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Abstract

Data centres usage and impact is a sensible matter, even more nowadays. Data
centres energy impact is not negligible, driven by continuous technologies improve-
ment and the research of higher performances. Among several methods to improve
efficiency, this thesis work main goal is to study energy and cost impact of a proper
and more tailored load management approach. The thesis aims to implement and
extend a previous work born by a collaboration between University of Calabria and
Polytechnics of Turin. The case study remains the same and it is represented by 4
hypothetical data centres placed in different locations. This spatial dislocation im-
plies different energy cost and different renewable production among the 4 structure
at the same hours of the day. This work, and this thesis as well, studies the efficiency
gain brought by performing a load migration between these 4 data centres in order
to match better renewables production and hourly energy cost. The load moved
consisted in a set of virtual machines referring to real data from a Telecom data
centre collected by researchers of University of Calabria. For this purpose, a java
program was implemented to properly simulate the migration of virtual machines
over this 4 data centre giving back energy parameters results. This thesis continues
to analyse these performances making further considerations and implementations
focusing on the influence of a proper virtual machine characterization. The virtual
machine features considered are principally cpu, ram and disk usage. The analysis
use these metrics as constraints to migration, this permits to calculate eventual
benefits based on the main characteristic of each virtual machine which results
evaluated individually. The output is an overall consideration on performances,
sum of the 4 data centres results. The final goal is to understand and contextualize
these results to find relations between the virtual machine characteristics and an
optimal migration policy.
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Chapter 1

Introduction

1.1 Green Data Center
Green data Centers (DC) are facilities where data are stored, managed and elab-
orated and in which are adopted energy efficiency technologies. Indeed, DC are
huge structures, full of an high number of hardware computing components, which
summed together, have a very high power consumption. So the ideal aim of
green data centers is to reduce energy cost and footprint without compromising
the performance by investing and implementing in new hardware and software
technologies.

The continuous research for higher performance, the world’ seek for IT resources
and the technology improvement brought data center employment to grow exponen-
tially during the past years. Moreover, data centers are directly connected to data
that are one of the main resources of this technological era where data importance
and magnitude grows dramatically over last years1 and now a good architecture to
manage them is an essential requirement.

Data center are indeed complex architectures which permit to perform many
different tasks and they evolve to adapt to modern user in a society more and more
IT compliant.

Data centers buildings themselves are full of modern electronic components and

1citing one of the latest Cisco report [1]:
• "Globally, Internet traffic will grow 3.7-fold from 2017 to 2022, a compound annual growth

rate of 30%";
• "Globally, Internet traffic will reach 350.8 EB per month by 2022, up from 96.0 EB per

month in 2017";
This statements help to contextualize better the actual and future importance of data and the
magnitude of the data management problem.
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each of them have an energy consumption. These buildings importance make them
a necessary asset and the relative world electricity consumption grow accordingly
and now energy demand is not negligible and brought the consequent necessity of
improve efficiency and reduce maintenance cost.

Power Usage Effectiveness (PUE) 1.1 is one of the main metric to indicate the
energy efficiency of a data center.

PUE = PDC

Pcomp

(1.1)

The numerator is the total power supplied to the data center’s structure (PDC),
while the denominator is the fraction used to effectively run all data center com-
putational task (Pcomp). Therefore, ideal PUE is 1, indicating a data center with
no energy waste where all the electricity demand is used exclusively for the DC
operation.

Figure 1.1 is an histogram representing PUE distribution based on a JRC report
[2]. The data refers to a sample set of 268 data centers principally located in
Europe in 2016 and the average PUE is 1.8. There are a small subset of DCs with
high efficiency and, on the contrary, many others with very poor performance. A
value of PUE near 2 means that only 50% of the energy supplied is effectively used
for the DC computational purpose. Now, in 2020 the average global average PUE
drops to 1.59, this value is still improvable and the DCs in 2016 with PUE lower
than 1.5 proves that.

Figure 1.1: PUE distribution [2]

2
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The histogram in figure 1.2 , brought by a study of the synergy research group
[3], shows an exponential growth in cloud infrastructure services investments (one of
many DC main feature); along with a massive and constant value of DC’s hardware
and software investments. This second aspect seems to be stable but it should be
considered the difference in the last 10 years is about 40 billion dollars, (about 40%
of the total) and the money invested are already 60 billion in 2009.

We can also make further considerations: for example, the 2019 data are
predicted, and indicate a peak beneath 100 billion of dollar. According to one
of the last Canalys research, the real value reached in 2019 is 107 billion dollars
and it is expected to reach 284 billion by 2024 [4]. Moreover, the prediction made
previously does not consider the huge implications relative to the last changes and
the pandemic problem. In fact, many recent articles2describe the rebound of smart
working approach and necessity to rely on many data center services more than
ever and with a reliability even higher than before.

2Covid pandemic, lockdown, distance learning, smart working, these are all words people
becomes familiar with. Many companies and services change and adapt their approaches to
new needs to match better the world situation. All these changes increase the burden the IT
infrastructures have to bear. Moreover, also in a post pandemic period, there are high probability
that some companies chose to maintain some of the adopted changes. There are many other
considerations worth to be done about this topic but here are some articles (a subset) which
highlight the importance of data center in a post covid world and the reliability needed to bear
the higher data traffic demand:

• "Coronavirus Is Bad and Good News for the Data Center Switch Market" [5]

• "’You can’t just stop.’ How data centers are dealing with the coronavirus crisis" [6]

• "The future of data centers in a post Covid-19 world" [7]

• "Le sfide per i Data Center al tempo del Coronavirus" [8]

3
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Figure 1.2: Enterprise spending on cloud and data centers [3]

1.2 Data center footprint and energy considera-
tion

According to World Health Organization (WHO), carbon footprint is "a measure of
the impact your activities have on the amount of carbon dioxide (CO2) produced
through the burning of fossil fuels and is expressed as a weight of CO2 emissions
produced in tonnes" [9]. CO2 emission is only one of the many metrics useful to
evaluate world pollution and energy impact. It still reamains a usefull term of
comparison because well-known and used in many different study areas.

As stated in one of the latest international agency energy (IEA) reports [10]
global data center electricity demand in 2019 was around 200 TWh corresponding
to 0,8% of the total electricity demand [11]. Considering 1KgCO2

KW h
for coal propelled

power plants (coal is the worst fuel regarding the CO2 emission, slightly worse
than petroleum) [12] we can estimate a worst case with roughly 200 mega tonnes
of CO2 (for comparison in 2016, Italy, emitted about 358 metric mega tonnes [13]).

So, it is clear data centers have an energy impact and a value of CO2 emissions
not negligible. Although to grasp even better the data center energy situation,
some considerations should be added:

• The emissions estimated in the previous rows are about a worst case but coal
is slowly decreasing its employment and many companies start to rely on

4
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renewable or in general more green resources than coal. Figure 1.3 shows a
huge decrease in coal-fired power capacity subject to FID3, confirmed also
from the chart in figure 1.4 which displays a slow but steady increase in the
usage percentage of renewables (this last data should be evaluated together
with the historical and geopolitical worlds background4).

Figure 1.3: Coal-fired power generation
capacity subject to an FID [10]

Figure 1.4: Energy world consumption
by source [14]

• As mentioned in the previous section PUE is one of the common metrics
use to evaluate energy efficiency and the PUE actual average is 1.59. Many
companies achieved excellent PUE values over the years. Anyway it should
be also considered the increasing effort in lowering PUE as it approaches the
optimal value of 1. The plot in Fig.1.5 shows the excellent google ’s data
centers performances but it also display how many years were needed to reach
the actual value; without investments and effort is impossible for world’s data
centers achieve optimal PUE values ,especially in a short amount of time.

3FID stands for Final Investment Decision and represents the final step of a long term assets
managing project, this metric can be very useful to understand the economical implication and
above all the future direction a company intends to follow.

4The figure 1.4 demonstrates that the world comes from a long history of carbon fossil usage.
With the only exception of hydropower, the renewables start to be considered only in the last
decades and clearly with a different timing among countries with a different development degree.
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Figure 1.5: Google Data Center PUE performance [15]

• According to international energy agency (iea), the world increasing demand
for data center’s services is biased by a shift in higher efficiency hyper-scale
structures [10]. Figure 1.6 shows this hyper-scale shift trend while, on the
right, (figure 1.7) it is possible to observe the flat energy demand trend (the
charts are elaborations based on iea data [10]).

Figure 1.6: Global data center energy
demand by data center type [16]

Figure 1.7: Global data center energy
demand by region [17]

Hyper-scale data centers permit an improved efficiency and give the possibility
to cushion better investments in high performance components. At the same
time many distributed data centers are more difficult to track and can represent
an unpredictable coefficient in the energy management considerations. Indeed
these two charts show, from a certain point of view, the advantages of a single
high efficiency architecture in comparison with a multi-distributed one.
Although Hyper-scale data centers manage larger capacity but at the same time
need huge investments because their main feature may be represented from

6
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the ability to scale fast with high level of redundancy and reliability. Figure
1.7 shows quite a static trend in energy demand (especially in Europe), but
also in this case the recent world’s changes will surely imply some differences
within the predicted values (all the values after 2019). The pandemic changes
may question many researches made before 2019 with results projected after
2020, in particular at world wide scale.

Data centers performances and footprints are a sensible matter, so not every big
company shares data about it. This means difficulties to gather consistent data
from reliable sources and consequentially make truthful considerations at world
level.

The backfire of this particular aspect, as explained in an interesting article writ-
ten by Eric Masanet and Nuoa Lei (of the McCormick School of Engineering and
Applied Science) [18], is the production of a considerable amount of white papers
and reports with inaccurate considerations and a consequent wrong perception of
the real situation. The article indeed highlights discrepancies between ambiguous
and sometimes overestimated data and real ones. In addition make proper argu-
mentation about energy efficiency, world pollution, footprint and renewables may
be difficult because it is a very hot topic and the variables to keep in consideration
are various.

