Thanks to this mechanism,

ResNets can be made by more than 100 layers.

X
weight layer
]—"(x) l relu <
| weight layer | identity

Figure 2.9: ResNet Building Block [14]

Furthermore, a bottleneck design was proposed for those architectures with a
very large number of layers. ResNet architectures are typically made by 3x3
Convolutional layers, as shown in figure 2.10, and shortcuts skip two layers. To
reduce the overall amount of parameters in the network, the original building
block, made by two 3x3 Convolutional layers, could be replaced with a stack of
three layers: 1x1, 3x3 and 1x1 Conv layers. The 1x1 Conv layers are responsible

to the reducing and then the increasing of the dimensions of their outputs,

14

CHAPTER 2. NEURAL NETWORKS BACKGROUND

allowing a reduction the size of the 3x3 Conv.

34-layer residual

amage

o, 2

Figure 2.10: ResNet Structure [14]

15

CHAPTER 2. NEURAL NETWORKS BACKGROUND

2.3 Dense Convolutional Network

Dense Convolutional Network (DenseNet) [15] was proposed in 2017 as an evo-
lution of ResNets.

The internal architecture of a DenseNet is divided in blocks, called dense blocks.
On these blocks, the concept of shortcuts is amplified: each dense block is
connected to all the following blocks (figure 2.11).

In addition to solving the vanishing gradient problem, this network is able to
speed up the training thanks to its denser connections: it is like each dense
block gets access to the "collective knowledge" of the system. Furthermore,
the usage of concatenated input features learned by different layers increases
the training power, obtaining less and more efficient hyper-parameters.

The dense blocks consists on a Batch Normalization, a 3x3 Convolutional layer
and a ReLU activation function. The bottleneck design explained in section

2.2 could be applied also on DenseNets.

Figure 2.11: DenseNet Structure [15]

16

CHAPTER 2. NEURAL NETWORKS BACKGROUND

2.4 Model Compression

Recently the trend of Neural Network has been characterized by an increase
in complexity to obtain higher accuracies. This leads to structures containing
hundreds or thousands of base-level classifiers, hindering their employment in
portable devices. Therefore, in the last years great efforts have been made to
develop techniques that can compress models and limit redundancy, without
affecting accuracy. The most important techniques [16] that have been used for
the model compression of networks with Convolutional and Fully Connected

layers are:

Knowledge Distillation;

Low-Rank Factorization;

Parameter Quantization;

Parameter Pruning.

Knowledge Distillation

Knowledge Distillation (KD) [17] is based on the fact that training and infer-
ence can be seen as separated tasks of a Neural Network. Therefore, they can
be implemented by different models. In particular KD transfers the knowledge
of the training network into a smaller one that can be used for inference. The
compressed network, called "student", can be implemented with a completely
different architecture and it requires a training to mimic the behavior of the
larger architecture, called "teacher".

The Knowledge Distillation technique has high degrees of freedom in identi-
fying a compressed solution: the architecture selection, the internal structure,
etc. Nevertheless, this complexity is rewarded with an higher flexibility in
finding a solution.

The solution in [18] adopted this compression technique on a dense neural
network, reducing the number of parameters by more than half and obtaining
compatible accuracies with the original one (around 3-2%).

Moreover, [19] made further improvements in the achievable mimic capability

17

CHAPTER 2. NEURAL NETWORKS BACKGROUND

if the "student" is able to learn information also from the intermediate layers
of the "teacher". The obtained networks were deeper but thinner. The lower
width allowed the network to be more compact, thus to have a lower number of
total parameters (the compression rate was between 3 and 10). Moreover, the
"student" networks reached higher accuracies with respect to the "teacher"

ones.

Low-Rank Factorization

A rank is the number of linear-independent columns in a matrix. If the rank
is lower than the number of total columns, some redundant information is
present in the matrix. In NN this concept can be extended to filters and chan-
nels, which are typically redundant. The low-rank factorization approximate
dense networks with a linear combination of fewer number of filters through
matriz/tensor factorization or decomposition. Then a training process is re-

quired to fix the model and to reduce the loss of accuracy.

In [20] low-rank factorization is applied on different NN architectures. For
AlexNet, they achieved an average reduction factor of 3.4 for the energy con-

sumption, with a dropout on the accuracy lower than the 2%.

Parameter Pruning

The goal of parameter pruning is the reduction of the size and the complexity
of a NN removing the redundancy in the non-critical parts. This is achieved
by eliminating connections, neurons, channels or entire filters. Depending on
what is the target of the pruning method, a ranking of the possible elements to
be eliminated is drawn up according to their contribution on the correctness of
the network prediction. The less meaningful ones could than be removed: the
dense network is transformed in a sparse one. Thanks to a re-training process

the remaining elements can compensate the erased ones.

An example of pruning is given in [21], where Conv and FC weights below a
certain threshold were removed from the network to reduce the connections.

The techniques were applied to three architectures: Lenet5 [22]|, AlexNet and

18

CHAPTER 2. NEURAL NETWORKS BACKGROUND

VGGNet [23]. The results showed that a reduction of one order of magnitude
in the number of parameters with an almost null accuracy degradation is pos-
sible, taking into account a re-training procedure.

In [24], pruning was considered together with weights quantization and Huff-
man coding to further reduce the required memory and the related energy
consumption. Testing their method on the Lenetb, AlexNet and VGGNet,
they reached a parameter compression rate between 35 and 40, without no

loss of accuracy.

19

CHAPTER 2. NEURAL NETWORKS BACKGROUND

20

3 Quantization

Quantization focuses on lowering the size of data. In a Neural Network the
aim is the reduction of the number of bits used to represent information. Pa-
rameters and features are mapped from a large set of values to a smaller one
introducing an error, the quantization error.

Nevertheless, NNs are inherently resilient to small errors and fluctuations thus

they should be able to dealt with quantized information.

In Neural Network quantization gives advantages both on computational and
storage point of views: a lower number of bits means that a smaller memory
is required to store the data; moreover, operations become simpler allowing a

speed-up and a lower power consumption.

3.1 Quantization Types

Quantization techniques can be divided in two main groups, depending on
the approach considered for the approximation of the weights: post-training

quantization and quantization aware-training.

Post-Training Quantization

Post-training quantization [25] focuses on inference. In fact weights are trained
in full-precision and then a dynamic range analysis is carried out to identify
the correct formats to represent the parameters.

This approach is the simplest one, even if quantization could lead to an high

loss of accuracy, especially for integer or fixed-point quantization.

21

CHAPTER 3. QUANTIZATION

Quantization Aware-Training

Quantization aware-training [25] considers the quantization of the parameters
also during training. According to this approach, networks are firstly trained
in full-precision to identify the starting parameters. Then a dynamic range
analysis is performed and quantization is applied. At this point the network is
re-trained, taking into account also the quantization error which becomes part
of the network loss that the training process minimizes.

This approach is more complex than the simpler post-training quantization.
Nevertheless, it makes the network more robust to quantization errors, allowing
for almost null accuracy losses even after extreme low bit-width integer or

fixed-point quantization.

3.2 Quantization Formats

Traditionally Neural Networks adopt 32-bit Floating-Point (FP) (IEEE-754
standard [26]) representation for training and inference. However, other types
of format can be taken into account to reduce the computational cost and the

required memory:
- Mini Floating-Point representation;
- Fixed-Point representation;

- Power of 2 representation.

3.2.1 Mini Floating Point

Mini Floating-Point representation is a particular version of FP where numbers
are expressed with a lower number of bits with respect to the IEEE standard.
As in the 32-bit and 64-bit versions, this format is described by a sign, an
exponent and a mantissa.

According to figure 3.1, the total number of bit is S + E + M, where S is
typically one, while the rest of the total bits can be divided between M and E
as needed.

Following the IEEE standard, a value is expressed as:

sign Qexponent—bias

value = (—=1)*" - mantissa -

22

CHAPTER 3. QUANTIZATION

S E M

a~
L 4

SIGN EXPONENT MANTISSA

Figure 3.1: Floating-Point Bit Division

In mini FP the bias term may be considered as another degree of freedom.

However, the IEEE standard expression is typically considered:
bias =271 -1

The adoption of this format in Neural Network leads to a reduction on param-
eters and features sizes, with an almost null dropout on the accuracy. Further
improvements on the complexity of the system can be achieved by neglecting
the special cases of the IEEE standard: denormal values, infinite and NaN.
In particular, denormalized values are quite computationally expensive, thus
their absence can bring benefits on the performances, even if the range of

represented values will be smaller.

3.2.2 Fixed-Point

Fixed-point numbers are integer values scaled by a fixed factor, which is a
power of 2. It is based on the concept of the binary point, that, as the decimal

one, divides the integer and the fraction part.

Fractional

Figure 3.2: Fixed-Point Bit Division

The binary point position, which is equivalent to the number of bits for the
fractional part, identifies the scaling factor to be applied to get the correct
Fixed-Point number. Considering B as the number of total bits, F binary

point number and x; the bit at position i, the represented Fixed-Point values

23

CHAPTER 3. QUANTIZATION

18:
B—2

value = int - 2F = (—ZB’1 -rp_1+ Z 2. x;) - 2F
i=0
With respect to FP representation, Fixed-Point requires a simpler Hardware,
with further improvements on the power consumption and speed points of

view. However, the cost of these progresses is a reduced dynamic range.

Dynamic Fixed Point

In Dense Neural Network, the dynamic ranges of the values in the layers can
be very different from each other. The total dynamic range of the network is
typically very large and Fixed-Point representation has not the capabilities to
cover it with an acceptable quantization error.

