
POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Ingegneria Matematica

Tesi di Laurea Magistrale

Distributed algorithms
for autonomous target search problems

Relatori Candidato
Prof. Fabio Fagnani Michele Da Re
Prof.ssa Sara Bernardini 263222
Prof. Nicola Gatti

Anno Accademico 2019-2020

Contents

1 Introduction 3

2 Mathematical background 6
2.1 Notions of graph theory . 6
2.2 Network games . 10
2.3 Game theoretic approach to problems over networks 15
2.4 Sampling of maximal independent sets . 18

3 Autonomous target search 20
3.1 Construction of the optimization problem . 21
3.2 Constraints . 25
3.3 Objective function . 27

4 The Distributed algorithm 31
4.1 Pseudocode . 33
4.2 Adjustments and heuristics . 34
4.3 Parameter tuning . 35

5 Results 36
5.1 Other algorithms . 36

5.1.1 Greedy Algorithm . 36
5.1.2 Constraint Programming approach . 37
5.1.3 Planning approach . 37

5.2 Comparisons . 38

6 Conclusions and future work 43

1

The trick, of course, is to be more
interested in solving problems than in
having solved them [...] Much like an
avid reader never wants to reach the end
of the book.

François Chollet

2

Chapter 1

Introduction

With the recent development of autonomous vehicles, such as drones, it is increasingly important
to investigate their capability of acting in full autonomy and undertaking intelligent decisions in
front of complex problems. One of the most interesting challenges arising is that of organizing
a research. From a practical standpoint, this problem arises for example in law enforcement
operations, in the search of missing people during natural disasters or shipwrecks, in management
of wildlife and many other settings. From an abstract standpoint, the problem of teaching a
machine how to look for something is interesting because in such a problem we must try to
imagine where the target could be or could be going, while at the same time quickly organizing
a search plan adapted to several obstacles and limited resources. In particular, the focus here is
on this latter issue: not unlike humans, machines are limited, they cannot look everywhere, and
therefore they must intelligently pick between conflicting tasks.

The broad category of problems that we consider is that of Search-and-Tracking (SaT), which is
the name given to the problem of monitoring the position of a moving target from the point of
view of an autonomous agent. Such an agent is typically a vehicle provided with powerful sensors
for detection and that does not receive instructions from a centralized entity nor from a human
intelligence. The task of monitoring the target’s position of typically thought as composed of
two distinct phases. The "tracking" phase refers to the part where the autonomous agent is
continuously detecting the target and is simply following its motion. On the other hand, the
"search" phase refers to the part that starts whenever the target is lost, for example because of
imperfect sensors or physical obstacles. In this phase the agent must decide where to search for
the target, resuming the tracking phase whenever the target is found again. Of course, the most
challenging phase of the problem from the point of view of research on Artificial Intelligence is
the search phase, where the agent must be able to take intelligent decision quickly.

This work is a development on a research effort carried by professor Sara Bernardini of Royal

3

Holloway University of London and her collaborators. The research has been presented by
means of several papers, the most important of which is Autonomous Target Search with Multiple
Coordinated UAVs (Piacentini, Bernardini, Beck, 2018) [1]. This project considers a scenario
where the autonomous agent (as in most practical applications) is composed by one or more
"Unmanned Aerial Vehicles" or UAVs, commonly known as ’drones’. The target, on the other
hand, is a vehicle that moves on the ground, for example a car that is bound to move along a road
network across a large geographical area such as central Scotland or northern England. Then,
Search-and-Tracking is formulated as a combinatorial optimization problem. It is assumed that
the target does not have an evasive behaviour, meaning that it does not try to hide, disguise
its intentions or trick the UAVs, but simply travels towards an unknown destination along the
shortest route available. When the target is lost and the search phase begins, this assumptions
allows the UAVs to partially forecast the future position of the target and to select a certain
number of locations, throughout the map, that cover well the possible paths. The motion of the
UAVs is decomposed into two kind of actions: the action of flying between two of these locations
and the action of performing the actual search, which employs standard flight patterns such as
spirals and lawnmowers. The area centred into the selected position and covered by the flight
pattern is called a search pattern. This model effectively discretizes space, since now the problem
consists in finding a sequence of search patterns, known as a plan skeleton, that is time-feasible
and that maximizes a performance function. Moreover, by assuming an a priori distribution on
the destination of the target it is possible to find an approximate formula for the probability of
success and another for its expected time.

Of course, the complexity of this optimization problem largely lies in the constraints that bound
a subset of search patterns to be time feasible in order to be a candidate search pattern. For
example, consider the case of a single UAV. Choosing to include a search pattern in the candidate
solution means having to choose when the search in that location starts. There needs to be time
to fly there, it needs to be within the time window when the target might actually be in that
area, and it prevents many other search patterns to be chosen, either because they would have to
start during the search or because there would not be time to fly there anyway. The contribution
developed by this work is a new algorithm for building candidate search plans that satisfy these
time constraints. The algorithm is referred to as "Distributed Algorithm" because the problem
of finding a feasible plan skeleton is radically rephrased within a context of network games and
best response dynamics. In this context, there are nodes that "play" a game with other nodes
over time, in such a way that the overall configuration can be mathematically described and
exploited. This is the meaning that "distributed" assumes here - the computation in itself is not
distributed, but the desired effect is obtained by means of the dynamic behaviour of a whole
network. This mathematical part was developed with the decisive contribution of the main tutor,
professor Fabio Fagnani of Politecnico di Torino, and the oversight of professor Nicola Gatti of

4

Politecnico di Milano.

The algorithm has been implemented and the code was successfully integrated with the rest of the
project previously developed, working for a span of three months at Royal Holloway University
in London. This has allowed to test the solver on working simulations, to work extensively on
the tuning of parameters and to compare performances with other solvers that were already
deployed.

5

Chapter 2

Mathematical background

In this chapter, we will define the mathematical theory behind the algorithm. This requires to
define network games, that are games played by nodes in a graph, and the dynamics known
as Noisy Best Response, which defines a Markov chain with known stationary distribution.
Moreover, the chapter will describe how a network game can be designed to solve problems over
networks, and the idea is applied to the problem of finding maximal independent sets of a graph.

2.1 Notions of graph theory

In this section, a formal definition for the concept of ’graph’ is provided, along with notions of
graph theory and with the nomenclature that is needed in the rest of this work. Most importantly,
the core concepts of independent sets and maximal independent sets are defined.

A graph is a mathematical structure that models pairwise relations between discrete objects. In
its most general definition,

Definition 1 (Graph). A graph G is a triple

G = (V, E ,W)

where

• V is a countable set called the set of ’nodes’;

• E ⊆ V × V is called the set of ’edges’;

• W ∈ RV×V
+ is called the ’weight matrix’ and has the property that

Wij > 0 ⇐⇒ (i, j) ∈ E .

6

In a graph, the nodes V model distinct objects and the edges E model pairwise relations between
them. V is usually denoted, when finite, by V = {1, . . . , n} with n = |V|. In general, edges
may represent a directed relation and may be associated with a nonnegative weight, which
is modelled by the elements of the matrix W . In the present work, however, edges always
represent an unweighted and undirected link. This means that edges are unordered pairs (i.e.
(i, j) ∈ E ⇐⇒ (j, i) ∈ E), that W is symmetric and that its elements are either 1 or 0. In this
case, W is also called the adjacency matrix. Finally, for a node i ∈ V we define the set of its
neighbours Ni as the set of nodes that i shares an edge with:

Ni = {j ∈ V : (i, j) ∈ E}.