To overcame data ’s problem just mentioned, Green Peace developed a percentage
value called the green energy index which also may fulfill the role of giving an
alternative, different metrics. This index aim to measure effectively how much clean
energy is used to provide the data center services [19]; It is calculated as average
among the difference facilities and its computation is based on the percentage of
different fuels used.

These results (written in a series of reports over different years [19] [20] [21] [22]
[23] ) was used to build the histogram in figure 1.8 . It shows the energy green
index trend of a subset of companies:

The results show a different point of view on the green energy performance of
a company. The green energy index indeed is a completely different metric with
respect to PUE. Apple hits 100% but it does not declare its PUE making the energy
index one useful term of comparison common with others. All the companies with
high energy index generally have also optimal low PUE values (Microsft declares
value under 1.1 and Yahoo and Facebook too).

Anyway, one metric does not exclude the other and it is better to consider
them together in order to have a wider and more complete idea about data center
footprint. The histograms show data before 2017 but for example Google data
centers are now 100% powered by renewable source, Facebook declares to achieve

7
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Figure 1.8: Green peace computed green energy index

the same goal by 2020 and Microsoft by 2025 5.
Another important but less known footprint needed to be mentioned is the water

one. Water is an aspect sometimes underrated especially talking about energy use.
Water footprint is not as discussed and known as carbon footprint in particular for
DC case. On this purpose, water is clearly largely used to produce energy in first
place, and then it also used to cool data centers.

According to a research by National Renewable Energy Laboratory (nrel) with
2003 techonologies the solely amount of water evaporated for 1KWh, used to be
7.6 liters [24]. "Considering the whole water used in the energy production process
Tamis Younos 6 affirms this number reaches the value of 95L

kW h
."

5All the major IT companies are developing dedicated web pages which talk about their
improvements in terms of ecological footprint and all the data mentioned about Microsoft Google
and Facebook are retrieved from there:

• https://sustainability.fb.com/

• https://sustainability.google/

• https://www.microsoft.com/en-us/corporate-responsibility/sustainability

6Tamis Younos is the associate director of the Virginia Water Resources Research Center (in
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Despite technology improvements in the last 17 years, these numbers remain
considerable, especially if multiplied for the average data center electricity demand.

The water used for cooling purposes should be added as well and it represents a
more difficult data to collect because linked to many aspects (first of which the
cooling mechanism). So, in order to evaluate better the data center water footprint
Green Grid developed in 2011 a new metric called Water Usage Effectiveness (WUE)
which is the "Annual Water Usage" over the "IT Equipment Energy" expressed inè

L
KW h

é
.WUE is not an a-dimensional metric like PUE and can be very useful to

evaluate the water usage exceeding the power purpose.
Figure 1.9 is an open-source dashboard made by Facebook which shows the

company efficiency. Facebook is one of the few companies which highlights also
this pretty new metric. A lower value of WUE means a DC less water-intensive.
the value of 0.35 should be multiplied for the DC power consumption as well to
obtain the total water usage.

Indeed, figure 1.10 can help in understanding better the volume of water used
by data centers.

Figure 1.9: PUE/WUE Facebook dashboard [26]

This last figure is self-commentary, between the other subject choose to match
the DC’s water usage there is also a forest tree and that represents yet another
consideration useful to understand data centers energy impact.

Blacksburg) and a professor of water resources at Virginia Tech. This statement is reported in an
interesting article written in 2008 by Willie D. Jones for IEEE Spectrum [25]

9
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Figure 1.10: Water usage comparison [27]

1.3 Virtualization
Virtualization means the creation of an abstract, virtual resource of non physical
entities like application, server, storage etc... Virtualization has a key role to
enhance cloud computing possibilities and usability, providing several benefits e.g:

• improve scalability

• high avaliability options

• greater workload achievement

• improve flexibility and adaptability

• greater workload portability

Data centers are an important technology to achieve a more efficient and
dynamical allocation of hardware resources. Virtualization implementation growth
very fast in the previous years finding also new and more field of applicability as
shown in Fig.1.11, it refers to a SpiceWorks research [28] which obtain thess results
as consequence of a interview to 530 IT decision makers in 2019.

The higher bar in the figure is an undeniable value which shows the importance
of virtual machine in server cases and a trend still increasing. The rest of the plot
highlights in particular how virtualization technology is becoming an important
reality for many other applications and higher percentage of future growth.

Server virtualization market was valued around 6 Billion dollars in 2019 and
it is expected to surpass 9 billion dollar by 2026. Virtual machines are the main
components of the virtualization technology able to move such a huge amount of
money and they are basically a software implementation of real machine which
permits the user to run code on it like on physical hardware.

10
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Figure 1.11: Business Adoption of Virtualization Technology [28]

Another important player in this technology is the hypervisor that have the role
to supervise virtual machines and interface them with the hardware components
which effectively make the computing and represent the effective computational
power. The hypervisor itself represents the virtualization level with the role to to
manage and distribute the hardware resources over the virtual machines.

There are several server virtualization architectures and in figure 1.12 is shown
the simplest one (b) highlighting the difference with a non-virtualized (a)

Figure 1.12: standard architecture(a) and virtualization implementation (b)

This figure is also useful to understand better part of the virtualization advan-
tages mentioned before. In particular VMs are the main elements fulfilling the end
user necessity in a cloud computing environment. In particular we can notice how
hypervisor and virtual machine permit to exploit better the hardware capacity. At
the same time end user have access to personalized environment easier to customize
for fulfilling his/her own purposes.

11
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The VM based architecture gives advantages also from energy and financial
point of view because the main facility with hardware components that costs and
are accountable for the majority of power consumption remain the same, but with
the ability to service higher number of users which at the same time may pay less
money for a more tailored service.

Virtual machine plays a key role in this thesis work and their characteristics
will be explained better in the next chapters.

1.4 Aims and contributions
Starting point of this thesis is a partnership between University of Calabria and
Polytechnics which developed and use a simulator environment named ”eco4cloud”
in order to study the performances of virtual machines migrations. These simulator,
thanks to values of 414 real VM collected by a Telecom data center, compute load
migration performances among 4 different hypothetical DC around the world with
various energy characteristics over the day.

Previous study outlined a behaviour of the migration related to energy parameter
changes over time and consider also influence of renewables and batteries capacity.
This thesis focuses mainly on implementing this simulator to study further migration
behaviour and in particular the influence of the VM characteristics over the
migration performances.

Focusing better on virtual machine object itself and its main features is the main
purpose of this project. The features chosen are CPU, RAM and disk usage which
may represent the core of each virtual machine. In order to evaluate them was
developed a system of thresholds to constrain the migration and observe eventual
variation of performances in function of these three characteristics.

These thresholds were used to perform e selective migration based on features
and CPU is the one which influences more energy cost of the DC (accordingly with
the simulator cost computational function). After studying the relation between
CPU and other features, different simulations were made to observe if the outputs
match the expectation for the different characteristics.

Two types of analyses were made: the first one considers the aggregated results
and the total output of the simulator while the other one is more punctual and
observe the migration performances at each iteration.

Other considerations, less related to the VM feature themselves, were also put
under observation. In particular, it was contemplated the relation between the
amount of load migrated and the energy costs’ reduction and a comparison between
performance of migration and local consolidation which is as well, a mechanism to
increase energy efficiency based on host optimization.

12



Chapter 2

State of the art

The previous section is an overview to Data Center energy impact with some power
consumption consideration. Now can it can be useful consider the main solution
adopted to reduce or optimize DCs energy demand and data centers footprint.

2.1 Cooling mechanism

Among different approaches to reduce the energy demand of DC, one of the most
important is the reduction of energy used for cooling purposes. This also implies
the reduction of PUE and consequentially an higher efficiency.

Optimal temperature and humidity conditions improve also hardware perfor-
mances because each electronic component has its own optimal working region and
performs better if maintained inside of it.

Therefore, a proper cooling strategy means accomplishing the same computing
task faster and better with a corresponding monetary and energy saving.

13
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So cooling mechanisms are fundamental both for energy efficiency and hardware
functionalities and for that reason many studies were done on this subject
leading to different technologies and approaches. Despite slight minor differ-
ences in the implementations and the structure design, in general the cooling
mechanism can be divided in 2 subgroups:

• air based;

Figure 2.1: Air cooling mechanism [29]

• fluid based;

Figure 2.2: Advanced fluid cooling mechanism [30]

Figure 2.1 and 2.2 show two examples of cooling mechanisms. Each of them has
different advantages and disadvantages, and the structural cost varies as well.

14
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One important aspect worth considering is the DCs placing. Data center can be
placed in many different parts of the world for many different reasons and choosing
of the cooling mechanism should also take into account external environment.

Indeed, there is a lot of variables to be considered in order to achieve a reasonable
efficiency.Cold Isle Containment(CAC) and Hot Isle Containment(HAC)1 are two
air based cooling mechanism and for example the first one has the advantage over
the second to keep the surrounding cooler, keeping a better working environment for
the DC building’s employers. Although, this feature may represents a disadvantage
at high latitude regions where the cold air can be reused to warm DC facility. The
humidity and the water usage can be discriminant factors as well. It is important
to consider data center as a whole, a building or a structure in general related to
many other different activities with its own maintenance needs.

Figure 2.3: Microsoft DC Nat-
ick project [31]

Project Natick is an interesting Microsoft at-
tempt with a peculiar choice for the DC lo-
cation. In fact Microsoft placed a DC on the
bottom of the sea for 2 years, choosing to
trade data center structure accessibility (at
least from physical handling point of view),
with the possibility to make the most of the
environmental characteristics.
The data center (in figure 2.3) was retrieved
from its location on July 2020 and now is
being analysed. The first data declared on
the project’s official page ([31]) tells about a

data center 8 times more reliable and very prone to energy efficiency.
An underwater DC has clearly a series of constraints but this project represents
an important proof of concept and contributes to demonstrate the importance
of a proper DC placing and cooling.

