
POLITECNICO DI TORINO
Master of Science in Electronic Engineering

Master’s Degree Thesis

Parameter Monitoring and
Communication in a

Ring-Topology-Based SNN Emulator
Hardware

Supervisors

Prof. Jordi MADRENAS BOADAS

Prof. Mireya ZAPATA

Prof. Guido MASERA

Candidate

Corrado BONFANTI

November 2020

Summary

The work of this thesis is focused on the extraction and distribution of internal
parameters belonging to the HEENS architecture, which is a scalable Spiking Neural
Network emulator. All of the projects are developed by means of the VHDL description,
then simulated through the QuestaSim Advanced Simulator and finally synthesized
and implemented on a Programmable System on Chip (PSOC), in order to verify time
constraints and resources exploitation. It has been carried out online with the server
provided by the Universitat Politècnica de Catalunya (UPC).

In more details, the additions and improvements made to the architecture concern
the array of Processing Elements and especially those modules relative to the Address
Event Representation over Synchronous Serial Ring Topology, all previously developed
by the Integrated Smart Sensors and Health Technologies (ISSET) research group from
the UPC. The AER-SRT blocks are used to support a serial communication between
different FPGA of the network.

After the first monitoring implementation had been designed and verified, the
following step of the work was to improve performances, through a better exploitation
of the PE-array parallel nature (it is a Single Instruction Multiple Data architecture)
and by means of an hardware enhancement, since the first implementation did not
represent a critical part from an area occupancy point of view. The multi-board version
has been implemented on a 5x5 array configuration, while the single-board has been
tested on a 13x13 architecture.

ii

Acknowledgements

All this work took place during a very difficult period for our daily lives.The pandemic
caused by the SARS-CoV-2 virus, led to stop my abroad experience a few days after
my arrival in Barcelona, where I should have been working these past months at the
UPC for my final thesis.

In spite of everything, I managed to remotely work and conclude my university
career, with a project that left me more than satisfied. All of this, would never have
been possible without the help and support of Professors Jordi Madrenas and Mireya
Zapata, my supervisors. They accepted me as a graduate student to work on their
projects and they have been so collaborative and precious during this period, despite
all the difficulties that came from the distance and the COVID-19 issue. So, they
are the first ones I want to thank with all my heart. I want also to thank my Italian
advisor from "Politecnico di Torino", Prof. Guido Masera, who monitored my work
and helped me during this process.

My whole academic career has been signed by the special support my family gift me,
who have firmly believed in me and helped me during all the difficult times I’ve been
through and that were always present to celebrate joyful and remarkable moments. I
thank you very much, since you really helped me make it all come true.

As well as my friends, that I have always considered the lifeblood of my way of being
and therefore of my successes in recent years. It is not possible to mention everyone,
but I want thank each of you for have been close to me and for giving me beautiful
moments.

A special thanks also goes to Antonio Caruso, Roberto Gattuso and Luca Valente,
my colleagues and friends, whose help and support have been useful for this thesis
work.

iii

Table of Contents

List of Tables viii

List of Figures ix

Abbreviations xiii

1 Introduction 1
1.1 Motivations and goals . 2
1.2 State of art . 2

1.2.1 Neuron models . 3
1.3 Spiking Neural Networks . 8

1.3.1 Data encoding . 8
1.3.2 Synaptic Plasticity . 10
1.3.3 SNN implementations . 12

1.4 HEENS architecture . 14
1.4.1 Operational stages of HEENS 15
1.4.2 Multiprocessor structure . 16

1.5 AER-SRT controller . 21
1.5.1 Control packets of AER-SRT protocol 23
1.5.2 Master Chip . 24

1.6 Neural algorithm . 27
1.7 Design flow . 30

2 Monitoring implementation 33
2.1 Software and Algorithm . 33
2.2 PE-array . 34

2.2.1 Hardware structure . 35
2.2.2 VHDL and Simulation . 40

2.3 Multi-Board version . 41
2.3.1 Z_AER_interface . 42
2.3.2 Z_AER_tx . 47

v

2.3.3 Z_AER_rx . 54
2.3.4 Sequencer . 58
2.3.5 Simulation . 62

2.4 Single-Board version . 67
2.4.1 Architecture and main differences 67
2.4.2 PS interface reading operation 68

2.5 Logic Synthesis and Hardware Implementation 70
2.5.1 Single-Board . 70
2.5.2 Multi-Board . 74

3 Performance upgrading 79
3.1 Architecture improvements . 79

3.1.1 Z_AER_interface & PE-array 81
3.1.2 Z_AER_tx . 82
3.1.3 Sequencer . 86
3.1.4 Simulation . 87
3.1.5 Single Board . 90

3.2 Logic Synthesis and Hardware Implementation 93
3.2.1 Multi-Board . 93
3.2.2 Single-Board . 94

4 Conclusions 98

A Instruction Set Architecture 100

B Assembler code 102
B.1 Algorithm with no virtualization . 102
B.2 Algorithm with virtualization . 105
B.3 Algorithm with monitoring instruction 109

C Netlist 110
C.1 Delay line 4x4 (no virtualization) . 110
C.2 Oscillator 4x4 (no virtualization) . 110
C.3 Oscillator (with virtualization) . 111

D VHDL source files 112
D.1 PE_ARRAY . 112
D.2 PE_ROW . 115
D.3 PE . 117
D.4 Z_AER_interface (first version) . 122
D.5 Z_AER_tx (first version) . 126
D.6 Z_AER_rx . 136

vi

D.7 AER_OneBoard (first version) . 141
D.8 PE_array (second version) . 143
D.9 Z_AER_interface (second version) . 145
D.10 Z_AER_tx (second version) . 147
D.11 AER_OneBoard (second version) . 152

Bibliography 159

vii

List of Tables

1.1 Control packets of AER-SRT protocol 23
1.2 Fundamental values of membrane potential 28

2.1 Multi-board Monitoring FIFO IP . 43
2.2 Monitoring packets of AER-SRT protocol 47
2.3 Sink FIFO IP . 54

viii

List of Figures

1.1 A. Single neuron(by Ramo’n y Cajal) and B. Connection and signal
transmission between a pre-synaptic and a post-synaptic neuron.[6](p.13) 3

1.2 A postsynaptic neuron i receives input from two presynaptic neurons j
= 1, 2.[6](p.16) . 4

1.3 (a)The conductance-based LIF model and (b)the current-based LIF
model[2](p.120). 5

1.4 The Hodgkin-Huxley model [2](p.120) 7
1.5 Comparison between spiking neurons and non-spiking neurons[2] 9
1.6 Biological neuron and its association with an artificial spiking neuron[6] 9
1.7 Schematic drawing of a paradigm of Long-term Potentiation induc-

tion[6](p.363) . 10
1.8 Illustration of a typical STDP protocol.[2](p.129) 11
1.9 HEENS architecture, composed by a Master Chip and n Neuromorphic

Chips connected in a ring topology[5](p.30) 15
1.10 Operational stages of HEENS [5](p.31) 16
1.11 Block diagram of HEENS multiprocessor [5](p.33) 17
1.12 Address format for a spike event [5](p.34). 18
1.13 Processing Element [19] . 18
1.14 Virtualization of PE-array.[19] . 20
1.15 AER-SRT communication model [5](p.54) 22
1.16 Master chip structure [5](p.59) . 25
1.17 Z_AER_SRT controller [5](p.60) . 26
1.18 Z_AER_TX module [5](p.61) . 27
1.19 Leaky Integrate-and-Fire (LIF) model simulation 29
1.20 Delay line example [19] . 31
1.21 Delay line simulation . 32

2.1 Four by four PE-array configuration . 36
2.2 Monitoring controller of the PE-array 37
2.3 Structure dedicated to monitoring operations in the PE 38
2.4 Timing Diagram of the PE-array monitoring controller 39

ix

2.5 Flowchart of the monitoring controller in the PE-array unit 40
2.6 VHDL structure of PE-array architecture 41
2.7 Monitoring data propagation through a five by five PE-array 42
2.8 VHDL top structure of HEENS and AER architectures [19] 43
2.9 Simplified VHDL top structure of the Master Chip 44
2.10 Schematic of the Z_AER_interface module 45
2.11 Timing Diagrams of the Z_AER_interface monitoring controller 46
2.12 Timing of the monitoring distribution 47
2.13 Structures of monitoring packets . 48
2.14 Schematic of the Z_AER_tx module 49
2.15 Flowchart of the monitoring phase of the main Finite-State Machine in

the Z_AER_tx module . 50
2.16 Flowchart of the START_MON Finite-State Machine in Z_AER_tx

module . 52
2.17 Timing Diagram of the monitoring data packet FSM 53
2.18 Monitoring procedure in a multi-board network topology 55
2.19 Monitoring procedure with a single MC in the ring 56
2.20 Schematic of the Z_AER_rx module 56
2.21 Flowchart of the monitoring controller in the Z_AER_rx module . . . 57
2.22 Data path of the monitoring controller in the Z_AER_rx module . . . 58
2.23 Control unit and monitoring signals . 59
2.24 Schematic of the clock synchronizer component 60
2.25 Monitoring states of the main FSM in the sequencer unit 60
2.26 Timing Diagram of the semaphores FSM 61
2.27 Simulation of the LIF algorithm with a 5x5 oscillator configuration and

virtualization . 62
2.28 Simulation of the Z_AER_interface 64
2.29 Simulation of the Z_AER_tx . 65
2.30 Simulation of the Z_AER_tx (bypass phase) 66
2.31 Simulation of the Z_AER_rx . 66
2.32 Simulation of the sequencer . 67
2.33 Single-board version . 68
2.34 Timing Diagram of the PS reading operation 69
2.35 Hardware components for PS reading operations 69
2.36 Simulation of the reading operations performed by the PS interface . . 70
2.37 Xilinx Zynq-7000 SoC ZC706. 71
2.38 Clock Summary of the single board synthesis and implementation . . . 71
2.39 Timing report summary of the single board synthesis 72
2.40 Timing report summary of the single board implementation 72
2.41 Resources utilization of the 5x5 single board implementation. 73
2.42 Power report summary of the single board implementation. 73

x

2.43 Floorplanning of the of the single board, 5x5 array implementation. . . 74
2.44 Clock Summary of the multi-board synthesis and implementation . . . 75
2.45 Timing report summary of the multi-board synthesis 75
2.46 One of the critical paths of the multi-board synthesized version 76
2.47 Resources utilization summary of the multi-board architecture 76
2.48 Resources utilization details of the multi-board architecture 77
2.49 Power report summary of the multi-board implementation 77
2.50 Floorplanning of the of the multi board, 5x5 array implementation. . . 78

3.1 Upgraded monitoring architecture . 80
3.2 Timing Diagrams of the PE-array (down) and Z_AER_interface (up)

monitoring controllers . 82
3.3 Flowchart of the Z_AER_tx monitoring controller (second version). . . 83
3.4 Changed monitoring states of the Z_AER_tx main FSM 84
3.5 Datapath of the Z_AER_tx monitoring controller (second version) . . 85
3.6 Monitoring states of the upgraded main FSM in the sequencer unit . . 86
3.7 Simulation of the monitoring controllers in the Z_AER_interface and

PE-array modules (second version) . 87
3.8 First simulation of the monitoring controller in the Z_AER_tx module

(second version) . 88
3.9 Second simulation of the monitoring controller in the Z_AER_tx module

(second version) . 89
3.10 First simulation of the waiting phases of the CU (second version) . . . 90
3.11 Second simulation of the waiting phases of the CU (second version) . . 90
3.12 Block diagram of the upgraded single-board AER module 91
3.13 Simulation of the monitoring controller in the AER single board module

(second version) . 92
3.14 Critical path of the 5x5 multi-board array synthesis (second version). . 94
3.15 Critical path delay of the 5x5 multi-board array synthesis (second version). 94
3.16 Resources utilization summary of the multi-board architecture (second

version). 95
3.17 Power report summary of the multi-board implementation (second version). 95
3.18 Timing report summary of the 13x13 single board array implementation

(second version). 96
3.19 Resources utilization of the 13x13 single board array implementation

(second version). 96
3.20 Power report summary of the 13x13 single board array implementation

(second version). 97
3.21 Floorplanning of the 13x13 single board array implementation (second

version). 97

xi

Abbreviations

AER
Address-Event Representation

AER-SRT
Address Event Representation over Synchronous Serial Ring Topology

ALU
Arithmetic Logic Unit

ANN
Artificial Neural Network

ASM
Algorithmic State Machine

ChipId
Chip Identifier

CU
Control Unit

FIFO
First In First Out

FPGA
Field Programmable Gate Array

FSM
Finite-State Machine

xiii

GPU
Graphical Processing Unit

GUI
Graphical User Interface

HEENS
Hardware Emulator of Evolvable Neural Systems

HMI
Human Machine Interface

IMEM
Instruction Memory

IoT
Internet of things

ISA
Instruction Set Architecture

LFSR
Linear-Feedback Shift Register

LIF
Leaky Integrate-and-Fire

LIFO
Last In First Out

LSB
Less Significant Bit

LTD
Long-term Depression

LTP
Long-term Potentiation

LUT
Look Up Table

xiv

MAC
Multiply-Accumulate

MC
Master Chip

mif
Memory Initialization File

MMCM
Mixed-Mode Clock Manager

MSB
Most Significant Bit

MUX
Multiplexer

NC
Neuromorphic Chip

OL
Online learning

PC
Program Counter

PE
Processing Element

PEID
Processing Element Identifier

PSOC
Programmable System on Chip

RAM
Random Access Memory

xv

RF
Register File

SIMD
Single Instruction Multiple Data

SNAVA
Spiking Neural Networks for Versatile Applications

SNN
Spiking Neural Network

SNRAM
Synaptic/Neural Memory

STDP
Spike-Timing-Dependent Plasticity

TD
Timing Diagram

VHDL
Very High Speed Integrated Circuits Hardware Description Language

VIRT
Virtualization

xvi

Chapter 1

Introduction

In recent years, Bio-inspired neural networks has been representing a hot topic in
research community.

The great interest is motivated by many reasons, one of them is the necessity of
emulating and mimic the human brain functionalities in order to better understanding
the intrinsic dynamics of it [1]. Indeed, even though modern Von-Neumann machines
are capable of very fast and even low-power computations and elaborations, they can
achieve poor results in some common tasks that are common to human beings (image
recognition, natural language processing, and so on..)[2](p.18).

An important application of Neural Networks has to deal with the Internet of things
(IoT). Nowadays, a huge quantity of data is generated by the environment, in particular
by sensors, actuators and all devices that interact with the external world and that are
connected to modern electronic systems for further elaborations, in order to monitor
and to manage all the actions and health related to them.

Such a large amount of data requires fast and efficient computations that are suitable
for neural algorithms and relative implementations. A way of achieving these results
is through the Online learning (OL)[3], which is a learning algorithm based on an
incremental update of the algorithm itself by means of a sequential processing of single
samples received at each time instant (instead of chunks of data in batch learning).
This strategy imposes some timing, memory area and power constraints that can be
accomplished by Spiking Neural Network (SNN).

A SNN is a spiking-based neural model, in particular it is a third-generation Neural
Network that shows a more realistic biological approach: it is based on information
carried out by spikes pattern, exploiting concepts of space and time through neural
connectivity and plasticity [3]. Spiking neurons have much more complicated dynamics
respect to the other popular model Artificial Neural Network (ANN) and this could
make SNN more powerful. One other great advantage of this model, it is its easier and
more efficient hardware implementation possibilities, since these could be based on
Event-Driven computation and on Address-Event Representation (AER) , differently

1

Introduction

from ANN [2](pp.119,173-175). These concepts will be discussed in next paragraphs.

1.1 Motivations and goals
This thesis work is focused on the Hardware Emulator of Evolvable Neural Systems
(HEENS) architecture, developed by Integrated Smart Sensors and Health Technologies
(ISSET) group of Universitat Politècnica de Catalunya (UPC). This is a multiple
FPGA-based architecture designed for emulating SNN, by means of an array of NxN
processing elements (N is a value that can be set before either simulation or synthesis),
as it will be explained in next sections.

In particular, this work concerns the propagation and distribution of data represent-
ing the evolving information of the Neural Network. Indeed, since HEENS is finalized
to simulate a SNN, it is strictly necessary to monitor the internal parameters of the
network, such as membrane potentials, synaptic weights, in order to keep track of the
current state of the neural algorithm.

The precedent version of this architecture is the one reported in [1]: this work
included a SNAVA Human Machine Interface (HMI) which is a software created to
control and to monitor the execution and the information relative to the proposed
network in a graphical way. All data involved in these configuration and monitoring
phases, were transmitted by means of G-Ethernet connections. In this particular
project, the monitoring information will be collected exploiting the same ring topology
communication channel that is being used for the transmission of spikes among all
FPGA used in the network. The HMI at the current state has not been developed
yet and neither the hardware support to collect those data and to transmit them. So,
summarizing, the basic support for this future application was necessary at that initial
state of the work.

In order to accomplish this goal, the already developed Address Event Representation
over Synchronous Serial Ring Topology (AER-SRT) protocol [4] has been exploited
together with the processing hardware, which required a fully understanding of the
architecture in order to manipulate, to modify and to create those parts that are
involved in the extraction and transmission of these data.

Finally, the architecture proposed and then verified through simulation has been
synthesized and implemented on the Xilinx Zynq-7000 SoC ZC706 board, an PSOC
device, in order to check if timing constraints had been respected and to inspect the
area and power consumption.

1.2 State of art
In the current state of knowledge, it is not possible to say that science perfectly under-
stood how human brain works and how it manages and realizes all of its functionalities.

2

Introduction

The major interesting capabilities of a biological neuron network are scalability, high
efficiency connectivity, intensive parallelism, which are all skills carried out with an
optimized energy consumption. Anyway, reverse engineering has produced interesting
results that nowadays find application in many fields, such robotic, image recognition,
artificial intelligence. and so on [5].

It is important to understand basic concepts behind the theory that has led to such
important results, so in next section a brief overview of the biological functionalities of
neurons and their models will be described.

1.2.1 Neuron models

Figure 1.1: A. Single neuron(by Ramo’n y Cajal) and B. Connection and signal
transmission between a pre-synaptic and a post-synaptic neuron.[6](p.13)

In Figure 1.1 it is portrayed a representation of a biological neuron: it is composed
by a soma, which is like the central processing element of the neuron that generates an
output signal in case a particular input threshold is exceeded; then by the dentrites that
are in charge of collecting all signals from other neurons and finally by the axon, that
transmits all the information outside the neuron [6]. In addition, there is the synapse
that is the connection point between the axon of a sending (pre-synaptic) neuron and
the dentrites of a receiving (post-synaptic) neuron. The synapse collects the spike
information through complex chemical processes and, by means of neurotransmitters,
it leads to the flowing of ions current into the cell of the post-synaptic neuron.

That is, an influx of ions inside the cell changes the so called "membrane-potential"
of the neuron, which is the potential difference between the interior of the cell and its
surroundings [6](p. 12). If this change is positive, the synapse is excitatory, whereas if
the change is negative, the synapse is inhibitory.

3

Introduction

Figure 1.2: A postsynaptic neuron i receives input from two presynaptic neurons j =
1, 2.[6](p.16)

In Figure 1.2 are reported three different possible situations in which a post-synaptic
neuron is excited by two pre-synaptic neurons. To better explain the dynamic of these,
let’s define ui(t) as the membrane potential of the neuron i and let’s consider the
equation[6](p.17):

ui(t) = η(t − t̂i) +
Ø

j

Ø
f

Ôij(t − t(f)) + urest (1.1)

4

Introduction

In eq.1.1 all Ôij(t) is defined as: ui(t) − urest, where urest
∼= −65 mV is the resting

potential of the cell (the one the cell usually has if the cell receives no spikes at the input.
Then, η(t) is the trend of the membrane potential of the neuron i after it fired a spike
at time t̂i. So, a post-synaptic neuron receives different spikes from pre-synaptic ones
at different time instants t(f), which means that its membrane potential its incremented
by an amount equal to the sum of all contributes Ôij(t − t(f)) and if it reaches and
exceeds the threshold ϑ (usually in the range of 20-30 mV above the resting potential)
it fires a spike [6](pp.15,16,17).

Spikes (or action-potentials) are pulses with an amplitude of about 100 mV, that
lasts 1-2 ms. After the spike, the membrane-potential goes below the resting potential
(hyperpolarization) and it shows a behaviour described by the function η(t), for a time
lapse called "refractory period". Thus, the neuron has to receive a precise number of
pre-synaptic spikes in a specific time window in order to fire a post-synaptic spike.
These strong time and space dependencies, are those that give so much computational
power to these systems and so to their close imitation represented by SNN [2](p.119).

Before talking about Spiking Neural Network, let’s review some of the most impor-
tant mathematical models of the biological neuron. For this part [3] [2] and the more
accurate and detailed [6] had been consulted.

1. Leaky Integrate-and-Fire (LIF)

(a) (b)

Figure 1.3: (a)The conductance-based LIF model and (b)the current-based LIF
model[2](p.120).

This is a simple and a computationally effective model, as well as one of the most
popular spiking neuron model used in order to build and to simulate a SNN. The
model can be graphically described in Figure 1.3. The equation that describe the
model is here reported:

C
dV

dt
= I − IR (1.2)

5

Introduction

Basically, I is the current injected inside the neuron and IL is the leakage ions
current that leaks through the channels in the cell membrane. This leakages can
be described with a conductance-based current with an impedance (R in Figure
1.3(a)), which is more biologically accurate but it strongly depends on membrane
potential and that could lead to a much higher computational effort. The other
model is depicted in 1.3(b), where the leakage current is approximated with an
independent current source and that is a more hardware friendly model, since the
current does not depend on the membrane potential.
The injected current I can be determined by the type of synapses used, which
can be also in this case current-based synapses and conductance-based synapses.
The latter makes the current a function of the post-synaptic potential, while the
former doesn’t lead to this dependecy[2](p.121).
In [3] it is underlined that in a more general form the LIF can contain a refractory
period in which dynamics are stopped for a fixed period. Other equations that
describe the conductance-based model are reported below:

I(t) = IR(t) + IC(t) (1.3)

τm
du(t)

dt
= −u(t) + RI(t) (1.4)

tf : u(tf) = ϑ (1.5)

In Eq.1.4 τm = RC is the membrane time constant, while tf is the firing time in
Eq.1.5: after that the membrane-potential is reset to the resting potential [3].

2. Hodgkin–Huxley
The Hodgkin–Huxley model is a more biologically accurate mathematical model,
which takes into account the Nerst potential, that is the potential difference
between the cell end the extracellular liquid caused by the ion transport through
the cell membrane. The model is graphically depicted in Figure 1.4 and it is
mathematically described by Eq.(1.6)

I = C
dV

dt
+ GNam3(V − VNa) + GKn4(V − VK) + GL(V − VL) (1.6)

In this equation, VNa, VK and VL are called reverse potentials, while GNa, GK and
GL are the conductance of the sodium, potassium, and leakage channels respec-
tively. Other variables n, m are gating variables which dynamics are described in
[7], [2](pp.136-137) and in [3].

6

Introduction

Figure 1.4: The Hodgkin-Huxley model [2](p.120)

This model is able to describe very accurately the dynamics of the neuron, but it
requires too high computational efforts [2](137).

3. Izhikevich

Since the Hodgkin–Huxley model could become prohibitive for many application
and that the LIF does not very faithfully mimic the dynamics of neuron (even
if it might be very useful in many SNN due to its semplicity)[2](p.121,122), the
Izhikevich model[8] claims to be a good intermediate between the biological
accuracy of Hodgkin–Huxley and the computational efficiency of LIF models [3].
The model is described by Eqs.1.7 and 1.8.

dV

dt
= 0.004V 2 + 5V + 140 − U + I (1.7)

dU

dt
= a(bV − U) (1.8)

In this equations, V is the membrane potential while U is the membrane recovery.
If V ≥ 30 mV , then V is reset to c and U is reset to U + d. The variables a, b, c
and d are model parameters.

This model is able to reproduce many phenomena observed in biological neurons
with a computational complexity comparable to that of an LIF model[2](p.121).

7

Introduction

1.3 Spiking Neural Networks
Spiking Neural Networks have aroused an increasing interest in the research commu-
nity since they are able to reproduce with a more biological realistic approach the
functionalities of a neuron network, due to the exploitation of spikes information and
computation. The other popular model ANN is considered a more simplified versions
of biological neural networks in terms of structure and function. Furthermore, the
simply nature of a SNN based on Leaky Integrate-and-Fire approach, makes them
better suited for an hardware implementation [3].

The main differences between a SNN and a ANN can be summarized here[2](p.119):
(1)a non spiking network ANN uses real-value activations to convey information,
whereas a spiking neuron modulates information on spikes, (2) a ANN does not usually
have memory, while a SNN generally does. Finally (3) most SNNs are based on a
time-varying nature, while the output generated by ANN generally is not an output of
time.

In Figure 1.5, other differences are reported [2](p.124). It is important to underline
that in an ANN the outputs from previous layers (pre-synaptic neurons), are real
numbers which come out from many combinational logics, like Multiply-Accumulate
(MAC). So, it is basically memory less, since the output depends on its particular layer
position (in a multi-layer network) and on a particular class that output belongs: if
it is activated (by means of its activation function) it means that a particular input
category has been presented.

On the other side, in a simple LIF model, output from neurons (spikes) are more
like binary vectors that have a spatial distribution but also a temporal distribution,
which means that a spiking neuron can be implemented as a Finite-State Machine
(FSM), where the output depends on its present inputs, but also on the past history of
the input values. A SNN has an inherent memory that leads it to be often trained to
learn spatio-temporal patterns.

In Figure 1.6 there is an analogy between biological neurons and artificial spiking
neurons on the right, in which it is shown that a post-synaptic spikes is the result of a
particular sequence of input spikes that, basing on the weight and on the type of the
synapse (inhibitory and excitatory), causes the output neuron to exceed the threshold
value.

1.3.1 Data encoding
An important issue in a SNN, is related to proper encoding strategy to apply. Indeed,
the information carried by an analog input signal has to be translated in a spatio-
temporal pattern of spikes, which is not trivial, since it has to take into account the
signal characteristics, in time and in the frequency domain, the presence of noise and
how all of these features can be affected by a particular encoding scheme [9].

8

Introduction

Figure 1.5: Comparison between spiking neurons and non-spiking neurons[2]
(p.123)

Figure 1.6: Biological neuron and its association with an artificial spiking neuron[6]

There are two main encoding scheme that can be found in literature: rate −
based encoding and temporal − encoding. The former is focused on spiking character-
istics in a certain window of time and it can be related to three different notions of
mean firing rate, that are: average ("rate as a spike count") over time, average over
several repetitions of the experiment ("rate as a spike density") , or average over a
population of neurons ("rate as a population activity")[3].

Temporal − encoding extracts information on the exact timing of a spike, which
marks a change in the value of the input signal and this is considered to be the realistic
biological behavior of neurons [9]. In temporal − encoding there are three main timing
information schemes about spikes: "time-to-first-spike" when all timing features are
related to the code for the timing of the first spike, then "phase" which is as the first,
but with a periodic signal and finally "correlation and synchrony" when a spike code is

9

Introduction

based on the reference signals from other neurons[3].

1.3.2 Synaptic Plasticity
Many electrophysiological experiments have proven that the response amplitude of
a given post-synaptic neuron is not fixed over the time, but it is conditioned by the
input spikes of its pre-synaptic neuron/neurons. Interesting results in [6](p.363) are
shown in Figure 1.7.

Figure 1.7: Schematic drawing of a paradigm of Long-term Potentiation induc-
tion[6](p.363)

The membrane potential of pre-synaptic neuron is stimulated by means of an
extracellular electrode, while the post-synaptic one (the output) is measured with

10

Introduction

another electrode. What can be deduced is that, after the post-synaptic spike, the
strength of the synapse is increased, since the same input stimulation creates greater
response in the post-synaptic membrane potential [6](p.363).

The formal theory of neural networks explains that the synapse weight wij (from
neuron i to neuron j) is a parameter that can be set and adjusted in order to optimize
the rate of successes of a network, given a particular task. The procedure that leads to
adjust the parameters of a network is called learning rule and many of them have been
proposed, depending on the type of network and on the goal to accomplish [2][3]. The
class of learning rules that are base on the correlation between pre- and postsynaptic
neurons, is referred as "Hebbian learning", which is inspired by the work of Donald
Hebb [10].

The conventional Hebbian learning rule is a correlation-based learning rule that
does not explicitly depend on the timings of spikes, while the Spike-Timing-Dependent
Plasticity (STDP) is a demonstrated behaviour, which tells that the amount of change
in the synapse depends on the relative timings of pre-synaptic and post-synaptic spikes
[2](p.128): if the post-synaptic neuron spikes shortly after a pre-synaptic one, the
synapse goes through a Long-term Potentiation (LTP), but the increase in the synaptic
weight has amplitude that exponentially decreases in function of the difference between
the two timing spikes. On the other hand, if the post-synaptic neuron fires before a
pre-synaptic spike, the weight is decreased and the synapse experiences a Long-term
Depression (LTD), which again is a function of the timing difference between the two
neurons. All of that is depicted in Figure 1.8.

Figure 1.8: Illustration of a typical STDP protocol.[2](p.129)

11

Introduction

In the following equations the mathematical approach is described:

∆w =
Ø

n

Ø
m

K(tm
post − tn

pre) (1.9)

K(x) =
I

A+ exp(−x/τ+), x > 0
A− exp(x/τ−), x < 0 (1.10)

In Eq.1.9, tm
post and tn

pre are the pre-synaptic and pre-synaptic spike timings respec-
tively, while in Eq.1.10 τ+ and τ− are used to control the decay of the exponential and
K(x) is a kernel function. This is referred as a pair-based STDP rule [2](p.128).

There is another solution that differently from Eq.1.9 imposes a limit on the
maximum weight, in which A+ and A− are a function of the weight itself. In this case
the synapse weight is a function not only of the timing of the spikes, but of the synapses
weights too, preventing it from growing without limit [2](p.129) It is important to
underline that a STDP protocol determines how synaptic weights should change, based
on timing, but how the learning is conducted vary depending on the implementation.

1.3.3 SNN implementations
In recent years, many studies have been conducted on possible hardware implementation
of SNNs, since the needing of simulating complex networks. The simulations based on
software, which are implemented in Von Neumann machines, hardly meet the biological
spiking rate (milli seconds) constraint and furthermore they requires a huge quantity
of power [1]. Thus, many application specific implementations have been developed
and here some of them are briefly discussed.

"BrainScaleS" is a full custom analog design, specialized in simulating exponential
integrate-and-fire neurons [11]. In analog implementations, transistor’s sub-threshold
range operations are exploited to create compact and high-speed processing neural
simulators and they have the advantages of being characterized by extremely low area
and energy consumption for very large-scale networks. Anyway, it is hard to program
and to scale such architectures and they require long time in order to be designed and
to be tuned. Furthermore, they can be utilized in those application where the topology
and the task of the SNN are well defined [1].

Digital implementations, differently from analog ones, are less costly and more
flexible and are based on general-purpose multiprocessors, Graphical Processing Units
(GPU)s or FPGAs [1]. "TrueNorth" implementation[12] utilizes LIF neurons with high
number of synapses without plasticity and "SpiNNaker" it’s a multiprocessor-based
simulator, which can support different SNN models, due to its programmable features,
although it requires very high costs in terms of processing cores[1]: it consists of a
chip multiprocessor (CMP) and a 128-MB off-die synchronous dynamic random-access
memory (SDRAM)[2](p.186-187).

12

Introduction

GPU-based architectures can exploit their parallel computation nature in order to
provide a powerful implementation, though in complex SNNs, memory management
and spike propagation represent an important obstacle for this solution. A popular
GPU-based simulator is NEST (Neural Simulation Tool)[13] which is able to support
many neural and synaptic models, but it lacks biophysical detail. In [14], NeoCortical
Simulator 6 (NCS6) has been developed to take that issue into account. Futhermore,
it supports LIF and Izhikevich models and it allows the user to design his/her own
interface for other neural models[1].

FPGA-based SNN simulators, have been developed in several works [1]. In [15], a
multiple FPGA-based architecture is proposed, where communication is performed by
means of high speed serial links available in advanced FPGA boards. This architecture
is able to simulate Izhikevich neurons with fixed pipeline stages, which makes it not
suitable for supporting different SNN models. Furthermore, this architecture is designed
for the simulation of simple and specific SNN models that do not take plasticity of
synapses into consideration [1].

Another architecture is reported in [16], where a scalable-reconfigurable neuromor-
phic device based on an AER in a 2D mesh configuration has been developed. The
authors claim that the architecture is capable of managing spike traffic using routing
approaches in a single or multiple FPGAs [1]. It can simulate simple LIF model in
order to perform the convolution operation used in image processing [17], but it does
not involve plasticity.

Loihi is very interesting and recent architecture that has been developed by Intel’s
Microarchitecture Research Lab[18]. It is fabricated in a 14-nm process and the chip
with a die size of 60 mm2 contains 128 neuromorphic cores, where each core implements
1024 primitive spiking neural units cores. Then, there are x86 cores and in total, it
includes 16MB of synaptic memory. Davies et al. claim that Loihi is able to support
sparse network compression, core-to-coremulticast, variable synaptic formats, and
population-based hierarchical connectivity [2](pp.191-192)[18]. The important feature
of it, it’s the on-chip learning capability through a microcode-based learning rule engine
within each neuron core, which make it able to implement pairwise STDP and other
more advanced learning rules [2](p.191).

All FPGA discussed above, trade off model flexibility and high speed processing,
while GPU and general purpose processor approaches, should have the flexibility
to implement several SNN models, with the capability of implementing fairly large-
scale networks. All of these architectures rely on a general purpose Instruction Set
Architecture (ISA) and on communication on chip strategy, in order to simulate
the SNN. Evidently, in such implementations, there would be some general purpose
functionalities that could lead to an unnecessary power and performance losses. The
Spiking Neural Networks for Versatile Applications (SNAVA) architecture, which is
the previous version of HEENS, is a scalable and programmable solution for real-time
multi-model SNN simulation[1]. By means of several SNN models, the ISA of this

13

Introduction

implementation has been fitted in order to exploit the proper quantity of hardware
truly required for these kind of applications.

The software-hardware codesign, allow the user to design, configure and monitor
the network. The hardware is composed by a parallel architecture, that is implemented
on modern FPGA devices, in order to ease the programmability and so the simulation
of different synapses and neurons topologies. It is composed by a Single Instruction
Multiple Data (SIMD) array of Processing Elements, a single control unit and also
communication units to support software to configure and monitor the system in real
time with a 1 ms time step simulation. The ISA of the PEs has been customized in
order to obtain high performance using minimum resources.

1.4 HEENS architecture
In this section, an overview of the Hardware Emulator of Evolvable Neural Systems
architecture will be provide, in order to give a general idea of what kind of tasks the
hardware is able to perform, considering that all the thesis work has been developed
upon this already implemented structure. Then, in the last part of the introduction,
the Address Event Representation over Synchronous Serial Ring Topology protocol
and its hardware support will be described, since it is a fundamental part too that has
been exploited and also modified to carry out all the targets set.

As previously mentioned, the HEENS architecture is a evolution of the previous
Spiking Neural Networks for Versatile Applications (SNAVA) implementation[1] and
it presents some upgrades respect to the predecessor: it is characterized by a better
resource utilization, as reported in [5](p.46) and by an enhanced programmability and
scalability capabilities. Indeed, it allows the user to decide the number of PEs in
the 2D array and the number of virtual layers, setting before simulation or synthesis
few parameters, like row, column and some others related to the number of layers.
Furthermore, the user can totally set the topology of synapses, as will be described
later, by means of specific text files that are going to be loaded in the Master Chip
(MC) of the network. The HEENS implementation offers a hierarchical communication,
that make it capable of synthesize up to 1352 neurons, a number that is more or less
6.76 times greater respect to the number supported by SNAVA[5](p.46)

One of the most interesting thing of this solution, is the capacity of supporting an
online dynamic evolution and reconfiguration of the synapses interconnections, which
leads to great savings in terms of design time, since there is no longer the needing of a
new synthesis every time the configuration needs to be changed in some way.

In Figure 1.9, an example of HEENS network is reported. As it is depicted, there
is a Master Chip (MC), that is in charge of communicating with the general purpose
processor in order to receive all necessary initialization directives by the user, that will
be utilized to configure and in some cases also to reconfigure the other nodes. Then,

14

Introduction

Figure 1.9: HEENS architecture, composed by a Master Chip and n Neuromorphic
Chips connected in a ring topology[5](p.30)

during the execution phase, the MC behaves like a regular Neuromorphic Chip (NC),
so it will compute the neural algorithm, in order to collect all the spikes from other
nodes or from its own PEs, then to update the neural and synaptic parameters (like
membrane potential) and finally to distribute post-synaptic spikes, when these latter
are present.

1.4.1 Operational stages of HEENS
In Figure 1.10, the state diagram of the different processing phases of HEENS is
depicted.

• Initialization phase (IPh): In this stage, the MC dynamically assigns the Chip
Identifier (ChipId) relative to each node and the ring size to the rest of the
network.