If the graph was directed, we should distinguish out-neighbours and in-neighbours, but otherwise
it is not necessary.

We now define independent sets and maximal independent sets of a graph.

Definition 2 (Independent set). An independent set of a graph G = (V, E ,W) is a nonempty
subset of its nodes I ⊆ V such that no pair of nodes in I shares an edge:

∀ i, j ∈ I, (i, j) /∈ E .

Consequently, if I is an independent set then each edge in E has at most one endpoint in I. Then,
we consider maximal independent sets. These are independent sets which cannot be possibly
expanded by adding new nodes:

Definition 3 (Maximal independent set). A maximal independent set I of a graph G = (V, E ,W)
is an independent set that is not a proper subset of any other independent set I Í.

There are two more equivalent definitions of a maximal independent set that will be useful,
despite seeming trivial. The first one is the following:

Proposition 1. I ⊆ V is a maximal independent set if and only if it is nonempty and

• no pair of nodes in I shares an edge:

∀ i, j ∈ I, (i, j) /∈ E ;

• if any new node is added to I, the resulting set is no longer an independent set:

∀ i ∈ V \ I, I ∪ {i} is not an independent set.

The first requirement is the very definition of an independent set, while the second requirement
simply ensures that I is not a proper subset of any other independent set. Another reformulation
of the definition is the following:

7

Proposition 2. I ⊆ V is a maximal independent set if and only if it is nonempty and

• whenever a node belongs to I, none of its neighbours does:

∀ i ∈ I, Ni ∩ I = ∅;

• whenever a node does not belong to I, at least one of its neighbours does:

∀ i ∈ V \ I, Ni ∩ I Ó= ∅.

Similarly, the first requirement is again the definition of an independent set and the second
ensures maximality. In fact, if neither i nor any of its neighbours were in I, we could add i

and obtain a larger independent set. The advantage of this last definition is that it states a
node-by-node requirement for a subset I of the nodes V to be independent maximal, which will
turn out to be useful.

It is to be remarked that the notion of maximal independent set is only loosely related to that of
cardinality. To explore this, consider the family I of all independent sets of a graph and assume
that Imax ∈ I is an independent set of maximum cardinality:

∀I Í ∈ I, |Imax| ≥ |I Í|

where the symbol | · | denotes cardinality of a set. Since there is no independent set that is larger,
Imax is also a maximal independent set. However, the converse does not hold: there could be
some maximal independent set I Í with smaller cardinality |I Í| < |I|.

Figure 2.1: The graph S7.

The most clear example of this fact is the star graph Sn = {0, 1, . . . , n} depicted in Figure 2.1
with n = 7. This graph has a root node, which we will call 0, and n leaf nodes, for a total of
n+ 1 nodes. In this graph, the family of independent sets I is given by the set {0} and by any

8

nonempty set of leaves, for a total of |I| = 2n independent sets. The set {1, . . . , n} consisting
of all the leaves is the independent set of largest cardinality and is also maximal independent.
However, there is also another maximal independent set, and that is the set {0} consisting of
only the root node.

9

2.2 Network games

In this chapter, the concept of ’network game’ is defined, as well as the concept of ’best response
dynamics’ and its variation, the noisy best response dynamics. They allow to describe the evo-
lution over time of the network game as a Markov chain and to study its stationary distribution.
Although this chapter is apparently unrelated to the notions of maximal independent set defined
in the previous chapter, the link will soon be clear.

In the context of this work, a strategic form game is a mathematical construction that models the
choice of actions by conflicting players. The model consists of players who must choose an action
with the objective of maximizing their own payoff, modelled by an utility function. The players
may have distinct action sets available and distinct utility functions. These depend potentially
on all the choices of all players and the players have perfect knowledge of what is at stake, i.e.
how all the payoffs depend on the chosen actions. If the game attempts to model a real-world
conflict, it is assumed that the utility function embodies all that interests the player, meaning
that the players may not be ’rational’ beings as long as their irrational preferences are captured
by the utility functions. However, this is not the case of this work, where the concept of network
game is an algorithmical device that does not model an actually existing dynamics.

Mathematically, the definition of a strategic form game that will be used is the following:

Definition 4 (Strategic form game). A strategic form game is defined as a triple (V, {Ai}i∈V , {ui}i∈V)
where

• V is a the set of ’players’;

• Ai is the set of ’actions’ available to the player i ∈ V;

• The set of all possible configurations of action choices is denoted by

X =
Ù
j∈V

Aj

and it called the ’configuration set’;

• ui is the ’utility functions’ of player i ∈ V,

ui : X −→ R.

In this work, however, all players will choose from the same set of actions, so that

Ai = A ∀i ∈ V

and consequently the configuration set is X = AV . A configuration x ∈ X is an assignment of an
action to each player: we denote by xi the action of node i and, with some notational ease, we
denote by x−i the actions of the other nodes. We also define the set of best response as follows:

10

Definition 5 (Best response set). Given a strategic form game (V,A, {ui}i∈V), we define the
’best response set’ of player i to the actions x−i as

Bi(x−i) = argmax
a∈A

(ui(a, x−i)).

The best response set is made of those actions that allow to maximize player i’s utility in response
to the observed actions x−i from other players.

A category of games with peculiar properties is the following:

Definition 6 (Potential games). A game is called ’potential’ if there exist a ’potential function’
from the configuration set to R,

Φ : X −→ R,

such that, whenever two configurations x and y differ in only one component (for example the
action of player i), Φ maps these configurations to points whose difference is equal to that between
the two utilities:

∀x, y ∈ X s.t. x−i = y−i for some i ∈ V, Φ(y) − Φ(x) = ui(y) − ui(x).

In a context where players change their action one at the time, changes in the potential function
will always be equal to the changes in the utility of the player who just switched action. A
potential function can be loosely interpreted as an assessment of the overall state of the game.
For example, if all the players always choose an action that increases their utility, then the
potential function is always increasing. The existence of a potential function for a given game,
however, is in general not granted.

Before exploring further this dynamics, we impose a network structure on the game by essentially
requiring that the utility functions depend on what only some of the other players do, i.e. that
players are like nodes in a graph and their utilities depend only on their own and their neighbours’
actions:

Definition 7 (Network game). A network game for a graph G = (V, E ,W) is defined by con-
sidering the nodes V as the set of players, a set of actions A and by requiring that the utility
functions {ui}i∈V depend each only on the action of i and those of its neighbours j ∈ Ni.

We consider now a dynamics where each node in a graph is activated randomly, observes the
actions of its neighbours and updates its own action according to some rule, possibly stochastic.
From now on, when not otherwise specified ’random’ refers to a draw from a uniform distribution.

In the Best Response dynamics, at each discrete time step t one node i is randomly selected

11

and chooses the action that maximizes its own utility (or, if this action is not unique, one of them
at random). This means that if the node chosen has action xi, it will randomly choose an action
yi ∈ Bi(x−i). The Best Response dynamics defines therefore a discrete-time Markov chain on
the configuration space X , where the transition probability pxy between distinct configurations
x and y is the following:

• if x and y differ in more than one entry, then pxy = 0;

• otherwise, if they differ at most for entry i (that is if x−i = y−i),

pxy = 1
n

·


0 if yi /∈ Bi(x−i)
1

|Bi(x−i)|
if yi ∈ Bi(x−i).