1CAC and HAC are two of the air based cooling mechanism shown in figure 2.1 (respectively
2 and 3). As it is possible to see in the figure HAC traps the hot exhausted air which will be
drained away while CAC approach traps the cold air while the hot air remains external and will
be managed by ventilation system. So in one case the external environment results way cooler
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2.2 Beyond PUE
Reducing PUE is very important to reduce energy waste but also an ideal value of
1 does not imply any reduction for the effective energy demand for computational
purpose and so, the DC power consumption still remains not negligible.

We have already seen in the previous chapter the importance of some other
aspects (e.g. green energy index, water footprint, energy and fuel considerations).
PUE metric alone, cannot be the only metric to define the energy efficiency and in
particular also an ideal PUE does not exclude the possibility of further improvements
from power consumption point of view.

So, some considerations should be done about the possibility of reducing the
overall energy demand with proper management policies. Next paragraphs will
focus on different approaches for improving energy efficiency, based on smart load
management. The final goal remains to reduce power consumption or CO2 emission
or generally increase efficiency, but the implementations are different and often less
hardware dependent.

2.2.1 Server usage optimization
In 2007 Luiz André Barroso and Urs Hölzle published an important research
regarding ratio between energy consumed and sever utilization [32]. It is common
practice to spread data and resource among different server in order to improve
system reliability and content accessibility, "As a result, all servers must be available,
even during low-load periods. In addition, networked servers frequently perform
many small background tasks that make it impossible for them to enter a sleep
state" (citation the report [32]).

The key issue is the servers optimization at high loads without proper consider-
ation for lower activity cases. Clearly a data center with all servers active 24/7
performs better because all the resources are always completely available but this
condition has a huge drawback from the point of view of energy efficiency.

The ideal solution proposed in the paper is to change toward a configuration
based on a proportionality between servers utilization and energy demand. This
approach implies to find a trade-off where, slightly better performances in low load
cases, are exchanged for higher efficiency. It means to introduce a proper sleep and
power off policy together with an accurate load distribution between different hosts
of the same data center.

Figure 2.4 shows that servers consume almost 50% of the peak energy demand
also in virtually idle case, the consequence is a considerable waste of energy for the
only advantage of maintain a server more reactive to sudden requests. On contrary
figure 2.5 represents the behaviour of a more energy-proportional situation. The
two red efficiency curves are very different and highlights the huge advantages, in
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terms of power consumption, of the second configuration in respect to the first one.

Figure 2.4: Power and efficiency
over utilization: non proportional
case [32]

Figure 2.5: Power and efficiency
over utilization: proportional case
[32]

As expected the two figures show substantial differences in the low utilization
region because the green line has indeed a starting point way lower in the second
one. Figures show a typical operating region below 50%, because usually it is better
to avoid the server saturation and prevent overheating and an excessive strain on
electronic components.

The solution proposed implies to increase load on a set of servers, to save energy
with proper sleep or power off strategies on some other ones. Also in the new
resources allocation phase, it may be more convenient to maintain some of the
possible receiving servers off, increasing load on others and consequentially their
utilization regions, so as mentioned before a trade-off between this two condition
should be found.

New hardware components can help in this task due to higher reliability and
resilience but in general all technology improved considerably in the last decades
considering also software development and new data center management policies.
So, on august 2017 Rathijit Sen and David A. Wood published an article [33]
aiming at updating the previous considerations of Barroso and Hölzle.

Figure 2.6 reconsider and extend plot 2.4. The green line EP 2 represents an
ideal behaviour also in the zero load case while the red line (dynamic EP) refers
to a more realistic scenario where a low energy demand is present, also near 0%
load. The second one is nearest to old behaviour of EP (green line, figure 2.5) and
consider minimal power demand due to background activities.

In this second report considerations about the performances of new servers were
added, which reach peaks levels at different loads as consequence of the topologies

2EP stands for energy proportional
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and configurations used. The dotted light blue lines instead, represent the behaviour
of a system with different configurations aiming at better explaining the modern
servers’ functionalities.

Sen and Wood consider the innovations on modern DC and their possibility
to adopt a more re-configurable system. The dotted light blue lines represent the
nonlinear behaviours of different configurations and the black dotted line is the
consequential pareto frontier, which intersected the EP line and where this happens
the super proportional threshold is crossed.

Figure 2.6: System Power at various loads with with multiple configurations [33]

The old definition of energy proportional computing asserts the max efficiency
is reached in a 100% load case and this value represents an upper bound (all the
saturation considerations made before are not considered, it is only an ideal upper
bound). The possibility of a configurable system gives the opportunity to go beyond
this limit and the key idea for the redefinition of an energy proportional computing
is to achieves ηmax for all loads.

Crossing the super proportional line means the hypothetical upper bound just
mentioned is exceeded, this upper bound results from an ideal proportionality
between load and power consumption, and the green area beyond it represents a
situation where the system is beyond this proportionality.

Indeed, in the EP ideal case, the ratio between load and power is 1 for all loads
while the pareto frontier shows better performance after the intersection (loads
higher than 40%).

Also in this case, it could be useful to analyse the efficiency curve and figure 2.7
compares it with the pareto frontier line, highlighting ηmax which results 29% higher
than the upper bound imposed from the previous definition of energy proportional
computing.
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Figure 2.7: System efficiency at various loads with multiple configurations [33]

So, in the end the key idea is to exploit the re-configurable potentials of new
data center architectures in order to find an optimal work region to maximise
performances with the current technology development degree, indeed this approach
permits to achieve higher levels of energy efficiency.

2.2.2 Data Center Demand and Response

Demand Side Management (DSM) is a mechanism where the consumers’ demand
is changed or influenced to match better the energy supply. Demand and response
(DR) is a class of DSM where the consumer attain a series of benefits from the
rescheduling of its energy profile. The key idea in DSM and more specific in DR is
to move partially consumers demand accordingly to power distribution provider
and the grid necessities. According to international energy agency (iea) demand
response programs are becoming a valid solution in different world area and for
example "In Italy, a total 280 MW of capacity were commissioned by the system
operator across the country, while in Ireland 415 MW of demand response capacity
was awarded in a T-4 (four-year-ahead) auction." This is a textual citation form iea
report [34] and it is useful to contextualize and understand better the magnitude of
energy implied in DR policies, a huge amount of energy dedicated to DR policies is
a good indicator of this approach possibilities.

Figure 2.8 is a useful summary diagram (brought by an interesting overview on
DR published on IEEE Explore in 2007 [35]) which shows the demand response
advantages from different points of view.
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Figure 2.8: Classification of DR benefits [35]

First of all, DR helps in the
important achievement of re-
ducing burden on energy grid,
this also means higher reliabil-
ity and flexibility, a reduced
strain on power supply infras-
tructure and the possibility to
reduce overloads and handle
better emergency situations.

Moreover, DR helps to
match better renewables pro-
duction and account for their in-
termittent behaviour especially
considering the possibility to
introduce energy accumulation
solutions like batteries. In fact,
demand response is not only
about reducing energy peaks
but more precisely this ap-
proach aims to move them ac-
cordingly with the grid possibil-

ities.
So, if the power grid does not include intermittent power source in general the

DR policy can still be useful to reduce energy peaks while, on the other hand, in
presence of renewable sources, may be advantageous to match them properly.

The final considered scenario should be a smart grid infrastructure with renewable
power sources and batteries combined with a properly tailored demand response
policy. Clearly, one of the main difficulties of achieving such scenario is the intrinsic
necessity of DR approach to find a compromise with end consumer. Indeed demand
response gives back remarkable results if the load considered is large but for a
consumer’s subset, this approach may impose conditions too strict to be adopted,
e.g. average workers used the electricity at home only in early morning and in the
evening after work, at the same time a company may presents higher peaks in the
morning and after lunch breaks.

So, DR performs better if adopted by a large number of consumers which
cooperate to attain a series of benefits like money saving. There are also situations
where different macro categories of consumers can potentially match their necessity
demand each other, consequence of using energy in different moments of the day
(e.g. the just mentioned huge set of employees and the facility in which they work).
However a proper management is needed and more variables to be considered may
increase the its complexity, also considering the issues related to have a flexible and
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not homogeneous consumers set which relies on the same energy provider finding
an agreement.

Figure 2.9: Simplified Demand Re-
sponse effect [35]

In figure 2.9 there is a qualitative sim-
plified explanations of DR effects, the
key feature of this approach is to impose
a negative slope at high demand and
so, the higher the demand, the higher
are the benefits obtained. Despite many
different consumers may constitute this
high load and high demand requested,
they should also be willing to accepts
limitations to their power usage in order
to satisfy DR requirements.

A data center facility has high power
consumption but at the same time counts as one single entity, so it is easier to
manage than many different consumers with an equal summed total demand.
Indeed, from many points of view, DCs may be the ideal consumers in this case
and they have many characteristics which match perfectly DR polices:

• very large load and power demand but single entity

• active 24/7

• scalability

• flexibility

• necessity to reduce energy cost

• renewables and battery compliant

• different facility, one owner

Indeed, DC main features make it more inclined to load shifts and considering
a data centers set of the same company instead of one single facility, benefits
obtained may increase even more due to DR potentialities, especially if merged
with important investments in renewables.

To evaluate demand response benefits in data centers case, it could be useful to
cite for example a publication of a group of researchers from Chicago University,
which investigate the potential saving in an energy bill for a small to medium
data center situations [36]. The final conclusions considering a high performance
computing scenario is, citing textually: "curtailing 1MW, 8 times per year, will
lead to an annual electricity savings of approximately $100K. For our facility, this
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corresponds to a total cost savings of roughly 7% annually." This represents quite a
remarkable result especially considering the study case and projecting it to higher
load cases.

To conclude this argumentation about demand response can be useful to look at
figures 2.10 and 2.11, by an article on official google ’s blog page written by "Ana
Radovanovic" [37].

