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ABSTRACT 

 
 
Enormous amounts of real-time data analyzed by using AI’s analytical tools will improve 

decision-making and provide business users with improved visibility-whether it is 

minimizing asset downtime, enhancing manufacturing quality, automating production, 

forecasting demand, maximizing inventory levels or improving risk management. In this case 

study, we incorporate predictive maintenance for the milling process, to prevent the excessive 

expense and loss of time due to unexpected malfunctions of the cutting tool. With the help 

of machine learning algorithms and Python we interpret predictive maintenance (PdM) to 

ensure optimal product output. 

  

This study provides a framework for applying machine learning to forecast tool wear, thus 

evaluating the tool’s remaining useful life (RUL) for best output in terms of expense, 

efficiency and time. We will analyze the data set, clean, modify and remove various attributes 

before implementing it with different machine learning models to predict the remaining 

useful life and later comparing it with the wear performance of the actual tool.   
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CHAPTER 1 - INTRODUCTION 

1.1 Industry 4.0  

The role of AI instruments and techniques in smart manufacturing is a trending topic. The AI 

movement has passed its infancy, and several industries are proceeding with considerable 

activity. Today, more instruments on the factory floor, both large and small, are fitted with 

sensors that collect/share large amounts of data and record a multitude of actions.  

 

Manufacturing 4.0’s real-world deployment began with increased efficiency, followed by 

improved flexibility, consistency, and speed. To shape a rapidly evolving on-demand 

production environment, a manufacturing stability can be accomplished by machine-to-

machine and human-machine interactions. Furthermore, via real-time plant tracking and just-

in-time repairs, quality improvement can be achieved. The degradation of processing 

facilities and instruments generally lowers the efficiency of the output and improves 

efficiency by increasing unplanned downtime. The smart prognostic and health management 

(PHM) tools have also become crucial for just-in-time maintenance, which ensures high-

quality goods, minimizes unplanned downtime and improves customer loyalty [1]. 

Figure 1: Evolution of disruptive technologies in Manufacturing 
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1.2 Artificial Intelligence – Machine Learning 

AI has become increasingly advanced and sophisticated, leading to reduced prices and hence 

making the platform more accessible across diverse sectors. This transition has had a massive 

effect on the production of goods which has contributed to more productivity, less human 

error, and more extraordinary total performance. To foresee when mechanical parts would 

need replacement, many businesses use artificial intelligence. Combined with historical 

evidence, machine learning produces an algorithm that detects possible problems when they 

emerge, helping organizational workers to take the steps required to eliminate problems that 

can delay or even interrupt development. One of the most valuable advantages of AI in real-

time monitoring is that it gives a more accurate description of where any inefficiencies exist 

in the production chain and what causes the bottleneck. This ability to define the precise 

method that needs enhancement helps organizations to solve the problem promptly, results 

in saving time and expenses. However, predictive maintenance acts as an axis of growth for 

the implementation of the Industry 4.0 system. The goal is to obtain models that decrease 

diagnostic ambiguity [2].  

 

Figure 2: Machine Learning Stages 
 
Machine learning is broadly classified into supervised (trains known inputs and outputs to 

predict future outputs) and unsupervised learning (finding patterns or structures in the input 

data) [3] . 
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1.2.1    Supervised Learning 

It is a learning technique where the machine is taught and trained using data that’s 

already labelled with correct answers. When the system is provided with a new set of 

data, it’ll try to analyze and generate data based on the previously labelled data.  

E.g., Classification, Regression  

1.2.2  Unsupervised Learning 

Here the data fed into the machine is neither labeled nor classified and the algorithm 

is made to find patterns and structures without guidance. Unlike supervised learning, 

the machine is not trained for prediction, rather it relies on itself for finding 

similarities and patterns [4].  

E.g., Clustering 

 
 

 
Various languages can be used for machine learning such as Java, Python, R, JavaScript, 

Scala etc. but for the purpose of this thesis, we are restricting to Python. 

 

 

Figure 3 Machine Learning Techniques 
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1.3 Thesis objective and structure  

The thesis describes the role and importance of Predictive Maintenance and Tool Condition 

Monitoring systems in the manufacturing industry. We use the data from NASA’s Prognostic 

Center of Excellence (NASA – PCoE) to train machine learning models for the milling cutter. 

Python and its libraries are used to train the algorithms for the TCM model. It takes as input 

cutting parameters and sensors signals and returns the tool wear condition as output.  

 

The thesis report is structured by shedding light on the introduction to tool maintenance and 

the literature review of predictive tool maintenance conducted and published in the recent 

years. We later transition to the milling process and the use of Python and its libraries for the 

analysis of this case study. The last part deals with data analysis, model training, testing and 

improvement using various machine learning algorithms. The thesis concludes with the 

interpretation of the results and drawing conclusion on using an improved model for 

predicting remaining useful life of a tool. 
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CHAPTER 2 – PREDICTIVE MAINTENANCE 

2.1  Types of Maintenance  

Maintenance can be categorized mainly into three: 

2.1.1 Corrective Maintenance 

This form of maintenance is focused on fixing the already existing faults, i.e. it only 

takes place where there is a crucial halt in the operation or machine [5]. This is the 

easiest maintenance method, since the manufacturing pause and the repair of the parts 

to be replaced are also required, bringing a direct expense to the operation. As a 

consequence, corrective repair is utilized in systems in which defects do not have a 

critical output effect. 

2.1.2 Preventive Maintenance 

Preventive maintenance is a maintenance strategy conducted to predict process / 

equipment faults with a planned timeline or procedure iterations. It is normally an 

optimal solution to eliminate errors. The goal of this method of maintenance is to 

minimize the amount of remedial maintenance steps introduced through routine 

inspections and replacement of worn pieces. Which includes maintenance, careful 

monitoring and the creation of a schedule that must be executed by trained employees. 

In fact, if it is not properly implemented, a breakdown can arise, resulting in 

productivity costs [6]. 

2.1.3 Predictive Maintenance  

Predictive Maintenance (PdM) is based on constant monitoring of the integrity of a 

system or a process, allowing maintenance to be carried out only as required. In 

comparison, computational software focused on historical evidence (e.g. machine 
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learning techniques), quality considerations, mathematical estimation methods and 

engineering approaches allow for the early identification of errors [7]. 

 

 

 
Figure 4. Types of Maintenance 

 

2.2 Predictive Maintenance 

Predictive Maintenance (PdM) is a form of maintenance that happens before failure occurs. 

Besides sensor readings, it is dependent on precise calculations, and maintenance is done by 

evaluating the calculated parameters. This maintenance is focused on maintaining the 

optimum time between repairs and minimizing the expense and volume of planned 

maintenance operations [8]. 

 

 
 

 
Figure 5. Steps needed to develop a pdM 
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2.2.1 Data Acquisition 

The data collected using the pdM are of two types: event data and condition 

monitoring data. Event data includes the information on what happened to the asset 

and the type of maintenance applied, whereas condition monitoring data are related 

to the health measurements of the asset. There are wide variety of signals such as 

those from vibrations, acoustics, temperature, pressure etc. In order to accumulate 

these, various sensors are developed such as accelerometers, gyroscopes, etc. [8] 

2.2.2 Data Processing 

Obtained data can have missing, inconsistent or noise values. The stronger the data 

the better the data mining procedure. Usually preprocessing of the data is done to 

improve the quality of the data – it’s usually done by preparing and transforming the 

dataset.  

