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Chapter 1

Introduction

This introductory chapter briefly gives a panning for what comes next, in-
troducing the required knowledge domain and the corporate with whom the
investigation has been conducted.

1.1 Background
With the advancement of technology, computer systems have undergone a
progressive evolution: indeed they have become systems spread around the
world composed of a large number of calculators or a relatively small amount
of machines with very high performances. This new characterization of IT
systems is becoming the favorite choice for the IT industry as it provides
the basic technological structure for a large variety of Internet services; fur-
thermore usually these IT systems are required to operate throughout the
year. In this sense, the need to provide a functioning service at any time will
become crucial and any type of malfunction can result in a system failure
and a consequent considerable loss of information.

Nowadays the usage of technologically evolved systems is a must for the
development of the services offered by a company: indeed the handling of the
technological infrastructures that supports these systems reached a very high
level of complexity such that there has been an enormous increase in the job
hiring in the IT department. The professional role covered by these profes-
sional figures requires the capability of managing a variegated IT ecosystem
that ranges from hardware to the application level and at the same time
demands also the efficient and fast resolution of the encountered problems.
Hence in the environment mentioned above it is necessary to optimize and au-
tomate as much as possible the maintenance operations of IT infrastructures
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1 – Introduction

to allow insiders to focus only on the more complex aspects of corporate IT
management. For this reason, over time the so-called "engineered systems"
have aroused particular interest: installations in other words that integrate
hardware and software in favour of a greater efficiency and simplicity of the
final product.

1.2 Overview
The detection of anomalies can be considered a valuable instrument of an
advanced technological system, whose purpose is to promptly discover any
anomalies and thus playing a central role in the management of faults for this
type of system. A rapid detection of an anomaly allows technicians to solve
the problem as soon as possible, in such a way as to reduce the time in which
a certain service is unusable. All computer systems nowadays generate a
large amount of logs where they enter information deemed important during
their operation: such log files can be used as a data source for system-wide
anomaly discovery; for this reason the detection of anomalies through the
system logs is very recurrent both in the academic and business field. The
log files of individual computers are often analyzed line by line in order to
disclose anomalies thanks to exploitation of key terms or regular expressions;
unfortunately with the advent of the new systems described above this proce-
dure is no longer feasible due to the increase in the architectural complexity
of the latter, the high number of logs that are produced and the different
malfunctions toleration mechanisms implemented by each of them.

Starting from the general considerations made so far, this work focuses in
particular on the application of appropriate techniques of machine learning
(with whom has a strong relationship and which is a branch of the artificial
intelligence that deals with improving, through a set of methodologies, the
understanding and thence the learning by machines). Machine learning with
a wide range of algorithms is able to identify recurrent patterns, classifying
data and learn by themselves to absolve specific assignments: in recent years
it had a considerable use but nevertheless for many people and also for many
experts remains an unexplored topic.

In particular the conducted study aims to detect anomalies through the
application of a real case study: the analysis of a specific log file called
customer’s_name-logs-rdbms, produced by an Oracle database software
deployed on a cluster provided to a final customer of the company. Fur-
thermore, the study was tackled keeping in mind also the intention of laying
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1 – Introduction

the foundations for the future realization of an instrument capable of, aside
from being able to understand the state (normal or abnormal) of the system,
reacting autonomously to "abnormal events".

In this sense, the research work is carried out within the business unit of
Technological Infrastructure of the Mediamente Consulting Srl company, is
born as an integration of the previous work on the "intelligent monitoring"
already started in the company and also in the field of university research
in cooperation with the Politecnico di Torino thanks to a previous master’s
thesis project. If the aforementioned project analyzed the possibility of pre-
dicting possible system faults through the application of predictive models
based on numerical data from the Enterprise Manager monitoring software,
with the study in question instead the focal point is on the possibility of know-
ing with the available data whether the status of the system has anomalies
or not through the detection of anomalies thanks to the analysis of system
logs. Specifically the activity conducted by the business unit of Technological
Infrastructure relates in particular to the sphere of Oracle technologies and
products, the company’s area of specialization. For these reasons and for the
fact that there was the need of identifying the most used system log in the
area of troubleshooting the largest part of customer problems, the log file
of a relational database management system has been decided to consider:
this is represented by a customer’s Oracle Database instance. Furthermore
the reason for limiting the analysis to a real and precise context is to be
found in the interest of evaluating the validity of the analysis considering
realistic values. In reference to this, the framework is made up of several
parts: log collection, log parsing, feature extraction and anomaly detection.
The first phase is essential to fetch the material to be analyzed, while the
second aims to process the log file in such a way as to put it in a struc-
tured and well-defined form in order to facilitate the work of the subsequent
phases. After these first two phases, there is the feature extraction, which
consists in extracting numerical feature vectors from textual fields of the log
file. The fourth and last phase is substantially the most important of all as
it constitutes the central part of this work: as its name suggests, it consists
in identifying any anomalies present in the analyzed log file. Therefore, the
numerical data obtained in the previous phase serve as a starting point for
applying thereafter some machine learning algorithms: here the choice fall
on using algorithms belonging to both supervised and unsupervised learning
in order to see which of the two types of learning was the most suitable to
carry out the assigned task. For this purpose, three widely used performance
metrics were used to evaluate the accuracy of the anomaly detection methods
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1 – Introduction

both supervised and unsupervised, varying also a series of parameters and
the validation strategy adopted (for what concerns the supervised analysis).
The objective of the analysis is, in summary, to evaluate the effectiveness of
the models examined, determining whether they are able to predict with a
reasonable level of accuracy the current state of the system under examina-
tion (normal or abnormal) in terms of performance metrics and to provide
references for future developments.

1.3 The Enterprise Context
The research project arises from the encounter between the intention to in-
vestigate the possibilities of machine learning and the proposal of the com-
pany Mediamente Consulting Srl. Mediamente Consulting Srl is a consulting
company operating in the IT sector with the declared intent of directing the
strategies of companies through a path of technological development and
innovation, using the concepts and tools of business analytics and the knowl-
edge of a team of proven experience. Among the keystones on which the
company’s business is based is therefore the continuous research towards the
innovation. In this regard, her recent past in the Incubator of Innovative
Enterprises of the Politecnico di Torino is noteworthy, being awarded the
"Startup Of The Year" in 2016 for growth merits. Over the years, the com-
pany has assisted in the formation and development of multiple areas of spe-
cialization: Technological Infrastructure, Data Integration and Management,
Corporate Performance Management, Advanced Analytics, Business Intelli-
gence. The work was carried out at the same time in conjunction with the
IT Management activity conducted by the Technological Infrastructure unit,
whose objective is to provide design, management and monitoring services
for the technological and application infrastructure.

1.3.1 The Business Unit: Technological Infrastructure
In order to understand more clearly the context and the reasons for the
work exhibited, a more precise description is presented about the role of the
business unit within the company in which the master’s thesis was made.
The activity carried out by the Technological Infrastructure team essentially
consists in providing consultancy regarding the handling of elaborated IT
systems. Specifically, the services provided span multiple operational fields:
from the deployment of the infrastructure to the performance analysis, up
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1 – Introduction

to the maintenance and periodic updating of software systems. One of the
strengths of the proposed service is undoubtedly to be identified in the mas-
tery of the products and technologies of the Oracle family, on which the
company has invested heavily in terms of knowledge, to the point of earning
an excellent reputation with its customers.