Here, the factor 1
n is due to the fact that first node i needs to be the one that is selected between

the n possible nodes.

As mentioned, if a potential function Φ exists and players always increase their utility, for example
following the Best Response dyamics, then clearly the potential function increases too. More
specifically, if the network game is potential than the potential function Φ is non-decreasing on
the trajectories of this Markov chain. Intuitively, this means that the chain will eventually arrive
in some region that it will never escape, wandering between configurations with a constant value
of Φ. This value will not necessarily be the maximum, however the set argmax(Φ) will surely be
such a region. This amounts to proving (see [3] for more details) that the Markov chain has a
trapping subset, that it is reached in finite time and that it contains the set argmax(Φ).

This work, however, will involve a slightly different dynamics known as Noisy Best Response. In
this dynamics, some noise is introduced in the choice of the action. This implies that, although
the chain still tends to increase its potential function and thus to be "attracted" by the once-
trapping region, it can also escape it and in general wander more freely. The exact dynamics is
the following. Let x ∈ X be the current configuration and let i ∈ V be the randomly selected
node. The node has currently action xi and possible actions A. The node will choose its next
action a ∈ A sampling from the distribution

f(a) = 1
Zη
eηui(a,x−i) ∀a ∈ A

where Zη is the normalising constant, given by

Zη =
Ø
b∈A

eηui(b,x−i).

The higher the utility of a, given by ui(a, x−i), the more likely a is chosen, but nevertheless all
actions have a nonzero probability. The parameter η > 0 can be interpreted as a tuning variable

12

whose inverse is a measure of noise. In fact, when η approaches +∞ the distribution f also
approaches a uniform distribution over the best response set Bi(x−i). Therefore, the dynamics
approaches the Best Response dynamics previously mentioned. On the other hand, when η

approaches 0 the distribution also approaches a uniform distribution over A. This corresponds
to a completely noisy dynamics.

The dynamics that has been described defines a discrete-time Markov chain on the configuration
space X and the transition rates pxy are the following:

• if x and y differ in more than one entry then pxy = 0;

• otherwise, if they differ only for entry i (xi Ó= yi and x−i = y−i),

pxy = 1
n

· 1
Zη
eηui(yi,x−i) = 1

n
· eηui(yi,x−i)q

a∈A e
ηui(a,x−i)

where again 1
n refers to the fact that first node i needs to be the chosen one.

It must be noted that, unless x and y differ in more than one component, pxy is never zero.
This implies for example that if the chain is in x than it can reach any other configuration y

by changing one component at the time, which always has a nonzero probability of happening.
Therefore, all configurations are globally reachable and they can reached in at most n = V steps.
Moreover, if the network game is potential and η > 0, then the Markov chain of the Noisy Best
Response dynamics enjoys several properties. Most importantly, the invariant distribution can
be explicitly written, and is strongly related to the value of Φ.

Theorem 1 (Stationary distribution of the Noisy Best Response). Let (V,A, {ui}i∈V) be a
network game on a graph G = (V, E ,W), with V and A both finite. Let Φ be a potential function
and let there be a Markov Chain defined by the Noisy Best Response as previously specified. Then,
the Markov chain is irreducible, reversible and has the following invariant probability distribution,
where Zη is the normalising constant:

πx = 1
Zη
eηΦ(x) ∀x ∈ X

Proof. X is finite and, given two configurations x, y ∈ X , the chain has a nonzero probability of
going from one to another by changing one component at a time. Therefore, the Markov chain
is irreducible and it has a unique stationary probability distribution π. Consider x, y ∈ X such
that they differ in exactly one entry: x−i = y−i, xi Ó= yi. Then,

pxy
pyx

= eηui(yi,x−i)

eηui(xi,y−i)

= eη(ui(yi,x−i)−ui(xi,x−i)

= eη(Φ(yi,x−i)−Φ(xi,x−i))

= eηΦ(yi,x−i)

eηΦ(xi,x−i)

13

which implies
eηΦ(xi,x−i)pxy = eηΦ(yi,x−i)pyx.

Since this trivially holds even when x = y and when they differ in more than one entry, it
holds for any x, y ∈ X . This implies that the chain is reversible, and that its unique invariant
probability distribution is exactly

πx = 1
Zη
eηΦ(x) ∀x ∈ X .

It must be noted that the "most likely" configurations (those with highest probability of being
visited by the chain) are exactly those in argmax(Φ) and that the larger η is, the most sharp
their probability "peaks" in π are. As it was previously remarked, the edge cases are η → 0,
where π approaches a uniform distribution on X , and η → ∞, where π approaches a uniform
distribution on argmax(Φ).

In conclusion, if a network game is defined such that it is potential, then the Noisy Best Re-
sponse dynamics defines a Markov chain whose unique invariant distribution πx can be explicitly
computed and that depends on the configuration x only via the value of the potential func-
tion Φ(x). Moreover, tuning of η allows to morph this invariant distribution from the uniform
distribution over X (η −→ 0) to the uniform distribution over the maxima of Φ (η −→ +∞).
This theoretical framework helps to describe the behaviour of this Markov chain and it will be
applied to a specific game, where we are interested in sampling from the set argmax(Φ). It must
be noted, at this point, that in implementing the noisy best response we face a tradeoff on the
noise parameter η. On one hand, the interest on argmax(Φ) suggests that a large η should be
used, such that the limit distribution samples from that set. However, for large η the transient
is extremely long: the chain is very greedy on maximizing Φ and it takes a long time to escape
the trapping subsets. On the other hand, low values of η are also not recommended, since the
limit distribution approaches a uniform sampling over X . Therefore, it will be necessary to tune
η on an intermediate value.

14

2.3 Game theoretic approach to problems over networks

This section will show how some problems over networks can be approached by considering an
appropriate network game and by sampling from its Noisy Best Response dynamics. The outline
of the idea is the following. Suppose that the problem can be reframed as assigning a value to
each node in the network in such a way that it abides by some constraints. Many problems can
be reframed in this way, for example the k colouring problem. Then, it is possible to write a
function whose maxima are exactly the solutions, and that it is also the potential function of
an appropriate network game. Therefore, we resort to the Noisy Best response Markov chain
outlined in the previous chapter to sample from these maxima.

The formal derivation is the following. Consider a problem where there is a set of variables
V = {1, . . . , n}, each with a domain Ai, and where there exists a family of subsets of V denoted
by F ⊆ 2V . The problem is the following: for each family F ∈ F there is a constraint, i.e. a set
of valid configurations

CF ⊆
Ù
i∈F

Ai

and it is desired to find a global configuration x ∈ X =
r
i∈V Ai such that each individual

constraint is satisfied.

Example. An example is the classic k-colouring problem, where the nodes of a graph must be
painted with k colours such that there are no nodes with the same colour sharing an edge. In this
setting, the colours A = {1, . . . , k} are actions that each node must choose from. The requirement
that neighbours have different colours can be written as a series of pairwise constraints requiring
their actions to be different. In this case, the subsets subject to constraints are exactly the edges
(F = E) and the constraints are defined by

C(i,j) = {(xi, xj) ∈ A × A : xi Ó= xj} ∀(i, j) ∈ E

meaning that regarding {(i, j)}, a valid configuration is a configuration where xi Ó= xj .