2.2.3 Machine Decision Making 

This step involves both diagnostics and prognostics. Diagnostics includes detection, 

identification and isolation of the faults when they surface, whereas prognostics tries 

to predict the failures even before they occur. Often times this leads to a shift from an 

unsupervised problem to a supervised one as it’s easier to develop one with great 

accuracy [8].  
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CHAPTER 3 – LITERATURE REVIEW 

In the 21st century, Industry 4.0 along with the evolution of computing infrastructures: 

Artificial Intelligence, Big Data, Cloud Computing, IoT etc. has empowered the 

manufacturing status quo. With the help of ICT, it’s possible to construct an integrative and 

collaborative system based on the Industry and customer demands [9].  

To extract manufacturing data artificial intelligence is used. AI makes the system learn and 

adapt based on historical experience and training; This created system can even help in 

decision making. To improve the sustainability of Industry 4.0 it’s important to develop a 

communicating tool between the machines and maintenance engineers pertaining the 

maintenance tasks. Doing so can help in reducing cost and downtime along with increased 

useful life of a tool.  

A recent article even mentioned this unplanned downtime due to lack of maintenance strategy 

that accounted up to 20 percent loss in productivity and $50 Billion each year in cost [10].  

Predictive maintenance—or PdM, for short—is a technique for foreseeing upkeep necessities 

in machines on a processing plant floor. By breaking down operational data from the 

machines, patterns develop that will permit administrators to anticipate when maintenance  

Figure 6: Extending the life of a tool with predictive maintenance (modified from Predictive Motor 

Maintenance. Fort Collins: 2016) 
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will be required on some random unit, taking into account the arrangement during less 

exorbitant occasions [11]. 

Before, makers would depend on reactive maintenance, also called the “if it ain’t broke, do 

not fix it” strategy. We can well envision that adjusting machines when they are broken is an 

enormous cost, both as unplanned downtime and the expected effect on different pieces of 

the machine.  

Predictive maintenance depends on explicit data pulled from each machine, to recognize 

likely issues. A model would be a vibration investigation- A model that utilizes a standard of 

gathered execution information for a machine that will have the option to recognize changes. 

Deviations from the benchmark permit administrators to anticipate a requirement for 

maintenance before the issue gets genuine, bringing about hardware disappointment. Due to 

continuous improvement in data acquisition and the consequent growth in data accumulated, 

data driven methods have become important for tool conditioning to determine the state of 

an equipment [12]. Most of the works mentioned uses data from private experiments or were 

generated with the help of a simulator. 

Various tool conditioning, feature extraction and machine learning techniques regarding 

milling process were discussed, [13] and suggested the use of single sensors (reduced system 

cost) as opposed to the notion of using multiple sensors for an Industrial environment. 

Prioritizing an on-line TCM system which utilizes indirect measurement rather than a direct 

measurement plays a significant role in determining the tool wear.  

The capacity to copy human insight and see each part of a given problem through experience 

makes AI an ineluctable cycle in computerized reasoning. The custom of being compelled to 

a lot of calculations that were pre-introduced has hailed throughout the years with the creation 

of AI. Among a few AI methods looked, utilization of artificial neural networks (ANN) in 

process modeling and optimization has become very recognizable due to its capacity to 

anticipate the output rapidly and precisely. The viability and common sense of ANN models 

in assembling applications are looked into for showing its critical part in process modeling. 

Perceptions are accounted for in the investigation.  
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Figure 7 Application of ML techniques in different areas of manufacturing 

The number of articles taken for showing the performance of every strategy is given in Fig. 

2(a). From this, unmistakably the level of articles taken in this investigation for assessing the 

performance of ANN (34%) is high among all the methods. Commitment of articles for 

assessment of SVM, GA, and RF are 13%, 14%, and 10% individually, which demonstrates 

that equivalent significance were given to all the three procedures in portraying their 

performances [14].  

A cloud-based approach was adopted for an event based IoT and ML architecture for 

predictive maintenance in Industry 4.0 [15]. They combined information with data about the 

failures, which made it helpful to train the data sets for predictive maintenance. Utilizing 

equipment logs to foresee issues represents a few issues that have not yet been completely 

investigated. Specifically, determining predictive features represent a significant test, as the 
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logs contain a gigantic measure of information that rarely incorporates data regarding the 

information for failure prediction [16].  

In the study, they adjusted PdM application into a Big Data condition utilizing distributed 

computing and Big Data systems to give the strategy the capacity to scale and to handle the 

information of a huge number of associated machines. They fabricated a computational 

pipeline to manage high dimensional data and to show complex association occasion-based 

mistake totals parsed from unstructured log records. To accomplish this, they tried the theory 

that aggregated highlights registered by feature engineering on temporal data, that could be 

productively demonstrated with AI classifiers. The proposed application could assist with 

empowering PdM and main driver investigation of woodworking machines.  

All in all, they introduced a log based PdM application by exploiting occasion-based triggers 

and the use of cutting-edge AI methods to construct predictive models. The fundamental bit 

of leeway of such a methodology is the utilization of aggregated event-based predictors 

(errors and cautioning occasions) as temporal attributes to foresee the possible machine down 

disappointments. The proposed application was sent a PdM application for carpentry by 

exploiting dispersed a Big Data condition to produce data driven predictive models that 

depend on historical log information.  

On the other hand, during the primary stage of PdM, the signal highlights were separated 

from raw information, and afterward the SVR models with considering diverse length of 

signs at past occasions were built up to mirror the connection between monitoring data and 

tool life [17]. In the subsequent stage, the built models are utilized to foresee cutting device’s 

RUL, and the best signal length for exact forecast result was obtained. Tool failure in the 

machine may prompt unscheduled down time, quality issues and even genuine mishaps. It is 

assessed that about 20% of the personal time is ascribed to instrument disappointment, which 

bring about critical monetary losses [18].  

The data driven strategies used mostly included: Artificial neutral network, Markov models, 

and Support vector machine (SVM) et al. SVM is broadly utilized for RUL forecast [18]. 

The paper talks about two delicate computing methods, neuro fuzzy logic and SVR strategy 

for cutting RUL forecast.  
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However, in all actuality, the machine wellbeing state isn’t just identified with the current 

observing information, yet additionally to the past occasions. Along these lines in the paper, 

a SVR based technique with considering distinctive length of signals at past occasions is 

proposed for RUL forecast. It comprised of two fundamental stages: an off-line and an on-

line stage. In the primary stage, the signal highlights are separated from raw information, and 

afterward the SVR model with considering data at past occasions is set up. In the subsequent 

stage, the developed models are utilized to anticipate cutting instrument’s RUL and the best 

signal length for exact forecast result was obtained. The proposed strategy is validated by the 

experimental information taken from a (CNC) rotor slot machine in a production line.  

 

Figure 8 Framework for RUL Prediction 

The framework for RUL prediction of cutting devices adopted is shown in Figure 3. The 

guideline of the proposed technique depends on two primary stages: an off-line stage and an 

on-line stage. In the principal stage, the signal highlights are extricated from raw monitoring 

data, and afterward the SVR models, various length of data at past occasions are set up to 

mirror the connection between monitoring signals and tool life. In the subsequent stage, the 

developed models are utilized to foresee cutting apparatus’ RUL and doing so the best signal 

length for exact forecast result is obtained. The cutting parameters were the spindle speed of 

the slotting cutter - 200 rpm and the feed rate - 15mm/min. 