For this reason, dynamic fixed point could be a good solution to achieve higher
accuracies. Each layer is represented with a different Fixed-Point format: val-
ues of a layer share the same fractional length, but values of different layers
may have different binary point positions.

A further improvement can be achieved if the values of each layer are divided in
other three groups. In fact, the dynamic ranges of the inputs, the outputs and
the parameters of a layer are typically quite different: parameters are small,
while the inputs and the outputs of the layers are the results of a large number
of accumulations. A different Fixed-Point mapping for each of the three types

of information increases the covering capability of the representation.

3.2.3 Power Of 2

This representation approximates values as the closer powers of 2. Numbers
could be just represented by their sign and their exponent, reducing the overall

number of bits used to represent the value:

value = (_1)sign . 2ezponent

This approach has high benefits also on the computation side. In fact, mul-
tiplications between a value and a power of two can be implemented just by
shift operations. Typically in NN, multipliers require most of the area and the

power of the system thus Power of 2 values can greatly benefit the system.

24

CHAPTER 3. QUANTIZATION

3.3 Examples of Quantized Models

In the last five years, research has pushed towards the identification of increas-
ingly optimized and quantized networks. In [27]| a layer-by-layer approach was
introduced to quantize networks from 32-bit Floating-Point to Fixed-Point
representation. For each layer, firstly a statistical analysis of the weights was
performed. From the obtained range, the integer and the fractional bit-widths
were selected to cover the possible values and the accuracy of the new network
was computed. This procedure was then used for the analysis of the weights of
all the following layers. After the identification of the formats for the weights,
the process was iterated for the data quantization. This approach allowed to
have different total bit-widths for each layer. The method was applied to a
simple CNN, the Lenetb, obtaining good results in terms of accuracy degrada-
tion: smaller than 0.2%.

Another example is [28], where a quantization investigation was carried out on
three simple CNNs, considering different representations: starting from sin-
gle precision Floating-Point, different (32-bit, 16-bit, 8-bit) Fixed-Point rep-
resentations and power of two weights representation were tested. In order to
faster identify the correct formats Ristretto had been considered. Moreover,
the aware-quantize approach had been adopted, to increase the accuracy: the
maximum dropout was around the 6%. The bit reduction proposed in [29]
and [30] gone even further, introducing binary representation format obtained
through aware-training quantization. The approach was applied to a sim-
ple CNN, ConvNet, achieving very good results with an almost null accuracy
degradation.

Even if papers reported good reactions to quantization, it should be pointed
out that most of the results found in the literature take into account only very

simple networks, while investigations on Deep Neural Network are left behind.

3.4 Quantization Tools

Neural Networks are typically implemented in software through tools like Ten-
sorFlow [31], an open-source library developed by Google, Caffe [32] [33], an

open-source framework developed by Berkeley University, or Keras [34], an

25

CHAPTER 3. QUANTIZATION

open-source library in Python. The growing interest in mobile applications
has led to the development of several tools to help the description of a quan-
tized NN. In particular, Tensorflow and Caffe have been expanded to support

quantization.

3.4.1 Tensorflow Quantization: Tensorflow Lite

At the end of 2017, Google announced a new software, Tensorflow Lite [35],
for the development of NNs for mobile and embedded devices. Starting from
a full-precision pre-trained network described in Tensorflow, this extension is
able to quantize a network into 16-bit Floating-Point (FP) or 8-bit integer
representation. During the last year the software has been updated and now it
supports four different types of quantization: integer weights, float16, integer,

aware training.

Integer Weights Quantization Tool

Integer weights quantization tool converts weights from 32-bit Floating-Point
to 8-bit integer. Therefore, the model size is reduced by a factor 4. Features
are instead stored in full-precision: during inference they are converted to in-

tegers and re-converted to FP after processing.

Float16 Quantization Tool

Float16 quantization tool converts weights from 32-bit FP to 16-bit FP. The
model size is halved and the floating point flexibility in covering a wider dy-

namic range is maintained.

Integer Quantization Tool

Integer quantization tool was introduced in 2019 as an update of integer
weights quantization tool. This approach is able to convert from 32-bit FP
to integer representation both the parameter and the features of a network. In

particular different conversions are possible:

- 8-bit weights and feature;

26

CHAPTER 3. QUANTIZATION

- 16-bit features and 8-bit weights.

Aware Training Quantization Tool

Aware Training quantization tool was released only in April 2020. It is able
to consider weights quantization also during training, converting them from
32-bit FP to 8-bit integer representation. As already explained in section
3.1, this type of quantization leads to higher accuracies especially for integer

representations.

3.4.2 Caffe Quantization: Ristretto

Ristretto [36] is an extended version of the Caffe framework. It is able to
perform post-training quantization on a NN. Furthermore, it can carry out
aware-training quantization on the obtained quantized network, thanks a fine-
tuning procedure that takes into account quantized parameters.

The tool supports three different quantization formats: Mini Floating-Point,
Dynamic Fixed-Point and Power of 2 Weights. Starting from a pre-trained
network described in the Caffe format, the tool is able to perform a dynamic
range analysis of the parameters, the inputs and the outputs of each layer in
order to identify the correct bit division of the chosen format. Ristretto then
tests the network considering different bit-width representation of the same
format, identifying the one with smaller number of bits but acceptable accu-
racy. The information of each layer can be quantized with a different bit use
(exponent-mantissa or integer-fractional). Moreover, in Dynamic Fixed-Point
representation, inputs, outputs and parameters of the same layer may be quan-
tized with a different number bits. The quantized network can be re-trained

considering quantization, to achieve better performance.

The higher flexibility of Ristretto with respect to the different formats and the
different bit-widths makes it the ideal tool for the quantization analysis of this
thesis. For this reason, in the section 3.2 the representation formats supported
by Ristretto are explained in detail. Furthermore, the Ristretto tool is further

described in appendix A.

27

CHAPTER 3. QUANTIZATION

28

4 Case of Study: DenseNet

The aim of this work is the analysis of the reaction of Deep Neural Networks
to quantization, limiting as much as possible the accuracy reduction.

The investigation focuses on the quantization of two different versions of a
feature extractor, both implemented through a DenseNet structure. In this
chapter, the reference architectures are described and the adopted quantization

strategy is depicted.

4.1 Reference Networks

The driving examples of this quantization analysis are two feature extractor,
presented in [37] and [38]. In particular, the reference networks are two re-
duced versions of a DenseNet-121: referring to the formalism in [37] and [38],
DenseNet 2.0 and DenseNet 1.0 are the chosen feature extractors to which

quantization is applied.

The models have been obtained through the Knowledge Distillation of a larger
network based on the ResNet-34 structure. This "teacher" network is char-
acterized by almost 6 millions parameters. The two "students" have been
trained to mimic the behavior of this network. In particular, the train set was
made by tuple (I,T): the inputs I are images from the Casia Web Face [39]
database while the targets T are the corresponding outputs of the "teacher".
The adopted loss function, minimized by the training process, is the Euclidean
distance between the targets and the output features of the distillated net-

works.

29

CHAPTER 4. CASE OF STUDY: DENSENET

"Students" require a much lower number of parameters with respect to the
original ResNet: DenseNet 2.0 is able to reduce the size by a factor 3.7, while
DenseNet 1.0 by a factor of 14.6.

Furthermore, all the distillated networks have been trained to recognize smaller
images. In fact, the "teacher" works with 150x150 input images, while the
DenseNets are able to deal with 80x80 images.

Thanks to the reduction of the number of parameters and the size of the input
images, the distillated networks require a smaller amount of memory and fewer

computations.

Both the networks have been implemented in Python through the Tensorflow

and Keras libraries.

4.1.1 Internal Structures
The two reference architectures differ in depth and number of parameters:

- DenseNet 1.0 is made by a 50 Keras layers, for a total number of param-
eters equal to 1.48M;

- DenseNet 2.0 is made by a 139 Keras layers, for a total number of pa-

rameters equal to 381K;

Nevertheless, the networks have similar internal structures and common groups
of layers can be identified within the two.

DenseNet 1.0 can be divided in three main sections: input, dense blocks se-
quence, output. The same partition is present in DenseNet 2.0, which however
has a further type of layers, grouped together in the transient section. The

overall structures as shown in figure 4.1.

