
POLITECNICO DI TORINO

Master of Science in Energy and Nuclear Engineering

Master Thesis

Data-driven coordinated building cluster
energy management to enhance energy
efficiency, comfort and grid stability

Supervisors
Prof. Alfonso CAPOZZOLI

Dott. Giuseppe PINTO

Dott. Silvio BRANDI

Candidate
Davide DELTETTO

Academic Year 2019/2020





Acknowledgements

To my family,
which allowed me to achieve this result

ii



Abstract

The environmental constraints related to emissions reduction and to tackle cli-
mate change require an increasing penetration of renewable energy generation.
Since renewable energy sources like solar and wind are not programmable and
often unpredictable, grid balancing is becoming more and more challenging. In
this scenario, buildings energy flexibility could play a key role through demand
side management/load control and demand response programs. However, when
switching from a single building to a cluster of buildings, an uncoordinated energy
management could generate new undesirable power peaks. The study presented in
this thesis work aims to explore a coordinated approach between four commercial
buildings, in order to reduce the impact that their energy consumption has on the
electrical grid. Moreover, the proposed methodology shows the possibility and the
feasibility to develop a fully data-driven control scheme able to manage a cluster
made by four different buildings, characterized by different occupancy profiles and
internal loads. This goal is achieved by taking advantage of machine learning
techniques, in particular Long Short Term Memory (LSTM) Neural Network and
Deep Reinforcement Learning (DRL), in order to control the HVAC cooling power
and the operation of chilled water and DHW storages.
The first part of the thesis is related to the study of black box modelling of building
indoor temperature evolution through artificial neural networks. These data-driven
techniques have gained popularity in last years, also in the building modelling field,
thanks to their ability to deal with nonlinearities. A clear advantage with respect
to physics-based models, is related to the lower computational cost, which made
it suitable for real time control techniques. The study is specifically focused on
the development of four LSTM models, which are a particular class of Recurrent
Neural Network especially used in the field of time series forecasting, in order to
predict the mean indoor temperature of considered buildings.
In the second part of the work, the developed models are then integrated into
CityLearn. CityLearn is an OpenAI Gym environment for the implementation
of reinforcement learning agents in a multi-agent demand response setting with
the aim of reshaping the aggregated curve of electrical demand of the considered
buildings. Reinforcement Learning is an adaptive model-free control algorithm,
which is able to learn an optimal control policy by trial and error. Through the
interaction with the LSTM models, the centralized agent learns the optimal control
policy, taking into account both thermal comfort and energy consumption. The
main contribution of the work lies in the fact that the agent has the possibility to

iii



control both the HVAC cooling power and the storage operation of each building.
The developed controller was trained for 20 epochs and tested against a manually
optimized Rule Based Controller (RBC). The results shown that the DRL algorithm
was able to slightly reduce the overall electricity cost of the cluster of buildings
while decreasing the peak power consumption of 10.7%, without excessively penalize
thermal comfort.

iv



Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Overview of Buildings Energy Consumption . . . . . . . . . . . . . 1
1.2 Energy Flexibility of Buildings . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions and structure of the thesis . . . . . . . . . . . . . . . 6

2 Machine Learning overview and Neural Networks 9
2.1 Single Computational Layer . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Logistic regression Gradient Descent . . . . . . . . . . . . . 14
2.1.4 Deriving the formula for Gradient Descent . . . . . . . . . . 15

2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Feed Forward Neural Networks . . . . . . . . . . . . . . . . 17
2.2.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . 21
2.2.3 Backpropagation through time . . . . . . . . . . . . . . . . . 22
2.2.4 Vanishing and Exploding Gradients in RNNs . . . . . . . . . 23
2.2.5 Long Short Term Memory (LSTM) . . . . . . . . . . . . . . 25
2.2.6 Types of RNN architectures . . . . . . . . . . . . . . . . . . 27

3 Development of LSTM Building Models 28
3.1 Literature survey on black box modelling for Indoor Temperature

Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Description of Modeled Buildings . . . . . . . . . . . . . . . . . . . 29
3.3 Model development process . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Input selection and data preprocessing . . . . . . . . . . . . 34
3.3.2 Hyperparameters Selection and Tuning . . . . . . . . . . . . 39

3.4 Analysis of developed models . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Test Results: Small Office . . . . . . . . . . . . . . . . . . . 50
3.4.2 Test Results: Retail Stand Alone . . . . . . . . . . . . . . . 54
3.4.3 Test Results: Restaurant . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Test Results: Medium Office . . . . . . . . . . . . . . . . . . 58

v



4 Reinforcement Learning overview 62
4.1 The Reinforcement Learning Problem . . . . . . . . . . . . . . . . . 62

4.1.1 The RL Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Markov Reward Process . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Bellman Equation for MRPs . . . . . . . . . . . . . . . . . . 66
4.2.3 Markov Decision Process . . . . . . . . . . . . . . . . . . . . 67

4.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Model Free Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Monte-Carlo Reinforcement Learning . . . . . . . . . . . . . 70
4.4.2 Temporal-Difference Learning . . . . . . . . . . . . . . . . . 70
4.4.3 TD(λ) and eligibility trace . . . . . . . . . . . . . . . . . . 71

4.5 Model Free Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.1 Monte Carlo evaluation . . . . . . . . . . . . . . . . . . . . . 72
4.5.2 SARSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.3 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.4 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.5 Soft Actor Critic . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Case Study: integration of LSTM models into CityLearn environ-
ment 76
5.1 Description of the Rule Based Controller . . . . . . . . . . . . . . . 76
5.2 Description of DRL Control Logic . . . . . . . . . . . . . . . . . . . 77

5.2.1 Description of the Action space . . . . . . . . . . . . . . . . 78
5.2.2 Description of the State space . . . . . . . . . . . . . . . . . 78
5.2.3 Description of the Reward function . . . . . . . . . . . . . . 79

6 Results 83
6.1 Comfort Analysis: Small Office . . . . . . . . . . . . . . . . . . . . 84
6.2 Comfort Analysis: Retail Stand Alone . . . . . . . . . . . . . . . . 87
6.3 Comfort Analysis: Restaurant . . . . . . . . . . . . . . . . . . . . . 89
6.4 Comfort Analysis: Medium Office . . . . . . . . . . . . . . . . . . . 91
6.5 Electrical Load Analysis . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Conclusion and Future Work 97

Bibliography 99

vi



List of Tables

3.1 General characterization of Small Office Building . . . . . . . . . . 30
3.2 General characterization of Medium Office Building . . . . . . . . . 30
3.3 General characterization of Restaurant Building . . . . . . . . . . . 31
3.4 General characterization of Retail stand-alone Building . . . . . . . 31
3.5 Temperature Schedules . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Relative Humidity Schedules . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Hyperparameters for each building model . . . . . . . . . . . . . . . 47
3.8 Model Evaluation Metrics: Small Office . . . . . . . . . . . . . . . . 50
3.9 Model Evaluation Metrics: Retail Stand-Alone . . . . . . . . . . . . 54
3.10 Model Evaluation Metrics: Restaurant . . . . . . . . . . . . . . . . 56
3.11 Model Evaluation Metrics: Medium Office . . . . . . . . . . . . . . 58

5.1 Variables included in the State space . . . . . . . . . . . . . . . . . 79

6.1 Thermal comfort metrics . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



List of Figures

1.1 Energy consumption by sector, 2018 . . . . . . . . . . . . . . . . . . 1
1.2 Evolution of fossil fuel use in buildings in the Faster Transition

Scenario, 2017-50 [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Flexibility sources in modern electricity power networks [6] . . . . . 3
1.4 Sources for obtaining buildings energy flexibility [7] . . . . . . . . . 4
1.5 Workflow of LSTM models development . . . . . . . . . . . . . . . 8

2.1 Paradigm shift from traditional algorithms to Machine Learning
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The basic architecture of the Perceptron . . . . . . . . . . . . . . . 12
2.6 Sigmoid Activation Function . . . . . . . . . . . . . . . . . . . . . . 13
2.7 (a) Convex Cost Function (b) Non-Convex Cost Function considering

only two parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Logistic Regression computation graph . . . . . . . . . . . . . . . . 15
2.9 Feed Forward Neural Network with only one hidden layer . . . . . . 17
2.10 Common activation functions in neural networks and their derivatives 20
2.11 Unfolded Structure of a Recurrent Neural Network . . . . . . . . . 21
2.12 General Structure of a Recurrent Neural Network . . . . . . . . . . 22
2.13 Computation graph of backpropagation through time . . . . . . . . 23
2.14 Example of vanishing gradient problem . . . . . . . . . . . . . . . . 23
2.15 Derivative of the Sigmoid Function . . . . . . . . . . . . . . . . . . 24
2.16 LSTM cell scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.17 Different types of RNNs . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Buildings Geometric Model, starting from the top left corner and
following the clockwise direction: Small Office, Medium Office, Retail
stand-alone, Restaurant . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Conceptual scheme of training data set generation process . . . . . 34
3.3 Hour without cyclical encoding . . . . . . . . . . . . . . . . . . . . 35
3.4 Hour with cyclical encoding . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Sliding window approach used to frame the forecasting problem into

a supervised machine learning problem . . . . . . . . . . . . . . . . 37
3.6 Flowchart of data preprocessing . . . . . . . . . . . . . . . . . . . . 38

viii



3.7 MAPE Box plot, hyperparameter = Batch Size . . . . . . . . . . . 41
3.8 RMSE Box plot, hyperparameter = Batch Size . . . . . . . . . . . . 41
3.9 R2 Box plot, hyperparameter = Batch Size . . . . . . . . . . . . . . 42
3.10 MAPE Box plot, hyperparameter = Number of Hidden Neurons . . 42
3.11 RMSE Box plot, hyperparameter = Number of Hidden Neurons . . 43
3.12 R2 Box plot, hyperparameter = Number of Hidden Neurons . . . . 43
3.13 MAPE Box plot, hyperparameter = Lookback . . . . . . . . . . . . 44
3.14 RMSE Box plot, hyperparameter = Lookback . . . . . . . . . . . . 44
3.15 R2 Box plot, hyperparameter = Lookback . . . . . . . . . . . . . . 45
3.16 MAPE Box plot, hyperparameter = Learning Rate . . . . . . . . . 45
3.17 RMSE Box plot, hyperparameter = Learning Rate . . . . . . . . . . 46
3.18 R2 Box plot, hyperparameter = Learning Rate . . . . . . . . . . . . 46
3.19 Small Office, Retail and Restaurant LSTM architecture . . . . . . 47
3.20 Medium Office LSTM architecture . . . . . . . . . . . . . . . . . . . 47
3.21 Learning Curve to diagnose underfitting/overfitting . . . . . . . . . 48
3.22 Recursive approach adopted to perform multi step forecasts . . . . 50
3.23 Small Office: detail of simulated mean indoor temperature and 1

step ahead forecasted mean indoor temperature . . . . . . . . . . . 51
3.24 Small Office: detail of simulated mean indoor temperature and

forecasted mean indoor temperature through recursive strategy . . . 51
3.25 Small Office: comparison of 1 step ahead and recursive predictions . 52
3.26 Box plot of simulated and recursively forecasted mean indoor tem-

perature and distribution of relative error . . . . . . . . . . . . . . . 52
3.27 Box plot of test cooling power and that calculated through thermostat

object and distribution of relative error . . . . . . . . . . . . . . . . 53
3.28 Retail Stand Alone: detail of simulated mean indoor temperature

and 1 step ahead forecasted mean indoor temperature . . . . . . . . 54
3.29 Retail Stand Alone: detail of simulated mean indoor temperature

and forecasted mean indoor temperature through recursive strategy 54
3.30 Retail Stand Alone: Box plot of simulated and recursively forecasted

mean indoor temperature and distribution of relative error . . . . . 55
3.31 Retail Stand Alone: Box plot of test cooling power and that calcu-

lated through thermostat object and distribution of relative error . 55
3.32 Restaurant: detail of simulated mean indoor temperature and 1 step

ahead forecasted mean indoor temperature . . . . . . . . . . . . . . 56
3.33 Restaurant: detail of simulated mean indoor temperature and fore-

casted mean indoor temperature through recursive strategy . . . . . 56
3.34 Restaurant: Box plot of simulated and recursively forecasted mean

indoor temperature and distribution of relative error . . . . . . . . 57
3.35 Restaurant: Box plot of test cooling power and that calculated

through thermostat object and distribution of relative error . . . . . 57
3.36 Medium Office: detail of simulated mean indoor temperature and 1

step ahead forecasted mean indoor temperature . . . . . . . . . . . 58
3.37 Medium Office: detail of simulated mean indoor temperature and

forecasted mean indoor temperature through recursive strategy . . . 58

ix



3.38 Medium Office: Box plot of simulated and recursively forecasted
mean indoor temperature and distribution of relative error . . . . . 59

3.39 Medium Office: Box plot of test cooling power and that calculated
through thermostat object and distribution of relative error . . . . . 59

4.1 Representation of a Reinforcement Learning Problem . . . . . . . . 63
4.2 RL agent taxonomy [28] . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Bellman equation scheme . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Backup Diagram for State-Value Function . . . . . . . . . . . . . . 68
4.5 Actor-Critic-Environment interaction and neural networks in rein-

forcement learning [25] . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Scheme of the RL control problem . . . . . . . . . . . . . . . . . . . 77

6.1 Small Office: Example of Weekly Temperature Profile . . . . . . . . 84
6.2 Small Office: Cooling Season Hourly Average Temperature . . . . . 85
6.3 Small Office: Box Plot of Hourly Temperature . . . . . . . . . . . . 85
6.4 Small Office: Mean Indoor Temperature Distribution . . . . . . . . 86
6.5 Retail Stand Alone: Example of Weekly Temperature Profile . . . . 87
6.6 Retail Stand Alone: Cooling Season Hourly Average Temperature . 87
6.7 Retail Stand Alone: Box Plot of Hourly Temperature . . . . . . . . 88
6.8 Retail Stand Alone: Mean Indoor Temperature Distribution . . . . 88
6.9 Restaurant: Example of Weekly Temperature Profile . . . . . . . . 89
6.10 Restaurant: Cooling Season Hourly Average Temperature . . . . . . 89
6.11 Restaurant: Box Plot of Hourly Temperature . . . . . . . . . . . . . 90
6.12 Restaurant: Mean Indoor Temperature Distribution . . . . . . . . . 90
6.13 Medium Office: Example of Weekly Temperature Profile . . . . . . 91
6.14 Medium Office: Cooling Season Hourly Average Temperature . . . . 91
6.15 Medium Office: Box Plot of Hourly Temperature . . . . . . . . . . 92
6.16 Medium Office: Mean Indoor Temperature Distribution . . . . . . . 92
6.17 State of Charge of Chilled Water Storage . . . . . . . . . . . . . . . 94
6.18 Comparison between Electrical Power Peak . . . . . . . . . . . . . . 95
6.19 Load duration curve to highlight peak reduction . . . . . . . . . . . 95
6.20 KPI bar plot, the red line represent the RBC . . . . . . . . . . . . . 96

x





Chapter 1

Introduction

1.1 Overview of Buildings Energy Consumption
According to [1], the building sector is responsible for approximately 32.2% of total
energy consumption in the world.

Figure 1.1: Energy consumption by sector, 2018

Direct and indirect emissions from electricity and commercial heat used in buildings
rose to 10 GtCO2 in 2019, the highest level ever recorded. Buildings account for
about 28% of total energy-related CO2 emissions, two-thirds of which is attributable
to emissions from electricity generation for use in buildings, since they are responsi-
ble for more than 55% of global electricity consumption [2]. Since buildings sector

1



1.1. OVERVIEW OF BUILDINGS ENERGY CONSUMPTION

plays a critical role in global energy consumption and emissions, there is a great
opportunity in reducing its impact by improving efficiency, both on generation and
use sides. Following the Faster Transition Scenario [3], it will be possible to drop
the energy intensity of the power sector of 90% and that of end use sectors of 65%
thanks to energy efficiency, uptake of renewable energy technologies and shifts to
low-carbon electricity. An important aspect that would lead to the reduction of
CO2 emissions is the electrification of final uses. Electricity’s share in final energy
consumption will reach about 35% by 2050, compared to less than 20% today.
This is due to the necessity of reducing fossil fuels consumption in the field of
buildings by replacing traditional boilers with Heat Pumps: by using these device
it is possible to exploit on site renewable energy generation and greatly reduce CO2
emissions from buildings.

Figure 1.2: Evolution of fossil fuel use in buildings in the Faster Transition
Scenario, 2017-50 [2]

To make this transition sustainable, both renewable energy generation and energy
efficiency must increase: high performance buildings equipped with efficient heat
pumps, air conditioners, lighting and appliances would drastically reduce sector’s
energy use by nearly 30% to 2050, despite an expected global doubling of the floor
area. The electrification of end uses (such as space heating and cooling) would lead
to a growth in electricity demand in the buildings sector: in the Faster Transition
Scenario it is expected a further increase of the equivalent of more than one-fourth
of global electricity demand in 2017 by 2050. Even with energy efficiency measures,
the increased demand would place pressure on the power system. For example,
global electricity demand for space cooling is expected to increase by 35%: in many
countries, this will stress peak electricity loads if uncontrolled, even if using efficient
air conditioners. By contrast, high performance equipments coupled with demand-
side measures can reduce the impact of electrification, while supporting power
system flexibility and higher penetration of variable renewables in the electricity mix.