AE is one of the best signals for tool wear monitoring, particularly for mechanical 

applications. It can maintain a strategic distance from the impedance of outer components on 



 

21 
 

the grounds that the recurrence of AE signals is a lot higher than that of machine vibration 

and ecological noises [19], [20]. Past studies [17], [21], [22] demonstrated a few AE 

highlights can show tool wear, in the work, 14 highlights were separated: Rise time(RT), 

Counts(C), Energy(E), Amplitude(A), Average frequency (AF), Root mean square (RMS), 

Average signal level (ASL), Counts To Peak (CTP), Reverberation Frequency (RF), 

Initiation Frequency (IF), Signal Strength (SS), Absolute Energy (AbE), Frequency Centroid 

(FC), and Peak frequency (PF).  

In 2008, NASA Prognostic Center sorted out a prognostic test opened to people in general. 

The coordinator reproduced dataset to copy the airplane motor conduct from starting cycle 

until failure. Various scientists utilized this dataset to plan and propose RUL prediction 

models [23]. This paper proposed an improved RUL expectation model by utilizing 

regression tree (RT) method. RT has been utilized in other examination zones, for example, 

in clinical exploration, advertising research and considerably more particularly when the 

information has high autonomy factors. Regression tree (RT) is one of the classification 

strategies that can be utilized for prediction based on developing and pruning tree technique. 

This strategy was started via Automatic Interaction Detection (AIA) method and later it was 

improved by a group of scientists which set up the RT procedure [24]. Linear and multiple 

regressions can deal with a predetermined number of features in the dataset. If the number is 

small, regression strategy can deal with it well for forecast. In any case, when the quantity of 

features expands the model will get intricate to cooperation between features. To conquer 

this restriction, RT applies partitioning strategy where it lessens the number of highlights into 

a small fragment where it is more reasonable.  

This technique has outperformed different strategies, for example, linear regression, ridge 

regression, support vector machine and neural network regarding precision rate. In the 

dataset, likewise, comprise sensor readings from three working conditions and 21 readings 

from sensors.  
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Figure 9 Steps used in the development of RT Model 

Performance estimations are imperative to decide the viability of the proposed model. In the 

wake of gathering the expectation of RUL from the model, the prediction value is analyzed 

against the true value. The true value is the cycle value in testing data. The error performance 

was measured utilizing mean absolute error (MEA), mean absolute percentage error (MAPE) 

and mean squared error (MSE). 

 

Figure 10 Performance of regression tree (RT) against existing RUL prediction model namely, Dempster-Shafer 
regression (DSR), Support vector machine (SVM), Recurrent neural network (RNN) and Comentrophy based 
fusion. 
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CHAPTER 4 – USE CASE: MILLING MACHINE 

4.1  Milling Process 

Being the most prevalent processes around for machining custom parts, Milling is a 

machining process used to remove materials by advancing a cutter into a workpiece. This 

can be done in various directions, axes, speed and pressure. During the cutting, due to sheer 

deformation, material is pushed off the work piece in tiny clumps to form chips. The speed 

and feed at which a milling process is performed is varied to suit a combination of variables 

[25]. The process initially consists of a roughing step in which the material is removed rapidly 

and economically as possible while leaving an appropriate layer of material for the next 

finishing point. The removal of the limited material allows for the tolerances of the 

dimensions and the degree of roughness of the surfaces that can be preserved in the initial 

process. The tool gradually starts wearing due to the heat and stress during the process which 

indirectly will compromise the performance of the cutting tool and the surface finish.  

4.2  Types of Milling  

Milling can be broadly classified into four main categories:  

 

4.2.1 Face Milling 

We achieve face milling when the surfaces are machined right angled to the axis of 

the cutter. They result in producing flat surfaces either through horizontal or vertical 

feeding.  

 
Figure 11. Face milling process 
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4.2.2 Plain or Slab Milling 

 
It’s the result of a milling process when surfaces are machined that are parallel to the 

axis of the cutter. Usually, the cutter is mounted on a standard machine arbor with the 

tool mounted parallel to the surface.  

 

 
Figure 12. Plain milling process 

 
 
 
4.2.3 Angular Milling  

 
In angular milling surfaces are machined at an inclination neither parallel nor 

perpendicular to the axis of the cutter. Usually, a cutter with chamfers and grooves 

are used during the machining for attaining the end result.  

 

 
Figure 13. Angular milling process 
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4.2.4 Form Milling 

When surfaces machined have irregular outline or contours consisting of curves or 

straight lines, this type of milling process is considered. They are usually machined 

using tools that are made out of the outline that has to be cut.  

 
Figure 14. Form milling process 

4.3 Tool Material 

Milling cutting tools are selected based on the material of the workpiece and the final 

result and anticipated finish one’s after. In order to produce effective and optimal 

outputs there are three important characteristics a tool material has to exhibit: 

 

4.3.1 Hardness 

It’s the temperature resilience a cutting material possess while maintaining its 

strength during the operation. They should be harder than the workpiece undergoing 

the machining operation.  
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4.3.2 Toughness 

A cutting tool should have enough toughness in order to undergo the machining 

process without failing or chipping. 

4.3.3 Wear resistance   

Wear resistance of a tool plays yet another vital role in deciding a machining tool. 

It’s the characteristic property duration of a tool based on the type of material and 

sufficient tool life before its replaced or substituted. 

 

The most common machining tool materials are those made of  high speed steel (HSS), 

tool steel and cast alloys, carbides, ceramics, diamonds etc. [26] 

 
4.4 Cutting tool and tool wear 

 
At all times, the quality and the condition of the cutting tool is controlled and monitored. 

In machining operations, a PdM of cutting tools can not only warn whether a tool has to be 

replaced based on the wear length of the tool when it exceeds its wear limit but can also 

measure the tool’s remaining usable life (RUL).  

 

As shown in Fig., the conditions of the cutting tool can be described by the wear on the 

various face of the cutting tool. Although calculating the abrasive wear on the flank face of 

the cutting tool is a common procedure to define the state of the cutting tool, a flank wear 

limit is used as a rule of thumb to define the condition of the cutting tool during machine 

learning model evaluation and improvement [27].  

 
Figure 15. Types of cutting tool wear 
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The tool wear can be divided into two types in general due to their rubbing action and the 

affected regions: 

4.3.1 Flank wear 

It’s one of the most common and important wear resulting from the abrasive/ adhesive 

wear of the cutting edge against a surface. Most often the wear is a result of high 

temperatures which affects the tool and the material alike. The average wear, V3 can 

be measured against the maximum size, VBMax. Tool life expectancy equation can  

be given by:   

VCTn = C considering the depth and feed of cut,   

Figure 16. a. Tool wear phenomena, b. Flank and crater wear 

Figure 17. Flank wear: The wear on the flank face (relief or clearance face) 
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4.2.1 Crater wear 

Wearing chips in the crater erodes the tool’s rake face. For tool wear, it is relatively 

natural and does not significantly degrade the use of a tool until it gets bad enough to 

cause a breakdown of the cutting edge. Crater wear will improve the angle of the  

 

working rake and decrease the cutting force, but the strength of the cutting edge may 

also be reduced. In ductile materials such as steel that manufacture long continuous 

chips, this is more common.  