INPUT 6 x DENSE TRANSIENT 12 x DENSE OUTPUT
SECTION BLOCK SECTION BLOCK SECTION
INPUT 6 x DENSE OUTPUT

DenseNet 1.0 | cperion 7| BLOCK | SECTION

Figure 4.1: DenseNets 2.0 and 1.0 Internal Partition

30

CHAPTER 4. CASE OF STUDY: DENSENET

Input Section

The first group of layers (figure 4.2) is the same for both the networks and it is
made by a Convolutional layer and a Maximum Pooling layer, both involving
a padding mechanism. The activation function of the Conv layer is a ReLU

function. Furthermore, Batch Normalization is considered.

input: (None, 80, 80, 3)
output: | (None, 80, 80, 3)

input_4: InputLayer

y

input: (None, 80, 80, 3)
zero_padding2d_7: ZeroPadding2D

output: | (None, 86, 86, 3)

input: (None, 86, 86, 3)
output: | (None, 40, 40, 64)

conv l/conv: Conv2D

input: | (None, 40, 40, 64)
output: | (None, 40, 40, 64)

conv I/bn: BatchNormalization

y
input: | (None, 40, 40, 64)

output: | (None, 40, 40, 64)

conv I/relu: Activation

input: | (None, 40, 40, 64)

zero_padding2d_8: ZeroPadding2D
output: | (None, 42, 42, 64)

input: | (None, 42, 42, 64)

11: MaxPooling2D
poo & output: | (None, 20, 20, 64)

Figure 4.2: Input Block in Keras

Dense Blocks Sequence Section

As already explained in section 2.3, the main characteristic of a dense block
is the connection with all the following blocks of the same type. These con-
nections can be easily implemented in Keras through the employment of con-

catenation layers. In the two DenseNets, a sequence of these type of blocks is

31

CHAPTER 4. CASE OF STUDY: DENSENET

considered. In particular:

- DenseNet 1.0 has 6 sequential dense blocks, placed after the input layers;

- DenseNet 2.0 has a first sequence of 6 dense blocks and a second sequence
of 12 dense blocks. The first sequence is placed after the input layers and
the two series of dense blocks are divide by the transient section described

below;

Each dense block (figure 4.3) is made by a concatenation of Convolutional

layer and Batch Normalization. The adopted activation function is a ReLLU.

e

input: | (None, 20, 20, 64)
output: | (None, 20, 20, 64)

conv2_block1_0_bn: BatchNormalization

input: | (None, 20, 20, 64)
output: | (None, 20, 20, 64)

conv2_block1_0_relu: Activation

input: | (None, 20, 20, 64)
output: | (None, 20, 20, 128)

conv2_blockl_1_conv: Conv2D

input: (None, 20, 20, 128)
output: | (None, 20, 20, 128)

conv2_blockl_1_bn: BatchNormalization

\

conv2_blockl_1_relu: Activation

l

conv2_blockl_2_conv: Conv2D

input: | (None, 20, 20, 128)
output: | (None, 20, 20, 128)

input: (None, 20, 20, 128)

output: (None, 20, 20, 32)

N

conv2_block | _concat: Concatenate

input: [(None, 20, 20, 64), (None, 20, 20, 32)]
output: (None, 20, 20, 96)

Figure 4.3: Dense Block in Keras

32

CHAPTER 4. CASE OF STUDY: DENSENET

Transient Section

Only in DenseNet 2.0 a transient series of layers is present between the two
different sequences of dense blocks. As shown in figure 4.4, it is made by
a combination of Batch Normalization, Convolutional and Average Pooling

layers.

.

input: | (None, 20, 20, 256)

pool2_bn: BatchNormalization

output: | (None, 20, 20, 256)

input: (None, 20, 20, 256)

output: | (None, 20, 20, 256)

pool2_relu: Activation

input: | (None, 20, 20, 256)

output: | (None, 20, 20, 128)

pool2_conv: Conv2D

input: (None, 20, 20, 128)
output: | (None, 10, 10, 128)

pool2_pool: AveragePooling2D

Figure 4.4: Transient Section in Keras

Output Section

The last layers for both the networks are a Fully Connected (FC) and Global
Average Pooling layers. The latter is a particular type of Pooling layer: the
kernel size is equal to the input matrix, therefore each channel is compressed
by the average of its values.

DenseNet 2.0 has a further layer, a Convolutional one.

The two complete output sections are shown in figure 4.5.

33

CHAPTER 4. CASE OF STUDY: DENSENET

input: (None, 10, 10, 512)
output: | (None, 10, 10, 256)

conv2d_7: Conv2D

input: | (None, 10, 10, 256)

output: (None, 256)

global_average_pooling2d_8: GlobalAveragePooling2D

Y
input: | (None, 256)

dense_8: Dense

output: | (None, 128)

(a) DenseNet 2.0

!

global_average_pooling2d_9: GlobalAveragePooling2D

input: | (None, 20, 20, 256)

output: (None, 256)

input: | (None, 256)

dense_9: Dense

output: | (None, 128)

(b) DenseNet 1.0

Figure 4.5: Output Sections in Keras

4.2 Quantization Strategy

The Dense Convolutional Networks described in section 4.1 are the starting
point for the carried out post-training quantization analysis. Specifically, this

work focuses on inference, while training is laid aside.

A good trade-off between prediction accuracy and power consumption is manda-
tory for face recognition purposes.

A layer-by-layer approach is a useful strategy to minimize the introduced quan-
tization error: each layer is processed independently and, within it, parameters
and features are examined separately.

The solution set for the different quantization schemes is peculiarly broad. For
that reason an automatic range analysis can be adopted to speed up the quanti-

zation process. From this point of view, the Ristretto framework, mentioned in

34

CHAPTER 4. CASE OF STUDY: DENSENET

section 3.4.2, is a suitable solution: it is able to analyse the dynamic ranges of
the parameters and the features of each layer in a CNN and to identify the best
bit width, providing an approximation of the accuracy related to the selected

quantization strategy. Further details on Ristretto are reported in appendix A.

Several quantization types have been considered to verify their different ef-
fects on accuracy and model compression. In particular, two different families
of quantization techniques have been taken into account: scalar quantization
and vector quantization.

Quantized results have been then compared to the 32-bit Floating-Point ref-
erence representation to identify the solutions with an acceptable accuracy
degradation. Moreover, the different versions of the feature extractor allow
observations to be made also regarding reactions to quantization with respect
to the different depths of the networks.

4.2.1 Scalar Quantization

In scalar quantization each input value is processed separately: the quantized
output is selected as the nearest value from a fixed set.
The traditional approaches adopted in HW design are the ones described in

section 3.2. In particular, the main characteristic of these formats are:

- Mini Floating-Point representation, described in section 3.2.1, is typi-
cally able to strongly reduce the storage requirements with an almost
null degradation on the accuracy. The computational cost is reduced
too, but the Floating-Point operations still leave an high computational
complexity;

- Dynamic Fized-Point representation, described in section 3.2.2, is able to
strongly reduce both the computational and memory requirements. The
cost of this lowering of complexity is a deterioration in the prediction

accuracy;

- Power of 2 Weights representation, described in section 3.2.3, further
reduces the computational complexity thanks to its ability to map mul-
tiplication through shifters. However, the accuracy degradation can be

even higher than the one in Dynamic Fixed-Point representation.

35

CHAPTER 4. CASE OF STUDY: DENSENET

4.2.2 Vector Quantization

In vector quantization inputs are grouped together in a vector. The vector is
then divided into groups of similar values, each represented by its centroid.
The processing of inputs as a single entity allows for optimal quantization,
especially for large set of values. Nevertheless, this procedure increases the
computational complexity with respect to scalar quantization.

This approach can be adopted for parameter quantization in NN, as the pro-
cedure can be performed prior to inference.

One famous vector quantization algorithm is k-means clustering.

K-Means Clustering

K-Means Clustering [40] is a particular vector quantization algorithm. It di-
vides the N input values into K groups, where N < K. For each subset of
values, a centroid is identified in order to minimize the cluster variances iden-

tified by the square Euclidean distance:

K
. 2
argmin » Y " ||z —]
¢ 21 e
where K is the number of clusters, C; is one of the K clusters in C, x is an

input to be quantized and p; is the centroid of the cluster C;.

Thinking about a future HW implementation of a Neural Network, the pa-
rameters could be approximated by a K number of values. The K centroids
would be stored with a proper number of bits (), while each parameter would
be identified by an index that refers to the cluster to which it belongs. These
indexes would require a number of bit [= log, K much lower than the number
of bits QQ required by the centroids. By properly selecting the numbers of bits
Q and I, a Neural Network could be strongly optimized from the point of view
of the required memory: storage power could be reduced while accuracy may

remain nearly unchanged.

The main problem of the K-Means algorithm is its complexity, which grows

rapidly as the number of clusters K and the number of inputs N increase.

36

CHAPTER 4. CASE OF STUDY: DENSENET

K-Means Clustering can be implemented in Python, thanks to the sklearn
library and its internal class KMeans [41]. An important feature of this class is
the capability to verify if the selected number of clusters is above the optimal
value for the current input set: above this optimal K, the efficiency of the

algorithm saturates.

4.3 Layer-by-Layer Investigation

As claimed in section 4.2, a layer-by-layer analysis is a good approach to quan-
tize large networks, as it limits the accuracy degradation by analyzing each
single layer separately. This is especially true for Fixed-Point and Power Of 2
approximations, which can introduce larger quantization errors within a net-

work.

DenseNets are typically made by four different types of layers: Convolutional,
Fully Connected, Pooling and Batch Normalization layers.

Quantization may be critical in Convolutional, Fully Connected and Batch
Normalization layers, widely used within the networks, while is less crucial in

Pooling Layers.

4.3.1 Pooling Layers

Pooling layers are less affected by quantization. Furthermore in Maximum
Pooling computations do not introduce any kind of error in the results: the
output is just equal to one of the inputs.

In these particular driving examples, only two or three Pooling layers are
present, respectively within DenseNets 1.0 and 2.0: the first one is a Maxi-
mum Pooling and it is placed in the Input Section, the second one is a Average
Pooling with kernel size equal to 2 and it is present in the DenseNet 2.0 Tran-
sition Section, and the last one is a Global Average Pooling in the Output
Section of the networks. The first layer do not introduce any kind of error also
considering quantization while the last two may introduce small errors due to

the average process. The Average Pooling error is very small because just a

37

CHAPTER 4. CASE OF STUDY: DENSENET

division by 4 is required, the Global Pooling performes a division by an higher
number, so the error may be larger. However the distortion propagates in just

one another layer and so its effects can be negligible.

4.3.2 Convolutional and Fully Connected Layers

Convolutional and Fully Connected layers are most responsible for the com-
plexity of deep Neural Network. Indeed, the effort of a network can be divided
in two main contributions: arithmetic operations and memory capability.