For a single constraint CF , define by x|F the current configuration restricted to F and by

ΦF (x) = −✶x|F /∈CF

the negative indicator function of CF being violated. Then, the "state" of the problem can be
described by a function that counts with a negative sign how many constraints are violated:

Φ :
Ù
i∈V

Ai −→ R

given by
Φ(x) =

Ø
F∈F

ΦF (x) = −
Ø
F∈F

✶x|F /∈CF .

15

Therefore, it is clear that in a configuration x ∈ X all constraints are satisfied if and only if
Φ(x) = 0 and that since Φ(x) ≤ 0, the solutions to be problem are exactly the set argmax(Φ).
Moreover, utility functions can be written such that the resulting network game is potential with
potential function Φ. For node i, such utility is the negative number of violated constraints
among those that involve i:

ui(x) =
Ø
FÐi

ΦF (x) = −
Ø
FÐi

✶x|F /∈CF .

In plain words, this has the following interpretation. Each family F ∈ F must abide by some
constraint. Then, Φ(x) is the negative number of families in violation and ui(x) is the negative
number of families in violation involving i. Such a network game is also potential: in fact, for
any x, y ∈ X with x−i = y−i it holds that

Φ(y) − Φ(x) =
Ø
F∈F

#
ΦF (y|F) − ΦF (x|F)

$
=

Ø
FÐi

#
ΦF (y|F) − ΦF (x|F)

$
= ui(y) − ui(x)

where the second equality holds because x−i = y−i implies that a summation over all families F
can be restricted to a summation over those involving i.

Observation 1. These utility functions ui(x) define a network game, but one that is not played
on the original graph. In fact, ui(x) depends on the actions of all nodes sharing a family F with
i. The network game, therefore, is with respect to the network given by nodes V and edges

E Í = {(i, j) ∈ V × V : i, j ∈ F for some F ∈ F }.

For example, in the next section this framework will be applied to a problem instance where
these families are the "augmented neighbourhoods", that is

F = {Ni ∪ {i} : ∀i ∈ V}.

Therefore, a node i’s utility will depend on the action of all nodes that are in some augmented
neighbourhood together with i. That is i itself, its neighbours’, and their neighbours’.

Observation 2. The previous construction is actually valid not only for problems involving this
kind of constraints, but for the maximization of any target functional in the form

Φ(x) =
Ø
F∈F

ΦF (x|F),

form that does not necessarily involve the notion of constraints.

16

In conclusion, if we have a problem over a network that can be cast as the search of a configuration
x ∈ X that does not violate any constraint CF , then we can construct a potential network game
with the feature that the feasible configurations are exactly its maxima. Moreover, as shown in
the previous chapter we can define a Noisy Best Response dynamics, whose invariant distribution
is πx ∝ eηΦ(x) and therefore for it approximately samples from the set of feasible configurations
X ∗ = argmax(Φ).

17

2.4 Sampling of maximal independent sets

In this section, the theoretical framework of the previous section is applied to a specific problem
instance, which will be needed later. Given a graph G = (V, E ,W), the problem is to find its
maximal independent sets, as defined in Section 2.1. Recall that a maximal independent set is a
subset of nodes I ⊆ V such that

• whenever a node belongs to I, none of its neighbours does:

∀ i ∈ I, ∈ Ni ∩ I = ∅.

• whenever a node does not belong to I, at least one of its neighbours does:

∀ i ∈ V \ I, Ni ∩ I Ó= ∅.

Consider for each node the possible actions A = {0, 1}, where 1 means that the node has been
selected and 0 that it has not. For each node i ∈ V, we define the two following constraints,
matching the definition:

• C
(1)
Ni∪{i} = {x ∈ X : xi = 1, xj = 0 ∀j ∈ Ni} ;

• C
(2)
Ni∪{i} = {x ∈ X : xi = 0,∃j ∈ Ni s.t. xj = 1}.

Here, the constraints apply to the sets Ni ∪ {i}, meaning that the families of nodes previously
denoted by F ∈ F are Fi = Ni ∪ {i}. Since they can be indexed by the nodes, for simplicity
the notation might involve i instead of Fi when not ambiguous. This leads, according to the
construction of the previous section, to the functions

Ψ(i)(y) = −✶(y|Fi /∈C
(1)
i

∪C(2)
i

) =


0 if yi = 1, y−i = 0

0 if yi = 0, y−i Ó= 0

−1 otherwise

that signal violation of either one of those constraints. Here, y−i refers to the actions in Fi

excluding that of i (i.e. the actions of Ni). The potential function is

Ψ : {0, 1}V −→ R

Ψ(x) =
Ø
i∈V

Ψ(i)(x).

Again, Ψ(x) counts with the negative sign how many nodes are in violation of a constraint.
Clearly, x ∈ X corresponds to a maximal independent set if and only if Ψ(x) = 0, and the set
of all independent sets is X ∗ = argmax(Ψ). As explained in the previous section, this is the
potential of a network game of utilities

ui(x) =
Ø
FjÐi

Ψ(j)(x) =
Ø

j∈Ni∪{i}

Ψ(j)(x).

18

The utility of node i, then, is the number of its neighbours, plus itself, that are in violation of a
constraint. From this definition it follows that each node has utility depending on the actions of
himself, of its neighbours and of their neighbours.

Observation. It could be questioned whether it is really necessary to employ such a complex
utility function, that counts the number of neighbours in violation of a constraint, instead of a
more simple one that only counts if the node itself is in violation. After all, the function Φ to
maximize does count simply the number of nodes in violation. The issue with this approach,
however, is that Φ would no longer be a potential function of the game. In fact, a node i could
change action and improve its utility while at the same time inducing some of its neighbours into
violation of a constraint, therefore lowering Φ (if more than one) or leaving it unchanged (if only
one). Overall, i would improve his utility while Φ does not improve. Therefore, for this kind of
network game Φ is not a potential function, and all the theoretical guarantees of Section 2.2 do
not hold.

19

Chapter 3

Autonomous target search

In recent years, the use of unmanned aerial vehicles, or UAVs, has expanded from military appli-
cations to several purposes in agriculture, commerce, scientific research and other fields. An UAV
is an aircraft without a human pilot, with the capability of flying while accurately scanning the
environment around and below, and possibly enjoying various degrees of autonomy ranging from
complete autonomous flight to remote-controlling by a human operator. The technological push
towards autonomous flying agents has significantly increased further research on the problem
of autonomous flight. The present work focuses, in particular, on the problem of autonomous
search for a lost target. This problem has a long history in mathematics and operation research
and is relevant, for example, in surveillance and law enforcement, assisted agriculture, disaster
response, and protection of wildlife.

When the problem involves a target in motion, not necessarily escaping but in general travelling
towards some unknown destination, it is often cast as a "Search-And-Tracking" problem (SaT).
This nomenclature means that two distinct phases are contemplated, as shown in Figure 3.1. On
one hand, there is a "tracking" phase during which the observer is required to follow the target
as long as its sensors are detecting it, tracking it all the way to its destination. On the other
hand whenever the target is lost, for example due to imperfections in the sensors or because
of obstacles on the ground, the observer starts a "search" phase. The tracking phase is usually
handled by a reactive controller such as that described in [2] (Bernardini, Fox, Long, & Bookless,
2013). The search phase of course is the most challenging part of the problem, since the observer
faces different sources of uncertainty and needs to quickly devise a search plan. The present
work is focused on this search phase and it is based on the work of [1] (Bernardini, Piacentini, &
Beck, 2019), which focuses on the decision-making process to build long-term strategies for the
observers.