• Configuration phase (CPh): It is in charge of sending all fundamental data needed
for the neural processing, which are synaptic and neural parameters and also the
local and global connections mapping, as well as the execution program.

• Execution phase (EPh): This is the important stage in which the main biological
functionalities of the soma are emulated. Each PE (artificial neuron), computes
its state parameters, starting from its individual previous ones and from the
input pre-synaptic spikes. This stage starts and finish by means of a control flag
eo_exec.
It is important to underline that monitoring operations need to be performed in
this very stage: the serial communication bus used for the spike distribution will
be exploited also for this task and so it is important to assure that monitoring
distribution is completed before starting spikes transmission. This will be taken
into account in this project, as it is explained in Chapter 2.

• Distribution phase (DPh): It emulates the propagation of spikes and neuro-
transmitter that happen in a biological neural network, by means of the serial

15

Introduction

Figure 1.10: Operational stages of HEENS [5](p.31)

communication bus and of the AER-SRT protocol. All the spikes emitted in the
execution phase are broadcasted to neurons that belong to the same chip or to
another one.

• Evolution phase (EPh): This stage happens at the end of each EPh only in the
specific case in which a evolution command has been received. In this eventuality,
all synaptic connections and weights will be adjusted in each NC, depending on
the information sent to the MC.

The basic unit of time utilized is the sum of the execution and distribution phases,
after that IPh and CPh has finished.

1.4.2 Multiprocessor structure
In this section a brief discussion on the constituent modules of the architecture will be
carried out. The reference architecture schematic of HEENS is reported in Figure 1.11.

16

Introduction

Figure 1.11: Block diagram of HEENS multiprocessor [5](p.33)

The figure shows that the main blocks of the architecture are: the communication
buses, the Control Unit (CU), the PEs array and the AER-SRT controller.

• Communication bus: the first substantial thing is related to the exchange of
information/data between the control unit, AER controller and the array of PEs.
The two buses HEENS_add and HEENS_data are multiplexed between two
different kind of addresses and data. The first is related to the configuration
phase, when each memory inside the PE-array needs to be initialized and for this
there is the needing of the address word pkg_add. Since this signal may come from
the MC (by means of the RX side of the AER serial bus), it has some fields of bits
related for example to the ChipId, to identify the chip in which the configuration
data has to go. Other fields are related to the numbers of row, column and virtual
layer to be selected in the array, in order to store a data in the local memory of a
specific PE(neuron). Finally, depending on the type of configuration data, there
are fields which address the right memory among all those present in a PE, as
it will be described later. The pkg_add and pkg_data signals are also used to
initialize the Instruction Memory (IMEM), as it is shown in Figure 1.11.
The other kind of data, is the one related to the opcode of the instruction to
be executed data_seq (from the sequencer), and the spike_in data from the
AER-SRT controller, in Figure 1.12, the format of the address is described, which
as all the rest of data, needs ID, virtualization, row and column fields. Anyway,
these two kind of data are selected by means of the config signal, which is set in

17

Introduction

the proper processing phase.

Figure 1.12: Address format for a spike event [5](p.34).

• PE-array: the processing units that make up the whole array represent a fun-
damental part, since they contain the data path for executing the neural and
synaptic algorithms and, relatively speaking about this thesis work, for the collec-
tion and propagation of monitoring data. So, some details will be provided about
the structure of the PE, of which schematic is portrayed in Figure 1.13. It is
important to remind that this is a Single Instruction Multiple Data architecture,
so it includes only one Control Unit, that is in charge of sending all commands
relative to instructions coming from the IMEM

Figure 1.13: Processing Element [19]

18

Introduction

– Arithmetic Logic Unit (ALU)
This unit supports 16-bit fixed point arithmetic operations and logic ones too,
which are identified by means of the instruction opcode (forwarded to the PE
by the sequencer). There are two important bits coming from the ALU, that
are the carry and zero flags, which are fundamental for conditional instruction
(FREEZEC, FREEZENC, FREEZEZ, FREEZENZ): indeed, since this is a
SIMD architecture, it is not possible to handle (at least for simplicity) all
the support for the conditional and unconditional branches. What is done
here, it’s blocking the execution of specific instructions, in case those flags
mentioned above are set.
When a FREEZE condition is executed, all registers and ALU flags are
disabled and a ’1’ is pushed in the Last In First Out (LIFO) register of the
PE, in order to block all operations and to store the number of times the
reactivation has to be performed in case of nested freeze conditions. Then
the UNFREEZE unblocks everything to let the PE perform other operations.

– Virtualization (VIRT)
Each PE performs a multiplexing operation during its execution phase in
order to manage more than one neuron. Indeed, all computations involved in
the neural algorithm are repeated for a number of time equal to the number
of virtual layers. In 1.13 can be noticed from the output spike MUX, that
the maximum number of virtual layers supported at the actual state it’s 8.
An explanatory image of Virtualization is reported in Figure 1.14.

– Register File (RF)
This is a bank of 16-bit general purpose registers which are used to interact
with the SNRAM and the ALU, in order to store the parameters relative to
the neuron involved in computation and to provide the right operators to the
ALU. There is also a bank of shadow registers, which access is controlled by
the sequencer and that are used to enlarge the storage space of the PE. An
important register that communicate also with output buffer register, is R0,
which in this architecture is called "accumulator".

– Synaptic/Neural Memory (SNRAM)
This memory on chip stores all synaptic and neural parameters, the seeds for
Linear-Feedback Shift Register (LFSR). All of these data are those related to
each virtual neuron of that specific PE.

– Local and Global memories (BRAM)
This block of memory is used to decode the addresses that notify the presence
or not of spikes, either from local PEs of the same node/chip (local memory),
or from an external chip (global memory). The latter are processed only by
the main virtual level (V IRT = 0, called HUB neuron), in order to support

19

Introduction

Figure 1.14: Virtualization of PE-array.[19]

a hierarchical communication between clusters. It is important to underline
that a number of fixed synapses is assigned to each virtual layer by the user,
as it will be described in Section 1.7, so the number of spikes contained in
the local and global spike registers in Figure 1.13 are set.
The local memory has v, r and c (referring to virtual, row and column
respectively) as inputs/addresses, then it has an output composed by sL − 1
bits, where sL is the number of maximum synaptic connections assigned to
each PE. A specific bit of the output is set to one if the input correspond
to a synaptic connection of that PE/postsynaptic neuron. The size of the
memory is 2v+r+c · log2 (sL − 1).
The global memory has a block dedicated to the ID and one for the row and
column addresses. This is due to the fact that neurons from different chips
can have the same row and column positions. In this case there is also present
an encoding scheme, in order to reduce the size of this whole block. The total
bits size is equal to (2r+c + 2ID) · log2 (sG) + 2sG(sG − 1) [5](p.37).

– Linear-Feedback Shift Register (LFSR)
It is used to generate uncorrelated noise for each PE. The seeds composed

20

Introduction

by 64 bits for this register, are set with the instruction SEED and they are
stored in the SNRAM memory.

– Freeze LIFO
As mentioned before, this is used for nested conditional instructions and it is
linked to the carry and zero flags coming from the ALU.

– Monitoring Buffer
This is directly linked to the R0 register and it is used to store the information
that the user wants to monitor as will be explained in next chapter. The data
is moved from the accumulator to this buffer by means of the STOREB in-
struction and (even if it is not present in Figure 1.13) it can accept monitoring
data from lower positioned PEs in the array.

• Control Unit: As it has already been explained, the HEENS is a SIMD architecture,
which means it is provided with a single control unit. Furthermore, this is a
Harvard architecture, that leads to a separate Instruction Memory, while the
data memories are the SNRAMs inside each PE. The sequencer is the component
in charge of sending the proper instruction address, by means of the Program
Counter (PC), then of receiving the instruction, from which the opcode and all
meaning values (like register number, pointer to the SNRAM memory, number of
shift operation to perform, constant and so on..) will be extracted and sent to
the PE-array, through the data_seq signal in Figure 1.11.
In Appendix A, the Instruction Set Architecture (ISA) of HEENS is reported.
It is possible to notice that it contains different kind of instruction, depending
on the function and on the parameter it implements and transmits respectively,
like move operations, arithmetic, logic, conditional, store, load and others. Then
there are the macros, which identify a set of more instructions that the assembler
is able to recognize.
It is also important to underline that all the execution is divided in four pipeline
stages: fetch, decode, execute and write-back. This is a very used technique in
order to reduce the clock cycles required to execute an algorithm. With this
approach, the whole architecture is able to complete an instruction each clock
cycle, except for those that requires one or more cycles in addition, like jumps to
subroutines, conditional ones, in some cases arithmetic operations and so on.

1.5 AER-SRT controller
In this section the Address Event Representation over Synchronous Serial Ring Topology
controller will be illustrated, since it plays a key role for the work of this thesis. First
of all, a brief discussion on the protocol operating mode will be carried on, then the
hardware implementation details will be explained.

21

Introduction

The AER protocol has become very popular in SNN multi-chip neuromorphic
systems, since it is able to solve several problems that had arisen in such kind of
implementations: the number of neurons and synapses that can be inserted in a single
and specific silicon device is limited, while the use of multi-chip architecture leads to
emulate large SNN models. However, this requires high efficient spike distribution
capabilities and thus, the intra-chip communication becomes a critical point and it is
responsible of scalability degree and efficiency of the whole system [4].

The AER protocol is characterized by the fact that all spike events are assigned
to specific time slots, by means of a time multiplexing distribution. This leads to
a resolution controlled by the widths of time slots in which the uncertainty can be
reduced if these widths are made smaller. Such a solution overcomes problems related
to collision of spike distribution events in asynchronous systems and so the information
is preserved. Furthermore, the serial solution (AER-SRT), utilizes fewer wires, offers
better performance, using point-to-point high-speed differential serial transreceiver at
frequencies of Gbps. So, the latency introduced to allow this kind of communication
in a pipeline fashion is well compensated by this high throughput and high speed.

Figure 1.15: AER-SRT communication model [5](p.54)

In Figure 1.15, the structure of the AER-SRT implementation is depicted. The
AER controller of the MC is the Z_AER_SRT, while the one related to the NC is
the AER_SRT. The Xilinx-Aurora protocol is used to serialize and to deserialize all
packets that travel around the ring.

The Master Chip has a key role of in the initialization, configuration and in
the dynamic evolution phases of the newtork. In [1], the dynamic reconfiguration
represented a problem, since the were no MC that coordinated these phases and so, all
the nodes have to perform the evolution in real-time [5](p.54).

22

Introduction

1.5.1 Control packets of AER-SRT protocol
The protocol utilized in this work manages two different kind of information, which
are data and control packets. These are distinguished by the MSB of the 16-bit packet:
’1’ for control and ’0’ for data. Control packets are formed by a control information,
to signal that a specific kind of control is being received, then by data and finally
by another control sequence, in order to inform the receiving chip that the packet is
finished. In Table

Contol packet Function
IDLE It keeps the ring active
INIT Initialization

EOINIT phase
CONF Configuration

EOCONF phase
EVOL Evolution phase
SYNC
START Distribution phase
FINISH

Table 1.1: Control packets of AER-SRT protocol

During the execution phase, and IDLE packet is transmitted by all chips in order
to keep the link active. Now a brief discussion on these phases is made.

• Initialization packet: The MC is in charge of dynamically transmitting ID and
Ring Size parameters to each node of the network in this phase. The former is
used to signal which chip the information comes from and the latter is neces-
sary for counters inside the AER controllers in each node, in order to perform
synchronization tasks.
The packet starts with a start control information and it is followed by 16-bits
information that contains the ID: the ChipId of the MC is equal to one, so it
will add ’1’ to this parameter and it will retransmit it to the next node. This
arithmetic operation on the ChipId is performed by every following NC before it
is retransmitted. After that, the Ring Size follows and finally there is the control
information that signals the end of the Initialization phase (EOINIT).

• Configuration packet: Again, the packet starts and finishes with control informa-
tion to signal the beginning and the end of this particular phase. The packet fulfills
the task of network configuration. The following data sequences are composed
by all the information utilized to initialize the four memories inside each PEs of
each node (Synaptic/Neural Memory, local memories, conversion and codification

23

Introduction

blocks) and for this reason, they are preceded by a ChipId and then by addresses
to identify the chip and the specific memory to be written respectively, with the
related locations too. It is possible also to signal that all data coming need to be
written in each node of the network (common mode), by sending the ChipId of
the MC.
The evolution packet is very similar, but it can be transmitted by the MC after
each execution phase, in order to reconfigure the network (learning phase).
As for the Initialization packet, the MC understand that the configuration phase
is over when it receives the EOCONF packet, after it has traveled for all nodes of
the ring.

• Distribution packet: This phase is characterized by an initial SYNC packet, which
is necessary to synchronize all the nodes. Indeed, a NC may finish the execution
phase later respect to other nodes. So, each node at the end of the execution phase
sends a SYNC packet and retransmits the same packet received from previous
nodes. There is a counter inside the receiver block that allows each chip to count
how many of them have been received and if the number is equal to the Ring size,
the synchronization is over and the real distribution starts.
The distribution packet is composed by a START sequence in which it is reported
the ChipId from which the following spikes originate. Then all the spikes are
sequentially transmitted and travel around the network. Once a NC receives
its own spikes (comparing the received ChipId), these latter are discarded and
the node sends a FINISH control information. The distribution finishes in the
same manner the synchronization phase ends, but this time the FINISH control
information is involved.

1.5.2 Master Chip
The structure and properties of the Master Chip will be described in this section. The
Neuromorphic Chip has similar characteristic, but it has less functionalities, since it is
involved in fewer control operations respect to the MC. The block diagram of the chip
is illustrated in Figure 1.16.

• CPU core: This is in charge of loading all configuration parameters used for the
neural algorithm that will be loaded in the memories of each chip. The user, as it
will be explained in Section 1.7, needs to create and, by means of the CPU, to
transmit all of these data to the MC, which will store them in the CONFIG_FIFO.

• Spike Gen/Consum: This is the part of the HEENS that receives spikes and
applies the neural algorithm to them, as it was described in Section 1.4

24

Introduction

Figure 1.16: Master chip structure [5](p.59)

• PS/PL interface: Data coming from the CPU core travel with a different protocol
respect to that used by AER-SRT. For this reason, an ARM processor (PS) it
is utilized to convert those data in a way they can be transmitted to the serial
bus. The other part of programmable logic (PL) it is an interface between the
sequencer, PE-array and the AER controller.

• Z_AER_SRT Controller: This represents the core of the communication in this
protocol. A schematic of it is reported in Figure 1.17.

1. Z_AER RX
This module has to read all data coming from the Aurora Rx side in order to
detect control or data packets, in order to send them in the right FIFOs. It is
in charge of setting flags that notify the end of initialization and configuration
phases, by means of control packets EOINIT and EOCONF respectively.
Furthermore, thorugh counters inside of it, it signals the end of synchronization
and distribution phases, by counting the SYNC and FINISH packets.
The last function is related to the spikes: in distribution phase, when it
receives a packet, it needs to extract the ChipId and to compare it with its
own. If the ChipId belongs to another chip, all the spikes are redirected to

25

Introduction

Figure 1.17: Z_AER_SRT controller [5](p.60)

the bypass FIFO, in order to let them keep traveling around the ring. If, on
the other hand, the spikes are those it generates, the node can discard them
and send a FINISH packet.

2. Z_AER TX
The transmission module has been largely used in this thesis work. It is in
charge of sending the right data/control sequences to the Aurora TX side. It
is composed by a main FSM and by many other state machines utilized to
coordinate the transmission of different packets. An explanatory schematic is
depicted in Figure 1.18.
The main controller determines in which phase the transmission is. For
example, in the execution phase, the IDLE input of the MUX will be selected,
or when the RX side will notify the ending of the synchronization phase, the
input will be changed from the SYNC packet to the START one. Then, in
the spike distribution phase, after the START packet, the output FIFO will
be selected and its data will be transmitted as it happens for the configuration
phase (although in that situation, the CONFIG FIFO would be involved).
Anyway the selection of the MUX entries is determined by the main FSM
and each data/control packet is managed by specific and dedicated smaller
state machines.

3. Error Detector and Delay Controller
Data from output FIFO are transmitted and also copied inside an error
FIFO and they reach again the origin (after they have traveled around the

26

Introduction

Figure 1.18: Z_AER_TX module [5](p.61)

whole ring) and the RX side signals that, the received data are compared
to those previously stored in the error FIFO: if they differ, an error counter
is incremented and it will be taken into account by the processor. At the
current state of the project, the error cannot be corrected.
The axonal delay controller is in charge of assigning a certain delay to the
spike before transmitting its address to the AER-SRT communication bus.
Basically, it is composed by a RAM, which stores the delay for each spike and
which is addressed by means of row, column and virtualization parameters of
each spike. Then, before writing the spike parameters into the output FIFO,
the delay is decremented at each clock cycle until it reaches a value of ’0’.
Only after that, the spikes information can be written into the output FIFO
and finally be transmitted.

1.6 Neural algorithm
In Appendix B there is an example of the assembly code that will be used in simulation.
In particular Appendix B.1 does not involve virtual layer in the whole execution, while
Appendix B.2 does. The current algorithm performs a Leaky Integrate-and-Fire (LIF)

27

Introduction

model to emulate the biological neuron and it is divided in four main sections:

1. In the first part all necessary declarations are made.

2. In the .DATA neural and synaptic parameters are defined. These includes the
number of local synapses assigned to each virtual layer, with their related starting
addresses in the SNRAM, in which it is possible to find the synaptic weight related
to the synapses of that specific layer. There are specific addresses for global and
neural parameters too. For example, in B.1, line 28, SYN_ADDR0 refers to the
address of the first synaptic weight of the main layer V0 and since there are three
synapses in this case for each layer, the next pointer position of course will start
three position ahead. After that, also the seeds addresses are set. Then there
are several constant definitions, but some of them need an explanation since they
represent the core of the computation.

Constant potential Numeric value [10−5V] Hexadecimal value
VREST -7000 FFFFE4A8

VT HRES -5500 FFFFEA84
VDEP OL -8000 FFFFE0C0

VACT +1000 00001771

Table 1.2: Fundamental values of membrane potential

In Table 1.2 are reported respectively: the resting potential, which is the potential
to which the membrane decay tends if no spikes occurs, then the threshold
potential after which the neuron fires a spike. VACT is the depolarization potential,
while VACT is the activation level. Another important value that will be used is
the Processing Element Identifier (PEID).

3. Then, the .CODE part starts. In this section the main core of the algorithm is
performed: it is composed by few initial subroutines utilized to initialize some
parameters in the array, the initial noise and then the main loop is executed.
This latter, is in charge of computing the algorithm for each virtual layer: at the
beginning, the neural parameters are loaded, then the membrane decay calculation
is performed. This computation is reported in Eq.1.11.

V Í
memb = (Vmemb − VREST)τdec + VREST (1.11)

In this equation, τdec is the decay parameter, which is less but close to 1 and it
determines how fast the membrane potential reaches the resting value. Another

28

Introduction

important equation is the following:

V ÍÍ
memb = V Í

memb +
n−1Ø
k=0

sk · wk (1.12)

In Eq.1.12 the updating of the membrane potential is performed adding all the
contributions coming from the pre-synaptic neurons: the parameter sk can be
either 0 or 1, in case there has been a pre-synaptic spike or not respectively. It is
from this equation that the inner loop LOOPV comes from. Indeed, the algorithm
analyze all the synaptic connections in each iteration of the virtual loop.
At the end of the inner loop, if the spike is detected (through the subroutine
DETECT_SPIKE), the bit relative to the spike of that specific virtual layer is
stored into the Less Significant Bit (LSB) of the accumulator, in order to go then
in the output spike buffer that is shown in Figure 1.13. Finally, the values of the
current virtual layer are stored with the subroutine STORE_NEURON and the
next layer is computed.

4. When the main loop ends its execution, the final part begins, in which the spike
distribution it’s performed. After that, all the computation starts again.

The assembly codes of Appendix B contain a part related to the global spike
detection that is commented. Indeed, the true simulation with more than one boards
has not been yet implemented for the present architecture version: in this work, only
a MC node will be present and it will communicate with itself in a ring topology
communication. So, basically, all information will run from the output to the input of
the same chip in a loop mode, as it will be described better in next chapters. A first
simulation example of the LIF model is reported in Figure 1.19.

Figure 1.19: Leaky Integrate-and-Fire (LIF) model simulation

In the simulation the register R2 (where the membrane potential is stored) of a
specific neuron is reported: it is highlighted how the neuron fires a spike each time the
threshold is reached. After that the membrane potential is reset to VREST value (as
shown by the cursor in Figure 1.19) and furthermore each time it doesn’t receives an
input spike, the value of the potential slowly decreases toward the resting potential, as
described in Eq.1.11.

29

Introduction

1.7 Design flow
In this section the basic steps by means of which all the simulations have been performed
are briefly explained. In order to set up all the support necessary to run the neural
algorithm described in Section 1.6, it is important to build all the Memory Initialization
Files and to generate the machine code utilized by the CU. The first thing to do, it’s
choosing the algorithm ASM file to run, like the LIF one of previous section. Then, the
user needs to define the netlist of synaptic connections that will be used. In Appendix
C three possible configurations are reported. Also it is important to underline that
in particular files (neuron.csv) it is possible to set the initial values for membrane
potentials (in order to make a neuron to spike immediatly, to start the simulation), in
which also the correct addresses of the SNRAM need to be set (like in the ASM file of
Appendix B).

In Figure 1.20 the operating principle of the netlist file reported in Appendix C.1
is graphically explained, by means of a 4x4 PE-array configuration: there are three
important columns related to the numbers of row, column and virtual layer of a
presynaptic neuron and at the same row position on the right, it is possible to set the
three same parameters of the postsynaptic neuron. So, basically these lines are used to
establish the connections between different neurons. Other important parameters are
the specific synapses chosen for that particular link (labeled as ph) and the synaptic
weight, which can be either positive (excitatory) or negative (inhibitory). In the figure
is also described how much the membrane potential needs to be incremented in order
to reach the threshold. The behaviour of this configuration proposed is shown in the
simulation result reported in Figure 1.21.

In Appendix C.2 and C.3 other two examples that will be used are reported. In
the former, an oscillator has been implemented, which involves all PEs/neurons of the
4x4 array: each PE of a row causes the next one (of the same row) to fire and so on
until the last neuron of a row has been reached. At that point, the first PE of the next
row is lead to fire and the chain continues in this way, until it starts again from the
first row and column positions. The example in Appendix C.3 is similar, but this time
one neuron in a certain position and that belong to a specific virtual layer excites the
neuron in the same array position of the next virtual layer, in order to let it fire.

Therefore, by means of bash and Python scripts developed by the research group,
the .asm file is used to create the .mif file for the IMEM, while the neuron.csv and
netlist.lst files are converted in .mif ones for the local memories (to decode addresses
of synapses) and for the SNRAMs (synaptic and neural parameters) of each PE. The
.mif files contain the memory initial data for the simulation.

30

Introduction

Figure 1.20: Delay line example [19]

31

Introduction

Figure 1.21: Delay line simulation

32

Chapter 2

Monitoring implementation

In this chapter all hardware support for the monitoring system that has been imple-
mented is reported and explained. First of all, the changes brought to the Control
Unit will be described, then a section will be dedicated to the PE-array that is in
charge of loading all information required and of propagating them until they reach
the transmission modules. Then, specific sections will be devoted to the transmission
parts of both single and multi-board versions of the architecture. All changes made to
the sequencer are discussed in the AER section, since they are related to this latter.

Finally, the logic synthesis and implementation works and results will be covered
and analyzed.

2.1 Software and Algorithm
As it was described in Chapter 1, the ISA of HEENS architecture is reported in
Appendix A. Some of these instructions have been exploited and particularly an
instruction STOREB (coming from the previous SNAVA implementation [1]) had
already been created before this work started: this instruction basically tells each PE
to perform a special movement, from the accumulator(R0) to the output monitoring
buffer, which is illustrated in Figure 1.13.

Indeed, the aim of this thesis work is to collect and to transmit a specific information
required by the user and this data, related to a particular neuron, is usually stored in
the register bank while the neuron is being processed during a loop iteration. So, the
first useful action is to move this needed information from a specific register to the
accumulator and then from the accumulator to the monitoring output buffer. For this
reason, a macro called MONIT has been created: as it is shown in Appendix A, this
macro must be followed by a register number (that the user wants to monitor) and
then it will be decomposed by the assembler compiler in two instructions. The first is
a movement operation from the interested register to the accumulator and the second

33

Monitoring implementation

is the already mentioned above STOREB instruction. The research group created an
ad-hoc compiler written in Python and a little part of it was modified in this work, in
order to accomplish the goal of handling this new macro.

It is also possible to load a value from the internal SNRAM of each PE to the
accumulator and then to transfer it up to the monitoring buffer. The procedure in
this case it is quite different: first of all, there is a register in the PE that is used as a
pointer to the SNRAM (as it is shown in Figure 1.13), so, it is necessary to load in
this register the address of the value the user wants to monitor and for this purpose
the instruction LOADBP can be used, as reported in Appendix A. The addresses
values can be taken directly from the sequencer, in which some important constants
are stored in order to ease the extraction of recurrently used memory pointers.

Then, LOADSN can be exploited to load the pointed location of the SNRAM into
the accumulator. As it is described in the Appendix A, this instruction load two
values at the same time to R0 (accumulator) and to R1. Indeed, in the subroutine
LOAD_NEURON of the algorithm (Appendix B.1), LOADSN is used to load at the
same time neural parameters to R1 and to the accumulator.

In Appendix B.3, the algorithm used to test the monitoring instruction is reported.
As it is shown, a specific address is loaded in the SNRAM pointer, which is the one of
the Processing Element Identifier (PEID) data: this will be used for debugging purpose,
in order to verify that each PE sends the correct information and to check how it travels
through the path that will lead it to the transmission modules. Furthermore, this
information is moved from the accumulator to R3 (by means of a MOVR instruction),
in order to launch a proper monitoring instruction next, that will involve the register
R3 itself.

It is necessary to underline that, in this case, the monitoring is launched at the end
of each virtual neuron loop, in order to not corrupt values of important registers (like
R0) before the neural algorithm starts. Another way could be to place the monitoring
before the core of the algorithm starts.

2.2 PE-array

The strategy applied to propagate the monitoring information is very similar to the one
applied for the spike distribution. As it was mentioned in Section 1.4.1, the monitoring
operations (propagation through the array, transmission) need to be performed in
parallel with the normal execution, so after the STOREB instruction is executed, all
the information extracted from each PE will be propagated and then transmitted,
while the sequencer (and the rest of the array) will continue to perform its normal
operations.

34

Monitoring implementation

2.2.1 Hardware structure

In Figure 2.1, a 4x4 configuration is reported, in order to explain the basic principles
of the monitoring propagation through the array: this task is performed by means of
pipeline (like spike distribution), which means that only one row will be loaded to the
final transmitter module at the top of the array in each clock cycle. In the figure the
yellow rectangles represent in a simple way pipeline registers that load and propagate
monitoring data.

This choice derives from the fact that the array, at the current implementation,
can reach a 13x13 number of PEs and the architecture supports up to 16x16 cores,
so loading all monitoring information in one clock cycle would lead to problems for
the final hardware implementation, due to routing issues. Furthermore, the final
transmission part (AER modules) needs to send one 16-bit data at time and therefore,
while a specific row is being transmitted to the serial bus, the other rows can climb
the array and finally be loaded for the final transmission.

In order to accomplish this task, a specific FSM in the top module of the PE-array
has been created, in order to handle the propagation of monitoring data through
the pipeline registers of the array. In this stage, each row of data, composed by
[size_x] × [16 − bit] monitoring information, is loaded inside a monitoring FIFO (as it
is described in Section 2.4): it means that the FSM has to stop the propagation of the
other rows until all monitoring data of the top row are loaded inside the FIFO. This
strategy has the disadvantage of taking exactly NxN clock cycles before all data are
loaded inside the monitoring FIFO: if another STOREB is executed immediately after
a first one, the sequencer needs to stop the execution of the algorithm, since the new
instruction would overwrite the previous monitoring data before they reach the final
AER module. Furthermore, this strategy does not fully exploit the greater operative
frequency of the AER part, which is double the PE-array clock frequency.

Anyway, implemented in this way, the architecture is a good first attempt, since it
has an easy structure and does not require too much hardware and control logic. In
order to improve performances, an upgraded version will be discussed in Chapter 3.

The schematic of the monitoring controller in the top module of the PE-array is
reported in Figure 2.2.

Some signals of the figure will be explained in next sections. For now, the impor-
tant flag are the block_monit signal, which tells the PE-array controller to stop the
propagation of monitoring data, and the next_row flag (en_monit_x for each PE),
which is an output from the controller.

In Figure 2.3 the main parts that are involved in monitoring operations are illustrated
as example. In this case, two PEs that belong to the same column but to consecutive
rows are reported: each PE receives from the sequencer the Opcode field of the
instruction (together with other data that are not present in the figure), from which it
generates a flag that is used as enable signal for the monitoring buffer. In this phase

35

Monitoring implementation

Figure 2.1: Four by four PE-array configuration

the en_monit_tx is set to ’0’, as it will be soon described, so the input of the buffer is
taken from the accumulator. Then, when en_monit_tx goes to ’1’, input from the
lower PE is loaded and the enable is still high (due to the or logic gate), which means
that the propagation is being carried on. A Timing Diagram (TD), that shows all
significant phases of the monitoring controller is reported in Figure 2.4.

The signals involved in this diagram are all synchronous, which means that they

36

Monitoring implementation

Figure 2.2: Monitoring controller of the PE-array

come from a previous sequential element and maybe some logic, so they change with a
variable delay after the rising clock edge. In the diagram this delay is a little fixed
time interval for simplicity.

The signal Pe_count_monit is a counter, while monit_out represents the top row
of monitoring data, so the output of the PE-array that will be loaded inside the
monitoring FIFO of the AER module. There are some interesting occurrences that is
worth mentioning:

1. At the beginning, a reset signal is set and the FSM goes to its idle state, in order
to initialize some values, like for example the counter to the actual number of
rows of the array. Then the state machine remains in that state until en_monit
is set to ’1’. This latter signal comes directly from the sequencer as it will be
explained later and it is set in the execution stage of the STOREB instruction.

2. Then comes the start state: the signal next_row_monit_aux goes to ’1’ and,
since the block_monit is still not set by the AER module, the next_row_monit

37

Monitoring implementation

Figure 2.3: Structure dedicated to monitoring operations in the PE

can be set ’1’as well. This latter, is the final en_monit_tx that allows each PE
to load the input monitoring value from the lower PE. So, for example at the
beginning the top output row (monit_out, Figure 2.1) samples the first row of
the array (y − 1).

38

Monitoring implementation

Figure 2.4: Timing Diagram of the PE-array monitoring controller

3. After that, block_monit goes to ’1’ and the FSM proceeds to the yellow coloured
state wait, which is needed to stop the propagation of the other rows of monitoring
data, in order to allow loading of any data belonging to the current output line
into the AER FIFO. It is important to say that this state machine presents a
Mealy behaviour: the output next_row_monit is in AND with block_monit, since
if a new row is loaded at the output of the PE-array, the propagation of the other
rows need to be stopped immediately. Therefore, waiting for another state would
not respect the correct timing of the algorithm.
Anyway all signals are synchronous and no chains of Mealy FSM are present,
therefore no timing problems are generated by the synthesis and implementation
tools (Section 2.5).

4. After all data of a row have been loaded inside the monitoring FIFO, the AER
module sets block_monit to ’0’ and the propagation can continue.

5. In the blue coloured wait state, it is implicitly shown that all rows of data have
climbed the array and have been loaded inside the AER storage component.
Finally, when the last row needs to be loaded (Pe_count_monit = 0), the FSM
moves to the idle state again, in which the counter is reset and signals used to
propagate the array are set to ’0’. Anyway, the last row still needs to be loaded, so
the AER module sends a block signal, in order to prevent the rest of architecture
from starting another STOREB.
Finally, if another monitoring instruction is waiting, a specific combination of
different flags coming from the AER modules, will unlock the sequencer, which

39

Monitoring implementation

in turn will set en_monit to ’1’ again. These control actions are shown in next
sections. In Figure 2.5 is reported the state diagram of the monitoring FSM just
discussed.

Figure 2.5: Flowchart of the monitoring controller in the PE-array unit

2.2.2 VHDL and Simulation
In Figure 2.6 it is illustrated the structure hierarchy that is used to built the PE-array
architecture by means of the Very High Speed Integrated Circuits Hardware Description
Language (VHDL).

The source files of the architecture can be found in Appendix D.1, D.2 and D.3.
In these sections, not all the lines of the VHDL files are reported, for simplicity and
furthermore, it seemed more appropriate to show only the parts that are directly
involved in the propagation of the monitoring data.

It is necessary to point out that at the beginning of each source file, two specific

40

Monitoring implementation

Figure 2.6: VHDL structure of PE-array architecture

packages are loaded: SNN_pkg and log_pkg, in which there are present important
constants/ parameters declarations and definitions and useful functions utilized in all
the architecture. For example, in this architecture, the state of the main FSM machine
of the sequencer, are referenced by names defined in the SNN_pkg (like STOREB)
and, in this way, if the opcode field of an instruction changes, only the package file
needs to be modified.

In Figure 2.7 a simulation performed on a 5x5 array is reported, for which the
algorithm of Appendix B.2 with the monitoring instructions shown in B.3 has been
launched. As it is shown, the block_monit signal for five clock cycles, in order to let
the AER module load all monitoring data inside its FIFO and this is done five times,
since in this case there are five rows. Since in the algorithm of Appendix B.3 there
are two STOREB instruction separated by one clock cycle (the MOVA instruction of
MONIT macro), the next rising edge of en_monit need to wait NxN clock cycles plus
exactly four mores after the first one. The cause of this overhead is better explained in
the next section, where the sequencer structure is described.

From the simulation, it is also possible to notice how all PEIDs (the information
required by the assembly code) are loaded at the output of the array (monit_out).
The clock frequency of the HEENS architecture is set to 125 MHz.

2.3 Multi-Board version
In this section the multi-board version will be explored in order to introduce and explain
how the transmission of collected monitoring data through the AER-SRT modules

41

Monitoring implementation

Figure 2.7: Monitoring data propagation through a five by five PE-array

and serial communication bus is handled. A first picture of the VHDL structure is
provided in Figure 2.8.

In this graphic representation, it is reported the SNN_OneBoardTop, which is
the single-board version of the AER part that is described in Section 2.4. Then,
for what concerns the multi-board version, there is the top module, ZynqKintexTop,
which contains both the Master Chip (Zynq_top and the regular Neuromorphic Chip
(HEENS_top). As already mentioned in the previous chapter, in this work only the
MC will be eploited, since the regular node has not already been completed by the
research group.

The AER-SRT implementation has already been described in Section 1.5 and, from
now on, all the changes that have been made on this architecture in order to support
monitoring are described, included the sequencer since this part is strictly related
to the reception and transmission operations. A simplified structure of the VHDL
hierarchy is reported in Figure 2.9: here, it is underlined the clock frequency of the
AER part, which is 250 MHz, while the clock of the HEENS part is set to 125 MHz.

2.3.1 Z_AER_interface
This is the PL (programmable logic) part of the PS-PL interface of the whole architec-
ture. As already described in previous chapter, it communicates directly with the CU
and the PE-array, in order to synchronize all the operations performed and controlled
by the sequencer and transmission parts.

Basically, the interface receives as input all the monitoring data coming from a row
of PEs and then it writes these values inside the the monitoring FIFO. This latter is

42

Monitoring implementation

Figure 2.8: VHDL top structure of HEENS and AER architectures [19]

an Aurora IP created for this specific purpose and its characteristic are reported in
Table 2.1. As is it shown, there is the AER clock (250 MHz) used to read data from
the FIFO, an operation performed by the Z_AER_TX module, then the HEENS
clock (125 MHz) used to write data inside of it.

Dimension and parallelism
Write Width: 16 bits

Write Depth: 1024 words
Read Width: 16 bits
Clock and Reset

Independent clocks (Block RAM)
Asynchronous reset

Flags
Empty, Almost Empty

Full, Almost Full

Table 2.1: Multi-board Monitoring FIFO IP

43

Monitoring implementation

Figure 2.9: Simplified VHDL top structure of the Master Chip

In the interface, a specific controller has been designed to manage the writing into
this FIFO and it communicates directly with the FSM in the PE-array, described in
the previous section. The block diagram of this structure is reported in Figure 2.10.

The schematic reports only the main parts involved in monitoring operations. It is
illustrated the row of monitoring data that goes to a multiplexer inside the interface
module, then a specific controller sends a signal monit_count (which size depends on
the number of data to count and so on the number of PEs in a row), that is in charge
of selecting the proper input to load into the monitoring FIFO. There are some signals
and data related to the reading of monitoring data from the FIFO, that are handled
by the transmission module of AER (Z_AER_TX), but this part is discussed in next
section.

So, the controller of this module, needs to communicate with the FSM of the
PE-array, in order to generate the block and the MUX selection signals. Furthermore,
it has to set high the write enable flag of the monitoring FIFO, in order to load all
data at the input. For these tasks, two dedicated Finite-State Machines have been
created and their Timing Diagrams are reported in Figure 2.11.