The master’s thesis work is closely related to the Application Manage-
ment Services (also known by the acronym AMS) carried out by the com-
pany. Generally, the AMS service can be described as a well-defined process
characterized by the use of related to each other tools to pinpoint, solve
and document how good is the service provided by a structured business
transaction to guarantee that they meet or exceed the performance measures
of end users in relation to how fast a transaction is completed or how the
information is delivered to the end user [1].

1.4 Document Structure
The master’s thesis work is organized into three parts: the first part does not
require any thorough technical competence, wanting to be a gentle exposition
of the sphere of knowledge in which the study can be placed in association
with the description of the collaborating company with which the research
was done; in second place there is the delineation of the problem with the
related parameters and formulation of a case study and the purposes for
which the work itself aims.

The second part gives the analytical means (beyond which are manda-
tory different notions in programming and machine learning not provided
here) needed to fully understand each single piece of the "value chain" shown
here and then focuses on the chosen programming language as well as the
employed software libraries.

The third and last part represents the main one, making initially a theoret-
ical recall of the machine learning models employed for the anomaly detection
and then finally apply for each of them the tests through which are produced
the numerical values representing different metrics used as a means of com-
parison among the utilized models and as an indication of the results of the
single model with the related considerations. At last general conclusions
are drawn, highlighting the weaknesses and strengths of the entire process,
ending later with some reflections on future developments.
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Chapter 2

Problem Definition

The second chapter was intended to illustrate the problem faced along with
the conceptual scheme of the workflow followed for addressing the problem it-
self and to obtain the proposed solution in the subsequent chapter; in the end
there is the definition of the parameters of the problem with the correlated
real case study considered.

2.1 Description Of The Problem
The monitoring of IT systems, intended as a synthesis of support and problem
solving activities, is one of the most valuable points of the company business.
The need to provide a quality service, thus strengthening its own position
in the sector, requires the use of adequate resources and, considering the
volume of customers and the heterogeneity of the problems to face, it can
be understood how this can represent a critical aspect. From here the need
to seek solutions to improve, in the first place, the efficiency of the service
proposed and, consequently, its quality.

To make an improvement to the service, it is advisable to understand, first
of all, what is meant by problem and what are the way to operate and the
tools available to deal with it.

The term problem, referring to a computer system, means a series of
causes that contribute to determining a malfunction condition of the system,
corresponding to a deviation, in negative, of its parameters from normal
values, up to causing a more or less serious degradation of performances. In
most of the cases, the occurrence of a problem is reported by the user using
the system or detected automatically by a monitoring software (for example,
by sending a report following the exceeding of a certain threshold). However,
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2 – Problem Definition

often it is difficult to identify the causes of the problem, allowing only an
intervention a posterior, that is, once the problem has occurred and/or has
been perceived by the user.

The research work focused precisely on this aspect: investigating the possi-
bility of extending the actual domain knowledge of the company (represented
by the previous master’s thesis works as stated in the first chapter) thanks
to the anomaly detection through the log analysis for building in future a
support tool for monitoring and troubleshooting, capable to allow a timely
assessment of the problems and therefore permit a proactive intervention.

Figure 2.1 shows the conceptual scheme of the workflow followed for ad-
dressing the problem. This scheme aims to highlight the passage from a gen-
eral type of problem to the proposal and therefore the design of a solution
and how this was then applied to a very specific context, defined according
own parameters. The solution is defined as a set of choices, both of a techni-
cal nature (e.g., software products and libraries) and related to the analytical
phase (e.g., the type of analysis, the adopted algorithms, etc.), to set up an
architecture capable of achieving the intended objective.

Specific Context

Design Of A Solution

Identification Of The 
General Problem

Implementation Of The 
Software Architecture

Problem Definition

Application Of The 
Solution

Figure 2.1: Conceptual Workflow Diagram

2.2 Problem Parameters Definition
The definition of the state of a system that consents the characterization
of the parameters of a problem obviously cannot ignore the fact that ev-
ery system is different from the other: indeed each system is observed and
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evaluated according to its characteristic parameters, a concept that can be
translated into the analysis of logs files or any other type of information gen-
erated by the system itself or by components associated with it. In other
words, the presence of the data is mandatory, numeric and not, which allow
to understand the state in all its aspects.

Recent computer systems often exploits the interaction among various
components, both hardware and software, which leads to a greater complexity
in the analysis of such systems.

2.2.1 Case Study
The case study presented concerns only a single system and, in the spe-
cific, the instance of a relational database (relational database management
system, RDBMS) of a customer. The choice to consider a real case was
substantially dictated by the need of evaluating the actual validity of the
proposed solution. A special environment would undoubtedly have guaran-
teed greater control, having the ability to carry out targeted tests. However,
in this case the results obtained would not be of any guarantee with respect
to have a real context as a "scenario".

Specifically, the case under study refers to the discovery of abnormal be-
haviours in the log file relating to a customer’s Oracle Database instance
(for privacy reasons the name of the customer is omitted). What the in-
vestigation wants to emphasize is the possible presence of errors related to
routine operations executed on a RDBMS: remaining within the limits of
the shareable information, this can be accomplished thanks to the checking
of the value of a specific attribute present in the log file in question that
signals if an error is happened or not respectively through an error code or
the NULL value. Every error (that appears in this log file) has a standard
format characterized by a fixed part common to all and a variable one: the
first portion is ORA- while the second reports a number that can vary over
an extended range of possible numbers, pointing out that there is a complex
diversification of the errors [2]. For instance, the error codes that ranges in
a certain interval can identify only a certain class of errors, thus allowing a
simple diagnosis of the type of problem and a faster solution of them; as a
concrete example a very recurrent type of error is ORA-00028, asserting
that the session of a certain user for a specific database has been dispatched
because another user with higher privileges has discarded it. Another also
frequent is ORA-00030, reporting that this user session ID does not exist
anymore due to a probable disconnection from that session.
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2 – Problem Definition

As regards the type of information to be analyzed, it should be noted that
these are not numerical values: as a matter of fact they are three alphanumer-
ical attributes, describing the date of occurrence of the event (event_date),
the (eventual) error code (ora_errors) and the corresponding message for
that record (message) detailing the event itself (the entire content of the log
file is not reported in this document for the reasons of privacy just mentioned
above). These attributes are not the only ones to be present in the log file
but are the most significant for the analysis to be conducted: not by chance
the feature selection was carried out since fields such as host, path and so
on represent personal characteristics related to the machine but in this sce-
nario the data source comes from a single customer machine and hence have
been discarded being useless. A further point to be clarified concerns the
possible values assumed by the attributes of interest: these can contain not
only information regarding the originated error but also the description of a
successful performed transaction (event_date will have the same meaning,
ora_errors will have the NULL value as stated before and message will
outline the details of the performed action).

For the sake of completeness in the following there is a brief description
of what a log file is together with the type of information that usually stores
and of the architecture on which the instance in question is hosted and the
Oracle Database Appliance (in short ODA) along with further notes on the
release of the instance itself. Finally there will be a formalization in greater
detail of the faced problem, depicting what the expected input and output
should be.

Log File

A log file (having a .log extension) is a file that contains a list of events
which have been "logged" by a computer. Better said, it is a computer
generated data file that contains information about usage patterns, activities
and operations within an operating system, application, server or another
device that decided to record this type of information.

Oracle Database Appliance

The Oracle Database Appliance is an Oracle engineered system that aims
to offer a simple, optimized and cost-effective solution for databases and
applications Oracle. The ODA is distributed as an integrated system of
software features, computing, networking and storage. In summary, the ODA
is composed by one or more Oracle Linux servers connected to each other
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2 – Problem Definition

and by a storage unit, allowing the execution of a single instance database
or in cluster mode. The technical specifications, of course, vary depending
on the model considered and the type of need for which it is used.