4.4 Experiment Description and Setup  

The data in this set illustrates experiments from runs on a milling machine under varying 

operating conditions, such as various feeds, cutting depth and material for the workpiece 

using three types of sensors (acoustic emission sensor, vibration and current sensor). In 

particular, in a regular cut as well as entry cut and output cut, tool wear was investigated 

(Goebel, 1996), and the flank wear of the milling insert was registered. This dataset is a series 

of prognostic datasets donated by various institutions, organizations and corporations is 

provided by the Prognostic Center of Excellence (PCoE) at NASA’s Ames Research Center. 

The dataset is organized in a 1x167 MATLAB struct with fields as shown below: 

 

 

Figure 18. Crater wear: The crater resembling wear on the rake face of the tool. 
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Table 1: Struct field names and description 
Field name Description  

case Case number (1-16)  

run Counter for experimental runs in each case  

VB Flank wear, measured after runs; Measurements for VB were 
not taken after each run 

time Duration of experiment (restarts for each case)  

DOC Depth of cut (does not vary for each case) 

feed Feed (does not vary for each case) 

material Material (does not vary for each case) 

smcAC AC spindle motor current  

smcDC DC spindle motor current 

vib_table Table vibration  

vib_spindle Spindle vibration 

AE_table Acoustic emission at table  

AE_spindle Acoustic emission at spindle 

 

The experiment was conducted with 16 cases and multiple runs. The runs were dependent on 

the degree of the flank wear as it was based on the wear limit of the tool. When a certain 

measurement was not taken, flank wear for that field was left empty.  

 

 
Figure 19. Milling dataset structure in MATLAB 
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Table 2: Experimental Conditions 
Case Depth of Cut Feed Material 

1 1.5 0.5 1- cast iron 

2 0.75 0.5 1- cast iron 

3 0.75 0.25 1- cast iron 

4 1.5 0.25 1- cast iron 

5 1.5 0.5 2- steel 

6 1.5 0.25 2- steel 

7 0.75 0.25 2- steel 

8 0.75 0.5 2- steel 

9 1.5 0.5 1- cast iron 

10 1.5 0.25 1- cast iron 

11 0.75 0.25 1- cast iron 

12 0.75 0.5 1- cast iron 

13 0.75 0.25 2- steel 

14 0.75 0.5 2- steel 

15 1.5 0.25 2- steel 

16 1.5 0.5 2- steel 

 

To predict the tool wear condition, six sensors were used to capture acoustic emissions, 

vibrations and current. The setup comprised of the table and the spindle of Matsuura 

machining center MC-510V, an acoustic sensor and a vibration sensor each mounted on the 

table and the spindle of the machining center. The acquired signals were amplified, filtered 

and fed through two removable mass storage (RMS) devices before entering the PC for data 

acquisition and processing. The signal from the spindle motor current sensor is fed directly 

into the PC without further processing [28].     
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Figure 20. Experimental Setup 

 
 
4.5 Python and Libraries 
 
Python provides some of the strongest features and flexibilities that not only improve their 

competitiveness but also the consistency of the code, not to mention the vast libraries that 

help ease the workload. The following are numerous characteristics that place Python among 

the most preferred programming languages for Machine Learning, Deep Learning and 

Artificial Intelligence [29]: 

 

1. Free and open source 

2. Exhaustive libraries 

3. Easy implementation and integration 

4. Works well with C and C++ 

 

Some of the python libraries used for in this machine learning study includes [30] [31], [32]: 
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4.4.1 Numpy 

 
With the assistance of a wide set of high-level mathematical functions, NumPy is 

a popular python library for large multi-dimensional array and matrix processing. 

It is useful in Machine Learning for basic scientific computations, linear algebra, 

fourier transform, and random number capabilities. 

4.4.2 SciPy 

 
SciPy is yet another popular library. At the core data structure, SciPy uses NumPy 

arrays, and comes with modules for various scientific programming activities 

widely used, including linear algebra, integration (calculus), ordinary differential 

equation solving, and signal processing. 

4.4.3 Sci-kit learn 

 
It’s one of the most common ML libraries for classical ML algorithms. Two basic 

Python libraries i.e., NumPy and SciPy, are built on top of it. Most of the ML 

algorithms are supported by Scikit-learn. For data mining and data processing, 

Scikit-learn can also be used.  
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4.4.4 Pandas 

Pandas is a NumPy-based data manipulation library that provides several useful 

functions for storing, indexing, merging, and grouping data. The primary data 

structure (Data Frame) is similar to what we can see on R i.e. heterogeneous name 

indexing data tables, time series operations, and data auto-alignment. 

4.4.5 Matplotlib 

 
When a programmer needs to imagine the patterns in the results, matplotlib can 

be helpful. It is a library for 2D plotting that is used to construct 2D graphs and 

plots. A module called pyplot makes plotting easier as it offers features for 

manipulating line types, font properties, axis formatting, etc. It offers different 

forms of data analysis graphs and plots, such as histograms, error charts, bar chats, 

etc. 

4.4.6 Seaborn 

Seaborn is a matplotlib-based library. It offers a high-level GUI to draw 

mathematical graphics that are appealing and insightful. 
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CHAPTER 5 – DATA ANALYSIS 

 
 

 

5.1 Importing Data 

The 1x 167 matlab struct array is imported into the python workspace where the sensor 

readings and the process parameters are individually called and created as a combined data 

frame “mill” with 167 rows and 13 columns.  

5.2 Data Cleaning 

One of the main steps in the overall process of data processing is data cleansing. It is the 

method of finding and correcting missing, erroneous and unreliable information. The goal is 

Figure 21. Machine Learning Pipeline 

Figure 22 . Code Snippet - Mill 
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to resolve issues of data consistency that adversely affect the model’s output and undermine 

the methodology and outcomes of the study. There are various kinds of problems with data 

consistency, including incomplete values (Nil, NULL, 0), redundant data, outliers or data 

that is unreliable. Quality data should possess the following characteristics [33]: 

 

1. Validity 

How much the data can be conformed to the defined objective. 

2. Accuracy 

Closeness to true values.  

3. Completeness 

The degree to which the date set is complete. 

4. Consistency 

Maintaining the consistency of the dataset across multiple datasets 

5. Uniformity 

Use of same unit or measure across the dataset 

5.2.1 Missing values  

Missing values are quite coming in datasets. It just signifies that there’s no value 

stored for that observation. There are two approaches to deal with missing values 

i.e., deletion and imputation. The first approach requires the elimination of 

observation data that has one or more missing values, either the deletion of the 

whole row or the deletion of the missing value columns, which is used in 

particular where there is no association between the missing variable and other 

variables. The second technique applies to the missed value approximation where 

the missing value depends on the value of every other variable. 

 

During the experiment the flank wear was not measured at all times, which 

resulted in no VB measurements. For the purpose of this thesis since the cells 

containing missing values of VB weren’t many (21 rows) and without VB values 

the supervised model couldn’t be tested and trained, we decided to eliminate the 

entire row.  
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Resultant shape of the dataset: 146 x 13. 

 

5.2.2 Outlier detection  

An outlier is a point among the observation that is distant from the rest of the 

results. It may occur because of normal measuring fluctuations or it may signify 

experimental errors, such as human error and inaccuracy of the instrument. In data 

mining activities, outliers can cause significant issues and must be detected and 

evaluated in order to understand their existence and most importantly its removal 

from the dataset. Statistical approaches such as standard deviation, box plots, z-

score or interquartile distribution methods (IQR) are the most used techniques to 

detect outliers.  