20

Plan%Execution

Plan

Plan%request

Planning

Tracking

Target%
found

Planning% task

Target%
not%found

Time%out

End%of%Mission

Start%of%Mission

Target%
in%view

Target%lost

Target%
tracked%to%
destination

Figure 3.1: Structure of a typical SaT mission.

3.1 Construction of the optimization problem

More specifically, in professor Bernardini’s work the following scenario was considered.

Figure 3.2: The portion of central Scotland used for the simulations. Red pins indicate possible
destinations of the target.

The target moves along a road network embedded on a two-dimensional space. For the simula-
tions that have been built, portions of the road system of central Scotland (see Figure 3.2) and
northern England (see Figure 5.4) were considered. The starting point is a countryside location,
north-west of Edinburgh, and the target is travelling with the goal of reaching a distant desti-
nation. One or more UAVs are tracking the target, following it closely, and at some point they
lose contact, which triggers the beginning of the search phase. The UAVs exploit standard flight
patterns to search for the target, such as spirals and lawnmowers.

21

Figure 3.3: Standard search patterns: spirals (left) and lawnmowers (right).

It is also assumed that the observers have perfect knowledge of the road network and know that
the target is moving towards one destination out of a set D of possible destinations. Each of
them is associated to an a priori probability π(x), x ∈ D, modelling the uncertainty over the
real destination of the target. Furthermore, it is assumed that the target moves towards its
destination along the shortest possible path, regardless of whatever the observer does. This is
an important assumption, since it implies that the target has a passive behaviour and does not
interact or change its actions in result of what the UAVs do. Mathematically, this means that
the a priori distribution π over the destinations D induces an a priori probability over the paths
that the target may follow, and thus an a priori probability over the locations where the target
may be in at each time instant. In practice, however, further sources of uncertainty may be
involved, such as the level of evasiveness and speed at which the target moves on each road. As
we will see, they are all taken into account when approximating the probability distribution of
the target’s true location with a Monte Carlo simulation.

Figure 3.4: The UAV and the target during the tracking phase.

In Figure 3.4, a simulation of the tracking phase can be observed more in detail. The target T is
represented by the yellow pin and it started from the source location S marked by the violet pin.

22

The target is travelling along the optimal route (thinly marked in blue) towards its destination E,
marked by the bright blue pin on the upper-right portion of the picture. The observer UAV (U),
marked by the dark blue pin near the target, flies around the source following it. A shaded cone
represents the area scanned by the UAV’s sensors. Finally, red pins show some of the possible
destinations in D that the UAV contemplates.

Thanks to these assumptions on the SaT model, the search can be cast as the research for a
search plan, composed of a number of locations, named "search patterns", where to execute a
flight pattern (either a spiral or a lawnmower). This search plan should be such that

• the observers are actually able to execute it, i.e. there are not time constraints between
the search patterns;

• a performance function, e.g. the probability of finding the target, is maximized.

Regarding the latter point, a recursive formula that gives an approximation of such probability
can be computed. Regarding the former, the constraints are modelled by casting the problem as
a combinatorial optimization problem. Its formal characterization is the following.

Let O be a set of observers, all with the same flight and sensing capabilities. Let C be a set of
search patterns located in specific locations on the map. These search patterns are selected as
follows. The search area is defined as a circular sector centred on the target’s last known position
and its road network is represented as a graph (V,E) built by discretizing the search area in cells
with fixed side-length. Vertices V represent the cells and edges E represent pairs of adjacent
cells connected by at least one road. Then, a Monte Carlo simulation of the target’s motion on
the graph is run. The sources of uncertainty assumed are the target’s destination (represented,
as mentioned, by an a priori distribution π(x) on a set of possible destinations x ∈ D), the
concealment that the target is assumed to adopt resulting in sub-optimal routes, and its speed.
A number of time check points t0 < t1 < · · · < tn are considered and for each check point ti
the two nodes with the largest number of Monte Carlo particles at that time are considered.
Candidate search patterns are obtained centering a flight pattern (spiral or lawnmower) on these
nodes. Therefore, a candidate search pattern σ ∈ C is a physical area with a spatial extension
and corresponds to an area where, at some point in time, the target has a larger probability of
visiting. Each candidate search pattern σ is associated with:

• A start point and an end point. These are the exact point where the search of σ will begin
and terminate, and are necessary to define the flight times between search patterns;

• A duration dσ, given by the time the UAV needs to perform a search on the pattern;

• A time window [t−σ , t+σ], given by the possible initial times of a search of σ. These are
related to the time window when the target has a nonzero probability of being in the area

23

covered by σ. In turn, this time window is calculated by considering the distance between
σ the last known position of the target, and the maximum and minimum speed that the
target could have;

• A detection probability γσ, defined as the probability of detecting the target while searching
σ conditioned on the event of the target being actually there. This detection probability
encodes both the trustworthiness of the UAV’s sensors and the conditions on the ground,
such as the presence of obstacles like buildings or lights.

Each candidate in C can be executed more than once, but we can transform the problem to an
equivalent version where each pattern can be executed at most once by creating kσ copies of each
search pattern σ, where kσ is the maximum number of times it can be executed. We call åC the
set of patterns obtained by this procedure.

24

3.2 Constraints

In order to represent the time constraints that bind execution of different search patterns, ma-
trices are defined encoding the flight times between patterns. Let m = | åC| be the number of
candidate search patterns and define for each observer o ∈ O a matrix Do ∈ R(åC∪{0})×(åC∪{0})

+ ,
where 0 is a symbol representing the initial position. Position (0, σi) is the flight time from the
initial position 0 to the start point of search pattern σi, with i = 1, . . . ,m. Position (σi, σj) is
the flight time from the end point of search pattern σi to the start point of the pattern σj , with
i, j = 1, . . . ,m.

We wish to find a subset of search patterns Σ = {σ1, . . . , σn} ⊆ åC such that the available UAVs
are able to search all of them. The assignment of search patterns to the observers is formalized
by requiring the existence of a partition P(Σ) with at most |O| elements and an assignment
function S : O −→ P(Σ). We call the assignment S(o) for observer o a plan. These plans
should be such that the observer is able to execute them, and this is formalized as follows. Let
S(o) = (s1, . . . , sk) be a plan, with the search plans ordered from the earliest to the latest. Then,
there should exist a time assignment function

t : S(o) −→ R+

such that

• Each search plan is assigned to a time within its time window:

t(si) ∈ [t−si , t
+
si] ∀si ∈ S(o);

• The initial search pattern can be reached:

t(s1) ≥ Do(0, s1);

• For every two consecutive patterns si and si+1, between their two starting times there is
enough time to search the first and to fly between them:

t(si+1) − t(si) ≥ dsi +Do(si, si+1) ∀i = 1, . . . , k − 1.

For a given plan, whether such a time assignment exists can be rapidly checked by the following
procedure:

• Check if the first search pattern s1 can be reached in time:

t+s1 ≥ Do(0, s1).