Oracle Database

The target analyzed is the instance of a relational database, in this case
an Oracle Database 12c Enterprise Edition 12.1.0.2.0 - 64bit Production [3].
The system version is by no means a secondary aspect: the choice of using
one version rather than another implies the possibility to use, or not, certain
features [4]. In addition, Oracle also allows the integration of other features,
regardless of the type of edition. Depending on the services and products
used, there is a correlated access only to certain information that may also
differs in terms of quality. Therefore the possibility of being able to use or not
certain functionalities it undoubtedly influences the management operations
of a database that could be more or less complex.

Expected Input

Figure 2.2 is a simple representation that summarizes the attributes of inter-
est present in the log file to be analyzed in order to provide a clearer view of
what is the input data source available.

Log File

Three attributes of interest:

• Event_date

• Ora_errors

• Message

Figure 2.2: Expected Input
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Expected Output

Figure 2.3 illustrates the expected output in conjunction with three perfor-
mance metrics used for the evaluation of the obtained results (for more details
see the paragraph 6.1 of chapter 6) in a similar way to what has been done
for the expected input: this outcome is generated after the execution of the
proposed framework in this document.

Anomaly Detection Model

Performance of the proposed model in 
terms of:

• Precision

• Recall 

• F1 score

Figure 2.3: Expected Output
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Chapter 3

Proposed Solution

The present chapter outlines the "value chain" followed, describing it not
only from a theoretical point of view each single piece but also the conducted
calibration of some specific parameters of a portion of exploited instruments,
allowing to lay the foundations for chapter 5 and chapter 6.

3.1 Framework Overview
The analysis of a log file aimed at detecting potential anomalies is a process
that consists of four principal steps: log collection, log parsing, feature ex-
traction and anomaly detection (see [5] for a complete reference). Figure 3.1
graphically depicts the various phases. In this diagram is highlighted the
flow of data through the various blocks. The components indicated for each
block refers to the context under consideration. However, the possibility of
adapting the proposed architecture to different contexts cannot be excluded:
this will involve obviously another kind of source and/or analysis. In the fol-
lowing paragraphs there will be an elaborated exposition of each phase with
the related instruments used, trying at the same time to clarify the reasons
that led to these choices.

3.2 Log Collection
Before proceeding with the fetching of the information constituting the data
source, the system log with the highest percentage of usage in the field of trou-
bleshooting the most frequent problems has been chosen among the available
ones with a subsequent feature selection.

21



3 – Proposed Solution

Feature Extraction

Log Collection

Anomaly Detection

Log Parsing

Figure 3.1: Framework Of Anomaly Detection

At the moment almost every system record information about its current
state and other utilities information during its execution (CPU load, number
of threads in usage in case of a multi-threaded system, etc.). The entry point
of the work starts here: because the relevant data (the log file) were present
on Elasticsearch (belonging to the ELK suite explained in a while), what
has been done is the creation of a Python script (details on it, including
the versions used, will be given in the next paragraphs) in order to create a
client connection with one of the two network nodes on which Elasticsearch
resides (it is worth to notice that this has been possible connecting to a
Virtual Private Network for accessing the LAN of a specific customer of the
company). After that a query in charge of requesting the data has been
performed, the data selection has been conducted thanks to the employment
of a regular expression aimed at discarding all the records that contain only
symbols in the message attribute of the log file (the reason behind this
choice is straightforward: records containing only symbols in the message
attribute were not useful for the type of conducted analysis, representing only
outliers that negatively affect the quality of the analysis itself); lastly the data
formatting has been performed: the downloaded data has been organised in
order to have a better visualization of them (the tab character has been used,
permitting a fixed spacing among the field of the several attributes).

In summary the salient parts are:

1. Creation of a client connection.
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2. Execution of the query.

3. Data selection.

4. Data formatting.

3.2.1 Elastic Stack
Elastic Stack is an open-source suite of products designed for research, anal-
ysis and display of data in real time, without placing restrictions on the
origin and format of the same data. Elastic Stack provides a set of software
components, each of which performs one precise function and may or may
not interact with others. Initially, the product was known as ELK Stack,
from the initials of the three fundamental components of which it is made:
Elasticsearch, Logstash and Kibana. Over time, other modules have also
been integrated (e.g., Beat), which have helped to simplify the use of the
product and enrich its functionalities. Although the stack consists of a num-
ber of programs and functionality, attention will be paid exclusively to the
components of interest to the objectives of this discussion.

Figure 3.2 shows the basic elements belonging to Elastic Stack, also pro-
viding an indication of the hierarchical level they cover within the framework.
The parts referred to are the following:

• Beats.

• Logstash.

• Elasticsearch.

• Kibana.

A brief description of the functions performed is provided for each component
in general and limited to the specific case.

Beats

The Beats are agents whose main function is to send generic information,
whether related to a system or to a software application, therefore without
particular format constraints, towards Logstash or Elasticsearch.

Although they were not actually used in the course of this work, however
they are mentioned as they represent an excellent tool for collection of het-
erogeneous data (e.g., system logs), which, in view of a future development,
could be integrated into predictive analysis.
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Figure 3.2: Main Components Of Elastic Stack

Logstash

Logstash is the component that collects data from one or more sources, even-
tually apply filters on them and send them in output to a generic stash (i.e.,
a repository), which is usually represented by Elasticsearch. Logstash carries
out its function by defining a pipeline consisting of the following stages:

1. Inputs.

2. Filters.

3. Outputs.

The input module takes data from a source that can be of various kinds
(e.g., file system, Beat, database, TCP socket etc.), thanks to the support
of numerous plugins, that allow the management of the events generated by
the sources themselves.

Elasticsearch

Elasticsearch represents, in a certain sense, the heart of Elastic Stack, that is
the research and analysis tool, as well as the collector of the data extracted
from the various sources. In essence, it is a search engine based on the Lucene
library. Through HTTP web interfaces and the use of JSON for document
formatting, allows a simple interaction with the user or other software and
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the possibility of performing full-text searches effectively. Furthermore, Elas-
ticsearch operates in an environment distributed, an aspect that guarantees
scalability and resilience characteristics, in a completely transparent way to
the applications with which it interacts.

For the purposes of this work, this is the only architectural component
of the Elastic stack through which the visible communication (in terms of
written lines of code) is happened; the established architecture consists of
a single Elasticsearch cluster consisting of two nodes (i.e., two separate ma-
chines), each of which performs his own instance and is in communication
with the other one. The information about the systems to be monitored is
stored within the cluster in the form of JSON documents1. In the case study,
this information corresponds as already expressed several times to the log file
of a database instance and the access to its relative content is made thanks
to the execution of an appropriate query (please refer to the Log Collection
paragraph for more details about it), which return the result requested for
the desired purposes (e.g., visualization, analysis on data).

Kibana

Kibana is the platform that allows you to consult and view the information
of interest based on the filters that are set. The data can be represented
according to different types of graph, based on the information that you
want to analyze. It is also possible to create dashboards, that is, screens in
which to collect the information deemed most important in order to facilitate
consultation. For this reason, this functionality turns out to be remarkable
utility for those who monitor systems.

From the perspective of this work and as future developments of the same,
Kibana is therefore configured as the interface between the system and the
user through which could be projected the trends of the most recurrent log
events (defining appropriate alarm thresholds) in order to give a support
to the technician in the identification of anomalous behaviors of the system
under consideration.

1Elasticsearch is associated with the category of document-oriented databases. A docu-
ment, in the terminology of Elasticsearch, is a JSON data structure, composed of key-value
pairs, and can be seen as the row of a table in a relational database.
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Output Of Phase 1

The output obtained at the end of this intermediate step constitutes the
dataset on which the whole analysis below is based.