In our study we’ll be using z-score analysis. It’s nothing but the relationship with 

the standard deviation and the mean of the group of data points. It’s finding the 

Figure 23 Null Heatmap 

Figure 24 Code Snippet - Cleaned Data Shape 
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distribution where the mean is 0 and the standard deviation is 1. We re-scale and 

centralize the data when measuring the Z-score and search for data points that are 

too far from zero. The outliers would be viewed as those data points that are far 

from zero. A threshold of 3 or -3 is used in most situations. If the Z-score is greater 

than 3 or less than -3, those data points are marked as outliers [34]. 

 

We’ll take into consideration the smcAC column here, where the below z-score 

code snippet was used to analyze each signal of the case/ run for the entire column 

and provided the outliers that were distant from the rest of each signal 

measurement. From the attached signal readings, it is clear that the outliers found 

(1 row) for a respective case or run will reflect across other sensor readings for 

the same case/run thereby which the entire row was removed.  

 

 

Resultant shape of the dataset after outlier analysis: 145 x 13 

Figure 25 Code Snippet - Z Score Analysis 
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5.3 Feature Extraction 

Feature Extraction helps to minimize the number of features in a dataset by generating (and 

then discarding the original features) new features from the current ones. Any of the details 

found in the initial package of features should then be able to sum up this new reduced set of 

features. In this way, from a variation of the original set, a summarized version of the original 

features can be generated [35]. The quality and quantity of the features play a vital role in 

determining the result of the prediction.  

Figure 26 Outliers - Case 2, Run 1 
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The data captured by the sensors are used to extract the features in time, frequency and 

statistical domains. Each plays its role in extracting information pertaining to the tool wear.  

5.3.1  Time Domain 

Feature extraction in time domain helps to evaluate the magnitude of the signal. 

Some of the domain features used for this study are mentioned below which were 

introduced in the literature [36], [37], and proved effective to distinguish the 

signals and its related tool wear. 

  
The maximum and mean characteristics refer to the signal’s maximum and mean 

amplitude. The square root of the mean square is RMS, and it represents a signal’s 

Table 3 - Time Domain Features Extracted 

Figure 27 Time Domain smcAC 
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average power. The signal dispersion around its mean value is calculated by 

variance and standard deviations. How often the signal fluctuates from the mean 

is determined by the standard deviation, while the variance reflects the power of 

this fluctuation. Skewness and kurtosis are used for signals that are not stationery 

to understand the probability density function. For the purpose of this thesis, we 

wouldn’t be using variance and crest factor as they could be calculated from the 

rest of the features. These 7 features would be extracted from 6 sensors, giving a 

total of 42 new features in the data set. Time domain features help to convey the 

signal changes over time, but it cannot completely help us in providing the 

relation between wear and signals. It’s for this reason we will be needing 

frequency domain. 

5.3.2  Frequency Domain 

It represents how much of each signal lies within each frequency band which is 

spread over a certain spectrum of frequencies. Using Fourier transform, a time 

function is transformed into a sum or integral of sine waves with different 

frequencies, each representing a frequency component which disintegrates a 

function into the sum of sine wave frequencies. The digital signal in time series 

is converted to frequency domain using Discrete Fourier Transformation (DFF) 

which results in statistics that are calculated on module and argument of the 

complex outputs of the corresponding DFT. 
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Just like the time domain features, we extract another list of statistics of band 

power spectrum [36]. At the end, 7 features each for the sensor readings  

 

corresponding to modulus and argument are extracted resulting in 84 columns for 

frequency domain in total.  

Resultant dataset shape after time and frequency domain extraction:  

145 x 126. 

5.5 Normalisation  

The aim of normalization is to increase the overall consistency of a dataset by rescaling the 

data dimension and preventing situations under which certain values overweight others since 

significant variations in number scale could trigger problems while attempting to combine 

values as characteristics during modeling. Some of the notably used normalization techniques 

in statistics include [38]: 

 

Table 4 Feature Domain Features Extracted for Mod / Arg 

Figure 28 Feature Extraction Data Frame Shape 
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1. The Maximum Absolute Scaling 

2. The Min-Max Feature Scaling 

3. The Z-Score Method 

4. The Robust Scaling 

 

For our study we use Min-Max normalization where all the features regarding the sensor 

signals (except the process parameters) are normalized. The range of features are then 

linearly scaled between 0 and 1 based on the following formula. 

 

5.6 Feature Selection 

To improve the accuracy of a model and its performance efficiency, the number of features 

is reduced, at least those that increase the dimensionality. The data set is split into two: one 

containing the process parameters excluding VB, i.e., Feature_selection_subset1 and the 

other containing the extracted features and VB, Feature_selection_subset2. The aim of 

feature selection is to remove those features that are correlated or derived from one another, 

in order to reduce redundancy. One of the common feature selection methods is the use of a 

correlation matrix, which removes highly correlated features based on Pearson’s Correlation 

Coefficient.  

Figure 29 Feature Selection Subsets 
 
Pearson’s Correlation Coefficient is determined as the covariance of the two variables 

divided by the product of their standard deviations. It implies a value between +1 and −1, 

where 1 reveals a positive linear correlation overall, −1 a negative one overall, and 0 suggests 
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that there is no linear correlation. The correlation matrix can be used as a method for choosing 

the appropriate characteristics. If there’s a feature showing strong correlation with another 

feature, it means they are redundant and changes in one feature can impact the other - these 

kinds of features are removed from the dataset. This can be visualized with the help of a 

heatmap which is attached below.  

 
Figure 30 Feature Selection Heatmap 

 

With the help of heatmap, the features which are correlated between 50% and 75% towards 
the target variable “VB” are filtered and selected for modelling.  
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After applying correlation matrix, 22 features were shortlisted: 
 

 
Figure 32 Features Selected 

5.7 Dataset Split 

The normalized dataset is split 70 (10 cases) - 30 (6 cases) based on the selected featured for 
training and testing the models which are discussed further in the following sections.  
 

Figure 31 Correlation Code Snippet 

Figure 33 Dataset Split 
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CHAPTER 6 – MODEL TRAINING AND TESTING 

 
The normalized data set is split as mentioned above with 70% (10 cases) used for training 

the models and 30% (6 cases) for testing the models. Both the sets comprise of 26 columns 

and VB is considered as the target variable.  

 

 
We essentially try to build a model to predict the test data. Thus, to match the model and 

testing data to validate it, we use the training data. The created models are intended to predict 

the unknown outcomes, using the test set [39]. Later in the next section we will discuss 

further on the data validation set and how a model can be improved using K-fold cross 

validation. For the scope of our study, we will be focusing on the regression analysis from 

supervised learning to train and test various ML models to predict the target variable “VB”. 