If it can be, assign it to
t(s1) = max{Do(0, s1), t−s1}

which is the earliest reach time or the starting of the time window, whichever comes second;

25

• Similarly, for each of the following search patterns check if they can be reached in time
and if they can, assign them the time instant they can be reached if inside the opportunity
window, or to the initial time of the time window otherwise. Namely, if si was assigned
time instant t(si), check whether

t+si+1
≥ t(si) + dsi +Do(si, si+1)

and if true, assign it to

t(si+1) = max{t(si) + dsi +Do(si, si+1), t−σ }

for each i = 1, . . . , k − 1.

Given a subset Σ = {σ1, . . . , σn} ⊆ åC, we say that Σ is executable if there exist such a partition
P(Σ), such an observer assignment S : O −→ P(Σ) and such a time assignment function t :
S(o) −→ R+. The feasible set of this optimization problem is the set of executable plans Σ ∈ 2åC .
However, we can actually be more precise on where the optimum will be. Given a plan skeleton
Σ, we say that it is maximal if for any possible addition σ ∈ åC \ Σ, the resulting plan skeleton
Σ ∪ {σ} is never executable. As we will see, the objective function G(Σ) will be non-decreasing:
therefore, the optimum will be surely a maximal plan skeleton.

It must be remarked that in this optimization problem, the part that is actually challenging is
to build feasible solutions. Compiling a search plan is the task of choosing a number of search
patterns keeping track of their starting times and their feasibility. The choice of including a
search pattern with a certain starting time disables completely some of the other search patterns
and limits the potential starting times for others. At the same time, the choice of excluding a
search pattern should compel to include at least one of the patterns that it would be in conflict
with. Framed in these terms, the problem starts to resemble that of finding independent maximal
sets. The exact definition of what graph is considered is stated in the next chapter. For now,
we mention more broadly that a general category of planning problems can be cast in terms of
independent sets: in fact, by defining a discrete set of tasks V and by defining edges E between
them whenever they cannot be executed both, then a feasible plan corresponds to an independent
set. Moreover, if the objective function is increasing its maximum is necessarily a set of tasks
that no other search pattern can possibly be added to, which means a maximal independent set.

26

3.3 Objective function

Let P (Σ) be the total probability of finding the target by executing the plan skeleton Σ. This
probability can be explicitly computed (after a few simplifying assumptions) and can serve as an
objective function to be maximized. The simplifying assumption is to regard only what locations
have been searched, disregarding all the issues related to time: the initial instant where the
search has started, the duration of the search, the actual time of discovery. On the other hand,
the result is a recursive formula that is effective and easy to compute. The derivation of this
formula is the following.

Theorem 2 (Recursive formula for the probability of finding the target). Let D be the set of
possible target destinations and Dσ be the subset of possible target destinations compatible with
the search pattern σ, i.e. such that their path passes through σ. Let π(x), x ∈ D be the a priori
probability that the target’s destination is x. Furthermore define, for k = 0, 1, . . . , k̄ − 1:

• P
(k)
Σ as the probability that the target is found before or at step k;

• P
(k)
Σ∗ as the probability that the target is found at step k+ 1 while knowing that the plan has

failed up to the step k;

• P
(k)
Σ (x) as the probability that the target’s destination is x, knowing that the plan has failed

up to the step k (also defined for k = k̄, unlike the previous ones);

The total probability of finding the target by executing the plan skeleton Σ is obtained when
noticing that P (Σ) = P

(k̄)
Σ . Then, the following recursion holds:

• P
(k)
Σ (x) =

P
(k−1)
Σ (x)·

!
1−γσk✶(x∈Dσk)

"
1−P (k−1)

Σ∗
k = 1, . . . , k̄ − 1;

• P
(k)
Σ∗ = γσk+1 ·

q
y∈Dσk+1

P
(k)
Σ (y) k = 1, . . . , k̄ − 1 ;

• P
(k)
Σ = P

(k−1)
Σ + P

(k−1)
Σ∗ ·

1
1 − P

(k−1)
Σ

2
k = 1, . . . , k̄.

with initial conditions

• P
(0)
Σ (x) = π(x) ∀x ∈ D;

• P
(0)
Σ = 0;

• P
(0)
Σ∗ = γσ1 ·

q
y∈Dσ1

P
(0)
Σ (y)

Proof. Given a plan skeleton Σ = (σ1, σ2, . . . , σk̄), let Fσ be the event of finding the target in
the area of search pattern σ and Fσ its negation, i.e. the event of not finding the target in σ.

27

Let also F (k)
Σ be the event of finding the target when executing the plan skeleton Σ until step k

and F (k)
Σ its negation. Denote by

P
(k)
Σ = P[F (k)

Σ]

the probability of finding the target when executing Σ until step k: then, the probability of
success of Σ (whose length is k̄) is

P (Σ) = P
(k̄)
Σ .

Since we have F (k−1)
Σ ⊆ F (k)

Σ ,

P[Fσk] = P[F (k)
Σ \ F (k−1)

Σ] = P
(k)
Σ − P

(k−1)
Σ .

Now let D be the set of possible target destinations, x̄ ∈ D the true destination of the target and
Dσ be the subset of possible destinations compatible with the search pattern σ. Let π(x), x ∈ D
be the a priori probability that the target’s destination is x. Furthermore define

P
(k−1)
Σ∗ = P[Fσk | F (k−1)

Σ]

the probability that the plan Σ succeeds at k conditioned on the event that it has failed up to
k − 1. Since it holds that

P[F (k)
Σ] = P[F (k−1)

Σ] + P[Fσk | F (k−1)
Σ] · P[F (k−1)

Σ]

then we have that, re-writing this result,

P
(k)
Σ = P

(k−1)
Σ + P

(k−1)
Σ∗ · (1 − P

(k−1)
Σ).

Now, define
PΣ(x)(k) = P[x̄ = x | F (k)

Σ]

the probability that the true destination is x conditioned on the event that the plan has failed
up to k. Of course, the initial condition for this is

P
(0)
Σ (x) = π(x).

The probability P (k−1)
Σ∗ of finding the target at k conditioned on having failed up to k−1 is given

by the product between the probability of the target being in σ conditioned on having failed up
to k − 1 and the probability γσ of the UAV detecting the target:

P
(k−1)
Σ∗ =

Ø
y∈Dσ

P
(k−1)
Σ (y) · γσk .

Consider now the probability of the destination being x conditioned on the fact that the plan
failed up to k − 1 and succeeded in k:

P[x = x̄ | F (k−1)
Σ ∩ Fσk].

28

Finding the target in σk brings the information that the destination is compatible with σk:
therefore, this probability is 0 whenever x is not compatible (x /∈ Dσk). Otherwise, it can be
computed by simply conditioning the a priori P (k−1)

Σ (x) to the compatible destinations, obtaining

P[x = x̄ | F (k−1)
Σ ∩ Fσk] = P

(k−1)
Σ (x)q

y∈Dσk
P

(k−1)
Σ (y)

· ✶(x∈Dσk).