Typically Convolutional layers are responsible for more than the 90% of the
required computational resources, while Fully Connected layers are respon-
sible for over the 90% of the required storage, due to their high number of
parameters. Moreover, Deep Neural Networks currently consist on hundreds
or thousands of these layers. Therefore the high number of accumulations can
lead to large quantization errors, making quantization a problem for the cor-

rect behavior of a deep network.

Both DenseNet 1.0 and DenseNet 2.0 consist on just one FC layer in the
Output Section. Regarding Convolutional, both the networks are made by a
huge number of these layers: DenseNet 1.0 is made by 13 Conv layers, while
DenseNet 2.0 by 39 ones.

The layers have been quantized as Mini Floating-Point, Dynamic Fixed-Point
and Power of 2. To identify the correct bit-width and the correct bit division, a
dynamic range analysis has been carried out thanks to the Ristretto framework.
In particular, inputs, outputs and parameters of each layer have been examined

on their own.

4.3.3 Batch Normalization Layers

As depicted in section 2.1.1, Batch Normalization is an essential operation
for the speed-up of the training process. Nevertheless, it leads to an higher
complexity during inference, especially because of the required arithmetic op-
erations, such as multiplication, division and square root.

In the two reference architectures, a huge number of Batch Normalization

Layers is present, so the related complexity can be significant: DenseNet 1.0

38

CHAPTER 4. CASE OF STUDY: DENSENET

consists on 13 BN layers, while DenseNet 2.0 on 38 layers.
To solve this problem a particular technique can be adopted during inference:

Batch Normalization Folding.

4.3.4 Folding

Folding is a widely used approach for the HW implementation of Batch Nor-
malization layers during inference and it is based on the fact that training and
inference can be seen as two different tasks. [42], [43], [44] and [45] are just
few examples where it is adopted.

Following this technique Batch Normalization is merged with a preceding Con-
volutional or Fully Connected layer during inference: this mechanism is possi-
ble because during this task the parameters of a BN are fixed. The resulting

layer is a Convolutional or Fully Connected one, with modified parameters:

z=W-.-2+B Conv or FC

z—p

y=777.+tF BN

- W-xz+B)—p
Y/

== y=W;- o+ By

+ 0

AW g B
Voite T e re

where Wy =

The manipulation of the characteristic expressions within a network leads to:
- Simplification of the involved operations: taking into account the new
parameters, division and square root are avoided;

- Reduction of the total number of layers: less operations are required,

therefore computational complexity is reduced while speed is improved;

- Reduction of the total amount of parameters, therefore the required

memory capability is reduced.

39

CHAPTER 4. CASE OF STUDY: DENSENET

Folding may introduces small variations on the output features but it does not

involved any accuracy degradation.

The approach can be extended to those Batch Normalization layers which are
not preceded by Conv and FC layers. It is quite important for the quantization
of the reference DenseNet, since half of their Batch Normalization layers follow
concatenation or pooling layers.

In practise, even by itself a BN layer can be seen as Convolutional one by

manipulating its equation. The resulting layer has a 1x1 kernel:

zZ— U 48

y_yx/az—i-e

= y=W-.-2+B

\/0’%-}—6
0 e S 0
\/o24e
where W = . 2 ,
0 0 A
w/alzv—&—e
Bl __mm
of—‘re
52 oM
B — \/og—&-e

__ _JINUN
By — e

These extended approach is able to simplify the involved operations. Moreover,
the total number of parameters to be stored can be reduced. Indeed weights
are organized as matrices in which only the diagonals contain non-null values.
Taking into account a proper HW implementation, only these non-null values
actually need to be stored. Therefore, the total number of parameters to be
stored can be halved: considering N the number of filters, original BN layers
require a total of 4N parameters (u, sigma, v and /) while the new BN-Conv

layers requires just 2N parameters (weight and bias).

40

CHAPTER 4. CASE OF STUDY: DENSENET

In addition to all the benefits deriving from the reduction of parameters and
layers, the adoption of these two techniques allows to quantize Batch Normal-

ization through the Ristretto framework, speeding-up the process.

4.4 Network Preparation for Ristretto

As declared in section 4.1, DenseNets 2.0 and 1.0 have been described and
trained thanks to Keras and Tensorflow libraries. However, quantization will
be performed with the help of the Ristretto framework. To work, this tool

requires:

- A pre-trained network described in Caffe format. A conversion from

Tensorflow to Caffe is needed;

- An input tuple of images, to analyze the network. Inputs can be provided
considering a Lightning Memory-Mapped Database (LMDB), an high
efficient database in the format image-key. The database stores each
input image and the corresponding label. This label will be used by

Ristretto in the accuracy evaluation;

- A network considering a classifier, due to the way accuracy is evaluated
during the quantization process. The DenseNets are just feature extrac-

tors, so a classifier has to be added after them.

The LMDB database can be easily assembled through a script available in the
Caffe material. The other two requirements are covered below, as they need a

more in-depth explanation.

4.4.1 From Tensorflow to Caffe

A network is described in the Caffe format by two files: a prototxt file holds
the internal structure while a caffemodel file stores the parameters of each layer

described in the prototxt.

Regarding the prototxt file, most of the Tensorflow and the Caffe layers are

quite similar, what differs is just the formalism.

41

CHAPTER 4. CASE OF STUDY: DENSENET

The main difference between the two is on the implementation of Batch Nor-
malization. In fact, the Tensorflow BatchNormalization() layer is equivalent
to a sequence of two Caffe layers: the BatchNorm layer and the Scale layer
(figure 4.6). The former subtracts the mean from the inputs and divides them
by the variance. The latter is used to perform the scaling and shifting of the

normalized distribution.

layer{
name: "batchl"
type: "BatchNorm"
bottom: “convl"
top: "batchl"
batch_norm_param{

use_global_stats:

}

}

layer{
name: "scalel"
type: "Scale"
bottom: “"batchl"
top: "scalel"
scale_param{
bias_term: true

}

Figure 4.6: Batch Normalization in Caffe

To create the caffemodel file, firstly the parameters of the trained DenseNets
have to be extrapolated from their Tensorflow descriptions. These values can
be then assigned to the Caffe network and saved in the caffemodel file.

A special attention should be paid to the weight assignment. In fact, Tensor-

flow and Caffe organize the weights with different orders:

Tensor flow — Heightierner - Widthierner - Depthinput - N fitter

Ca’ffe — Nfilter : Depth'input : Heightkernel : Widthkernel

The extrapolated weights have to be reordered from the Tensorflow to the

Caffe format, before the generation of the caffemodel file.

42

CHAPTER 4. CASE OF STUDY: DENSENET

4.4.2 Classifier

The distillated networks from [37] and [38| are dense feature extractors. These

systems can be adopted for different purposes:

- for face identification or for face verification. The former is defined as the
capability to identify a person (one-to-many approach), while the latter

is the capability to validate an identity (one-to-one approach);

- for close set or open set faces. For the former, the network is able to
deal with a finite number of identity while for the latter the network can
work with an infinite number of faces. Typically, face recognition with
an open set of faces requires an "unknown ID" class, to classify all the

images not belonging to the reference database.

For all the possible applications, a feature extractor has to be followed by a
classifier to complete the identification process.

In particular, the Ristretto tool is based on face recognition with close sets of
faces: a finite number of known identities has to be selected and a classifier
has to be designed. For this last purpose, a Multi-Layer Perceptron (MLP)
is a good solution to implement the required structure. This type of Neural
Network is made by three or more Fully Connected layers and non-linear ac-
tivation functions.

Following the work in [38], a Multi-Layer Perceptron made by three FC layers
was adopted (figure 4.7): the first two layers consists on 100 nodes, while the
last one on 30 nodes. This last quantity is equal to the chosen number of
known identities. The selected non-linear function was a ReLU.

Once the structure has been described, the parameters of the classifier have
to be identified. Actually, two different training processes were performed in
order to implement two classifiers, one for each DenseNet.

Firstly the two DenseNets were tested with the training images of the 30
known identities to extrapolate their output features. These inputs were se-
lected from the train set of possible faces of the Labeled Faces in the Wild
(LFW) [46][47][48] database.

After this testing process, two databases were assembled. Each database con-

43

CHAPTER 4. CASE OF STUDY: DENSENET

100 30
Nodes Nodes

Figure 4.7: Classifier Architecture

sists on tuple (F, L) of feature F and corresponding label L. The former is an
output feature from the distillated network, while the latter determines the
corresponding "friend". The total number of tuple is 450: 15 images for each

known identity.

The databases have been employed in training the classifiers, for 100 epochs
on batches of 30 images. The resulting accuracy of the classifier related to
DenseNet 2.0 was 99.77%, while the accuracy of the classifier for DenseNet 1.0
was 99.36%.

These quantities are the starting point for the Ristretto quantization, which
requires a classifier. Nevertheless, the final results reported in section 5 refer

to a testing procedure that involves only feature extractor contributions.

44

5 Quantized Networks

In order to verify the effectiveness of the quantization techniques, the accura-
cies of the reference Tensorflow networks have been computed and the Caffe
versions have been validated. At this point a first quantization has been per-
formed taking into account only Convolutional and Fully Connected layers:
scalar quantization has been considered. After that, folding has been applied
to the original architectures: the resulting networks have been validated and
scalar quantization has been carried out, in order to take also into account
Batch Normalization. A comparison between the quantization results with and
without BN has been performed, underlining the problems related to Batch
Normalization quantization. Lastly, K-Means Clustering has been taken into
account to try to enlarge the quantization solution set with Batch Normaliza-
tion layers.