Figure 2.10: Conventional compute load

Figure 2.11: Aligning compute load with low-carbon energy

Figures 2.10 and 2.11 represents one of Google solutions to reduce CO2 emission.
The idea is to move computing load to match energy production from low carbon
emission sources. This approach is clearly similar to demand response (and helps
to understand it better) but it is CO2 based and consider only one big company.
However it still represents a load shift approach particularly interesting for its
green oriented characteristics where there are remarkable results due to the high
magnitude of Google ’s data centers load.
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2.2.3 Load management and virtual machine migration

Load management is a general concept, that was already mentioned a lot in the
previous sections and indicates the handle of data centers load for many different
purposes but generally with the aim of accomplishing some kind of optimization.

In chapter one is mentioned the importance of virtualization in modern data
centers architectures where, in fact, virtual machines have a main role and represents
the principal load for cloud DC computational resources.

Demand response key idea is to perform a temporal load shift in order to obtains
benefit, but could be also interesting considering a spatial load shift for similar
reasons. There are many factors which may influence DC performances and energy
efficiency like DC placing, environmental conditions, renewables production, DC
characteristics, energy cost, scope and usage.

All these factors (which clearly differ for each data center around the world)
contribute to give a sort of characterization that may be used to outline a DC
performance and convenience profile. One of the main approaches to load man-
agement is to balance this load among different servers and data centers but, as
we have seen so far, there are many alternatives which outperform this method
at least from the energy efficiency point of view. VM migration is another policy
which may provide benefits by migrating virtual machine (and consequentially DC
load) to the most convenient DC among the series at disposal.

Clearly, these observations should be contextualized considering the number
and type of DCs, the type and magnitude of benefits desired and the constraints
imposed:

Obtainable benefits:

• reducing energy expendi-
ture;

• reducing carbon emission;

• increasing energy efficiency;

• exploiting of renewables;

• improving system flexibility;

• emergency resilience

Drawbacks and constraints:

• increasing distance between
resources and end user;

• cost of migration;

• possible latency;

• increase data center work-
load at certain timestamp;

Figures 2.12, 2.13 and 2.14 (taken from a Google sustainability report [38]) are
three heat maps representing the daily percentage of DC energy demand matching
a free CO2 emission power generations.
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Figure 2.12: Google DC in Changhua, Taiwan

Figure 2.13: Google DC sin North Carolina

Figure 2.14: Google DC in Finland

There are huge differences among this three figures consequence of three different
locations with different environmental and economic scenarios, in particular DC
in Taiwan relies more on fossil power sources while North Carolina ’s one use a
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lot solar energy and finally Finland, with the best performance (from the carbon
emission point of view), are mostly powered by wind turbines. These power sources
are peculiar of the related regions and may not be usable in the other places (like
solar in Finland), due to environmental and geographical constraints. Moreover
each location should be evaluated also form the geopolitical and economical point
of view since each country have different energy cost and taxes and regulatory
policies (Finland gasoline cost is on average almost double whit respect to Taiwan,
without considering the different taxation).

This thesis uses a previous research [39] as starting point.

Figure 2.15: Cost-saving versus PV panel
size for different migration policies and bat-
tery=200kWh [39]

The related conclusions will be
treated again in the next chapters
but could be useful, now in the
state of the art, mentions it and
look at figure 2.15 that is one of
the results obtained. In particu-
lar this image shows the effect on
migration versus the variation of
photo voltaic panel size (PV) for
the case studies considered. As
we can notice with a well sized
solar panel the migration benefit
becomes not negligible aslo with-
out any particular energy saving
oriented policy.

One last consideration about VM migrations worth to be done is relative
to real time migration. Indeed, with current technologies is possible to move
virtual machines without interrupting workflows. This is possible thanks to a huge
implementation of hypervisors functionalities which are actually able to reallocate
and copy, all the VM virtual resources amoving the executions itself only in the
end, without necessarily abort it. This achievement makes easier to adopt load
migration policies because cancel the huge downside effect of interrupting execution
of activities on the migrated virtual machines.
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Chapter 3

eco4cloud simulator

As mentioned, this thesis work uses as starting point a previous research which
study load migration. In this section it is explained the case study and the simulator
environment and its functionalities.

3.1 Case study and Database
First of all can be useful to have an overview of the case study and the database
which is the base of the analysis argued in this paper. Load migration aims to
exploit the difference in geographical location of group of different DCs and figure
3.1 is a graphical representation of the case study considered.

Figure 3.1: Case study [39]
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There are four data centers located among different geographical positions
(different coordinates). Each of them is provided with PV panels which provide a
certain amount of renewables in different time of the day and batteries which store
the unused energy to supply it when needed.

Each data center may have different energy characteristics related to locations.
In the state of the art it has been already argued about what a different geographical
location may imply. The four data centers features simulate this scenario with
different values of energy prices, PUE, renewables production, carbon emission.
Moreover also the variation of this parameters is not synced to consider the different
time zones.

Migration aims to move virtual machines among different data centers to exploit
as much as possible these differences. Indeed these variations implies that each
data center may result more convenient in different timestamps The final aim
of migration is to periodically move load to this most convenient data center to
have related benefit (e.g. reduction of carbon emissions or reduction of energy
expenditure).

Virtual machines are initially distributed over the four data centers and after
that, a periodical migration was performed. DCM is the data center manager which
represent the administrator level of the data center facility which receives the VM
migrated and reallocates them among the hosts.

The VM data used refers to real virtual machines of a Telecom data center. It
has been created a database with different tables containing the information about
each virtual machine and their corresponding servers. In particular the tables of
the database mainly used are:

• "server": this table contains all the data about the 28 server of the DC. These
data are composed by the number of core assigned, CPU and RAM and the
computational resources assigned in general to the servers.

• "v_m" and "v_m_performances": In this two tables are stored all the virtual
machines info and the server id to which they belongs to. There are a total
of 496 virtual machines but only a subset of 414 are actually active (they
have RAM and CPU usage equal to zero). CPU and RAM are expressed in
percentage and are multiplied for the resources of the corresponding host to
compute the effective usage in MHZ and MB.

The four DC instead are fictitious entities created for the simulation purposes.
They have been configured to represents four hypothetical data centers and are then
populated with the virtual machines and hosts real data attained from database
queries. The simulator uses the VMs described as sample pool to create the used
virtual machines.
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3.2 Simulator environment
The simulator environment is developed in Java language and it is based on the
utilization of three important different objects: DC, host, and VM. All the simulator
considers a timestamp as time base unit and one timestamps corresponds to one
hour, so all the operation happening between two different timestamp are considered
ideal with zero execution time.

Although the database is populated by only the virtual machines of one data
center, the simulator creates 4 instances of the same object DC and treat them
separately. In particular there are various parameters which changes for each data
center and can be useful to cite some of them:

• some of the variables are set differently for each data center and does not
change over timestamps:

– PUE;
– carbon emission (CE) expressed in grams;

• there are other variables which change over time, in particular the configura-
tions has been set over 24 timestamp (one day), so for longer simulation the
pattern is repeated but clearly the system has different starting point and the
output may vary as well over different days.
These time dependent variables are set to simulate the behaviour and condition
of different data centers around the world:

– Energy prices: differ between data centers and between different times-
tamps. Also the average price is not the same for all DCs in order to
simulate the variation of price for energy sources in different location.

– PV production: this variable varies as well and it is related to battery
capacity and PV dimension which on contrary are fixed for each DC.

– Arrival rate µ: it indicates the number of virtual machines incoming for
each timestamp and the mean changes over timestamps but not among
different DCs. This value is then multiplied for variable named "ls_factor"
which does not change during the simulation and over DC.

Without going into too much details there are a bunch of functions and vari-
ables utilized from the simulator environment worth to be explained because are
fundamental to understand its behaviour and the results obtained:

• "score": it is computed whenever in the simulator there is a necessity to
outline the most convenient data center for a specific timestamp. The score is
computed for each data center as function of the estimated load, PUE, energy
costs and the renewables contribution.
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So, score computation is affected only by the DC setting for the timestamp
and by an expected load whic is the same for all DCs. In fact it does not
consider in any way the real load effectively present on data centers.

• "dc.costi": in the code this variable stores the amount of energy costs for each
DC object without renewables and batteries consideration. This variable has
two contributions:

– the first one is fixed for the timestamps and regard the DC and host
performances, so similarly to "score", it only depends from the parameters
of the DC;

– the other one sums all the contributions of each virtual machine.Considering
,in particular, the CPU in MHz of each VM. This parameter is then scaled
by considering features of DC and host to which the VM is assigned of.

• "dc.energyRen": this variable keeps track of the variation in renewables at
disposal for each data center, considering also the batteries which are charged
only if the PV production exceed the consumption.

• "dc.updateTotalEnergyCost(timestamp)": this important function updates,
at each timestamp, the data centers condition by updating the variables
regarding costs, load, renewables etc.. The drawback of this function is to
have a cumulative approach. For example, if this function is called one times
after another without any other action in the middle, the outputs will change
anyway.
This function behaviour is being created to be used only once for each times-
tamp to update the energy system situation before the next iteration.

The flow chart in Fig. 3.2 is a simplification of the simulator steps which may
help to understand better the overall behaviour.

The diagram shows the main steps of the simulation:

1. Initial setting: the initial settings are mainly composed by the creation of
the 4 DCs objects and the from external files import of all the simulation
parameters, including the ones mentioned before.

2. Initial assignment: the 4 DCs created are populated with the virtual machines
taken from the database. It is important to understand that the 414 active
virtual machines of the database are "cloned" and used among the system as
different entities in each DC so the simulator is not bounded to consider only
414 of them.
In this step for each virtual machine it is attained a list composed by the 4
data centers ordered by the most to less convenient one. The aim is to obtain
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Figure 3.2: Simulator main steps

an assignment ’s order by computing the already mentioned "score" which
does not depend from the DC real load. So the score is evaluated after each
single VM assignation.

3. VM turnover: new VM are introduced in the system while the ones already
served are removed. It is a very important step which gives flexibility to the
system and behave in according with the arrival and the service rate of each
timestamp.