An annotation to make until now is: due to the intrinsic nature of the
available data and their relative homogeneity, the data transformation be-
longing to the category of data preprocessing was not necessary.

A second comment on which is important at the same level to dwell is the
observation of the existence of an imbalance about the presence of what is a
"normal event" and an "abnormal event" (as it should be most of the events
that take place are successful): this is caused by the imbalance of the two
possible values that the key attribute among the three available can assume
(please refer to the subparagraph 2.2.1 of chapter 2 for a clarification) and the
consequent structural choice in not conducting any balancing operation. The
reason is very simple: this preference linked to the composition of the dataset
wants to demonstrate the effort of this work in wanting to standardize it as
much as possible to the real world and to offer a framework applicable to an
extracted information as it is without any human intervention, but paying a
price from the point of view of the accuracy of the resulting model compared
to the situation of having a balanced dataset.

3.3 Log Parsing
Usually a log file doesn’t contain any type of structure but it is characterized
only by text that doesn’t follow any semantic rule in order to ease the un-
derstanding. For this reason the purpose of this phase is to generate a set of
generic events put in a structured way: this is realized converting the log file
taken in input into another. In other words for each record the specific parts
are removed because are not useful for the analysis, while the recurrent parts
that can appear also in other records constitute the template of what can be
called an event (further details are showed here [6] and here [7]). Figure 3.3
explains better the concept: the 4th log message (Log 4) is parsed (mapped)
as “Event 4” with an event template “TMON started with pid = *, OS id =
*”. In literature according to the state of the art regarding the existing log
parsing methods available, there are two types of log parsing methods: the
ones based on grouping techniques and the ones based on techniques guided
by the intuition. The first type relies on the concept of group or cluster (the
concept comes from the world of machine learning and it is strictly corre-
lated): indeed inside a log file are calculated initially the distances between
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Event Templates:
Event 1: Resize operation completed for file# *,                                             

old size *K, new size *K

Event 2: Archived Log entry * added for thread
* sequence * ID * dest *

Event 3: TT00: Standby redo logfile selected for 
thread * sequence * for destination *

Event 4: TMON started with pid = *, OS id = *

Event 5: ARC0 started with pid = *, OS id = * 
ARC0 Archival started ARCH: STARTING 
ARCH PROCESSES COMPLETE

Log Events:
Log 1 -> Event 1          Log 2 -> Event 2
Log 3 -> Event 3          Log 4 -> Event 4
Log 5 -> Event 5          Log 6 -> Event 1
Log 7 -> Event 3          Log 8 -> Event 5

1 Wed Feb 13 16:46:56 2019 Resize operation        
completed for file# 283, old size 18219008K, new 
size 18350080K
2 Thu Feb 14 01:04:55 2019 Archived Log entry 
52569 added for thread 2 sequence 19911 ID 
0x6fa9ad9b dest 1:
3 Thu Feb 14 11:54:08 2019 TT00: Standby redo 
logfile selected for thread 2 sequence 19915 for 
destination LOG_ARCHIVE_DEST_2
4 Thu Jan 10 22:52:04 2019 TMON started with 
pid=44, OS id=83696
5 Thu Jan 10 22:52:04 2019 ARC0 started with 
pid=45, OS id=83709  ARC0: Archival started ARCH: 
STARTING ARCH PROCESSES COMPLETE
6 Wed Feb 13 16:46:56 2019 Resize operation 
completed for file# 283, old size 18219008K, new 
size 18350080K
7 Wed Feb 13 22:00:24 2019 TT00: Standby redo 
logfile selected for thread 2 sequence 19910 for 
destination LOG_ARCHIVE_DEST_2
8 Thu Feb 14 20:58:39 2019 ARC0: Standby redo 
logfile selected for thread 2 sequence 19918 for 
destination LOG_ARCHIVE_DEST_2

Log collection Log parsing

Figure 3.3: Log Parsing

the records and after that are applied clustering procedures so as to insert
every record in the right cluster and originate a generic event representative
of the latter. The second type instead is characterized by counting the oc-
currence of each word for every single position of the record: finally the most
used words (the ones with the highest count) are taken into consideration:
among these, some will be selected having the same role of those selected
with the previous methodology.

The rationale behind the selection of the appropriate heuristic-based log
parsing algorithm among the existing ones has been done in terms of bench-
mark results (evaluated across 16 different logs): indeed in literature all the
log converters have been evaluated reporting the parsing accuracy as discrim-
inating element, defined as the percentage of accurately parsed log messages;
the choice fell on the IPLoM algorithm, representing the best compromise in
terms of parsing accuracy and complexity.

3.3.1 IPLoM
Before going into the logical details of the algorithm some basic definitions
are detailed that facilitate the understanding of what comes next.

Basic Definitions

• Event Register: contains the tracking of what happened on a machine
(it is a synonym for a log file).
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• Occurrence: identifies a specific record in the event register with its
related information.

• Symbol: represents a single word inside the textual part of an occurrence
surrounded by empty spaces.

• Occurrence Size: the number of each symbol appeared in the literal part
of an occurrence.

• Occurrence Group: a subset of the event register characterized by having
its records with the same textual part.

• Group Delineation: a generic line written in natural language that does
not contain any type of parameter but asterisks, representative of all the
elements in an occurrence group.

• Fixed Symbol: a symbol within the literal field of an occurrence that
doesn’t change expressed in natural language.

• Variable Symbol: it is the exact opposite of a fixed symbol and it is
represented by an asterisk.

The IPLoM Algorithm

The IPLoM (Iterative Partitioning Log Mining) algorithm is a grouping algo-
rithm: it is based on a loop that at each iteration divides in sub groups a set
of logs. The final outcomes are the sub groups and the corresponding group
delineation that best fits. Figure 3.4 depicts the entire steps. In addition
to that there are two simplifications about the log file that can be passed in
input to IPLoM:

1. An occurrence in the log has a textual description of itself in addition
to the other fields.

2. The format of the characterization of the occurrence is not known in
advance or is unclear.

The algorithm is subdivided in four principal phases, trying to determine
all the existing group delineations in an event register and makes available
as well a function able to remove those occurrence groups that do not reach
a certain value chosen by the user.
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Phase 1 Phase 2 Phase 3 Phase 4

Mathematical 
Relation

Occurrence Size Symbol Location
Group

Delineation

Figure 3.4: IPLoM Overview

Division By Occurrence Size

Occurrences belonging to the same group delineation are likely to have the
same occurrence size: this is the initial splitting criterion. At the end there
will hence be an high probability of obtaining groups with the same occur-
rence size due to the inherent property of many elements of these groups of
having the same occurrence size. Below Figure 3.5 clarifies the concept.

Solver…….1
Address…….0

Data Source: 0x3456a

Solver…….1 Address…….0
Data Source: 

0x3456a

Figure 3.5: IPLoM Step-1: Division By Occurrence Size
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Division By Symbol Location

The splitting methodology of this phase aims to find the symbol location in
each occurrence group with the lowest number of different words because in
this case in that position is highly probable that there will be the same words:
so in this case the occurrence group is further divided using these recurrent
values in that symbol location; surely each new partition will contain only one
of those for that symbol position. Moreover the algorithm also here provides
a specific threshold in order to guarantee a good performance: indeed every
group that has a value lower than this will be discarded. Figure 3.6 can ease
the comprehension.