Results are reported in terms of accuracy and, when present, compression rate.
In particular, each version of the networks has been verified following the LFW
test, a standard procedure for NN verification. The LFW test has been ap-
plied only to DenseNet 2.0 and DenseNet 1.0, while the classifiers required by

Ristretto have not been considered.

45

CHAPTER 5. QUANTIZED NETWORKS

5.1 Labeled Faces in the Wild

Labeled Faces in the Wild [46] [47] is a popular database used for NN verifica-
tion. It has been proposed in 2007 to address the pair matching problem for
which face recognition deals with deciding whether two images represent the
same person or not.

The main characteristics of this database are:

- 13233 target images;

- 5749 different individuals among which 1680 people have more than one
image;
- An unique name of each individual is provided and each person should

appear only under one name;

- The input images are provided as 250x250 pixel JPEG and most of them

are colored;

- Images represent individuals with a large range of variation in pose,
lighting, expression, background, race, ethnicity, age, gender, clothing,

hairstyles, camera quality, color saturation, focus.

In the database site [48], images are present together with different txt files,
which report the labeling for different sub-databases. Two main types of these
subsets exist: txt files to identify matched pairs and txt files to identify mis-

matched pairs. An example of the possible pairs is reported in figure 5.1.

5.1.1 LFW Test

LFW test is divided in two main phases: view 1 and view 2. The former has
been created to assist researchers during model selection and algorithm devel-
opment, while the latter should be used only for the final performance report

of a network.

46

CHAPTER 5. QUANTIZED NETWORKS

H
o [E S

fk_il

(a) Matched Pairs (b) Mismatched Pairs

Figure 5.1: Examples of Image Pairs from LFW Database [46]

The main steps of the performed test are reported below.

1. DenseNets have been tested by the LEFW database and the output fea-
tures have been extracted;

2. A binary classifier has been designed. The structure evaluates the Eu-
clidean distance between a couple of features. If this distance is below
a fixed threshold, the classifier marked the current couple as a matched
pair otherwise as a mismatched pair. The accuracy of the classifier is
computed as the ratio between the correct predicted pairs over the to-
tal number of input couples. The threshold of the classifier is the only

trainable parameter of the network;

47

CHAPTER 5. QUANTIZED NETWORKS

3. The classifier has been trained considering the couples of images estab-
lished in the "pairsDevTest.txt" file, available in [48]. The training pro-
cedure evaluates the Euclidian distances between the features of the 2200
pairs and verifies the accuracies by varying the threshold between 0 and
1, with a step size of 0.1. The optimal threshold is selected as the one

with higher accuracy;

4. The selected threshold is then used for the accuracy evaluation consider-
ing the couples in the "pair.txt" file [48]. In particular, 10 groups of 300
pairs with the same individual and 300 pairs with different individuals
are provided. The test accuracy is evaluated as the mean of the results
from the 10 different tests on the 10 groups. Moreover a standard error

is evaluated to report the network performances.

10
— Y iy ace
10
o \/Zgl(acq — acc)?
Serr = —F = =
V10 9

5.2 Original Networks

Taking into account the LFW test, the original networks have been character-
ized and the Caffe networks have been validated. After that a first quantization

has been performed on Convolutional and Fully Connected layers.

5.2.1 Full Precision

The Tensorflow DenseNets have been tested and the obtained LFW accuracies
are reported in table 5.1. These quantities are the reference values for all the

network versions covered in the next sections.

48

CHAPTER 5. QUANTIZED NETWORKS

Network Accuracy Threshold
DenseNet2.0 | (98.05 £ 0.20)% 0.54
DenseNet1.0 | (95.50 £ 0.35)% 0.5

Table 5.1: LFW test accuracy of original DenseNet 2.0 and DenseNet 1.0

5.2.2 Caffe Network Validation

To quantize the networks through the Ristretto framework, the Caffe DenseNets
have been implemented and validated through a comparison with the original
versions. Therefore, the networks have been tested and their LFW accuracies
have been computed. To compare the Caffe networks and the original Tensor-

flow ones, a difference between the accuracies has been evaluate.

Network Accuracy Accuracy Difference | Threshold
DenseNet2.0 | (98.05 £+ 0.20)% 0.00 0.54
DenseNet1.0 | (95.50 £+ 0.35)% 0.00 0.5

Table 5.2: LFW test accuracy for Caffe versions of DenseNet 2.0 and DenseNet
1.0: Accuracy Difference is computed between the Caffe accuracy and the

Tensorflow accuracy reported in 5.1

As it can be noticed in table 5.2, the Caffe and the original DenseNets are
characterized by the same exact results in terms of accuracy, accuracy error

and threshold, proving the correctness of the Caffe networks.

5.2.3 Scalar Quantization

After the Caffe implementation of DenseNet 1.0 and DenseNet 2.0, Convolu-
tional and Fully Connected layers have been quantized. This partial quantiza-
tion has been considered to verify the contributions of different layers in the
quantization error. In fact, in the literature it is often highlighted that Con-
volutional and Fully Connected layers are more easily to be quantized with
respect to Batch Normalization, which instead typically requires an aware-

training procedure.

49

CHAPTER 5. QUANTIZED NETWORKS

Quantization has been conducted taking into account Mini Floating-Point,
Dynamic Fized-Point and Power of 2 Weights. Different optimal bit widths

and different bit divisions have been achieved.

Mini Floating-Point

Adopting a Mini FP quantization, both the networks can be reduced from 32
bits to 8 bits, with a total reduction by a factor 4 of the network sizes. The
number of bits required for the exponent and the mantissa of the represented

values for both the networks are reported in table 5.3.

Total | Exponent | Mantissa
Network Bits Bits Bits
DenseNet2.0 8 5 2
DenseNet1.0 8) 2

Table 5.3: Bit Width and Bit Division After Mini FP Quantization on Conv
and FC Layers

The quantized FP versions have been tested through the LFW test and the
accuracies are reported in table 5.4. Both the networks react well to this type
of quantization. DenseNet 1.0 even achieves an higher accuracy with respect

to the reference model.

Network Accuracy Accuracy Degradation
DenseNet2.0 | (97.78 £0.18)% 0.27
DenseNet1.0 | (96.05 £ 0.33)% not present

Table 5.4: LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After Mini
FP Quantization on Conv and FC Layers: Accuracy Degradation is computed

between the Caffe accuracy and the Tensorflow accuracy reported in 5.1

Dynamic Fixed-Point

The quantization of the DenseNets considering Dynamic Fixed-Point represen-

tation achieves good results. In particular, 8 bits can be adopted to represent

50

CHAPTER 5. QUANTIZED NETWORKS

the features of Convolutional layers and all the weights, moreover 4 bits are
enough to represent the Fully Connected features. Therefore, this quantization
is able to reduce the sizes of the networks by a factor slightly higher than the
Mini FP version (factor ~ 4.02). The internal bit division is then different for

weights, input and output features of each layer.

Conv Conv FC FC
Network Weight | Feature | Weight | Feature
Bits Bits Bits Bits
DenseNet2.0 8 8 4 8
DenseNet1.0 8 8 4 8

Table 5.5: Bit Widths After Dynamic Fixed-Point Quantization on Conv and
FC Layers

The quantization of Conv and FC layers in DenseNet 2.0 and DenseNet 1.0
reaches good results even on accuracy side, with very small or even null degra-

dation with respect to the 32 bit reference architecture.

Network Accuracy Accuracy Degradation
DenseNet2.0 | (96.87 £ 0.27)% 1.18
DenseNet1.0 | (96.03 £ 0.38)% not present

Table 5.6: LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After Dy-
namic Fixed-Point Quantization on Conv and FC Layers: Accuracy Degra-
dation is computed between the Caffe accuracy and the Tensorflow accuracy
reported in 5.1

Power of 2 Weights

Power of 2 Weights quantization expresses features in Dynamic Fixed-Point,
while weights are approximated by the closer power of two: only the exponent
of this power is stored. Adopting this type of quantization on Convolutional
and Fully Connected layers, 8 bit can be used to express the features, while
5 bits for the exponents of the weights: parameters are represented by 32

different powers of 2.

51

CHAPTER 5. QUANTIZED NETWORKS

Conv and Conv FC
Network FC Weight Feature | Feature
Exponent Bits Bits Bits
DenseNet2.0) 8 8
DenseNet1.0) 8 8

Table 5.7: Bit Widths After Power of 2 Weights Quantization on Conv and
FC Layers

Unlike the other types of quantization, Power of 2 Weights introduces a sig-
nificant degradation of performance. This can be explained by the greater

approximation error that this representation inserts in the networks.

Network Accuracy Accuracy Degradation
DenseNet2.0 | (85.52 £ 0.54)% 12.53
DenseNet1.0 | (72.73 £0.61)% 22.77

Table 5.8: LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After Power
of 2 Weights Quantization on Conv and FC Layers: Accuracy Degradation is
computed between the Caffe accuracy and the Tensorflow accuracy reported
in 5.1

5.3 Folding

After the partial quantization depicted in section 5.2.3, folding has been ap-
plied to simplify the Batch Normalization implementation during inference and
to introduce the BN quantization. As explained in section 4.3.4, this technique
is also able to compress the network size by acting on the numbers of required
layers and parameters. The effective reductions introduced in DenseNet 2.0
and DenseNet1.0 are reported in table 5.9.