The first upper TD regards the FSM that is in charge of controlling the blocking
signal, in order to load all the monitoring data into the FIFO. It also manages the
selection signal of the multiplexer in Figure 2.10, that picks the proper input at the
right time. The problem of this operation, could arise if the monitoring FIFO is full,
which would mean to wait before writing a new data or loading a new row to the

44

Monitoring implementation

Figure 2.10: Schematic of the Z_AER_interface module

output of the PE-array. This particular circumstance is applied in some special cases
in the diagram.

The second state machine set to one the write enable signal and it simply has to
stop if the full flag is high. In this case the wr_mon_en signal is in and with the
negation of the full flag for timing causes, which means, again, this is more a Mealy like
machine, but as was explained in the previous section, it should not create problems.

1. At the beginning a start_monit signal (Section 2.2) is set to ’1’ by the array,
which means that new data are coming for the monitoring FIFO, but also the
full flag is high, and it maybe comes from the fact that previous data of the
monitoring FIFO have not been read and transmitted yet by the TX module.
That keeps the FSM stuck in the full state until a location gets free and it does
not allow to write into the FIFO
The monit_block output signal is in or with the internal blocking one generated
by the FSM and it prevents the array from loading a new row of monitoring data.

45

Monitoring implementation

Figure 2.11: Timing Diagrams of the Z_AER_interface monitoring controller

2. At a certain clock cycle, the full flag goes down and the writing starts: a new
row is loaded and the counting signal, that is the selection signal for the MUX,
is incremented at each clock cycle. The counter keeps track of what element is
being written into the FIFO.

3. Other occurrences of the full flag are explored in two interesting cases reported in
the diagram, which are the end of a row loading and during the writing of a generic
element (in this case the second to last data). What can be noticed from the TD,
it’s that in every full state, the monit_block_i signal maintains the last assumed
value before entering this particular state: that’s choice comes from the necessity
of loading or not a new row exactly one clock cycle after the monitFifoFULL_i
signal goes down (last data to load and a generic one respectively).

4. When the last row has been loaded, the PE-array set to zero the start_monit flag
and both FSMs remain stuck (by means of the monit_block_i) before moving to
the idle state, since all the elements of the last row obviously need to be loaded
into the monitoring FIFO.

46

Monitoring implementation

The VHDL file related to this module is reported in Appendix D.4. As usual, not
all the hardware description of it is included for simplicity.

2.3.2 Z_AER_tx
The transmitter module of the AER architecture is the one in charge of assigning the
right time slot to each control and data packets, in order to send it to the Aurora TX
part, which in turn will serialize all information and will transmit them by means of
the serial communication bus. The mechanism and the main packets were described in
Section 1.5.2.

In order to transmit the monitoring information, other control and data packets
have been added to the Table 1.1 and these changes are reported in Table 2.2. Similarly
to the distribution phase, the monitoring packet includes a start information, to signal
a chip that the specific information is coming, then the data and finally the finish
control packet to signal the end of this phase.

Contol packet Function
START MON Monitoring phase
FINISH MON

Table 2.2: Monitoring packets of AER-SRT protocol

A picture that illustrates the timing of this packet, is reported in Figure 2.12, where
the yellow slots refer to the monitoring information of each PE, of which the relative
position in the array is specified.

Figure 2.12: Timing of the monitoring distribution

So, the first thing was to add specific packet identifiers in order to build the control
packets that will be recognized by the reception part. In Figure 2.13 it is possible to
analyze the composition of these packets: the length of transmitted data is 16 bits, so
the MSB field signals whether is a control packet (active low) or not, then four bits are
dedicated to identify the type of if. There is an unused field that will be exploited in
next chapter, while the last part is related to identify from which chip the information
comes from (there are 27 possible nodes to identify).

It is also important to mention, that the following monitoring data packet does not
include (as the other data does) the first DATA_head bit (active high): this is due to
the fact that all 16 bits of this information are needed, so the MSB cannot be wasted
for a control flag. Basically, the RX module of each chip is in charge of realizing that

47

Monitoring implementation

Figure 2.13: Structures of monitoring packets

all information received after the START_mon packet are monitoring data, by means
of a counter and a special flag. This will be discussed in the next section.

After that, new features have been added to this transmission block. In Figure 1.18,
the main structure of it is illustrated and its new characteristics are reported in the
block diagram of Figure 2.14.

The main Finite-State Machine activates each smaller FSM dedicated to the partic-
ular packet that is being transmitted. In the schematic, all components and signals
involved in the monitoring phases are reported. As it is shown, the data FSM interacts
with the AER interface, while the main state machine interacts with the sequencer,
in order to receive the signal that starts the monitoring phase and to transmit two
semaphore flags that will be explained in the dedicated section of the CU.

The outputs of the final MUX are: the data to transmit and a flag (tx_src_rdy)
that signals the Aurora TX module that the data is ready to be transmitted. The
Aurora TX side responds with another flag (ready_tx), in order to advice when the
bus is able to transmit a data.

The bypass FIFO is also exploited in these operations and to understand why, let’s
have a look on the specific monitoring section of the main FSM algorithm in Figure
2.15. The flowchart starts with the IDLE state, in which the transmitter module waits
until the execution phase of the HEENS is over in order to start the synchronization
phase (TX_SYNC_1). In this state the idle packet is sent to the bus, in order to keep
the ring active.

Since the monitoring operations and transmission need to be performed in parallel
with the normal execution phase of the main neural algorithm, in the IDLE state has
been created a branch dedicated to this task, that starts when the en_monit_in signal
is set to one by the sequencer. The main stages of this process are listed below.

1. The START_MON phase starts, in which the enable signal for the FSM of
the start packet is set to ’1’, the proper MUX selection is chosen and also the
monit_busy signal is set high. This latter is a semaphore for the sequencer, that
stops it in case another monitoring instruction is fetched from the IMEM and it
is going to be high until the finish packet is transmitted.

48

Monitoring implementation

Figure 2.14: Schematic of the Z_AER_tx module

For each state there are special flags that signal the end of that specific transmission,
like sm_done for the start stage. Each FSM generates these signals to let the
main state machine move on.

2. Then the monitoring data of the chip are transmitted. Again, the enable flag for
the relative FSM is set high and the multiplexer selection signal changes, in order
to pick the right inputs. In this case a specific combination of signals and the

49

Monitoring implementation

Figure 2.15: Flowchart of the monitoring phase of the main Finite-State Machine in
the Z_AER_tx module

50

Monitoring implementation

empty flag of the monitoring FIFO are necessary to finish the transmission.
The final FINISH_MON state has the same behaviour of the start state.

3. After that, all monitoring information coming from the other chips need to
be retransmitted to the rest of the network and. for this reason, data from
bypass FIFO need to be picked and sent to the serial communication bus: the
receiver module of AER writes these kind of data to the bypass and counts how
many packets have been received. When a fixed number is reached, it will set
AER_eo_Mon high and the TX main state machine will move to the last state.

4. In the final stage, even if the proper number of monitoring packet have been
received, maybe the chip has to retransmit them to the ring (if it’s a NC), so the
main state machine must wait until the bypass FIFO is empty. This concept will
be explored better in the RX module.
Finally, a last check is done, in order to verify if another monitoring instruction
has been launched by the sequencer.

The flowchart of the START_MON FSM is reported in Figure 2.16. It is important
to underline that in the TX module, the output tx_src_rdy signal is active low, and
so also the valid signals will have this characteristic.

Anyway, this FSM has a simple behaviour: if the sm_done flag is high, then the
valid signal is set low, but the final tx_src_rdy gets low only if the bus is ready to
transmit (ready_tx = ’1’). If the transmission is successful, the sm_done is set high
to signal that the start monitoring packet has been transmitted. The FINISH_MON
state machine works in the same way, so it will not be analyzed.

The FSM that handles the transmission of monitoring data is analyzed through
a TD, since it presents some occurrences that need to be studied. The diagram is
reported in Figure 2.17 and as usual some interesting eventualities are examined below.

1. In order to start the transmission the FSM must be enabled by the main TX
controller, the bus needs to be ready to transmit and the monitoring FIFO has
to contain data (en_monit = ’1’, ready_tx = ’1’ and the FIFO empty flag to ’0’
respectively). In this example, at the first tentative to start, the FIFO is empty
because maybe the rest of the architecture has not loaded data into it yet. Then,
when it is not empty anymore, the monitoring FIFO is read and transmission
starts.

2. Immediately after, an example of the possible behaviour in case an empty flag is
raised is depicted. The last data is transmitted correctly, but the FSM moves to
an EMPTY state and then back to IDLE, until the FIFO obtains some new data
to send.

51

Monitoring implementation

Figure 2.16: Flowchart of the START_MON Finite-State Machine in Z_AER_tx
module

3. Then, another eventuality is examined, that is when the ready_tx signal goes down
and so the bus is not ready anymore to transmit, in the middle of a monitoring
transmission operation: in this case, the EMPTY state is reached but then a
waiting state starts.

When the Aurora TX side gets ready again, the last data that was not transmitted
because of the bus, is now sent and then the transmission continues normally.
The only problem is that the valid flag of the monitoring is not zero anymore
(active low), since this component asserts this signal only for one clock cycle. So,
another signal wait_docc_mn is set low to signal that the source data is ready to
be transmitted.

4. Finally, when the last data of the last PE is sent, the state machine goes back

52

Monitoring implementation

Figure 2.17: Timing Diagram of the monitoring data packet FSM

to IDLE state. At this point both signals mn_oip and mn_oip1 are low, the
monitoring FIFO is empty, which means that the monitoring controller has finished
to transmit and the main state machine can move on.

The signals mn_oip and mn_oip1 need to not let the main TX controller move on
the next state (FINISH_MON), in case the monitoring FIFO gets temporally empty,
or maybe at the beginning if the data have not been loaded yet. Only if the monitoring
state machine goes back to the IDLE state and the FIFO remains empty for some
clock cycles, the main controller is allowed to go on.

A person could argue on the fact that for any reason, the AER interface module
could get blocked for a while in the middle of the monitoring transmission and so,
the main TX state machine would wrongly move on. That is an almost impossible
eventuality since once the loading of monitoring data (performed by the interface
module) starts, there should not be interrupts. Anyway, this improbable issue is fixed
in the upgraded version of the next chapter.

The bypass controller is very similar, so it won’t be examined. The monitoring state
machine can be found in the Appendix D.5, together with all the other controllers and
components that have been described so far regarding the Z_AER_tx module. Not

53

Monitoring implementation

all the controllers of it have been included for simplicity and also because they are not
relevant in this explanation.

2.3.3 Z_AER_rx
This is the last modified module of the AER architecture. Before analyzing it, a
couple of important issue need to be explained. The only main difference between a
Master Chip and a Neuromorphic Chip in the monitoring implementation, regards their
actions after this kind of information is received by the relative modules: the MC has
to store all these data inside a specific FIFO, called SinkFIFO, of which information
are summarized in Table 2.3. The MC needs to store as many monitoring packets as
there are chips in the ring, considering that it will also receive its own packet that it
sent previously.

Dimension and parallelism
Write Width: 16 bits

Write Depth: 1024 words
Read Width: 32 bits
Clock and Reset

Common clock (Block RAM)
Asynchronous reset

Flags
Empty, Almost Empty

Full, Almost Full

Table 2.3: Sink FIFO IP

As is it shown in the table, this specific FIFO is characterized by a 32-bit read width:
this component is read by the PS-interface (ARM processor) and this latter works with
a parallelism of 32 bits precisely, so this word width is required. Furthermore, in this
case a common clock for reading and writing has been chosen, since the PS module
is not ready yet and the clock frequency is not determined. Therefore, for now, both
operations are performed at the same operative frequency. Anyway, another SinkFifo
component with two different clocks was created for every eventuality.

The regular NC node has not this latter FIFO: indeed, what it it supposed to
do when monitoring data are received, is to load them into the bypass FIFO and to
retransmit them to the ring. It has to wait for a number of packets equal to its relative
position after the MC. So, for example, the second NC after the master one has to
receive and to transmit again two monitoring packets. These concepts are illustrated
in Figure 2.18.

In the figure, the red line refers to the links of serial bus, but in this case they

54

Monitoring implementation

Figure 2.18: Monitoring procedure in a multi-board network topology

are related to the monitoring transmission. Indeed, inside each chip only the path
that transfer this latter information is underlined in the schematic. For simplicity, the
monitoring FIFO and its relative links are not reported.

It is shown that each NC does not present a SinkFifo and it sends the received data
directly to the AER transmitter. It is underlined for each chip how many packets it
has to wait. The Master Chip (MC) stops for a number of packets equal to the ring
size (n+1) and stores directly them in the SinkFifo.

This presented so far, it is how normally the network should behave. Since in this
work the NC has not been used , only one MC has been adopted and, following the
procedure explained above, it should wait only for its own monitoring data and move
on. In order to verify the correct behaviour of the regular NC, in this project both
properties of the two kind of chips has been implemented in the MC. This feature is
shown in Figure 2.19.

The picture shows that MC writes i times the received monitoring packet in the
bypass FIFO, in order to emulate the behaviour of the last NC in a i + 1 network
topology. Then, it will write in parallel the data into the SinkFifo, which is the regular
behaviour of a MC in a network of the same size (i + 1). Each time the bypass FIFO
receives a packet, it transmit it again to the serial communication, by means of the
TX_MON2 and TX_MON2_WAIT states of the TX module in Figure 2.15. So,
basically the monitoring data travel in a loop for fixed number of times, that can be
determined by setting a parameter i (that is MON_SIZE) in the VHDL package.

In Figure 2.20, the block diagram of the receiver is reported, where, as usual, the
main blocks involved in monitoring operations are illustrated. As it is shown, the
data received by the Aurora core are forwarded to several FIFOs, among which there
are the Bypass and the Sink FIFOs. Two flags are received too from the Aurora RX
side: the first, rx_src_rdy, indicates when source data is valid and it is used by the
decoder.This latter is in charge of detecting all packets used in this protocol. The
channel up flag reports the status of the channel to the FSMs of the module, like the
ready_tx of the transmitter side.

55

Monitoring implementation

Figure 2.19: Monitoring procedure with a single MC in the ring

Figure 2.20: Schematic of the Z_AER_rx module

Basically this controller has to set in a proper way the write enable flags of SinkFifo
and of the BypassFIFO and it sets also the AER_eo_Mon flag to indicate that
the correct number of monitoring packets have been received. The flowchart of this
controller is reported in Figure 2.21.

Apart from the IDLE(reset) state, the others are needed to set the output signals
in a proper way, in order to write either in both FIFOs (sink and bypass), or only in
the Sink one or finally in none of them (when the finish monitoring packet is detected).

56

Monitoring implementation

Figure 2.21: Flowchart of the monitoring controller in the Z_AER_rx module

The flag MON_SIZE is used to distinguish between the first two possible situations
and it represents the number of virtual nodes of the ring (the equivalent of parameter
i in Figure 2.19). It can be set in the SNN_pkg VHDL file. The meaning of these
signals is explained in the schematic of Figure 2.22.

Basically, the f_wr_o write enable flag of the bypass FIFO is set to ’0’ if the
conditions in the TD are true, which are related to the fact that data must not to be
loaded anymore in this latter FIFO. These other input of the OR gate in the figure
are not reported for simplicity. The only thing to say is that the bypass FIFO is used
in other phases too, so the other conditions, set by the creator of the module, were
already present and those had not to conflict with monitoring ones.

The finish_mon_dt is used to signal when the right number of data have been

57

Monitoring implementation

Figure 2.22: Data path of the monitoring controller in the Z_AER_rx module

received (size_x · size_y data coming from all the PEs of a chip), which is neces-
sary since monitoring data exploits all bits available for the communication, so the
receiver cannot distinguish between a control or a data packet. Therefore, after the
START_MON is detected, the flags en_Mon is set to ’1’, which causes the receiver to
treat all following received packets as data, regardless of the value the MSB has.

Only when finish_mon_dt is high, the FINISH_MON packet can be detected and
the en_Mon and is set to zero again. The signal data_valid_c (active high) indicates
when the data received is a valid and it has to be high to increment the data counter of
to set the finish_mon_dt flag. All VHDL source files regarding these components and
controllers of the receiver related to monitoring operations are reported in Appendix
D.6.

2.3.4 Sequencer
This is the last module that will be discussed in this chapter. As already mentioned
in the introduction, HEENS is a Harvard architecture and so a specific Instruction
Memory is present in order to store all the instructions needed to perform the algorithm
and other important functions. The instruction is performed in four pipelined stages,

58

Monitoring implementation

which are FETCH, DECODE, EXECUTION and WRITE BACK.
In this first version of the monitoring implementation, the sequencer needs to stop the

execution of the algorithm in two particular situations because of the monitoring phase:
the first one is when a STOREB instruction is fetched and either the propagation
or distribution of a previous one have not been completed yet. The second time
the algorithm is stopped, is when the execution stage (that is performed in parallel
to the monitoring operations) ends and the spike distribution phase needs to start.
Indeed, since the serial communication bus exploited to distribute data is the same,
the architecture is not allowed to start distributing spikes if monitoring data are still
travelling around the ring.

In Figure 2.23 a simplified schematic of the CU and the synchronization signals
involved in the monitoring operations are presented. Signals from the AER modules
have been generated with a higher clock frequency respect to the HEENS_clk, so they
need to be synchronized. For this task, specific components formed by a cascade of
three flip flops are exploited, in order to prevent the signal from going in a metastable
state and the opposite situation, regarding the en_monit signal, is handled as well.
The schematic of these components is reported in Figure 2.24.

Figure 2.23: Control unit and monitoring signals

The idea behind this synchronization signals, is to emulate the semaphores concept
used in operating systems, but in an hardware fashion: basically, lock and unlock
actions will be performed by some components in the sequencer, in order to understand
if this latter is allowed to move on or stop the execution of the algorithm. This idea is
illustrated in Figure 2.25.

59

Monitoring implementation

Figure 2.24: Schematic of the clock synchronizer component

Figure 2.25: Monitoring states of the main FSM in the sequencer unit

Let’s analyze the case in which a STOREB instruction is fetched. Like a semaphore,
a flag wait_mon is checked and if it’s free (equal to zero), the instruction can be
decoded. In the S_STOREB state of the main controller in the sequencer, the output
en_monit is set high and delayed by one clock cycle, in order to make it coincide with
the execution phase of the pipeline stages. Then another flag start_mon is set to ’1’
and this latter activates a small FSM, that is in charge of "blocking" the semaphore,
by means of setting to one wait_mon. Then, if another STOREB is fetched from the
IMEM, it would find the blocking signal high and thus, the state machine would move

60

Monitoring implementation

in a waiting state.
The only way to leave this condition, is through the Z_AER_tx module, that, after

it has transmitted the monitoring data of its own chip, will set the busy_monit signal
to zero again (Section 2.3.2) and this will let the resume_mon flag go to one for one
clock cycle, like a pulse. This will free the semaphore, so wait_mon will go back to
zero and the blocked STOREB will proceed to the decode stage.

A similar procedure is performed by the second semaphore, that is in charge of
controlling if the algorithm is trying to move towards the spike distribution phase
before the whole transmission of monitoring data has been completed. There are only
two differences: the first, is related to the fact that the wait_bp flag is set automatically
to one (which means that this semaphore gets locked), after a STOREB instruction is
decoded.

The second regards the release of the semaphore when the wait_mon flag is checked
again, in order to verify if another monitoring instruction was previously launched.
Indeed, if all the information of the previous chips have been received (and transmitted
again in case of a NC), the AER TX module would lead to the release of the second
semaphore and the spike distribution would wrongly start, even if another STOREB was
launched. Instead, by checking again the first semaphore (wait_mon), the sequencer
would stop and wait until the newest monitoring distribution ends.

Figure 2.26: Timing Diagram of the semaphores FSM

The TD of the FSM inside the sequencer that manages the two semaphores, is
reported in Figure 2.26. When start_mon goes to ’1’, both semaphores get locked.
After that, If the resume_mon is set high, the first semaphore (regarding the blocking of
another STOREB) is released. Then, another same instruction is decoded (start_mon
goes to ’1’ again) and so both semaphores are locked again.

61

Monitoring implementation

At this point, even if all first monitoring data has been received and transmitted
by the Sink/Bypass FIFO (depending if it’s a NC or a MC), the resume_monBp is
ignored, since the FSM is stuck in the blocked state again. Then, if resume_mon and
resume_monBp are set to zero in this order, both semaphores can be released and the
FSM goes back to the idle state.

The VHDL source files of these blocks and components in the sequencer are not
reported for simplicity, since, apart from the latter simple controller, all other changes
that have been made to support this semaphores procedures (like the two waiting
states of the main state machine) are small and punctual, but several and scattered
throughout the architecture.

2.3.5 Simulation
In this section, all relevant modules and their actions described so far are verified
through simulation. For this task the QuestaSim Advanced Simulator is exploited.

In these simulations, the algorithm of Appendix B.2 with the monitoring instructions
of B.3 and so the netlist of Appendix C.3 are used. A five by five PE-array is utilized.
The behaviour of this configuration is reported in Figure 2.27.

Figure 2.27: Simulation of the LIF algorithm with a 5x5 oscillator configuration and
virtualization

As it is underlined by the phase_state signal, the configuration phase lasts more or
less 0.1ms, during which the AER TX module goes through the IDLE and DATACONF
transmission states. After that, executions stages and distribution phases are performed

62

Monitoring implementation

by the architecture. The spike display shows the only PE involved in this simulation
and the first index on the left, refers to the virtual level. So, as it was explained in
Section 1.7, a neuron excites the one of the same PE but that belongs to the following
virtual level, which creates this oscillation behavior showed in the snapshot. Basically,
the eight neurons associated with the PE at row 0 and column 0 are connected forming
a ring oscillator.

• Monitoring packets
In Figure 2.13, the structure of the monitoring control packets is shown and,
starting from those, it is possible to predict the precise values they are going to
have for this simulation. The START_MONITORING is going to assume the
hexadecimal value of ”5B01” (b”0101101100000001”), which corresponds to: one
MSB for the control head ”0”, four bits related to the monitoring start packet
identifier ”1011”, then four unused bits set to ”0110” and finally the identifier of
the chip ”0000001” (it is the only chip present in this version).
Then all the information coming from the PEs are transmitted, which represent
the real monitoring data. In the algorithm reported in Appendix B.3, as it was
explained in Section 2.1, it is clear that the PEID of each PE is loaded into the
accumulator, then moved in the R3 register, and then two monitoring instruction
are performed. So, basically all the PEIDs will be transmitted as monitored
information, in order to check the correct behaviour of the system. Following the
order of the information transmitted that is illustrated in Figure 2.12, monitoring
data will be: h”0040”, that is the identifier of the PE at the first row (n°4) and
first column (n°0), then h”0041” that belongs the the first row and second column
and so on. The final transmitted data will be h”0000”, h”0001”,..., h”0004”, which
represent all the information coming from the first row (n°0).
After the monitoring data packet, the FINISH_MON control information is
transmitted. It differs from the start one only for the four bits related to the
packet identifier, that in this case are: b”1100”. So, it is represented by the
hexadecimal value of ”6301” (b”0110001100000001”).

• Z_AER_interface
Let’s visualize the behaviour of the interface module, in order to verify the
algorithms designed.
In Figure 2.28, a debug signal MonitFullFifo_deb has been inserted to check if the
full condition of the FIFO at the beginning of these stages is correctly handled,
since the monitoring FIFO does not get full in these simulations. It can be noticed
that the blocking signal is correctly set high each time a new row of monitoring
data is loaded from the PE-array and monitoring data are all loaded into the
FIFO.

63

Monitoring implementation

Figure 2.28: Simulation of the Z_AER_interface

• Z_AER_tx
In Figure 2.29 relevant monitoring phases of the transmitter module are captured.
The important thing to notice is the transmission of the t_d_mn data, in the
upper part and the states of the three different FSMs involved in the TX unit
(related to the start, data and finish monitoring packets). After the en_monit_in
signal is set to one by the sequencer (it is high for two clock cycles since the AER
clock period is the half of to the HEENS one), the start monitoring packet is sent
with the expected hexadecimal value of ”5B01”.
Then, all the PEIDs are sent (starting from "0040" to "0004"), by means of
the monitoring data packet controller and finally the finish mon packet is sent
("h6301"). It is important to underline that the output signal tx_src_rdy_n_o
is in charge of telling the Aurora TX module, when the data is ready to be
transmitted. As it is shown in the simulation, this latter is set to zero (it is active
low) each time the correct data is transmitted by the AER tx module.
In Figure 2.30, the final phases of the transmission are reported: for this simulation,
theMON_SIZE parameter, that indicates basically how many time the monitoring
data have to travel in a loop in the AER bus, is set to ’2’. Therefore, the transmitter
module sends the data of the chip, which are then received and written into
both Sink and Bypass FIFOs. In this way the Bypass phase of the monitoring
transmission is performed once. Finally, when these information are received for
the second time, the receiver writes them into the Sink FIFO and the transmission
phase ends, by means of the AER_eo_Mon that is set to one (for one clock cycle).
So, what is reported in the figure, represents this very last bypass stage

64

Monitoring implementation

Figure 2.29: Simulation of the Z_AER_tx

(TX_MON2), in which all data are transmitted again to the ring.

• Z_AER_rx
For the receiving module, a snapshot of the simulation is reported in Figure 2.31.
Here, the several packet detection flags, show all the phases of communication:
after the first start_mon_packet, all data are written in both FIFOs (f_wr_o
= ’1’ and f2_wr_o = ’1’ as well). Then, after the first finish_mon_packet is
received, only the Sink FIFO is activated. Finally, after the second finish packet,
AER_eo_Mon is set to one, as expected.
It is possible to notice that only when the right number of received data is
reached, the finish_mon_dt flag is set to ’1’, in order to prevent the receiver from
mistaking a regular monitoring data for the finish control packet. Only after the
proper number of data is received, the module is allowed to detect a finish packet
(finish_detect_c can be set to ’1’).
It is also important to underline, that first set of data received in the figure, are
not perfectly consecutive: this is due to the fact that in this first implementation,
the AER TX module has to wait for the PE-array and the interface units to write
data into the monitoring FIFO and they work with the HEENS clock, which has
a lower frequency. So, the first transmission and also reception will have some

65

Monitoring implementation

Figure 2.30: Simulation of the Z_AER_tx (bypass phase)

Figure 2.31: Simulation of the Z_AER_rx

clock cycles of not valid data. From this first packet received on, these gaps are
recovered and indeed the f2_wr_o flag, in the second time, is continuously high.

66

Monitoring implementation

• Sequencer
Finally the sequencer results are reported in Figure 2.32. The figure illustrates
the last two monitoring instructions before ending in the spike distribution phase.
It can be noticed how the sequencer enters in the first waiting state because of
the second STOREB instruction and then in the second S_WAIT_MON2, before
starting the S_SPKDIS state, in order to let all monitoring data finish to travel
around the ring.

Figure 2.32: Simulation of the sequencer

2.4 Single-Board version
This section regards the single-board implementation. As it could be imagined it is a
much simpler version of the HEENS architecture, since it does not include all the AER
modules discussed so far. It’s purpose, is to verify through the FPGA implementation
the functionalities of the neural algorithm without exploiting the AER-SRT protocol.

Indeed, it is composed by an AER single board version unit, which will communicate
directly with the ARM processor interface, in order to finally transmit or receive
configuration, initialization and monitoring information.

2.4.1 Architecture and main differences
In this version, a simplified architecture is needed to handle both spike and monitoring
phases, whose schematic is illustrated in Figure 2.33. As usual only monitoring signals
are reported for simplicity.

The Z_AER_controller handles all flags and data related to monitoring operations
in the multi-board version, while now they are managed by this simpler AER_SB unit.
All the HEENS side components (sequence, PE-array and so on), remain the same
and so the new communication module has to provide the same flags with the correct
timing. The other only task, is to receive as usual every row of input monitoring data
and to load each 16-bit data of them into the Sink FIFO, that will be the only one

67

Monitoring implementation

Figure 2.33: Single-board version

present in this version to accumulate information for the PS interface (it is the only
monitoring FIFO utilized).

Basically, inside the AER_SB unit, there is the same controller present in the
Z_AER_interface of Section 2.3.1, but this time, until the controller finishes writing
all the rows inside the FIFO, the module will set monit_busy high, in order to provide
the first semaphore signal for the sequencer. The other locking/unlocking signal is
simply generated by the empty flag of the Sink FIFO, in order to signal when all
monitoring data have been sent to the PS interface.

2.4.2 PS interface reading operation
The only last issue to discuss in this section, is the few hardware components that
have been created to handle the reading operation performed by the ARM processor,
so by the external world. In Figure 2.34 the TD of this operation is reported.

In the diagram, MonFifoRdPS is the enable signal from the PS interface, while
resume_MonRd and cntrl_mn_rd are control flags. Basically, it is important to check
if the FIFO is empty before the read flag signal in a generic situation goes to zero. By
doing this, the final output valid flag will be set or not to ’1’ when the read signal
returns to one (which means that PS wants to read again), in order to avoid a wrongly
reading of the same data for two consecutive times. The schematic of this hardware is
reported in Figure 2.35

The VHDL source file relative to the AER one board module, with only the

68

Monitoring implementation

Figure 2.34: Timing Diagram of the PS reading operation

Figure 2.35: Hardware components for PS reading operations

monitoring controller (for simplicity), can be found in Appendix D.7. The simulation
that confirms the correct output monitoring data from the Sink FIFO is reported in
Figure 2.36

In this simulation, a fake read enable signal has been created and a process that
regularly set this signal to one and zero for a fixed number of cycles too, in order to
verify if the reading process works fine. The first cursor on the left indicates when the
FIFO was empty when the read enable flag went to zero, and so later the output valid
signal is not set to ’1’, while the second cursor provides the opposite example. It is
shown how data are correctly sent and validated by the AER_OneBoard unit. Same

69

Monitoring implementation

Figure 2.36: Simulation of the reading operations performed by the PS interface

hardware and protocol have been introduced in the Master Chip of the previously
mentioned multi-board version, since it is in charge of communicating with the PS
interface.

Of course, an empty flag should be brought out, in order to signal the external
reading controller that there are data available in the Sink FIFO, but this will be done
when the PS module will be available.

2.5 Logic Synthesis and Hardware Implementation
After the simulations, the next step of the design is the synthesis and implementation
on the already mentioned Xilinx Zynq-7000 SoC ZC706 board, shown in Figure 2.37.

It is a System on Chip device, used to exploit both the software programmability
of an ARM-based processor and the hardware programmability of the SoC FPGA,
integrated in the same architecture. Indeed, the Zynq-7000 Soc family, provides
the user with both these kind of devices in the same board, in order to have better
configurability and monitoring qualities, together with low power, better integration
and higher bandwidth characteristics. and furthermore, the size of this kind of board
is not too heavy. The tool used for these purposes, is the Vivado software tool.

2.5.1 Single-Board
The single board version has been tested first, on a 5x5 array configuration. The
first step is the logic synthesis, in which all VHDL source files and their hierarchical
connections are compiled by Vivado and the timing constraints applied are verified. In
Figure 2.38 the clock signals utilized in this project are showed.

70

Monitoring implementation

Figure 2.37: Xilinx Zynq-7000 SoC ZC706.

Figure 2.38: Clock Summary of the single board synthesis and implementation

A period of 5 ns has been applied to the clock input clk_in_p, then it’s directly
linked to a Mixed-Mode Clock Manager to obtain a local generated clock at the desired
frequency of 125 MHz for the HEENS architecture. This is the only clock source
exploited, since in this version, there is no needing of a dedicated AER clock source.
An input jitter uncertainty of 0.05 ns has been set on this latter source and finally a
reset input has been created with a delay of 0.1 ns respect to the clock.

After synthesis, the timing report summary was generated and it is reported in
Figure 2.39. It is shown the setup slack obtained from the difference between the
data required time, which is the time that the clock takes to travel all the path to
destination sequential element and the data arrival time, which is the time required
for the data to reach the destination, starting from the instant in which the rising edge
of the source clock occurred. The slack is positive, which means that the design is able
to work at the desired frequency.

71

Monitoring implementation

Figure 2.39: Timing report summary of the single board synthesis

On the contrary, the total hold slack is negative, showing that the hold time is not
respected: this issue is fixed with a specific option offered by the implementation tool,
since the hold requirements can be resolved adding specific logic buffers or gates, in
order to delay a possible change of a signal on the data path that links two sequential
elements. Nevertheless, this fix has not to deteriorate the setup slack, which mast be
kept under control.

Figure 2.40: Timing report summary of the single board implementation

Then, the implementation has been performed and for this task, the tool had to place
all gates on the FPGA, create all connections (Place and Route) and it has to apply
some optimizations, in order to reduce some path delays or the power consumption of
the hardware.

From Figure 2.40 the timing report shows that all hold issues have been fixed by
the implementation process, while in Figure 2.41, a report regarding the resources
utilization is illustrated.

The BRAM memories are the most area consuming blocks and it is possible to
notice form the figure below, that the AER_OneBoard unit, in which most of the
hardware added for monitoring operations have been introduced, is a very low critical
module from an area occupancy point of view, while the PE-array is the greatest
consumer of resources.

In Figure 2.42 the power consumption is reported. The dynamic power is mostly
dominated by the BRAM memories and the clock manager, since of course it has to
propagate the main clock source to all the architecture. This measures are only a
rough estimate, since the power consumption is strongly dependent on the activities of

72

Monitoring implementation

Figure 2.41: Resources utilization of the 5x5 single board implementation.

the resources.

Figure 2.42: Power report summary of the single board implementation.

Finally, in Figure 2.43 the resulted floorplanning is showed, from which it is possible

73

Monitoring implementation

to notice that the area exploited by the design is not critical and that a bigger array
configuration can be implemented, as it will be done in the next chapter.

Figure 2.43: Floorplanning of the of the single board, 5x5 array implementation.

2.5.2 Multi-Board
Regarding the multi-board version, the implementation is more complicated: in addition
to the HEENS specific hardware, it is also composed by the structure of the Aurora
core and all the AER modules, to allow the serial communication between different
chips. Furthermore, in the single-board version, the mif files were loaded inside the
synthesized memories of the project, while in this case (that will be the final version of
the whole design), the configuration files are directly loaded, as already mentioned, by
the PS interface (ARM processor).

Unfortunately, this latter module is under development by the research group, so
accurate results from an implementation point of view cannot be obtained at the
current state, especially those regarding the verification of timing constraints: indeed,
many control input signals are coming from the PS interface and so many path delay are
determined by that. Therefore, the synthesis and implementation operations for this
kind of architecture have been principally carried out to analyze the area occupation
overhead introduced by the monitoring hardware and to check if at least the new data
paths respect the setup time of the project.

In Figure 2.44 the clocks generated by the tool after the synthesis are reported.

74

Monitoring implementation

Figure 2.44: Clock Summary of the multi-board synthesis and implementation

It is shown that in this case, two kind of input clock are necessary: the first of 200
MHz is dedicated to the Aurora core, while the second is is going to a clock wizard
that generates two clocks of 125 MHz and 50 MHz, for the HEENS and for other
specialized module of the Aurora part respectively. The AER clock characterized by
a frequency of 250 MHz is directly generated by the Aurora module, which has a
specialized block to perform this task.

Figure 2.45: Timing report summary of the multi-board synthesis

The timing report of Figure 2.39 shows again hold issues that can be fixed by the
implementation process, while the worst setup slack (the critical path) has a very low
value of 0.046 ns. This latter, is due to those signals that come from the Z_AER_tx
module and so, they are generated with the timing set by the AER clock. Then,
as explained in previous sections, those signals are synchronized by means of the
component of Figure 2.24, which means a clock domain change. An example of this
kind of path is showed in Figure 2.46.

In Figure 2.47 the general resource utilization is reported.
Again, the BRAM memories are greatly used and respect with the single-board

version, there is an increment of the utilization of LUT and global buffers (BUFG). The
latter, are used in clock modules and generator in order to reduce the skew between
registers that are physically located large distances apart.

In Figure 2.48, some details of the resources employed in the project are shown: it
is possible to notice that all the hardware related to the AER modules is much less
then the resources allocated for the array (HEENS) unit. So, it does not represent a
critical issue from an area point of view.

75

Monitoring implementation

Figure 2.46: One of the critical paths of the multi-board synthesized version

Figure 2.47: Resources utilization summary of the multi-board architecture

The power report of the multi-board implementation is reported in Figure 2.49, in
which it is shown that the total power consumed by the architecture (static +dynamic)
is more or less the same respect to the previous single board version. That means all
the Z_AER modules don’t consume an excessive amount of power and the Aurora
core is probably well optimized for this device. Again, the clock network, composed
also by the MMCM, is the biggest responsible for this dynamic power consumption.

Finally the floorplanning of the multi-board implementation is showed in Figure
2.50, from which it is possible to notice again a poor exploitation of the whole available
area.

76

Monitoring implementation

Figure 2.48: Resources utilization details of the multi-board architecture

Figure 2.49: Power report summary of the multi-board implementation

77

Monitoring implementation

Figure 2.50: Floorplanning of the of the multi board, 5x5 array implementation.