Running     solver    error…0
Instruction value:    0x02349a
Frame           value:    0x05781b

Instruction value:    0x02349a
Frame           value:    0x05781b

Running     solver    error…0

Figure 3.6: IPLoM Step-2: Division By Symbol Location

Division By Search For Mathematical Relation

The last partitioning step is designed to find any type of bijective relation-
ship (that is at the same time injective and surjective) between two unique
symbols coming from a group of unique symbols. Initially for each symbol
location of a partition is calculated the amount of unique symbols; later the
most recurrent symbol numbering among all the symbol locations will be
selected, which has the constraint of having to be greater than 1. The choice
of selecting the most recurrent symbol numbering is given to the fact that it
probably represents the number of instances belonging to the group. Whether
it is true what has been said, this will imply a bijective relationship between
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the symbols in the symbol positions that have this symbol counting and oc-
currences having these symbol values in the corresponding symbol locations
are further split. Figure 3.7 gives an idea of how it works the subdivision.

Unfortunately the bijective relationship may not even be a 1 to 1 relation:
in fact often can be a 1 to N, N to 1 and N to N. An N to N relation is
discarded because for obvious reasons is not possible to split a message of
this type. For what concerns the 1 to N and N to 1 relations there are specific
techniques able to handle both cases (refer to this paper [8] or the other one
[9] for more technical details).

Program exception: unknown instruction
Program exception:   undefined instruction

Program exception:   unknown
instruction

Program exception:   undefined
instruction

Figure 3.7: IPLoM Step-3: Division By Search For Mathematical Relation

Selecting Group Delineations In Every Occurrence Group

In this last section there is no more division to adopt: indeed the hypothesis
is that every occurrence group is different from another and each one is able
to uniquely identify its members.

Here the purpose is to discern between fixed and non recurrent values
inside a group delineation (made up of a textual line were the non recurrent
terms are substituted by asterisks and the recurrent ones are expressed in
natural language) by counting the number of single symbols for every symbol
location of an occurrence group: if a symbol position has more than one value
then it is non recurrent, otherwise it will be considered recurrent in the group
delineation. Figure 3.8 portrays the last phase.
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valid
valid
valid

configuration
code

differentiate

valid *

Figure 3.8: IPLoM Step-4: Selecting Group Delineations In Every Occur-
rence Group

Parameters Tuning

With reference to the present work, the sensitivity analysis performed to
evaluate the stability of IPLoM in terms of a good structuring of the obtained
result using different values for the parameters (a full explanation of these
things is given in publications already cited above, like this one [8] or the
other one [9]) showed that the best values for its parameters are respectively
the following:

• File Support Threshold: 0.

• Partition Support Threshold: 0.

• Upper Bound and Lower Bound: 0.7 and 0.03.

• Cluster Goodness Threshold: 0.1.

Note that these values are the consequence of different executions of the
software and not of a rigorous mathematical procedure that allows to predict
a result.

Output Of Phase 2

The output obtained by the execution of this algorithm are two csv files:
one (called log file name.log_structured) containing exactly the same
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content of the input log file but in addition for each record there is an irrel-
evant LineId attribute, an associate EventId attribute (it is important to
notice that one or more records can have the same identifier due to the fact
that correspond to the same template) and the EventTemplate attribute
representing the generic log event without the specific record parameters;
the other one (called log file name.log_templates having the EventId,
EventTemplate and Occurrences attributes) contains less records than
the structured one with the list of all the group of event templates (including
the occurrence for each of them) extracted by the input log file.

3.4 Feature Extraction
The main purpose of this phase is to codify in a numeric way the logs in
order to apply on them some machine learning algorithms used for detect
anomalies.

This is accomplished by using various techniques adopted for dividing the
logs into various groups: for each of them there is an analogous vector that
counts the number of times every record is present in that group. The "final
product" issued by joining all these vectors is a matrix Y where the generic
row Ym,n counts the number of times the record n is present in the m-th
group.

To put in order what was said, the input of feature extraction are the logs
coming from the previous phase and the output is a counting matrix.

The adopted windowing technique in this work is the sliding window,
explained in the next sub paragraph.

3.4.1 Sliding Window
The rationale behind this windowing technique is very simple: there are two
attributes, window size and step size. The window size defines the duration
of the temporal interval to capture the records in a log file and then grouping
them in a set. The step size instead is often smaller than the window size
and indicates the amount of time (it is very often a multiple of the window
size) for which the sliding window must be shifted. For obvious reasons there
are sets having some records in common because there is an overlap among
different windows.

Different from fixed windows, sliding windows consist of two attributes:
window size and step size, e.g., hourly windows sliding every five minutes. In
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general, step size is smaller than window size, therefore causing the overlap
of different windows. The number of sliding windows, which is often larger
than fixed windows, mainly depends on both window size and step size. Logs
that occurred in the same Sliding Window are also grouped as a log sequence,
though logs may duplicate in multiple sliding windows due to the overlap.
Figure 3.9 synthesizes what has been said in this sub paragraph.

ΔT

ΔT

1  0 3 4 5 6 7
2  3 1 1 2 1 0
2  2 0 0 0 4 4
3  6 0 0 1 2 7

Counting Matrix

Sliding Windows

ΔT

Figure 3.9: Feature Extraction Using Sliding Windows

Output Of Phase 3

The output here is a very big matrix that contains the occurrence of each
record in each set. Specifically each row of this matrix will contain the
number of times that a record appeared in a specific set.

3.5 Anomaly Detection
Therefore, the numerical data obtained in the previous phase serve as an en-
try point for applying thereafter some machine learning algorithms: here the
choice fall on using algorithms belonging to both supervised and unsuper-
vised learning in order to see which of the two types of learning was the most
suitable to create an adequate model for detecting anomalies. In particular
classification techniques are used, able to verify if a record was in a normal
or abnormal state.
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The chapter 5 is totally dedicated to this step since it is the last and most
important of this process, reviewing the theory of the algorithms used for
the specific kind of learning employed.

Output Of Phase 4

In this final stage the results are exclusively numerical: these are represented
by the performance metrics used as quality indicators of the machine learn-
ing models utilized, produced by applying or not some particular validation
strategies (the k-fold cross validation strategy of the sub paragraph 6.3.1 to
be precise). However exhaustive details are given in chapter 6, the experi-
mental part of the assignment.
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Chapter 4

Programming Language

This short chapter informs the reader on which programming language the
choice fell and the reasons behind this, paying particular attention on the
version of the used software libraries that contains specific functions, classes
and methods suitable for the conducted research.

4.1 Python
The development of a software tool that allows the processing and analysis
of data cannot be separated from evaluations, of a more technical nature, on
the type of language and libraries to be used: these choices determine, to a
certain extent, the possibilities of implementation of a solution.

The decision of adopting a peculiar programming language rather than
another was essentially driven by two factors:

• Ease Of Use.

• Richness In Terms Of Technical Contents.

Python is an interpreted, high-level and general-purpose programming lan-
guage that combines simplicity of use (given its clear and readable syntax)
and expressiveness very well. It is a widely used language in the prototyping
phase, precisely because it allows to create a product quickly and with a
relatively little effort.

Another very decisive factor for the choice of the programming language
is: the availability of libraries on machine learning. Python boasts of a
considerable number of libraries and frameworks oriented to data analysis and
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machine learning, consolidated over time thanks to the unified contribution
of researchers and developers.

In this work two different Python versions have been used: the 2.7 version
for what concerns the log collection and the log parsing phases and the 3.6
version regarding the feature extraction and the anomaly detection steps.

4.1.1 Software Libraries
During the analysis various libraries for Python were used, the main ones and
common to all the four parts are listed below along with the corresponding
version and the specific step of the process at which that version was used:

• SciPy (version 1.5.2 for all the steps).