52

CHAPTER 5. QUANTIZED NETWORKS

Percentage Parameter
Network Layer Layer Parameter Layer
Reduction | Reduction | Reduction | Reduction
DenseNet2.0 19 ~ 14% 19008 ~ 1.3%
DenseNet1.0 7 ~ 13.7% 5056 ~ 1.3%

Table 5.9: Layers and Parameter Reduction After Folding

5.3.1 Full Precision

Before quantization, the folded versions of the DenseNets have been validated.
Folding involved only a manipulation of the characteristic equations inside the
networks, so it should not modify the behavior of the systems. This statement
is confirmed by the LFW test results, reported in table 5.10: the obtained

accuracies are equal to the reference ones reported in section 5.2.1.

Network Accuracy Accuracy Difference | Threshold
DenseNet2.0 | (98.05 £ 0.20)% 0.00 0.54
DenseNet1.0 | (95.50 £ 0.35)% 0.00 0.5

Table 5.10: LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After Fold-
ing: Accuracy Difference is computed with respect to the Tensorflow accuracy

reported in 5.1

5.3.2 Scalar Quantization

After the validation of the folded networks, the quantization has been applied
to the architectures. Again, the procedure has been conducted taking into
account Mini Floating-Point, Dynamic Fized-Point and Power of 2 Weights

and different optimal bit widths and different bit divisions have been obtained.

Mini Floating-Point

As for the original versions, the folded networks can be reduced from 32 to

8 bits by Mini FP quantization, compressing the sizes of the networks by a

93

CHAPTER 5. QUANTIZED NETWORKS

factor 4. The number of bits required for the exponent and the mantissa of

the represented values for both the networks are reported in table 5.11.

Total | Exponent | Mantissa
Network Bits Bits Bits
DenseNet2.0 8 4 3
DenseNet1.0 8 4 3

Table 5.11: Bit Width and Bit Division of Folded DenseNet 2.0 and DenseNet
1.0 After Mini FP Quantization

The quantized networks have been tested and the results are reported in table

5.12. Again, both the networks react well to this type of quantization.

Network Accuracy Accuracy Degradation
DenseNet2.0 | (97.9+0.19)% 0.15
DenseNet1.0 | (95.87 £0.33)% not present

Table 5.12: LFW test accuracy of Folded DenseNet 2.0 and DenseNet 1.0 After
Mini FP Quantization: Accuracy Degradation is computed between the Caffe

accuracy and the Tensorflow accuracy reported in 5.1

Dynamic Fixed-Point

Taking into account Batch Normalization, Dynamic Fixed-Point quantization
is not sufficient to approximate the DenseNets. Indeed results are not good
both from the point of view of bit reduction and accuracy.

Features can be represented by 8 bits and the weights of FC layers by 4 bits.
Nevertheless, Convolutional weight representation is a problem: Ristretto is
not able to identify a format with a number of bits lower than 32. The com-

pression of the network is so strongly limited (reduction factor ~ 3).

o4

CHAPTER 5. QUANTIZED NETWORKS

Conv Conv FC FC
Network Weight | Feature | Weight | Feature
Bits Bits Bits Bits
DenseNet2.0 32 8 4 8
DenseNet1.0 32 8 4 8

Table 5.13: Bit Widths of Folded DenseNet 2.0 and DenseNet 1.0 After Dy-

namic Fixed-Point Quantization

Moreover, from the accuracy point of view both the networks are characterized

by an high degradation.

Network Accuracy Accuracy Degradation
DenseNet2.0 | (75.18 + 0.66)% 22.87
DenseNet1.0 | (70.80 £ 0.87)% 24.70

Table 5.14: LFW test accuracy of Folded DenseNet 2.0 and DenseNet 1.0
After Dynamic Fixed-Point Quantization: Accuracy Degradation is computed

between the Caffe accuracy and the Tensorflow accuracy reported in 5.1

Power of 2 Weights

Taking into account Power of 2 Weights quantization, 8 bit can be used to
represent the features inside the network, while 5 bits for the exponents of the

weights: parameters are represented by 32 different powers of 2.

Conv and Conv FC
Network FC Weight Feature | Feature
Exponent Bits Bits Bits
DenseNet2.0 5 8 8
DenseNet1.0) 8 8

Table 5.15: Bit Widths of Folded DenseNet 2.0 and DenseNet 1.0 After Power
of 2 Weights Quantization

95

CHAPTER 5. QUANTIZED NETWORKS

Also in this case, accuracies after quantization show a unacceptable degrada-

tion.
Network Accuracy Accuracy Degradation
DenseNet2.0 | (63.22 £ 0.66)% 34.83
DenseNet1.0 | (57.82 +0.74)% 37.68

Table 5.16: LFW test accuracy of Folded DenseNet 2.0 and DenseNet 1.0 After
Power of 2 Weights Quantization: Accuracy Degradation is computed between

the Caffe accuracy and the Tensorflow accuracy reported in 5.1

Conv-FC-BN Quantization vs Conv-FC Quantization

Analysing the accuracy results, Mini Floating-Point representation is the best
scalar solution to quantize the deep networks involved in this work. In fact,
this representation format is the only one able to get good results both in

terms of model compression and accuracy.

Power of 2 Weights representation may have good performance in terms of
computational cost, but the accuracy degradation is always too high. A fine-
tuning training with quantized parameters may produce an increment in ac-

curacy, making the network usable.

Quantization through Dynamic Fixed-Point representation achieves good re-
sults when only Conv and FC layers are considered. Nevertheless, when it
is applied to the complete network, degradation becomes unacceptable. This
difference is related to the higher sensitivity of Batch Normalization layers to
quantization. In fact, this type of layers are the most critical from this point
of view. Moreover, folding increases the number of outliers on the new pa-
rameters, making more difficult the coverage of the entire range of values with
an acceptable precision. A good Batch Normalization quantization requires
aware-training procedures as fine-tuning with quantized parameters or freezed
training |25]. In particular for the latter approach, after the classical training
technique the network is re-trained fixing the mean and the variance of the

BN layers to the averages values used during inference.

o6

CHAPTER 5. QUANTIZED NETWORKS

5.3.3 K-Means Clustering

Due to the limited capability of Dynamic Fixed Point to deal with Batch
Normalization quantization, K-Means Clustering (section 4.2.2) has been con-
sidered in order to enlarge the set of quantization solutions for large networks
with Batch Normalization. It is a vector quantization techniques which mainly
focuses on the reduction of the required memory.

For each network, three different scenarios have been taken into account:

1. All the parameters have been approximated by the same K-Means algo-

rithm and so with the same set of clusters;

2. The parameters have been divided in three groups: classical Convolu-
tional layers, folded Convolutional and Batch Normalization layers, BN
layers represented by Convolutional ones with 1x1 kernel. Each group
has been approximated with a different K-Means algorithm, therefore

three different sets of clusters have been considered;

3. The parameters of each layers have been represented through a different
K-Means algorithm. In the case of DenseNet 2.0 a total of 64 set of

clusters has been considered, while in DenseNet 1.0 a total of 19.

For each scenario, different powers of 2 have been considered as the number
of clusters K: from 8 to 4048. Among them, the optimal identified values in

terms of accuracy and model compression are reported in table 5.17.

Network Scenario 1 | Scenario 2 | Scenario 3
DenseNet2.0 512 512 16
DenseNetl1.0 512 512 16

Table 5.17: Optimal number of clusters K

As described in section 4.2.2, each weight can be identified by an index pointing
to a particular centroid value. It means that a number of bits I = log, K are
sufficient to store this information, while the centroid can be stored by 32-
bit maximum precision. Starting from this consideration, the compression

rate of the K-Means Clustering approach have been identified. Results in

o7

CHAPTER 5. QUANTIZED NETWORKS

terms of reduction size of the parameters are reported in table 5.18: both the

contribution of indexes and centroids are considered in the parameter reduction

rate.
Set of Parameters
Network Clusters | K | I | Reduction Rate
DenseNet2.0 1 512 | 9 3.55
3 512 | 9 3.54
64 16 |4 7.95
DenseNet1.0 1 512 19 3.94
3 512 | 9 3.50
19 16 | 4 7.94

Table 5.18: Parameters Reduction Memory Due to K-Means Clustering

Once the centroids of each cluster have been identified thanks to the sklearn
library of Python, the weights of the original networks have been substituted
with the centroid of the belonging cluster. The new approximated networks
have been then tested and the LEFW accuracies have been evaluated. The

results are reported in table 5.19.

Set of Accuracy
Network Clusters | K Accuracy Degradation
DenseNet2.0 1 512 | (58.17 £+ 0.66)% 39.88
3 512 | (58.00 £ 0.45)% 40.05
64 16 | (93.70 £0.22)% 4.35
DenseNet1.0 512 | (56.22 £ 0.66)% 39.28
3 512 | (58.36 £ 0.42)% 37.14
19 16 | (93.02 £ 0.44)% 2.48

Table 5.19: LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After K-
Means Clustering: Accuracy Difference is computed with respect to the Ten-

sorflow accuracy reported in 5.1

o8

CHAPTER 5. QUANTIZED NETWORKS

Optimal K-Means Approach

Among the considered scenarios, a different K-Means algorithm for each layer
is the most suitable way to apply this vector quantization to the deep reference
networks. In particular, this approach can be seen as an non-uniform quan-
tization of the parameters in each layer: the representation power is similar
much higher than the classical Dynamic Fixed-Point representation, allowing

a better coverage of the folded parameters.

5.3.4 Hybrid Quantization: K-Means Clustering and Mini
Floating-Point

Since K-Means Clustering has led to good results, a hybrid approach between
scalar and vector quantization has been implemented to decrease even more
the complexity and the size of the networks. This quantization focuses on
the two best approximation techniques identified: Mini Floating-Point and K-
Means Clustering applied to each layer with a different set of clusters.