2



1.2. ENERGY FLEXIBILITY OF BUILDINGS

1.2 Energy Flexibility of Buildings
According to [4],[5] the Energy Flexibility of a building is the ability to manage
its energy demand and generation according to local climate conditions, user
needs and grid requirements. Energy Flexibility of buildings will thus allow for
demand side management and load control and thereby demand response based
on the requirements of the surrounding grids. Demand side flexibility (DSF), in
particular buildings energy flexibility, has become more relevant in recent years, as
an alternative to supply side flexibility.

Figure 1.3: Flexibility sources in modern electricity power networks [6]

The reasons behind the increasing interest in DSF is mainly due to the high cost
of operating and maintaining flexibility sources on supply-side. Moreover, through
demand side flexibility it is possible to reduce thermal costs and electricity prices
since less peaking plants would need to operate. Another key aspect is related to
the reduction of investments in generation, transmission and distribution facilities,
since they are designed according to the peak demand.
Energy flexibility of a building is generally achieved by decoupling energy demand
and energy delivery by means of storage that allows to shift energy use from period
of high electricity price (e.g. periods in which the production from RES is low) to
period of low electricity price. There are different ways to achieve flexibility, those
of particular interest are:

• Thermal storage, both cold and hot storage filled with chilled water (or ice)
or hot water, respectively; also PCM could be used to store thermal energy .

• Batteries, they are used to directly store electricity. They are charged during
periods with surplus of electricity in the grid and thereby cheap, and discharged
during periods when there is a shortage of electricity or otherwise beneficial for
the grid. They could also be used to increase the self consumption percentage
of PV electricity. Batteries could either be the battery of an electrical vehicle
or the battery of e.g. a PV system.

3



1.2. ENERGY FLEXIBILITY OF BUILDINGS

• Building thermal mass: walls, floors, ceilings and furniture of buildings contain
a certain amount of mass and thereby a certain thermal capacity, which can
be utilized to store energy. During shortage of energy the heating or cooling
system could either be switched off or could reduce its power consumption
for a period without decreasing the comfort of the users. How long a period
depends on the thermophysical properties and the heat loss of the buildings,
but can be from a few hours up to a couple of days. However, care should
be taken, as the storage is directly connected to the indoor climate and the
thermal comfort must not be jeopardized.

Figure 1.4: Sources for obtaining buildings energy flexibility [7]

To efficiently exploit energy systems, different control techniques have been used.
Rule based control (RBC) strategies are a common approach for controlling energy
systems of buildings. They use pre-defined conditions (or decision rules) to change
the current state of a system. Their first goal is to maintain comfort conditions
during occupied hours while consuming less energy as possible. Moreover, advance
RBCs, depending on the decision criteria (e.g. weather, electricity price, occupancy,
PV production), can aim at activating the energy flexibility of the building to
improve grid interaction, lower energy costs, perform load shifting or reduce energy
needs by varying the temperature set points of the buildings zones or the water
storage tanks. Classical control strategies, such as thermostatic on/off control,
P, PI or PID (Proportional-Integrative-Derivative) control belongs to rule based
controls field and are the state-of-the-art for HVAC applications. The On/ Off
controller uses an upper and lower threshold to regulate the process within the
given bounds. The P, PI, and PID controllers use error dynamics and modulate the
controlled variable to achieve accurate control of the process. Although the on/off
controller is the most intuitive and easiest to implement, it is unable to control
moving processes with time delays. Because of the high thermal inertia of many
HVAC processes, a process that is controlled using an on/off controller displays
large swings from the set points. The PID controller produces promising results,
but tuning the controller parameters is time consuming, and the performance of

4



1.2. ENERGY FLEXIBILITY OF BUILDINGS

the controller degrades if the operating conditions vary from the tuning conditions.
For these reasons, these control techniques are not suited to adapt to time-varying
disturbances or changes in environmental conditions [8] and thus may fail to provide
flexibility in a dynamic manner.
To overcome previous limitations, advanced control strategies were investigated.
In particular, Model Predictive Control (MPC) is a control strategy that enables
the flexibility of the HVAC system operation and allows the optimization of the
energy consumption while preserving, or even improving, thermal comfort. MPC
has a great potential for deploying demand side flexibility because it can deal with
time-varying operating conditions and can interact with the energy system and
the grid. It is seen as one of the most promising developments as it can take into
account future weather, electricity price forecasts as well as occupant behavior
when computing an optimal consumption decision. MPC is based on models that,
depending on their structure, could be classified in:

• Engineering or white-box models: they are based on physical laws, in particular
on principles of thermodynamics; they do not require any measured data but,
on the other hand, they necessitate of a significant amount of information
about the interactions between the system and the external environment.

• Inverse or data-driven models: these models are used to describe system
behaviour through the use of real measured data: the system must be already
in operation. These methods are further divided into:

– Grey-box models which combine a partial theoretical (physical) structure
with data to complete the model.

– Black-box models: they include all the algorithms which identify a model
which links the output with a number of inputs. They have the peculiarity
that their coefficients cannot be correlated with any physical meaning.
They could approximate any kind of function but to do this they need to
be trained on large data sets. Artificial Neural Networks belongs to this
category of models.

MPC has been extensively researched in the past 10-15 years and it has showed
very good performances if well designed. However, it is expensive to implement
because it requires a model of the system that has to be controlled. Of course,
its performances are strongly dependent on the quality of the model. Moreover,
they lack of generalization, since it is necessary to build a model for each plant
and building to control. Another drawback of MPC is that it is not adaptive,
if something changes in the system it would not be able to adapt to the change
automatically, without re-design the model.
For these reasons, research is trying to develop more efficient methods characterized
by the absence of a model; in particular, great interest is devoted to model-free
control, such as Reinforcement Learning (RL). Reinforcement learning is less
expensive to implement because it does not require a model of the system and could
learn both through the interaction with the environment and through historical data.
It is similar to a plug and play controller since it could be implemented and it could

5



1.3. CONTRIBUTIONS AND STRUCTURE OF THE THESIS

automatically learn from the system through interactions. Its performance improve
in time as the controller learns the optimal control policy by direct interaction with
the environment, obtaining a reward based on the control action performed from a
specific state. Another very interesting aspect of Reinforcement Learning is that it
is adaptive, it can automatically adapt to the environment’s changes as well as to
human preferences by directly integrating user feedback into its control logic.
In this context, an interesting framework is represented by CityLearn: it is an
OpenAI Gym environment for the implementation of reinforcement learning agents
in a demand response settings, with the objective of facilitating and standardizing
the evaluation and the comparison of different RL agents and algorithms. The
final goal of CityLearn is to flatten, smooth, and reduce the curve of electrical
demand through Demand response (DR). CityLearn allows to control the storage
of domestic hot water (DHW), and chilled water. It also includes energy models
of air-to-water heat pumps, electric heaters, and the pre-computed energy loads
of the buildings, which include space cooling, dehumidification, appliances, DHW,
and solar generation.

1.3 Contributions and structure of the thesis
The objective of this thesis work is to develop a framework which allows the
application of advanced control techniques (RL) to several commercial building
HVAC systems. The main goal of the controller is to reduce the impact of its actions
on the electrical grid (through DR) while maintaining user comfort. Through the
development of an LSTM neural network it has been possible to map the relation
between uncontrollable variables (such the external Temperature, the occupancy,
the solar radiation), controllable variables (the HVAC cooling power) and the Indoor
Temperature, allowing the possibility to consider thermal comfort. Successively, the
model has been integrated into CityLearn, in order to create a training environment
for the RL agent. This environment would enable the Reinforcement Learning
agent to learn the optimal control policy and exploit Demand Response actions
with the aim of reshaping and flattening the curve of electricity demand. The main
contribution is that the building cooling load is not an input of CityLearn but is
learned from the agent through the interaction with the neural network models: in
this way the agent could exploit the possibility of giving buildings a cooling energy
different from the ideal one, as an additional resource of DR, without violating
thermal comfort constraints.
The thesis is organized as follow:

• Chapter 2 deals with the description of machine learning techniques used in
this thesis work; in particular, for introductory purposes, the description starts
from simpler algorithms, such as the perceptron and and logistic regression.
More complex algorithms, like feed forward neural networks and recurrent
neural networks are subsequently addressed: the problem of exploding/vanish-
ing gradient is used to introduce the description of Long Short Term Memory
neural networks, which are one of the key algorithms used in this work.

6



1.3. CONTRIBUTIONS AND STRUCTURE OF THE THESIS

• Chapter 3 describes the approach used to model the buildings thermodynamic
behaviour: the chapter starts with the literature review of previous works in the
field of indoor temperature prediction through black box models. Moreover, the
buildings analyzed in this work are briefly described and particular attention
is devoted to the description of the data-set generation process through
EnergyPlus software. The second part of the chapter is devoted to the
analysis of the LSTM models used in this work: the focus is related to the
data preparation and pre-process work, followed by the analysis of models
architecture and hyperparameters selection and tuning. The last part of the
chapter is related to the analysis of the performances of the models, both in
open loop and in closed loop. The last part of the chapter concerns CityLearn
environment and its related work, in order to highlight the contributions of
this thesis work.

• Chapter 4 analyzes the Reinforcement Learning algorithm; a brief description
of one of the most used algorithm in this field, Q-learning, is followed by the
analysis of two other algorithms: the first one is Deep Q-learning, the second
one is Soft Actor Critic algorithm, which is implemented in the case study.

• Chapter 5 describes the case study: the process of integration of the developed
models into CityLearn is analyzed; particular attention is paid to the reward
function design.

• Chapter 6 deals with the analysis of the obtained results.

• Chapter 7 is about the conclusions and the possible future works.

7



1.3. CONTRIBUTIONS AND STRUCTURE OF THE THESIS

Dataset 
generation 

Building Ideal Cooling 
Load (Sensible + Latent)f 

Sensible Cooling Load 
modification 

Training and 
validation data 

Data preprocessing 

Test Data 

Build and Train 
the LSTM model 

Hyperparameters Tuning 

No 

Yes Model 
Deployment 

MAPE,RMSE 
< 

treshold? 

 

Figure 1.5: Workflow of LSTM models development

.

8



Chapter 2

Machine Learning overview
and Neural Networks

Machine learning (ML) is a field of computer science which aim is teaching computers
how to learn and act without being explicitly programmed. More specifically,
machine learning is an approach to data analysis that involves building and adapting
models, which allow programs to "learn" through experience. Machine learning
involves the construction of algorithms that adapt their models to improve their
ability to make predictions [9]. The main difference between traditional algorithms
and ML algorithms is that the former require input data and a program to provide
an output while the latter use both input and output data to provide a program as
output.

Figure 2.1: Paradigm shift from traditional algorithms to Machine Learning
algorithms

Traditionally, machine learning algorithms could be divided in three categories:

• Supervised Learning: is the field of ML generally used to perform regression or

9



Machine Learning overview and Neural Networks

classification tasks, it requires both input and output data to train the model
(labelled data set). The comparison between the real output data and the
predictions is used to compute an error which is needed to adjust the weights
of the model.

Figure 2.2: Supervised Learning

• Unsupervised Learning: unlike the previous one, the outputs are not provided,
there are only input variables. This ML technique is used to find patterns in
the input data through mathematical tools like Euclidean Distances. The data
are not labeled, algorithms must therefore be formulated such that they can
find suitable patterns and structures in the data on their own. Some example
tasks are clustering (grouping a set of objects in such a way that objects in
the same group, called a cluster, are more similar to each other than to those
in other clusters) and dimensionality reduction.

Figure 2.3: Unsupervised Learning

• Reinforcement Learning: it is completely different from the other two tech-
niques, it is about controlling a system through the long term maximization
of a reward. According to [10], a reinforcement Learning problem consists
of an agent that exists within an environment where, on each time step, it
can observe a current state, take actions, and as consequence of those actions,
receives a reward signal and updates the state. The Agent’s learning objective
is to create a Policy (a mapping from State to Action) that maximises the
expected reward received over time. The output of RL are the actions that
the agent can take in order to modify the behaviour of the controlled system.

10



2.1. SINGLE COMPUTATIONAL LAYER

For more information and a detailed description of RL, see chapter 4.

Figure 2.4: Reinforcement Learning

2.1 Single Computational Layer
2.1.1 Perceptron
An artificial neural network (ANN) is a class of algorithms designed to simulate
the way the human brain analyzes and processes information. The simplest neural
network is referred to as the perceptron. This neural network contains a single
input layer and an output node. Its structure is made by a single input layer
which transmits the input features to the output node. The input layer contains n
features and it does not perform any computation; on the other hand, the output
node compute a linear function þw ·þx, then add a bias b and apply the sign function:

ŷ = sign{
nØ

i=0
wixi + b}

The sign function maps a real value to either −1 or +1, which is appropriate for
binary classification. The sign function serves the role of an activation function.
Different choices of activation functions can be used to simulate different types of
models used in machine learning, like least-squares regression with numeric targets,
the support vector machine, or a logistic regression classifier.
In order to have a model which guarantees accurate predictions, a training process
is necessary. Training is in fact an iterative process with the aim of minimizing the
error of predictions. Generally this error is calculated on the basis of the difference
between the prediction and the true output. In particular, weights and biases can
be updated through the resolution of an optimization problem. At the time that the
perceptron algorithm was proposed by Rosenblatt in 1957 [11], these optimizations
were performed in a heuristic way with actual hardware circuits: the original
Mark I perceptron in fact, was intended to be a machine rather than an algorithm,
and custom-built hardware was used to create it. The perceptron algorithm was,
therefore, heuristically designed to minimize the number of misclassifications and

11



2.1. SINGLE COMPUTATIONAL LAYER

Figure 2.5: The basic architecture of the Perceptron

it provided correct results in simplified settings such as classification tasks for
linearly separable classes. The aim of the perceptron was to minimize the following
objective function:

L =
Ø

(þx,y)∈D

(y − ŷ)2

The function to be minimized is known as Loss function. This loss function is similar
to least squares regression, however, the latter is defined for continuous-valued
target variables, and the corresponding loss is a smooth and continuous function
of the variables. On the other hand, for the least-squares form of the objective
function, the sign function is nondifferentiable, with step-like jumps at specific
points. Furthermore, the sign function takes on constant values over large portions
of the domain, and therefore the exact gradient takes on zero values at differentiable
points. This results in a staircase-like loss surface, which is not suitable for gradient-
descent. The perceptron algorithm (implicitly) uses a smooth approximation of
the gradient of this objective function with respect to each example:

∇L ≈
Ø

(þx,y)∈D

(y − ŷ)þx

It is important to highlight that the above gradient is not the true gradient of
the staircase-like surface of the objective function, but it is an approximation.
Therefore, the staircase is smoothed out into a sloping surface defined by the
perceptron criterion: this concept was proposed later than the original paper by
Rosenblatt [11], in order to explain the heuristic gradient-descent steps. The general
goal was to minimize the number of classification errors with a heuristic update
process (in hardware) that changed weights in the “correct” direction whenever
errors were made. Considering a single training example, weights were updated as
follow:

þw =← þw + α(y − ŷ)þx

12



2.1. SINGLE COMPUTATIONAL LAYER

The parameter α regulates the learning rate of the neural network.
This heuristic update strongly resembled gradient descent but it was not derived
as a gradient-descent method. Gradient descent is defined only for smooth loss
functions in algorithmic settings.

2.1.2 Logistic regression
Logistic regression is a probabilistic model that classifies the instances in terms of
probabilities. It is used for binary classification tasks and it could be mathematically
described as:

ŷ = P (y = 1 | x)

The output of logistic regression is obtained by applying the sigmoid function to
the results of the sum between the bias and the scalar product between the weights
vector and the input feature vector:

ŷ = σ(ωT x + b)

The sigmoid function is defined as:

σ(z) = 1
1 + e−z

where z is equal to ωT x + b.

Figure 2.6: Sigmoid Activation Function

A common loss function used in machine learning field is the squared error, however,
in logistic regression, this function is not used, because it generates a non-convex
optimization problem, with a lot of local minima, which could cause the failure
of gradient descent algorithm. For this reason, a common loss function used in
logistic regression is defined as follow:

L (ŷ, y) = −
1
y log(ŷ) + (1− y) log(1− y)

2
13



2.1. SINGLE COMPUTATIONAL LAYER

This loss function is called Cross-Entropy Loss. It makes the optimization problem
convex and is suitable for gradient descent algorithm.
Generally, the loss function is defined with respect to a single training example
and describes how the model performs on a single training examples. When more
examples are considered, a new function is introduced, which is called Cost Function
J. In this case, the cost function could be described as:

J(w, b) = 1
m

mØ
i=1

L (ŷ, y) = − 1
m

mØ
i=1

è
y log(ŷ) + (1− y) log(1− y)

é
The cost function measures how the model is performing on the entire training
data set (or on more than one training example).

2.1.3 Logistic regression Gradient Descent
In order to learn optimal parameters w and b, it is necessary to find w and b which
minimize the overall cost function J. In this case, the convex cost function make
the optimization problem easier to solve.