• NumPy (version 1.16.6 for log collection and log parsing and version
1.19.2 for feature extraction and anomaly detection).

• Scikit-learn (version 0.20.3 for all the steps).

• Pandas (version 0.24.2 for log collection and log parsing and version 1.1.2
for feature extraction and anomaly detection).

SciPy

The SciPy [10] (Scientific Python) is a Python software library that offers
numerous scientific functions used for several routine operations in various
mathematical areas.

NumPy

NumPy [11] and [12] (Numerical Python) is another software library for
Python having the advantage of being open source. It is largely used in
science and engineering and thanks to its simplicity it is used by any type of
user, from the beginner to the most experienced.

Scikit-learn

Scikit-learn [13] is one more open source software library born for the ma-
chine learning in Python, in particular for the supervised and unsupervised
learning.
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Pandas

Pandas [14] and [15] is a further library makes available data structures
particularly suitable for data analysis in Python thanks to its simplicity.
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Part III

Models, Data Analysis
And Conclusions
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Chapter 5

Machine Learning Models

The chapter presents an initial review on the state of the art of the exist-
ing types of learning to then focuses on the technicalities concerning the
machine learning models in conjunction with their most important tuned
hyperparameters for realizing the supervised anomaly detection and the un-
supervised anomaly detection.

5.1 Learning Typology
Predicting the evolution of a certain phenomenon basically implies the de-
velopment of a model that can describe it and, consequently, its application
to data detected over time. Machine learning uses algorithms that allow a
machine to acquire knowledge through observation of reality, therefore learn-
ing from data analysis, with the aim of being able to make assertions about
a certain event. This is made possible from the ability to abstract a general
model from the set of learning data, in able to address and solve correctly
new occurrences of this typology of problem. Machine learning algorithms
are usually divided into three broad categories, which take into account both
the nature of the problem (e.g., classification, regression, clustering) and the
type of information available (e.g., desired input and output data). Very
briefly, the three categories referred to are:

• Supervised learning, which allows you to determine a rule based on the
presence of a label.

• Unsupervised learning, in which the algorithm deduces a possible struc-
ture from the data based exclusively on the input data.
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• Reinforcement learning, which involves interaction with a dynamic en-
vironment in order to achieve a goal and, more generally, a behavioral
strategy, adapting to changes by distributing a reward or reinforcement
(positive or negative).

In addition to that, for the sake of knowledge, there is also a classification
for the so-called hybrid learning (which fall into a separate category):

• Semi-supervised learning that is characterized by using all types of avail-
able data and not just those labeled as it happens in the supervised
learning.

• Self-supervised learning is an unsupervised learning which faces the con-
sidered problem as if it were a supervised learning assignment in order
to apply supervised algorithms. Doing this the obtained solution will be
useful (in terms of modeling) for the initial encountered problem.

• Multi-instance learning belongs to the supervised learning, where there
are single unlabeled data and clusters of labeled data: in this case the
existing labeled data will be exploited as a knowledge base for predicting
the labels for new clusters together with those unlabeled.

As already stated in paragraph 3.5 of chapter 3, anomaly detection meth-
ods are of two possible types: supervised anomaly detection (that obviously
adopts the supervised learning) and unsupervised anomaly detection (that
uses the unsupervised learning).

5.2 Supervised Anomaly Detection
As the word suggests this task is guided by the presence of a label that
indicates if the system under analysis is in a normal or abnormal state, going
to constitute a typical classification problem. A part of these labels are used
for training the models employed: consequently a big number of labels implies
better performances in terms of accuracy of the model. In the following
there is a review of three models belonging to the supervised family: Logistic
Regression, Decision Tree, and Support Vector Machine.

5.2.1 Logistic Regression
As all the regression algorithm, Logistic Regression is a predictive procedure
that is non linear and it is designed to show the relation between dependent
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variable and one or more independent variables, estimating probabilities with
a logistic function with the following formula:

y = e−(b0+b1x)

1+e−(b0+b1x)

Where:
-x are the input values.
-b0 and b1 are the coefficients of input values.
-y is the output value to be predicted.

Figure 5.1 describes it visually. This model permits to search values for
coefficients which minimize the error in terms of probability. First of all, the
probability of an input (X) belongs to a specific class (Y = 1) is defined as
follows:

P (X) = P (Y = 1|X)

Using the logistic function, it can be expressed in following way:

P (X) = e−(b0+b1X)

1+e−(b0+b1X)

Figure 5.1: Logistic Regression
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In this case the Binomial Logistic Regression was chosen among the existing
ones, since permits to classify observations estimating the probability of a
single observation that falls into a particular category (normal or anomaly).

Applying what has been said to the work that has been done (more details
are here [5]), for any incoming group of logs will be created a vector on which
will be applied a logistic function that has been trained in advance with the
training data (the existing vectors with their corresponding labels). Later
the logistic function will calculate the probability (whose value is between 0
and 1) for the new group of logs of being normal or abnormal. If this value is
greater or equal than 0.5 then the group of logs will be considered abnormal;
on the contrary will be considered normal.

5.2.2 Decision Tree
Decision Tree is another algorithm that belongs to the family of supervised
learning algorithms: it can be used for solving regression and classification
problems too. The goal is to create through its use a training model able to
anticipate the value of a specific variable chosen as objective of the analysis by
simply understanding selection rules thanks to the prior data (training data);
in fact it is able to take a dataset of unknown data and extract a set of rules
through which an individual can understand the problem and the results.
This type of algorithm has the following advantages: low computation time,
easy understanding of the results. The disadvantages instead are: could
treat irrelevant data and it is prone to overfitting (the model fits too well
to the training data losing in generality unlike the underfitting in which the
model cannot acquire the underlying pattern of the data because there are
few parameters in the model and a high classification discrepancy (high bias
and low variance)).

In Decision Tree some division point are tried and tested using a regression
cost function. The division with less cost is select. In the first division, all
the features are considered and the training data are divided into group
according to that division. For example, if there are 3 features, there will be
3 kind of divisions. For each one the accuracy of division is calculated and
selected the best one. The cost function is the Sum Squared Error (SSE or
Residual Sum Squared, RSS) between all data in the division:

RSS = q(y − prediction)2

where y is the real observed value and prediction is the predicted value.
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Figure 5.2: Decision Tree

For the anomaly detection, the tree is elaborated from the training data
(represented by vectors with their labels), choosing with the usage of a met-
rics for each node (included the root node) the attribute that is more relevant
for the analysis (more details are here [5]). When a new group of logs (con-
verted in a vector) arrives, depending on the value of the predicate of every
tree node the algorithm will cross the tree following a specific path until will
reach a leaf having its corresponding status (normal or abnormal).

5.2.3 Support Vector Machine
In addition to the Decision Tree, among the algorithms capable of performing
classification and regression tasks, there is also the Support Vector Machine
or, more briefly, SVM: such an algorithm is based on the arrangement of
the data in an n-dimensional space (where "n" is the number of feature of
the considered dataset) and the calculation of a hyperplane that divides the
elements belonging to different classes. The hyperplane calculation is based
on two main factors: maximum margin, i.e. the maximum distance between
hyperplane and the data in n-dimensional space, and accuracy which, briefly,
indicates the precision with which the model predicts the belonging of a
given to a class. The algorithm first tries to maximize accuracy and then the
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maximum margin: however, if there are outliers in the dataset, the SVM is
able to recognize and ignore them for prediction purposes. Figure 5.3 clarifies
the concepts set out so far.