The main characterists of this method are:
- Parameters are identified by an index pointing to a particular centroid;
- Centroids are stored considering Mini FP quantization;
- Operations are performed in Mini FP.

This new approach is able to reduce both the computational and storage re-
quirements thanks to the benefits of the two involved techniques. An approx-

imation of the reduction rates is reported in table 5.20.

Set of Parameters Network
Network Clusters | K | Reduction Rate | Reduction Rate
DenseNet2.0 64 16 7.99 5.33
DenseNet1.0 19 16 7.99 5.33

Table 5.20: Reduction Rate Due to K-Means Clustering and Mini Floating-
Point

29

CHAPTER 5. QUANTIZED NETWORKS

This hybrid quantization obtains good results also in terms of accuracy degra-

dation.
Set of Accuracy
Network Clusters | K Accuracy Degradation
DenseNet2.0 64 16 | (93.63 +0.23)% 4.42
DenseNet1.0 19 16 | (93.08 £0.41)% 2.42

Table 5.21: LFW test accuracy of DenseNet 2.0 and DenseNet 1.0 After K-
Means Clustering and Mini Floating-Point Quantization: Accuracy Difference

is computed with respect to the Tensorflow accuracy reported in 5.1

60

6 Conclusions

Taking into account all the considerations reported in chapter 5, Mini Floating-
Point and K-Means Clustering are the best identified results for the quantiza-

tion of the reference DenseNets:

- Mini FP is able to reduce the size and the complexity of each architecture

by a factor 4 with an almost null accuracy degradation;

- K-Means Clustering is able to compress the network sizes by a factor
almost equal to 8, leading to a smaller required memory, with an accept-

able degradation on the accuracies.

The hybrid quantization described in 5.3.4 is able to further increase the quan-
tization performance, leading to a possible total network size reduction by a
factor higher than 5 for both the DenseNets.

Nevertheless, the obtained results highlight a problem in the application of
quantization on deep networks where the folding technique, which is a stan-
dard for the HW implementation of Batch Normalization layers during infer-
ence, is adopted. The issue is particularly relevant in the case of quantization
through Dynamic Fixed-Point and Power of 2 Weights representations, due
to the limited coverage capability of the two formats and to the significant
introduced quantization errors. This problem is only partially visible in the
literature because of the limited depth of the networks typically involved in
quantization: for example in [27] and [28] acceptable accuracy degradation
have been introduced by Fixed-Point or Dynamic Fixed-Point representations,
but the involved networks (Lenet5 and AlexNet) are much simpler than the

DenseNets involved in this analysis.

61

CHAPTER 6. CONCLUSIONS

Future work can proceed in two different directions.

Firstly, DenseNet 2.0 and DenseNet 1.0 can be implemented in HW taking into
account 8-bit Floating-Point and hybrid quantizations in order to verify the
effective power consumption of the quantized networks. The hardware design
can be carried out both thinking of silicon or FPGA implementation: indeed
8-bit is a bit-width supported by current devices.

Focusing on FPGA, this design can be performed taking into account Xiling
Vivaldo Design Suite, a C-based software able to simplify and to automate the
implementation of HW design. Among the different features of the tool, power,
delay and area analysis of the implemented network can be automatically car-
ried out, making simpler the investigation on effective power consumption

reduction due to quantization.

Moreover, another possible step is the improvement of Dynamic Fixed-Point
and Power of 2 Weights quantization, which have enormous potential from
the point of view of power reduction. Aware-training quantization techniques,
as freezing |25], can be considered to increase the accuracy of deep quantized

networks.

62

A Ristretto Framework

The Ristretto [36] framework is an open-source software that automatically
performs quantization on a Convolutional Neural Network: different bit-widths
are considered to identify the best solution in terms of accuracy. It is an exten-
sion of the Caffe framework: its starting point is a trained network described

in the Caffe format, stored in a prototxt file.

The framework concentrates on the quantization and the resource reduction
during inference. In particular, the tool focuses on the optimization of Con-
volutional and Fully Connected layers. In fact, these two types of layer are
the most consuming in terms of computational power and required memory:
typically, Conv layers are responsible for the major amount of computations
in a CNN while FC layers are responsible for the major amount of parameters

to be stored.

Ristretto can work with three different types of data representation: Dynamic-
Fixed Point, Mini Floating-Point or Multiplier-Free Arithmetic. Regarding
the last format, weights are approximated with the closer power of 2 and so

multipliers can be replaced by shifters.

A.1 Quantization Tool

Quantization is applied through the Ristretto command quantize (figure A.1).

The user has to specify the following parameters:

- Model, the prototxt file where the full-precision network is described;

63

APPENDIX A. RISTRETTO FRAMEWORK

- Weights, the caffemodel file where the full-precision parameters of the

network are stored;

- Trimming Mode, the quantization representation format (minifloat, dy-
namic_fixed point or integer power of 2 weights) that the tool will
analyze;

- Quantized Model, the name for the prototxt file where the quantized
network will be described. This file is automatically created by the tool;

- Error Margin, the maximum acceptable percentage accuracy degradation
with respect to the 32-bit FP network;

- GPU, the GPU ID, if Ristretto is used in GPU mode. If CPU mode is

considered, the parameter must not be specified;

- [terations, number of batch iterations.

. ‘'caffe build tools ristretto quantize \
--model=nets DenseNetl® class30@ train test.protoixt \
--weights=nets DenseNetl® cl 0 tt.caffemodel \

--model quantized=nets DenseNetl® clas3@ quantized fp.prototxt \
--trimming mode=minifloat --iterations=96 \
--error_margin=3]|

Figure A.1: Ristretto quantize Command Example

To analyze the dynamic ranges of the input and output features, Ristretto
requires a database to test the network. In particular, in the prototxt file the
test and training LMDB databases have to be declared. This type of database
stores each input image together with its label. The latter is used by the tool
to verify the correctness of the network prediction during inference or training.
It is important to point out that the tool is able to work only with networks
including a classifier: the accuracy (used in the quantization procedure) is
evaluated as the correctness of the predictions with respect to the labels of the
database and not according to the euclidean distances between the expected

features and the predicted ones.

The quantization procedure takes into account different bit-width representa-

tions for Convolutional and Fully Connected layers: layers of the same type

64

APPENDIX A. RISTRETTO FRAMEWORK

are characterized by an equal total number of bits.

The quantization flow consists on four main steps:

1. Analysis of the weights in the pre-trained full-precision network, to iden-

tify their dynamic ranges;

2. Processing of the test images to obtained the dynamic ranges of the input

and output values of each layer;

3. Analysis of the overall network with respect to different numbers of total
bits. This step has to identify the possible bit-width strategies that

satisfy the user-defined error margin;

4. Creation of the prototxt file for the quantized network, considering the

lower number of bits.

From the dynamic ranges Ristretto evaluates the number of bits for the inte-
ger part (Fixed-Point) or for the exponent (Floating-Point), which are fixed
during the analysis with different bit-widths. The values are selected to avoid

saturation. In particular, the adopted strategies are:

H#bitinteger = [loga(maz x + 1)]
or

#bitexponent = ”092([092(W&3}’ 37) - 1) + 1—‘

A.1.1 Ristretto Layers

Ristretto introduces two types of layer in the traditional Caffe catalogue: Con-
volutionRistretto and FcRistretto.

The Ristretto layers require an additional set of parameters, grouped together
under the name of quantization_param. Depending on the selected trimming
mode, three types of quantization parameters can be generated.

Layers of the same type share the same total number of bits to represent

information, while the internal bit division may be different.

65

APPENDIX A. RISTRETTO FRAMEWORK

Mini Floating-Point

layer { layer {
RN Rl name: "fcl28"
type: "C lutionRistretto” 2
bggfom: fg;ia.ﬁ’ e type: "FcRistretto"
top: "convl" bottom: "global pool"
convolution param { top: "fcl128"

num output: 64 .
bias term: true inner product param {

pad: 3 num_output: 128

kernel size: 7 }
; stride: 2 quantization param {
Rt ko precision: MINIFLOAT
precision: MINIFLOAT mant bits: 3
mant _bits: 3 exp bits: 4
exp bits: 4 } -
Jj
} }

(a) Ristretto Conv Layer (b) Ristretto FC Layer

Figure A.2: Mini Floating-Point Layers

The Mini Floating-Point quantization is applied in the same way to parameters,
input and output features of all the layers. For this trimming mode, the
additional parameters are:

- Precision, which is the current representation format;

- Mantissa, the number of bits for the mantissa;

- Fxponent, the number of bits for the exponent.

Dynamic Fixed-Point

For Dynamic Fixed-Point format, quantization is performed separately for
Conv and FC layers. Moreover, the values of each layer are divided in three
groups: input, output and parameter.