Finally, we have the following equation:

P
(k−1)
Σ (x) = P[x = x̄ | F (k−1)

Σ]

= P[x = x̄ | F (k−1)
Σ ∩ Fσk] · P[Fσk | F (k−1)

Σ] + P[x = x̄ | F (k−1)
Σ ∩ Fσk] · P[Fσk | F (k−1)

Σ]

= P
(k−1)
Σ (x)q

y∈Dσk
P

(k−1)
Σ (y)

· ✶(x∈Dσk) · P (k−1)
Σ∗ + P

(k)
Σ (x) · (1 − P

(k−1)
Σ∗)

= P
(k−1)
Σ (x)✶(x∈Dσk) · γσk + P

(k)
Σ (x) · (1 − P

(k−1)
Σ∗)

which implies that

P
(k)
Σ (x) =

P
(k−1)
Σ (x) · (1 − γσk✶(x∈Dσk))

1 − P
(k−1)
Σ∗

.

Besides this formula for the probability of detection, it is also possible to compute a similar
approximate recursive formula for the expected time of detection, denoted as T (Σ). These two
performance metrics will be combined in a single objective function. The formula is the following:

Theorem 3 (Approximate recursive formula for the expected time of finding the target). Let
the expected time of finding the target be approximated by the formula

T (Σ) =
k̄Ø
j=1

tσjP[Fσj] =
k̄Ø
j=1

tσj (P
(j)
Σ − P

(j−1)
Σ).

where Σ = (σ1, σ2, . . . , σk̄) and

tσ = t+σ + t−σ
2 .

is the mid-point of the time window [t−σ , t+σ] of search pattern σ. Define also

T
(k)
Σ =

k̄Ø
j=1

tσjP[Fσj].

Similarly to the previous theorem, we obtain the desired result by observing that, since Σ has
length k̄,

T (Σ) = T
(k̄)
Σ .

29

Then, the following recursion holds:

T
(k)
Σ = T

(k−1)
Σ + tσk ·

1
P kS − P

(k−1)
S

2
with initial condition T (0)

Σ = 0 and P (k)
S defined and given by the previous theorem.

Proof. The proof is trivial: the result follows immediately after recalling that

P[Fσk] = P kS − P
(k−1)
S .

The objective function that we wish to take into account is one that involves both the probability
of detection and the expected time of detection. More specifically, the function is the performance
measure

G(Σ) = P (Σ) − k · T (Σ).

Here, k is first of all a parameter regulating the tradeoff between these two conflicting require-
ments - maximizing the probability and minimizing the expected time. It does also have another
interpretation. If we assume that whenever the detection does not succeed, it contributes to the
expected time as a detection at time A very large, then the resulting expected time is

T̂ (Σ) = T (Σ) +A · (1 − P (Σ)).

Then, we have that

−T̂ (Σ) = A · P (Σ) − T (Σ) +A = A ·
3
P (Σ) − 1

A
T (Σ)

4
+ 1.

Therefore, the maximization of objective function can be though as the minimization of this
modified expected time of detection T̂ (Σ), with k = 1

A . This is meaningful as long as A exceeds
all of the expected times of detection tσ, which yields an upper bound on k:

A ≥ t∗ = max
σ∈åC (tσ)

30

Chapter 4

The Distributed algorithm

The most challenging part of this optimization problem is, as in most combinatorial optimization
problems, that of building feasible solutions. As mentioned, the task is to choose from the set of
possible search patterns åC a subset Σ that is

• executable, meaning that it can be partitioned between to the available observers O and
that each observer receives a plan that follows the time constraints;

• maximal, meaning that each additional search pattern would yield a plan that is not exe-
cutable.

The time constraints are, essentially, due to the fact that the UAV must be able to arrive to each
search pattern σ within its time window [t−σ , t+σ].

Observe now that each search pattern can be regarded, in abstract, as a task to be executed.
The constraints of the problem amount essentially to an indication of whether two tasks are
conflicting. Restricting the analysis to the case of a single UAV, we wish to find a set of search
patterns that presents no conflicts. Suppose then that search patterns are nodes of a graph
and that two nodes are connected by an edge whenever they cannot be both selected, i.e. if
they are conflicting tasks. Then, a plan with no conflicts is an independent set of this graph.
Moreover, since the objective function P (Σ) is non-decreasing, the optimum is certainly a search
plan that no other search pattern can be added to. This implies that the optimum is a maximal
independent set of this graph.

The main issue of this approach, however, is that the feasibility of a search plan cannot really
be reduced to a local requirement on each search pattern. For a single UAV o, a search plan Σ
is feasible if there exist a time assignment function

t : S(o) −→ R+

31

such that each search plan is assigned to a time instant within its time window, and that the
time constraints due to search duration and flight time are respected. For most pairs of search
patterns, they either have time windows far enough that there is always time to fly and execute
both, or they have time windows close enough that they are never both executable. In some
crucial cases however, whether two search patterns are in conflict is dependent on their time
assignments, which could or could not give the UAV enough time to fly between them. This is
why we can define two search patterns to be conflicting tasks only if provided with a starting
time.

This issue can be solved by creating for each search pattern σ ∈ åC a fixed number κ of nodes,
where each node consists of the search pattern σ and a start time t. Possible initial times are
given by the discretization of the time window [t−σ , t+σ] into κ points. Therefore, σ yields the
nodes

(σ, t−σ),

(σ, t−σ + t+σ − t−σ
κ− 1),

(σ, t−σ + 2 t
+
σ − t−σ
κ− 1),

(σ, t−σ + 3 t
+
σ − t−σ
κ− 1),

. . . ,

(σ, t+σ).

This defines the set of nodes V, whose cardinality is |V| = κ · | åC|. On the other hand, two nodes
(σ, t) and (σÍ, tÍ) with t ≤ tÍ are defined to have an edge connecting them if

tÍ − t < dσ +Do(σ, σÍ)

i.e. if there is not enough time between t and tÍ to execute the search of σ (which takes dσ) and
fly to σÍ (which takes Do(σ, σÍ)).
Regarding the other constraint, which we recall involves only the first search pattern of the
sequence s1 and asks to have enough time to reach it from the initial position 0:

t(s1) ≥ Do(0, s1),

it can be addressed as follows. Since while building the plan the first search pattern of the
sequence may change, we simply check each time whether a proposed plan respects this constraint.
In practice, search pattern with the earliest windows are also closest to the UAV, therefore this
constraint is not an issue.
We can now apply to this graph the network game described in section 2.4 in order to sample
maximal independent sets. This amount to a solution proposal algorithm: the algorithm is
agnostic with respect to the objective function and only proposes feasible and maximal solutions.

32

4.1 Pseudocode

The pseudocode of the algorithm is the following. Given the set of candidate search patterns C̃,

1. Define the list of all nodes V from the set of candidate search patterns C̃;

2. Define their edges by checking, for each pair in V, if they comply to the condition stated
in the previous section;

3. Initialize all nodes with action xi = 0 ∀i ∈ V ("not selected");

4. Initialize xbest = (0, . . . , 0);

5. Set T time limit, let t be the time elapsed since the beginning of the algorithm;

6. Set η noise parameter;

7. While t < T :

(a) Sample uniformly a node i ∈ V;

(b) Compute its utilities ui(0, x−i) and ui(1, x−i);

(c) Sample the new action a from the distribution

1
Z

(eηui(a=1,x−i), eηui(a=0,x−i))

where Z is the normalization constant;

(d) Set the new action xi = a;

(e) If resulting the configuration x is a maximal independent set, compute G(x). If
G(x) > G(xbest), set xbest = x.