78

Chapter 3

Performance upgrading

In this chapter, a better solution for monitoring is proposed. The intended task is
to better exploit the parallelism of the PE-array and the higher clock frequency of
the AER structure, in order to speed-up the propagation and also the transmission of
those data.

The main differences are here reported and commented, but the same detailed
level of the first chapter is not adopted for simplicity, while performances results and
comparison between the first solution are more focused in the chapter.

3.1 Architecture improvements
The significant bottleneck of the previous version, derives from the fact that if a
STOREB instruction is fetched and the monitoring data of a previous stage are still
been propagating through the array or for example, the AER transmitter modules
have not finished yet to transmit those data to the ring, the new instruction is not
decoded and the sequencer stops the execution of the algorithm, as already explained.
This is not an optimal solution, since the monitoring FIFO is loaded only with data of
a single STOREB instruction and its size is not exploited.

In the previous version the size of the FIFO could be adapted to store only a fixed
number of data for each monitoring request (13x13 data of 16 bits maximum allowed
at the current state), which would lead to a safe in terms of hardware resources, but
as it was explained in the final sections of Chapter 2, FIFOs don’t represent a critical
issue from an area occupancy point of view.

So, the idea is to block the sequencer only if the PE-array has not finished yet to
propagate monitoring data up to the final FIFOs. In this way, even if the transmitter
is still sending the information of its own chip through the serial communication bus,
another instruction is allowed to starting loading data and the sequencer would not
stop.

79

Performance upgrading

The other bottleneck is due to the additional waiting that derives from the loading
of single 16-bit data into the monitoring FIFO, which does not exploit the parallel
nature of the PE-array. The ideal would be to employ one clock cycle at most for each
row of monitoring data and load in parallel a number of inputs equal to the number of
PEs in a row of the array (sixe_x). These concepts are illustrated in Figure 3.1, where
the solution to improve performances is graphically described.

Figure 3.1: Upgraded monitoring architecture

From the schematic, it is clearly shown that no matter how many PEs are present
in the array, because each column is getting its own monitoring FIFO, which size this
time has been reduced to 256 words each, in order not to add too much area overhead.
Anyway, with this configuration applied to the actual maximum PE-array size (13x13
PEs), considering to use also all the eight levels of virtualization, it is possible to store
in these FIFOs exactly all data that come from two consecutive monitoring instructions
plus three virtual level information of a new one, before filling the FIFOs.

In this architecture, the interface is in charge of writing all data of a row inside
all FIFOs in one clock cycle, while the transmission part has to apply a multiplex

80

Performance upgrading

operation to their outputs, in order to send the final 16-bit monitoring data to the
final TX multiplexer. All changes will be briefly discussed in the next sections, the
only module unchanged is the Z_AER_rx, which is not reported again for simplicity.

3.1.1 Z_AER_interface & PE-array
The functionalities of the PE-array monitoring controller are similar to the previous
version, except for the fact that now it provides the sequencer with the monit_busy flag,
that is in charge of stopping the execution of the algorithm, in case another STOREB
instruction is fetched while the previous monitoring data are still being loaded into
the FIFOs. The Z_AER_interface module now has to write all data inside the FIFOs
and stop the propagation in case even just one of them gets full.

Furthermore, in this version, the four unused bits of the START_MON packet
(Section 2.3.2) are now exploited to send information about which register is being
monitored, to ease the classification work on these data performed by the final general
purpose unit. So, the reg_mon signal (3 bits) is sent to the interface by the sequencer,
to keep track of this information. The combined TDs of these two modules are reported
in Figure 3.2 and the remarkable changes respect to the basic version are described
below.

1. The interface controller now has a state in which the register number information
is written into a monitoring FIFO. Basically, in this stage the first data of the
first FIFO on the left (arbitrary choice) is loaded with the reg_mon data, while
in the others all zeros are loaded, since the rest of the row data are not useful.
The din_monitfifo signal, represents the row and it’s marked in the TD with the
information that it’s carrying (like monit_out for the other FSM).

2. This time, after a full condition ends, data are not immediately written into
the FIFOs, as well as the other rows are not propagated in the following clock
cycle: this, creates a behaviour closer to a Moore FSM, even if the two signals,
next_row_monit and wr_monitfifo, that propagates and writes respectively the
monitoring row of data, still needs to changes immediately if a full condition
happens, in order to respect the right timing.

3. In the PE-array controller, the counter this time is aligned with the effective row
outputted by the array. Furthermore, in this version, this controller is in charge
of setting the busy_monitPE flag (in the previous version it was busy_monit),in
order to stop the sequencer. It is set to zero when the array output the third
last row. This has been done, to release the main CU at the right time in order
not to waste clock cycles: indeed, after the sequencer is released, the STOREB
instruction will be decoded, then executed (en_monit is set to one in the diagram)
and after that, new monitoring data will be available at the output of each PE.

81

Performance upgrading

Figure 3.2: Timing Diagrams of the PE-array (down) and Z_AER_interface (up)
monitoring controllers

Meanwhile, the last rows of the previous instruction are loaded and the new
register number too, as it is shown in the upper diagram of Figure 3.2.

These are the main differences between the two modules, in which all necessary
components have been designed to follow the behaviour of the TDs. The only upgraded
parts of the VHDL source files are reported in Appendix D.8 and D.9, where are
reported only the upgraded blocks or components with respect to previous versions.

3.1.2 Z_AER_tx
In this upgraded version, this unit is in charge of multiplexing the outputs of the
monitoring FIFOs coming from the Z_AER_interface and also to set the proper
read signals, to get the correct inputs at the right time. To accomplish this goal, a
single FSM that is similar to the basic version has been created to manage the read
enables. By means of using a couple of counters, the right inputs (monitoring data,
valid and empty flags) are selected and sent to the Aurora TX module as tx_d_mn
and tx_src_rdy_mn (Section 2.3.2).

82

Performance upgrading

Figure 3.3: Flowchart of the Z_AER_tx monitoring controller (second version).

83

Performance upgrading

Before that, initially the register number under monitoring is picked and sent by
means of the START_MON packet, as it was previously mentioned. The new FSM of
this latter controller is not discussed for simplicity, but it is straightforward enough to
be understood from the VHDL source file in the Appendix.

In Figure 3.3, the flowchart of the algorithm adopted to read and transmit monitoring
data is showed. Basically, employing the already mentioned counters, read enable flags
are handled one by one: when a data of a FIFO is being transmitted, the read enable
flag of the next one is set, in order to have the data ready in the next transmission
cycle. For these tasks, the counter enable is managed in a Mealy way but, since all
signal are synchronized, this does not create problems and it is necessary in order to
not switch the output to chose (incrementing the counter) in case the bus is not ready
(ready_tx = ’0’) or all data belonging to the actual packet have been transmitted
(end_mon_pkt = ’1’).

This time a more reliable method is used to signal the end of the monitoring
data transmission of a chip, through the end_mon_pkt: this flag, along with the
counters, is able to mark when the correct number of data have been transmitted
(size_x × size_y), so basically emulates what the empty flag does in the basic version.

Figure 3.4: Changed monitoring states of the Z_AER_tx main FSM

Thanks to that, even if the monitoring FIFO is not empty because a new STOREB
instruction may have loaded its relative data inside of it, the TX module moves to the
next state in which the data of the rest of the network are transmitted or accumulated
into the SinkFIFO (NC or MC respectively). This new behaviour is showed in the
extract of the main state machine in the Z_AER_tx unit of Figure 3.4 and it is

84

Performance upgrading

necessary to transmit to the ring only data from a specific STOREB instruction in the
right order and so to avoid a mixing of information that would complicate the work of
the final general purpose unit.

The flowchart of Figure 3.3 presents an additional waiting state (mn_WAIT2),
that is needed when, after a certain period in which the serializer Aurora TX module
was not ready to accept new data, the transmission starts again and the previous
monitoring data have to be transmitted: the consequence is similar to the previous
version, except to the fact that in this case, there are two data to transmit of which
the valid signal is not high anymore, which leads to the necessity of the other waiting
state (Section 2.3.2, Figure 2.17). The data path of this new controller is reported in
Figure 3.5.

Figure 3.5: Datapath of the Z_AER_tx monitoring controller (second version)

85

Performance upgrading

It is shown how the read enables are set, in which it must be underlined that the
signal MonFifoRd_sm (generated by the start monitoring FSM) sets all flags to one,
in order to read the register number information and to discard all other zeros loaded
in the rest of the first row (Section 3.1.1). As in the previous modules, the VHDL
source file containing only the upgraded parts of the transmitter in Appendix D.10.

3.1.3 Sequencer
Very few modifications have been made to the sequencer in this upgraded version. The
"semaphores" strategy is still adopted, but this time, as already mentioned, these latter
are unlocked in a different way. The new portion of the algorithm of the main FSM in
the sequencer is reported in Figure 3.6.

Figure 3.6: Monitoring states of the upgraded main FSM in the sequencer unit

This time, the PE-array is in charge of setting to zero the busy_monitPE sig-
nal, to unlock the first semaphore (resume_monPE). Furthermore, by checking the
start_monit flag, (that goes to one in the decode stage of a STOREB instruction), it
is possible to have two STOREB in a row. This latter functionality has been added to
the FSM of the previous version (Figure 2.25) as well.

In this version, as already explained, the Z_AER_tx module is in charge of unlocking
the second semaphore and it is worth to mention that it keeps locked the sequencer for
all the monitoring transmission and reception phases. So, the main CU will be allowed
to enter in the spike distribution stage only when all data from a specific monitoring
operation will be transmitted, received, when they come from other chips, and finally
sent to the other nodes (NC) or loaded into the SinkFIFO (MC).

86

Performance upgrading

3.1.4 Simulation
In this section interesting extracts from the simulation are being provided, in order
to verify the different behaviour of the upgraded version with respect to the previous
one (Section 2.3.5). Again the algorithm proposed in Appendix B.3 is used and in this
version the second monitoring instruction is useful to verify if the register number is
well propagated, by means of the START_MON packet.

• Z_AER_interface & PE-array
The simulations of the two combined controllers belonging to the AER interface
and PE-array units, are illustrated in Figure 3.7.

Figure 3.7: Simulation of the monitoring controllers in the Z_AER_interface and
PE-array modules (second version)

The same signals of the TD in Figure 3.2 are reported in the snapshot and even if
some interesting occurrences studied in that diagram are not showed (since the
MonitFifoFull flag never goes to one), the main behaviour is respected in this
picture: it is possible to notice that, this time, in each clock cycle an entire row is
loaded by the interface, which was the original goal of this version.
It is also possible to notice the reg_Mon signal that carries the information

87

Performance upgrading

relative to the register under monitoring, that is equal to 3 the second time
the en_monit flag goes to ’1’: indeed, in the assembler code of Appendix B.3 a
MONIT R3 instruction is performed. This latter information is written during the
mon_WRITE_reg state in the first monitoring FIFO, while the other locations
of the same row are loaded with all zeros as expected.

• Z_AER_tx
For this module, two simulation scenes are studied. The first one is reported in
Figure 3.8.

Figure 3.8: First simulation of the monitoring controller in the Z_AER_tx module
(second version)

The simulation offers a snapshot of the main stages regarding the transmission of
the monitoring data that belong to the chip. At the beginning, the START_MON
packet is sent and the figure shows that it corresponds to the hexadecimal value

88

Performance upgrading

”5981” (”0b0101100110000001”), while the start monitoring packet showed in
Figure 2.29 was ”0x5B01” (”0b0101101100000001”): this is due to the four unused
bits that, in the previous version, were set to ”0b0110” and now they represent
the current monitored register number, which is the fourth (0b0011).
Then the TX_MON1 phase starts and the screenshot shows how read enables are
correctly set in the proper order. Indeed, all data from each row of every FIFO
are sequentially read, a part from the first row that is read in one clock cycle,
since it contains the register number and all zeros. Again, the data transmitted
in these simulations are the PEIDs, that identifies the array position of the PE in
the array (row,column). After this stage, the FINISH_MON packet (unchanged)
is sent and finally, the bypass phase starts.

Figure 3.9: Second simulation of the monitoring controller in the Z_AER_tx module
(second version)

In Figure 3.9 an interesting eventuality has been captured: the ready_tx flag,
that indicates when the serial transmitter is ready to accept new data, goes to
zero exactly when the last data of a packet has to be transmitted (end_mon_pkt
is set to ’1’). This event is correctly handled by the controller that, after the
transmission is allowed again, manages to send the last data (in the mn_WAIT1
state) and then to move in the IDLE state.

• Sequencer
The functionalities of the sequencer, as already discussed, has undergone few
changes. In Figure 3.10 is depicted an extract of the moment in which the CU is

89

Performance upgrading

stopped because of two near STOREB instructions. As shown, the next monitoring
operation is allowed after five clock cycles, that are due to the propagation of
the five rows and an additional cycle in which data are issued by PEs at the
beginning.

Figure 3.10: First simulation of the waiting phases of the CU (second version)

Instead, the second simulation in Figure 3.11 shows the waiting state of the
sequencer, right before the spike distribution phase. It is interesting to notice
from the screenshot that the AER transmitter, after it finishes to send monitoring
data from the ring, goes back to the TX_MON1 state, since it has pending data
from the last STOREB instruction to transmit. Indeed, before unlocking the CU
and moving to the IDLE state, the TX module checks if the monitoring FIFO is
empty or not.

Figure 3.11: Second simulation of the waiting phases of the CU (second version)

3.1.5 Single Board
The architecture developed to the single-board version has been upgraded as well. The
challenging part of this variant, was collecting two monitoring data at the time, to
transmit them to the PS interface module. Indeed, as already discussed in Section

90

Performance upgrading

2.4.2, the data path of the ARM processor works with 32 bits and consequently, all
the 16-bit outputs coming from monitoring FIFOs had to be ordered and arranged
in a different format. Thus, the monitoring controller that has been designed for the
AER_oneBoard, is similar to the one in the Z_AER_tx described in a previous section,
but this time, for the reading operation, two data and two read enable flags are picked
and set respectively.

The number of the register monitored is sent to the outside, but all the details of
this structure are not reported as the previous modules for simplicity, since this variant
does not represent the important core of this work. Indeed, as already said, it is only
used to verify in a simple way (without exploiting all the AER multi-board modules)
the correctness of information transmitted by the HEENS architecture. A simplified
schematic of the AER_OneBoard unit, is reported in Figure 3.12.

Figure 3.12: Block diagram of the upgraded single-board AER module

This diagram does not illustrate all the data path exploited to allow the transmission
of monitoring data stored in the several FIFOs, but it explains the basic principle
underlying this mechanism: two data are picked at the time, so two multiplexers
are needed and two specific selection signals as well, that are monFifo_count_d and
monFifo_count1_d. Like in the previous version, these latter are generated by two
separated counters that, together with the MonFifo_rd_en flag (from the ARM
processor), are used to select the proper inputs to transmit and they are also exploited
to set the read enables for the FIFOs (not reported in the figure).

Another important issue is that in this version the monit_busyPE (the first

91

Performance upgrading

semaphore) is handled by the PE-array, like in the multi-board architecture, and
the monit_busy is simply the result of a NAND operation between all the empty flags
from monitoring FIFOs: indeed, only when all of them are empty (all empty flags
equal to one) the transmission is over and the monit_busy can return to zero, in order
to unlock the sequencer. The monitoring controller used to write into the FIFOs is the
same as the one in the Z_AER_interface module and it works with the PE-array in
the same way.

The part of VHDL source file that describes the monitoring controller of this single
board version, is reported in Appendix D.11, in which it is possible to notice that a
very similar strategy (FSM) to the upgraded multi-board version has been adopted
to handle the transmission, even if it is more complicated, due to the reasons just
explained. The other strategy could have been to store all data in a classic Sink FIFO
(16 bits input, 32 bits output), but it would have required more hardware.

Figure 3.13: Simulation of the monitoring controller in the AER single board module
(second version)

In Figure 3.13 is reported an interesting frame from the simulation of the upgraded
single board operations related to the monitoring stages. Indeed, it is depicted what
happens between two monitoring transmissions (related the two instructions of the
assembler code in Appendix B.3): first, the mn_READ_reg state is performed, in
which all read enable flags are set to ’1’, in order to read the register number. This latter

92

Performance upgrading

information is sent together with all zeros (in the multi-board version, it was carried
by the START_MON packet, Section 3.1.2), as it is shown by the monit_data_ARM
data.

Then, all read enables and outputs data from monitoring FIFOs are set and selected
in pairs, as expected. Again, only for debug purpose, a fake MonFifo_rd_en flag is
set to ’0’ and to ’1’ at regular intervals, to verify the behaviour: after a period in
which this latter signal is set to zero, it is shown that the last information is correctly
validated (monit_valid_ARM, active high) and consequently transmitted by the AER
module. So, basically the behaviour of the SinkFIFO is correctly reproduced, by means
of this more complex controller.

3.2 Logic Synthesis and Hardware Implementation
The synthesis and implementation operations have been performed to the upgraded
version on the Xilinx Zynq-7000 SoC ZC706 board as well. This time, the single-
board architecture has been tested with a 13x13 array configuration, to analyze the
exploitation of the area of such a large structure, while the multi-board approach has
been tested with the same 5x5 configuration, to highlight the differences with respect
to the older version of the monitoring implementation.

3.2.1 Multi-Board
Regarding the multi-board synthesis and implementation, apart from the changed
modules of the architecture, the main difference is the monitoring FIFO, whose size has
been reduce has already mentioned. The clock network and constraints have not been
changed. The synthesis at the beginning produced a particular violation related to
the monit_busy flag, which comes from the Z_AER_tx module, described in Section
3.1.2: it is produced by the main FSM of the AER transmitter module and then it is
sent to a synchronizer, for the HEENS 125 MHz clock domain. The synthesis tool
introduced a particular LUT between these two modules, which is shown in Figure
3.14 and which creates a setup violation reported in Figure 3.15.

This issue has been resolved introducing a register to break this path, which did
not create timing problems, since it regards the flag which unlocks the sequencer from
a waiting state, as already described. So, the only consequence of this delay is one
clock cycle more of waiting before moving to the spike distribution phase.

After the implementation has been performed, only the area and power results are
analyzed, since the timing results are not reliable at the current state of the project, as
already mentioned in the first chapter. In Figure 3.16 the general resource utilization
is reported, which shows that the situation is only slightly changed from the previous
version (of Figure 2.48) and the Z_AER_interface is the module that has undergone
the largest increase in the hardware exploitation.

93

Performance upgrading

Figure 3.14: Critical path of the 5x5 multi-board array synthesis (second version).

Figure 3.15: Critical path delay of the 5x5 multi-board array synthesis (second
version).

The power consumption is reported in Figure 3.17, which shows a 5.3 % increase in
dynamic power with respect to the previous version. The floorplanning does not show
remarkable changes, so it is not reported for simplicity.

3.2.2 Single-Board
For the single-board structure, the results obtained from the synthesis are similar
to the previous version, so the implementation outcomes are directly analyzed from
now on. Figure 3.18 illustrates the timing report of the final implementation of the
single-board version, in which it is shown that the timing constraints are all respected,
even if with a minor setup slack respect to the previous version.

In Figure 3.19, the resources utilization are reported, from which it can be noticed
that this time, the LUTs and BRAM memories occupy almost all the available hardware.

94

Performance upgrading

Figure 3.16: Resources utilization summary of the multi-board architecture (second
version).

Figure 3.17: Power report summary of the multi-board implementation (second
version).

Again, looking at the second detailed resources report, it is possible to see that the array
structure is the most consuming module of the architecture, so the overhead introduced
by the monitoring implementation (monitoring FIFOs, control logic, multiplexers and
so on) doesn’t impact so much on the FPGA occupancy. Anyway, it is also clear that
it is not possible to further extend the array dimension at the current state of the
project.

95

Performance upgrading

Figure 3.18: Timing report summary of the 13x13 single board array implementation
(second version).

Figure 3.19: Resources utilization of the 13x13 single board array implementation
(second version).

In Figure 3.20, the power consumption is explored. It is shown, that the dynamic
power is 4.03 times greater, which is mainly due again to the BRAM memories and clock
network. With this configuration also the dynamic power consumed by the logic and
signal interconnection has more than doubled, since of course more LUTs are required
and also the interconnections are much longer then the smaller 5x5 configuration.

Finally the floorplanning of the 13x13 array is shown in Figure 2.43, in which it is
shown that almost all of the available area is exploited by this implementation.

96

Performance upgrading

Figure 3.20: Power report summary of the 13x13 single board array implementation
(second version).

Figure 3.21: Floorplanning of the 13x13 single board array implementation (second
version).

97

Chapter 4

Conclusions

This thesis work is focused on the HEENS architecture, which is an SNN emulator
belonging to the 3rd generation and meant to be implemented on a FPGA device,
which provides the user with an high level of configurability, scalability and capability
of emulating different neural models.

The task of this work, was to design all the hardware support to collect and distribute
specific data and parameters inside each PE, in order to monitor the behaviour of the
neural algorithm under execution. This is a very important goal, since it is necessary to
keep under control the information related to all the neurons of the network, in order
to chose or modify a particular model, which can better meet the needs of a particular
application. Therefore, after designing and simulating the additional architecture,
by means of VHDL and Questasim Advanced simulator tool, the project has been
synthesized and implemented on the Xilinx Zynq-7000 SoC ZC706 board, in order to
verify if the structure properly worked.

After the first solution, the hardware for the monitoring operations has been
enhanced to increase performance of the procedure, which led to a small overhead in
terms of area exploitation and power consumption. In the first version, the amount
of clock cycles required to propagate all monitoring data through the array was
proportional to N × N , where N is the number of PEs in a row or column of the array.
After the upgrading, this time has been reduced to be linearly dependent on just N ,
which leads to a great speedup. Indeed, the clock frequency of the HEENS architecture
is the half respect to the AER part of the system and thus, reducing the overall number
of clock cycles required to load data into monitoing FIFO (action performed with the
HEENS clock), led to great improvements in the speed of the operation.

The continuation of this work is the development of a software environment to
properly organize and eventually display all collected data, which are transmitted to a
general processing unit by the PS interface (ARM processor inside the FPGA). Indeed,
a GUI will be developed by the research group to allow the user to configure and
monitor the SNN running on the FPGA.

98

Conclusions

Another possible upgrading of the architecture designed in this work, could concern
a specific filtering of information coming from the array, in case not all PEs (neurons)
of it are utilized. Indeed, the current monitoring hardware is going to transmit data
coming from all PEs and leave to the future software application the task of selecting
the information of a specific neuron chosen by the user. This possible improvement
would provide overall faster transmission and additionally require little control logic.

99

Appendix A

Instruction Set Architecture

100

Instruction Group Opcode Function Format

0 NOP SEQ 000000 No operation NOP

1 LDALL REGISTERS 000001 reg <= DMEM (from sequencer) LDALL reg ****

2 LLFSR MOVEMENT 000010 ACC <= LFSR(15:0) LLFSR

3 LOADSP LOADSP 000011 R1 & ACC(15:1) <= BRAM(BP,31:1); ACC(0) <= spike_register(BP(3:0)) LOADSP

4 STOREB STOREB 000100 EXT_BUFFER <= ACC STOREB

5 STORESP STORESP 000101 BRAM(BP) <= R1 & ACC; BP <= BP + 1 STORESP

6 STOREPS STOREPS 000110 AER_FIFO <= ACC(0) (post-synaptic Si) STOREPS

7 RST REGISTERS 000111 reg <= “0000” RST reg

8 SET REGISTERS 001000 reg <= “FFFF” SET reg

9 SHLN REGISTERS 001001 ACC <= ACC << n, (1 <= n <= 8), (n = number of positions) SHLN n

10 SHRN REGISTERS 001010 ACC <= ACC >> n, (1 <= n <= 8), (n = number of positions) SHRN n

11 RTL REGISTERS 001011 ACC <= ACC <<, carry = ACC(msb) Rotate Accumulator Left RTL

12 RTR REGISTERS 001100 ACC <= ACC >>, carry = ACC(lsb) Rotate Accumulator Right RTR

13 INC ARITHMETIC 001101 ACC <= ACC + 1 INC

14 DEC ARITHMETIC 001110 ACC <= ACC - 1 DEC

15 LOADSN LOADSN 001111 R1 & ACC <= BRAM(BP) LOADSN

16 ADD ARITHMETIC 010000 ACC <= ACC + reg (Saturated addition) ADD reg

17 SUB ARITHMETIC 010001 ACC <= ACC – reg (Saturated subtraction) SUB reg

18 MUL ARITHMETIC 010010 ACC & R1 <= ACC * reg (Signed product) MUL reg

19 MULS ARITHMETIC 010011 ACC <= ACC * reg (Most significant word signed product) MULS reg

20 AND LOGIC 010100 ACC <= ACC AND reg AND reg

21 OR LOGIC 010101 ACC <= ACC OR reg OR reg

22 INV LOGIC 010110 ACC <= INV reg INV reg

23 XOR LOGIC 010111 ACC <= ACC XOR reg XOR reg

24 MOVA MOVEMENT 011000 ACC <= reg MOVA reg

25 MOVR MOVEMENT 011001 reg <= ACC MOVR reg

26 SWAPS MOVEMENT 011010 reg <=> shadow_reg (Swap register) SWAPS reg

27 MOVRS MOVEMENT 011011 reg <= shadow_reg MOVRS reg

28 LOOP SEQ 011100 Push LOOP_BUFFER(n-1);Push PC_BUFFER(PC+1) LOOP n

29 LOOPV SEQ 011101 Push LOOP_BUFFER(DMEM-1);Push PC_BUFFER(PC+1) LOOPV ****

30 ENDL SEQ 011110 If LOOP_BUFFER = 0 then pop LOOP_BUFFER; pop PC_BUFFER; else LOOP_BUFFER <= LOOP_BUFFER – 1; PC <= PC_BUFFER ENDL

31 GOSUB SEQ 011111 PC <= addr; Push PC_BUFFER(PC+1) GOSUB addr

32 RET SEQ 100000 PC <= PC_BUFFER RET

33 FREEZEC CONDITIONAL 100001 if C=1 then F <= 1; push F_BUFFER(1) FREEZEC

34 FREEZENC CONDITIONAL 100010 if C=0 then F <= 1; push F_BUFFER(1) FREEZENC

35 FREEZEZ CONDITIONAL 100011 if Z=1 then F <= 1; push F_BUFFER(1) FREEZEZ

36 FREEZENZ CONDITIONAL 100100 if Z=0 then F <= 1; push F_BUFFER(1) FREEZENZ

37 UNFREEZE CONDITIONAL 100101 F <= pop F_BUFFER UNFREEZE

38 HALT SEQ 100110 INT<=1;sequencer halted until external input signal INT_ACK=1 HALT

39 SETZ FLAGS 100111 Z <= 1 SETZ

40 SETC FLAGS 101000 Sets the carry flags C <= 1 SETC

41 CLRZ FLAGS 101001 Clears the zero flags Z <= 0 CLRZ

42 CLRC FLAGS 101010 Clears the zero flags C <= 0 CLRC

43 RANDON RAND 101011 random_en <= 1; LFSR becomes source register for LLFSR RANDON

44 SEED MOVEMENT 101100 LFSR(63:32) <= LFSR(31:0) <= R1 & ACC SEED

45 RANDOFF RAND 101101 random_en <= 0; LFSR_STEP <=0; LFSR disabled RANDOFF

46 SPKDIS SEQ 101110 eo_exec <= 1, Stops the sequencer and stores spikes until input signal cam_en <= 0 (from AER control unit) SPKDIS

47 READMP SEQ 101111 DMEM <= BRAM(address) READMP addr

48 RST_SEQ SEQ 110000 Jumps to RESET state RST_SEQ

49 - - 110001 - MONIT reg

50 LAYERV SEQ 110010 VLAYERS <= n; CURR_VLAYER <= 0; defines number of virtual layers (currently 0 <= n <= 7) LAYERV n

51 GOTO SEQ 110011 PC <= addr GOTO addr

52 SHLAN REGISTERS 110100 ACC <= ACC << n, (1 <= n <= 8), Arithmetic shift SHLAN n

53 SHRAN REGISTERS 110101 ACC <= ACC >> n, (1 <= n <= 8), Arithmetic shift SHRAN n

54 LOADBP LOADBP 110110 BP <= DMEM Loads PE BRAM pointer. LOADBP ****

55 BITSET REGISTERS 110111 ACC(n) <= 1 BITSET n

56 BITCLR REGISTERS 111000 ACC(n) <= 0 BITCLR n

57 SPMOV SPMOV 111001 Special MOVE. n = 0: VIRT <= ACC; SPMOV n

58 INCV SEQ 111010 VLAYER <= VLAYER + 1 INCV

59 READMPV SEQ 111011 DMEM <= BRAM(address + VLAYER) READMPV addr

60 MOVSR MOVEMENT 111100 shadow_reg <= reg MOVSR reg

61 MARK SEQ 111101 No operation MARK

*Flags If the given instruction can change the indicated flag

** En

F: Frozen flag. /F= not(F) means unfrozen and the indicated instructions become enabled

*** Z can change only if ACC is set or reset (not in case of other registers)

**** See macros

MACRO INSTRUCTIONS: Conversion into elementary instructions.

It is recommended to use macro instructions instead of the associated simple instructions

1 LDALL LDALL reg, const: reg <= DMEM(const) (from sequencer)

NOP

READMP const

LDALL reg

MONIT MONIT reg: Monit_buffer <= reg

MOVA reg

STOREB

29 LOOPV LOOPV vp: Push LOOP_BUFFER(DMEM(vp)-1);Push PC_BUFFER(PC+1)

Elementary instructions: NOP

READMPV vp

LOOPV

54 LOADBP LOADBP bp: BP <= DMEM(bp) Loads PE BRAM pointer.

Elementary instructions: NOP

READMP bp

LOADBP

Elementary instructions:

Elementary instructions:

Appendix B

Assembler code

B.1 Algorithm with no virtualization
breakatwhitespace

1 d e f i n e v i r t u a l _ l a y e r s 0 ; From 0 up to 7
2 d e f i n e gsynapses 2 ; Up to 32 g l o b a l synapses
3
4 .DATA
5
6 ; V i r t u a l l a y e r s
7
8 V0 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to the main l a y e r
9 V1 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 1

10 V2 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 2
11 V3 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 3
12 V4 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 4
13 V5 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 5
14 V6 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 6
15 V7 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 7
16 VLAYERS=" 00000000 " ; Number o f v i r t u a l l a y e r s (n−1) .
17
18 ; Membrane p o t e n t i a l parameters common to a l l neurons
19 VREST="FFFFE4A8" ; Rest ing p o t e n t i a l −70 mV = −7000 in tens o f o f uV
20 VTHRES="FFFFEA84" ; Threshold v o l t a g e −55 mV = −5500
21 VDEPOL="FFFFE0C0" ; D e p o l a r i z a t i o n v o l t a g e −80 mV = −8000
22 VACT = " 00001771 " ; Action p o t e n t i a l +10 mV = +1000
23 ;
24 ; Synapse parameters common to a l l neurons come here
25 ; TBD
26 ;
27 ; Neural and Synaptic RAM a dd r e s s e s
28 SYN_ADDR0=" 00000000 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 0 .
29 SYN_ADDR1=" 00000003 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 1 .
30 SYN_ADDR2=" 00000006 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 2 .
31 SYN_ADDR3=" 00000009 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 3 .
32 SYN_ADDR4=" 0000000C" ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 4 .
33 SYN_ADDR5=" 0000000F" ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 5 .
34 SYN_ADDR6=" 00000012 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 6 .
35 SYN_ADDR7=" 00000015 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 7 .
36 GSYN_ADDR=" 00000064 " ; F i r s t address o f Global Synaptic parameters in SNRAM.
37 NEU_ADDR0=" 000003E3" ; F i r s t address o f Neural parameters in SNRAM (995) f o r V = 0 .

102

Assembler code

38 NEU_ADDR1=" 000003E4" ; F i r s t address o f Neural parameters in SNRAM (996) f o r V = 1 .
39 NEU_ADDR2=" 000003E5" ; F i r s t address o f Neural parameters in SNRAM (997) f o r V = 2 .
40 NEU_ADDR3=" 000003E6" ; F i r s t address o f Neural parameters in SNRAM (998) f o r V = 3 .
41 NEU_ADDR4=" 000003E7" ; F i r s t address o f Neural parameters in SNRAM (999) f o r V = 4 .
42 NEU_ADDR5=" 000003E8" ; F i r s t address o f Neural parameters in SNRAM (1000) f o r V = 5

.
43 NEU_ADDR6=" 000003E9" ; F i r s t address o f Neural parameters in SNRAM (1001) f o r V = 6

.
44 NEU_ADDR7=" 000003EA" ; F i r s t address o f Neural parameters in SNRAM (1002) f o r V = 7

.
45
46 SEEDH_ADDR = " 000003FD" ; Address o f n o i s e seed in SNRAM
47 SEEDL_ADDR = " 000003FE" ;
48 PEID = " 000003FF" ; Address o f PE I d e n t i f i e r number
49 ;
50 ; General cons tant s
51 THAU_MEM=" 0000799A" ; Membrane time constant decay (i n v e r s e va lue) . To be tuned.