Figure 5.3: Support Vector Machine

Among the main features of the Support Vector Machine is the ability to
identify automatically a hyperplane that divides the data into the respective
classes of belonging also if these are not linearly separable: through its func-
tion called "kernel trick", the algorithm adds a dummy attribute (created on
the basis of the other features already present) to increase the size of the
space and thus make it possible to calculate a hyperplane. Another useful
aspect made available by the algorithm is the ability to give weight to classes
of belonging of the data: in many cases in fact (such as that of the research
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developed here) the prediction on a specific class turns out to be more sig-
nificant than on another and thanks to the different weights it is possible to
address the results of the model if this did not identify the class clearly and
clearly.

In order to optimize its performance, the SVM can be configured by means
of some hyperparameters including the "constant C", the type of "Kernel"
used and the parameter "Gamma". The first allows to manage the trade-off
between errors in prediction and margin maximization: a model with a low
C value tends to ignore points close to the hyperplane as the maximum mar-
gin considered for the decision increases; vice versa a very large value of C
creates the so-called "hard-margin" for which a data comes always considered
to belong to one class over another even if very close to the calculated hyper-
plane, which makes its identification more dubious. The "Kernel" parameter,
on the other hand, indicates which type of formula must be used for the cal-
culation of the hyperplane and can vary between linear, polynomial, sigmoid
and RBF (radial basis function): each of these has different characteristics
and processing complexity that they allow however, to create reliable models
for data with even very different distributions. Finally, the Gamma parame-
ter, strictly linked to the RBF type kernel, indicates, intuitively, how far the
influence of a single point in the decisions of the pattern: High values values
of it tend to create limits of "jagged" decision as they are very close to the
points belonging to a class; in reverse small gamma values give more weight
to points further away from the decision boundary than it will look more
like a straight line. Too high gamma values generate the so-called problem
of overfitting.

As well as for Logistic Regression and Decision Tree, also for SVM the
vectors along with their corresponding labels are the training material (see
[5] for a complete dissertion), composing the matrix coming from the output
of the feature extraction phase: so in SVM if a new element will be placed
above the hyperplane, will be considered as an anomaly; on the contrary if
it will be above will be deemed normal.

5.3 Unsupervised Anomaly Detection
5.3.1 Principal Component Analysis
Principal Component Analysis (often known as PCA) is a methodology used
to reduce the dimensionality of the available data. The followed principle
is: starting from a very high number of dimensions, the goal is to project
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into a new coordinate system the original data but using only a subset of the
original components. Adopting this procedure, the objective to be achieved
is to be able to find the components containing the highest variance among
the data available, without losing essential information. Figure 5.4 can help
with what has been said.

Figure 5.4: Principal Component Analysis

Focusing on the problem of the detection of anomalies, with the help of
PCA every group of logs is put in the form of a vector: indeed the algorithms
tries to find the recurrent schemes among the components of the vectors (see
[5] for more stuff).

5.3.2 Hierarchical Clustering
Hierarchical Clustering is based on the hypothesis that data points next to
each other are likely to have more features in common with respect to the

47



5 – Machine Learning Models

ones distant from each other. The behaviour is very simple: as the name
of the algorithm suggests, it performs a hierarchical division of the input
data that can be visualized through a suitable diagram called dendrogram
representing a tree. Figure 5.5 portrays the architecture of a dendrogram (in
that figure the dataset is made up of letters).

Figure 5.5: Hierarchical Clustering

Referring to the detection of anomalies, this algorithm (like the other
ones) needs a training step that, in this case, is divided into two phases
(more specifics can be retrieved here [5]).

The first phase consists in representing the logs of the previous phase in
the form of vectors; therefore there will be a differentiation between normal
and abnormal vectors using an agglomerative hierarchical clustering that
exploits a bottom up approach through which inserts each vector in a different
cluster and gradually merges clusters two by two. Hence at the end of this
phase there will be two large clusters (one called normal and the other one
abnormal) from which for each of them will be extracted a vector that best
describes the others after the calculation of its centroid.

In the second phase every vector is reviewed through the computation of
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the distances between itself and the salient vectors of each cluster produced
in the previous phase: if the lowest distance is lower than a prefixed value,
this vector will become a new element of the closest cluster (the one with the
smallest distance). On the contrary a new cluster containing this vector will
be constructed.

Thereafter the training there is the search for anomalies: if the lowest
distance between an incoming group of logs (transformed in a vector) and
the salient vectors of the last step of the training phase will be smaller than
a fixed amount, the considered group will be marked as normal; on the other
hand the incoming group of logs will be deemed abnormal or normal if the
closest cluster is respectively abnormal or normal.
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Chapter 6

Experimental Results

This chapter reviews from a numerical and technical point of view the various
machine learning algorithms performed on the reference dataset, comparing
them through the usage of the three most recurrent metrics in this field.

6.1 Evaluation Metrics
For the comparison of the results obtained by applying the machine learning
models to the sampled data, different metrics have been used which allowed
the evaluation of different aspects of the analysis carried out. In particular, if
an unbalanced dataset is analyzed (like in this case), some specific evaluation
parameters are used such as precision and recall: both values are calculated
on the results of one single class and therefore allow to evaluate the goodness
of a model regardless from any imbalance of the input dataset.

As shown below, the precision as the value which indicates how many sam-
ples, among all those classified by the model as belonging to one certain class,
they have been correctly labeled; recall indicates, instead, how many sam-
ples there are been labeled correctly among all those belonging to a certain
class present in the entire dataset: both parameters are considered optimal
the closer they are to 1. F1 score instead indicates the harmonic mean of
precision and recall (the harmonic mean can be expressed as the reciprocal
of the arithmetic mean of the reciprocals of the given set of observations): it
can assume all values between 0 and 1 and is optimal the higher its value is;
as can be seen from the formula below, indeed, the f1 score is the higher the
more the recall and the precision approach 1, which is the optimal value for
both parameters.
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Furthermore the accuracy of a model by definition indicates the relation-
ship between the number of correct predictions and the total of predictions
made: this parameter helps, in the algorithm optimization phase, to under-
stand if the modification of the model brings improvements to the perfor-
mances or not.

Precision = #AnomaliesDetected

#AnomaliesReported

Recall = #AnomaliesDetected

#AllAnomalies

F1 Score = 2× Precision×Recall

Precision + Recall

6.2 Dataset
In machine learning in order to start using the models a splitting strategy
of the dataset must be chosen for creating a training set and a test set. The
training set is defined as that part of the dataset dedicated to the creation
of a mathematical model, while the remaining part of the dataset is used to
evaluate the model’s performance previously generated. This aspect plays
a very important role in the data selection phase as it actively affects the
number of values that the model can have for the analysis: usually, most of
the data in the dataset are dedicated to the training set, leaving only a small
part in the test set of values useful for evaluating the predictive model.

Hence there is a training phase that involves the use of algorithms whose
main function is to calibrate the parameters on the basis of the characteristic
values of the model provided in input (i.e., the training set); the output
generated by the training process is a model defined in its own characteristic
parameters, which will constitute the crucial part of the entire predictive
analysis: the prediction, in fact, of the future values (normal or anomaly in
this case) of a variable.

Once the training process was completed, the model thus defined is tested
on a portion of the dataset, in order to determine its performance or, in
other words, the accuracy of the results generated. The test phase includes
the following steps:
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1. The data prepared for the testing phase (i.e., the testing set) are sent to
the model.

2. The output generated by the model, ie the predictions on the test data,
is compared with the real values of the starting set via an accuracy index.

During the research has been adopted this data division policy for all the
three supervised methods: the first 80% of the data as the training data
and the remaining 20% as the testing data because only having a "wide"
knowledge of the past there is the possibility of having a good result in the
testing phase.