Figure 2.7: (a) Convex Cost Function (b) Non-Convex Cost Function considering
only two parameters

When only two parameters are considered, J is a surface, however, since in machine
learning problems there are a lot of parameters to optimize, the cost function
is not a surface anymore, but is defined in multiple dimensions. Initially, model
parameters are initialized either randomly or to zero (in logistic regression, since
the cost function is convex, the algorithm would converge to the same value), then
what gradient descent does is to take a step in the steepest downhill direction; this
step is repeated until the global optimum is reached. Model parameters are then
updated as follow:

14



2.1. SINGLE COMPUTATIONAL LAYER

w = w + α
∂J(w, b)

∂w

b = b + α
∂J(w, b)

∂b

When only one training example is considered, the partial derivative of the loss
function is equal to the partial derivative of the cost function; on the other hand,
considering m examples, the derivative of the cost function are computed as:

∂ J(w, b)
∂ w

= 1
m

mØ
i=1

∂ L (ŷ, y)
∂ w

∂ J(w, b)
∂ b

= 1
m

mØ
i=1

∂ L (ŷ, y)
∂ b

2.1.4 Deriving the formula for Gradient Descent
By looking at the following computation graph, it is possible to better understand
the derivation of the formula for logistic regression gradient descent:

Figure 2.8: Logistic Regression computation graph

To compute the partial derivative of the loss function with respect to the weights
and bias, it is possible to exploit the chain rule:

∂L

∂wi

= ∂L

∂a

∂a

∂z

∂z

∂wi

15



2.2. NEURAL NETWORKS

where:
∂z

∂wi

= xi

∂L

∂a
= −y

a

1− y

1− a

∂a

∂z
= a(1− a)

Finally, the partial derivative of the loss function with respect to wi is

∂L

∂wi

= (a− y) xi

and wi are updated as follow:

wi = wi − α (a− y) xi

Similarly, considering the bias b, it is updated in this way:

b = b− α (a− y)

The absence of xi is due to the fact that the partial derivative of z with respect to
b is equal to 1.

2.2 Neural Networks
Artificial neural networks are popular machine learning techniques that emulate
the mechanism of learning in biological organisms. The human nervous system
contains cells called neurons. Neurons are connected through axons and dendrites,
and their connections are known as synapses. The strength of synaptic connections
changes in response to external stimuli. This biological mechanism is emulated
in artificial neural networks, which contain computation units that are referred
to as neurons. The computational units are connected to one another through
weights, which serve the same role as the strengths of synaptic connections in
biological organisms. Each input to a neuron is scaled with a weight, which affects
the function computed at that unit.
In recent years they have become increasingly popular due to the fact that the
computing power needed to manage them is now available. Neural networks,in fact,
were already mathematically treated decades ago, however, due to the scarcity
of computational resources available in the nineteenth century they were never used.

16



2.2. NEURAL NETWORKS

2.2.1 Feed Forward Neural Networks
Neural networks contain more than one computational layer, previous examples
contain only an input and an output layer: the input layer transmits the data
to the output layer, and all computations are completely visible to the user.
Neural networks contain multiple computational layers; the additional intermediate
layers (between input and output) are referred to as hidden layers because the
computations performed are not visible to the user. The specific architecture
of multilayer neural networks is referred to as feed forward networks, because
successive layers feed into one another in the forward direction from input to
output. The default architecture of feed-forward networks assumes that all nodes
in one layer are connected to those of the next layer. Therefore, the architecture of
the neural network is almost fully defined, once the number of layers, the number
of neurons per layer and the activation functions in each layer have been defined.
The only remaining detail is the loss function that is optimized in the output layer.
Neural networks with only one hidden layer are referred as shallow networks while
models with more than one hidden layer are called Deep Neural Networks; over
the last years, the machine learning community realized that there are functions
that very deep neural networks can learn that shallower models are often unable to.
However, the number of hidden layer could not be predicted in advance so, when
constructing a models, it is always reasonable to start from shallower networks and
then add hidden layers one by one. The architecture of a Feed Forward neural
network with only one hidden layer is represented in the following picture:

Figure 2.9: Feed Forward Neural Network with only one hidden layer

After having fixed the structure of the network, the learning process of a neural
network consist in finding the optimal parameters that weigh the various signals
carried by the network, from input layer to output layer. During the training
process, examples are processed by the network in order to produce output values;
on the basis of these outputs, error are computed and used to adjust weights and
biases: this iterative mechanism is called Forward Progagation and Backpropagation,

17



2.2. NEURAL NETWORKS

respectively. The user of neural network libraries does not have to worry about
implementing backpropagation algorithm. Its task is to select the appropriate
network structure in terms of hyperparameters, which is a delicate and not easy task.
With the term hyperparameters are identified all the parameters which control the
ultimate parameter, w and b. in Feed forward neural networks, hyperparameters
are:

• the learning rate α: it controls w and b with respect to the gradient of the loss
function. It defines how quickly the neural network updates the concepts it
has learned. A desirable learning rate is low enough that the network possibly
converges to the global minimum, but high enough that it can be trained in
a reasonable amount of time. Smaller learning rates require more training
epochs (requires more time to train) due to the smaller changes made to the
weights in each update, whereas larger learning rates result in rapid changes
and require fewer training epochs. However, larger learning rates often result
in a sub-optimal final set of weights.

• the number of epochs which describes the number of times the algorithm sees
the entire data set.

• the number of hidden layers

• the number of neurons in hidden and output layers

• the activation function which defines the output of neurons. There are many
kind of activation functions which are suitable for different applications. The
most relevant are:

– Sigmoid Function
f(x) = 1

1 + e−x

it has a characteristic “S”-shaped curve and it gives outputs between 0
and 1. The problem associated with this function is that, for large input
values, both negative and positive, it saturates at 0 or 1: this generates a
gradient very close to zero, which makes the backpropagation algorithm
almost ineffective. Therefore, sigmoid activation function is very prone to
vanishing gradient problem.

– Hyperbolic Tangent Function

f(x) = ex − e−x

ex + e−x

generally it works better than the sigmoid function, outputs are between
−1 and 1 and their mean is 0, this tends to make each layer output more
or less centered around 0. Despite a bigger derivative around zero with
respect to the sigmoid function, is also suffers from vanishing gradients
problem.

18



2.2. NEURAL NETWORKS

– Rectified Linear Unit ReLU Function

f(x) = max(0, x)

its derivative is equal to 1 for x > 0 and equal to 0 for x < 0, it is not
differentiable in x = 0 but this has very few implications in machine
learning, since the chances that the input of the function (which is the
scalar product of weights and inputs) is equal to zero are almost impossible.
There are some advantages with respect to the previous functions, in
particular it is faster to compute and does not saturate for large positive
input values. Further, the derivative or gradient of ReLU has a constant
value when x > 0 and this results in reduced likelihood of vanishing
gradient problem. One of the main drawbacks of ReLU is known as dying
ReLUs that happen when some neurons stop outputting anything other
than 0. This happens when a neuron’s weights get updated such that
weighted sum of neuron’s input is negative.

– Leaky ReLU

f(x) =

x x ≥ 0
α x x < 0

it is defined to reduce the problem of dying neurons through the intro-
duction of a linear term with slope α for x < 0. α is generally equal to
0.01. This small slope ensures that leaky ReLUs never die.

– Exponential Linear Unit ELU

f(x) =

x x ≥ 0
α (e−x − 1) x < 0

it takes on negative values when x < 0 and this allows neurons average
output to be closer to 0. The hyper-parameter α defines the value that
the ELU function approaches when x is a large negative number. It is
usually set to 1, but can be tuned as any other hyper-parameter. Further,
ELU activation function has non-zero gradient for x < 0 and this solves
the dying neurons problem. Moreover, the function is smooth everywhere,
including around x=0. This helps to speed up the learning process. The
major drawback of ELU is that it is slower to compute as compare to
ReLU and its variants. This is due to the use of computationally expensive
exponential function in ELU. However, during training this is compensated
by faster convergence rate. But during test time an ELU network will be
slower than the ReLU neural network.

– Scaled Exponential Linear Unit SELU

f(x) = λ

x x ≥ 0
α (e−x − 1) x < 0

it is the last activation function, it is similar to ELU except for the
parameter λ; for standard scaled inputs (mean 0, standard deviation

19



2.2. NEURAL NETWORKS

1), the suggested values values are α = 1.6732, λ = 1.0507. The major
advantage of using SELU is that it provides self-normalization (that is
output from SELU activation will preserve the mean of 0 and standard
deviation of 1) and this solves the vanishing or exploding gradients problem.
However, this will only happen under certain conditions: (a) the neural
network consists only a stack of dense layers, (b) all the hidden layers use
SELU activation function, (c) the input features must be standardized
(having mean of 0 and standard deviation of 1), (d) the hidden layers
weight must be initialized with LeCun normal initialization, and lastly,
(e) the network must be sequential [12].

Figure 2.10: Common activation functions in neural networks and their derivatives

• batch size: it is an important hyperparameter which regulates the update
frequency of network’s parameters . Based on this hyperparameter, the
gradient descent algorithm assumes different variants. Depending on the batch
size, we can distinguish:

– Batch Gradient Descent: in this case the batch size is equal to the number
of training examples in the training data set; all the training data is
taken into consideration to take a single step. We take the average of the
gradients of all the training examples and then use that mean gradient to
update our parameters. So that’s just one step of gradient descent in one
epoch. If the optimization problem is convex, it ensures the convergence
to the global minimum; in non-convex problem, to a local minimum. The
main disadvantage is related to its computational cost: especially for very
large training data set its convergence to the global minimum is very low.

– Mini-Batch Gradient Descent: it differs from the previous one due to the
fact that weights are updated more than once per epoch. In fact, the
training data set is split into smaller batches, then, for each batch, the
mean gradient is computed and used to update the weights.

– Stochastic Gradient Descent: in Batch gradient descent, all the examples
must be considered for every step of Gradient Descent and this could
generate too high computational costs if the data set is large. To fix this
issue Stochastic gradient descent is introduced: it allows to consider just

20



2.2. NEURAL NETWORKS

one example at a time to take a single step. For every training example,
the gradient is computed and used to update the weights.

To summarize:

– Batch size = Size of the training set −→ Batch Gradient Descent
– Batch size < Size of the training set −→ Mini-Batch Gradient Descent
– Batch size = 1 −→ Stochastic Gradient Descent

2.2.2 Recurrent Neural Networks
The first part of the thesis work is based on Recurrent Neural Network, in particular
on Long Short Term Memory Neural Networks. Recurrent neural networks, or
RNNs, are a family of neural networks for processing sequential data, in particular,
a recurrent neural network is a neural network that is specialized for processing
a sequence of values x1, ... , xt. They are used in the field of Natural Language
Processing, but their application is also common in time series forecasting problems,
as an alternative to more traditional statistical methods. The main difference with
respect to a standard neural network is that RNNs can share features between
layers, each layer is not treated independently. In this way, parameter sharing
makes it possible to extend and apply the model to examples of different forms and
generalize across them. The general architecture of a Recurrent Neural Network is
shown in the following picture:

Figure 2.11: Unfolded Structure of a Recurrent Neural Network

At each time step, RNN passes an activation at−1 to the next layer, generally the
first activation a0 is initialized to zero, despite some researchers prefer to initialize it
randomly. RNN scans through the data from left to right and its predictions ŷt are

21



2.2. NEURAL NETWORKS

not only based on current input xt but also on previous inputs, since informations
are shared through the activation a. The weights waa , wax , wya are the same for
every layer: RNNs, in fact, could be represented in a more general way as:

Figure 2.12: General Structure of a Recurrent Neural Network

The forward propagation computed by an RNN could be mathematically summa-
rized as follow:

a(1) = g1
1
waa a(0) + wax x(1) + ba

2
ŷ(1) = g2

1
waa a(0) + wax x(1) + ba

2
where g1 is generally a tanh function or a ReLU function while the choice of g2
would depend on the type of output, for example, in binary classification problems,
g2 is generally a sigmoid function while for multi-class problems is typically used a
Softmax function.

2.2.3 Backpropagation through time
Backpropagation through time is actually a specific application of backpropagation
used to train RNNs. It requires to expand the computational graph of an RNN
one time step at a time to obtain the dependencies among model variables and
parameters. The loss function is computed for each individual time step, then, each
loss is summed to the others to obtain the total loss. Starting from the total loss it
is possible to compute the gradients of the loss with respect to model’s parameter.
These computations are based on the chain rule, which was analyzed before.
In this procedure, the most significant recursive calculation is the horizontal one,
which goes from the right to the left. The mathematical description of this al-
gorithm is more complex than that of standard backpropagation; for a detailed
explanation is suggested to see [13]. The computation graph of backpropagation
through time is shown in the following figure:

22



2.2. NEURAL NETWORKS

Figure 2.13: Computation graph of backpropagation through time

2.2.4 Vanishing and Exploding Gradients in RNNs
Deep neural networks have several stability issues associated with training. In
particular, networks with many layers may be hard to train because of the way in
which the gradients in earlier and later layers are related. In fact, basic Recurrent
Neural Networks are not good in capturing very long term dependencies, this is
mainly due to a problem called vanishing gradient: especially in very deep neural
networks, backpropagation has less effect on the computation of parameters in
the first layers: the error computed on later time steps hardly influences earlier
computations. Because of this problem, basic RNNs have many local influences
which means that the local output ŷt has influence only on neighboring layers and
this of course is one of the mainly weakness of the basic RNN algorithm. To have
a mathematical intuition of the problem, it is possible to consider a simple RNN
with only one neuron in each hidden layer, with sigmoid activation function:

Figure 2.14: Example of vanishing gradient problem

23



2.2. NEURAL NETWORKS

It is relatively easy to use the backpropagation update to show the following
relationship:

∂L

∂at

= ∂σ(zt+1)
∂zt+1

wt+1
∂L

∂at+1

Making the assumption that weights are initialized from a standard normal distri-
bution, each weight would have an expected average magnitude of 1. To understand
how each of those terms behave it is important to observe the graph of the derivative
of the sigmoid function:

Figure 2.15: Derivative of the Sigmoid Function

The derivative reaches a maximum equal to 0.25 at z = 0, since the value of wt+1
is expected to be 1, it follows that each weight update will (typically) cause the
value of ∂L

∂at
to be less than 0.25 that of ∂L

∂at+1
. Therefore, after moving by about

r layers, this value will typically be less than 0.25r. Just to get an idea of the
magnitude of this drop, if we set r = 10, then the gradient update magnitudes
drop to 10−6 of their original values. Therefore, when backpropagation is used,
the earlier layers will receive very small updates compared to the later layers. To
solve this problem it is possible to use an activation function with larger gradients
and also initializing the weights to be larger. However, it is easy to end up in the
opposite situation where the gradient explodes in the backward direction instead of
vanishing. This phenomenon is called Exploding Gradient. Exploding gradients are
easier to spot, since parameters values become very large; a possible solution to
fix this issue is called Gradient Clipping which is a method that re-scale gradients
which are bigger than a certain threshold. However, vanishing gradient problems
are harder to solve. A very effective solution to vanishing gradients is represented
by a particular kind of RNN called Long Short Term Memory, which allows to
consider long-term dependencies.

24



2.2. NEURAL NETWORKS

2.2.5 Long Short Term Memory (LSTM)
Long Short Term Memory networks, usually just called “LSTMs”, are a special
kind of RNN, capable of learning long-term dependencies. They were introduced
in 1997 by Hochreiter & Schmidhuber and their study had a huge impact on
sequence modeling. LSTMs can manage the vanishing/exploding gradient problem
by remembering important informations and forgetting those that are useless. This
property of LSTMs is due to a particular gating mechanism and to the presence of
two states:

• Hidden state which is responsible of mantaining the short term memory

• Cell state which is responsible of maintaining the long term memory and
capturing long term dependencies.

In particular, memory cells use gates to regulate the information to be kept or
discorded at each time step before passing on the the long term and short term
information to the next cell gates: this mechanism is able to filter the irrelevant
information. The scheme of the LSTM cell is shown in the following figure:

Figure 2.16: LSTM cell scheme

The key to LSTMs is the cell state, which maintains long term dependencies:
it runs straight down the entire sequence, with only some minor linear interactions.

25



2.2. NEURAL NETWORKS

It’s very easy for information to just flow along it unchanged. The LSTM does
have the ability to remove or add information to the cell state, carefully regulated
by structures called gates. Gates are a way to optionally let information through.
They are composed out of a sigmoid neural net layer and a pointwise multiplication
operation. The sigmoid layer outputs numbers between zero and one, describing
how much of each component should be let through. A value of zero means that
the component is not relevant and could be discarded while a value of 1 means
that the component is important and has to be maintained.

Forget gate

The first step in an LSTM is to decide what information are going to throw away
from the cell state. This decision is made by a sigmoid layer called the “forget gate
layer.” It looks at at−1 and xt, and outputs a number between 0 and 1 for each
number in the cell state ct1

ft = σ
1
Wf [at−1, xt] + bf

2
where Wf is obtained by stacking horizontally waa and wax.

Update gate

The next computations are used to decide what new informations are going to be
stored in the cell state.This process is divided in two parts:

• the first one involves a sigmoid layer called “input gate layer” which decides
which values are going to be updated

it = σ
1
Wi[at−1, xt] + bi

2
• the second one involves a tanh layer which creates a vector of new candidate

values, c̃t, that could be added to the state.

c̃t = tanh
1
Wc[at−1, xt] + bc

2
The elementwise multiplication of it and c̃t generates a vector that is used to update
the cell state ct; in particular this vector represents the new candidate values, scaled
by how much we decided to update each state value.

Output gate

The output of the LSTM cell will be based on a filtered version of the cell state.
First, a sigmoid layer decides what parts of the cell state are going to be output.
Then, the cell state pass through a tanh (to push the values to be between 1 and
1) and is multiplied by the output of the sigmoid gate.

ot = σ
1
Wo[at−1, xt] + bo

2
at = ot ∗ tanh

1
ct

2
26



2.2. NEURAL NETWORKS

2.2.6 Types of RNN architectures
The basic RNN architecture could be modified in order to solve different kind of
problems. In particular it is possible to distinguish:

• One to One: it is also known as vanilla neural network and it is used for basic
machine learning problems

• One to Many: it has a single input and many outputs. Its applications are
mainly in the field of music generation or image captioning.