Thau = 20
52 NOISE_MSK=" 0000001F" ; Noise mask. To be tuned
53
54 ; Constants f o r debug
55 JUMP_MV = " 00000100 " ; Jump 2 .56 mV on s p i k e
56 LFSR_VAL= " 0000AAAA"
57 LFSR_VAL2= " 00005555 "
58
59
60 .CODE
61 ;
62 GOTO MAIN ; Jump to main program
63 ;
64 ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ PROCEDURES BEGIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65 ;
66 .RANDOM_INIT ; Uses R0 and R1
67 LOADBP SEEDH_ADDR
68 LOADSN
69 SEED ; High seed
70 LOADBP SEEDL_ADDR
71 LOADSN
72 SEED ; Low seed
73 RET
74 ;
75 .LOAD_NEURON ; Uses R0 , R1 , R2 and R3
76 READMPV NEU_ADDR0 ; Address o f r e a l neuron + v i r t (v a l i d a l s o f o r non−v i r t u a l)
77 LOADBP ; SNRAM p o i n t e r to c u r r e n t l y proce s s ed neuron
78 LOADSN ; Load Neural parameters from SNRAM to R1 & ACC
79 MOVR R2 ; Move Vmem from ACC to R2
80 MARK
81 RET
82 ;
83 .MEMBRANE_DECAY ; Uses R0 , R4
84 MOVA R2 ; TEMPORARY WHILE MULS has

problems. REWRITE when i t works
85 LDALL R4 VREST
86 SUB R4
87 LDALL R1 , THAU_MEM
88 MULS R1 ; Ca l cu la te decay
89 SHLAN 1
90 ADD R4
91 MOVR R2 ; Back to R2 where membrane p o t e n t i a l i s s t o r e d
92 RET
93 ;

103

Assembler code

94 .ADD_NOISE ; Uses R0 , R2 and R5
95 RANDON ; LFSR ON
96 LLFSR ; Noise to ACC
97 MOVR R5
98 LDALL ACC, NOISE_MSK
99 AND R5

100 SHRN 1
101 RANDOFF ; LFSR OFF. A r b i t r a r i l y here
102 FREEZENC
103 MOVR R5
104 RST ACC
105 SUB R5
106 ; Generate s igned n o i s e without the negat ive b i a s o f two ’ s complement
107 UNFREEZE
108 MOVSR ACC ; TO MONITOR THE

NOISE
109 ADD R2 ; Add to Vmem
110 MOVR R2 ; Back to R2
111 RET
112 ;
113 .SYNAPSE_CALC
114 LOADSP ; Load Synaptic parameters and s p i k e to R1 & ACC
115 SHRN 1 ; Move s p i k e to f l a g C
116 FREEZENC
117 MOVA R1 ; Synaptic parameter to ACC
118 ADD R2
119 MOVR R2 ; Save Neural parameter in R2
120 UNFREEZE
121 RST ACC
122 STORESP ; St o r e s synapt i c parameter and i n c r e a s e s BP f o r next synapse

p r o c e s s i n g
123 RET
124 ;
125 .DETECT_SPIKE ; Uses R0 and R2
126 LDALL ACC, VTHRES
127 SUB R2 ; Compare Vth − Vmem
128 SHLN 1 ; s u b t r a c t i o n s i g n to C f l a g
129 RST ACC
130 FREEZENC ; I f p o s i t i v e , s p i k e
131 SET ACC
132 LDALL R2 VREST ; Vmem to r e s t i n g p o t e n t i a l
133 UNFREEZE
134 STOREPS ; Push s p i k e s
135 RET
136 ;
137 .STORE_NEURON ; uses R0 and R1
138 MOVA R2 ; Move Vmem from R2 to ACC
139 READMPV NEU_ADDR0 ; Address o f r e a l neuron + v i r t (v a l i d a l s o f o r non−v i r t u a l)
140 LOADBP ; SNRAM p o i n t e r to c u r r e n t l y proce s s ed neuron
141 STORESP ; Store Vmem to SNRAM
142 RET
143 ;
144 ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ PROCEDURES END ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
145
146 ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN PROGRAMME BEGIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
147 .MAIN
148 ;
149
150 ; V i r t u a l opera t i on i n i t
151 LAYERV v i r t u a l _ l a y e r s ; I n i t sequencer v l a y e r s . I t i s 0 f o r non−v i r t u a l opera t i on
152 LDALL ACC, VLAYERS ; Load d e f i n e d v i r t u a l l a y e r s to PE array

104

Assembler code

153 SPMOV 0 ; VIRT <= ACC
154
155 ; I n i t i a l i n s t r u c t i o n s
156 GOSUB RANDOM_INIT ; For n o i s e i n i t i a l i z a t i o n
157
158 .EXEC_LOOP ; Execution loop
159
160 ; −−−−−−−−−−−−−−−−− UNCOMMENT AND CHECK FOR GLOBAL SYNAPSES
161 ; LAYER 0 NEURON
162 ; Global synapses (l a y e r 0)
163 ; GOSUB LOAD_NEURON
164 ; GOSUB MEMBRANE_DECAY ; Ca lcu la te membrane p o t e n t i a l decay
165 ; GOSUB ADD_NOISE
166 ;
167 ; LOADBP GSYN_ADDR
168 ; LOOP gsynapses
169 ; NOP
170 ; GOSUB SYNAPSE_CALC
171 ; ENDL
172 ; End o f g l o b a l synapses
173 ; −−−−−−−−−−−−−−−−− END UNCOMMENT AND CHECK FOR GLOBAL SYNAPSES
174 ;
175 LOOP v i r t u a l _ l a y e r s ; Neuron loop f o r v i r t u a l opera t i on
176 NOP ; to prevent p i p e l i n e e r r o r
177 GOSUB LOAD_NEURON
178 GOSUB MEMBRANE_DECAY ; Ca lcu la te membrane p o t e n t i a l decay
179 GOSUB ADD_NOISE
180 READMPV SYN_ADDR0
181 LOADBP
182 LOOPV V0 ; synapt i c l o o p . Reads number o f current −l a y e r synapses
183 NOP ; to prevent p i p e l i n e e r r o r
184 GOSUB SYNAPSE_CALC
185 ENDL
186 ; Compare and e v e n t u a l l y s p i k e
187 GOSUB DETECT_SPIKE
188 GOSUB STORE_NEURON
189 INCV
190 ENDL
191 .FINISH
192 NOP ; Empty p i p e l i n e wait NOPs
193 NOP
194 NOP
195 SPKDIS ; D i s t r i b u t e s p i k e s
196 GOTO EXEC_LOOP ; Execution loop

B.2 Algorithm with virtualization
breakatwhitespace

1 d e f i n e v i r t u a l _ l a y e r s 7 ; from 0 up to 7 (1 to 8 l a y e r s)
2 d e f i n e gsynapses 2 ; Up to 32 g l o b a l synapses
3
4 .DATA
5
6 ; V i r t u a l l a y e r s
7
8 V0 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to the main l a y e r
9 V1 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 1

10 V2 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 2

105

Assembler code

11 V3 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 3
12 V4 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 4
13 V5 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 5
14 V6 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 6
15 V7 = " 00000002 " ; Number o f a s s i gned synapses (s −1) to v i r t u a l l a y e r 7
16 VLAYERS=" 00000007 " ; Number o f v i r t u a l l a y e r s (n−1) .
17 ; VLAYERS="00000000" ; Number o f v i r t u a l l a y e r s (n−1) .
18
19 ; Membrane p o t e n t i a l parameters common to a l l neurons
20 VREST="FFFFE4A8" ; Rest ing p o t e n t i a l −70 mV = −7000 in tens o f o f uV
21 VTHRES="FFFFEA84" ; Threshold v o l t a g e −55 mV = −5500
22 VDEPOL="FFFFE0C0" ; D e p o l a r i z a t i o n v o l t a g e −80 mV = −8000
23 VACT = " 00001771 " ; Action p o t e n t i a l +10 mV = +1000
24 ;
25 ; Synapse parameters common to a l l neurons come here
26 ; TBD
27 ;
28 ; Neural and Synaptic RAM a dd r e s s e s
29 SYN_ADDR0=" 00000000 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 0 .
30 SYN_ADDR1=" 00000003 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 1 .
31 SYN_ADDR2=" 00000006 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 2 .
32 SYN_ADDR3=" 00000009 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 3 .
33 SYN_ADDR4=" 0000000C" ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 4 .
34 SYN_ADDR5=" 0000000F" ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 5 .
35 SYN_ADDR6=" 00000012 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 6 .
36 SYN_ADDR7=" 00000015 " ; F i r s t address o f Synaptic parameters in SNRAM f o r V = 7 .
37
38 GSYN_ADDR=" 00000064 " ; F i r s t address o f Global Synaptic parameters in SNRAM.
39 NEU_ADDR0=" 000003E3" ; F i r s t address o f Neural parameters in SNRAM (995) f o r V = 0 .
40 NEU_ADDR1=" 000003E4" ; F i r s t address o f Neural parameters in SNRAM (996) f o r V = 1 .
41 NEU_ADDR2=" 000003E5" ; F i r s t address o f Neural parameters in SNRAM (997) f o r V = 2 .
42 NEU_ADDR3=" 000003E6" ; F i r s t address o f Neural parameters in SNRAM (998) f o r V = 3 .
43 NEU_ADDR4=" 000003E7" ; F i r s t address o f Neural parameters in SNRAM (999) f o r V = 4 .
44 NEU_ADDR5=" 000003E8" ; F i r s t address o f Neural parameters in SNRAM (1000) f o r V = 5

.
45 NEU_ADDR6=" 000003E9" ; F i r s t address o f Neural parameters in SNRAM (1001) f o r V = 6

.
46 NEU_ADDR7=" 000003EA" ; F i r s t address o f Neural parameters in SNRAM (1002) f o r V = 7

.
47
48 SEEDH_ADDR = " 000003FD" ; Address o f n o i s e seed in SNRAM
49 SEEDL_ADDR = " 000003FE" ;
50 PEID = " 000003FF" ; Address o f PE I d e n t i f i e r number
51 ;
52 ; General cons tant s
53 ;THAU_MEM="00007F00 " ; Membrane time constant decay (i n v e r s e va lue) . To be tuned
54 THAU_MEM=" 0000799A" ; Membrane time constant decay (i n v e r s e va lue) . To be tuned.

Thau = 20
55 NOISE_MSK=" 0000001F" ; Noise mask. To be tuned
56
57 ; Constants f o r debug
58 JUMP_MV = " 00000100 " ; Jump 2 .56 mV on s p i k e
59 LFSR_VAL= " 0000AAAA"
60 LFSR_VAL2= " 00005555 "
61
62
63 .CODE
64 ;
65 GOTO MAIN ; Jump to main program
66 ;
67 ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ PROCEDURES BEGIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

106

Assembler code

68 ;
69 .RANDOM_INIT ; Uses R0 and R1
70 LOADBP SEEDH_ADDR
71 LOADSN
72 SEED ; High seed
73 LOADBP SEEDL_ADDR
74 LOADSN
75 SEED ; Low seed
76 RET
77 ;
78 .LOAD_NEURON ; Uses R0 , R1 , R2 and R3
79 READMPV NEU_ADDR0 ; Address o f r e a l neuron + v i r t (v a l i d a l s o f o r non−v i r t u a l)
80 LOADBP ; SNRAM p o i n t e r to c u r r e n t l y proce s s ed neuron
81 LOADSN ; Load Neural parameters from SNRAM to R1 & ACC
82 MOVR R2 ; Move Vmem from ACC to R2
83 MARK
84 RET
85 ;
86 .MEMBRANE_DECAY ; Uses R0 , R4
87 MOVA R2 ; TEMPORARY WHILE MULS has

problems. REWRITE when i t works
88 LDALL R4 VREST
89 SUB R4
90 LDALL R1 , THAU_MEM
91 MULS R1 ; Ca l cu la te decay
92 SHLAN 1
93 ADD R4
94 MOVR R2 ; Back to R2 where membrane p o t e n t i a l i s s t o r e d
95 RET
96 ;
97 .ADD_NOISE ; Uses R0 , R2 and R5
98 RANDON ; LFSR ON
99 LLFSR ; Noise to ACC

100 MOVR R5
101 LDALL ACC, NOISE_MSK
102 AND R5
103 SHRN 1
104 RANDOFF ; LFSR OFF. A r b i t r a r i l y here
105 FREEZENC
106 MOVR R5
107 RST ACC
108 SUB R5 ; Generate s igned n o i s e without the negat ive b i a s o f two ’ s complement
109 UNFREEZE
110 MOVSR ACC ; TO MONITOR THE

NOISE
111 ADD R2 ; Add to Vmem
112 MOVR R2 ; Back to R2
113 RET
114 ;
115 .SYNAPSE_CALC
116 LOADSP ; Load Synaptic parameters and s p i k e to R1 & ACC
117 SHRN 1 ; Move s p i k e to f l a g C
118 FREEZENC
119 MOVA R1 ; Synaptic parameter to ACC
120 ADD R2
121 MOVR R2 ; Save Neural parameter in R2
122 UNFREEZE
123 RST ACC
124 STORESP ; St o r e s synapt i c parameter and i n c r e a s e s BP f o r next synapse

p r o c e s s i n g
125 RET

107

Assembler code

126 ;
127 .DETECT_SPIKE ; Uses R0 and R2
128 LDALL ACC, VTHRES
129 SUB R2 ; Compare Vth − Vmem
130 SHLN 1 ; s u b t r a c t i o n s i g n to C f l a g
131 RST ACC
132 FREEZENC ; I f p o s i t i v e , s p i k e
133 SET ACC
134 LDALL R2 VREST ; Vmem to r e s t i n g p o t e n t i a l
135 UNFREEZE
136 STOREPS ; Push s p i k e s
137 RET
138 ;
139 .STORE_NEURON ; uses R0 and R1
140 MOVA R2 ; Move Vmem from R2 to ACC
141 READMPV NEU_ADDR0 ; Address o f r e a l neuron + v i r t (v a l i d a l s o f o r non−v i r t u a l)
142 LOADBP ; SNRAM p o i n t e r to c u r r e n t l y proce s s ed neuron
143 STORESP ; Store Vmem to SNRAM
144 RET
145 ;
146 ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ PROCEDURES END ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
147
148 ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN PROGRAMME BEGIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
149 .MAIN
150 ;
151
152 ; V i r t u a l opera t i on i n i t
153 LAYERV v i r t u a l _ l a y e r s ; I n i t sequencer v l a y e r s . I t i s 0 f o r non−v i r t u a l opera t i on
154 LDALL ACC, VLAYERS ; Load d e f i n e d v i r t u a l l a y e r s to PE array
155 SPMOV 0 ; VIRT <= ACC
156
157 ; I n i t i a l i n s t r u c t i o n s
158 GOSUB RANDOM_INIT ; For n o i s e i n i t i a l i z a t i o n
159
160 .EXEC_LOOP ; Execution loop
161
162 ; −−−−−−−−−−−−−−−−− UNCOMMENT AND CHECK FOR GLOBAL SYNAPSES
163 ; LAYER 0 NEURON
164 ; Global synapses (l a y e r 0)
165 ; GOSUB LOAD_NEURON
166 ; GOSUB MEMBRANE_DECAY ; Ca lcu la te membrane p o t e n t i a l decay
167 ; GOSUB ADD_NOISE
168 ;
169 ; LOADBP GSYN_ADDR
170 ; LOOP gsynapses
171 ; NOP
172 ; GOSUB SYNAPSE_CALC
173 ; ENDL
174 ; End o f g l o b a l synapses
175 ; −−−−−−−−−−−−−−−−− END UNCOMMENT AND CHECK FOR GLOBAL SYNAPSES
176 ;
177 LOOP v i r t u a l _ l a y e r s ; Neuron loop f o r v i r t u a l opera t i on
178 NOP ; to prevent p i p e l i n e e r r o r
179 GOSUB LOAD_NEURON
180 GOSUB MEMBRANE_DECAY ; Ca lcu la te membrane p o t e n t i a l decay
181 ; GOSUB ADD_NOISE
182 READMPV SYN_ADDR0
183 LOADBP
184 LOOPV V0 ; synapt i c l o o p . Reads number o f current −l a y e r synapses
185 NOP ; to prevent p i p e l i n e e r r o r
186 GOSUB SYNAPSE_CALC

108

Assembler code

187 ENDL
188 ; Compare and e v e n t u a l l y s p i k e
189 GOSUB DETECT_SPIKE
190 GOSUB STORE_NEURON
191 INCV
192 ENDL
193 .FINISH
194 NOP ; Empty p i p e l i n e wait NOPs
195 NOP
196 NOP
197 SPKDIS ; D i s t r i b u t e s p i k e s
198 GOTO EXEC_LOOP ; Execution loop

B.3 Algorithm with monitoring instruction
breakatwhitespace

1 LOOP v i r t u a l _ l a y e r s ; Neuron loop f o r v i r t u a l opera t i on
2 NOP ; to prevent p i p e l i n e e r r o r
3 GOSUB LOAD_NEURON
4 GOSUB MEMBRANE_DECAY ; Ca lcu la te membrane p o t e n t i a l decay
5 GOSUB ADD_NOISE
6 READMPV SYN_ADDR0
7 LOADBP
8 LOOPV V0 ; synapt i c l o o p . Reads number o f current −l a y e r synapses
9 NOP ; to prevent p i p e l i n e e r r o r

10 GOSUB SYNAPSE_CALC
11 ENDL
12 ; Compare and e v e n t u a l l y s p i k e
13 GOSUB DETECT_SPIKE
14 GOSUB STORE_NEURON
15 LOADBP PEID
16 LOADSN
17 MOVR R3
18 MOVA R0
19 STOREB
20 MONIT R3
21 INCV
22 ENDL
23 .FINISH
24 NOP ; Empty p i p e l i n e wait NOPs
25 NOP
26 NOP
27 SPKDIS ; D i s t r i b u t e s p i k e s
28 GOTO EXEC_LOOP ; Execution loop

109

Appendix C

Netlist

C.1 Delay line 4x4 (no virtualization)

breakatwhitespace
1 # presyn postsyn
2 #i v r c | i v r c s ph p l
3 # N delay l i n e 1
4 0 0 0 0 0 0 0 1 1 1800 0
5 0 0 0 2 0 0 0 1 2 1800 0
6 0 0 0 3 0 0 0 1 3 −1800 0
7 0 0 0 1 0 0 0 2 1 1800 0
8 0 0 0 3 0 0 0 2 2 −1800 0
9 0 0 0 2 0 0 0 3 1 200 0

10 # N delay l i n e 2
11 0 0 0 3 0 0 1 1 1 1800 0
12 0 0 1 2 0 0 1 1 2 1800 0
13 0 0 1 3 0 0 1 1 3 −1800 0
14 0 0 1 1 0 0 1 2 1 1800 0
15 0 0 1 3 0 0 1 2 2 −1800 0
16 0 0 1 2 0 0 1 3 1 150 0
17 # Time base
18 0 0 0 0 0 0 2 1 1 1800 0
19 0 0 2 2 0 0 2 1 2 1800 0
20 0 0 2 1 0 0 2 2 1 1800 0
21 0 0 2 2 0 0 2 3 1 300 0

C.2 Oscillator 4x4 (no virtualization)

breakatwhitespace
1 # presyn postsyn
2 #i v r c i v r c s ph pl
3 0 0 0 0 0 0 0 1 1 2500 0
4 0 0 0 1 0 0 0 2 1 2500 0
5 0 0 0 2 0 0 0 3 1 2500 0
6 0 0 0 3 0 0 1 0 1 2500 0
7 0 0 1 0 0 0 1 1 1 2500 0
8 0 0 1 1 0 0 1 2 1 2500 0

110

Netlist

9 0 0 1 2 0 0 1 3 1 2500 0
10 0 0 1 3 0 0 2 0 1 2500 0
11 0 0 2 0 0 0 2 1 1 2500 0
12 0 0 2 1 0 0 2 2 1 2500 0
13 0 0 2 2 0 0 2 3 1 2500 0
14 0 0 2 3 0 0 0 0 1 2500 0

C.3 Oscillator (with virtualization)
breakatwhitespace

1 # presyn postsyn
2 #i v r c i v r c s ph pl
3 0 0 0 0 0 1 0 0 1 2500 0
4 0 1 0 0 0 2 0 0 1 2500 0
5 0 2 0 0 0 3 0 0 1 2500 0
6 0 3 0 0 0 4 0 0 1 2500 0
7 0 4 0 0 0 5 0 0 1 2500 0
8 0 5 0 0 0 6 0 0 1 2500 0
9 0 6 0 0 0 7 0 0 1 2500 0

10 0 7 0 0 0 0 0 0 1 2500 0

111

Appendix D

VHDL source files

D.1 PE_ARRAY
breakatwhitespace

1 −−−
2 −− Pro j ec t Name : HEENS
3 −− Design Name : PE_array . vhd
4 −− Module Name : PE_array − connect ion
5 −−
6 −− Creator : S e r g i Juan
7 −− Modif ied : Roberto Gattuso
8 −− Modif ied : Corrado Bonfant i
9 −−

10 −− Company : U n i v e r s i t a t P o l i t e c n i c a de Catalunya (UPC)
11 −−
12 −−
13 −− D e s c r i p t i o n :
14 −− Array o f PE rows
15 l i b r a r y IEEE ;
16 use IEEE . std_logic_1164 . a l l ;
17 use work . log_pkg . a l l ;
18 use work . SNN_pkg . a l l ;
19 use i e e e . numeric_std . a l l ;
20
21 e n t i t y PE_array i s
22 g e n e r i c (
23 L o a d I n i t F i l e : i n t e g e r
24) ;
25 port (
26 en_si : in s td_log i c ;
27 c l k : in s td_log i c ;
28 r e s e t : in s td_log i c ;
29 r e s e t _s p ik e : in s td_log i c ;
30 row_pe : in s td_log ic_vector (4 downto 0) ;
31 col_pe : in s td_log ic_vector (4 downto 0) ;
32 BRAMD_seq : in std_log ic_vector (31 downto 0) ;
33 BRAMA_spike : in s td_log ic_vector (17 downto 0) ;
34 c o n f i g : in s td_log i c ;
35 AM_on : in s td_log i c ;
36 sp_IntExt : in s td_log i c ;
37 en_monit : in s td_log i c ;

112

VHDL source files

38 block_monit : in s td_log i c ;
39 vlayers_count : in s td_log ic_vector (v laye r_b i t s downto 0) ;
40 start_monit : out s td_log i c ;
41 eo_spike : out s td_log i c ;
42 sp ike_va l id : out s td_log i c ;
43 row_sp : out std_log ic_vector (4 downto 0) ;
44 col_sp : out s td_log ic_vector (4 downto 0) ;
45 virt_sp : out s td_log ic_vector (2 downto 0) ;
46 monit_out : out monit_type
47) ;
48 end PE_array ;
49
50 a r c h i t e c t u r e i n t e r c o n n e c t o f PE_array i s
51
52 component PE_row i s −− Proce s s ing Element Row
53 g e n e r i c (
54 row_number : i n t e g e r ;
55 L o a d I n i t F i l e : i n t e g e r
56) ;
57 port (−− Ports o f PE row
58 c l k : in s td_log i c ;
59 r e s e t : in s td_log i c ;
60 r e s e t _s p ik e : in s td_log i c ;
61 next_virt : in s td_log i c ;
62 v l a y e r s : in s td_log ic_vector (v laye r_b i t s downto 0) ;
63 BRAMD_seq : in std_log ic_vector (31 downto 0) ;
64 BRAMA_spike : in s td_log ic_vector (17 downto 0) ;
65 c o n f i g : in s td_log i c ;
66 AM_on : in s td_log i c ;
67 sp_IntExt : in s td_log i c ;
68 enable_x : in std_log ic_vector (size_x_1 downto 0) ;
69 enable_y : in s td_log i c ;
70 next_PE_row : in s td_log i c ;
71 next_monit_row : in s td_log i c ;
72 monit_block : in s td_log i c ;
73 spike_inR : in std_log ic_vector (size_x_1 downto 0) ;
74 spike_outR : out std_log ic_vector (size_x_1 downto 0) ;
75 monit_data_in : out monit_type ;
76 monit_data_out : out monit_type
77) ;
78 end component ;
79 −−
80 −− other s i g n a l s o f the a r c h i t e c t u r e
81 −−
82
83 −− Monitoring s i g n a l s
84 type monit_typeA i s array (size_y_1 downto 0) o f monit_type ;
85 s i g n a l monit_inA : monit_typeA ;
86 s i g n a l monit_outA : monit_typeA ;
87 s i g n a l PE_count_monit : i n t e g e r range 0 to s ize_y ;
88 s i g n a l next_row_monit : s td_log i c ;
89 s i g n a l next_row_monit_aux : s td_log i c ;
90 s i g n a l en_monit_del : s td_log i c ;
91 s i g n a l en_monit_aux : s td_log i c ;
92
93 begin −− i n t e r c o n n e c t o f net_addr
94
95 −− Array o f PE_row (Arrays o f PE) port map gene ra t i on
96 gPEi : f o r i in 0 to size_y_1 generate −− rows
97 PEi : e n t i t y work . PE_row
98 g e n e r i c map (i ,

113

VHDL source files

99 L o a d I n i t F i l e)
100 port map(
101 c lk ,
102 r e s e t ,
103 re se t_sp ike ,
104 sh i f t_sp ,
105 vlayers_count ,
106 BRAMD_seq,
107 BRAMA_spike ,
108 con f i g ,
109 AM_on,
110 sp_IntExt ,
111 en_col (size_x_1 downto 0) ,
112 en_row (i) ,
113 next_PE_row ,
114 next_row_monit ,
115 block_monit ,
116 spike_inA (i) (size_x_1 downto 0) ,
117 spike_outA (i) (size_x_1 downto 0) ,
118 monit_inA (i) (size_x_1 downto 0) ,−− monit_data_in
119 monit_outA (i) (size_x_1 downto 0)−− monit_data_out
120) ;
121 end generate gPEi ;
122 −−
123 −− Spikes connect ion and c o n t r o l l e r FSM
124 −−
125
126 −− 1 s t Row s t a r t vec to r
127 gmonit_in0 : f o r j in 0 to size_x_1 generate
128 monit_in0 : monit_inA (0) (j) (15 downto 0) <= (o t h e r s => ’ 0 ’) ;
129 end generate gmonit_in0 ;
130
131 −− Array I n t e r c o n n e c t
132 gmonitA_coli : f o r i in 0 to size_x_1 generate
133 gmonitA_rowj : f o r j in 0 to (size_y_1 − 1) generate
134 monitAj : monit_inA (j +1) (i) (15 downto 0) <= monit_outA (j) (i) (15 downto 0) ;
135 end generate gmonitA_rowj ;
136 end generate gmonitA_coli ;
137 −− Monit data t r a n s f e r FSM
138 monit_trans fer_process : p r o c e s s (c l k)
139 begin
140 i f c lk ’ event and c l k = ’1 ’ then
141 i f (r e s e t = ’ 1 ’) then
142 PE_count_monit <= size_y ;
143 next_row_monit_aux <= ’ 0 ’ ;
144 e l s i f (next_row_monit_aux = ’ 1 ’) then
145 i f (block_monit = ’ 1 ’) then
146 next_row_monit_aux <= ’ 1 ’ ;
147 PE_count_monit <= PE_count_monit ;
148 e l s e
149 i f (PE_count_monit = 0) then
150 PE_count_monit <= size_y ;
151 next_row_monit_aux <= ’ 0 ’ ;
152 e l s e
153 PE_count_monit <= PE_count_monit − 1 ;
154 next_row_monit_aux <= ’ 1 ’ ;
155 end i f ;
156 end i f ;
157 e l s i f (en_monit = ’ 1 ’) then
158 PE_count_monit <= PE_count_monit − 1 ;
159 next_row_monit_aux <= ’ 1 ’ ;

114

VHDL source files

160 end i f ;
161 end i f ;
162 end p r o c e s s ;
163
164 start_monit <= next_row_monit_aux ;
165 next_row_monit <= next_row_monit_aux and (not block_monit) ;
166
167 −− output monitor ing data ass ignment
168 monit_out_process : p r o c e s s (c l k)
169 begin
170 i f c lk ’ event and c l k = ’1 ’ then
171 i f (r e s e t = ’ 1 ’) then
172 f o r i in 0 to size_x_1 loop
173 monit_out (i) <= (o th e r s => ’ 0 ’) ;
174 end loop ;
175 e l s i f (next_row_monit = ’ 1 ’) then
176 monit_out <= monit_outA (size_y_1) ;
177 end i f ;
178 end i f ;
179 end p r o c e s s ;
180 −−
181 −− Other l o g i c f o r v i r t u a l i z a t i o n and debugging
182 −−
183
184 end a r c h i t e c t u r e i n t e r c o n n e c t ; −− o f PE_array

D.2 PE_ROW
breakatwhitespace

1 −−−
2 −− Pro j ec t Name : HEENS
3 −− Design Name : PE_row . vhd
4 −− Module Name : PE_row − connect ion
5 −−
6 −− Creator : S e r g i Juan
7 −− Modif ied : Roberto Gattuso
8 −− Modif ied : Corrado Bonfant i
9 −− Company : U n i v e r s i t a t P o l i t e c n i c a de Catalunya (UPC)

10 l i b r a r y IEEE ;
11 use IEEE . std_logic_1164 . a l l ;
12 use work . log_pkg . a l l ;
13 use work . SNN_pkg . a l l ;
14 use i e e e . numeric_std . a l l ;
15
16 e n t i t y PE_row i s
17 g e n e r i c (
18 row_number : i n t e g e r ;
19 L o a d I n i t F i l e : i n t e g e r
20) ;
21 port (
22 c l k : in s td_log i c ;
23 r e s e t : in s td_log i c ;
24 r e s e t _s p ik e : in s td_log i c ;
25 next_virt : in s td_log i c ;
26 v l a y e r s : in s td_log ic_vector (v laye r_b i t s downto 0) ;
27 BRAMD_seq : in std_log ic_vector (31 downto 0) ;
28 BRAMA_spike : in s td_log ic_vector (17 downto 0) ;
29 c o n f i g : in s td_log i c ;

115

VHDL source files

30 AM_on : in s td_log i c ;
31 sp_IntExt : in s td_log i c ;
32 enable_x : in std_log ic_vector (size_x_1 downto 0) ; −−
33 enable_y : in s td_log i c ;
34 next_PE_row : in s td_log i c ;
35 next_monit_row : in s td_log i c ;
36 monit_block : in s td_log i c ;
37 spike_inR : in std_log ic_vector (size_x_1 downto 0) ;
38 spike_outR : out std_log ic_vector (size_x_1 downto 0) ;
39 monit_data_in : in monit_type ;
40 monit_data_out : out monit_type
41) ;
42 end PE_row ;
43
44 a r c h i t e c t u r e connect ion o f PE_row i s
45
46 component PE i s −− Proce s s ing Element c e l l
47 g e n e r i c (
48 row_number : i n t e g e r ;
49 col_number : i n t e g e r ;
50 L o a d I n i t F i l e : i n t e g e r
51) ;
52 port (
53 c l k : in s td_log i c ;
54 r e s e t : in s td_log i c ;
55 r e s e t _s p ik e : in s td_log i c ;
56 next_virt : in s td_log i c ;
57 v l a y e r s : in s td_log ic_vector (v laye r_b i t s downto 0) ;
58 BRAMD_seq : in s td_log ic_vector (31 downto 0) ;
59 BRAMA_spike : in s td_log ic_vector (17 downto 0) ;
60 c o n f i g : in s td_log i c ;
61 AM_on : in s td_log i c ;
62 sp_IntExt : in s td_log i c ;
63 en_x : in s td_log i c ;
64 en_y : in s td_log i c ;
65 en_spike_tx : in s td_log i c ;
66 en_monit_tx : in s td_log i c ;
67 spike_input : in s td_log i c ;
68 spike_output : out s td_log i c ;
69 data_in_monit : in s td_log ic_vector (15 downto 0) ;
70 data_out_monit : out s td_log ic_vector (15 downto 0)
71) ;
72 end component ;
73
74 −−
75 −− Other s i g n a l s o f the e n t i t y
76 −−
77 begin
78
79 −− Row of PE port map gene ra t i on
80 gPEj : f o r j in 0 to size_x_1 generate −− columns
81 PEj : e n t i t y work .PE
82 g e n e r i c map(row_number ,
83 j ,
84 L o a d I n i t F i l e
85)
86 port map(
87 c lk ,
88 r e s e t ,
89 reset_spike_reg ,
90 next_virt ,

116

VHDL source files

91 v layer s ,
92 BRAMD_seq_reg ,
93 BRAMA_spike_reg ,
94 conf ig_reg ,
95 AM_on_reg ,
96 sp_IntExt_reg ,
97 enable_x_reg (j) ,
98 enable_y_reg ,
99 next_PE_row ,

100 next_monit_row ,−− en_monit_tx
101 spike_inR (j) ,
102 spike_outR (j) ,
103 monit_data_in (j) (15 downto 0) ,−− data_in_monit
104 monit_data_out (j) (15 downto 0)−− data_out_monit
105) ;
106 end generate gPEj ;
107
108 −−
109 −− S i g n a l r e g i s t e r i n g f o r t iming
110 −−
111
112 end a r c h i t e c t u r e connect ion ; −− o f PE_row

D.3 PE
breakatwhitespace

1 −−−
2 −− Pro j ec t Name : HEENS
3 −− Design Name : PE. vhd
4 −− Module Name : PE − b e h a v i o r a l
5 −−
6 −− Creator : S e r g i Juan & Jord i Madrenas
7 −− Modif ied : Roberto Gattuso
8 −− Modif ied : Corrado Bonfant i
9 −−

10 −− Company : U n i v e r s i t a t P o l i t e c n i c a de Catalunya (UPC)
11 l i b r a r y IEEE ;
12 use i e e e . std_logic_1164 . a l l ;
13 use IEEE .STD_LOGIC_MISC. a l l ;
14 use i e e e . std_logic_unsigned . a l l ;
15 use i e e e . numeric_std . a l l ;
16 use work . log_pkg . a l l ;
17 use work . SNN_pkg . a l l ;
18
19
20 e n t i t y PE i s
21 g e n e r i c (
22 row_number : i n t e g e r ;
23 col_number : i n t e g e r ;
24 L o a d I n i t F i l e : i n t e g e r
25) ;
26 port (
27 c l k : in s td_log i c ;
28 r e s e t : in s td_log i c ;
29 r e s e t _s p ik e : in s td_log i c ;
30 next_virt : in s td_log i c ;
31 v l a y e r s : in s td_log ic_vector (v laye r_b i t s downto 0) ;
32 BRAMD_seq : in s td_log ic_vector (31 downto 0) ;

117

VHDL source files

33 BRAMA_spike : in s td_log ic_vector (17 downto 0) ;
34 c o n f i g : in s td_log i c ;
35 AM_on : in s td_log i c ;
36 sp_IntExt : in s td_log i c ;
37 en_x : in s td_log i c ;
38 en_y : in s td_log i c ;
39 en_spike_tx : in s td_log i c ;
40 en_monit_tx : in s td_log i c ;
41 spike_input : in s td_log i c ;
42 spike_output : out s td_log i c ;
43 data_in_monit : in s td_log ic_vector (15 downto 0) ;
44 data_out_monit : out s td_log ic_vector (15 downto 0)
45) ;
46 end PE;
47
48 a r c h i t e c t u r e b e h a v i o r a l o f PE i s
49
50 component SynapNeuralMemory i s
51 g e n e r i c (
52 row_number : i n t e g e r ;
53 col_number : i n t e g e r ;
54 L o a d I n i t F i l e : i n t e g e r
55) ;
56 port (
57 c lka : in s td_log i c ;
58 ena : in STD_LOGIC;
59 wea : in std_log ic_vector (0 downto 0) ;
60 addra : in s td_log ic_vector (9 downto 0) ;
61 dina : in s td_log ic_vector (31 downto 0) ;
62 douta : out s td_log ic_vector (31 downto 0)
63) ;
64 end component ;
65
66 component spike_RAMs i s
67 g e n e r i c (
68 row_number : i n t e g e r ;
69 col_number : i n t e g e r ;
70 L o a d I n i t F i l e : i n t e g e r
71) ;
72 port (
73 c l k : in s td_log i c ;
74 r e s e t : in s td_log i c ;
75 en : in s td_log i c ;
76 Sp_IntExt : in s td_log i c ;
77 BRAMA_spike : in s td_log ic_vector (AER_RX_WIDTH − 1 downto 0) ;
78 BRAMD_seq : in std_log ic_vector (GLOBAL_SYN − 1 downto 0) ;
79 Config : in s td_log i c ;
80 AM_on : in s td_log i c ;
81 reset_spikeReg : in s td_log i c ;
82 GblSpike : out s td_log ic_vector (GLOBAL_SYN − 1 downto 0) ;
83 LclSp ike : out s td_log ic_vector ((LOCAL_SYN) − 2 downto 0)
84) ;
85 end component ;
86
87 component REG i s
88 port (
89 c l k : in s td_log i c ;
90 r e s e t : in s td_log i c ;
91 regcode : in s td_log ic_vector (2 downto 0) ;
92 en : in s td_log ic_vector (7 downto 0) ;
93 data_in0 : in s td_log ic_vector (15 downto 0) ;

118

VHDL source files

94 data_in1 : in s td_log ic_vector (15 downto 0) ;
95 data_in2 : in s td_log ic_vector (15 downto 0) ;
96 data_in3 : in s td_log ic_vector (15 downto 0) ;
97 data_in4 : in s td_log ic_vector (15 downto 0) ;
98 data_in5 : in s td_log ic_vector (15 downto 0) ;
99 data_in6 : in s td_log ic_vector (15 downto 0) ;

100 data_in7 : in s td_log ic_vector (15 downto 0) ;
101 data_out0 : out s td_log ic_vector (15 downto 0) ;
102 data_out1 : out s td_log ic_vector (15 downto 0) ;
103 data_out2 : out s td_log ic_vector (15 downto 0) ;
104 data_out3 : out s td_log ic_vector (15 downto 0) ;
105 data_out4 : out s td_log ic_vector (15 downto 0) ;
106 data_out5 : out s td_log ic_vector (15 downto 0) ;
107 data_out6 : out s td_log ic_vector (15 downto 0) ;
108 data_out7 : out s td_log ic_vector (15 downto 0)
109) ;
110 end component ;
111
112 component BUF i s
113 port (
114 c l k : in s td_log i c ;
115 r e s e t : in s td_log i c ;
116 en : in s td_log i c ;
117 data_in : in s td_log ic_vector (15 downto 0) ;
118 data_out : out s td_log ic_vector (15 downto 0)
119) ;
120 end component ;
121
122 component ALU i s
123 port (
124 c l k : in s td_log i c ;
125 r e s e t : in s td_log i c ;
126 InA : in std_log ic_vector (15 downto 0) ;
127 InB : in s td_log ic_vector (15 downto 0) ;
128 OP_CODE : in std_log ic_vector (5 downto 0) ;
129 OutCarry : out s td_log i c ;
130 OutZero : out s td_log i c ;
131 OutSolve : out s td_log ic_vector (31 downto 0)
132) ;
133 end component ;
134
135 −− Operation S i g n a l s
136 s i g n a l data_in : s td_log ic_vector (15 downto 0) ;
137 s i g n a l addr_reg : s td_log ic_vector (2 downto 0) ;
138 s i g n a l addr_reg2 : s td_log ic_vector (3 downto 0) ;
139 s i g n a l opcode : s td_log ic_vector (5 downto 0) ;
140 s i g n a l PE_en : s td_log i c ;
141
142 −− R e g i s t e r Bank S i g n a l s
143 s i g n a l regcode : s td_log ic_vector (2 downto 0) ;
144 s i g n a l REG_en : s td_log ic_vector (7 downto 0) ;
145 s i g n a l en_addr : s td_log ic_vector (7 downto 0) ;
146 s i g n a l en_op : s td_log ic_vector (7 downto 0) ;
147 s i g n a l data_in0 : s td_log ic_vector (15 downto 0) ;
148 s i g n a l data_in1 : s td_log ic_vector (15 downto 0) ;
149 s i g n a l data_in2 : s td_log ic_vector (15 downto 0) ;
150 s i g n a l data_in3 : s td_log ic_vector (15 downto 0) ;
151 s i g n a l data_in4 : s td_log ic_vector (15 downto 0) ;
152 s i g n a l data_in5 : s td_log ic_vector (15 downto 0) ;
153 s i g n a l data_in6 : s td_log ic_vector (15 downto 0) ;
154 s i g n a l data_in7 : s td_log ic_vector (15 downto 0) ;