The algorithms we will be covering ahead: 

 

 

 

 

Figure 34 Dataset Split 
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1. Linear Regression (LR) 

2. Decision Forest (DF) 

3. Boosted Decision Tree (BDT) 

4. Neural Network (NN) 

5. Ridge Regression (RR) 

 
To measure the performance of a model certain performance evaluation metrics were used, 

and they are as follows: 

 

1. Mean Squared Error (MSE) 

2. Root Mean Square Error (RMSE) 

3. Mean Absolute Error (MAE) 

4. Coefficient of Determination (R2) 

5. Explained Variance 

 

6.1 Evaluation Metrics 

6.1.1  Mean Squared Error (MSE) 

In mathematics, the estimator’s mean squared error (MSE) or mean squared 

variance (MSD) calculates the average error squares, i.e., the average squared 

discrepancy between the expected amounts and the real value. MSE is a 

probability function that refers to the estimated squared error loss value. It’s 

usually non negative and values close to zero are better [40]. The mean squared 

error function measures the mean square error, a probability metric referring to 

the squared (quadratic) error or loss value predicted [41]. 
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6.1.2  Root Mean Square Error (RMSE) 

The standard deviation of the residuals is basically the root mean square error 

(RMSE). Residuals are a measure of how far data points are out from the 

regression line; RMSE is a measure of how these residuals are spaced out. It 

shows you, in other words, how concentrated the data is along the best fit line 

[42]. It’s the square root of the average of the squared differences between the 

actual and predicted observations [43].  

6.1.3  Mean Absolute Error (MAE) 

In a series of projections, MAE calculates the average magnitude of the errors, 

without considering their course. It is the average of the absolute variations 

between forecast and real observation over the test set, where all individual 

differences have equal weight [43]. 

 

 

6.1.4  Coefficient of Determination (R2) 

It gives an indicator of fit efficiency and of how well unseen samples, by the 

proportion of explained variance, are likely to be expected by the model. Because 

such a difference depends on the dataset, R2 cannot be statistically similar across 

different datasets. The highest score available is 1.0 and it can be unfavorable.  
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A constant model that always forecasts the predicted value of y, regardless of the 

input characteristics, will get an R2 score of 0.0 [41]. 

6.1.5  Explained Variance 

It is helpful to know how much initial variance can be described by the model in 

a linear regression problem. This idea is helpful for understanding the amount of 

data we lose by approximating the dataset. If this value is minimal, it means that 

there are strong oscillations in the data generation process and a linear model fails 

to catch them. It’s an effective measure which is not quite different from R2 [44]. 

The optimal value is when EV is close to 1.  

6.2 Linear Regression 

Linear Regression is an ML algorithm where the result is predicted by the use of known 

parameters that are correlated with the output. Rather than attempting to classify them into 

categories, it is used to predict values within a continuous range [45]. 

                                                    Figure 36 LR Wear Prediction - Case 11 - 16 

Figure 35 Linear Regression Code Snippet 
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Figure 37 Linear Regression Evaluation Metrics 

 
It’s seen from the evaluation metrics and the wear prediction for cases 11-16 (test set) 

attached above that this model hasn’t performed well. Moreover, the tool at certain instances 

have crossed the safe VB limit of 0.6. R2 (0.598) and Explained variance (0.657) is another 

clear indication that supports the above inference.  

6.3 Decision Forest 

 
Figure 38 Random Forest Structure 
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Random forest is an algorithm for supervised learning which uses the classification and 

regression method of ensemble learning. Random forest is a technique for bagging (reducing 

variance) and not a technique for boosting (weighted averages). The trees in random woods 

run parallel to each other. When constructing the branches, there is no connection with these 

trees. It functions by constructing at training time a multitude of decision trees and generating 

the class that is the class mode (classification) or mean estimation (regression) of the 

individual trees [46]. 

 

 

 
Figure 39 Decision Forest Code Snippet 

 

 

 

 
Figure 40 DF Wear Prediction - Case 11-16 
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Figure 41 Decision Forest Evaluation Metrics 
 
It’s seen from the evaluation metrics and the wear prediction for cases 11-16 (test set) 

attached above that this model hasn’t performed well. Moreover, the tool at certain instances 

have crossed the safe VB limit of 0.6. R2 (0.343) and Explained variance (0.436) is another 

clear indication that supports the above inference.  

 

6.4 Boosted Decision Tree 

In order to enhance the model, the gradient boosting algorithm sequentially blends weak 

learners in such a way that each new learner matches the residuals of the previous step. The 

final model aggregates the outcomes from each stage and achieves a good learner. The 

algorithm for gradient-boosted decision trees uses decision trees as weekly learners. To detect 

the residuals, a loss function is used [47]. 
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Figure 43 BDT Wear Prediction - Case 11 – 16 

 

Figure 42 Boosted Decision Tree Code Snippet 
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Figure 44 Boosted Decision Tree Evaluation Metrics 
 

It’s seen from the evaluation metrics and the wear prediction for cases 11-16 (test set) 

attached above that this model hasn’t performed well. Moreover, the tool at certain instances 

have crossed the safe VB limit of 0.6. R2 (0.449) and Explained variance (0.504) is another 

clear indication that supports the above inference.  

6.5 Neural Network 

Neural network is a method or algorithm for machine learning that aims to simulate neuron 

functioning for learning just like in the human brain. It is unreliable at first and adjusts itself 

after several iteration of data so that its accuracy increases. It’s nothing but a computational 

system that gives predictions based on existing data [48]. 
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Figure 45 Feed Forward Neural Network 

 
Each layer has random node numbers. The input layer has a number of nodes proportional to 

the dimensions of the features of the input data. And the hidden layers contain random node 

numbers. And the output layer consists of one node only if it’s for regression and more than 

one if classification is an issue [48]. For this study we will be using the Multilayer Perceptron 

(MLP) from the scikit-learn library. 

 

 
Figure 46 Neural Network Code Snippet 

 
 
 
 
 
 
 
 
 
 



 

55 
 

 
 

 
 

Figure 48 Neural Network Evaluation Metrics 
 
 
 
 

 

 

Figure 47 NN Wear Prediction - Case 11 - 16 
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It’s seen from the evaluation metrics and the wear prediction for cases 11-16 (test set) 

attached above that this model has outperformed the previous models. Even though, the tool 

at certain instances have crossed the safe VB limit of 0.6, the model has predicted and kept 

up with the actual VB reading. R2 (0.848) and Explained variance (0.850) is another clear 

indication that supports the above inference.  

6.6 Ridge Regression 

In order to avoid over-fitting, which can arise from simple linear regression, Ridge regression 

is one of the simple strategies to minimize model complexity other than Lasso regression. 

The cost function is altered by adding a penalty i.e., the square of the magnitude of 

coefficients. Ridge regression essentially stresses on the coefficients and the penalty term 

regularizes the coefficients when the coefficients are large. In short, they shrink the 

coefficients and reduce model complexity and multi-collinearity [49]. 

 

 
 

Figure 49 Ridge Regression Code Snippet 
 

                                                 Figure 50 RR Wear Prediction - Case 11 - 16 
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Figure 51 Ridge Regression Evaluation Metrics 

 
It’s seen from the evaluation metrics and the wear prediction for cases 11-16 (test set) 

attached above that this model hasn’t performed well. Moreover, the tool at certain instances 

have crossed the safe VB limit of 0.6. R2 (0.662) and Explained variance (0.669) is another 

clear indication that supports the above inference. 