• Many to One: it has many inputs and a single output. This is basically used in
sentiment classification. Another important application is in the field of time
series forecasting, where the input is a sequence of n values and the output is
the prediction of the single value at position n+1. This is the configuration
used in this thesis work.

• Many to Many: it takes a sequence of inputs and generate a sequence of
outputs. There are two configurations of Many to Many, the simpler has
one output for each input in the sequence, the most complex has a structure
called Encoder-Decoder and is used when the input and the output length is
different. Their application are common in the field of Machine Translation
but also in time series forecasting.

Figure 2.17: Different types of RNNs

27



Chapter 3

Development of LSTM
Building Models

3.1 Literature survey on black box modelling for
Indoor Temperature Prediction

Indoor Temperature prediction through machine learning techniques has gained
increased interest in recent years, due to the increasing data availability and to the
necessity of computationally lightweight models, which can exploit data coming
from sensors. Moreover, ANN models are suitable for building dynamics modelling
due to their abilities to deal with nonlinear, multivariable modelling problems and
generally outerform statistical models which are linear, time-invariant and can easily
lose accuracies when strong nonlinearities and uncertainties are presented in the
systems. One of the first works in this field has been carried out in 2005 by Ruano
et al.[14]. The aim of its study was to develop a radial basis function (RBF) neural
network to predict the indoor air temperature of a public secondary scholar building
situated in the south of Portugal. The network performances were compared with
those of a physical model, showing slightly better predictions. Due to the low
computational expenses, neural network is used to build a air-conditioning systems
controller, in order to improve on-off schedules and save energy. The study used real
data which were acquired every minute. Another interesting work was performed
by Mustafaraj et al. [15] that proposed two models, a simpler autoregressive
model with exhogenous inputs (ARX) and a more complex neural network-based
non linear autoregressive model with exhogenous inputs (NNARX), to predict
the indoor temperature and the relative humidity in an office building located in
London. The results show that the second model has better performances since it is
able to better approximate the complex relations between inputs and outputs such
as room temperature and relative humidity. In [16] the authors developed a single
zone and a multi zone NNARX model to forecast the indoor temperature in an
university campus, in order to improve energy management strategies. Moreover,
Huang et al. [17] developed a neural network in order to predict the indoor air
temperature of a multizone building and verify the effectiveness of a neural network

28



3.2. DESCRIPTION OF MODELED BUILDINGS

based predictive control in terms of energy saving. In [18] authors describes the
application of a combined neuro-fuzzy model for indoor temperature dynamic and
automatic regulation: NNARX temperature forecasts are used to feed a fuzzy
logic control which regulates the HVAC system. Ellis et al. [19] developed an
Encoder-Decoder LSTM to model an air handling unit-variable air volume (AHU-
VAV) HVAC system. Its predictions are used to optimize energy costs through
an MPC and its performance are evaluated by means of E+ software. Another
very interesting paper is represented by [20] in which researchers used an LSTM to
predict the indoor air temperature in a multi zone building, using the Sequence
to Sequence approach to perform multi step forecast. The results of the study
have been evaluated on the base of two case studies on real smart buildings using
variable air volume (VAV) and constant air volume (CAV) systems.

3.2 Description of Modeled Buildings
The buildings considered in this thesis work are prototypes of typical commercial
buildings in the U.S. The study is focused on four buildings:

• Small Office

• Medium Office

• Restaurant full-service

• Retail Stand-alone

The following figure shows the rendering of the models by means of SketchUp
software:

Figure 3.1: Buildings Geometric Model, starting from the top left corner and
following the clockwise direction: Small Office, Medium Office, Retail stand-alone,
Restaurant

29



3.2. DESCRIPTION OF MODELED BUILDINGS

The following tables report the general characteristics of considered buildings in
terms of dimensions, occupancy, thermal zones, outdoor flow rate and building
envelope (both opaque and transparent) thermophysical properties:

Table 3.1: General characterization of Small Office Building

Table 3.2: General characterization of Medium Office Building

30



3.2. DESCRIPTION OF MODELED BUILDINGS

Table 3.3: General characterization of Restaurant Building

Table 3.4: General characterization of Retail stand-alone Building

Buildings were simulated taking into account the EPW climate file of Albuquerque
International Sunport, New Mexico, which belongs to the 4B climate zone. They
were modeled starting from commercial reference buildings developed by U.S. De-
partment of Energy (DOE) [21]. These models, defined by the National Renewable
Energy Laboratory (NREL), are designed to cover among 70% of commercial
buildings types in United States. The aim of these models is to represent both new
and existing buildings in order to verify the effectiveness of new technologies in
terms of energy efficiency, advanced control system, indoor air quality, ecc. Starting
from these models, the real HVAC plant was changed with an ideal one, using the

31



3.2. DESCRIPTION OF MODELED BUILDINGS

object "HVAC Template: IdealLoadsAirSystem", available in EnergyPlus. This
object provides an ideal system to supply conditioned air to the zone that meets
all the load requirements and it is often used for load calculations. Each building is
equipped with an HVAC system that operates according the following schedules:

Table 3.5: Temperature Schedules

Table 3.6: Relative Humidity Schedules

32



3.3. MODEL DEVELOPMENT PROCESS

3.3 Model development process
The aim of this section is to explain how a robust training data set was generated.
In particular, the main idea behind the work is to implement a data driven model
for each building which is able to map the relations between uncontrollable variables
such as the outdoor temperature, the direct solar radiation, the occupancy profile,
controllable variables as the total HVAC cooling power and the mean indoor
temperature. Of course, since the cooling power of the HVAC system is the only
input variable which is controllable, the data set creation is mainly focused on it.
The aim of the control is to act only on the sensible contribution: in an all-air
systems, sensible and latent load are not physically separable, since there is a
single cooling coil per each air handling unit. To overcome this limitation, the
proposed methodology was applied to mixed air-water systems: these kind of HVAC
systems combine both advantages of all-air and all-water systems; in particular, the
temperature control is performed by water terminals (e.g.fan coils) while ventilation
and humidity control is performed by the AHU. For this reason, in this way it is
possible to separately control latent and sensible power. The main control objective,
in fact, is to maintain the mean indoor temperature within a comfort band which
goes from 25 °C to 27 °C. The difficult part of the data generation process is related
to the fact that the thermodynamic of a building is strongly non linear so it is not
easy to have a model which is able to efficiently predict the indoor air temperature.
Moreover, in this case study, the building can receive a cooling load different from
the ideal one, which further complicates the analysis. To overcome this issue, the
training data set does not only contain the ideal scenario, but also the results of
a simulation in which the sensible cooling load differs from the ideal one. Since
the actions of a Reinforcement Learning Agent could not be predicted a priori, the
additional data set introduce a sensible cooling load which is randomly distributed
around the ideal one. In particular, the hourly ideal sensible power is multiplied by
a random variable sampled between 0.3 and 1.7 according to a uniform distribution;
however, this multiplication does not happen always, but with a probability of
60%. This data set is built in order to highlight, given certain values of occupancy,
outdoor temperature, solar radiation, the influence between the sensible cooling
power and the indoor air temperature. This procedure has been possible thanks
to two Energy plus objects: the first one is called Schedule: File and the second
one is called OtherEquipment. The former is used to read a csv file and to use
the read values as a schedule. The latter is then used to introduce the cooling
power in the building: in this case, in fact, the ideal HVAC plant was substituted
from this object. A particular feature of this object is that it allow to specify
the latent and the convective fraction of cooling energy. In particular, the latent
power was considered fully latent while the sensible one fully convective. The data
generation procedure could be summarized in two steps, the first one is running
an EnergyPlus simulation with the ideal HVAC plant; the second one consists in
taking the ideal load, both latent and sensible, multiply the latter by the random
coefficient previously explained, and use them as inputs in a simulation performed
without the ideal HVAC system but with the OtherEquipment Object. The output
of these simulations have been stored in a csv file. The process is schematized is

33



3.3. MODEL DEVELOPMENT PROCESS

the following figure:

Figure 3.2: Conceptual scheme of training data set generation process

3.3.1 Input selection and data preprocessing
The main idea behind the choice of model’s input is to use variables which could be
easily available also in a real case application; for this reason, the chosen variables
are:

• the hour of the day, from 1 to 24

• the day of the week, from 1 to 7, where 1 indicates Sunday

• the month, from 6 to 9, since the case study deals with the cooling season

• the Outdoor Air Temperature

• the Direct Solar Radiation

• the Occupancy

• the Total Cooling Load

• the Mean Indoor Air Temperature at previous timestep

34



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.3: Hour without cyclical encoding

Temporal variables of course are cyclical, the problem is letting the deep learning
algorithm know that these features occur in cycles. For this reason cyclical data
must be transformed to help the model to understand their behaviour.
This graph illustrates the problem with presenting cyclical data to a machine
learning algorithm: there are jump discontinuities in the graph at the end of each
day, when the hour value goes from 24 to 01. If hour features remains unencoded,
it is possible to observe a failure in current representation: it seems that 1 and
24 are 23 hours apart, when, in reality, they differs only of 1 hour. To overcome
this limitation it is possible to change the encoding system: a common method for
encoding cyclical data is to transform the data into two dimensions using a sine
and cosine transformation:

xcos = cos
1 2πx

max(x)
2

xsin = sin
1 2πx

max(x)
2

This procedure has to be repeated for each temporal feature; both sin and cosine
transformation are required in order to properly identify each time variable. The
results of the transformation are shown in the following figure:

35



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.4: Hour with cyclical encoding

An important step during data preprocessing for time series forecasting with machine
learning models is to convert the time series into a supervised learning problem.
In time series analysis, this procedure is performed through a technique called
Sliding Window: the window contains all the variables related to the forecasted
one, including the past values of the latter. In general, the window has a fixed
length which is called ’lookback’ which indicates how many past time steps are used
in the forecasting procedure. In this case study, data are reshaped in a slightly
different way with respect to standard forecasting problems: each variable has the
same lookback value but the indoor temperature has a lag of one hour with respect
to the other variables; this is due to the fact that the aim of the analysis is to
have a model that forecasts the indoor temperature at a certain time t knowing all
the other variables at the same time step. In the case of one step ahead forecast,
the window slides of one step at time: at each time step, the input is a matrix of
lookback rows and n° features columns. Each example is then stacked one behind
the other, along a third dimension: the time series is converted into an input tensor.
A tensor is a generalization of vectors and matrices and is easily understood as a
multidimensional array; a vector is a one-dimensional or first order tensor and a
matrix is a two-dimensional or second order tensor.
A conceptual scheme of the time series to supervised learning process using the
sliding window technique to create input tensor is shown in the following figure:

36



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.5: Sliding window approach used to frame the forecasting problem into
a supervised machine learning problem

Another important step during data preparation involves using techniques such as
normalization and standardization to rescale input and output variables prior to
training a neural network model. As such, the scale and distribution of the data
may be different for each variable. In fact, input variables may have different units
(e.g. [°C], [W], [W/m2]) that, in turn, may mean the variables have different scales.
Differences in the scales across input variables may increase the difficulty of the
problem being modeled. An example of this is that large input values can result in
a model that learns large weight values. A model with large weight values is often
unstable, meaning that it may suffer from poor performance during learning and
sensitivity to input values resulting in higher generalization error. There are two
types of data scaling:

• Standardization, which is used when data are normally distributed, in order
to rescale the distribution to have mean equal to 0 and the standard deviation
equal to 1. The data are standardized according to this formula:

xstd = x− x

σx

37



3.3. MODEL DEVELOPMENT PROCESS

• Normalization, which is a rescaling of the data from the original range to 0-1
range and is used when data are not normally distributed. The formula to
normalize the data is:

xnorm = x−min

max−min

In this case study, data are normalized because input features were not normally
distributed. During data set preprocessing, particular attention was paid to the
connection between different data sets. The moving window, in fact, slides of one
hour ahead each time step: this process has to be stopped at the end of each set,
otherwise an overlap between two different data sets would have occurred and some
windows would have contained values both from the beginning of the following
processed set and from the end of the previous one. The process is shown, as a
flowchart, in the following figure:

Figure 3.6: Flowchart of data preprocessing

38



3.3. MODEL DEVELOPMENT PROCESS

3.3.2 Hyperparameters Selection and Tuning
In machine learning, hyperparameters selection and tuning is the problem of choos-
ing a set of optimal hyperparameters for a learning algorithm. A hyperparameter
is a parameter whose value is used to control the learning process [22]. They are
used to configure various aspects of the learning algorithm and can have wildly
varying effects on the resulting model and its performance. First of all is necessary
to determine the type of network: in this work, the selected neural network model
is the LSTM, which, as previously explained, is often used in time series analysis
thanks to its capability to deal with temporal dependencies. Models accuracy was
then evaluated considering the following hyperparameters:

• Batch size

• Number of Hidden Layers

• Lookback, which is the number of previous time steps used in the forecasting
process

• Learning rate, which determines the step size at each iteration while moving
toward a minimum of a loss function

To perform hyperparameters tuning, an additional data set, which is called vali-
dation data set, was generated: this set was created by multiplying the sensible
cooling load by a factor equal to 1.1. Moreover, another data set, called test data
set was generated, in order to evaluate models accuracy through proper metrics.
The test set was generated similarly to the training one, but using a random
variable uniformly distributed between 0.8 and 1.2 (instead of 0.3 and 1.7) and a
multiplication probability of 20%. The entire procedure could be summarized as
follow:

• Split the entire data set data into validation, training, and test sets, in
particular 50% training, 25% validation and 25% test

• Identify the hyperparameter set that gives the best performance using the
validation data set

• Use the best hyperparameter set to train the final model

• use the trained model (from the best hyperparameter set) to make predictions
in test set, and evaluate the performances through proper metrics.

During the tuning process, the following metrics were used:

• Root Mean Square Error, defined as:

RMSE =

öõõô 1
N

NØ
i=1

(ŷi − yi)2

39



3.3. MODEL DEVELOPMENT PROCESS

• Mean Absolute Percentage Error, defined as:

MAPE = 1
N

NØ
i=1

----- ŷi − yi

yi

-----
• Determination Coefficient, R2

For issues related to computational time, the number of LSTM layers was not
evaluated as an hyperparameter, however, it was seen that for the Medium Office,
only one layer was sufficient to achieve good performances. On the other hand,
for the Small Office, the Retail and the Restaurant were necessary two LSTM
layers. For the other hyperparameters was prepared a list of values (per each
hyperparameter) and the model was trained and evaluated 15 times per each value
in the list; for each of this 15 repetitions, the model was trained for 100 epochs.
Repetitions are needed because random initial conditions for an LSTM network
can generate different results each time a given configuration is trained. The idea
is to compare the configurations using summary statistics over a larger number of
runs and see exactly which of the configurations might perform better on average.
To do so, for each value in the corresponding hyperparameter list, was created a
box plot. In descriptive statistics, a box plot is a method for graphically depicting
groups of numerical data through their quartiles. Box plots may also have lines
extending from the boxes (whiskers) indicating variability outside the upper and
lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram.
Outliers may be plotted as individual points. To select the best value for each
parameter were evaluated both the mean value and the median. Starting from a
simple model, with only one hidden neuron, a learning rate equal to 0.001 and
a lookback of 12, parameters are sequentially analyzed. The parameter which
maximizes metrics was picked and used in the next parameter evaluation: the idea
is to increasingly enhance the performance of the model up to a final model, which
is the combination of hyperparameters which have maximized metrics across tuning
procedure.
Parameters were analyzed in this order:

• Batch size

• Number of Hidden Neurons

• Lookback

• Learning Rate

Results for each building are shown in the following figures:

40



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.7: MAPE Box plot, hyperparameter = Batch Size

Figure 3.8: RMSE Box plot, hyperparameter = Batch Size

41



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.9: R2 Box plot, hyperparameter = Batch Size

Figure 3.10: MAPE Box plot, hyperparameter = Number of Hidden Neurons

42



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.11: RMSE Box plot, hyperparameter = Number of Hidden Neurons

Figure 3.12: R2 Box plot, hyperparameter = Number of Hidden Neurons

43



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.13: MAPE Box plot, hyperparameter = Lookback

Figure 3.14: RMSE Box plot, hyperparameter = Lookback

44



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.15: R2 Box plot, hyperparameter = Lookback

Figure 3.16: MAPE Box plot, hyperparameter = Learning Rate

45



3.3. MODEL DEVELOPMENT PROCESS

Figure 3.17: RMSE Box plot, hyperparameter = Learning Rate

Figure 3.18: R2 Box plot, hyperparameter = Learning Rate

46



3.3. MODEL DEVELOPMENT PROCESS

The results of hyperparameters tuning process is shown in the table below:

Small Office Retail Restaurant Medium Office
Batch size 100 100 100 100
n Hidden 8 8 8 50
Lookback 12 12 12 12

Learning Rate 0.008 0.005 0.008 0.005
n Layers 2 2 2 1

Table 3.7: Hyperparameters for each building model

The final LSTM configurations could be summarized as follow:

Figure 3.19: Small Office, Retail and Restaurant LSTM architecture

Figure 3.20: Medium Office LSTM architecture

47



3.3. MODEL DEVELOPMENT PROCESS

As previously explained, this configuration is called Many To One: 12 previously
measured sets of eight sample variables are sequentially inputted in order to predict
the next indoor air temperature. The output temperature is the result of a linear
transformation that is applied to the last hidden state, in order to pass from n
hidden dimension (8 or 50) to output dimension (1).
Each model was trained for 100 epochs and the trend of the loss function, computed
both on training and validation dataset, was monitored; this monitoring is useful
in order to avoid underfitting or overfitting. Underfitting occurs when a model is
too simple (informed by too few features or regularized too much) which makes it
inflexible in learning from the dataset. An underfit model is a model that fails to
sufficiently learn the problem and performs poorly on a training dataset and does
not perform well on a holdout sample. On the other hand, an overfit model learns
the training dataset too well, it performs well on the training dataset but does not
perform well on a hold out sample. The following learning curves show that the
training process was effective and that the final models have a good fit with unseen
data; in fact, a good fit is identified by a training and validation loss that decreases
to a point of stability with a minimal gap between the two final loss values.