4. VM migration: if enabled the virtual machine migration is performed. Also in
this case it is computed the score to determines the best and worst DC from
the point of view of performances and energy costs.
Unlike the assignment step, in this case the score is computed only once at
the function beginning. Consequentially,worst and best DCs remains the same
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for all the migrations performed for the timestamp. Change this policy for
the migration is not such a simple task, especially in a real environment. The
total number of VMs migrated can also reach the tens of miles and a score
computation after each single VM migration may be quite expensive in term
of computational resources.
After having outlined the source and destination DCs, there is a control on
the migration feasibility where three conditions are checked:

• bandwidth: it must be enough to perform migration;
• host saturation: if the receiving DC has saturated it cannot take any new

VM;
• delta: this check is done to avoid unnecessary migrations and it indeed

permits to avoid it when the scores computed between worst and best DC
are too similar.

5. Perform local consolidation": in the state of the art it was already mentioned
the importance of a proper optimization policy among different servers of the
same DC. The objective of the consolidation is exactly to optimize the load
distribution among hosts by performing a sort of internal migration between
them.

6. Update system variables: in this step the function "updateTotalEnergyCosts"
is used to update the system counters and variables before a new iteration
begins.

7. output: the simulator environment gives back two types of results, one aggre-
gated and one for each timestamp. In the first one the output is one row for all
the simulation with a final results which is a combination of the contributions
of the various timestamp. The other result instead is more punctual and
considers only the performances of each timestamp.

3.3 Parameters choice
Having understood the simulator environment main functionalities, is now possible
to talk about the parameters chosen for this thesis analyses. As seen there are a
lot of variables that must be considered to understand better and contextualize
properly the the results obtained from the simulator environment and could be
useful to cite again some of them:

• batteries capacity;

• PV dimension;
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• ls_factor;

• lifetime;

• µ service rate;

• λ arrival rate;

• bandwidth;

Clearly the majority of these variables are set accordingly with the previous
results obtained, in order to exploit all the considerations and analyses already
made and to provide a sort of continuity to the research.

Figures 2.15 shows percentage of cost saving over PV panel dimensions with
200KWh as battery capacity and it is possible to notice the migration performances
became considerable over 100 kWp. For these reasons, the PV dimension used was
set to 150 kWp while the battery capacity considered is 200 kWh.

Bandwidth represents an important constraint for the migration and in a first
moment it was maintained the original setting of 2Gbps. However, this thesis
focuses on virtual machine characterization during migration and for this purpose
a constraint of this type can be neglected with proper contour considerations.

Indeed, the effects of migration are more evident with a huge amount of VM
migrated but at the same time it is important to avoid system saturation in order
to maintain the system dynamic and prone to migration.
λ is the arrival rate and it is set in an external configuration file where it varies

over timestamps. "ls_factor" is a multiplicative factor for lambda which have the
role to scale it, increasing the arrival rate. µ is function of the data centers load
and the lifetime and together with λ is responsible for the amount of saturation
of the system. In particular it is equal to the ratio between total number of VM
present in the system and the lifetime.

So, some analyses focusing on migration are needed to provide proper values of
"ls_factor" and lifetime. The final goal is to set them to create a system as prone to
migration and as reactive as possible. So, "ls_factor" and lifetime are two critical
variables to be set and to choose them properly it was considered the variation of
VM migrated in relation to a variation of these two variables.

Figure 3.3 represents the output obtained after performing simulations with
different lifetime values over 168 timestamps. The number of VM migrated drops
after just one iteration while the differences for lifetimes greater than ten have
lower magnitude. As expected, longer lifetimes imply more VM in the system
also due to the decreasing of the service rate. So the system incurs in a saturated
situation where there are less evident migration effect.

From another point of view a lifetime too low is unfeasible. Considering for
example a value of 1 means that the virtual machine stay in the system (on average)
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an amount of time equal to the timestamp unit itself. In this condition almost zero
virtual machines last enough to undergo a timestamp variation. The plot justifies
and proves the correct choice of a values of lifetime equal to five, made from the
precedent users of this simulation environment.

So, to maintain an environment prone to migration, a value of lifetime equal to
5 has been chosen for all the further considerations. On average this means after
five timestamp a VM leaves the system or, from another point of view, at each
timestamp 1

5 of the total amount of virtual machines leaves the system.
Considerations about "ls_factor" are similar and aim to find an optimal value

that also in this case probably cannot be too high in order to avoid system saturation.
After fixating "lifetime = 5" the same type of simulation has been performed over
ls_factor and figure 3.4 shows the number of VM migrated over a 168 timestamps
simulation iterated for different "ls_factor" values.

In this case the differences are less dramatics, but it can be noticed a decreasing
trend for value higher than ten due to the expected saturation of the system. Also
in this case a trade-off must be considered because values of ls_factor too low may
implies a system too empty and consequentially less informative. So, in this case
the values chosen is 4 because shows the highest number of VM migrated and may
represents a good compromise.

Figure 3.3: VMs migrated over life-
time: one week simulation

Figure 3.4: VMs migrated over
ls_factor: one week simulation

33



Chapter 4

Virtual machine
characterization

Section 3 is fundamental to understand better the following considerations. It
explains "eco4cloud" functionalities and its main functions and purposes. This
overview of the simulator environment is necessary because it represents a starting
point for this thesis work and all the further consideration are based on implemen-
tation made over it.

4.1 VM characteristics
"eco4cloud" simulator already gives back a lot of information about VM migration
performances and implications, focusing on understanding the behaviour in relation
to batteries and PV panels dimension. Now, the main goal is to make further
considerations, on the migration performances in general, and then analyse the
impact of a proper VM characterization.

In particular three different features were chosen:

• CPU: this feature (expressed in percentage in the "v_m" table) is very im-
portant to define workload’s contribution. Indeed, (as seen in the previous
section) the energy cost considered in the simulator environment depends also
from the amount of CPU usage in MHz sum of different VMs contributions.

• RAM: it is another important feature indicating (in % as well) VMs perfor-
mances which strongly characterize a virtual machine and it may also represent
an important load to be migrated because it consumes both resources and
space allocation.

• Disk utilization: this last feature considered does not give directly information
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on virtual machine performances but when a virtual machine is migrated its
storage has to be migrated as well. So it represents an important indicator of
the volume of data in MB to be migrated together with the related VM.

VM are in total 496 but only 414 of them are effectively active and are considered
in our analysis. Table 4.1 reports maximum, minimum and mean of each features
while Figures 4.2, 4.3 and 4.4 gives an idea of the VMs population in relation to
this three characteristics chosen.

Figure 4.1: features main indicators

Figure 4.2: VM distribution with respect to CPU usage [%]

35



Virtual machine characterization

Figure 4.3: VM distribution with respect to RAM usage [%]

Figure 4.4: VM distribution with respect to disk usage [MB]

Disk usage and CPU distributions are very narrowed while ram distribution is
more uniform. Indeed CPU usage is mostly narrowed below 15% values and disk
usage values have low variance as well, on the contrary ram distribution is more
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spread between the whole set of possible values((0,100]). These considerations are
double checked from the data reported in table4.1 where it is more evident the
distances between mean values and the two external values of the distributions,
indeed only RAM has a mean value almost centred between the maximum and
minimum percentage.

The rounded covariance matrix 1 reported in table 4.5 is calculated over the
414 virtual machine considered after performing normalization in range [0-1] and
figure 4.6 is basically a graphical not-normalized representation2 of this covariance
matrix.

Figure 4.5: Rounded covariance matrix of normalized features

As expected in relation with the previous bar plots and table 4.1, RAM is the
feature with higher variance and its distribution are more uniform over its minimum
and maximum range. Disk usage and CPU present lower variance values and this
is confirmed from the flattened distribution which also highlights the presence of
outliers.

The three features do not present any strong correlation among them and this
is deducible both from the off diagonal values of the covariance matrix and from
the corresponding scatter plots. CPU and RAM anyway seems slightly correlated
but otherwise the orange regression lines present very low angular coefficient.

A scatter plot representation helps to understand better the relation between
feature but at the same time can be useful to partially exclude non linear correlation
which are not possible to notice from the covariance matrix and in this case there
is not any peculiar pattern that may be a signal of this situation.

Figure 4.7 is indeed a scatter plot where the 30 VM, corresponding to the more
outliers values, are neglected for visualization purposes. This 3D visualization can

1Covariance matrix is a statistical tool used to describe correlation between features. On
the main diagonal are computed the variances of the corresponding features, while other entries
indicate the covariance among different features. So it is possible to understand better the
distribution of variables considered and eventually find a statistical dependencies between each-
other.

2the figures in the main diagonal are histogram representing distribution of the virtual
machine based on the feature while the other squares are scatter plot with marked in orange the
corresponding regression lines
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Figure 4.6: graphic representation of the covariance matrix

be useful to have a complete overview considering all the 3 features at the same
time and it is basically a combination of the scatter plots represented in figure 4.6
which are anyway visible also separately in the appendix.
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Figure 4.7: 3D scatter plot of VM based on the 3 main features

The various points in the this plot represent the virtual machines with theirs
features on the three axes and we can notice how all the points are concentrated
and flattened on the RAM axes which is the one with higher variance.

4.2 Methodology
The features used for characterization are disk usage in MB, CPU and RAM in
percentage. Can now be useful outline the main steps used to derive results based
on VM characterization:
1. find a way to introduce a control over virtual machines which permits to

evaluate them based on the features mentioned;

2. implement this control policy over the "eco4cloud" simulator;

3. observe effects of this approach on the aggregated results which are natively
returned by the simulator;

4. focus over migration itself and over the DCs state pre and post migration;

5. understand the results obtained taking into account the simulator functionali-
ties ant the covariance matrix;

The first two points indicated will be discussed in the following subsections
while the other three points will be argued in the results section.
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4.2.1 Thresholds
To fulfil point 1 a virtual machine control policy was implemented. Before migration,
a set of consideration, already mentioned in previous chapter(3), were done for
each virtual machine but none of them consider the VM itself and its features.