 
 

Table 5 Summary of Evaluation Metrics 
 

  LR DRF BDT NN RR 

RMSE 0.204 0.261 0.239 0.125 0.187 

MSE 0.041 0.068 0.057 0.0157 0.035 

MAE 0.138 0.161 0.148 0.087 0.130 

R2 0.598 0.343 0.449 0.848 0.662 

EV 0.657 0.436 0.504 0.850 0.669 

 
 
 

 



 

58 
 

CHAPTER 7 – MODEL IMPROVEMENT 

 
We must be careful not to overfit our training data when constructing a model. In other words, 

in comparison to merely memorizing the results, we have to make sure that the model catches 

the underlying pattern. It’s imperative that we verify how it treats unexpected data before 

using a model in output. Usually, this is achieved by dividing the details into two subsets, 

one for training and the other to assess the model’s accuracy. Certain algorithms for machine 

learning depend on hyperparameters. Essentially, a hyperparameter is a user-set variable that 

dictates how the algorithm behaves. Step size in gradient descent and alpha in ridge 

regression are some examples of hyperparameters. When it comes to hyperparameters, there 

is no one size fits all [50]. 

 

There are many forms of cross validation, most frequently called k-fold cross validation. A 

test collection is always put off to the side for final evaluation in cross validation, but the 

validation set is no longer required. The training set is broken into k minor sets (or folds) in 

k-fold cross validation. Using k-1 of the folds, the model is then conditioned and the last is 

used as the validation set to calculate an output metric such as accuracy. 

 

If a particular value is chosen for k, it can be used in the model comparison such as k=10 

being a 10-fold cross-validation. If k=5, the dataset will be broken into 5 equivalent parts and 

the procedure below will run 5 times, with a different holdout set each time. 

 

1. Take the set as a holdout or data collection for review 

2. Take the remaining groups as a data collection for training 

3. Fit a model on the training set and assess it on the test set. 

4. Analyse the evaluation metrics and discard the model 

 

Summarize the model’s ability at the conclusion of the above step using evaluation metrics 

[51].  
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Figure 52 K-Fold Model Tuning 

 
 

Those above trained and tested models are subjected to K-fold cross-validation to understand 

and analyze its improvements which would be later used towards the end of this study to 

draft a user input RUL determination for a tool taken into consideration. 10-fold cross-

validation is conducted on the following models with their results and inferences discussed 

accordingly below: 

 

1. Linear Regression (LR) 

2. Decision Forest (DF) 

3. Boosted Decision Tree (BDT) 

4. Neural Network (NN) 

5. Ridge Regression (RR) 
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7.1  Linear Regression (LR) 

Table 6 K-Fold - LR 
Fold 

Number 
RMSE MSE MAE R2 

Explained 
Variance 

0 0,247 0,061 0,169 -3,308 -2,195 

1 0,075 0,006 0,069 0,762 0,964 

2 0,074 0,005 0,058 0,798 0,870 

3 0,075 0,006 0,063 -0,754 -0,721 

4 0,074 0,005 0,066 0,751 0,764 

5 0,091 0,008 0,083 0,667 0,694 

6 0,077 0,006 0,053 0,925 0,927 

7 0,087 0,008 0,075 0,819 0,821 

8 0,200 0,040 0,132 0,381 0,600 

9 0,128 0,016 0,099 0,479 0,579 

Mean 0,113 0,016 0,087 0,152 0,330 

Std Dev 0,062 0,019 0,037 1,308 1,012 

 
As seen from the above summary of the 10-Fold cross validation done on the Linear 

Regression model, we can draw conclusions based on its mean and standard deviation stating 

its performance - In this case we see that due to erratic values for certain folds, the overall 

mean and standard deviation has been disturbed. Regardless, this improved model doesn’t 

keep up with the rest of the models. 

7.2 Decision Forest (DF) 

Table 7 K-Fold - DF 
Fold 

Number 
RMSE MSE MAE R2 

Explained 
Variance 

0 0,138 0,019 0,134 -0,343 0,913 

1 0,085 0,007 0,071 0,694 0,905 

2 0,079 0,006 0,059 0,772 0,818 

3 0,043 0,002 0,031 0,443 0,718 

4 0,082 0,007 0,066 0,691 0,892 

5 0,080 0,006 0,064 0,740 0,823 

6 0,150 0,022 0,117 0,716 0,722 

7 0,119 0,014 0,089 0,663 0,701 

8 0,097 0,009 0,055 0,855 0,857 

9 0,217 0,047 0,178 -0,492 0,490 

Mean 0,109 0,014 0,086 0,474 0,784 

Std Dev 0,049 0,013 0,044 0,483 0,130 
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As seen from the above summary of the 10-Fold cross validation done on the Decision Forest 

model, we can draw conclusions based on its mean and standard deviation stating its 

performance. Though the evaluation metrics has given a mediocre score, it’s still not the most 

reliable and accurate model to consider for RUL determination.  

7.3 Boosted Decision Tree (BDT) 

Table 8 K-Fold - BDT 
Fold 

Number 
RMSE MSE MAE R2 

Explained 
Variance 

0 0,118 0,014 0,109 0,017 0,845 

1 0,080 0,007 0,060 0,690 0,813 

2 0,079 0,006 0,069 0,761 0,799 

3 0,031 0,001 0,028 0,701 0,736 

4 0,092 0,009 0,088 0,589 0,942 

5 0,059 0,004 0,045 0,844 0,928 

6 0,156 0,023 0,118 0,697 0,711 

7 0,126 0,015 0,105 0,620 0,684 

8 0,087 0,007 0,065 0,869 0,902 

9 0,230 0,052 0,185 -0,642 0,453 

Mean 0,106 0,014 0,087 0,515 0,781 

Std Dev 0,056 0,015 0,045 0,471 0,146 

 
As seen from the above summary of the 10-Fold cross validation done on the Boosted 

Decision Tree model, we can draw conclusions based on its mean and standard deviation 

stating its performance. Though the evaluation metrics has given a decent score, it’s still not 

the most reliable and accurate model to consider for RUL determination. It’s at par with the 

Decision Forest model.  
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7.4 Neural Network (NN) 

Table 9 K-Fold - NN 
Fold 

Number 
RMSE MSE MAE R2 Explained Variance 

0 0,072 0,005 0,058 0,633 0,872 

1 0,042 0,002 0,036 0,925 0,927 
2 0,041 0,002 0,034 0,938 0,946 

3 0,036 0,001 0,031 0,594 0,669 

4 0,098 0,010 0,084 0,561 0,870 
5 0,062 0,004 0,045 0,844 0,845 

6 0,089 0,008 0,083 0,901 0,905 

7 0,072 0,005 0,063 0,877 0,878 

8 0,137 0,019 0,124 0,711 0,736 
9 0,098 0,010 0,081 0,695 0,697 

Mean 0,075 0,006 0,064 0,768 0,835 

Std Dev 0,032 0,005 0,029 0,145 0,098 

 
As seen from the above summary of the 10-Fold cross validation done on the Neural Network 

model, we can draw conclusions based on its mean and standard deviation stating its 

performance. This model is by far the one that’s standing out from the rest with reliable 

metric accuracy and possibility for consideration in RUL determination.  