Figure 3.21: Learning Curve to diagnose underfitting/overfitting

48



3.4. ANALYSIS OF DEVELOPED MODELS

3.4 Analysis of developed models
In this section the results of the developed models are shown and analyzed according
to the previous metrics. The aim of the entire procedure is to develop a model
which is able to do a multi step forecast starting from June to the end of September.
Four different strategies are generally used to perform multi step predictions:

• Direct Strategy: this method involves developing and training a separate
model for each forecast time step. The input vector is the same to all the
predictors. However this approach is unfeasible as the number of time steps
to be forecasted increases beyond the trivial.

• Multiple input-Multiple Output (MIMO): this strategy involves developing one
model that is capable of predicting the entire forecast sequence in a one-shot
manner and, differently from the previous case, the output of the model is not
a scalar but a vector. An example of this method is Seq to Seq LSTM.

• Recursive Strategy: it involves using a one-step model multiple times where the
prediction for the prior time step is used as an input for making a prediction
on the following time step. More in detail, a single model is trained to perform
a one-step ahead forecast given the input sequence. Subsequently, during the
operational phase, the forecasted output is recursively fed back and considered
to be the correct one.

• Direct-Recursive Hybrid Strategy: is a combination of the first and the third
strategies. A separate model must be constructed for each time step to be
predicted, but each model may use the predictions made by models at prior
time steps as input values.

Given the considerable computational requirements of LSTMs during training
and the necessity to integrate the models into CityLearn environment (where the
Cooling load is decided time step by time step by RL agent), the work was focused
on multi-step forecasting through Recursive strategy. This is a great difference with
respect to standard forecasting problems, since there is the necessity to maintain as
low as possible the error accumulation during time. For this reason, during the test
phase, a model was considered acceptable if the MAPE error across the considered
months was lower than 1.5%. In the following page is shown a conceptualization of
the recursive strategy used in this thesis work.

49



3.4. ANALYSIS OF DEVELOPED MODELS

Figure 3.22: Recursive approach adopted to perform multi step forecasts

3.4.1 Test Results: Small Office
Here are presented the results for Small Office Model:

One step ahead model Recursive Model
MAPE % 0.422 0.696
RMSE [°C] 0.145 0.253
R2 0.98 0.94

Table 3.8: Model Evaluation Metrics: Small Office

50



3.4. ANALYSIS OF DEVELOPED MODELS

The following figures show the results both for the one step ahead prediction
and for the recursive approach:

Figure 3.23: Small Office: detail of simulated mean indoor temperature and 1
step ahead forecasted mean indoor temperature

Figure 3.24: Small Office: detail of simulated mean indoor temperature and
forecasted mean indoor temperature through recursive strategy

51



3.4. ANALYSIS OF DEVELOPED MODELS

Figure 3.25: Small Office: comparison of 1 step ahead and recursive predictions

It is possible to observe that there are not substantial differences between the 1
step ahead approach and the recursive one: this means that the training was very
effective and the error accumulation does not cause the model to diverge. Another
observation is that the model captures very well the effects that the variation of
cooling load (with respect to the ideal one) has on the indoor temperature, since
the forecasted one follow very accurately those computed by EnergyPlus. Moreover
it is interesting to observe the relative error distribution and the compare the
distribution of recursively forecasted temperature and simulated one:

Figure 3.26: Box plot of simulated and recursively forecasted mean indoor
temperature and distribution of relative error

52



3.4. ANALYSIS OF DEVELOPED MODELS

In order to understand how much the error between the forecasted temperature
and the ideal one influences the cooling energy consumption, another interesting
analysis was performed. The forecasted mean indoor temperature was used as a
set point for the Ideal HVAC thermostat; since the forecasted indoor temperature
is the results of a weighted average on conditioned thermal zones volume, the
thermostat was set to each conditioned zone in the building. The following figures
show the distribution of the relative error calculated between the test cooling power
and the one calculated by means of thermostat and the box plot which highlights
cooling power distribution.

Figure 3.27: Box plot of test cooling power and that calculated through thermostat
object and distribution of relative error

What could be seen from this figures is that the distribution of the cooling power
is very close to the original one; moreover, the relative error has a Gaussian shape
centered in zero. The result of this analysis is that the cooling energy computed
considering temperature predictions is equal to 11.49 [MWh] against 11.58[MWh],
which means a relative error of 0.83% In the following pages are shown the results
for the other building models

53



3.4. ANALYSIS OF DEVELOPED MODELS

3.4.2 Test Results: Retail Stand Alone

One step ahead model Recursive Model
MAPE % 0.163 0.448
RMSE [°C] 0.058 0.15
R2 0.992 0.944

Table 3.9: Model Evaluation Metrics: Retail Stand-Alone

Figure 3.28: Retail Stand Alone: detail of simulated mean indoor temperature
and 1 step ahead forecasted mean indoor temperature

Figure 3.29: Retail Stand Alone: detail of simulated mean indoor temperature
and forecasted mean indoor temperature through recursive strategy

54



3.4. ANALYSIS OF DEVELOPED MODELS

Figure 3.30: Retail Stand Alone: Box plot of simulated and recursively forecasted
mean indoor temperature and distribution of relative error

Figure 3.31: Retail Stand Alone: Box plot of test cooling power and that
calculated through thermostat object and distribution of relative error

As could be seen from these figures, also the Retail Stand Alone model is very
accurate, temperature and cooling distributions are very close to the original one
and, in both cases, the distribution of error has a Gaussian shape centered in
zero. In this case the cooling energy computed considering temperature predictions
is equal to 57.69 [MWh] against 57.31[MWh], which means a relative error of
0.67% The accuracy of the model is also demonstrated from the computed metrics:
one step ahead predictions are extremely close to the simulated values; however,
also recursive forecasts are very accurate. Also in this case, error accumulation is
avoided and limited as much as possible. It is important to highlight that having
a very accurate 1 step ahead prediction model is a necessary condition to have
accurate predictions with recursive strategy.

55



3.4. ANALYSIS OF DEVELOPED MODELS

3.4.3 Test Results: Restaurant

One step ahead model Recursive Model
MAPE % 0.489 0.775
RMSE [°C] 0.170 0.258
R2 0.972 0.934

Table 3.10: Model Evaluation Metrics: Restaurant

Figure 3.32: Restaurant: detail of simulated mean indoor temperature and 1 step
ahead forecasted mean indoor temperature

Figure 3.33: Restaurant: detail of simulated mean indoor temperature and
forecasted mean indoor temperature through recursive strategy

56



3.4. ANALYSIS OF DEVELOPED MODELS

Figure 3.34: Restaurant: Box plot of simulated and recursively forecasted mean
indoor temperature and distribution of relative error

Figure 3.35: Restaurant: Box plot of test cooling power and that calculated
through thermostat object and distribution of relative error

Box plots indicate a very similar distribution of both temperature and cooling
power, also in this case the distribution of the relative error follows a Gaussian
centered in zero. In this case, the cooling energy computed considering temperature
predictions is equal to 77.64 [MWh] against 77.46[MWh], which means a relative
error of 0.23%.

57



3.4. ANALYSIS OF DEVELOPED MODELS

3.4.4 Test Results: Medium Office

One step ahead model Recursive Model
MAPE % 0.154 0.810
RMSE [°C] 0.065 0.279
R2 0.997 0.936

Table 3.11: Model Evaluation Metrics: Medium Office

400 425 450 475 500 525 550 575 600
time [h]

24

25

26

27

28

29

30

31

32

M
ea

n 
Ai

r T
em

pe
ra

tu
re

 [°
C]

1h ahead prediction
Predicted
Actual

Figure 3.36: Medium Office: detail of simulated mean indoor temperature and 1
step ahead forecasted mean indoor temperature

400 425 450 475 500 525 550 575 600
time [h]

24

25

26

27

28

29

30

31

32

M
ea

n 
Ai

r T
em

pe
ra

tu
re

 [°
C]

Recursive Strategy
Predicted
Actual

Figure 3.37: Medium Office: detail of simulated mean indoor temperature and
forecasted mean indoor temperature through recursive strategy

58



3.4. ANALYSIS OF DEVELOPED MODELS

Figure 3.38: Medium Office: Box plot of simulated and recursively forecasted
mean indoor temperature and distribution of relative error

Figure 3.39: Medium Office: Box plot of test cooling power and that calculated
through thermostat object and distribution of relative error

Also in this case, the model is very accurate and follows very well the simulated
temperature profile; it is important to notice that both the resulting temperature
and cooling power distributions are very similar to the original ones: the interquar-
tile distribution is almost the same, despite the minimum LSTM temperature is
lower than the one computed by E+. The cooling energy computed considering
temperature predictions is equal to 157.518 [MWh] against 156.615[MWh], which
means a relative error of 0.577%.
The results of these analysis show that the difference of cooling power due to
the error of LSTM predictions is very low, with a relative error on total energy
consumption that is maintained well below the threshold of 1%.
The aim of this entire process is to develop data-driven models (based on artificial
neural networks) which are able to simulate the thermal-dynamic behaviour of
considered buildings. The final goal is to coordinate the energy consumption of
a cluster made by four buildings through an innovative control strategy based

59



3.4. ANALYSIS OF DEVELOPED MODELS

on single agent reinforcement learning. The data-driven approach has two main
advantages:

• the first one is to avoid physic-based energy simulations that, despite their accu-
racy, require detailed input, models calibration and increase the computational
costs.

• The second is that through data-driven approach is possible to capture the
real dynamic of the buildings, through data collected by sensors. In this way,
by correctly processing those data, it is possible to build a model that reflects
the real behaviour of the buildings.

To evaluate the reinforcement learning agent, the developed models are integrated
into CityLearn; in this way the controller would have the possibility to exploit
demand response actions not only by controlling the charge/discharge of thermal
storages, but also by modulating the HVAC cooling power. Demand response, in
fact, is a very interesting technique which has the potential of reducing buildings
electricity demand peaks by about 20%. However, buildings are very difficult
to model and coordinate, especially thanks to their complex dynamic (due to
almost stochastic occupants’ behaviour, refurbishment measures, complex thermal-
dynamic). RL has the potential to overcome this problems, since it is adaptive,
model free and could learn from historical and real time data, through the interaction
with its surrounding environment. A lot of research has been conducted in the use
of RL to exploit DR actions, however, there is a lack in experiments’ reproducibility
and standardization. CityLearn [23] is an OpenAI Gym environment that is
created to address these issues: its main objective, in fact, is to facilitate and
standardize the evaluation of RL agents, enabling an easier comparison of different
algorithms. CityLearn allows to control the storage of domestic hot water (DHW),
and chilled water. It also includes energy models of air-to-water heat pumps,
electric heaters, and the pre-computed energy loads of the buildings, which include
space cooling, dehumidification, appliances, DHW, and solar generation. Some
previous works have been conducted exploiting CityLearn framework, in [24] the
authors implemented the state of the art algorithm Soft Actor Critic (SAC) deep
reinforcement learning (DRL) agent in order to handle continuous action space
(for a detailed explanation of reinforcement learning algorithms is suggested to see
chapter 4). The centralised agent was able to effectively control thermal storages,
highlighting the potential application of DRL as a plug-and-play controller style.
Furthermore, Pinto et al. [25] implemented the SAC algorithm to control a cluster
of 4 buildings in order to asses the ability of the DRL agent in reshaping and
flattening the electricity consumption curve. The main contribution of this work
is that they took into account the influence that the outdoor temperature has on
the COP and on the declared capacity (DC) of the heat pump (HP): in CityLearn,
in fact, these two parameters are kept constant, which is unreal in a practical
implementation. The results of this work show how the DRL agent is effectively able
to flatten the load profile and shift the charge of the storages between the different
buildings, optimising both energy consumption and costs. Moreover, in [26], the
authors implemented a distributed control solution, which consists of a central load

60



3.4. ANALYSIS OF DEVELOPED MODELS

aggregator that optimizes system-level objectives and building-level controllers that
track the load profiles planned by the aggregator. The proposed approach was
evaluated through CityLearn simulation environment across four climate zones in
four nine-building clusters; results demonstrated that was possible to reduce costs
of an average equal to 16.8% with respect to a standard RBC controller. Another
very interesting work is performed by Canteli et. al. [27], they implemented a multi
agent reinforcement learning controller in CityLearn. The agents were evaluated
on the average of five normalized metrics (normalization is performed according
to RBC performances) and results outperformed both independent/uncooperative
reinforcement learning agents and manually optimized RBC. As previously said, the
main contribution of this thesis work laid in the fact that the centralized controller
has the possibility to control also the cooling power provided by HVAC system: this
possibility introduce an additional degree of freedom in terms of demand response,
however this increase the complexity of the control problem, since the agent has to
choose at least 2 actions per each building (depending on the number of storages
per each building).

61



Chapter 4

Reinforcement Learning
overview

Reinforcement learning (RL) is an area of machine learning concerned with how
software agents ought to take actions in an environment in order to maximize the
notion of cumulative reward. Reinforcement learning is one of three basic machine
learning paradigms, alongside supervised learning and unsupervised learning. In
other terms, Reinforcement Learning could be defined as the science of decision
making, it is a fundamental science which tries to understand the optimal way
to make decisions; in engineering, reinforcement learning is applied to the field of
optimal control, which is the branch that deals with finding the best sequence of
actions to efficiently control a system. The main difference between Reinforcement
Learning and Supervised Learning is that the former is characterized by the absence
of supervision; the paradigm is completely different: the actions to be taken are
not known a priori but are learned by trial and error through a reward signal.
Moreover, another distinction is that feedbacks related to the quality of the actions
could not be instantaneous, but delayed. Furthermore, in RL, time is an essential
feature: it deals with sequential decision making processes in which an agent has
to pick decisions time step by time step. The agent has to take actions which
influence the surrounding environment, in this way the data received by the agent
are influenced by its actions: this paradigm is known as active learning process.

4.1 The Reinforcement Learning Problem
A Reinforcement Learning problem is mainly characterized by:

• a reward Rt

• an action At

• an Observation Ot

The reward is a scalar feedback signal that describes how well the agent is performing
at time step t: the aim of the agent is to get as much reward as possible, in other

62



4.1. THE REINFORCEMENT LEARNING PROBLEM

terms it has to maximize the cumulative reward. The goal of the agent, in fact, is
to select actions in order to maximize the total future reward; since actions may
have long term consequences and reward may be delayed, it is important that the
agent learns to plan ahead.

Figure 4.1: Representation of a Reinforcement Learning Problem

A key concept in RL is the state: it is a summary of the information used by the
agent to determine its next action; formally, the state is a function of the history,
where history is a sequence of previous actions, observations and rewards. The
state could have different definitions:

• Environment state Se
t which is the environment’s internal representation,

is represented by all the data the environment uses to determine the next
observation and reward. Generally, the agent does not see the environment
state

• Agent state Sa
t which is the agent’s internal representation, is the information

the agent takes to determine the next action.

Mathematically, the state is known as Information State or Markov State and is
defined starting from the Markov Property:

P
è
St+1 | St

é
= P

è
St+1 | S1, ..., St

é
which states that the probability of the next state conditioned to the current state
is the same is equal to the probability of the next state conditioned to all the
previous states. This means that the probability of the next state is only influenced
by the current state, the future is independent from the past given the present. In
Fully Observable problems, the agent directly observe the environment state and

Ot = Sa
t = Se

t

However, fully observable environments are uncommon, generally RL problems are
characterized by a partial observability, where the agent can only partially observe

63



4.1. THE REINFORCEMENT LEARNING PROBLEM

the environment, in this case the agent state is different from the environment
state.

4.1.1 The RL Agent
A reinforcement learning agent could include one or more of these components:

• Policy: it is a function that describes the behaviour of the agent. it is a map
from states to actions. There are two kinds of policy, deterministic where
a = π(s) and stochastic, which is useful to make random exploratory decisions
and see more of the state space a = π(a|s) = P [A = a|S = s]

• Value Function: it is a prediction of the expected future reward starting from
a particular state

vπ(s) = Eπ

è
Rt + γRt+1 + γ2Rt+2 + ... | St = s

é
• Model: it is used to predict the evolution of the environment; there are two

kinds of model:

– Transition models which predict the next state, they are used to model
the dynamics of the environment

– Rewards model which predict the next immediate reward

According to these tree components, it is possible to categorize the RL agent; in
particular we can distinguish in :

• Value Based algorithms if the agent is only characterized by a value function
and the policy is implicit: the policy is not necessary since it is possible to
pick actions only by acting greedily with respect to the value function

• Policy based algorithms where there is only an explicit representation of the
policy and an implicit representation of value function

• Actor Critic algorithms which are a combination of the previous two algorithms,
in this case the agent stores both the policy and the value function

• Model Free algorithms which are characterized by the absence of a model.
They could store both policy and value function or explicitly represents only
one of these two functions.

• Model Based algorithms which are similar to model free except for the presence
of a model of the environment.