The quantization parameters are:

- Precision, which is the current representation format;

- Bit Width, the number of total bits. There are three different entries
of this type: one for the inputs, one for the outputs and one for the

parameters;

66

APPENDIX A. RISTRETTO FRAMEWORK

- Fractional Width, the number of bits for the fractional part. As for the
total bit width, there are three different entries of this type.

layer { layer {

name: "convl" name: "fcl28"

type: "ConvolutionRistretto" AT Z .
bottom: "data" type: "FcRistretto

top: "convi® bottom: "global pool"
convolution param { top: "fclz28"

num_output: 64 inner product param {
bias term: true = i
pad: 3

kernel size: 7 J

num output: 128

stride: 2 guantization param {
} _ bw layer in: 8
quantization param { bw_la er_out' 8
bw layer in: 8 L TEyE :
bw layer out: 8 bW_paramSE 4
bw_params: 8 fl layer in: 9
R_%aye"_lnjc 09 fl layer out: 10
_layer _out: g
fl _params: 18 fl_params: 3
}
I

(a) Ristretto Conv Layer (b) Ristretto FC Layer

Figure A.3: Dynamic Fixed-Point Layers

Power of 2 Weights

Power of 2 Weights quantization format adopts different quantized represen-
tations for parameters and features: weights are approximated by the closer
power of 2 while input and output features are quantized considering Dynamic

Fixed-Point. Therefore, the additional parameters are:

- Precision, which is the current representation format;

- Bit Width, the number of total bits. There are two different entries: one

for the inputs and one for the outputs;

- Fractional Width, the number of bits for the fractional part. Again, there

are two entries of this type;

- Minimum FExponent, minimum selected exponent for the power of 2 pa-

rameters;

67

APPENDIX A. RISTRETTO FRAMEWORK

- Mazimum Fxponent, maximum selected exponent for the power of 2 pa-

rameters;

layer {
name: "convl"
type: "ConvolutionRistretto"
bottom: "data"
top: "convl"
convolution param {
num output: 64
bias term: true
pad: 3
kernel size: 7

layer {

name: "fcl28"

type: "FcRistretto"

bottom: "global pool"

top: "fcl2g8"

inner product param {
num_output: 128

}

stride: 2
I
quantization param {
precision: INTEGER POWER OF 2 WEIGHTS
bw layer in: 8
bw layer out: 8
fl layer in: ©
fl layer out: 9
exp min: -20
exp_max: -13

quantization param {

precision: INTEGER_POWER OF 2 WEIGHTS
bw layer in:

bw layer -

fl layer_in: 9

fl layer out: 10

exp_min: -9

exp_max: -2

(a) Ristretto Conv Layer (b) Ristretto FC Layer

Figure A.4: Multiplier-Free Arithmetic Layers

A.2 Fine-Tuning

After the quantization, Ristretto suggests to fine-tune the network in order
to have a better accuracy. Starting from the quantization formats identified
by the previous quantization step, the training command of Caffe has been
modified in order to accept also the Ristretto quantized layers. If this type
of layers is part of the considered network, the training procedure is carried
out taking into account quantized weights. However, this training does not
take into account quantized activations. Due to this unconsidered error, the
framework keeps under control its bit reduction during the training, to avoid

too large drop off.

This feature of Ristretto corresponds to the aware-training quantization de-

scribed in section 3.1.

68

Bibliography

1]

2l

3]

4]

[5]

6]

17l

8]

19]

W. W. Bledsoe. The Model Method in Facial Recognition. Tech. rep.

Panoramic Research, Inc., 1964.

W. W. Bledsoe and H. Chan. A Man-Machine Facial Recognition System-

Some Preliminary Results. Tech. rep. Panoramic Research, Inc., 1965.

An image of Woody Bledsoe from a 1965 study. URL: https://media.
wired.com/photos/5e0fd5ef190eac0008951e39/master/w_1600%5C%
2Cc_1imit/WI020120_FF_WoodyBledsoe_02. jpg.

M. Turk and A. Pentland. “Eigenfaces for Recognition”. In: Journal of
Cognitive Neuroscience 3.1 (1991).

T. Ahonen, A. Hadid, and M. Pietikainen. “Face Description with Local
Binary Patterns: Application to Face Recognition”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 28.12 (2006).

L. Wiskott et al. “Face recognition by elastic bunch graph matching”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 19.7
(1997).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in

Neural Information Processing Systems 25 (2012).

Oludare Abiodun et al. “State-of-the-art in artificial neural network ap-

plications: A survey”. In: Heliyon 4 (2018).

Al-Masri A. How Does Back-Propagation in Artifical Neural Networks
Work? URL: https://towardsdatascience . com/how- does - back-

propagation-in-artificial-neural-networks-work-c7cad873ea’.

69

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Undestanding The Mathematics Behind Gradient Descent. URL: https:
/ / towardsdatascience . com / understanding - the - mathematics -
behind-gradient-descent-ddebdc9belbe.

Wikipedia. Stochastic Gradient Descent. URL: https://en.wikipedia.

org/wiki/Stochastic_gradient_descent.

The Basic Layers of CNN. URL: https://miro.medium. com/max/1000/
1xirQxOwao-u9jO0fLIMOC-rA.png.

Sergey loffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: Pro-
ceedings of The 32nd International Conference on Machine Learning.
2015.

K. He et al. “Deep Residual Learning for Image Recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

G. Huang et al. “Densely Connected Convolutional Networks”. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

Y. Cheng et al. “Model Compression and Acceleration for Deep Neural
Networks: The Principles, Progress, and Challenges”. In: IEEE Signal
Processing Magazine 35.1 (2018).

Cristian Bucilii, Rich Caruana, and Alexandru Niculescu-Mizil. “Model
Compression”. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Association for

Computing Machinery, 2006.
L.J. Ba and R. Caruana. “Do deep nets really need to be deep?” In:

Advances in Neural Information Processing Systems 3 (2014).

Adriana Romero et al. “FitNets: Hints for Thin Deep Nets”. In: 3rd In-
ternational Conference on Learning Representations, I[CLR 2015, Con-

ference Track Proceedings. 2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. “Speeding up
Convolutional Neural Networks with Low Rank Expansions”. In: BMVC
2014 - Proceedings of the British Machine Vision Conference. 2014.

70

BIBLIOGRAPHY

21

22]

23]

[24]

[25]

26]

27]

28

29]

30]

[31]
32|

S. Han et al. “Learning both weights and connections for efficient neu-
ral networks”. In: Proc. 28th Int. Conf. Neural Information Processing
Systems. 2015.

Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998).

Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego, CA, USA,
Conference Track Proceedings. 2015.

S. Han, H. Mao, and W. Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman cod-

ing”. In: Proc. Int. Conf. Learning Representations. 2016.

R. Krishnamoorthi. “Quantizing deep convolutional networks for efficient
inference: A whitepaper”. In: ArXiv (2018).

“IEEE Standard for Floating-Point Arithmetic - Redline”. In: IEFE Std
754-2019 (Revision of IEEE 75/-2008) - Redline (2019).

Jiali Ma et al. “Layer-by-layer Quantization Method for Neural Network
Parameters”. In: ICNSER2019: Proceedings of the International Confer-
ence on Industrial Control Network and System Engineering Research.
2019.

Soheil Hashemi et al. “Understanding the impact of precision quantiza-

tion on the accuracy and energy of neural networks”. In: 2017.

Matthieu Courbariaux, Y. Bengio, and Jean-Pierre David. “BinaryCon-
nect: Training Deep Neural Networks with binary weights during prop-
agations”. In: NIPS 28 (2015).

Matthieu Courbariaux et al. “Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or -17.
In: 2016.

Tensorflow. URL: https://www.tensorflow.org/overview?hl=en.

Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature
Embedding”. In: (2014).

71

BIBLIOGRAPHY

[33] Berkeley University of California. Caffe. URL: https://caffe.berkeleyvision.

org.
[34] Keras. URL: https://keras.io.

[35] Tensorflow Lite - Model Optimization. URL: https://www.tensorflow.

org/lite/performance/model_optimization7hl=en.

[36] Philipp Gysel et al. “Ristretto: A Framework for Empirical Study of
Resource-Efficient Inference in Convolutional Neural Networks”. In: IEFEE

Transactions on Neural Networks and Learning Systems (2018).

[37] F. Guzzi et al. “Distillation of a CNN for a high accuracy mobile face
recognition system”. In: 2019 /2nd International Convention on Infor-

mation and Communication Technology, Electronics and Microelectron-
ics (MIPRO). 2019.

[38] F. Guzzi et al. “Distillation of an End-to-End Oracle for Face Verification
and Recognition Sensors 1. In: Sensors 20.5 (2020).

[39] Dong Yi et al. “Learning Face Representation from Scratch”. In: CoRR
(2014).
[40] Wikipedia. K-Means Clustering. URL: https://en.wikipedia. org/

wiki/K-means_clustering.

[41] Scikit Learn. K-Means. URL: https://scikit-learn . org/stable/

modules/generated/sklearn.cluster.KMeans.html.

[42] B. Jacob et al. “Quantization and Training of Neural Networks for Ef-
ficient Integer-Arithmetic-Only Inference”. In: 2018 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition. 2018.

[43] J. Duan et al. “The Speed Improvement by Merging Batch Normalization
into Previously Linear Layer in CNN”. In: 2018 International Conference
on Audio, Language and Image Processing (ICALIP). 2018.

[44] Q. Zhang et al. “FPGA Implementation of Quantized Convolutional Neu-
ral Networks”. In: 2019 IEEFE 19th International Conference on Commu-
nication Technology (ICCT). 2019.

72

BIBLIOGRAPHY

[45] R. Li et al. “Fully Quantized Network for Object Detection”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2019.

[46] Gary B. Huang et al. Labeled Faces in the Wild: A Database for Studying
Face Recognition in Unconstrained Environments. Tech. rep. University
of Massachusetts, Amherst, 2007.

[47] Gary B. Huang and Erik Learned-Miller. Labeled Faces in the Wild:
Updates and New Reporting Procedures. Tech. rep. University of Mas-
sachusetts, Amherst, 2014.

[48] Amherst University of Massachusetts. Labeled Faces in the Wild. URL:

http://vis-www.cs.umass.edu/1fw/.

73