So the key idea is to introduce in the code a routine where each virtual machine
is evaluated also for its characteristics and eventually allowed to migrate.

To perform this control policy a set of thresholds (TH) were created with the
purposes of constraint migration; the final goal is to allow each VM to move into
another DC only if its disk usage, RAM or CPU value is under the TH imposed.

To choose these THs was used the median3 function applied to each feature
distribution. The choice of median is brought by the necessity of applying a control
policy as even as possible and be aware of the influence of each TH implication
during the simulation (TH corresponding to median implies a better control over
the migration performances).

To identify more than one TH for each feature, the median was computed again
over the two subset obtained from the first division and so is possible to get back
nine values (three thresholds for each feature), which divide the virtual machine
population in five subset on different bases.

Moreover, by considering also min and max values of each distribution, it was
obtained a total of five different thresholds for each metric. Including min value
as threshold is useful to have a double check on this control functionalities, the
situation in which such a TH is used corresponds indeed with a simulation where
the migration is completely avoided.

Table 4.8 reports these 5 values for CPU RAM and disk usage with an highlight
on the main median which divides the population in half. As expected only RAM
THs among them is near the mean value stated in table 4.1.

Figure 4.8: Thresholds used for each feature

So, for example by neglecting eventual lower boundary (imaging it equal to 0),

3Median of an array (or in general of a set of values) is a statistical indicator which identifies
the value among them that divide the whole data set into two subset, with the same number
of entities, composed respectively by the higher half and lower half of the distribution. So, for
example in a vector of 100 random variables, the median is the value greater that 50% of them
and lower than the other 50%. In a ideal Gaussian distribution median correspond to mean
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changing the value of CPU threshold from 4.48% to 100% implies to give averagely
%50 more possibilities to allow migration because the amount of virtual machine
satisfying the constraints double.

Migration is granted only for Virtual machine which have a corresponding value,
of the feature considered, included between an upper and a lower threshold. In
particular thresholds were used in two different ways:

1. Cumulative case with increasing boundaries: at each iteration, the threshold
considered as upper bound, changes. The lower one remains equal to zero.
So in this case the simulator becomes less constraining at each iteration and as
consequence also the number of virtual machines allowed to migrate increase
accordingly.

2. Interval case with fixed interval: the lower and the upper bound changes
together at each iteration. In particular, when the threshold set as upper
bound changes the lower bound becomes equal to TH value used as upper
bound at the previous iteration.
In this case the possibility of migration for each virtual machine remains the
same at each iteration despite the threshold considered but the kind of virtual
machines allowed to migrate changes.

These two approaches main difference resides in the number of virtual machine
migrated because the second one remains strict over the whole simulation while
the first one increases the probability of migration at each iteration.

Clearly the number of TH used may vary as well and in a first moment the code
implemented, consider only the external values of the distribution and the main
median as TH values. Which basically creates 3 different situation that can be
used as example to understand better the TH control policy:

1. TH=0 : no migration allowed

2. TH=median over the whole data set: only the virtual machine with a feature’s
value under this TH are allowed to migrate and this number is on average
corresponding to half of the population.

3. TH=max value for the considered feature:this situation opens two scenarios:

• cumulative case: all the virtual machines are allowed to migrate because
the lower bound remains equal to zero while the upper one is at its
maximum.

• interval case: only the half of virtual machine’s population presenting a
feature’s value higher than the lower threshold and smaller then MAX,
are allowed to migrate. So, the probability to migrate remains equal to
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case 1 but the type of VM migrated changes because now the considered
VMs have corresponding features of higher magnitude.

The whole simulation is looped over the 3 kind of different features and over
the various number of THs considered for each of them. Figure 4.9 gives an idea of
the implementation of the thresholds policy over the flow chart in Fig. 3.2

Figure 4.9: Thresholds implementation

As stated "eco4cloud" simulator iterates over different timestamps (up to one
week corresponding to 168 timestamp) changing the parameter of each DC at each
timestamp. Now to implement the control policy, the whole simulation is iterated
multiple times using different thresholds which change both in type and value.

It is important to distinguish the loop over timestamp mentioned also in chapter
3, (which has the purpose of changing the energy parameters of the simulation
for each timestamp) from the outer loop implemented after, which iterate all the
simulation many times with different parameters and different THs.

So the number of obtained results changed as well. The aggregated result
becomes one for each TH used and punctual results increase too.
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Originally the simulation is performed considering for example 168 timestamp
with a consequent punctual output composed by 168 rows while, with TH approach,
the total numbers of rows returned are equal to:

rows = timestamps ∗ features ∗ THs (4.1)

which means that considering a whole week simulation with all the features and
thresholds argued so far, the final output has:

168(timestamps) ∗ 3(features) ∗ 5(thresholds) = 2520rows (4.2)

The final goal is to use upper and lower boundaries to constraint migration and
then see if the results obtained matches the expectation considering the simulator
costs functions and the VM distributions just discussed.

4.2.2 Pre/Post migration

In order to focus better on migration performances, become important to isolate
its contribution from the rest of the consideration and variables of the simulator
environment.

The final aim is to compute all the system output parameters in two different
moment, pre and post migration and then analyse the differences between the data
obtained.

Can be useful to remember one more time the ".updateTotalEnergyCost()"
function which have the important role to update the system condition at each
timestamp. As said, it is a cumulative function which also keep track of the previous
timestamp so at each iteration sums the new values obtained to the previous ones.

The use of this function is needed to efficiently update the system parameters but
has the drawback that is a function born to be used only one times for timestamp.
Indeed due to its cumulative behaviour whenever it is invoked after the first times
alter the results for that timestamp because it sums more than once the costs and
variables just computed.

So, in order to isolate properly the migration contribution it was necessary
a series of steps to be performed after the VMs turnover but before the VMs
migration, visible in the diagram in figure 4.10:
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Figure 4.10: Pre/Post computation diagram

The different outputs obtained corresponds to three different moments during
the same timestamp iteration and they were then subtracted by each other to
obtain the final output needed, through the following computation:
1. differenceA = ”output2” − ”output1”
differenceA computation is needed to eliminate the influence of the previous
timestamps of the simulation and indeed it is the equal to the raw contribution
of the last update performed.

2. differenceB = ”output3” − ”output2”
differenceB computes effectively the difference between the migration impact
on the general output but it is still biased by the previous updates made which
have altered the values.

3. differenceC = ”differenceB” − ”differenceA”
Finally, differenceC, is the real output desired which represents exclusively
the difference between the system pre and post migration with all the bias
and alteration avoided.
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Thanks to this procedure was possible to use more than once the update function
without incurring in the drawbacks. Indeed this fucntion is used to update the
system status pre and post migration but without this algorithm it would have
altered the result.
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4.3 VM migration and DC consolidation: a com-
parison

Before considering the results obtained there is one more important consideration
to be made regarding the consolidation impact on simulator environment.

In section 2.2.1 were already mentioned the concept of DC optimization and
server consolidation and how fundamental can be to achieve optimal energy saving.
Also the simulator environment considers this important approach and perform it
once for each timestamp after the migration.

So, both VM migration and consolidations aims to obtain some benefits and one
approach does not exclude the other but, on the contrary, it is convenient to perform
them together to improve performances. Although for this thesis argumentation
it is useful to distinguish their contribution in order to highlights only migration
results.

In a first moment, consolidation contributions functions remain active but,
proceeding with VM migration considerations, it becomes clear the importance of
distinguish it. Consolidation mechanism gives a sort of bias on output parameters
because it is always convenient to be performed and moreover it becomes even
more important in case of VM migration.

In order to distinguish completely this two contributions, the code is modified
and the consolidation is moved from after the migration to instead of it. Then
the pre/post methodology just described was used in order to highlights the
contributions and two different simulations are performed over 168 timestamps:
one considering only migration and the other one considering only consolidation.

The plot in Fig. 4.11 is the merged results of this two simulations and shows
the variation of costs in the simplest case without renewables, function of the
timestamp and the energy efficiency approach used.
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timestamp[h]

Figure 4.11: Comparison between consolidation and migration

Both migration and consolidation gives back, on average , a positive contributions
to the reduction of costs but the behaviours differ. In particular consolidation
has only negative values which means it is always convenient while migration
curve fluctuates more and has higher peaks. So, the migration shows off a greater
potentiality in reducing costs but has also a higher variability while the consolidation
gives back a lower but steadier benefit.

This result is partially expected in particular because consolidation does not
depends at all from the renewables at disposal and being performed on the same
data center does not implicates any real change of environment for the virtual
machine.

So, the simulation performed, which brought to the following section results, are
done without performing any consolidation in order to show better the migration
influence.

4.4 Results
Before starting to comment results, can be useful resume a set of considerations
made so far:

• the score which determines best and worst DCs to perform migration does
not consider load on the DC itself but on contrary it is function only of the
DC energy properties like energy cost PUE etc.

• migration performances are better in a non-saturated system

• energy costs of the system are computed as function of a fixed component plus
a variable part relative to the DCs’ workload. This workload is represented
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only by the amount of CPU usage in MHz, sum of the contributions of the
several virtual machines presents in the DC.

• the consolidation is avoided in order to highlight only the migration effects

Moreover it is important to define the output variables considered:

1. "#VM migrated": it is always useful to monitor the number of VM migrated
under different conditions.

2. "energyCostNoPV[$]":this it the energy consumption cost in dollars without
considering renewables and solar contribution and it is computed at each
iteration by considering also the load of each data center.

3. "finalEnergyCost[$]": this value is the total energy consumption cost in dollars
considering renewables and batteries. It is equal to the difference between
"energyCostNoPV" and the contributions of the renewables which it is also
computed considering DCs load and battery capacity.

4.4.1 Aggregated results
Aggregated results are the final output of the "eco4cloud" simulator and indeed are
obtained in a moment corresponding to the output box of the diagram in figure
3.2, in the next figures the plots’ x axes are categorical in order to indicate the
variation of thresholds for different features in the same image.

All the thresholds used are reported in table 4.8 but more important than the
numerical value itself is to remember that using the median as TH implies an
increment proportional to the distribution at each variation.