These concepts are well summarized in the following figure:

64



4.2. MARKOV PROCESS

Figure 4.2: RL agent taxonomy [28]

4.2 Markov Process
A Markov process could be described as a sequence of random states where the
probability of end up in another state given a current state is not influenced
by previous states (memoryless random process). A Markov process could be
mathematically described by a tuple which contains a set of states S and and the
state transition probability matrix P . This matrix describes the probability to end
up in all the other possible states given the current state. The set of states and
probabilities is enough to fully describe the dynamic of the system.

4.2.1 Markov Reward Process
A Markov reward process (MRP) is a Markov process with value judgments which
indicate how much reward could be accumulated across a particular sequence of
states sampled from the Markov process. The difference between a Markov process
is the presence of the Reward Function R and the discount factor γ. The former
describes the immediate reward associated to a particular state. In a Markov
reward process, an important quantity is described by the return Gt, which is the
total discounted reward from time step t:

Gt = Rt+1 + γRt+2 + ... =
∞Ø

k=0
γkRt+k+1

The discount factor γ is a value between 0 and 1 that discounts the future rewards.
γ accounts for the fact that could be preferable to have short term reward instead

65



4.2. MARKOV PROCESS

of delayed reward. The closer γ is to zero, the more immediate reward is important,
the closer is to 1, the more delayed rewards are important. The Markov reward
process is strictly related to the value function v(s): the state value function of an
MRP is the expected return staring from state s:

v(s) = E
è
Gt | St = s

é
4.2.2 Bellman Equation for MRPs
The Bellman Equation describes one of the most fundamental relationships in RL,
it is based on the fact that the value function can be decomposed in two parts:

• immediate Reward Rt+1

• discounted value for successor state γv(St+1)

v(s) = E
è
Gt | St = s]

= E
è
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

é
= E

è
Rt+1 + γ(Rt+2 + γRt+3 + ...) | St = s

é
= E

è
Rt+1 + γGt+1 | St = s

é
= E

è
Rt+1 + γv(St+1) | St = s

é
.

Figure 4.3: Bellman equation scheme

66



4.2. MARKOV PROCESS

4.2.3 Markov Decision Process
A Markov Decision Process (MDP) is an MRP which includes also decisions in the
form of actions. MDPs formally describe an environment for reinforcement learning
[29]. In an MDP all states are Markov and the transition probability matrix is
influenced by actions. To formalize how actions are taken is necessary to introduce
the concept of policy: a policy π is a distribution over actions given states.

π(a|s) = P [At = a | St = s]

A policy fully defines the behaviour of an agent. After have defined the policy,
it is possible to introduce the state-value function which is denoted as vπ(s) and
represents the expected return when starting in s and following π thereafter [10];
in other terms it says how good is for the agent to execute a given action given a
particular state.

vπ(s) = Eπ[Gt | St = t]

The state value function has not to be confused with another type of value function
, called action value function which, instead, tells how convenient is for the agent
to take action a in state s, under the policy π:

qπ(s, a) = Eπ[Gt | St = s, At = a]

Having defined this value functions, it is possible to introduce the Bellman equation
in the MDP case, which is called Bellman Expectation Equation. Considering the
state value function, the Bellman expectation equation could be written as:

vπ(s) =
Ø

a

π(a|s) qπ(s, a)

On the other hand, for the action value function, the Bellman expectation equation
is:

qπ(s, a) = Ra
s + γ

Ø
sÍ

P a
ssÍvπ(sÍ)

By putting these two equations together it is possible to redefine the state value
function:

vπ(s) =
Ø

a

π(a|s)
1
Ra

s + γ
Ø
sÍ

P a
ssÍvπ(sÍ)

2

The formula could be understood by looking at the following back up diagram:

67



4.3. DYNAMIC PROGRAMMING

Figure 4.4: Backup Diagram for State-Value Function

The definition of the optimal policy is straightforward; in fact, a policy π is
better that another policy πÍ if the expected return of the former is greater then
the latter’s:

π > πÍ ⇐⇒ vπ(s) > vπÍ(s)
The optimal state-value function v∗(s) is the maximum value function over all
policies:

v∗ = max vπ(s)
In the same way, the optimal action-value function q∗(s) is the maximum action-
value function over all policies:

q∗ = max qπ(s)

4.3 Dynamic Programming
Dynamic programming (DP) is an optimization method for sequential problems, in
fact, the term dynamic accounts for the temporal component of the problem while
the term programming accounts for the optimization of a program, in this case,
identified by the policy. The great advantage of DP is that it is a very general
solution method for problems characterized by sub-optimal substructure and that
can be divided into overlapping sub-problems, so once one of them is solved, the
solution can be stored and later reused, since they recur many times. The same two
proprieties are completely satisfied by a MDP, in particular, the Bellman equation
gives recursive decomposition while the value function stores and reuses solutions.
To be specific, a DP algorithm is used to solve a problem in which there is the full
knowledge of the MDP . This problem is known as Planning and it can be divided
in two parts:

68



4.4. MODEL FREE PREDICTION

• Prediction: given a MDP or MRP and a policy π as input, the objective is
to evaluate the value function vπ i.e. to demonstrate how good is the input
policy.

• Control which has as input an MDP and as output the optimal value function
v∗ and the optimal policy π∗(s)

To solve a prediction problem it is possible to follow an iterative procedure trough the
iteration of the Bellman expectation equation; however, this approach requires too
much computational effort. A better idea is to use an approach called Synchronous
backup in which, for each iteration k + 1, for all states s ∈ S, vk+1(s) is updated
starting from vk(sÍ), where sÍ is the state after s.

vk+1(s) =
Ø

π(a|s)
1
Ra

s + γ
Ø

P a
ssÍvk(sÍ)

2
Basically for each state s at time step k + 1, the new value function is computed
starting from the old value functions of the future states; the algorithm converges
as k −→ ∞. In a control problem, the aim is to improve a given policy up to the
optimal policy. The first step of this procedure is to evaluate the initial policy,
which means to figure out the value function for that function. The second step is
to improve the current policy by acting greedily with respect to the current value
function.

πÍ = greedy(vπ)

This procedure is called Policy Iteration and is proven to converge to the optimal
policy.

πÍ(s) = argmax qπ(s, a) = argmax Eπ

è
Rt+1 + γvπ(St+1|St = s, At = a

é
As soon as the policy π is improved, the new policy πÍ is improved again to obtain
a new better policy πÍÍ. This procedure perpetuates up to the point where the
optimal policy π∗ and the optimal value function v∗(s) are found.

4.4 Model Free Prediction
Previously was demonstrated how DP could be a very powerful tool to solve
prediction and control problems; however, its biggest limit lays in the fact that the
environment has to be fully known. In real world problems this complete knowledge
is almost impossible to achieve (e.g. the transition probability matrix is almost
impossible to be known a priori). RL algorithms try to provide a solution for both
prediction and control, but completely model-free, by learning through a real or
simulated experience

69



4.4. MODEL FREE PREDICTION

4.4.1 Monte-Carlo Reinforcement Learning
Monte Carlo (MC) methods learn directly from episodic experiences, it is model
free since it does not require any knowledge of MDP transitions and rewards.
Since it learns only from complete episodes it is impossible to use bootstrapping.
Starting from a particular state and following a policy π, MC policy evaluation
uses empirical mean return of expected return: for each state, the method involves
collecting as many samples as possible in order to compute the mean of various
collected expected returns. Each occurrence of a state during the episode is called
visit. The concept of visit is important because it allows to categorize two different
MC approaches:

• First-Visit MC policy evaluation which is defined as the average of the returns
considering only the first visit to s, within a given episode: a counter takes
into account how many times a state is encountered (taking in to account only
the first time in each episode) while the total return takes into account the
sum of the return G corresponding to the first visit per each episode. The
value is estimated dividing the total return by the counter and, by the law of
large numbers, the value function is proven to converge to the value function
for the corresponding policy.

• Every-Visit MC policy evaluation which, differently from the previous approach,
considers each time a state is encountered to update the counter and the total
return. The value function is then computed in the same way.

Another way to compute the value function is based on the incremental mean
in which the mean is updated in the direction of the error between the old and
the new mean. Each time a state St with return Gt is encountered, the following
computations are performed:

N(St)←− N(St) + 1

V (St)←− V (St) + 1
N(St)

1
Gt − V (St)

2
It is also possible to substitute 1

N(St) with a constant step size α which is called
learning rate

4.4.2 Temporal-Difference Learning
It differs from MC learning since Temporal-Difference (TD) learns from incomplete
episodes, by bootstrapping. TD can learn online every time step, while MC must
wait until the end of an episode before knowing the return: for this reason, MC
cannot be used in continuous environments where there is not an end of an episode.
The simplest temporal-difference learning algorithm is called TD(0) and updates
the value V (St) towards the estimated return Rt+1 + γV (st+1)

V (St)←− V (St) + α
1
Rt+1 + γV (st+1)− V (St)

2
70



4.5. MODEL FREE CONTROL

The immediate Reward Rt+1 and the discounted value of value function γV (st+1)
in the next step are estimated and used to replace the actual Return Gt. This
concept is called bootstrapping: the original guess is updated from the subsequent
guess.

4.4.3 TD(λ) and eligibility trace
As previously analyzed, in TD(0) target depends just on the estimate of the value
function at the next step; however nothing prevents us to look ahead for the n next
steps to perform the update. In n-step TD, the target is computed as the n-step
return:

G
(n)
t = Rt+1 + γRt+2 + ... + γn−1Rt+n + γnV (St+n)

this defines the n-step temporal-difference learning

V (St)←− V (St) + α
1
G

(n)
t − V (St)

2
Different n generates different results, it is necessary to find an algorithm that
allows to combine information from all time steps without increasing the complexity
of the problem. This algorithm is called TD(λ) where the λ is a weight used to
combine all the n-step returns G

(n)
t . G

(λ)
t is called λ return and is the geometrically

weighted average of all n.

Gλ
t = (1− λ)

∞Ø
n=1

λn−1Gn
t

Actually, Gλ
t represents the target in forward-view TD(λ), since the utility is

computed looking into the future, and as it happens in MC, it requires the ending
of the episode. The other type of TD(λ)is called backward-view TD(λ)and it
exploits the concept of eligibility trace. The idea of TD(λ) with eligibility trace
is to update the utility function by considering not only the next step, but also
the previous states visited during the current episode. It assigns credit to both the
most frequent states and the most recent states.

4.5 Model Free Control
Differently from prediction, where the objective is to estimate the value function of
an unknown MDP, a control aims to optimise the value function of an unknown
MDP. As previously discussed, a control problem aims to find the optimal policy
and RL takes over DP when the MDP is unknown or is known but too big to be
used. Model free control is characterized by two different types of learning:

• On-policy learning, where actions are sampled from a certain policy π and, at
the same time, the same policy is evaluated

• Off-policy learning , where the agent learns about policy π from experience
acquired through another policy, µ

71



4.5. MODEL FREE CONTROL

4.5.1 Monte Carlo evaluation
When MC method is used, a part of the algorithm has to perform the policy
evaluation while the other part performs policy improvement. Here, the first
problem shows up, since it is not sufficient to adopt a greedy policy improvement
because of the trade-off between exploration and exploitation. To be sure that the
provided policy is optimal, exploration cannot be avoided since all the states of
the environment must be visited, even if they do not return the highest immediate
reward. To perform greedy policy improvement is necessary to use the action value
function instead of the state value function, since the latter requires a model of the
MDP (to know the transition probability matrix). On the other hand, action value
function enables to perform control in a model free setting.

πÍ(s) = argmax Q(s, a)

The simplest way for ensuring continuous exploration is to adopt the Ô-greedy
exploration. The greedy action is chosen according to a probability equal to 1− Ô
while the random action is chosen according to a probability equal to Ô. Taking
into account m possible actions:

π(a|s) =


Ô
m

+ 1− Ô a∗ = argmax Q(s, a)
Ô
m

otherwise

According policy improvement theorem, for any Ô-greedy policy π, the Ô-greedy
policy πÍ with respect to qπ is an improvement, vπÍ(s) ≥ vπ(s)

4.5.2 SARSA
SARSA is probably one of the most known on-policy algorithm in RL field, it
extends the idea of Temporal-Difference to the control problem. The basic idea is to
apply TD to Q(s,a) and use Ô-greedy policy improvement. SARSA is the acronym
of State-Action-Reward-State-Action which well explains the concept behind this
algorithm: starting from a particular state S and performing a particular action A,
the agent receives a reward R and ends up in a new state S’, where it picks another
action A’, this time sampled according to the current policy.

Q(S, A)←− Q(S, A) + α
1
R + γQ(S Í, AÍ)−Q(S, A)

2
4.5.3 Q-Learning
SARSA gives an idea of what on-policy learning means, since the agent learns
about policy π through experience sampled by policy π itself. On the contrary,
in off-policy learning (learning from observation) optimal policy is obtained by
the observation of another policy µ that is never updated. One of the biggest
advantages that makes off-policy learning a very powerful tool, lies in the fact that
it gives to the agent the ability of learning an optimal policy looking to the actions
taken by another agent. Furthermore, it opens the doors to the “experience replay”

72



4.5. MODEL FREE CONTROL

of deep learning strategies, where a part of information collected in the past is
re-used to enhance the current policy. The idea behind Q-learning is that, at each
time step two actions are considered: the first one is the real performed action,
sampled from the policy µ; the second one is an alternative action sampled from
the target policy π. The action value function is then updated in the direction of
the target policy:

Q(St, At)←− Q(St, At) + α
1
Rt+1 + γQ(St+1, AÍ)−Q(St, At)

2
The target policy π is greedy with respect to Q(s,a)

π(St+1) = argmax Q(St+1, aÍ)

while the policy µ is Ô-greedy. To summarize, the Q-learning update the Q value
in the direction of the maximum Q value that could be taken from the successive
step. For this reason, this algorithm is also called SARSAMAX:

Q(S, A)←− Q(S, A) + α
1
R + γ max Q(S Í, aÍ)−Q(S, A)

2
4.5.4 Deep Q-Learning
In simple settings, Q-learning uses lookup tables called Q-Tables: they are tables
of n rows (where n represents the number of states) and m columns (where m
indicates the number of possible actions for each state) that store Q-value for each
pair of state-action. The Q-values are updated during the learning process thanks
to the agent’s experience. The problem is that it is not possible to store all the
values when the MDP is too large (too many states and actions) or continuous.
In these cases it is necessary a function approximator. As discussed in chapter 2,
artificial neural networks are known thanks to their capability to approximate every
kind of function. A practical example of non-linear function approximation in the
RL domain is the deep Q-network (DQN) which overcomes the limits of Q-learning.
As suggested by the name, in DQN the goal is to approximate the action value
function Q(s,a) through a Deep Neural Network; The difference from standard
supervised learning problems is that during training phase, the target function
Q̂(s, a; w) is continuously variable and a specific training method for non-stationary
data is required. Furthermore, in RL problems there is not a supervisor, but only
rewards; in case of MC learning, the supervisor is replaced by the return Gt from
a particular state while in case of TD learning, the supervisor is the TD target.
The former case is unbiased (noisy sample pf the true value) while the latter is
biased; however, also in TD learning, the convergence is ensured at least to a local
optimum. DQN uses experience replay and fixed Q-targets. Experience replay
consists of storing in memory a given number of past experiences and then sampling
randomly a small sized mini-batch of those experiences, that will be used as stable
input for the DNN, in order to perform the training process and update network
weights. However, training a DQN with only a single network for both Q value
and target is not efficient: with a single neural network, in fact, both the first
pass (which associate the Q value for the action-state pair) and the second pass

73



4.5. MODEL FREE CONTROL

(which is used to compute the target Q value) occur using same network weights.
Common weights generates instability problems since, at each iteration, the Q
value is updated in order to get closer to the target value that, at the same time,
moves in the same direction. The method used to solve this issue consists in using
a different network (called target network) to compute the target Q value. The
target-network is a DNN used to create the target and whose weights are kept
constant for a definite number of iterations. Indeed, in a DQN algorithm there
are always two DNN, denoted by weights w and w−. At the beginning of the
algorithm w and w− are set equal with a random initialization and thereafter w is
continuously updated while w− is kept constant. Just after a certain number of
iterations a reset is executed, and again w−= w. The loss function to be minimized
could be written as:

L = Es,a,r,sÍ∼Di

è1
r + γ max Q(sÍ, aÍ; w−

i )−Q(s, a; wi)
22é

where D is the dimension of the experience buffer.