119

VHDL source files

155 s i g n a l data_out0 : s td_log ic_vector (15 downto 0) ;
156 s i g n a l data_out1 : s td_log ic_vector (15 downto 0) ;
157 s i g n a l data_out2 : s td_log ic_vector (15 downto 0) ;
158 s i g n a l data_out3 : s td_log ic_vector (15 downto 0) ;
159 s i g n a l data_out4 : s td_log ic_vector (15 downto 0) ;
160 s i g n a l data_out5 : s td_log ic_vector (15 downto 0) ;
161 s i g n a l data_out6 : s td_log ic_vector (15 downto 0) ;
162 s i g n a l data_out7 : s td_log ic_vector (15 downto 0) ;
163
164 −− Monitoring Buf f e r s i g n a l s
165 s i g n a l en_buf_aux , en_buf : s td_log i c ;
166 s i g n a l data_in_buf : s td_log ic_vector (15 downto 0) ;
167
168 −−
169 −− Other s i g n a l s o f the e n t i t y
170 −−
171 begin
172
173
174 data_in <= BRAMD_seq(27 downto 12) ;
175 addr_reg <= BRAMD_seq(8 downto 6) ;
176 addr_reg2 <= BRAMD_seq(9 downto 6) ;
177 opcode <= BRAMD_seq(5 downto 0) when c o n f i g = ’0 ’ e l s e
178 (o th e r s => ’ 0 ’) ;
179
180 −−
181 −− Al l c o n t r o l and a r i t h m e t i c hardware o f the PE
182 −−
183 −−
184 −−
185 with opcode s e l e c t
186 en_buf_aux <= ’1 ’ when STOREB,
187 ’ 0 ’ when o th e r s ;
188
189 en_buf <= en_buf_aux or en_monit_tx ;
190
191 data_in_buf <= data_out0 when (en_monit_tx = ’0 ’) e l s e data_in_monit ;
192 −−
193 −−
194
195 with opcode s e l e c t
196 regcode <= " 001 " when RST,
197 " 010 " when SET,
198 " 011 " when SWAPS,
199 " 100 " when MOVSR,
200 " 101 " when MOVRS,
201 " 000 " when o th e r s ; −− External wr i t e case
202
203 −− R e g i s t e r Enable vec to r
204 with opcode s e l e c t
205 en_op <= en_addr when LDALL | MOVR | SWAPS | RST | SET | MOVRS | MOVSR,
206 " 00000001 " when LLFSR | SHLN | SHRN | RTL | RTR | INC | DEC | OP_ADD |

OP_SUB | MULS | OP_AND | OP_OR | INV | OP_XOR | MOVA | SHLAN | SHRAN | BITSET |
BITCLR,

207 " 00000011 " when LOADSP | LOADSN | MUL,
208 " 00000000 " when ot h e r s ;
209
210 −− R e g i s t e r enable vec to r by address
211 with addr_reg s e l e c t
212 en_addr <= " 00000001 " when " 000 " ,
213 " 00000010 " when " 001 " ,

120

VHDL source files

214 " 00000100 " when " 010 " ,
215 " 00001000 " when " 011 " ,
216 " 00010000 " when " 100 " ,
217 " 00100000 " when " 101 " ,
218 " 01000000 " when " 110 " ,
219 " 10000000 " when " 111 " ,
220 " 00000000 " when ot h e r s ;
221
222 −− Aux i l i a ry ALU_B operand
223 with addr_reg s e l e c t
224 B_aux <= data_out0 when " 000 " ,
225 data_out1 when " 001 " ,
226 data_out2 when " 010 " ,
227 data_out3 when " 011 " ,
228 data_out4 when " 100 " ,
229 data_out5 when " 101 " ,
230 data_out6 when " 110 " ,
231 data_out7 when " 111 " ,
232 X" 0000 " when o t he r s ;
233
234 −−
235 −−
236 −−
237 −− Write R0 (ACC)
238 with opcode s e l e c t
239 data_in0 <= data_in when LDALL,
240 LFSR(15 downto 0) when LLFSR,
241 (SynNeuMem_DataOUT(15 downto 1) & spike_a) when LOADSP | LOADSN,
242 x " 0000 " when RST,
243 x "FFFF" when SET,
244 B_aux when MOVA,
245 data_out0 when MOVR,
246 ALU_Solve(15 downto 0) when ot h e r s ;
247
248 −−
249 −−
250 −−
251 −− R e g i s t e r port map
252 REG_inst : REG
253 port map(
254 c l k => clk ,
255 r e s e t => r e s e t ,
256 regcode => regcode ,
257 en => REG_en,
258 data_in0 => data_in0 ,
259 data_in1 => data_in1 ,
260 data_in2 => data_in2 ,
261 data_in3 => data_in3 ,
262 data_in4 => data_in4 ,
263 data_in5 => data_in5 ,
264 data_in6 => data_in6 ,
265 data_in7 => data_in7 ,
266 data_out0 => data_out0 ,
267 data_out1 => data_out1 ,
268 data_out2 => data_out2 ,
269 data_out3 => data_out3 ,
270 data_out4 => data_out4 ,
271 data_out5 => data_out5 ,
272 data_out6 => data_out6 ,
273 data_out7 => data_out7
274) ;

121

VHDL source files

275
276 −−
277 −−
278 −−
279 −− Buf f e r monitor port map
280 Buf f e r_ins t : BUF
281 port map(
282 c l k => clk ,
283 r e s e t => r e s e t ,
284 en => en_buf ,
285 data_in => data_in_buf ,
286 data_out => data_out_monit
287) ;
288
289 end b e h a v i o r a l ;

D.4 Z_AER_interface (first version)
breakatwhitespace

1 −−−
2 −− Pro j ec t : High Speed S e r i a l AER i n t e r f a c e f o r communicate SNN
3 −− Engineer : Agosto 2016 − Mireya Zapata
4
5 −− Module Name : Z_AER_INTERF. vhd
6 −−
7 −− D e s c r i p t i o n : I n t e r f a c e that a l l ow s the connect ion between HEENS and high speed AER

module
8 −− Dependencies : SNN_PKG. vhd
9 −− modi f i ed : Corrado Bonfant i

10 l i b r a r y IEEE ;
11 use IEEE . STD_LOGIC_1164 . a l l ;
12 use i e e e . s td_log i c_ar i th . a l l ;
13 use IEEE .STD_LOGIC_MISC. a l l ;
14 use IEEE .STD_LOGIC_UNSIGNED. a l l ;
15
16 l i b r a r y work ;
17 use work . SNN_pkg . a l l ;
18
19 e n t i t y Z_AER_INTERFACE i s
20 port (
21 r e s e t : in s td_log i c ;
22 −− AER s i d e . −− AER_clk_in CLOCK DOMAIN −−
23 AER_clk_in : in s td_log i c ;
24 eo_tx_data : in s td_log i c ;
25 eoconf_done : in s td_log i c ;
26 dlyEmpty : out s td_log i c ;
27 −− tx data −−−
28 En_ErrFifo : in s td_log i c ;
29 OutFifoEn : in s td_log i c ;
30 OutFifoData : out s td_log ic_vector (0 to AER_TX_WIDTH − 1) ;
31 OutFifoEmpty : out s td_log i c ;
32 OutFifoVal id : out s td_log i c ;
33 −− mon data −−
34 MonFifoEn : in s td_log i c ;
35 MonFifoData : out s td_log ic_vector (0 to 15) ;
36 MonFifoEmpty : out s td_log i c ;
37 MonFifoValid : out s td_log i c ;
38 −− −− rx data −−

122

VHDL source files

39 AER_rx_data_out : in s td_log ic_vector (AER_RX_WIDTH−1 downto 0) ;
40 AER_rx_valid_out : in s td_log i c ;
41 AER_rst_spikes_in : in s td_log i c ;
42 −− −−−−−−−−−− HEENS_Side −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 HEENS_clk : in s td_log i c ;
44 −− rx s i d e
45 aer_addr_out : out s td_log ic_vector (AER_RX_WIDTH−1 downto 0) ;
46 monit_block : out s td_log i c ;
47 −−−−− Conf igurat ion data −−−−−−−−−−−−−−−−−−−−−
48 ph_conf : in s td_log i c ;
49 ph_dist : in s td_log i c ;
50 enFIFO : in s td_log i c ;
51 −−−−−−−−−−−Own Data INPUT FIFO −−−−−−−−−−−−−−−−−
52 Z_ownCnfData : in STD_LOGIC_VECTOR(31 downto 0) ;
53 Z_ownCnfWr : in s td_log i c ;
54 −− −−−−−−−−−−−−−−−− HEENS TO AER_SRT −−−−−−−−−−−−−−−−−−−−−−−−
55 row_sp : in std_log ic_vector (4 downto 0) ;
56 col_sp : in s td_log ic_vector (4 downto 0) ;
57 v i r t : in s td_log ic_vector (2 downto 0) ;
58 sp ike_va l id : in s td_log i c ;
59 eo_exec : in s td_log i c ;
60 monit_data_in : in monit_type ;
61 start_monit : in s td_log i c ;
62 −− −−−−−−−−−−−−−−−−−AER_SRT TO HEENS −−−−−−−−−−−−−−−−−−−−−−−−
63 AM_on : out s td_log i c ;
64 BRAMA_spike : out s td_log ic_vector (AER_RX_WIDTH−1 downto 0) ;
65 AddConf : out s td_log ic_vector (31 downto 0) ;
66 DataConf : out s td_log ic_vector (31 downto 0) ;
67 Sp_IntExt : out s td_log i c
68) ;
69 end e n t i t y ;
70
71 a r c h i t e c t u r e arc o f Z_AER_INTERFACE i s
72
73 component mem_zdelay IS
74 PORT(
75 c lka : IN STD_LOGIC;
76 ena : IN STD_LOGIC;
77 wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0) ;
78 addra : IN STD_LOGIC_VECTOR(10 DOWNTO 0) ;
79 dina : IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
80 douta : OUT STD_LOGIC_VECTOR(4 DOWNTO 0)
81) ;
82 END component ;
83
84 component monitFIFO i s
85 PORT (
86 r s t : IN STD_LOGIC;
87 wr_clk : IN STD_LOGIC;
88 rd_clk : IN STD_LOGIC;
89 din : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
90 wr_en : IN STD_LOGIC;
91 rd_en : IN STD_LOGIC;
92 dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
93 f u l l : OUT STD_LOGIC;
94 a lmost_fu l l : OUT STD_LOGIC;
95 empty : OUT STD_LOGIC;
96 almost_empty : OUT STD_LOGIC;
97 v a l i d : OUT STD_LOGIC
98) ;
99 END component ;

123

VHDL source files

100 −−
101 −− Other s i g n a l s o f the e n t i t y
102 −−
103
104 −− Monitoring c o n t r o l l e r −−−
105 type mon_fsm i s (mon_IDLE, mon_WRITE) ;
106 s i g n a l mon_state : mon_fsm ;
107
108 s i g n a l dIn_monit f i fo : s td_log ic_vector (15 downto 0) ;
109 s i g n a l MonitFifoData_i : s td_log ic_vector (15 downto 0) ;
110 s i g n a l MonitFifoEmpty_i : s td_log i c ;
111 s i g n a l MonitFi foFul l_i : s td_log i c ;
112 s i g n a l MonitFi foVal id_i : s td_log i c ;
113 s i g n a l rd_monit f i fo : s td_log i c ;
114 s i g n a l wr_monitf i fo : s td_log i c ;
115 s i g n a l wr_mon_en : s td_log i c ;
116 s i g n a l monit_block_i : s td_log i c ;
117 s i g n a l monit_count : s td_log ic_vector ((log2_size_x_1 − 1) downto 0) ;
118 begin
119 −− ===
120 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− OUTPUT_FIFO HEENS TO AER −−−−
121 −− ===
122 −− ==
123 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− INPUT FIFO (AER −> HEENS)
124 −− ==
125 −− ===
126 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− READ CONFIGURATION DATA
127 −− ===
128 −− ===
129 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DELAY CONTROLLER −−−−−
130 −− ===
131 −− ===
132 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ERROR DETECTION −−−−−−−−−−−−−−
133 −− ===
134 −− ===
135 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MONITORING CONTROLLER −
136 −− ===
137
138 monit_f i fo_inst : monitFIFO
139 PORT map(
140 r s t => r e s e t ,
141 rd_clk => AER_clk_in ,
142 wr_clk => HEENS_clk ,
143 din => dIn_monit f i fo ,
144 wr_en => wr_monitf i fo ,
145 rd_en => rd_monit f i fo ,
146 dout => MonitFifoData_i ,
147 f u l l => MonitFi foFul l_i ,
148 a lmost_fu l l => OPEN,
149 empty => MonitFifoEmpty_i ,
150 almost_empty => OPEN,
151 v a l i d => MonitFi foVal id_i
152) ;
153
154 MonFifoEmpty <= MonitFifoEmpty_i ;
155 MonFifoValid <= MonitFi foVal id_i ;
156 MonFifoData <= MonitFifoData_i ;
157 wr_monitf i fo <= wr_mon_en and (not MonitFi foFul l_i) ;
158 rd_monit f i fo <= MonFifoEn ;
159 monit_block <= monit_block_i or MonitFi foFul l_i ;
160

124

VHDL source files

161 p r o c e s s (HEENS_clk)
162 begin
163 i f (r i s ing_edge (HEENS_clk)) then
164 case mon_state i s
165 when mon_IDLE =>
166 i f (start_monit = ’1 ’ and MonitFi foFul l_i = ’ 0 ’) then
167 mon_state <= mon_WRITE;
168 e l s e
169 mon_state <= mon_IDLE;
170 end i f ;
171 when mon_WRITE =>
172 i f (start_monit = ’1 ’ or monit_block_i = ’1 ’ or MonitFi foFul l_i =

’ 1 ’) then
173 mon_state <= mon_WRITE;
174 e l s e
175 mon_state <= mon_IDLE;
176 end i f ;
177 when o th e r s =>
178 mon_state <= mon_IDLE;
179 end case ;
180 end i f ;
181 end p r o c e s s ;
182
183 −− Output depends s o l e l y on the cur rent s t a t e
184 p r o c e s s (mon_state)
185 begin
186 case mon_state i s
187 when mon_IDLE =>
188 wr_mon_en <= ’ 0 ’ ;
189 when mon_WRITE =>
190 wr_mon_en <= ’ 1 ’ ;
191 when o th e r s =>
192 wr_mon_en <= ’ 0 ’ ;
193 end case ;
194 end p r o c e s s ;
195
196 −− Process to l e t the FIFO loads a l l the e lements o f " monit_data "
197 −− input (the re are " s ize_x " data to load)
198
199 monit_count_process : p r o c e s s (HEENS_clk)
200 begin
201 i f (r i s ing_edge (HEENS_clk)) then
202 i f (r e s e t = ’ 1 ’) then
203 monit_block_i <= ’ 0 ’ ;
204 monit_count <= (o t he r s => ’ 0 ’) ;
205 e l s i f (MonitFi foFul l_i = ’ 1 ’) then
206 monit_block_i <= monit_block_i ;
207 monit_count <= monit_count ;
208 e l s i f (monit_block_i = ’ 1 ’) then
209 i f (monit_count = size_x_1 − 1) then
210 monit_block_i <= ’ 0 ’ ;
211 monit_count <= monit_count + 1 ;
212 e l s e
213 monit_block_i <= ’ 1 ’ ;
214 monit_count <= monit_count + 1 ;
215 end i f ;
216 e l s i f (start_monit = ’1 ’) then
217 monit_block_i <= ’ 1 ’ ;
218 monit_count <= (o t he r s => ’ 0 ’) ;
219 end i f ;
220 end i f ;

125

VHDL source files

221 end p r o c e s s ;
222
223 dIn_monit f i fo <= monit_data_in (conv_integer (unsigned (monit_count))) (15 downto 0) ;
224
225 −− ===
226 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Clock sync −−−−−−−−−−−−−−−
227 −− ===
228
229 end arc ;

D.5 Z_AER_tx (first version)
breakatwhitespace

1 −−
2 −− Pro j ec t : High Speed S e r i a l AER i n t e r f a c e f o r communicate SNN
3 −− Engineer : Taho Dorta
4 −− Mireya Zapata
5 −− Create Date : Mayo 2013
6 −− Design Name : AER_top
7 −− Module Name : AER_tx . vhd
8 −− Modif ied : Corrado Bonfant i
9 l i b r a r y IEEE ;

10 use i e e e . std_logic_1164 . a l l ;
11 use IEEE .STD_LOGIC_UNSIGNED. a l l ;
12
13 l i b r a r y work ;
14 use work . SNN_pkg . a l l ;
15
16 e n t i t y Z_AER_tx i s
17 port (
18 user_clk : in s td_log i c ;
19 r e s e t : in s td_log i c ;
20 −− bypass f i f o i f
21 f_data_bp : in s td_log ic_vector (0 to 15) ;
22 f_valid_bp : in s td_log i c ;
23 f_empty_bp : in s td_log i c ;
24 f_rd_bp : out s td_log i c ;
25 −− Aurora tx i f
26 tx_d_o : out std_log ic_vector (0 to 15) ;
27 tx_src_rdy_n_o : out s td_log i c ;
28 tx_dst_rdy_n_i : in s td_log i c ;
29 CHANNEL_UP : in s td_log i c ;
30 −− inputs
31 chip_id_in : in s td_log ic_vector (CHIP_ID_WIDTH − 1 downto 0) ;
32 eo_exec_in : in s td_log i c ;
33 en_monit_in : in s td_log i c ;
34 AER_on_in : in s td_log i c ;
35 AER_eo_distrib : in s td_log i c ;
36 AER_eo_Mon : in s td_log i c ;
37 rst_spikes_o : out s td_log i c ;
38 −− tx data
39 OutFifo_data_r_in : in s td_log ic_vector (0 to AER_TX_WIDTH − 1) ;
40 OutFifoVal id : in s td_log i c ;
41 OutFifo_empty_in : in s td_log i c ;
42 OutFifo_rd_out : out s td_log i c ;
43 eo_tx_data : out s td_log i c ;
44 eoconf_done : out s td_log i c ;
45 −− mn data

126

VHDL source files

46 MonFifo_data_r_in : in s td_log ic_vector (0 to 15) ;
47 MonFifoValid : in s td_log i c ;
48 MonFifo_empty_in : in s td_log i c ;
49 MonFifo_rd_out : out s td_log i c ;
50 monit_busy : out s td_log i c ;
51 monit_bp : out s td_log i c ;
52 −− −−−−−−−−−−−−−−−−−− zynq s i g n a l s −−−−−−−−−−−−−
53 En_ErrFifo : out s td_log i c ;
54 s t _ i n i t c o n f : in s td_log i c ;
55 s t _ i n i t : in s td_log i c ;
56 en_conf ig : in s td_log i c
57) ;
58 a t t r i b u t e KEEP_HIERARCHY : s t r i n g ;
59 a t t r i b u t e KEEP_HIERARCHY of Z_AER_tx : e n t i t y i s "YES" ;
60 end e n t i t y ;
61
62 a r c h i t e c t u r e arc o f Z_AER_tx i s
63
64 −− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Parameter D e c l a r a t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65
66 constant DLY : time := 1 ns ;
67
68 −− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n t e r n a l R e g i s t e r D e c l a r a t i o n s ∗∗∗∗∗∗∗∗
69
70 s i g n a l reset_c : s td_log i c ;
71
72 s i g n a l dly_data_xfer : s td_log i c ;
73 s i g n a l channel_up_cnt : s td_log ic_vector (4 downto 0) := " 00000 " ;
74
75 −− TX CONTROLLER fsm ___
76
77 type tx_fsm i s (ST_TX_INIT_IDLE, ST_TX_INIT, TX_DATA_1,
78 ST_TX_EOINIT, ST_TX_CONF_IDLE,
79 ST_TX_CONFIG, ST_TX_DATACONF,
80 ST_TX_EOCONFIG, TX_IDLE_1, TX_SYNC_1,
81 TX_SYNC_2, TX_BP_1, TX_START_1, TX_DATA_2,
82 TX_FINISH_1, TX_BP_2, TX_BP_2_XT,
83 TX_IDLE_2, TX_START_MON, TX_FINISH_MON,
84 TX_MON1, TX_MON2, TX_MON2_WAIT) ;
85
86 s i g n a l tx_state : tx_fsm ;
87 s i g n a l mux_i : s td_log ic_vector (3 downto 0) ;
88 −− BYPASS __
89 −− f i n i t e s t a t e machine to read f i f o and send data to aurora
90 s i g n a l en_bypass : s td_log i c ;
91 type bp_fsm i s (BP_IDLE, BP_READ, BP_READ_WRITE,
92 BP_WAIT, BP_WAIT1, BP_EMPTY) ;
93 s i g n a l bp_state : bp_fsm ;
94 s i g n a l fifoB_rd_ena : s td_log i c ;
95 s i g n a l tx_src_rdy_n_bp : s td_log i c ;
96 s i g n a l tx_d_bp : s td_log ic_vector (0 to 15) ;
97 s i g n a l bp_oip : s td_log i c ;
98 s i g n a l ready_tx : s td_log i c ;
99 −− START monitor ing __

100 s i g n a l tx_src_rdy_n_sm : s td_log i c ;
101 s i g n a l tx_d_sm : std_log ic_vector (0 to 15) ;
102 s i g n a l en_start_mon : s td_log i c ;
103 s i g n a l sm_pck_valid : s td_log i c ;
104 type sm_fsm i s (sm_IDLE, sm_SEND, sm_DONE_SM) ;
105 s i g n a l sm_state : sm_fsm ;
106 s i g n a l sm_done : s td_log i c ;

127

VHDL source files

107
108 −− MONITORING __
109 s i g n a l tx_src_rdy_n_mn : s td_log i c ;
110 s i g n a l tx_d_mn : std_log ic_vector (15 downto 0) ;
111 s i g n a l en_monit : s td_log i c ;
112 s i g n a l MonFifo_rd_en : s td_log i c ;
113 type mn_fsm i s (mn_IDLE, mn_READ, mn_READ_WRITE,
114 mn_WAIT, mn_WAIT1, mn_EMPTY) ;
115 s i g n a l mn_state : mn_fsm ;
116 s i g n a l wait_docc_mn : s td_log i c ;
117 s i g n a l mn_oip : s td_log i c ;
118 s i g n a l mn_oip2 : s td_log i c ;
119 s i g n a l monit_busy_int : s td_log i c ;
120 s i g n a l monit_bp_int : s td_log i c ;
121 s i g n a l MonFifoValid_in : s td_log i c ;
122
123 −− FINISH monitoring__
124 s i g n a l tx_src_rdy_n_fm : s td_log i c ;
125 s i g n a l tx_d_fm : std_log ic_vector (0 to 15) ;
126 s i g n a l en_finish_mon : s td_log i c ;
127 s i g n a l fm_pck_valid : s td_log i c ;
128 type fm_fsm i s (fm_IDLE , fm_SEND, fm_DONE_st) ;
129 s i g n a l fm_state : fm_fsm ;
130 s i g n a l fm_done : s td_log i c ;
131
132 s i g n a l tx_mux : s td_log ic_vector (3 downto 0) ;
133 s i g n a l r s t_sp ikes_i : s td_log i c ;
134 s i g n a l data_ready : s td_log i c := ’ 0 ’ ;
135
136 −−
137 −− Other s i g n a l s o f the e n t i t y
138 −−
139 begin
140
141 −− ===
142 −− −−−−−−−−−−−−−−−−−−−−−−−− READY TX SIGNAL genera t i on −−−−−−−−−−−−−−−
143 −− ===
144 −−
145 −− ready tx s i g n a l gene ra t i on . Act ive HIGH. I t i n d i c a t e s when i t i s p o s s i b l e to

wr i t e data in the BUS
146 −−
147
148 ready_tx <= not tx_dst_rdy_n_i ;
149 −− ===
150 −− −− BYPASS FIFO −−−−−−−−−−
151 −− ===
152
153 −− MOORE FSM
154 −− Logic to advance to the next s t a t e
155 p r o c e s s (user_clk)
156 begin
157 i f (r i s ing_edge (user_clk)) then
158 case bp_state i s
159 when BP_IDLE =>
160 i f (ready_tx = ’1 ’ and f_empty_bp = ’0 ’ and en_bypass = ’1 ’) then
161 bp_state <= BP_READ;
162 e l s e
163 bp_state <= BP_IDLE;
164 end i f ;
165 when BP_READ =>
166 bp_state <= BP_IDLE;

128

VHDL source files

167 i f (ready_tx = ’ 1 ’) then
168 bp_state <= BP_READ_WRITE;
169 end i f ;
170 when BP_READ_WRITE =>
171 bp_state <= BP_EMPTY;
172 i f ready_tx = ’1 ’ and f_empty_bp = ’0 ’ then
173 bp_state <= BP_READ_WRITE;
174 end i f ;
175 when BP_WAIT =>
176 bp_state <= BP_WAIT;
177 i f ready_tx = ’1 ’ then
178 bp_state <= BP_WAIT1;
179 end i f ;
180 when BP_WAIT1 =>
181 bp_state <= BP_READ;
182 when BP_EMPTY =>
183 bp_state <= BP_IDLE;
184 i f ready_tx = ’0 ’ then
185 bp_state <= BP_WAIT;
186 end i f ;
187 when o th e r s =>
188 bp_state <= BP_IDLE;
189 end case ;
190 end i f ;
191 end p r o c e s s ;
192
193 −− Output depends s o l e l y on the cur rent s t a t e
194 p r o c e s s (bp_state)
195 begin
196 case bp_state i s
197 when BP_IDLE =>
198 f ifoB_rd_ena <= ’ 0 ’ ;
199 bp_oip <= ’ 0 ’ ;
200 wait_docc_bp <= ’ 1 ’ ;
201 when BP_READ =>
202 f ifoB_rd_ena <= ’ 1 ’ ; −− −−read
203 bp_oip <= ’ 1 ’ ;
204 wait_docc_bp <= ’ 1 ’ ;
205 when BP_READ_WRITE =>
206 f ifoB_rd_ena <= ’ 1 ’ ; −− −−read
207 bp_oip <= ’ 1 ’ ;
208 wait_docc_bp <= ’ 1 ’ ;
209 when BP_WAIT =>
210 f ifoB_rd_ena <= ’ 0 ’ ;
211 bp_oip <= ’ 1 ’ ; −− −−−done
212 wait_docc_bp <= ’ 1 ’ ;
213 when BP_WAIT1 =>
214 f ifoB_rd_ena <= ’ 0 ’ ;
215 bp_oip <= ’ 1 ’ ; −− −−−done
216 wait_docc_bp <= ’ 0 ’ ;
217 when BP_EMPTY =>
218 f ifoB_rd_ena <= ’ 0 ’ ;
219 bp_oip <= ’ 1 ’ ; −− −−−done
220 wait_docc_bp <= ’ 1 ’ ;
221 when o th e r s =>
222 f ifoB_rd_ena <= ’ 0 ’ ;
223 bp_oip <= ’ 1 ’ ;
224 wait_docc_bp <= ’ 1 ’ ;
225 end case ;
226 end p r o c e s s ;
227

129

VHDL source files

228 −− f i f o data bypass between f i f o and tx_d
229 f_rd_bp <= fifoB_rd_ena and ready_tx ;
230 tx_d_bp <= f_data_bp ;
231 tx_src_rdy_n_bp <= (f_valid_bp and wait_docc_bp) or tx_dst_rdy_n_i ;
232 −− ===
233 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− START MONITORING PACKET −−−−−−−−−
234 −− ===
235
236 tx_d_sm <= CTRL_HEAD & START_MON_HEAD & " 0110 " & CHIP_ID_in ;
237
238 −− MOORE FSM
239 −− Logic to advance to the next s t a t e
240 p r o c e s s (user_clk)
241 begin
242 i f (r i s ing_edge (user_clk)) then
243 i f (reset_c = ’ 1 ’) then
244 sm_state <= sm_IDLE ;
245 e l s e
246 case sm_state i s
247 when sm_IDLE =>
248 sm_state <= sm_IDLE ;
249 i f (ready_tx = ’1 ’ AND en_start_mon = ’ 1 ’) then
250 sm_state <= sm_SEND;
251 end i f ;
252 when sm_SEND =>
253 sm_state <= sm_IDLE ;
254 i f (ready_tx = ’ 1 ’) then
255 sm_state <= sm_DONE_SM;
256 end i f ;
257 when sm_DONE_SM =>
258 sm_state <= sm_IDLE ;
259 when o th e r s =>
260 sm_state <= sm_IDLE ;
261 end case ;
262 end i f ;
263 end i f ;
264 end p r o c e s s ;
265
266 −− Output depends s o l e l y on the cur rent s t a t e
267 p r o c e s s (sm_state)
268 begin
269 case sm_state i s
270 when sm_IDLE =>
271 sm_pck_valid <= ’ 1 ’ ;
272 sm_done <= ’ 0 ’ ;
273 when sm_SEND =>
274 sm_pck_valid <= ’ 0 ’ ; −− > send
275 sm_done <= ’ 0 ’ ;
276 when sm_DONE_SM =>
277 sm_pck_valid <= ’ 1 ’ ;
278 sm_done <= ’ 1 ’ ; −− > done
279 when o th e r s =>
280 sm_pck_valid <= ’ 1 ’ ;
281 sm_done <= ’ 0 ’ ;
282 end case ;
283 end p r o c e s s ;
284
285 tx_src_rdy_n_sm <= sm_pck_valid or (not ready_tx) ;
286
287
288 −− ===

130

VHDL source files

289 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Monitoring PACKET −−−−−−−−−−−−−−−
290 −− ===
291
292 −− moore fsm
293 −− Logic to advance to the next s t a t e
294 p r o c e s s (user_clk)
295 begin
296 i f (r i s ing_edge (user_clk)) then
297 case mn_state i s
298 when mn_IDLE =>
299 mn_state <= mn_IDLE;
300 i f (ready_tx = ’1 ’and MonFifo_empty_in = ’0 ’and en_monit = ’1 ’) then
301 mn_state <= mn_READ;
302 end i f ;
303 when mn_READ =>
304 mn_state <= mn_IDLE;
305 i f (ready_tx = ’ 1 ’) then
306 mn_state <= mn_READ_WRITE;
307 end i f ;
308 when mn_READ_WRITE =>
309 mn_state <= mn_EMPTY;
310 i f ready_tx = ’1 ’ and MonFifo_empty_in = ’0 ’ then
311 mn_state <= mn_READ_WRITE;
312 end i f ;
313 when mn_WAIT =>
314 mn_state <= mn_WAIT;
315 i f ready_tx = ’1 ’ then
316 mn_state <= mn_WAIT1;
317 end i f ;
318 when mn_WAIT1 =>
319 mn_state <= mn_READ;
320 when mn_EMPTY =>
321 mn_state <= mn_IDLE;
322 i f ready_tx = ’0 ’ then
323 mn_state <= mn_WAIT;
324 end i f ;
325 when o th e r s =>
326 mn_state <= mn_IDLE;
327 end case ;
328 end i f ;
329 end p r o c e s s ;
330
331 −− Output depends s o l e l y on the cur rent s t a t e
332 p r o c e s s (mn_state)
333 begin
334 case mn_state i s
335 when mn_IDLE =>
336
337 MonFifo_rd_en <= ’ 0 ’ ;
338 mn_oip <= ’ 0 ’ ;
339 wait_docc_mn <= ’ 1 ’ ;
340 when mn_READ =>
341 MonFifo_rd_en <= ’ 1 ’ ; −− −−read
342 mn_oip <= ’ 1 ’ ;
343 wait_docc_mn <= ’ 1 ’ ;
344 when mn_READ_WRITE =>
345 MonFifo_rd_en <= ’ 1 ’ ; −− −−read
346 mn_oip <= ’ 1 ’ ;
347 wait_docc_mn <= ’ 1 ’ ;
348 when mn_WAIT =>
349 MonFifo_rd_en <= ’ 0 ’ ;

131

VHDL source files

350 mn_oip <= ’ 1 ’ ;
351 wait_docc_mn <= ’ 1 ’ ;
352 when mn_WAIT1 =>
353 MonFifo_rd_en <= ’ 0 ’ ;
354 mn_oip <= ’ 1 ’ ;
355 wait_docc_mn <= ’ 0 ’ ;
356 when mn_EMPTY =>
357 MonFifo_rd_en <= ’ 0 ’ ;
358 mn_oip <= ’ 1 ’ ; −− −−−done
359 wait_docc_mn <= ’ 1 ’ ;
360 when o th e r s =>
361 MonFifo_rd_en <= ’ 0 ’ ;
362 mn_oip <= ’ 0 ’ ;
363 wait_docc_mn <= ’ 1 ’ ;
364 end case ;
365 end p r o c e s s ;
366
367 p r o c e s s (user_clk)
368 begin
369 i f (r i s ing_edge (user_clk)) then
370 mn_oip2 <= not mn_oip ;
371 end i f ;
372 end p r o c e s s ;
373
374 MonFifoValid_in <= not MonFifoValid ;
375 MonFifo_rd_out <= MonFifo_rd_en and ready_tx ;
376 tx_d_mn <= MonFifo_data_r_in ;
377 tx_src_rdy_n_mn <=(MonFifoValid_in and wait_docc_mn) or tx_dst_rdy_n_i ;
378
379
380 −− ===
381 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−− FINISH MONITORING PACKET −−−−−−−−−−−−−
382 −− ===
383
384 tx_d_fm <= CTRL_HEAD & EOMON_HEAD & " 0110 " & CHIP_ID_in ;
385
386 −− MOORE FSM
387 −− Logic to advance to the next s t a t e
388 p r o c e s s (user_clk)
389 begin
390 i f (r i s ing_edge (user_clk)) then
391 i f (reset_c = ’ 1 ’) then
392 fm_state <= fm_IDLE ;
393 e l s e
394 case fm_state i s
395 when fm_IDLE =>
396 fm_state <= fm_IDLE ;
397 i f (ready_tx = ’1 ’ AND en_finish_mon = ’ 1 ’) then
398 fm_state <= fm_SEND;
399 end i f ;
400 when fm_SEND =>
401 fm_state <= fm_IDLE ;
402 i f (ready_tx = ’ 1 ’) then
403 fm_state <= fm_DONE_ST;
404 end i f ;
405 when fm_DONE_ST =>
406 fm_state <= fm_IDLE ;
407 when o th e r s =>
408 fm_state <= fm_IDLE ;
409 end case ;
410 end i f ;

132

VHDL source files

411 end i f ;
412 end p r o c e s s ;
413
414 −− Output depends s o l e l y on the cur rent s t a t e
415 p r o c e s s (fm_state)
416 begin
417 case fm_state i s
418 when fm_IDLE =>
419 fm_pck_valid <= ’ 1 ’ ;
420 fm_done <= ’ 0 ’ ;
421 when fm_SEND =>
422 fm_pck_valid <= ’ 0 ’ ; −− > send
423 fm_done <= ’ 0 ’ ;
424 when fm_DONE_ST =>
425 fm_pck_valid <= ’ 1 ’ ;
426 fm_done <= ’ 1 ’ ; −− > done
427 when o th e r s =>
428 fm_pck_valid <= ’ 1 ’ ;
429 fm_done <= ’ 0 ’ ;
430 end case ;
431 end p r o c e s s ;
432
433 tx_src_rdy_n_fm <= fm_pck_valid or (not ready_tx) ;
434 −− ===
435 −− −−−−−−−−−−−−−−−−−−−−−−−−−−− TX_MAIN CONTROLLER −−−−−−−−−−−−−−−−−−−
436 −− ===
437
438 p r o c e s s (user_clk)
439 begin
440 i f (r i s ing_edge (user_clk)) then
441 i f (reset_c = ’ 1 ’) then
442 tx_state <= ST_TX_INIT_IDLE;
443 e l s e
444 case tx_state i s
445 −−
446 −− other s t a t e s
447 −−
448 when TX_IDLE_1 =>
449 tx_state <= TX_IDLE_1;
450 i f (en_monit_in = ’ 1 ’) then
451 tx_state <= TX_START_MON;
452 e l s i f (eo_exec_in = ’ 1 ’) then
453 tx_state <= TX_SYNC_1;
454 end i f ;
455
456 −− Monitoring s t a t e s
457
458 when TX_START_MON =>
459 tx_state <= TX_START_MON;
460 i f (sm_done = ’ 1 ’) then
461 tx_state <= TX_MON1;
462 end i f ;
463
464 when TX_MON1 =>
465 tx_state <= TX_MON1;
466 i f (MonFifo_empty_in = ’1 ’and mn_oip = ’0 ’and mn_oip2 = ’0 ’) then
467 tx_state <= TX_FINISH_MON;
468 end i f ;
469
470 when TX_FINISH_MON =>
471 tx_state <= TX_FINISH_MON;