First of all, it is interesting to consider the energy results in the simplest and
less noisy case represented by simulator output after the first single timestamp
performed with different thresholds approaches. In this condition the system is far
away from the saturation condition and the renewables resources are still completely
at disposal in each data center.

However, at the same time, in the first timestamp the steady state condition is
not reached yet because this is the timestamp right after initial assignment.

In the assignment the score of each DC is computed after each single VM placing
while in the migration the score is computed only once at the beginning of the
function and the origin and destination DCs remains the same for all the VMs.
This means the two scores in this case can drive to particularly differences between
each other’s because based on two different computational functions.

Moreover it is important a last consideration about the ratio between thresholds
and VMs migrated in this transient case. Indeed, with the exponential increase
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of the number of VMs at each timestamp the ratio between VMs migrated and
thresholds is likely to increase in the cumulative case, despite the use of medians
as THs, while at the first timestamp this condition is avoided.

Figure 4.12 shows the variation of the number of VM migrated in a scenario
with cumulative thresholds so, where the boundaries becomes less strict at each
iteration.

Figure 4.12: VM migrated over cumulative thresholds: one hour

As expected in this first case the increasing of the VM migrated is directly
proportional to thresholds applied, with a ratio equal to 1 thanks to medians.
Considering only one timestamps is like linearize the exponential by considering
only a small region and so the exponential increase of VM migrated is neglected.

Figures 4.13 and 4.14 are two plots with "energyCostNoPV[$]" and "finalEnergy-
Cost[$]" over THs in a cumulative case as well.
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Figure 4.13: Energy costs no PV over
cumulative thresholds: one hour

Figure 4.14: Energy final costs over
cumulative thresholds: one hour

The first one shows an increasing trend until TH4 and then a sudden drop.
This behaviour is partially predicted because influenced by the difference in VM
allocation methodologies between migration and assignment. Moreover an higher
amount of VM migrated helps to reach faster the steady state condition where the
migration effects should be to lower the energy costs.

FinalEnergyCost[$] instead has a very smooth decreasing trend until the sudden
drop with the highest TH. As expected, renewables and batteries exploit migration
performances and in this particular case, cushions the negative slope of the energy
costs without them.

With TH4 there is a sudden drop in energy costs despite the type of feature
considered. This is an interesting results especially if linked to the increment of
VM migrated. In fact, the migration increases by only a 25% but the behaviour of
costs (in particular in the case without renewables) does not change accordingly.

The only features which is expected to have a considerable influence on cost is
the CPU because each VM contribution is used to calculate the load of each DC.
Despite that, the consideration made from the covariance between features (figure
4.6 and table 4.5)does not explain such a sudden change for all the three lines of
the plot.

So, the reason may be searched elsewhere and in particularly can be related
to the number of VM migrated. It is possible that there is a minimum amount
of virtual machine migrated that helps the system to go beyond this transient
condition and after that limit is surpassed the migration starts to become convenient
anyway due to the increasing of the load migrated.

Figure 4.15 represents the number of VM migrated in the interval thresholds case
with only one timestamp, while figures 4.16 and 4.17 are the two plots corresponding
to figures 4.13 and 4.14 with the only difference to consider THs in the interval
case.
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Figure 4.15: VM migrated over interval THs: one hour

In figure 4.15 is possible to see as the virtual machines migrated number remains
quite stable. This happens because the possibility to migrate remains unchanged,
due to the usage of median combined with a shift in threshold boundaries and the
only exception occurs for th1 where both inferior and superior limits are zero and
no migration is allowed.

Figure 4.16: Energy costs no PV over
interval THs: one hour

Figure 4.17: Final energy costs over
interval THs: one hour

In figures 4.16 and 4.17 are evident the differences in respect to the cumulative
case but remains an increasing trend regarding costs without renewables and e
decreasing one for total costs where are also considered batteries and PV production.
In this case anyway there is not present any drop after th4.
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These are some first considerations for the aggregated results over one single
timestamp right after performing the VM assignment. Now, can be useful to
observe the same results attained with a simulation over a week (corresponding to
168 timestamps) with both thresholds approaches.

Figures 4.18, 4.19, 4.20 and 4.21 represents the final energy costs (considering
also renewables and batteries) obtained in this case together with the related
amount of virtual machines migrated.

Figure 4.18: VM migrated over cumu-
lative THs: one week

Figure 4.19: Final energy costs over
cumulative THs: one week

First of all, it is evident the difference in the amount and behaviour of virtual
machines migrated between figures 4.12 and 4.18. Indeed in this second case it is
highlighted an exponential trend in the cumulative TH case that was not evident
in the previous plot.

Increasing the threshold means increase the possibility of migration but the VMs
which attempts the migration are not equally distributed. So, there is a cumulative
migration effect driving to this exponential growth that is avoided in the case of
only 1 timestamp because the difference in the number of VM allowed to migrate,
is not summed for the 168 iteration.

Despite this difference, figure 4.19 shows a similar trend with respect to figure
4.12 with a sudden drop corresponding to the greatest thresholds.
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Figure 4.20: VMmigrated over interval
THs: one week Figure 4.21: Final energy costs over

interval THs: one week

In figure 4.20 is represented the amount of VM migrated with an interval TH
approach and in fact there is not any qualitative difference within the plot in figure
4.15, proof of a correct functioning of this interval TH policy also in the week
simulation case.

The main differences are presents in the plot in figure 4.21 especially with respect
to figure 4.17 and figure 4.19. In this case the final energy costs do not display any
trend or changes accordingly to TH and do not show either any difference with th1
case where no migrations are allowed. These fluctuations seem to be unrelated to
the number of VM migrated and to the migrated VM feature values as well.

This discrepancy between the energy cost plots is a considerable result. Despite
the application of different thresholds approaches all the other parameters of the
system remains unchanged including the number of virtual machines in the system.

The only big difference between these two scenarios is the number of virtual
machines migrated. The minimum amount of virtual machine migrated in the first
case is indeed comparable with the average amount of VM migrated in the second
case.

Moreover in figure 4.17 it was observed a decreasing trend despite the low amount
of VM migrated. So this may implies that more important than the amount of
VM migrated itself is the ratio between this number and the amount of VM of the
system.

These two last considerations are very important because the output obtained
may indicate that there is a minimum ratio which represent a condition to be
matched, to obtain considerable performances.

It indeed does make sense that if the system has a huge amount of DC and a
consequential higher load, migrate only a, too small, sub portion of it does not
influence the performances. This situation comes out only in aggregated results
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with interval approaches where the number of VM migrated is low despite the huge
number of VM in the system.

In particular the total amount of VM which populated the system, during these
simulations, are on average:

• 33700 for simulation over 168 timestamps

• 5200 for simulation over 168 timestamps

• 700 for simulation over one single timestamp

These average values do not depend from the TH approach used but they are only
function of the timestamps considered. By considering these values together with
the related number of VM migrated and observing the consequential behaviour
over the different threshold approaches, can be outlined a boundary. Indeed this
consideration draw to the conclusion that if the ratio just mentioned is below 0.1
the migration performances are negligible. This means that for percentage of VM
migrated less than 10% the migration does not impact enough on the system to
observe real benefits.

Figure 4.23 represents the variation of costs without renewables over simulations
with 24 timestamps with cumulative THs and figure 4.22 shows the VM migrated
relative trend.

Figure 4.22: VM migrated no PV over
cumulative THs: one day

Figure 4.23: Energy costs no PV over
cumulative THs: one day

It may be interesting to notice that in this case the transient effect noticed in
figure 4.13 is not present anymore. Indeed, in this case the "energyCostsNoPV"
variable has a decreasing trend and this may suggest that increasing the number of
VM migrated implies a reduction of costs without renewables as well.
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From the aggregated plots considered do not come out any relevant relation
between features and cost reduction but it seems to be present a relation between
the ratio just mentioned and the reduction of costs.

Moreover, in the cumulative case, was evident that more VM migrated implies a
reduction of costs and this result may hide an eventual relation with VM features.
Indeed as seen in chapter 3 costs are computed considering different contribution
and there are many variable factors which influence the simulator. (e.g. like the
energy cost which fluctuate during the day and the higher variability of λ and µ
and the depletion of energy from renewables and batteries).

All these factors may override the eventual contributions given from a VM
characterization which ends to be neglected in comparison to the migration itself
and to understand better this situation may be useful a more punctual analysis
that will be argued in the next subsection.

The figures representing the energy cost without PV over 168 timestamps and
the final energy costs over 24 timestamps are present in the appendix.

4.4.2 Laod migration, PRE/POST analysis
In order to investigate better VM characteristic influences it was adopted a more
punctual analysis and the following argumentation regards the output obtained by
the application of the PRE/POST approach explained in the methodology.

This case is still different from the aggregated results obtained after 1 timestamp
because neglect also the total cost of the DCs and focus only on analyse the
perturbation brought by the migration. In this case are neglected many of the
external factors of the simulator environment because the migration performance
are evaluated for each timestamp and for each thresholds.

Aggregated results already give an idea of the advantages of migration and when
they may be higher but they partially hide any particular relation with features
that me be hidden from the sum of all the contributions brought by the system.

Now, it is important to remember that the algorithm in this case delete all
external contribution and aim at distinguish only the punctual variation at each
timestamp. So, this implies results of very small magnitude even in comparison
with the one displayed in figure 4.12. Indeed the final aim of this analysis is to focus
less on migration performance and more on the influence of VM features considering
also that in this case the amount of VM migrated is considered separately for each
timestamp

In the steady state condition seen in figure 4.23, the energy costs without
renewables seems to decrease accordingly with the number of VM migrated. Now
we will focus this punctual analysis only in this worst case condition without PV.

The outputs are obtained from a difference between the energy costs of the
system after migration minus the energy costs before it. So, in the following plots
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a negatives values implies a money saving due to migration. Anyway in these
punctual analyses it may be more useful to focus on the dependencies from THs
and variation magnitude than the money saving itself which was already argued in
the previous subsection.