4.5.5 Soft Actor Critic
The Actor-Critic (AC) architecture involve the use of two different entities, e.g.
two function approximators, that compose the agent as we know it from the formal
definition of an MDP. The actor is the part that chooses the action to be performed,
while the critic judges what the actor does and tells it how good it’s what it is doing.
When talking of Actor-Critic architecture, is convenient to remember that it is used
only during the training. When it is over, only the actor is used. As a matter of fact
the critic is used to the train the actor, even though the critic requires a training
too. The critic may approximate the action-value function using the TD error and
the actor may approximate the policy. While the critic usually uses TD error loss
function gradient to update its parameters, the actor network may be updated
exploiting gradient coming from critic, e.g. using Policy Gradient algorithm. The
soft actor critic (SAC) (which is an off policy algorithm) is a newest version of
AC, recently introduced by Haarnoja et al [30]. Differently from most existing
model-free models, it uses a continuous action space. This algorithm aims to
maximize a target function composed not only of the term expected reward but also
of an entropy term. The term entropy could be interpreted as how unpredictable a
random variable is. This last term, is what expresses the attitude of our agent in the
choice of random actions. An high entropy coefficient is desirable since it ensures
the exploration of new policies avoiding the collapse into repeatedly selection of a
particular action that could generate inconsistency in the approximated Q function.
The objective function to minimize consists of both a reward term and an entropy
term H weighted by a coefficient α, called temperature parameter :

J(π) =
TØ

t=0
E(st,at)∼ρπ

è
r(st, at) + α H(π(·|st))

é
SAC makes use of six networks: a policy function π, a target policy, two Q-functions
Q and two Q targets. In principle, it would not be necessary to have separate

74



4.5. MODEL FREE CONTROL

approximators; however, authors demonstrated that in practice having separate
function approximators helps in convergence. So it is needed to train six different
function approximators. The architecture of SAC is shown in the following figure:

Figure 4.5: Actor-Critic-Environment interaction and neural networks in rein-
forcement learning [25]

75



Chapter 5

Case Study: integration of
LSTM models into
CityLearn environment

This chapter shows the integration of the neural networks models into the CityLearn
environment. Through this process the RL agent could interact with building
models, in order to learn the optimal control policy that allows to optimize energy
consumption and reduce as much as possible the stress on the electrical grid (in
terms of peak demand). The main contribution of this thesis is that the presence of
neural network models makes it possible to modulate the HVAC power taking into
account thermal comfort; during the training process, the centralized agent could
decide to reduce or increase the power consumption: the selected power is then
used as input to the neural network which returns the corresponding temperature.
Then, this temperature value is used in the computation of the reward function:
in this way the agent is trained to control the HVAC system in order to optimize
energy usage, taking into account building thermal dynamics and thermal comfort.
The first part of the chapter is related to the description of the RBC controller
which is used as a benchmark; the second part deals with the explanation of the
design DRL-SAC control logic: the definition of the action space, the state space
and the reward function will be addressed and analyzed.

5.1 Description of the Rule Based Controller
The RBC is used as a benchmark, in order to evaluate the performance of the SAC
algorithm. It is designed to always provide to the building the pre-computed cooling
demand, which has been obtained from IdealLoadsAirSystem object of EnergyPlus.
The cooling energy demand is satisfied by a heat pump which is dimensioned in
order to cover the building’s energy needs at each time step. For this reason the
nominal thermal power is computed by multiplying the maximum cooling power of
the considered building with a "safety coefficient" equal to 1.75 (this coefficient is
necessary in order to provide enough cooling energy to satisfy the building cooling

76



5.2. DESCRIPTION OF DRL CONTROL LOGIC

load). The storages are designed in order to cover the maximum energy load for
three hours, the cold one is linked to the heat pump while the hot one receives
thermal energy from an electric heater. The RBC control actions are manually
optimized to reduce energy costs: in particular, storages are uniformly charged
during the night, when the cost of electricity is lower, and uniformly discharged
during the day. CityLearn automatically sets constraints to the actions from the
controllers to guarantee that the DHW and cooling demands are satisfied, and that
the building does not receive from the storage units more energy than it needs.
It is important to notice that, by definition, the ideal load is the exact quantity
of energy required to maintain the desired set point; for this reason, under the
point of view of thermal comfort, it has not sense to compare the RBC and the
SAC. However, the RBC is useful as a benchmark, to compare and to explore
the potential of reinforcement learning as a control approach for building energy
coordination and demand response.

5.2 Description of DRL Control Logic

Centralized Agent 

Environment 

LSTM Building Models 

Control actions At 

 HVAC cooling power 
 Charge/Discharge of chilled 

water storage 
 Charge/Discharge of DHW  

storage 
 

Reward Rt 

State St 

Figure 5.1: Scheme of the RL control problem

77



5.2. DESCRIPTION OF DRL CONTROL LOGIC

5.2.1 Description of the Action space
The action space of this control problem is quite complex because the agent is
centralized: the dimension of the action space is equal to 11 since all buildings
except the small office have 3 controlled variable: the HVAC cooling power, the
chilled water storage charge/discharge and the DHW storage charge/discharge.
The small office does not have the DHW storage, since its DHW demand is very
low: for this reason it has only two controlled variables. The action related to the
HVAC cooling power can vary from 0 to 1; then, the selected value is multiplied
by the minimum between the nominal thermal power of the heat pump and the
available cooling power in the corresponding time step (which could be lower
than the nominal power due to environmental conditions). The actions related
to the storages can vary between −1

3 and 1
3 , negative values indicate a discharge

while positive values, a charge. These values are used to simulate a more realistic
environment, where the storages, at each time step (1 hour), can be charged or
discharged at a maximum rate of one third of their capacity.
It is necessary to specify that the environment was set in order to shut down the
HVAC system during unoccupied hours: the action related to the HVAC power, in
fact, is set to 0 during the night, when the building is unoccupied.

5.2.2 Description of the State space
The state represents the environment as it is observed by the control agent [31]. The
state space is fundamental because the agent selects actions according to the values
that the state assumes. The idea behind the selection of state variables is to include
those that well describes the environment: for this reason, weather variables, like
outdoor air temperature and direct and diffuse solar radiation, economic variables,
like the price of electricity and its predictions from 1 to 3 hours ahead, and action-
related variables, as the state of charge of storages, the consumed electrical power,
the HVAC cooling power and the temperature difference between the set point
and the predicted indoor temperature are included. Furthermore, the state space
also encompasses low-level information from each building, regarding non-shiftable
loads (e.g., fans, lights) and the COP of the heat pumps (both the nominal and
the temperature-dependent one). Moreover, also outdoor temperature and solar
radiation forecasts are included in the state space. In the following page it is
possible to see in detail all the states which are used for each building, the table
reports the min and max values for each variables; however, the "*" means that
the min and max values for the considered variable depend on the building and, to
avoid to displace four different tables, are omitted.

78



5.2. DESCRIPTION OF DRL CONTROL LOGIC

Variable min value max value Unit
hour 1 24 h
day 1 7 -
month 6 8 -
Outdoor Air Temperature 10.8 36.9 °C
Outdoor Air Temperature 6h Forecast 10.7 36.96 °C
Outdoor Air Temperature 12h Forecast 10.5 37 °C
Outdoor Air Temperature 24h Forecast 10.3 37.96 °C
Direct Solar Radiation 0 1037.7 W/m2
Direct Solar Radiation 6h Forecast 0 1052.6 W/m2
Direct Solar Radiation 12h Forecast 0 1075.8 W/m2
Direct Solar Radiation 24h Forecast 0 1118.25 W/m2
Diffuse Solar Radiation 0 523.08 W/m2
Diffuse Solar Radiation 6h Forecast 0 526.36 W/m2
Diffuse Solar Radiation 12h Forecast 0 547.0022 W/m2
Diffuse Solar Radiation 24h Forecast 0 542.9011 W/m2
Non-shiftable load * * kW
Cooling Storage State of Charge * * -
DHW Storage State of Charge * * -
COP * * -
COP(T) * * -
Total Hourly Electric consumption * * kWh
RL HVAC Cooling Power 0 * kW
Set Point 26 30 °C
∆T Setpoint - LSTM indoor temperature 0 3 °C
Electricity price 0.03025 0.06605 $
Electricity price 1 hour ahead 0.03025 0.06605 $
Electricity price 2 hour ahead 0.03025 0.06605 $
Electricity price 3 hour ahead 0.03025 0.06605 $

Table 5.1: Variables included in the State space

Each state variable is then scaled between 0 and 1 through the minmax normaliza-
tion, as generally required by neural networks.

5.2.3 Description of the Reward function
The design of the reward function is challenging, since it must be representative of
the control problem under attention and it must take into account both the energy
consumption and indoor thermal comfort. In this case study, the reward is the
result of a combination of different factors which take into account thermal comfort,
peak reduction and energy consumption. In particular, it can be expressed as :

R =
nØ

i=1
Comf_penalty +

nØ
i=1

En_penalty +
nØ

i=1
Stor_prize + peak_penalty

79



5.2. DESCRIPTION OF DRL CONTROL LOGIC

where n indicates the number of considered buildings.

Thermal Comfort Penalty

This term of the reward function is used to try to minimize the temperature
violations; in particular, the objective of the controller is to maintain the mean
indoor temperature in a range that goes from 25 °C to 27 °C, while the set point is
equal to 26 °C. This term is designed as follow: if the set point is different from
26°C, its value is equal to zero.

Comf_penalty = 0

On the other hand, when the temperature set point is 26 °C, the term is structured
in this way:

• if 26 ≤ Tin ≤ 27:
Comf_penalty = 0

• if 25 ≤ Tin < 26:

Comf_penalty = −m25 (26− Tin)

The idea behind this linear term is to encourage the controller to stay as much
as possible close to 26 °C, in order to consume less energy.

• if Tin < 25:
Comf_penalty = −m25 (26− Tin)3

• if Tin > 27:
Comf_penalty = −m27 (Tin − 26)2

When the indoor temperature exceeds the lower or the upper bound, the comfort
penalty is not linear anymore, but becomes non linear; the only difference is that,
for lower temperatures, the exponent is cubic instead of quadratic: this is due to
the fact that temperatures under 25 °C would generate both thermal discomfort
and additional energy consumption.

Energy Penalty

The energy term of the reward function is computed only when the set point is
equal to 26 °C (due to the fact that the HVAC cooling power is manually set
to zero during unoccupied hours) and is used to minimize the electrical energy
consumption during the HVAC operation. This term is calculated as follow:

Ener_penalty = −K
electric_power_cooling

Heat_pump_nominal_electric_power
(ρ cel)2

It is important to notice that the penalty takes into account only the electrical
power and not the thermal one: in this way, the controller is encouraged to provide

80



5.2. DESCRIPTION OF DRL CONTROL LOGIC

energy from thermal storages rather than from the heat pump. The terms is
weighted by a factor that include the energy price: in this way the electrical energy
consumption during off-peak period is less penalized with respect to peak energy
consumption. To further highlight this concept, the weight term is squared: the use
of a quadratic exponent requires the coefficient ρ, in order to make the electricity
price grater than 1.

Storage Prize

This term of the reward function is the only positive term and it is computed only
during off-peak periods. Since the action related to the HVAC cooling power is set
to zero when the building is unoccupied, the only way for the agent to maximize
this term is to consume energy by charging the storages. This term is also related
to the previous energy penalty: the former incentives to discharge storages during
the day, when the electricity price is higher, while the latter incentives the charge
during off peak periods. This term is computed as follow:

Stor_prize = (total_electrical_power− non_shiftable_electrical_power) cel δ

Peak penalty

This term has the purpose of flatten buildings and cluster profiles. To achieve this
result, the controller tries to minimise the sum of the squared energy consumption
of each building for each time step. This has the role of flattening the single
building consumption thanks to the “squared” formulation. Moreover, it minimises
the sum of each building squared consumption, avoiding simultaneous charge of
storages [25]. It is computed in this way.

peak_penalty = −β
nØ

i=1
(total_energy_consumption)2

The design of the reward function highly influences Reinforcement Learning
performances, searching compromises between energy savings, thermal comfort
and grid stability. The coefficients β, δ, K, ρ, m25 and m27 weight the relative
importance of the energy savings, temperature violations and peak shaving actions.
Moreover, since the reward magnitude influences the behaviour of SAC algorithm
[20], these coefficients are used to tune exploration-exploitation trade-off of the
agent. A sensitivity analysis was performed with the aim of finding the optimal
balance between these terms. The values used in this thesis work are summarized
in the following table.

81



5.2. DESCRIPTION OF DRL CONTROL LOGIC

Variable Value
β 0.005
δ 1.4
K 0.002

m25 0.1
m27 0.1
rho 50

A further sensitivity analysis was performed in order to find the best hyperpa-
rameter configuration. The selected parameters are summarized in the following
table.

Variable Value
DNN architecture 2 layers

Neurons per hidden layer 256
DNN Optimizer Adam

Batch size 512
Discount rate γ 0.9
Learning rate λ 0.003
Decay Rate τ 0.005

Temperature Coefficient α 0.08
Target Entropy H auto

Target model update 1
Episode Length 2196 Control Steps (92 days)*

Training Episodes 20

The agent was thus trained over the entire summer period (June, July, August),
which represents an episode; the "*" highlights the fact that the control steps are
not 2208 because the first 12 values are used as input to the LSTM models (lookback
= 12 ). The training process lasted for 20 episodes, followed by a deployment phase
of the learned control policy on the previously defined episode.

82



Chapter 6

Results

In this chapter the results of the thesis work are reported and commented. The
following analysis is the result of a static deployment on a single episode, which
lasts from the beginning of June to the end of August. In order to evaluate the
goodness of the SAC control policy, proper metrics have been calculated: their aim
is to asses the ability of the DRL agent to maintain comfort conditions during the
occupancy period (mean indoor temperature within a comfort band in the range
[25,27]) and to optimize both the energy consumption and the load shape. The
comfort performances were evaluated through the calculation of the cumulative
sum of temperature violations during the occupancy hours, measured in °C and
the average temperature discomfort corresponding to temperature violations (a
temperature violation occurs when, during occupied hours, the temperature falls
below 25 °C or rise above 27 °C). Furthermore, different "Key Performance Indicator
KPI" were computed to evaluate the ability of the controller in reducing the stress
on the electrical grid. In particular, were considered:

• Peak electric Power, computed as the max electric power consumed by the
building over the summer period

• Peak To Average Ratio (PAR), computed as the ratio between the max
consumed power and the mean one

• Cluster Electricity Cost

• Flexibility Factor, computed as the sum of hourly average off peak energy
consumption over the sum of hourly average energy consumption

In particular, the overall cluster electricity cost was computed by considering a
variable electricity price, which varies from 0.03025$ during off-peak hours to
0.06605$ during on-peak periods. For what concerns the energy and economic
performances, the controller was compared with a manually optimized Rule Based
Controller. Conversely, temperature performances have not been benchmarked:
doing a comparison with respect to the ideal load would not have sense, since,
by definition, it provides the exact thermal energy to maintain the indoor set
point perfectly. Surely, a future work have to take into account also the thermal

83



6.1. COMFORT ANALYSIS: SMALL OFFICE

performances benchmark with respect to a standard control strategy.
The following pages show the results of the thesis work: firstly, the analysis is
focused on thermal comfort aspects related to each buildings, analyzing the ability
of the controller to maintain comfort conditions. Then, the analysis is focused on
cluster level, where the impact that DRL control strategy has on the electrical grid
is evaluated.

6.1 Comfort Analysis: Small Office
The first plot shows a weekly temperature profile related to the small office. The
red band indicates the thermal comfort range while the orange one indicates the
occupied hours.

5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21

Time [h]
22

23

24

25

26

27

28

29

30

T[
°C

]

Small Office weekly temperature profile

DRL Temperature
Ideal Temperature

Figure 6.1: Small Office: Example of Weekly Temperature Profile

As could be seen, the agent is effective in maintaining the indoor temperature
within the comfort range; temperatures rarely fall below 25 °C and, in case of
temperature violation, the controller is able to restore thermal comfort in the
following hour. To confirm the agent’s ability in maintaining comfort conditions, it
is possible to observe the average indoor temperature computed for each hour of
the day during the cooling period. To perform this analysis, temperatures were
reshaped in order to have a data set with 24 columns (hours) and 92 rows (days);
subsequently, since the office is not occupied on weekends, a mask has been created
to exclude from the calculation of the average unoccupied days, in order to have
averages that effectively represents the indoor temperature conditions during the
HVAC operation . A more detailed analysis could be performed by taking into
account box plots; they have been generated for each hour of the day, in order to
better represent temperature distribution during occupied hours.
These plots are analyzed in the following page:

84



6.1. COMFORT ANALYSIS: SMALL OFFICE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Small Office Average Indoor Temperature

Figure 6.2: Small Office: Cooling Season Hourly Average Temperature

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Small Office Mean Indoor Temperature Box Plot

Figure 6.3: Small Office: Box Plot of Hourly Temperature

From these two figures it is possible to notice that the controller is able to maintain
comfort conditions: the mean temperature falls always within the comfort band
and interquartile range is almost included in [25 °C,27 °C] interval. Another useful
tool to understand temperature distribution during occupied hours is the histogram,
which is shown in the following page:

85



6.1. COMFORT ANALYSIS: SMALL OFFICE

23 24 25 26 27 28
T [°C]

0

10

20

30

40

50

60
Co

un
t

Small Office Mean indoor Temperature Distribution

Figure 6.4: Small Office: Mean Indoor Temperature Distribution

The histogram only includes temperatures during occupied hours. As could be
seen also from the previous plots, the distribution is not centered in 26°C; however,
almost all values fall within the comfort range. The upper bound is almost never
overtaken, while temperature falls easily under 25°C.

86



6.2. COMFORT ANALYSIS: RETAIL STAND ALONE

6.2 Comfort Analysis: Retail Stand Alone

5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21

Time [h]
22

23

24

25

26

27

28

29

30

T[
°C

]
Retail Stand Alone weekly temperature profile

DRL Temperature
Ideal Temperature

Figure 6.5: Retail Stand Alone: Example of Weekly Temperature Profile

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Retail Stand Alone Average Indoor Temperature

Figure 6.6: Retail Stand Alone: Cooling Season Hourly Average Temperature

87



6.2. COMFORT ANALYSIS: RETAIL STAND ALONE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Retail Stand Alone Mean Indoor Temperature Box Plot

Figure 6.7: Retail Stand Alone: Box Plot of Hourly Temperature

23 24 25 26 27 28
T [°C]

0

20

40

60

80

100

120

Co
un

t

Retail Stand Alone Mean indoor Temperature Distribution

Figure 6.8: Retail Stand Alone: Mean Indoor Temperature Distribution

The Retail Stand Alone Building is characterized by a greater number of temper-
ature violations; however, for what concerns temperatures lower than 25°C, it is
important to notice that also the ideal HVAC system violates this lower bound.
This happens especially in the morning when the outdoor air temperature is lower

88



6.3. COMFORT ANALYSIS: RESTAURANT

then 25°C: since the HVAC is an air water system, the air system introduce a certain
outdoor air flow rate per person that cause the overcooling in the earlier hours
of the morning. However, except for these hours, the average indoor temperature
falls in the comfort range and the interquartile range is almost always between the
lower and upper temperature threshold.