133

VHDL source files

472 i f (fm_done = ’ 1 ’) then
473 tx_state <= TX_MON2;
474 end i f ;
475
476 when TX_MON2 =>
477 tx_state <= TX_MON2;
478 i f (AER_eo_Mon = ’ 1 ’) then
479 tx_state <= TX_MON2_WAIT;
480 end i f ;
481
482 when TX_MON2_WAIT =>
483 tx_state <= TX_MON2_WAIT;
484 i f (f_empty_bp = ’1 ’ and bp_oip = ’ 0 ’) then
485 i f (MonFifo_empty_in = ’0 ’ or en_monit_in = ’ 1 ’) then
486 tx_state <= TX_START_MON;
487 e l s e
488 tx_state <= TX_IDLE_1;
489 end i f ;
490 end i f ;
491
492 −−
493 −− other s t a t e s
494 −−
495 end case ;
496 end i f ;
497 end i f ;
498 end p r o c e s s ;
499
500 output_tx_fsm : p r o c e s s (tx_state)
501 begin
502 en_sync <= ’ 0 ’ ;
503 en_bypass <= ’ 0 ’ ;
504 en_start <= ’ 0 ’ ;
505 en_data <= ’ 0 ’ ;
506 en_f in i sh <= ’ 0 ’ ;
507 en_idle <= ’ 0 ’ ;
508 en_in i t <= ’ 0 ’ ;
509 en_eo in i t <= ’ 0 ’ ;
510 en_conf <= ’ 0 ’ ;
511 en_eoconf <= ’ 0 ’ ;
512 tx_mux <= " 0000 " ;
513 r s t_sp ike s_i <= ’ 0 ’ ;
514 En_ErrFifo <= ’ 0 ’ ;
515 monit_busy_int <= ’ 0 ’ ;
516 monit_bp_int <= ’ 0 ’ ;
517 en_monit <= ’ 0 ’ ;
518 en_start_mon <= ’ 0 ’ ;
519 en_finish_mon <= ’ 0 ’ ;
520
521 case tx_state i s
522 −−
523 −− other s t a t e s
524 −−
525
526 when TX_IDLE_1 =>
527 en_idle <= ’ 1 ’ ;
528 tx_mux <= " 0110 " ;
529 En_ErrFifo <= ’ 1 ’ ;
530
531 when TX_START_MON =>
532 en_start_mon <= ’ 1 ’ ;

134

VHDL source files

533 tx_mux <= " 1100 " ;
534 monit_busy_int <= ’ 1 ’ ;
535
536 when TX_MON1 =>
537
538 en_monit <= ’ 1 ’ ;
539 tx_mux <= " 1011 " ;
540 monit_busy_int <= ’ 1 ’ ;
541
542 when TX_FINISH_MON =>
543 en_finish_mon <= ’ 1 ’ ;
544 tx_mux <= " 1101 " ;
545 En_ErrFifo <= ’ 1 ’ ;
546 monit_busy_int <= ’ 1 ’ ;
547
548 when TX_MON2 =>
549 en_bypass <= ’ 1 ’ ;
550 tx_mux <= " 0001 " ;
551 monit_bp_int <= ’ 1 ’ ;
552
553 when TX_MON2_WAIT =>
554 en_bypass <= ’ 1 ’ ;
555 tx_mux <= " 0001 " ;
556 monit_bp_int <= ’ 1 ’ ;
557
558 −−
559 −− other s t a t e s
560 −−
561
562 end case ;
563 end p r o c e s s ;
564
565 rst_spikes_o <= rst_sp ikes_i ;
566 eo_tx_data <= en_f in i sh ;
567 monit_busy <= monit_busy_int ;
568 monit_bp <= monit_bp_int ;
569
570 −− ===
571 −− −−−−−−−−−−−−−−−−−−−−−−−−−−M U X E S (output ass ignment)−−−−−−−−−−−−
572 −− ===
573
574 −− the mux enable port came from e x t e r n a l c o n f i g
575 −− or from tx c o n t r o l l e r fsm
576
577 mux_i <= tx_mux ;
578
579 −− tx_src_rdy_n_o assignment
580 p r o c e s s (mux_i , tx_src_rdy_n_bp , tx_src_rdy_n_sy , tx_src_rdy_n_st ,
581 tx_src_rdy_n_dt , tx_src_rdy_n_fi , tx_src_rdy_n_id , tx_src_rdy_n_conf ,
582 tx_src_rdy_n_eoconf , tx_src_rdy_n_init , tx_src_rdy_n_eoinit ,
583 tx_src_rdy_n_sm , tx_src_rdy_n_mn , tx_src_rdy_n_fm)
584 v a r i a b l e TEMP : s td_log i c ;
585 begin
586 case mux_i i s
587 when " 0001 " => TEMP := tx_src_rdy_n_bp ; −− bypass
588 when " 0010 " => TEMP := tx_src_rdy_n_sy ; −− AER SYNC
589 when " 0011 " => TEMP := tx_src_rdy_n_st ; −− Star t Packet
590 when " 0100 " => TEMP := tx_src_rdy_n_dt ; −− Data Packet
591 when " 0101 " => TEMP := tx_src_rdy_n_fi ; −− Fin i sh Packet
592 when " 0110 " => TEMP := tx_src_rdy_n_id ; −− Tx I d l e
593 when " 0111 " => TEMP := tx_src_rdy_n_init ; −− Tx I n i t Packet

135

VHDL source files

594 when " 1000 " => TEMP := tx_src_rdy_n_eoinit ; −− Tx EoIn i t Packet
595 when " 1001 " => TEMP := tx_src_rdy_n_conf ; −− Tx Conf Packet
596 when " 1010 " => TEMP := tx_src_rdy_n_eoconf ; −− Tx EoConf Packet
597 when " 1011 " => TEMP := tx_src_rdy_n_mn ; −− Tx Monitoring Packet
598 when " 1100 " => TEMP := tx_src_rdy_n_sm ; −− Star t Monitoring Packet
599 when " 1101 " => TEMP := tx_src_rdy_n_fm ; −−Fin i sh Monitoring Packet
600 when o th e r s => TEMP := ’ 1 ’ ;
601 end case ;
602 tx_src_rdy_n_o <= TEMP a f t e r DLY; −− DLY i s ignored by synth
603 end p r o c e s s ;
604
605 −− tx_d_o assignment
606 p r o c e s s (mux_i , tx_d_bp , tx_d_sy , tx_d_st , tx_d_dt , tx_d_fi , tx_d_id ,
607 tx_d_conf , tx_d_eoconf , tx_d_init , tx_d_eoinit , tx_d_mn, tx_d_sm ,
608 tx_d_fm)
609 v a r i a b l e TEMP : std_log ic_vector (0 to 15) ;
610 begin
611 case mux_i i s
612 when " 0001 " => TEMP := tx_d_bp ; −− TX bypass
613 when " 0010 " => TEMP := tx_d_sy ; −− SYNC packet
614 when " 0011 " => TEMP := tx_d_st ; −− Star t packet
615 when " 0100 " => TEMP := tx_d_dt ; −− Data packet
616 when " 0101 " => TEMP := tx_d_fi ; −− Fin i sh Packet
617 when " 0110 " => TEMP := tx_d_id ; −− Tx IDLE
618 when " 0111 " => TEMP := tx_d_init ; −− Tx I n i t Packet
619 when " 1000 " => TEMP := tx_d_eoinit ; −− Tx EoIn i t Packet
620 when " 1001 " => TEMP := tx_d_conf ; −− Tx Conf Packet
621 when " 1010 " => TEMP := tx_d_eoconf ; −− Tx EoConf Packet
622 when " 1011 " => TEMP := tx_d_mn ; −− Tx Monitoring Packet
623 when " 1100 " => TEMP := tx_d_sm ; −− Star t Monitoring Packet
624 when " 1101 " => TEMP := tx_d_fm ; −− Fin i sh Monitoring Packet
625 when o th e r s => TEMP := (ot h e r s => ’ 0 ’) ;
626 end case ;
627 tx_d_o <= TEMP a f t e r DLY; −− DLY i s ignored by synth
628 end p r o c e s s ;
629
630 end arc ;

D.6 Z_AER_rx
breakatwhitespace

1 −−
2 −− Pro j ec t : High Speed S e r i a l AER i n t e r f a c e f o r communicate SNN
3 −− Engineer : Taho Dorta
4 −−
5 −− Create Date : Mayo 2013
6 −− Design Name : AER_top
7 −− Module Name : aer_rx . vhd
8 −− Modif ied : Corrado Bonfant i
9 l i b r a r y IEEE ;

10 use i e e e . std_logic_1164 . a l l ;
11 use IEEE .STD_LOGIC_UNSIGNED. a l l ;
12 use i e e e . s td_log i c_ar i th . a l l ;
13
14 l i b r a r y work ;
15 use work . SNN_pkg . a l l ;
16 use work . log_pkg . a l l ;
17

136

VHDL source files

18 e n t i t y Z_AER_rx i s
19 port (
20 user_clk : in s td_log i c ;
21 r e s e t : in s td_log i c ;
22 AER_ConfReady : out s td_log i c ;
23 −− aurora rx i f
24 rx_src_rdy_n_i : in s td_log i c ;
25 rx_d_i : in s td_log ic_vector (0 to 15) ;
26 −− bypass f i f o i f
27 f_data_w_o : out std_log ic_vector (0 to 15) ;
28 f_wr_o : out s td_log i c ;
29 −− second monitor ing f i f o i f
30 f2_data_w_o : out std_log ic_vector (0 to 15) ;
31 f2_wr_o : out s td_log i c ;
32 −− frame_check
33 CHANNEL_UP : in s td_log i c ;
34 −− parameters
35 chip_id_i : in s td_log ic_vector (CHIP_ID_WIDTH − 1 DOWNTO 0) ;
36 r ing_s i ze_i : in s td_log ic_vector (RING_SIZE_WIDTH − 1 DOWNTO 0) ;
37 −− AER s t a t u s
38 AER_on_o : out s td_log i c ;
39 −−AER_done_o : out s td_log i c ;
40 data_valid_o : out s td_log i c ;
41 −− AER RX i n t e r f a c e (Connects to m u l t i p r o c e s s o r system)
42 AER_rx_data_out : out s td_log ic_vector (AER_RX_WIDTH − 1 downto 0) ;
43 AER_rx_valid_out : out s td_log i c ;
44 AER_eo_distrib : out s td_log i c ;
45 eo_in i t : out s td_log i c ;
46 eo_conf ig : out s td_log i c ;
47 AER_eo_Mon : out s td_log i c
48) ;
49 a t t r i b u t e KEEP_HIERARCHY : s t r i n g ;
50 a t t r i b u t e KEEP_HIERARCHY of Z_AER_rx : e n t i t y i s "YES" ;
51 end e n t i t y ;
52
53 a r c h i t e c t u r e arc o f Z_AER_rx i s
54
55 −− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Parameter D e c l a r a t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
56
57 constant DLY : time := 1 ns ;
58
59 −− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n t e r n a l R e g i s t e r D e c l a r a t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
60 −− SLACK r e g i s t e r s
61 s i g n a l RX_D_SLACK : std_log ic_vector (0 to 15) ;
62 s i g n a l RX_SRC_RDY_N_SLACK : s td_log i c ;
63 s i g n a l RX_D_SLACK_2 : std_log ic_vector (0 to 15) ;
64 s i g n a l RX_SRC_RDY_N_SLACK_2 : s td_log i c ;
65
66 s i g n a l AER_eo_distrib_i : s td_log i c ;
67 s i g n a l in i t_detected_c : s td_log i c ;
68 s i g n a l eo in i t_detected_c : s td_log i c ;
69 s i g n a l conf_detected_c : s td_log i c ;
70 s i g n a l eoconf_detected_c : s td_log i c ;
71 s i g n a l reset_c : s td_log i c ;
72 s i g n a l data_valid_c : s td_log i c ;
73 s i g n a l AER_eo_Mon_i : s td_log i c ;
74
75 −− d e t e c t packets
76 s i g n a l id le_detected_c : s td_log i c ;
77 s i g n a l id le_detected_r : s td_log i c ;
78 s i g n a l sync_detected_c : s td_log i c ;

137

VHDL source files

79 s i g n a l sync_detected_r : s td_log i c ;
80 s i g n a l sync_detected_r1 : s td_log i c ;
81 s i g n a l sync_detected_r2 : s td_log i c ;
82 s i g n a l start_detected_c : s td_log i c ;
83 s i g n a l start_mon_detected_c : s td_log i c ;
84 s i g n a l finish_mon_detected_c : s td_log i c ;
85 s i g n a l finish_mon_detected_r : s td_log i c ;
86 s i g n a l start_detected_r : s td_log i c ;
87 s i g n a l f in i sh_detected_c : s td_log i c ;
88 s i g n a l f in i sh_detec ted_r : s td_log i c ;
89 s i g n a l f in i sh_detected_r1 : s td_log i c ;
90 s i g n a l f in i sh_detected_r2 : s td_log i c ;
91 s i g n a l own_ctrl_detected_c : s td_log i c ;
92 s i g n a l own_ctrl_detected_r : s td_log i c ;
93 s i g n a l data_detected_c : s td_log i c ;
94 s i g n a l data_detected_r : s td_log i c ;
95 s i g n a l own_data_detected_c : s td_log i c ;
96 s i g n a l own_data_detected_r : s td_log i c ;
97 s i g n a l control_bp : s td_log i c ;
98 −− MONITORING
99 s i g n a l en_Mon : s td_log i c := ’ 0 ’ ;

100 s i g n a l finish_mon_dt : s td_log i c := ’ 0 ’ ;
101 s i g n a l cont_finish_mon : s td_log ic_vector (log2_MON_SIZE−1 downto 0) ;
102 s i g n a l cont_finish_mon_dt : s td_log ic_vector (log2_n_PE_1 − 1 downto 0) ;
103 −−
104 −− Other s i g n a l s o f the e n t i t y
105 −−
106
107 begin
108
109 −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −−
110 −− _________________________AER PROTOCOL STARTS HERE ________________
111 −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −− ++ −−
112
113 −− SLACK r e g i s t e r s
114 p r o c e s s (USER_CLK)
115 begin
116 i f (USER_CLK’ event and USER_CLK = ’ 1 ’) then
117 RX_D_SLACK_2 <= rx_d_i a f t e r DLY;
118 RX_D_SLACK <= RX_D_SLACK_2;
119 RX_SRC_RDY_N_SLACK_2 <= rx_src_rdy_n_i a f t e r DLY;
120 RX_SRC_RDY_N_SLACK <= RX_SRC_RDY_N_SLACK_2;
121 end i f ;
122 end p r o c e s s ;
123
124 −− Generate RESET s i g n a l when Aurora channel i s not ready
125 reset_c <= RESET;
126
127 −− ______________________________ Capture incoming data ______________
128 −− Data i s v a l i d when RX_SRC_RDY_N i s a s s e r t e d
129 data_valid_c <= not RX_SRC_RDY_N_SLACK;
130
131 −− ______________________________ DETECT PACKETS _____________________
132
133 id le_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD

& IDLE_HEAD & " 0 ") and (not en_Mon)) ;
134 sync_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD

& SYNC_HEAD & " 0 ") and (not en_Mon)) ;
135 start_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD

& START_HEAD & " 0 ") and (not en_Mon)) ;

138

VHDL source files

136 own_ctrl_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0) = CTRL_HEAD) and
std_bool (RX_D_SLACK(9 to 15) = chip_id_i) and (not en_Mon)) ;

137 data_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0) = DATA_HEAD) and
(not en_Mon)) ;

138 f in i sh_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD
& FINISH_HEAD & " 0 ") and (not en_Mon)) ;

139
140
141
142 start_mon_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD

& START_MON_HEAD & " 0 ") and (not en_Mon)) ;
143 f inish_mon_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD

& EOMON_HEAD & " 0 ") and finish_mon_dt) ;
144
145 −− ∗∗−−∗∗−−∗∗−−∗∗−−∗∗−−∗∗−−∗ ZYNQ SIGNALS ∗∗−−∗∗−−∗∗−−∗∗−−∗∗−−∗∗−−∗∗−−
146
147 −− s i g n a l f o r d e t e c t i n g master chip_id
148 master_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0) = CTRL_HEAD) and

std_bool (RX_D_SLACK(9 to 15) = CHIP_ID_BROADCAST) and (not en_Mon)) ;
149 −− −−−new packages
150 in i t_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD &

INIT_HEAD & " 0 ") and (not en_Mon)) ;
151 eo in i t_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD &

EOINIT_HEAD & " 0 ") and (not en_Mon)) ;
152 conf_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD &

CONF_HEAD & " 0 ") and (not en_Mon)) ;
153 eoconf_detected_c <= (data_valid_c and std_bool (RX_D_SLACK(0 to 5) = CTRL_HEAD &

EOCONF_HEAD & " 0 ") and (not en_Mon)) ;
154 MasterID_detected <= (data_valid_c and std_bool (RX_D_SLACK(5 to 8) = ID_DISCOVER)

and (not en_Mon)) ;
155
156 −−//
157 −−____________ generate BYPASS FIFO s i g n a l s (F I L T E R) ____________
158
159 −− combinat iona l f i l t e r
160 control_bp <= (own_ctrl_detected_c OR own_data_detected_c OR idle_detected_c OR

MasterID_detected) and (not start_mon_detected_c) ;
161
162 f_wr_o <= ’0 ’ when (control_bp = ’ 1 ’) OR ((start_mon_detected_c = ’1 ’ or en_Mon

= ’ 1 ’) and (not (cont_finish_mon < (MON_SIZE − 1)))) e l s e data_valid_c ;
163 f_data_w_o <= RX_D_SLACK;
164
165 −− ___________ generate Sink FIFO s i g n a l s (F I L T E R) ______________
166
167 −− combinat iona l f i l t e r
168 −− SinkFIFO wr i t e enable
169
170 f2_wr_o <= data_valid_c when ((start_mon_detected_c = ’ 1 ’) or
171 en_Mon = ’ 1 ’) e l s e ’ 0 ’ ;
172
173 f2_data_w_o <= RX_D_SLACK;
174
175 −−
176 −− Other l o g i c o f the e n t i t y
177 −−
178 −− −−−
179 −− __________________________ COUNTERS _______________________________
180 −− −−−−−−−−−−−−−−−−− cont_finish_mon . Local −−−−−−−−−−−−−−−−−−−−−−−−−−
181 p r o c e s s (user_clk)
182 begin
183 i f (r i s ing_edge (user_clk)) then

139

VHDL source files

184 i f (reset_c = ’1 ’ or AER_eo_Mon_i = ’ 1 ’) then
185 cont_finish_mon <= (o t h e r s => ’ 0 ’) ;
186 e l s i f (CHANNEL_UP = ’ 1 ’) then
187 i f (f inish_mon_detected_c = ’ 1 ’) then
188 cont_finish_mon <= cont_finish_mon + 1 ;
189 end i f ;
190 end i f ;
191 end i f ;
192 end p r o c e s s ;
193
194 −− −−−−−−−−−−−−−−−−− cont_finish_mon_dt . Local −−−−−−−−−−−−−−−−−−−−−−−−
195 p r o c e s s (user_clk)
196 begin
197 i f (r i s ing_edge (user_clk)) then
198 i f (reset_c = ’1 ’ or finish_mon_detected_c = ’ 1 ’) then
199 cont_finish_mon_dt <= (o th e r s => ’ 0 ’) ;
200 e l s i f (CHANNEL_UP = ’ 1 ’) then
201 i f (data_valid_c = ’1 ’ and en_Mon = ’ 1 ’) then
202 cont_finish_mon_dt <= cont_finish_mon_dt + 1 ;
203 end i f ;
204 end i f ;
205 end i f ;
206 end p r o c e s s ;
207
208 p r o c e s s (user_clk)
209 begin
210 i f (r i s ing_edge (user_clk)) then
211 i f (reset_c = ’1 ’ or finish_mon_detected_c = ’ 1 ’) then
212 finish_mon_dt <= ’ 0 ’ ;
213 e l s i f (CHANNEL_UP = ’ 1 ’) then
214 i f (cont_finish_mon_dt = n_PE_tot_1 and data_valid_c = ’ 1 ’) then
215 finish_mon_dt <= ’ 1 ’ ;
216 end i f ;
217 end i f ;
218 end i f ;
219 end p r o c e s s ;
220
221 −− −−−−−−−−−−−−−−−−− mon_FSM. Local−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
222
223 p r o c e s s (user_clk)
224 begin
225 i f (r i s ing_edge (user_clk)) then
226 i f (reset_c = ’ 1 ’) then
227 en_Mon <= ’ 0 ’ ;
228 e l s i f (CHANNEL_UP = ’ 1 ’) then
229 i f (en_mon = ’ 1 ’) then
230 i f (f inish_mon_detected_c = ’1 ’ and finish_mon_dt = ’ 1 ’) then
231 en_Mon <= ’ 0 ’ ;
232 end i f ;
233 e l s i f (start_mon_detected_c = ’ 1 ’) then
234 en_Mon <= ’ 1 ’ ;
235 end i f ;
236 end i f ;
237 end i f ;
238 end p r o c e s s ;
239
240 −−
241 −− Other counter s and l o g i c o f the e n t i t y
242 −−
243 −− _____________________ AER EO MONIT GENERATION _____________________
244 −−

140

VHDL source files

245 −−
246 p r o c e s s (user_clk)
247 begin
248 i f (r i s ing_edge (user_clk)) then
249 i f ((f inish_mon_detected_r = ’ 1 ’) and (cont_finish_mon = MON_SIZE)) then
250 AER_eo_Mon_i <= ’ 1 ’ ;
251 e l s e
252 AER_eo_Mon_i <= ’ 0 ’ ;
253 end i f ;
254 end i f ;
255 end p r o c e s s ;
256
257 −− ________________________ output ass ignment ________________________
258 −−
259 data_valid_o <= data_valid_c ;
260 AER_on_o <= AER_on;
261 AER_eo_distrib <= AER_eo_distrib_i ;
262 AER_eo_Mon <= AER_eo_Mon_i ;
263
264 end arc ;

D.7 AER_OneBoard (first version)
breakatwhitespace

1 −− ===
2 −− −−−−−−−−−−−−−−−−− MONITORING CONTROLLER −−−−−−−−−−−−−−−−−−−−−−−
3 −− ===
4
5 monit_f i fo_inst : SinkFIFO_SB
6 PORT map(
7 c l k => user_clk ,
8 r s t => r e s e t ,
9 din => dIn_monit f i fo ,

10 wr_en => wr_monitf i fo ,
11 rd_en => rd_monit f i fo ,
12 dout => MonitFifoData_i ,
13 f u l l => MonitFi foFul l_i , −− to check
14 a lmost_fu l l => open ,
15 empty => MonitFifoEmpty_i ,
16 almost_empty => open ,
17 v a l i d => MonitFi foVal id_i
18) ;
19
20 wr_monitf i fo <= wr_mon_en and (not MonitFi foFul l_i) ;
21 rd_monit f i fo <= MonFifo_rd_en and (not MonitFifoEmpty_i) ;
22 monit_block <= monit_block_i or MonitFi foFul l_i ;
23
24 −− This two f o l l o w i n g p r o c e s s e s (and " resume_mon ") are used to s e t
25 −− to ’1 ’ the s i g n a l " mn_valid_out " when " MonFifo_rd_en " i s s e t
26 −− to ’1 ’ again , in order to s i g n a l that the l a s t va lue
27 −− (b e f o r e " MonFifo_rd_en " was s e t to ’ 0 ’) i s now v a l i d
28
29 mn_rd_cntrl_proc : p r o c e s s (user_clk)
30 begin
31 i f (r i s ing_edge (user_clk)) then
32 i f (r e s e t = ’ 1 ’) then
33 cntrl_mn_rd <= ’ 0 ’ ;
34 e l s i f (MonFifo_rd_en = ’ 1 ’) then

141

VHDL source files

35 i f (MonitFifoEmpty_i = ’ 1 ’) then
36 cntrl_mn_rd <= ’ 0 ’ ;
37 e l s e
38 cntrl_mn_rd <= ’ 1 ’ ;
39 end i f ;
40 e l s e
41 cntrl_mn_rd <= cntrl_mn_rd ;
42 end i f ;
43 end i f ;
44 end p r o c e s s mn_rd_cntrl_proc ;
45
46 mn_rd_delay_proc : p r o c e s s (user_clk)
47 begin
48 i f (r i s ing_edge (user_clk)) then
49 i f (r e s e t = ’ 1 ’) then
50 MonFifo_rd_en_d <= ’ 0 ’ ;
51 e l s e
52 MonFifo_rd_en_d <= MonFifo_rd_en ;
53 end i f ;
54 end i f ;
55 end p r o c e s s mn_rd_delay_proc ;
56
57 resume_mn_read <= MonFifo_rd_en and (not MonFifo_rd_en_d) and cntrl_mn_rd ;
58
59 p r o c e s s (user_clk)
60 begin
61 i f (r i s ing_edge (user_clk)) then
62 case mon_state i s
63 when mon_IDLE =>
64 i f (start_monit = ’1 ’ and MonitFi foFul l_i = ’ 0 ’) then
65 mon_state <= mon_WRITE;
66 e l s e
67 mon_state <= mon_IDLE;
68 end i f ;
69 when mon_WRITE =>
70 i f (start_monit = ’1 ’ or monit_block_i = ’1 ’ or MonitFi foFul l_i = ’1 ’) then
71 mon_state <= mon_WRITE;
72 e l s e
73 mon_state <= mon_IDLE;
74 end i f ;
75 when o th e r s =>
76 mon_state <= mon_IDLE;
77 end case ;
78 end i f ;
79 end p r o c e s s ;
80
81 −− Output depends s o l e l y on the cur rent s t a t e
82 p r o c e s s (mon_state)
83 begin
84 case mon_state i s
85 when mon_IDLE =>
86 wr_mon_en <= ’ 0 ’ ;
87 monit_busy <= ’ 0 ’ ;
88 when mon_WRITE =>
89 wr_mon_en <= ’ 1 ’ ;
90 monit_busy <= ’ 1 ’ ;
91 when o th e r s =>
92 wr_mon_en <= ’ 0 ’ ;
93 monit_busy <= ’ 0 ’ ;
94 end case ;
95 end p r o c e s s ;

142

VHDL source files

96
97 −− Process to l e t the FIFO loads a l l the element o f monit_data input
98 monit_count_process : p r o c e s s (user_clk)
99 begin

100 i f (r i s ing_edge (user_clk)) then
101 i f (r e s e t = ’ 1 ’) then
102 monit_block_i <= ’ 0 ’ ;
103 monit_count <= (o t he r s => ’ 0 ’) ;
104 e l s i f (MonitFi foFul l_i = ’ 1 ’) then
105 monit_block_i <= monit_block_i ;
106 monit_count <= monit_count ;
107 e l s i f (monit_block_i = ’ 1 ’) then
108 i f (monit_count = size_x_1 − 1) then
109 monit_block_i <= ’ 0 ’ ;
110 monit_count <= monit_count + 1 ;
111 e l s e
112 monit_block_i <= ’ 1 ’ ;
113 monit_count <= monit_count + 1 ;
114 end i f ;
115 e l s i f (start_monit = ’1 ’) then
116 monit_block_i <= ’ 1 ’ ;
117 monit_count <= (ot h e r s => ’ 0 ’) ;
118 end i f ;
119 end i f ;
120 end p r o c e s s ;
121
122 dIn_monit f i fo <= monit_data_in (conv_integer (unsigned (monit_count))) (15 downto 0) ;
123 MonFifoData <= MonitFifoData_i ;
124 mn_valid_out <= (MonitFi foVal id_i or resume_mn_read) and MonFifo_rd_en ;
125 MnFIFO_Empty <= MonitFifoEmpty_i ;

D.8 PE_array (second version)
breakatwhitespace

1 −−−−−−−−−−−−−−−−−−−−−− Monit data t r a n s f e r FSM −−−−−−−−−−−−−−−−−−−−−
2 −−
3 arr_mon_fsm_ns : p r o c e s s (c l k)
4 begin
5 i f (r i s ing_edge (c l k)) then
6 case mn_state i s
7 when mn_IDLE =>
8 i f (en_monit = ’ 1 ’) then
9 i f (block_monit = ’ 1 ’) then

10 mn_state <= mn_WAIT;
11 e l s e
12 mn_state <= mn_START;
13 end i f ;
14 e l s e
15 mn_state <= mn_IDLE;
16 end i f ;
17 when mn_START =>
18 i f (block_monit = ’ 1 ’) then
19 mn_state <= mn_WAIT;
20 e l s i f (PE_count_monit < 4) then
21 mn_state <= mn_FINISH ;
22 e l s e
23 mn_state <= mn_START;
24 end i f ;

143

VHDL source files

25 when mn_WAIT =>
26 i f (block_monit = ’ 1 ’) then
27 mn_state <= mn_WAIT;
28 e l s i f (PE_count_monit < 4) then
29 i f (PE_count_monit = 0) then
30 mn_state <= mn_IDLE;
31 e l s e
32 mn_state <= mn_FINISH ;
33 end i f ;
34 e l s e
35 mn_state <= mn_START;
36 end i f ;
37 when mn_FINISH =>
38 i f (block_monit = ’ 1 ’) then
39 mn_state <= mn_WAIT;
40 e l s i f (PE_count_monit < 4) then
41 i f (PE_count_monit = 1) then
42 i f (en_monit = ’ 1 ’) then
43 mn_state <= mn_START;
44 e l s e
45 mn_state <= mn_IDLE;
46 end i f ;
47 e l s e
48 mn_state <= mn_FINISH ;
49 end i f ;
50 end i f ;
51 end case ;
52 end i f ;
53 end p r o c e s s arr_mon_fsm_ns ;
54
55 arr_mon_fsm_ps : p r o c e s s (mn_state)
56 begin
57 case mn_state i s
58 when mn_IDLE =>
59 next_row_monit_aux <= ’ 0 ’ ;
60 busy_monitPE <= ’ 0 ’ ;
61 when mn_START =>
62 next_row_monit_aux <= ’ 1 ’ ;
63 busy_monitPE <= ’ 1 ’ ;
64 when mn_WAIT =>
65 next_row_monit_aux <= ’ 0 ’ ;
66 busy_monitPE <= ’ 1 ’ ;
67 when mn_FINISH =>
68 next_row_monit_aux <= ’ 1 ’ ;
69 busy_monitPE <= ’ 0 ’ ;
70 when o th e r s =>
71 next_row_monit_aux <= ’ 0 ’ ;
72 busy_monitPE <= ’ 0 ’ ;
73 end case ;
74 end p r o c e s s arr_mon_fsm_ps ;
75
76 PE_count_process : p r o c e s s (c l k)
77 begin
78 i f (c lk ’ event and c l k = ’ 1 ’) then
79 i f (r e s e t = ’ 1 ’) then
80 PE_count_monit <= conv_std_logic_vector (size_y , log2_size_y) ;
81 e l s e
82 i f (next_row_monit_aux = ’1 ’ and block_monit = ’ 0 ’) then
83 i f (PE_count_monit = 1) then
84 PE_count_monit <= conv_std_logic_vector (size_y , log2_size_y) ;
85 e l s e

144

VHDL source files

86 PE_count_monit <= PE_count_monit − 1 ;
87 end i f ;
88 end i f ;
89 end i f ;
90 end i f ;
91 end p r o c e s s PE_count_process ;
92
93 write_monit <= next_row_monit_aux ;
94 next_row_monit <= next_row_monit_aux and (not block_monit) ;
95 −−
96 −−

D.9 Z_AER_interface (second version)
breakatwhitespace

1 −− ===
2 −− −−−−−−−−−−−−−−−−−−−−− MONITORING CONTROLLER −−−−−−−−−−−−−−−−−−−−−
3 −− ===
4
5 gen_monit_fifo : f o r i in 0 to size_x_1 generate
6 monit_f i fo_inst : monitFIFO
7 PORT map(
8 r s t => r e s e t ,
9 rd_clk => AER_clk_in ,

10 wr_clk => HEENS_clk ,
11 din => dIn_monit f i fo (i) ,
12 wr_en => wr_monitf i fo (i) ,
13 rd_en => rd_monit f i fo (i) ,
14 dout => MonitFifoData_i (i) ,
15 f u l l => MonitFi foFul l_i (i) ,
16 empty => MonitFifoEmpty_i (i) ,
17 v a l i d => MonitFi foVal id_i (i)
18) ;
19 end generate gen_monit_fifo ;
20
21 MonitFi foFul l <= or_reduce (MonitFi foFul l_i) ;
22
23 gen_MonEmpty : f o r i in 0 to size_x_1 generate
24 Empty : MonFifoEmpty (i) <= MonitFifoEmpty_i (i) ;
25 end generate gen_MonEmpty ;
26
27 gen_MonValid : f o r i in 0 to size_x_1 generate
28 Valid : MonFifoValid (i) <= MonitFi foVal id_i (i) ;
29 end generate gen_MonValid ;
30
31 gen_MonData_out : f o r i in 0 to size_x_1 generate
32 Data_out : MonFifoData (i) <= MonitFifoData_i (i) ;
33 end generate gen_MonData_out ;
34
35 gen_MonWrite : f o r i in 0 to size_x_1 generate
36 Write : wr_monit f i fo (i) <= wr_mon_en and (not MonitFi foFul l) ;
37 end generate gen_MonWrite ;
38
39 gen_MonRead : f o r i in 0 to size_x_1 generate
40 Read : rd_monit f i fo (i)<= MonFifoEn (i) ;
41 end generate gen_MonRead ;
42
43 monit_block <= MonitFi foFul l ;

145

VHDL source files

44
45 dIn_monit f i fo (0) <= std_log ic_vector (r e s i z e (unsigned (reg_Mon) , dIn_monit f i fo (0) ’

l ength)) when reg_mon_flag = ’1 ’ e l s e monit_data_in (0) ;
46
47 gen_dinMonFifo : f o r i in 1 to size_x_1 generate
48 dIn_monit f i fo (i) <= (ot h e r s => ’ 0 ’) when reg_mon_flag = ’1 ’ e l s e monit_data_in (i)

;
49 end generate gen_dinMonFifo ;
50
51 p r o c e s s (HEENS_clk)
52 begin
53 i f (r i s ing_edge (HEENS_clk)) then
54 case mon_state i s
55 when mon_IDLE =>
56 i f (start_monit = ’ 1 ’) then
57 mon_state <= mon_WRITE_reg ;
58 e l s e
59 mon_state <= mon_IDLE;
60 end i f ;
61 when mon_WRITE_reg =>
62 i f (MonitFi foFul l = ’ 1 ’) then
63 mon_state <= mon_WAIT1;
64 e l s e
65 mon_state <= mon_WRITE;
66 end i f ;
67 when mon_WAIT1 =>
68 i f (write_monit = ’ 0 ’) then
69 mon_state <= mon_WAIT1;
70 e l s e
71 mon_state <= mon_WRITE_reg ;
72 end i f ;
73 when mon_WRITE =>
74 i f (MonitFi foFul l = ’ 1 ’) then
75 mon_state <= mon_WAIT2;
76 e l s i f (start_monit = ’ 1 ’) then
77 mon_state <= mon_WRITE_reg ;
78 e l s i f (write_monit = ’ 0 ’) then
79 mon_state <= mon_IDLE;
80 e l s e
81 mon_state <= mon_WRITE;
82 end i f ;
83 when mon_WAIT2 =>
84 i f (write_monit = ’ 0 ’) then
85 mon_state <= mon_WAIT2;
86 e l s e
87 mon_state <= mon_WRITE;
88 end i f ;
89 when o th e r s =>
90 mon_state <= mon_IDLE;
91 end case ;
92 end i f ;
93 end p r o c e s s ;
94
95 −− Output depends s o l e l y on the cur rent s t a t e
96 p r o c e s s (mon_state)
97 begin
98 case mon_state i s
99 when mon_IDLE =>

100 wr_mon_en <= ’ 0 ’ ;
101 reg_mon_flag <= ’ 0 ’ ;
102 when mon_WRITE_reg =>

146

VHDL source files

103 wr_mon_en <= ’ 1 ’ ;
104 reg_mon_flag <= ’ 1 ’ ;
105 when mon_WAIT1 =>
106 wr_mon_en <= ’ 0 ’ ;
107 reg_mon_flag <= ’ 0 ’ ;
108 when mon_WRITE =>
109 wr_mon_en <= ’ 1 ’ ;
110 reg_mon_flag <= ’ 0 ’ ;
111 when mon_WAIT2 =>
112 wr_mon_en <= ’ 0 ’ ;
113 reg_mon_flag <= ’ 0 ’ ;
114 when o th e r s =>
115 wr_mon_en <= ’ 0 ’ ;
116 reg_mon_flag <= ’ 0 ’ ;
117 end case ;
118 end p r o c e s s ;

D.10 Z_AER_tx (second version)
breakatwhitespace

1 −− ===
2 −− −−−−−−−−−−−−−−−−−−−− START MONITORING PACKET −−−−−−−−−−−−−−−−−−−−−−
3 −− ===
4
5 tx_d_sm <= CTRL_HEAD & START_MON_HEAD & reg_Mon & CHIP_ID_in ;
6
7 reg_Mon <= ’0 ’ & MonFifo_data_r_in (0) (2 downto 0) ;
8
9 −− MOORE FSM

10 −− Logic to advance to the next s t a t e
11 p r o c e s s (user_clk)
12 begin
13 i f (r i s ing_edge (user_clk)) then
14 i f (reset_c = ’ 1 ’) then
15 sm_state <= sm_IDLE ;
16 e l s e
17 case sm_state i s
18 when sm_IDLE =>
19 sm_state <= sm_IDLE ;
20 i f (en_start_mon = ’ 1 ’) then
21 i f (MonFifo_empty_int = ’ 0 ’) then
22 sm_state <= sm_reg_Mon ;
23 e l s e
24 sm_state <= sm_WAIT_reg ;
25 end i f ;
26 end i f ;
27 when sm_WAIT_reg =>
28 i f (MonFifo_empty_int = ’ 0 ’) then
29 sm_state <= sm_reg_Mon ;
30 e l s e
31 sm_state <= sm_WAIT_reg ;
32 end i f ;
33 when sm_reg_Mon =>
34 i f (ready_tx = ’ 1 ’) then
35 sm_state <= sm_SEND;
36 e l s e
37 sm_state <= sm_WAIT;
38 end i f ;