Finally by default the window size and step size of sliding windows used as
grouping technique for the feature extraction phase (for more details see the
paragraph 3.4 of chapter 3) are set to six hours and one hour, respectively.
Table 6.1 summarizes the cardinalities of the dataset after the splitting into
training and test sets.

Training Set Test Set
Size 10262 2566

Table 6.1: Cardinality Of Training Set And Test Set

6.3 Predictive Models Application
In the application of the different models to the dataset the strong unbalances
of the two classes (normal or anomaly) has been maintained in order to, as
already said, simulate a context that is the closest to the real one.

6.3.1 Supervised Algorithms
The order of execution of the algorithms is the same as that used to explain
their working mode in the previous chapter (both for the supervised and
unsupervised ones).

Logistic Regression

The first algorithm among the models of this category that has been ex-
ecuted is the Logistic Regression that obtained the following values using
these hyperparameters: C = 100, penalty = 0.01, class_weight = balanced.
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Logistic Regression Test Score
Precision 0.978799
Recall 0.731836
F1 Score 0.837491

Table 6.2: Logistic Regression Test Accuracy

Decision Tree

The second one is the Decision Tree that obtained the following values using
these hyperparameters: criterion="gini", splitter="best", max_depth=None.

Decision Tree Test Score
Precision 0.982332
Recall 0.734478
F1 Score 0.840514

Table 6.3: Decision Tree Test Accuracy

Support Vector Machine

The third and last one is the Support Vector Machine (the linear version has
been used) that obtained the following values using these hyperparameters:
penalty=’l1’, C=1, tol=0.0001, class_weight=’balanced’.

K-Fold Cross Validation Technique

Cross-validation is a statistical validation technique used for the evaluation
phase. It is particularly indicated when the number of samples are not too
much: there is only one parameter called k through which decide the propor-
tions for the division of a dataset in order to obtain a uniform distribution
of the data. The choice of this parameter is not trivial: indeed it must be
carefully chosen for positively impacting on the model performances.

In the following there is the application of the models with the help of this
procedure, going to see the similarities and the advantages/disadvantages of
not using it in terms of the evaluation metrics defined before.
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Support Vector Machine Test Score
Precision 0.978910
Recall 0.735799
F1 Score 0.840121

Table 6.4: Support Vector Machine Test Accuracy

Logistic Regression

The first model is the Logistic Regression that obtained the following values
using the same hyperparameters used before, with k = 10.

Logistic Regression Test Score
Precision 0.764691
Recall 0.867284
F1 Score 0.802764

Table 6.5: Logistic Regression Test Accuracy Using K-Fold Cross Validation

Decision Tree

The second one is the Decision Tree that obtained the following values using
the same hyperparameters used before, with k = 10.

Support Vector Machine

The third one is the Support Vector Machine (the linear version has been
used) that obtained the following values using the same hyperparameters
used before, with k = 10.

6.3.2 Unsupervised Algorithms
In this sub paragraph the results related to the execution of the algorithms
are reported in terms of the same metrics adopted for the supervised models,
in order to guarantee a uniformity in the comparison.

54



6 – Experimental Results

Decision Tree Test Score
Precision 0.819004
Recall 0.730864
F1 Score 0.771168

Table 6.6: Decision Tree Test Accuracy Using K-Fold Cross Validation

Support Vector Machine Test Score
Precision 0.762919
Recall 0.880864
F1 Score 0.809321

Table 6.7: Support Vector Machine Test Accuracy Using K-Fold Cross Vali-
dation

Principal Component Analysis

The first tested model is the PCA that obtained the following values using
the default values for what concerns the hyperparameters.

Hierarchical Clustering

The second model of this category is the Hierarchical Clustering that ob-
tained the following values using the default values in reference to the hy-
perparameters.

6.4 Results Evaluation
This paragraph wants to be a very concise summary able to guide a technician
to choose the best machine learning model for his needs. To do that the pros
and cons of these two approaches are reported.

Supervised techniques turn out to be the clearest:

1. An important point in favor of this is given by the presence of the labels.

2. The analyzed supervised models reaches a high value for the precision,
while the value of the other performance measures depends on the input
data source and some parameters of the adopted grouping technique.
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Principal Component Analysis Test Score
Precision 0.643278
Recall 0.691124
F1 Score 0.623365

Table 6.8: Principal Component Analysis Test Accuracy

Hierarchical Clustering Test Score
Precision 0.612467
Recall 0.625531
F1 Score 0.600345

Table 6.9: Hierarchical Clustering Test Accuracy

As regards the unsupervised procedures is clear that:

1. Generally the unsupervised algorithms perform worse than those super-
vised.

2. By providing equal values to the same parameters of the same grouping
technique used for both supervised and unsupervised models, the ob-
tained results will show a discrepancy in terms of performances between
the supervised and the unsupervised methodologies.
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Chapter 7

Conclusions

The final chapter concludes this work, paying attention to the reasons that
led to follow a certain path and produce the present master’s thesis work.

Secondly, a hint is given to what could be some of the possible future
developments of this work.

7.1 General Considerations
The practical needs of the workplace, in which the monitoring of computer
systems particularly complex is essential for the proper functioning of all
infrastructures technological, led to the conception and development of the
research described. In this sense the work carried out was born with the aim
of exploring the potential of machine learning applied to system log files.

The application and the subsequent optimization of different machine
learning models therefore have allowed to analyze the data source, identi-
fying at the same time any critical issue present for it. In particular, a more
practical interpretation focused on the practical aspect has been provided,
trying, therefore, to bring the analysis carried out within the context under
consideration. So far, in fact, the problem has been addressed with the aim of
improving as much as possible the accuracy of the different employed models.
In other words, the tests performed, according to the different configurations,
were used to determine the algorithms and parameters such as to generate
the best possible result.

The work carried out has therefore made it possible to identify the poten-
tial of machine learning applied in the context of monitoring IT systems in
the enterprise context: on one side, the results obtained show ample room for
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improvement in terms of accuracy for what concerns the unsupervised mod-
els, achievable with use of data collected in other ways and hence through
an expansion of the dataset; on the other side they demonstrate the concrete
possibility of exploiting such techniques illustrated to implement predictive
maintenance policies and to allow the addressing of future research towards
the specific study of some mathematical models, setting instead others aside.

Logs are crucial and constantly used everyday for detecting anomalies
but with the progress of technology and the consequent increase in terms
of complexity of the computing systems a manual inspection is not at all
feasible. In this scenario, within this work has been adopted an automated
log analysis tool and several anomaly detection methods in order to provide
to an audience linked to the company environment a valuable tool capable
of detecting the presence of any abnormal behavior.

7.2 Future Works
In order to improve the performance of the mathematical models studied and
thus allow a more reliable classification of the samples, some improvements
(to be defined) could be implemented in future versions:

• The first future development that could be realized is the integration of
the previous research (conducted in the same company where the present
work has been developed) and of the latter into a single tool that is easily
usable by the final users (the company’s technicians).

• A second possible enhancement in future may be a large-scale reproduc-
tion of the studied classification models in order to make them accessible
to more than one user so as to identify further improvements and weak-
nesses for each of them.

• The third and last future advancement might be the implementation
of an alerting system based on any anomalies envisaged by the model
presented in the master’s thesis.

As can be easily guessed, the aspects to be investigated are innumerable
and the possibility of hosting new analysis methodologies is, without a doubt,
one of the aspects more interesting of this assignment, together, clearly, with
the ability to detect the evolutionary state of a system.
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