Figures 4.24 and 4.25 represents the more complete output considering all the
THs with cumulative and interval case over a simulation of 24 timestamp.

Figure 4.24: "Energy costs no PV in cumulative case with all THs"

Figure 4.25: "Energy costs no PV in interval case with all THs"

These two plots are just an introduction to grasp better the general idea and
make some considerations:

• The number of VM migrated is still greater in the cumulative case but there
is not any strong exponential behaviour and the virtual machine migrated
increase according to what expected by median implementation.

• As expected there are fluctuation around zero but the majority of peaks are
negative and this confirms the migration has still an overall positive effect on
energy costs.
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• From a comparison between these two graphs, it can be observed again that
the higher values of VM migrated increase the migration performances and
consequentially reduce the costs.

• The first timestamps shows a positive peak while in the second ones is negative.
This is an important confirmation of the consideration done regarding figure
4.12. Indeed, also in the aggregated results the energy costs without PV shows
off an increasing trend in the first timestamp as consequence of a transient
condition after the initial assignment. Moreover the only exceptions to this
consideration regard the two negative points obtained in the first timestamp in
correspondence of the two cases with the higher number of VM migrated and
this behaviour recalls the one observed for TH4 in the figure just mentioned.

• In both plots there is a negative peak at second timestamp as rebound of the
first one.

• In the interval THs approach (4.25)is especially clear that all the peaks are red,
corresponding to the higher CPU interval threshold, despite the number of VM
migrated does not change in respect to the other metrics. These observations
may imply the presence of an expected relation between the migration of VM
with higher CPU usage and the energy costs.

• Whenever there is a situation in which there is not present any migration,
it has been observed and analysed a proper output file4 meant to properly
debug the simulation and it came out that the reason behind these events are
completely different in the two cases:

– in the cumulative case clearly is not possible to be feature THs policy fault.
Indeed the cause is a non-feasible migration for that timestamp. Without
constraints on bandwidth the main causes to be accounted for this type of
fault are host saturation and delta. In both cases the migration is aborted
for all virtual machines.
In this case anyway it was checked to be delta’s fault. Delta was already
mentioned and it represents one of the variables checked to see if migration
is feasible. It implies a case where the score computed among DCs are
too similar. Indeed, this events occur at timestamp 17, 18 and 19 after a
series of timestamps in which many virtual machines are migrated.

4In order to monitor migration, a series of warn were utilized and it was created also an output
file where are reported for each timestamps and for each VM, a series of information about the
virtual machine meant to be migrated and the outcome of this attempt.
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– in the interval case on the contrary the reason is the features THs approach.
In particular from the output file it was observed a tendency of the
simulator environment to take together (in the related timestamps) the
virtual machines more similar to each other.
Moreover, there is a propensity to get first the virtual machine with
features of higher magnitude this behaviour does not match well with
the THs interval approach where both boundaries values increase at each
timestamp. In fact, it is evident that these timestamps follows a series of
one and more timestamps where the migration actually happened.
These considerations may be important to outline also the simulator
environment behaviour and find hidden pattern or eventual issues.

These are only general considerations on these outputs with many variables,
now it may be interesting focusing more on singles features under different THs.
In particular CPU is maybe the variables which may results more relevant due to
the dependency in the cost function. Plots in Fig.4.26 and Fig.4.27 show migration
performances with a simulation over 24 timestamp (one day) with only the highest
thresholds considered.

Figure 4.26: "Energy costs with highest THs: interval"

Figure 4.26 represents the interval TH case and indeed the number of VM
migrated is lower. In this case it is highlighted the CPU influence that corresponds
with the highest peaks despite the related number of VM migrated is similar or
even lower than the others.

Figure 4.27 does not show any considerably relation between features and cost
reduction and the behaviour are rather similar for all characteristics. Also in the
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Figure 4.27: "Energy costs with highest THs: cumulative"

corresponding aggregated case after a certain amount of VM migrated the energy
costs dropped despite the type of TH considered (4.12).

This confirms the hypothesis made right after the aggregated consideration. In
this case as well the relation between features and costs seems to be hidden by the
performance obtained by migrating a larger amount of VMs.

There seems to be a relation between CPU and the reduction of costs but there
are only a few occurrences. So to have further proofs of these hypothesis, it could
be worth to consider a whole week simulation with a TH interval approach where
it is considered only the main median as interval threshold.

Figures 4.28, 4.29 and 4.30 show this kind of output where the THs force a binary
choice over the VM considered for each feature as consequence of the utilization
of only one threshold equal to the main median. Moreover by considering this
analyses with multiple timestamp, the number of interesting occurrences increase
as well.
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Figure 4.28: Energy costs, higher and lower half:CPU

Figure 4.29: Energy costs, higher and lower half:RAM
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Figure 4.30: Energy costs, higher and lower half:disk

Regardless the number of VM migrated and the low magnitude of the variation
of costs it is evident that almost all the peaks in the CPU plot are relative to
virtual machines with higher CPU values and this behaviour seems to be present
also in RAM charts but with a lower magnitude while in the plot regarding disk
usage this trend seems to be almost completely off.

The correlation between the various features was already argued in the previous
sections and the plots just considered seem to behave accordingly. Indeed, the
CPU confirms to have the major impact due to influence in costs while RAM that
is partially correlated to it shows a similar behaviour but with lower magnitude.
The last and more uncorrelated feature is disk usage whose corresponding graph
shows a different behaviour that can be only slightly associated to the other two.

The last analysis worth to be done regards the relation between costs, CPU
and VM migrated and the plot in Fig. 4.31 shows together the number of virtual
machine migrated with no constraints (all VM are allowed to migrates) over a
iteration of 168 timestamps. As expected, the highest peaks (both negative and
positive ones ) are in correspondence of the higher bars which represents an higher
number of migrated element.

61



Virtual machine characterization

Figure 4.31: Energy costs and VM migrated over 168 timestamps
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Chapter 5

Conclusions

Migration demonstrates to be potentially a very useful approach to increase energy
efficiency.

The amount of virtual machines migrated shows to be particularly incisive over
the migration performances. In particular the aggregated results outlined a relation
between the ratio of VMs migrated over the VMs in the system and the migration
performances.

To understand better the influence of a proper VM characterization has been
analysed three main features which are CPU, RAM and disk usage. After studying
the covariance among these three features, has been performed a punctual analysis
on the migration performances. The results show in particular an expected relation
with CPU which represents one of the main contributions in the energy costs
function.

For all the simulations made and the results exposed the cost of migration has
been neglected. Moreover the bandwidth considered was incredibly high (200Gbps)
in order to neglect this constraint as well. These two parameters create an ideal
scenario where all the types of virtual machine are equally convenient and equally
feasible to migration. It can be useful to consider what a more realistic conditions
may imply.

Figures 5.1 and 5.2 shows the amount of megabytes migrated over one week
considering an interval thresholds approach. In this case are considered only three
THs: th1 =0; th2 =the main median(4.48% for CPU, 53% for RAM and 53451
MB for disk usage) th3 = max values (100% for RAM and CPU,1113000 MB for
disk usage)
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Figure 5.1: RAM migrated over inter-
val THs: one week

Figure 5.2: disk migrated over interval
THs: one week

It can be observed in these two plots that, as expected, the amount of MB
migrated increases considerably with the highest THs. Bandwidth and cost mi-
gration are particularly affected by VMs with higher values of RAM and disk
usage because they are the ones which represents the higher amount of MB to be
migrated. The data provided by Telecom about VM do not consider an effective
migration cost and the simulator environment neglect it as well. Moreover the
migration is performed considering an ideal execution migration time equal to zero
and this means that latency is not considered as well.

These considerations are very important to evaluate migration performances in a
more real scenario. Indeed in this case the advantages of a proper virtual machines
characterization with a relative migration policy increase consequentially. Perform
migration, over virtual machines with higher disk usage and RAM utilization,
implies higher bandwidth utilization and larger amount of MB to be migrated.
These conclusions highlights even more the advantages of migrating virtual machines
with proper considerations about theirs features. In particular an ideal approach
could be to promote migration of virtual machines with higher CPU utilization
and lower disk usage avoiding as much as possible to move large quantity of data.

An interesting research by David Costenaro and Anthony Duer try to study and
compute an energetic cost related to internet traffic [40]. This study estimates that
total internet energy usage for transmission and communication represents at least
9.5% of the total consumption.

In particular Costenaro and Duer computes an average transmission cost for
a 5MB streaming (a YouTube song) of $0.0004 which means a cost of about
0.00008[ $

MB
] for transmission purposes only. The plot in Fig. 5.2 has the highest

peak over 800 TB and multiplying this value for the energy expenditure just
mentioned the final outcome is a transmission cost of 64 thousand dollars.

This is a rough estimation, one further analysis on this thesis topic could be to
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attain more specific data about migration energy and cost expenditure and include
them in the simulator. With this kind of data could be analysed an eventual
trade-off between the benefit achieved from migration and its costs.

One more improvement and future work could be to evaluate a new "score"
function which may consider some other variables like the migration energy costs
and the effective load (not the estimated one) for each data center. This approach
could be implemented together with a more punctual policy which evaluates this
score after a certain amount of load migrated. Although, this is not an easy task
because also compute the score too often can represent an energy expenditure and
a computational cost as well, especially considering the magnitude of the problem.

There are a dramatic number of variables parameters and scenarios worth to
be considered and analysed regarding data center, migration and virtualization
performances worth to be analysed and studied. This thesis continuous a previous
work by focusing on some of them but there are certainly a lot more work to do to
increase energy efficiency and reduce consumption.

65



Appendix A

Figure A.1: scatter plot disk over cpu Figure A.2: scatter plot cpu over ram

Figure A.3: scatter plot disk over ram
Figure A.4: Energy costs no PV over
cumulative thresholds: one week

66



Figure A.5: Energy costs no PV over
interval THs: one week

Figure A.6: Final energy costs over
cumulative THs: one day
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