6.3 Comfort Analysis: Restaurant

5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21

Time [h]
22

23

24

25

26

27

28

29

30

T[
°C

]

Restaurant weekly temperature profile
DRL Temperature
Ideal Temperature

Figure 6.9: Restaurant: Example of Weekly Temperature Profile

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Restaurant Average Indoor Temperature

Figure 6.10: Restaurant: Cooling Season Hourly Average Temperature

89



6.3. COMFORT ANALYSIS: RESTAURANT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Restaurant Mean Indoor Temperature Box Plot

Figure 6.11: Restaurant: Box Plot of Hourly Temperature

24 25 26 27 28
T [°C]

0

50

100

150

200

250

Co
un

t

Restaurant Mean indoor Temperature Distribution

Figure 6.12: Restaurant: Mean Indoor Temperature Distribution

In the case of restaurant, the controller is very effective in maintaining the indoor
temperature within the desired band: the average temperature is very close to the
set point at each hour, moreover, as could be seen from the histogram, temperature
violations are rare. It is important to notice that, in this case, the interquartile

90



6.4. COMFORT ANALYSIS: MEDIUM OFFICE

range is wider than that of other buildings, which means that indoor temperature
has exceeded the considered thresholds in some hours during the cooling period.
However, the temperature distribution profile is very close to a gaussian centered
in 26°C.

6.4 Comfort Analysis: Medium Office
5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21 5 13 21

Time [h]
22

23

24

25

26

27

28

29

30

T[
°C

]

Medium Office weekly temperature profile

DRL Temperature
Ideal Temperature

Figure 6.13: Medium Office: Example of Weekly Temperature Profile

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Medium Office Average Indoor Temperature

Figure 6.14: Medium Office: Cooling Season Hourly Average Temperature

91



6.4. COMFORT ANALYSIS: MEDIUM OFFICE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

22

23

24

25

26

27

28

29

30

T[
°C

]

Medium Office Average Indoor Temperature Box Plot

Figure 6.15: Medium Office: Box Plot of Hourly Temperature

24 25 26 27 28
T [°C]

0

20

40

60

80

100

120

Co
un

t

Medium Office Mean indoor Temperature Distribution

Figure 6.16: Medium Office: Mean Indoor Temperature Distribution

Also in this case, it could be noticed that the SAC controller is able to maintain
the comfort conditions: the average indoor temperature is always between 25 °C
and 27°C. Moreover, except for the first hour in the morning and the last hour
in the evening, the interquartile range falls within the desired temperature band.

92



6.4. COMFORT ANALYSIS: MEDIUM OFFICE

Furthermore, the temperature distribution is, also in this case, very close to a
gaussian centered in the set point value. The Thermal comfort metrics are reported
in the following table:

Building
Cumulative

T<25
[°C]

Avg. T
Discomfort

[°C]

Cumulative
T>27
[°C]

Avg. T
Discomfort

[°C]
Small Office 26.7 0.25 1.89 0.27
Retail 110.3 0.49 54.5 0.40
Restaurant 41.9 0.36 49.6 0.41
Medium Office 90.9 0.40 39.25 0.40

Table 6.1: Thermal comfort metrics

The table shows that, despite the presence of temperature violations, the average
discomfort is maintained under 0.5 °C with respect the two considered thresholds.
Moreover, it is important to notice that the violations above the upper bound
are limited with respect to those under 25 °C. In fact, an indoor temperature
greater than 28°C could generate very uncomfortable conditions that must be
avoided. Temperature violations under 25°C are less relevant in terms of comfort
(also because, as previously highlighted, it is possible to have the outdoor air
temperature lower then the lower threshold) but could generate additional energy
consumption.

93



6.5. ELECTRICAL LOAD ANALYSIS

6.5 Electrical Load Analysis
Another important analysis concerns the evaluation of how the implemented control
strategy influences the electrical grid: a first observation regards the storage control
actions, since their charge and discharge can impact on the load profile.

Figure 6.17: State of Charge of Chilled Water Storage

These plots show how the DRL agent controls the chilled water storages; the period
between the orange band are those characterized by higher energy cost: it is clear
that the controller tries to charge the storages when the electricity price is lower,
in order to use stored energy during on-peak periods. Moreover, it is important
to highlight that the controller, differently from the RBC which uses an uniform
charge, learns to charge the storages as soon as the electricity price become lower,
in order to avoid operating the heat pumps at partial load. The small office presents
a control strategy less efficient than the other three buildings, since in certain
periods it charges the storage during peak periods: this is certainly an aspect to
improve in a future work. For what concerns the load shape metrics, the controller
achieved very good performances: the peak power consumption is greatly reduced,
passing from 161 kW consumed by the RBC, to 144 kW of the SAC controller. Peak
reduction is very important because it increase the reliability of the electrical grid
by reducing congestion; moreover, a lower peak power implies a reduction of peak
plant operation, which are expensive to operate and have a relevant environmental
impact. Furthermore, the SAC controller was able to achieve a great reduction of

94



6.5. ELECTRICAL LOAD ANALYSIS

Peak To Average Metric and showed a slightly enhanced Flexibility Factor. Also
the overall cost associated to cluster energy consumption have been slightly reduced
by the DRL control policy: it passed from 6661 $ to 6613 $. To visualize the peak
reduction it is possible to see the following figures:

RBC Without Storages SAC
0

25

50

75

100

125

150

175

El
ec

tri
c 

Po
we

r [
kW

]

Figure 6.18: Comparison between Electrical Power Peak

0 250 500 750 1000 1250 1500 1750 2000
Hour [h]

40

60

80

100

120

140

160

180

200

El
ec

tri
c 

De
m

an
d 

[k
W

]

Load Duration Curve

No Storage
RBC
DRL

0 5 10 15 20 25 30
130

140

150

160

170

180
Peak Demand

Figure 6.19: Load duration curve to highlight peak reduction

95



6.5. ELECTRICAL LOAD ANALYSIS

The load duration curve well highlights the peak reduction; moreover, it is
interesting to observe that the RBC, thanks to its if-then logic, has generated
a smoother profile with respect to SAC controller that, on the other hand, has
specifically optimized and reduced the peak consumption. The following table
summarize the SAC controller performances:

E. Cost Peak PAR Flexibility Factor
Manually Optimise RBC 1 1 1 1
SAC 0.99279 0.89341 0.89179 0.99721

To visualize KPI comparison is also shown the corresponding graphical representa-
tion:

Cost Peak Par Flexibility Factor
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 6.20: KPI bar plot, the red line represent the RBC

96



Chapter 7

Conclusion and Future
Work

This thesis work has shown the possibility and the feasibility to develop a fully
data-driven control scheme able to manage a cluster made by four different build-
ings, characterized by different occupancy profiles and internal loads. In particular,
in the first part of the thesis, the study was focused on the development of four
LSTM models able to emulate the buildings thermal dynamic, in order to perform
multi-step temperature forecast through recursive strategy. LSTM are a particular
supervised learning techniques which belong to the Recurrent Neural Network
category, they are especially used for time series forecast, due to their particular
gating mechanism which make possible to manage both short and long term depen-
dencies. The developed models have shown great performances on the test data
set, avoiding the error accumulation and predictions divergence. Moreover, the
recursive strategy presented prediction metrics similar to those of 1-step ahead pre-
diction model. Succesively, these four models have been integrated into CityLearn
environment, which is an open AI environment for the implementation and the
comparison of different reinforcement learning agent, in a demand-response setting.
Reinforcement Learning is a particular machine learning technique especially used
for optimal control problems. RL has acquired increasingly popularity since it
is model free and could learn optimal control policy only by interacting with its
surrounding environment. Other works have been focused on CityLearn, however,
in those works the building cooling load was known a priori. The contribution of
this study regards the possibility to control not only the storages, but also the
HVAC system cooling power, as an additional source of demand-response and load
shaping. The considered control problem is challenging, since the central agent
has to find the optimal trade off between thermal comfort, energy consumption
and load shape of each building. However, the implemented DRL controller was
able to effectively reduce peak power consumption, optimize costs and load shape,
without excessively penalize thermal comfort. One of the main limitation of this
work is the absence of a thermal comfort benchmark, since the comparison with
the ideal load is infeasible due to the fact that, in a practical implementation,
is almost impossible to maintain the temperature fixed to the desired set point

97



Conclusion and Future Work

level. For this reason, a future work could be related to the comparison with a
standard, state of the art, control technique. Moreover, other possible studies
should regard the design of the reward function, in order to enhance even more the
load shifting/shaping, without jeopardizing thermal comfort. Another idea is to
implement a cooperative/competitive multi agent SAC, instead of a centralized
controller: this would reduce the action space for each controller, which could bring
benefits for both comfort and energy consumption. Eventually, a further expansion
of the work could be done implementing the algorithm of the proposed framework
starting from real data, collected by a real building cluster; this idea comes from
the necessity to get closer to a real, practical implementation, in order to evaluate
the effectiveness of DRL in a real world setting.

98



Bibliography

[1] IEA. World Energy Outlook. 9 rue de la Fédération 75739 Paris Cedex 15
France: IEA Publications, 2019 (cit. on p. 1).

[2] IEA. The Critical Role of Buildings. url: https://www.iea.org/reports/
the-critical-role-of-buildings (cit. on pp. 1, 2).

[3] IEA. World Energy Model. url: https://www.iea.org/reports/world-
energy-model (cit. on p. 2).

[4] EBC. Annex 67. url: http://www.annex67.org/about-annex-67/ (cit. on
p. 3).

[5] IEA. «Review of applied and tested control possibilities for energy flexibility
in buildings». In: (2018) (cit. on p. 3).

[6] K.O. Aduda, T. Labeodan, W. Zeiler, G. Boxem, and Y. Zhao. «Demand side
flexibility: Potentials and building performance implications». In: Sustainable
Cities and Society (2016) (cit. on p. 3).

[7] IEA. Examples of Energy Flexibility in Buildings. 2019 (cit. on p. 4).
[8] Afram A. and Janabi-Sharifi F. «Theory and applications of HVAC control

systems - A review of model predictive control (MPC)». In: Building and
Environment (2014) (cit. on p. 5).

[9] url: https://deepai.org/machine-learning-glossary-and-terms/
machine-learning (cit. on p. 9).

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. 2014 (cit. on pp. 10, 67).

[11] F.Rosenblatt. «The Perceptron — a perceiving and recognizing automaton».
In: Report 85–460–1, Cornell Aeronautical Laboratory (1957) (cit. on pp. 11,
12).

[12] url: https://medium.com/@kshitijkhurana3010/activation-function
s-in-neural-networks-ed88c56b611b (cit. on p. 20).

[13] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. 2020 (cit. on p. 22).

[14] A.E. Ruano, E.M. Crispim, E.Z.E. Conceição, and M.M.J.R. Lúcio. «Predic-
tion of building’s temperature using neural networks models». In: Energy and
Buildings (2005) (cit. on p. 28).

99

https://www.iea.org/reports/the-critical-role-of-buildings
https://www.iea.org/reports/the-critical-role-of-buildings
https://www.iea.org/reports/world-energy-model
https://www.iea.org/reports/world-energy-model
http://www.annex67.org/about-annex-67/
https://deepai.org/machine-learning-glossary-and-terms/machine-learning
https://deepai.org/machine-learning-glossary-and-terms/machine-learning
https://medium.com/@kshitijkhurana3010/activation-functions-in-neural-networks-ed88c56b611b
https://medium.com/@kshitijkhurana3010/activation-functions-in-neural-networks-ed88c56b611b


BIBLIOGRAPHY

[15] G. Mustafaraj, G. Lowry, and J. Chen. «Prediction of room temperature
and relative humidity by autoregressive linear and nonlinear neural network
models for an open office». In: Energy and Buildings (2011) (cit. on p. 28).

[16] Z. Afroza, T. Urmee, G.M. Shafiullah, and G. Higgins. «Real-time prediction
model for indoor temperature in a commercial building». In: Applied Energy
(2018) (cit. on p. 28).

[17] H. Huang, L. Chen, and E. Hu. «A neural network-based multi-zone modeling
approach predictive control system design in commercial buildings». In: Energy
and Buildings (2015) (cit. on p. 28).

[18] A. Marvuglia, A. Messineo, and G. Nicolosi. «Coupling a neural network
temperature predictor and a fuzzy logic controller to perform thermal comfort
regulation in an office building». In: Building and Environment (2013) (cit. on
p. 29).

[19] M.J. Ellis and V. Chinde. «An encoder–decoder LSTM-based EMPC frame-
workapplied to a building HVAC system». In: Chemical Engineering Research
and Design (2020) (cit. on p. 29).

[20] F. Mtibaa, K. Nguyen, M. Azam, A. Papachristou, J. Venne, and M. Cheriet.
«LSTM-based indoor air temperature prediction framework for HVAC systems
in smart buildings». In: Neural Computing and Applications (2020) (cit. on
p. 29).

[21] url: https://www.energycodes.gov/development/commercial/prototy
pe_models (cit. on p. 31).

[22] M. Claesen and B. De Moor. «Hyperparameter Search in Machine Learning».
In: The XI Metaheuristics International Conference (2015) (cit. on p. 39).

[23] J. R. Vázquez-Canteli, J. Kämpf, G. Henze, and Z. Nagy. «CityLearn v1.0: An
OpenAI Gym Environment for Demand Response with Deep Reinforcement
Learning». In: Proceedings of the 6th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (2019)
(cit. on p. 60).

[24] A. Kathirgamanathan, K. Twardowski, E. Mangina, and D. P. Finn. «A
Centralised Soft Actor Critic Deep Reinforcement Learning Approach to
District Demand Side Management through CityLearn». In: arXiv:2009.10562
(2020) (cit. on p. 60).

[25] G. Pinto, S. Brandi, A. Capozzoli, Z. Nagy, and J.R Vazeque-Canteli. «To-
wards Coordinated Energy Management in Buildings via Deep Reinforcement
Learning». In: 15th SDEWES Conference (2020) (cit. on pp. 60, 75, 81).

[26] B. Chen, W. Yao, J. Francis, and M. Bergés. «Learning a Distributed Control
Scheme for Demand Flexibility in Thermostatically Controlled Loads». In:
arXiv:2007.00791 (2020) (cit. on p. 60).

100

https://www.energycodes.gov/development/commercial/prototype_models
https://www.energycodes.gov/development/commercial/prototype_models


BIBLIOGRAPHY

[27] J. R. Vázquez-Canteli, G. Henze, and Z. Nagy. «MARLISA: Multi-Agent
Reinforcement Learning with Iterative Sequential Action Selection for Load
Shaping of Grid-Interactive Connected Buildings». In: BuildSys ’20: Proceed-
ings of the 7th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (2020) (cit. on p. 61).

[28] David Silver. Lecture 1: Introduction to Reinforcement Learning. url: https:
//www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
(cit. on p. 65).

[29] David Silver. Lecture 2: Introduction to Reinforcement Learning. url: https:
//www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf (cit. on
p. 67).

[30] T. Haarnoja. «Soft Actor-Critic Algorithms and Applications». In: (2018)
(cit. on p. 74).

[31] S. Brandi, M.S. Piscitelli, M. Martellacci, and A. Capozzoli. «Deep reinforce-
ment learning to optimise indoor temperature control and heating energy
consumption in buildings». In: Energy Buildings (2020) (cit. on p. 78).

101

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf

	List of Tables
	List of Figures
	Introduction
	Overview of Buildings Energy Consumption
	Energy Flexibility of Buildings
	Contributions and structure of the thesis

	Machine Learning overview and Neural Networks
	Single Computational Layer
	Perceptron
	Logistic regression
	Logistic regression Gradient Descent
	Deriving the formula for Gradient Descent

	Neural Networks
	Feed Forward Neural Networks
	Recurrent Neural Networks
	Backpropagation through time
	Vanishing and Exploding Gradients in RNNs
	Long Short Term Memory (LSTM)
	Types of RNN architectures


	Development of LSTM Building Models
	Literature survey on black box modelling for Indoor Temperature Prediction
	Description of Modeled Buildings
	Model development process
	Input selection and data preprocessing
	Hyperparameters Selection and Tuning

	Analysis of developed models
	Test Results: Small Office
	Test Results: Retail Stand Alone
	Test Results: Restaurant
	Test Results: Medium Office


	Reinforcement Learning overview
	The Reinforcement Learning Problem
	The RL Agent

	Markov Process
	Markov Reward Process
	Bellman Equation for MRPs
	Markov Decision Process

	Dynamic Programming
	Model Free Prediction
	Monte-Carlo Reinforcement Learning
	Temporal-Difference Learning
	 TD() and eligibility trace

	Model Free Control
	Monte Carlo evaluation
	SARSA
	Q-Learning
	Deep Q-Learning
	Soft Actor Critic


	Case Study: integration of LSTM models into CityLearn environment
	Description of the Rule Based Controller
	Description of DRL Control Logic
	Description of the Action space
	Description of the State space
	Description of the Reward function


	Results
	Comfort Analysis: Small Office
	Comfort Analysis: Retail Stand Alone
	Comfort Analysis: Restaurant
	Comfort Analysis: Medium Office
	Electrical Load Analysis

	Conclusion and Future Work
	Bibliography