147

VHDL source files

39 when sm_WAIT =>
40 i f (ready_tx = ’ 1 ’) then
41 sm_state <= sm_SEND;
42 e l s e
43 sm_state <= sm_WAIT;
44 end i f ;
45 when sm_SEND =>
46 sm_state <= sm_WAIT;
47 i f (ready_tx = ’ 1 ’) then
48 sm_state <= sm_DONE_SM;
49 end i f ;
50 when sm_DONE_SM =>
51 sm_state <= sm_IDLE ;
52 when o th e r s =>
53 sm_state <= sm_IDLE ;
54 end case ;
55 end i f ;
56 end i f ;
57 end p r o c e s s ;
58
59 gen_MonRD_out : f o r i in 0 to size_x_1 generate
60 MonFifo_rd_out (i) <= MonFifo_rd_out_int (i) or MonFifoRd_sm ;
61 end generate ;
62
63 −− Output depends s o l e l y on the cur rent s t a t e
64 p r o c e s s (sm_state)
65 begin
66 case sm_state i s
67 when sm_IDLE =>
68 sm_pck_valid <= ’ 1 ’ ;
69 sm_done <= ’ 0 ’ ;
70 MonFifoRd_sm <= ’ 0 ’ ;
71 when sm_WAIT_reg =>
72 sm_pck_valid <= ’ 1 ’ ;
73 sm_done <= ’ 0 ’ ;
74 MonFifoRd_sm <= ’ 0 ’ ;
75 when sm_reg_Mon =>
76 sm_pck_valid <= ’ 1 ’ ;
77 sm_done <= ’ 0 ’ ;
78 MonFifoRd_sm <= ’ 1 ’ ;
79 when sm_WAIT =>
80 sm_pck_valid <= ’ 1 ’ ;
81 sm_done <= ’ 0 ’ ;
82 MonFifoRd_sm <= ’ 0 ’ ;
83 when sm_SEND =>
84 sm_pck_valid <= ’ 0 ’ ; −− > send
85 sm_done <= ’ 0 ’ ;
86 MonFifoRd_sm <= ’ 0 ’ ;
87 when sm_DONE_SM =>
88 sm_pck_valid <= ’ 1 ’ ;
89 sm_done <= ’ 1 ’ ; −− > done
90 MonFifoRd_sm <= ’ 0 ’ ;
91 when o th e r s =>
92 sm_pck_valid <= ’ 1 ’ ;
93 sm_done <= ’ 0 ’ ;
94 MonFifoRd_sm <= ’ 0 ’ ;
95 end case ;
96 end p r o c e s s ;
97
98 tx_src_rdy_n_sm <= sm_pck_valid or (not ready_tx) ;
99

148

VHDL source files

100
101 −− ===
102 −− −−−−−−−−−−−−−−−−−−−−−−− Monitoring PACKET −−−−−−−−−−−−−−−−−−−−−−−−−
103 −− ===
104
105 −− Mealy fsm
106 −− Logic to advance to the next s t a t e
107 p r o c e s s (user_clk)
108 begin
109 i f (r i s ing_edge (user_clk)) then
110 case mn_state i s
111 when mn_IDLE =>
112 mn_state <= mn_IDLE;
113 i f (ready_tx = ’1 ’ and MonFifo_empty_int = ’0 ’ and en_monit = ’1 ’ and

end_mon_packet = ’ 0 ’) then
114 mn_state <= mn_READ;
115 end i f ;
116 when mn_READ =>
117 i f (ready_tx = ’1 ’ and end_mon_packet = ’ 0 ’) then
118 mn_state <= mn_READ_WRITE;
119 e l s e
120 mn_state <= mn_IDLE;
121 end i f ;
122 when mn_READ_WRITE =>
123 i f ready_tx = ’1 ’ and end_mon_packet = ’0 ’ then
124 mn_state <= mn_READ_WRITE;
125 e l s e
126 mn_state <= mn_EMPTY;
127 end i f ;
128 when mn_WAIT =>
129 mn_state <= mn_WAIT;
130 i f ready_tx = ’1 ’ then
131 mn_state <= mn_WAIT1;
132 end i f ;
133 when mn_WAIT1 =>
134 i f (end_mon_packet = ’ 1 ’) then
135 mn_state <= mn_IDLE;
136 e l s e
137 mn_state <= mn_WAIT2;
138 end i f ;
139 when mn_WAIT2 =>
140 i f (ready_tx = ’ 0 ’) then
141 mn_state <= mn_WAIT;
142 e l s i f (end_mon_packet = ’ 1 ’) then
143 mn_state <= mn_IDLE;
144 e l s e
145 mn_state <= mn_READ;
146 end i f ;
147 when mn_EMPTY =>
148 mn_state <= mn_IDLE;
149 i f ready_tx = ’0 ’ then
150 mn_state <= mn_WAIT;
151 end i f ;
152 when o th e r s =>
153 mn_state <= mn_IDLE;
154 end case ;
155 end i f ;
156 end p r o c e s s ;
157
158 −− Process to s e t " end_mon_packet " , that i s used to stop the monitor ing
159 −− t r a n s m i s s i o n r e l a t i v e to one i n s t r u c t i o n , a f t e r the r i g h t number o f

149

VHDL source files

160 −− data have been a l ready transmit ted
161 end_mon_process : p r o c e s s (user_clk)
162 begin
163 i f (r i s ing_edge (user_clk)) then
164 i f (reset_c = ’1 ’ or mn_oip = ’ 0 ’) then
165 end_mon_packet <= ’ 0 ’ ;
166 e l s e
167 i f (tx_src_rdy_n_mn = ’0 ’ and (monFifo_count = (size_x_1)) and (

monArray_count = size_y_1)) then
168 end_mon_packet <= ’ 1 ’ ;
169 end i f ;
170 end i f ;
171 end i f ;
172 end p r o c e s s ;
173
174 −− Read enable s i g n a l ass ignment to each FIFO
175 gen_dec_mon : f o r i in 0 to size_x_1 generate
176 MonFifo_rd_out_int (i) <= ’1 ’ when (monFifo_count = i) and (end_mon_packet = ’ 0 ’)

and (MonFifo_rd_en = ’ 1 ’) e l s e ’ 0 ’ ;
177 end generate gen_dec_mon ;
178
179 MonFifo_empty_int <= and_reduce (MonFifo_empty_in) ;
180 MonFifoValid_int <= not MonFifoValid (conv_integer (unsigned (monFifo_count_1))) ;
181
182 p r o c e s s (user_clk)
183 begin
184 i f (r i s ing_edge (user_clk)) then
185 i f (reset_c = ’ 1 ’) then
186 monFifo_count_1 <= (ot h e r s => ’ 0 ’) ;
187 e l s i f (monCount_en = ’ 1 ’) then
188 monFifo_count_1 <= monFifo_count ;
189 end i f ;
190 end i f ;
191 end p r o c e s s ;
192
193
194 −− p r o c e s s to count an index used to switch from one monit . FIFO to another
195 MonFIFO_count_process : p r o c e s s (user_clk)
196 begin
197 i f (r i s ing_edge (user_clk)) then
198 i f (reset_c = ’ 1 ’) then
199 monFifo_count <= (o t he r s => ’ 0 ’) ;
200 e l s i f (monCount_en = ’ 1 ’) then
201 i f (monFifo_count < size_x_1) then
202 monFifo_count <= monFifo_count + 1 ;
203 e l s e
204 monFifo_count <= (o t he r s => ’ 0 ’) ;
205 end i f ;
206 end i f ;
207 end i f ;
208 end p r o c e s s ;
209
210 ArrayCount_en <= ’1 ’ when tx_src_rdy_n_mn = ’0 ’ and (monFifo_count = (size_x_1))

e l s e ’ 0 ’ ;
211
212 −− Process to keep track o f the number o f the monitor ing data t ransmit ted (o f each

f i f o)
213 Array_counter_process : p r o c e s s (user_clk)
214 begin
215 i f (r i s ing_edge (user_clk)) then
216 i f (reset_c = ’ 1 ’) then

150

VHDL source files

217 monArray_count <= (o t he r s => ’ 0 ’) ;
218 e l s i f (ArrayCount_en = ’ 1 ’) then
219 i f (monArray_count < size_y_1) then
220 monArray_count <= monArray_count + 1 ;
221 e l s e
222 monArray_count <= (o t he r s => ’ 0 ’) ;
223 end i f ;
224 end i f ;
225 end i f ;
226 end p r o c e s s ;
227
228 −− Mealy machine
229 p r o c e s s (mn_state , ready_tx , end_mon_packet)
230 begin
231 case mn_state i s
232 when mn_IDLE =>
233 monCount_en <= ’ 0 ’ ;
234 MonFifo_rd_en <= ’ 0 ’ ;
235 mn_oip <= ’ 0 ’ ;
236 wait_docc_mn <= ’ 1 ’ ;
237 when mn_READ =>
238 i f (ready_tx = ’1 ’ and end_mon_packet = ’ 0 ’) then
239 monCount_en <= ’ 1 ’ ;
240 e l s e
241 monCount_en <= ’ 0 ’ ;
242 end i f ;
243 MonFifo_rd_en <= ’ 1 ’ ; −− −−read
244 mn_oip <= ’ 1 ’ ;
245 wait_docc_mn <= ’ 1 ’ ;
246 when mn_READ_WRITE =>
247 i f (ready_tx = ’1 ’ and end_mon_packet = ’ 0 ’) then
248 monCount_en <= ’ 1 ’ ;
249 e l s e
250 monCount_en <= ’ 0 ’ ;
251 end i f ;
252 MonFifo_rd_en <= ’ 1 ’ ; −− −−read
253 mn_oip <= ’ 1 ’ ;
254 wait_docc_mn <= ’ 1 ’ ;
255 when mn_WAIT =>
256 monCount_en <= ’ 0 ’ ;
257 MonFifo_rd_en <= ’ 0 ’ ;
258 mn_oip <= ’ 1 ’ ;
259 wait_docc_mn <= ’ 1 ’ ;
260 when mn_WAIT1 =>
261 i f (end_mon_packet = ’ 1 ’) then
262 monCount_en <= ’ 0 ’ ;
263 e l s e
264 monCount_en <= ’ 1 ’ ;
265 end i f ;
266 MonFifo_rd_en <= ’ 0 ’ ;
267 mn_oip <= ’ 1 ’ ;
268 wait_docc_mn <= ’ 0 ’ ;
269 when mn_WAIT2 =>
270 i f (end_mon_packet = ’0 ’ and ready_tx = ’ 1 ’) then
271 monCount_en <= ’ 1 ’ ;
272 e l s e
273 monCount_en <= ’ 0 ’ ;
274 end i f ;
275 MonFifo_rd_en <= ’ 1 ’ ;
276 mn_oip <= ’ 1 ’ ;
277 wait_docc_mn <= ’ 0 ’ ;

151

VHDL source files

278 when mn_EMPTY =>
279 monCount_en <= ’ 0 ’ ;
280 MonFifo_rd_en <= ’ 0 ’ ;
281 mn_oip <= ’ 1 ’ ; −− −−−done
282 wait_docc_mn <= ’ 1 ’ ;
283 when o th e r s =>
284 monCount_en <= ’ 0 ’ ;
285 MonFifo_rd_en <= ’ 0 ’ ;
286 mn_oip <= ’ 0 ’ ;
287 wait_docc_mn <= ’ 1 ’ ;
288 end case ;
289 end p r o c e s s ;
290
291 tx_d_mn <= MonFifo_data_r_in (conv_integer (unsigned (monFifo_count_1))) ;
292 tx_src_rdy_n_mn <= (MonFifoValid_int and wait_docc_mn) or tx_dst_rdy_n_i ;

D.11 AER_OneBoard (second version)
breakatwhitespace

1 −− ===
2 −− −−−−−−−−−−−−−−−−−−−− MONITORING CONTROLLER −−−−−−−−−−−−−−−−−−−−−−
3 −− ===
4
5 gen_monit_fifo : f o r i in 0 to size_x_1 generate
6 monit_f i fo_inst : monitFIFO_SB
7 PORT map(
8 r s t => r e s e t ,
9 c l k => user_clk ,

10 din => dIn_monit f i fo (i) ,
11 wr_en => wr_monitf i fo (i) ,
12 rd_en => rd_monit f i fo (i) ,
13 dout => MonitFifoData_i (i) ,
14 f u l l => MonitFi foFul l_i (i) ,
15 a lmost_fu l l => open ,
16 empty => MonitFifoEmpty_i (i) ,
17 almost_empty=> open ,
18 v a l i d => MonitFi foVal id_i (i)
19) ;
20 end generate gen_monit_fifo ;
21
22 MonitFi foFul l <= or_reduce (MonitFi foFul l_i) ;
23
24 gen_MonWrite : f o r i in 0 to size_x_1 generate
25 Write : wr_monit f i fo (i) <= wr_mon_en and (not MonitFi foFul l) ;
26 end generate gen_MonWrite ;
27
28 dIn_monit f i fo (0) <= conv_std_logic_vector (0 , 13) & reg_Mon when mon_reg_flagWR =

’1 ’ e l s e monit_data_in (0) ;
29
30 gen_dinMonFifo : f o r i in 1 to size_x_1 generate
31 dIn_monit f i fo (i) <= (ot h e r s => ’ 0 ’) when mon_reg_flagWR = ’1 ’ e l s e monit_data_in (

i) ;
32 end generate gen_dinMonFifo ;
33
34 monit_block <= MonitFi foFul l ;
35
36 −−−−−−−−−−−−−−−−−−−−− WRITING FSM −−−−−−−−−−−−−−−−−−−−−
37 p r o c e s s (user_clk)

152

VHDL source files

38 begin
39 i f (r i s ing_edge (user_clk)) then
40 case mn_state_wr i s
41 when mon_IDLE =>
42 i f (start_monit = ’ 1 ’) then
43 mn_state_wr <= mon_WRITE_reg ;
44 e l s e
45 mn_state_wr <= mon_IDLE;
46 end i f ;
47 when mon_WRITE_reg =>
48 i f (MonitFi foFul l = ’ 1 ’) then
49 mn_state_wr <= mon_WAIT1;
50 e l s e
51 mn_state_wr <= mon_WRITE;
52 end i f ;
53 when mon_WAIT1 =>
54 i f (write_monit = ’ 0 ’) then
55 mn_state_wr <= mon_WAIT1;
56 e l s e
57 mn_state_wr <= mon_WRITE_reg ;
58 end i f ;
59 when mon_WRITE =>
60 i f (MonitFi foFul l = ’ 1 ’) then
61 mn_state_wr <= mon_WAIT2;
62 e l s i f (start_monit = ’ 1 ’) then
63 mn_state_wr <= mon_WRITE_reg ;
64 e l s i f (write_monit = ’ 0 ’) then
65 mn_state_wr <= mon_IDLE;
66 e l s e
67 mn_state_wr <= mon_WRITE;
68 end i f ;
69 when mon_WAIT2 =>
70 i f (write_monit = ’ 0 ’) then
71 mn_state_wr <= mon_WAIT2;
72 e l s e
73 mn_state_wr <= mon_WRITE;
74 end i f ;
75 when o th e r s =>
76 mn_state_wr <= mon_IDLE;
77 end case ;
78 end i f ;
79 end p r o c e s s ;
80
81 −− Output depends s o l e l y on the cur rent s t a t e
82 p r o c e s s (mn_state_wr)
83 begin
84 case mn_state_wr i s
85 when mon_IDLE =>
86 wr_mon_en <= ’ 0 ’ ;
87 mon_reg_flagWR <= ’ 0 ’ ;
88 when mon_WRITE_reg =>
89 wr_mon_en <= ’ 1 ’ ;
90 mon_reg_flagWR <= ’ 1 ’ ;
91 when mon_WAIT1 =>
92 wr_mon_en <= ’ 0 ’ ;
93 mon_reg_flagWR <= ’ 0 ’ ;
94 when mon_WRITE =>
95 wr_mon_en <= ’ 1 ’ ;
96 mon_reg_flagWR <= ’ 0 ’ ;
97 when mon_WAIT2 =>
98 wr_mon_en <= ’ 0 ’ ;

153

VHDL source files

99 mon_reg_flagWR <= ’ 0 ’ ;
100 when o th e r s =>
101 wr_mon_en <= ’ 0 ’ ;
102 mon_reg_flagWR <= ’ 0 ’ ;
103 end case ;
104 end p r o c e s s ;
105
106 −−−−−−−−−−−−−−−−−−−−− READING FSM −−−−−−−−−−−−−−−−−−−−−
107
108 −− Set the constant f l a g bas ing on the number o f PE (odd or even)
109 s ize_f lag_odd : i f ((s ize_x mod 2) = 1) generate
110 constant size_PE_odd : s td_log i c := ’ 1 ’ ;
111 begin
112 −− . . .
113 end generate s ize_f lag_odd ;
114
115 s i ze_f lag_even : i f ((s ize_x mod 2) = 0) generate
116 constant size_PE_odd : s td_log i c := ’ 0 ’ ;
117 begin
118 −− . . .
119 end generate s i ze_f lag_even ;
120
121 −− Mealy fsm
122 −− Logic to advance to the next s t a t e
123 p r o c e s s (user_clk)
124 begin
125 i f (r i s ing_edge (user_clk)) then
126 case mn_state_rd i s
127 when mn_IDLE =>
128 mn_state_rd <= mn_IDLE;
129 i f (MonFifo_rd_en = ’1 ’ and MonFifo_empty_int = ’0 ’ and end_mon_packet =

’ 0 ’) then
130 mn_state_rd <= mn_READ_reg;
131 end i f ;
132 when mn_READ_reg =>
133 i f (MonFifo_rd_en = ’ 1 ’) then
134 mn_state_rd <= mn_READ;
135 e l s e
136 mn_state_rd <= mn_WAIT_reg ;
137 end i f ;
138 when mn_WAIT_reg =>
139 i f (MonFifo_rd_en = ’ 1 ’) then
140 mn_state_rd <= mn_READ;
141 e l s e
142 mn_state_rd <= mn_WAIT_reg ;
143 end i f ;
144 when mn_READ =>
145 i f (MonFifo_rd_en = ’1 ’ and end_mon_packet = ’ 0 ’) then
146 mn_state_rd <= mn_READ_WRITE;
147 e l s e
148 mn_state_rd <= mn_IDLE;
149 end i f ;
150 when mn_READ_WRITE =>
151 i f MonFifo_rd_en = ’1 ’ and end_mon_packet = ’0 ’ then
152 mn_state_rd <= mn_READ_WRITE;
153 e l s e
154 mn_state_rd <= mn_EMPTY;
155 end i f ;
156 when mn_WAIT =>
157 mn_state_rd <= mn_WAIT;
158 i f MonFifo_rd_en = ’1 ’ then

154

VHDL source files

159 mn_state_rd <= mn_WAIT1;
160 end i f ;
161 when mn_WAIT1 =>
162 i f (end_mon_packet = ’ 1 ’) then
163 mn_state_rd <= mn_IDLE;
164 e l s e
165 mn_state_rd <= mn_WAIT2;
166 end i f ;
167 when mn_WAIT2 =>
168 i f (MonFifo_rd_en = ’ 0 ’) then
169 mn_state_rd <= mn_WAIT;
170 e l s i f (end_mon_packet = ’ 1 ’) then
171 mn_state_rd <= mn_IDLE;
172 e l s e
173 mn_state_rd <= mn_READ;
174 end i f ;
175 when mn_EMPTY =>
176 mn_state_rd <= mn_IDLE;
177 i f MonFifo_rd_en = ’0 ’ then
178 mn_state_rd <= mn_WAIT;
179 end i f ;
180 when o th e r s =>
181 mn_state_rd <= mn_IDLE;
182 end case ;
183 end i f ;
184 end p r o c e s s ;
185
186 mon_cond <= ’1 ’ when (monFifo_count =(size_x_1) or monFifo_count =(size_x_1 − 1))
187 and (monArray_count = size_y_1) e l s e ’ 0 ’ ;
188 mon_cond_d <= ’1 ’ when (monFifo_count_d =(size_x_1) or monFifo_count_d =
189 (size_x_1 − 1)) and (monArray_count = size_y_1) e l s e ’ 0 ’ ;
190 mon_cond1 <= ’1 ’ when (monFifo_count = (size_x_1)) and (monArray_count = size_y_1)
191 e l s e ’ 0 ’ ;
192
193 −− Process to s e t " end_mon_packet " , that i s used to stop the monitor ing
194 −− t r a n s m i s s i o n r e l a t i v e to one i n s t r u c t i o n a f t e r the r i g h t number o f
195 −− data have been a l ready transmit ted
196 end_mon_process : p r o c e s s (user_clk)
197 begin
198 i f (r i s ing_edge (user_clk)) then
199 i f (r e s e t = ’1 ’ or monit_read_stop = ’0 ’) then
200 end_mon_packet <= ’ 0 ’ ;
201 e l s e
202 i f (tx_mn_valid = ’0 ’ and mon_cond = ’ 1 ’) then
203 end_mon_packet <= ’ 1 ’ ;
204 end i f ;
205 end i f ;
206 end i f ;
207 end p r o c e s s ;
208
209 r s t_counter s <= ’1 ’ when tx_mn_valid = ’0 ’ and mon_cond_d = ’1 ’ e l s e ’ 0 ’ ;
210
211 −− Mon read enable ass ignment
212 gen_dec_mon : f o r i in 0 to size_x_1 generate
213 rd_monit f i fo_int (i) <= ’1 ’ when
214 (monFifo_count = i or (monFifo_count1 = i and (mon_cond1 = ’ 0 ’)))
215 e l s e ’ 0 ’ ;
216 end generate gen_dec_mon ;
217
218 MonFifo_empty_int <= and_reduce (MonitFifoEmpty_i) ;
219 MonFifoValid_int <= not MonitFi foVal id_i (conv_integer (unsigned (monFifo_count_d))) ;

155

VHDL source files

220 monit_busy <= not (MonFifo_empty_int) ;
221 MnFIFO_Empty <= MonFifo_empty_int ;
222
223 −− " mon_reg_flag " i s nece s sa ry in order to s e t to ’1 ’ a l l " read_enable "
224 −− s i g n a l s when the number o f the monitored r e g i s t e r (the data in the
225 −− f i r s t column and f i r s t row) needs to be transmit ted
226 gen_rd_MonFIFO : f o r i in 0 to size_x_1 generate
227 rd_monit f i fo (i) <= (rd_monit f i fo_int (i) and
228 (not end_mon_packet) and MonFifo_rd_int) or (mon_reg_flag and wait_docc_mn) ;
229 end generate gen_rd_MonFIFO ;
230
231 p r o c e s s (user_clk)
232 begin
233 i f (r i s ing_edge (user_clk)) then
234 i f (r e s e t = ’1 ’ or r s t_counter s = ’ 1 ’) then
235 monFifo_count_d <= (ot h e r s => ’ 0 ’) ;
236 monFifo_count1_d <= conv_std_logic_vector (1 , log2_size_x_1) ;
237 e l s i f (monCount_en = ’ 1 ’) then
238 monFifo_count_d <= monFifo_count ;
239 monFifo_count1_d <= monFifo_count1 ;
240 end i f ;
241 end i f ;
242 end p r o c e s s ;
243
244 −− Process to count an index used to switch from one monitor ing FIFO to another one
245 MonFIFO_count_process : p r o c e s s (user_clk)
246 begin
247 i f (r i s ing_edge (user_clk)) then
248 i f (r e s e t = ’1 ’ or r s t_counter s = ’ 1 ’) then
249 monFifo_count <= (ot h e r s => ’ 0 ’) ;
250 monFifo_count1 <= conv_std_logic_vector (1 , log2_size_x_1) ;
251 e l s i f (monCount_en = ’ 1 ’) then
252 i f (monFifo_count < size_x_1 − 1) then
253 monFifo_count <= monFifo_count + 2 ;
254 e l s e
255 monFifo_count <= 1 − (size_x_1 − monFifo_count) ;
256 end i f ;
257 i f (monFifo_count1 < size_x_1 − 1) then
258 monFifo_count1 <= monFifo_count1 + 2 ;
259 e l s e
260 monFifo_count1 <= 1 − (size_x_1 − monFifo_count1) ;
261 end i f ;
262 end i f ;
263 end i f ;
264 end p r o c e s s ;
265
266 ArrayCount_en <= ’1 ’ when tx_mn_valid = ’0 ’ and (monFifo_count_d = (size_x_1) or

monFifo_count_d = (size_x_1 − 1)) e l s e ’ 0 ’ ;
267
268 −− Process to keep track o f the number o f the monitor ing data t ransmit ted (o f one

f i f o)
269 Array_counter_process : p r o c e s s (user_clk)
270 begin
271 i f (r i s ing_edge (user_clk)) then
272 i f (r e s e t = ’1 ’ or r s t_counter s = ’ 1 ’) then
273 monArray_count <= (o t he r s => ’ 0 ’) ;
274 e l s i f (ArrayCount_en = ’ 1 ’) then
275 i f (monArray_count < size_y_1) then
276 monArray_count <= monArray_count + 1 ;
277 e l s e
278 monArray_count <= (o t he r s => ’ 0 ’) ;

156

VHDL source files

279 end i f ;
280 end i f ;
281 end i f ;
282 end p r o c e s s ;
283
284 −− Mealy machine
285 p r o c e s s (mn_state_rd , MonFifo_rd_en , end_mon_packet)
286 begin
287 case mn_state_rd i s
288 when mn_IDLE =>
289 monCount_en <= ’ 0 ’ ;
290 monit_read_stop <= ’ 0 ’ ;
291 mon_reg_flag <= ’ 0 ’ ;
292 MonFifo_rd_int <= ’ 0 ’ ;
293 wait_docc_mn <= ’ 1 ’ ;
294 when mn_READ_reg =>
295 monCount_en <= ’ 0 ’ ;
296 monit_read_stop <= ’ 1 ’ ;
297 mon_reg_flag <= ’ 1 ’ ;
298 MonFifo_rd_int <= ’ 0 ’ ;
299 wait_docc_mn <= ’ 1 ’ ;
300 when mn_WAIT_reg =>
301 monCount_en <= ’ 0 ’ ;
302 monit_read_stop <= ’ 1 ’ ;
303 mon_reg_flag <= ’ 1 ’ ;
304 MonFifo_rd_int <= ’ 0 ’ ;
305 wait_docc_mn <= ’ 0 ’ ;
306 when mn_READ =>
307 i f (MonFifo_rd_en = ’1 ’ and end_mon_packet = ’ 0 ’) then
308 monCount_en <= ’ 1 ’ ;
309 e l s e
310 monCount_en <= ’ 0 ’ ;
311 end i f ;
312 monit_read_stop <= ’ 1 ’ ;
313 MonFifo_rd_int <= ’ 1 ’ ;
314 mon_reg_flag <= ’ 0 ’ ;
315 wait_docc_mn <= ’ 1 ’ ;
316 when mn_READ_WRITE =>
317 i f (MonFifo_rd_en = ’1 ’ and end_mon_packet = ’ 0 ’) then
318 monCount_en <= ’ 1 ’ ;
319 e l s e
320 monCount_en <= ’ 0 ’ ;
321 end i f ;
322 MonFifo_rd_int <= ’ 1 ’ ;
323 monit_read_stop <= ’ 1 ’ ;
324 mon_reg_flag <= ’ 0 ’ ;
325 wait_docc_mn <= ’ 1 ’ ;
326 when mn_WAIT =>
327 monCount_en <= ’ 0 ’ ;
328 monit_read_stop <= ’ 1 ’ ;
329 MonFifo_rd_int <= ’ 0 ’ ;
330 mon_reg_flag <= ’ 0 ’ ;
331 wait_docc_mn <= ’ 1 ’ ;
332 when mn_WAIT1 =>
333 i f (end_mon_packet = ’ 1 ’) then
334 monCount_en <= ’ 0 ’ ;
335 e l s e
336 monCount_en <= ’ 1 ’ ;
337 end i f ;
338 monit_read_stop <= ’ 1 ’ ;
339 MonFifo_rd_int <= ’ 0 ’ ;

157

VHDL source files

340 mon_reg_flag <= ’ 0 ’ ;
341 wait_docc_mn <= ’ 0 ’ ;
342 when mn_WAIT2 =>
343 i f (end_mon_packet = ’1 ’ or MonFifo_rd_en = ’ 0 ’) then
344 monCount_en <= ’ 0 ’ ;
345 e l s e
346 monCount_en <= ’ 1 ’ ;
347 end i f ;
348 monit_read_stop <= ’ 1 ’ ;
349 MonFifo_rd_int <= ’ 1 ’ ;
350 mon_reg_flag <= ’ 0 ’ ;
351 wait_docc_mn <= ’ 0 ’ ;
352 when mn_EMPTY =>
353 monCount_en <= ’ 0 ’ ;
354 monit_read_stop <= ’ 1 ’ ;
355 MonFifo_rd_int <= ’ 0 ’ ;
356 mon_reg_flag <= ’ 0 ’ ;
357 wait_docc_mn <= ’ 1 ’ ;
358 when o th e r s =>
359 monCount_en <= ’ 0 ’ ;
360 monit_read_stop <= ’ 0 ’ ;
361 MonFifo_rd_int <= ’ 0 ’ ;
362 mon_reg_flag <= ’ 0 ’ ;
363 wait_docc_mn <= ’ 1 ’ ;
364 end case ;
365 end p r o c e s s ;
366
367 −− Mux in order to transmit a l l z e r o s when : 1) the number o f the
368 −− monitored r e g i s t e r (the data in the f i r s t column and f i r s t row)
369 −− needs to be transmit ted and 2) when there i s an odd number o f
370 −− column and so the l e s s s i g n i f i c a n t 16 b i t s o f " MonFifoData " need
371 −− to be s e t to ’0 ’
372 MonFifoData_out1 (15 downto 0) <= MonitFifoData_i (conv_integer (unsigned (

monFifo_count_d))) ;
373 MonFifoData_out2 (15 downto 0) <= (o th e r s =>’0 ’) when (end_mon_packet = ’1 ’ and

monFifo_count_d =(size_x_1)) or (mon_reg_flag = ’ 1 ’)
374 e l s e MonitFifoData_i (conv_integer (unsigned (

monFifo_count1_d))) ;
375 MonFifoData (15 downto 0) <= MonFifoData_out1 (15 downto 0) ;
376 MonFifoData (31 downto 16) <= MonFifoData_out2 (15 downto 0) ;
377
378 tx_mn_valid <= (MonFifoValid_int and wait_docc_mn) or (not MonFifo_rd_en) or

mn_stop_tx ;
379 mn_valid_out <= not (tx_mn_valid) ;

158

Bibliography

[1] A. Sripad, G. Sanchez, M. Zapata, V. P., Taho Dorta, S. Cambria, A. Marti,
K. Krishnamourthy, and J. Madrenas. «SNAVA—A real-time multi-FPGA multi-
model spiking neural network simulation architecture». In: Neural networks 97
(Nov. 2018), pp. 28–45 (cit. on pp. 1, 2, 12–14, 22, 33).

[2] N. Zheng and P. Mazumder. Learning in Energy-Efficient Neuromorphic Com-
puting. IEEE Press., 2020 (cit. on pp. 1, 2, 5–9, 11–13).

[3] J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov. «Spiking Neural Networks and
online learning: An overview and perspectives». In: Neural networks 121 (2020),
pp. 88–100 (cit. on pp. 1, 5–11).

[4] M. Zapata, T. Dorta, J. Madrenas, and G. Sánchez. «AER-SRT: Scalable spike
distribution by means of synchronous serial ring topology address event represen-
tation». In: Neurocomputing 171 (2016), pp. 1684–1690 (cit. on pp. 2, 22).

[5] M. Zapata. «Arquitectura Escalable SIMD con Conectividad Jera’rquica y Re-
configurable para la Emulacio’n de SNN». 2016 (cit. on pp. 3, 14–18, 20, 22,
25–27).

[6] W. Gerstner and W. M. Kistler. Spiking neuron models: Single neurons, popula-
tions, plasticity. Cambridge University Press., 2002 (cit. on pp. 3–5, 9–11).

[7] A. L. Hodgkin and A. F. Huxley. «A quantitative description of membrane current
and its application to conduction and excitation in nerve». In: The Journal of
Physiology 171 (Aug. 1952), pp. 500–544 (cit. on p. 6).

[8] E.M. Izhikevich. Dynamical systems in neuroscience. MIT Press., 2007 (cit. on
p. 7).

[9] B. Petro, N. Kasabov, and R. M. Kiss. «Selection and Optimization of Temporal
Spike Encoding Methods for Spiking Neural Networks». In: IEEE transactions
on neural networks and learning systems 31(2) (Feb. 2020), pp. 358–370 (cit. on
pp. 8, 9).

[10] D.O. Hebb. The Organization of Behavior: A Neuropsychological Theory. New
York: Wiley, 1949 (cit. on p. 11).

159

BIBLIOGRAPHY

[11] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. «A wafer-
scale neuromorphic hardware system for large-scale neural modeling». In: IEEE
International Symposium on Circuits and Systems (ISCAS) (2010), pp. 1947–1950
(cit. on p. 12).

[12] A.W.Smith, L.J.McDaid, and S.Hall. «A compact spike-timing-dependent-
plasticity circuit for floating gate weight implementation». In: Neurocomputing
124 (Jan. 2014), pp. 210–217 (cit. on p. 12).

[13] H. Ekkehard, M. Diesmann M.-O. Gewaltig, and A. Morrison. «NEST: The
Neural Simulation Tool». In: Encyclopedia of Computational Neuroscience (Apr.
2013), pp. 1–4 (cit. on p. 13).

[14] R. Hoang, D. Tanna, L. Jayet Bray, S. Dascalu, and F. Harris. «novel CPU/GPU
simulation environment for large-scale biologically realistic neural modeling». In:
Frontiers in Neuroscience 7 (2013), p. 19 (cit. on p. 13).

[15] S. W. Moore, P. J. Fox, S. J. Marsh, A. Mujumdar, and al. «Bluehive-a fieldpro-
gramable custom computing machine for extreme-scale real-time neural network
simulation». In: In 2012 IEEE 20th annual international symposium on, field
programmable custom computing machines. (FCCM) (2012), pp. 133–140 (cit. on
p. 13).

[16] C. Zamarreno-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and B.
Linares-Barranco. «Multicasting Mesh AER: A Scalable Assembly Approach
for Reconfigurable Neuromorphic Structured AER Systems. Application to Con-
vNets». In: IEEE Transactions on Biomedical Circuits and Systems 7(1) (June
2012), pp. 82–102 (cit. on p. 13).

[17] A. Linares-Barranco, R. Paz-Vicente, F. Gómez-Rodriguez, A. Jiménez, M. Rivas,
and G. Jiménez. «On the AER convolution processors for FPGA». In: Proceedings
of 2010 IEEE international symposium on circuits and systems (2010), pp. 4237–
4240 (cit. on p. 13).

[18] M. Davies, N. Srinivasa, T.H. Lin, and al. «Loihi: a neuromorphic manycore
processor with on-chip learning». In: IEEE Micro 38(1) (2018), pp. 82–99 (cit. on
p. 13).

[19] J. Madrenas. «HEENS_info_v0.1». In: Private document (2020) (cit. on pp. 18,
20, 31, 43).

160

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivations and goals
	State of art
	Neuron models

	Spiking Neural Networks
	Data encoding
	Synaptic Plasticity
	SNN implementations

	HEENS architecture
	Operational stages of HEENS
	Multiprocessor structure

	AER-SRT controller
	Control packets of AER-SRT protocol
	Master Chip

	Neural algorithm
	Design flow

	Monitoring implementation
	Software and Algorithm
	PE-array
	Hardware structure
	VHDL and Simulation

	Multi-Board version
	Z_AER_interface
	Z_AER_tx
	Z_AER_rx
	Sequencer
	Simulation

	Single-Board version
	Architecture and main differences
	PS interface reading operation

	Logic Synthesis and Hardware Implementation
	Single-Board
	Multi-Board

	Performance upgrading
	Architecture improvements
	Z_AER_interface & PE-array
	Z_AER_tx
	Sequencer
	Simulation
	Single Board

	Logic Synthesis and Hardware Implementation
	Multi-Board
	Single-Board

	Conclusions
	Instruction Set Architecture
	Assembler code
	Algorithm with no virtualization
	Algorithm with virtualization
	Algorithm with monitoring instruction

	Netlist
	Delay line 4x4 (no virtualization)
	Oscillator 4x4 (no virtualization)
	Oscillator (with virtualization)

	VHDL source files
	PE_ARRAY
	PE_ROW
	PE
	Z_AER_interface (first version)
	Z_AER_tx (first version)
	Z_AER_rx
	AER_OneBoard (first version)
	PE_array (second version)
	Z_AER_interface (second version)
	Z_AER_tx (second version)
	AER_OneBoard (second version)

	Bibliography