7.5 Ridge Regression (RR) 

 
Table 10 K-Fold - RR 

Fold 
Number 

RMSE MSE MAE R2 
Explained 
Variance 

0 0,061 0,004 0,055 0,738 0,950 

1 0,039 0,001 0,033 0,936 0,941 

2 0,063 0,004 0,051 0,852 0,916 

3 0,046 0,002 0,040 0,338 0,375 

4 0,072 0,005 0,057 0,764 0,810 

5 0,059 0,003 0,053 0,860 0,862 

6 0,106 0,011 0,068 0,859 0,888 

7 0,084 0,007 0,068 0,831 0,831 

8 0,122 0,015 0,107 0,769 0,881 

9 0,156 0,024 0,122 0,231 0,552 

Mean 0,081 0,008 0,065 0,718 0,801 

Std Dev 0,037 0,007 0,028 0,237 0,188 
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As seen from the above summary of the 10-Fold cross validation done on the Ridge 

Regression model, we can draw conclusions based on its mean and standard deviation stating 

its performance. This model comes second to the results obtained from K-Fold Neural 

Network with reliable metric accuracy and possibility for consideration in RUL 

determination.  

In the next section we’ll discuss the framework used to predict the RUL using the TCM 

results obtained with the NN model.  
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CHAPTER 8 – REMAINING USEFUL LIFE (RUL) 

 
For estimating the RUL of the tool, we use the testing set (case 11-16) alongside the models 

that exhibited an acceptable performance in the above tests for the tool condition monitoring. 

In our case we will be using Neural Network to demonstrate the predicted RUL against the 

original runs. This is a near attempt to predict the RUL based on the available training dataset.  

 

In order to determine the RUL, the following steps were adopted: 

1. A data frame was created from the testing set comprising the process parameters – 

case, run, DOC, feed and material. 

2. The predicted “VB” from the Neural Network is appended along with the actual “VB” 

values. 

3. Now we have a data frame with the following columns: case, run, DOC, feed, 

material, Predicted_VB and Actual_VB. 

4. RUL is further predicted for each run by calculating the factors below and then 

plotting to understand its behavior alongside appending them to the data frame 

created above: 

a. Real or Predicted Used Life (%): It’s the result obtained when we divide 

the actual or predicted VB to the safe VB limit, 0,6. 

b. Real or Predicted Max Runs: It’s the result obtained when we divide the 

actual number of runs to the Real or Predicted Used Life (%).  

c. Real or Predicted RUL: It’s the result obtained when the actual number 

of runs are deducted from the Real or Predicted Max Runs. 

5. The results obtained are plotted (RUL vs Runs) to analyze the RUL performance with 

the TCM results obtained earlier for the Neural Network model.  

 

The 0 RUL corresponds to the safe VB limit of 0,6. 
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From cases 11 and 12 we can see that the predicted results for the RUL for the first 8-9 runs, 

though it predicts an unsatisfactory result, start improving as it runs for the rest of the case. 

We also see that for both the cases the actual RUL hits the 0 RUL (safe wear limit) first 

compared to the predicted RUL which means that the tool for that respective run has hit its 

limit while the predicted RUL says there a few more runs remaining to hit the tool’s safe 

limit. 

 

 
Figure 53 RUL vs Runs - Case 11 

 

 
Figure 54 RUL vs Runs - Case 12 
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From cases 13 and 14 we can see that the predicted results for the RUL for the first 6-7 runs, 

though it predicts an unsatisfactory result, start improving as it runs for the rest of the case. 

Case 13 has given the most satisfying results compared to the rest of the test cases. It is 

evident that the actual and the predicted RUL coincides almost for most of the runs, which is 

a desirable result. We also see that, for case 14, the predicted RUL hits the 0 RUL (safe wear 

limit) first compared to the actual RUL which means that the tool for that respective run has 

hit its limit while the actual RUL says there a few more runs remaining to hit the tool’s safe 

limit. 

 
Figure 55 RUL vs Runs - Case 13 

 

 
Figure 56 RUL vs Runs - Case 14 
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From cases 15 and 16, we can see that the predicted results for most of the runs provide an 

unsatisfactory result which could mainly account for the lack of sensor data for extraction 

and modelling. We also see that for both the cases the predicted RUL hits the 0 RUL (safe 

wear limit) first compared to the actual RUL which means that the tool for that respective 

run has hit its safe limit while the actual RUL says there a few more runs remaining to hit 

the tool’s safe limit. 

 
Figure 57 RUL vs Runs - Case 15 

 

 
Figure 58 RUL vs Runs - Case 16 
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CHAPTER 9 – CONCLUSION AND FUTURE WORK 

 
In this study we tried to understand the dataset furnished by NASA on milling operation to 

determine the tool condition monitoring (TCM) and the remaining useful life (RUL) of the 

tool through various machine learning algorithms. And based on the performance put forward 

by the ML algorithms, the one that stood out was later chosen for determining the RUL of 

the tool. The obtained results from the models were even further improved through k-fold 

cross validation to evaluate the difference in the accuracy metrics obtained during different 

folds. 

 

Finally, we tried to estimate the RUL with the help of the testing set used to obtain the VB 

prediction results for Neural Network and determined the RUL performance alongside the 

actual runs for every case in the test set. Though the results were limited and basic due to the 

lack of concrete data, the framework used to estimate the RUL was a steppingstone towards 

predictive maintenance.  

 

The big drawback used in this study is the amount of data used to train the model. This reality 

also determines the model's success outcomes. By trying to gather more data from multiple 

devices, by varying a different set of parameters and adding more kinds of sensors and data 

sources, this constraint could be overcome. 

 

There’s scope for improvement in this study, whether we take the data analysis section or the 

signal processing part; one could delve into the subtleties for perfection and rectification in 

order to obtain a clean and satisfying result.  
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Future Work 

 
One of the most important sections that could be touched upon is the signal processing part 

of the data set - we notice that the signals acquired through various sensors are subjected to 

machine noise and irrelevant information. This could be filtered out by understanding the 

range of the signals and the kind of sensors utilized to acquire data. This should facilitate to 

better filter the signals irrespective of the process parameters used or needed in order to 

predict better outcomes during data engineering or modelling. Attached below are the typical 

signals obtained for each sensor along with the results obtained through change point 

identification (2nd Rows). Here, the approach used to filter the signals is rudimentary and 

has been effective for most of the typical sensor signals. Basically, individual sensors have 

certain range between which they fluctuate, and this was considered for each sensor. This 

was later implemented as the window to filter the extraneous information or the irrelevant 

data. The applied change point detection techniques can be seen on the second row of the 

attached images.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 59 Row 1 - Original vs Row 2 - Cpd 
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The approach used here for change point detection (cpd) can be taken even a step forward by 

using an equivalent package for change point detection called change point [52] [53] in R 

(arguably the most robust) or the rupture [54] [55] package (library for off-line change point 

detection) which is native to python. There is yet another cumbersome way around where 

one could use the rpy2 [56] package to import the change point function into python and 

implementing the changepoint detection but as mentioned earlier there are not many 

examples or works carried out especially pertaining to change point detection. 

 
Figure 61 Example of change point detection using python rupture package 

Figure 60 Row 1 - Original vs Row 2 - Cpd 
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Yet another challenge while working on the data set was the lack of information. In our case 

the data was just quite enough to perform an analysis, but it would be ideal and optimal to 

have data in abundance whether its relevant to milling operation or any other manufacturing 

processes. Moreover, having enough data also means we will have a considerate proportion 

of it reserved for testing set, thereby which the accuracy of the model could be determined 

or compared later for the purpose of the study. 

The results obtained by this study though it’s the steppingstone, the prediction tool wear and 

RUL so obtained, can directly improve the man-machine collaboration in production. A web 

application could even be developed further to assist the operators in knowing the actual state 

of the tools and helping them to take better decisions regarding tool changes.  
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