8. Build from xbest the resulting plan skeleton Sbest.

The solution to the optimization problem is Sbest. More precisely on the last step, a search
pattern σ is part of Sbest if there exist a node i = (σ, t) such that xibest = 1.

33

4.2 Adjustments and heuristics

We enumerate here a few of the relevant features of the algorithm implementation. Although
the basic structure of the actual code follows this pseudocode, in implementing it several slight
modifications were adopted in order to reduce the number of operations needed at each iteration.

• Each node i was given an attribute Ψ(i) of value −1 if it is in violation and 0 otherwise.
Whenever a node’s action is changed, its Ψ(i) and its neighbours’ are updated. This allows
to immediately compute the utility of that action using the formula

ui(a, x−i) =
Ø

j∈Ni∪{i}

Ψ(i);

• The algorithm should feed to P (Σ) possible feasible solutions. The algorithm, however,
samples maximal independent sets from the graph G since, as explained in 2.4, the indepen-
dent maximal sets are exactly given by argmax(Ψ) = {x ∈ X : Ψ(x) = 0}. Independent
maximal set surely correspond to a feasible plan, but that plan is not guaranteed to be
maximal. This is due to the fact that search patterns were forced to have some initial
time instant: it may be impossible to add another search pattern within those choices,
but it could be possible under another time assignment. On the other hand, feasibility of
a sequence can be rapidly checked. Moreover, there is no guarantee that a feasible plan
skeleton always can be represented by a maximal independent set. Sometimes, in fact,
they cannot have their time assignments anchored to the discretization of the time window
without resulting some conflicts between nodes, i.e. a set that is not independent. There-
fore, the algorithm does not feed to the objective function configurations with Ψ(x) = 0,
but configurations whose associated search plan is feasible;

• Feasibility of the new configuration x is checked only if the node’s action changed;

• The objective function G(x) is computed only for configurations that were not previously
seen. Computation of G(x) is in fact the part that includes most of the effort needed, and
the algorithm very often returns to configurations already previously visited. This check
is performed by keeping a register of all configurations previously seen. This might pose
scaling issues, however for most practical cases (see Chapter 5.2 for a discussion on the size
of problem instances) the number of feasible plans is limited to the ≈ 103;

• Since the objective function has a recursive form, if the new configuration to be evaluated
shares part of the search patterns with the previous one part of the computations are
avoided. The recursion is developed starting from the first term that is different.

34

4.3 Parameter tuning

The algorithm’s performance involves two important tuning parameters: the time discretization
and the noise parameter η. They are relevant for different reasons:

1. Noise. As mentioned in section 2.2 (Network games), the utility functions involve a param-
eter η whose inverse is a measure of noise. For large η, the dynamics approaches the Best
Response dynamics: the nodes are strongly attracted by their largest utilities, therefore
the potential function Ψ rarely decreases and the Markov chain is most of the time stuck
in some configuration that is a local maximum of Ψ. On the other hand, for small η the
dynamics approaches a completely noisy behaviour and the Markov chain spends most of
the time away from the maxima of Ψ. The optimal tradeoff between these two behaviours
must be determined by experiment.

2. Time discretization. As it was explained, to ponder whether two search patterns are
conflicting they need to be coupled to some time instant. Therefore, each search pattern
had its time window discretized into κ points and κ nodes were created. The finer the time
discretization is, the more accurate is the approximation of the time constraints. However,
graph size is an important issue. In the instances considered, a number of | åC| = 30 search
patterns were considered, meaning that the graph has |V| = κ·| åC| = 30κ nodes and that the
configuration space that the Markov chain explores has size |X | = 2κ·|åC| = 230κ growing
exponentially in κ. This is a very large configuration space, but also consider that the
related graph (associated to the Markov chain) is well connected: the distance between any
two configurations, in fact, cannot ever exceed | åC| because it is possible to travel between
one and the other changing one action at the time. Moreover, the Noisy Best Response
dynamics ensures that the chain is attracted by the most interesting regions, where Ψ(x)
is higher. In conclusions, small values of κ allow to quickly find all the independent sets
but they correspond to poor search plans, while larger values of κ allow for the existence
of better solution but make them harder to be found.

Tuning was conducted for both these parameters, averaging the results on a large number of
seeds. The optimal values that were found for this problem instance are κ = 5 for the time
discretization and η = 2.4 for the noise parameter.

35

Chapter 5

Results

In this chapter, we will compare the results of the Distributed Algorithm with those of three
different solvers on a variety of settings, including different values of the tradeoff parameter k
and two different geographical situations.

5.1 Other algorithms

Besides the Distributed Algorithm, other solution approaches had been used in the SaT Simulator
in order to solve this optimization problem. The other algorithms are the following.

5.1.1 Greedy Algorithm

This approach involves a greedy algorithm that directly builds a solution by iteratively adding
search patterns. The algorithm starts with an empty plan Σ and at each iteration finds what
available search pattern σ ∈ åC \ Σ provides the greatest increase in the objective function, i.e.
the greatest

∆σ = P (Σ ∪ {σ}) − P (Σ)

while the resulting plan Σ ∪ {σ} remains executable. The algorithm stops when no other search
pattern can be added, thus ensuring that the solution is also maximal. Such a greedy algorithm
performs well on this problem due to the properties of the objective function. In fact, the function
is submodular and non-decreasing as proven in [4] (Piacentini, Fagnani, & Bernardini, 2020), and
this fact provides good theoretical guarantees on how close the result is to the actual optimum.
In this problem, however, those guarantees are damaged by the presence of constraints.

36

5.1.2 Constraint Programming approach

This approach casts the problem into a Constraint Programming formulation, which is a paradigm
for solving combinatorial problems involving decision variables. Given the combinatorial nature
of the problem and the temporal constraints, SaT lends itself well to a CP formulation. Just
like the Distributed Algorithm, this approach requires to discretize the time windows, thus
compromising the accuracy of the time constraints. However, this is necessary because a finer
discretization would need a very large number of variables, damaging the solver’s capacity to find
a solution. The solver itself that was employed is an external commercial software, developed by
IBM [5].

5.1.3 Planning approach

In this approach, the plans are built using the planner POPF-TIF [6] (Piacentini, Alimisis, Fox,
& Long, 2015), built on top of the partial order temporal planner POPF2 [7] (Coles, Coles,
Fox, & Long, 2010) and coupled with an external solver. The problem is expressed under the
formal framework of PDDL (Planning Domain Definition Language) and is fully explained in [8]
(Bernardini, Fox, Long, & Piacentini, 2016).

37

5.2 Comparisons

In order to evaluate the performance of our algorithm and to compare the results with those
of the other solvers, it is necessary to study how they solve several different instances of a
Search-and-Tracking problem. There are two main ways to do so. The first is to change the
geographical features of the problem, such as the starting point, the destinations of the target
and even the whole map. The second is to simply control the seed used. This mostly affects the
true destination of the target and also the point where the UAV loses the target and starts the
search, resulting each time a different set of search patterns. Changing the seed, of course, also
affects the Monte Carlo simulation and the sample path of the Markov chain. Most comparisons
will be shown by changing the seed and keeping the same geographical map, a portion of central
Scotland already shown in section 3.1, the same starting point and the same destinations. A
comparison involving another map, northern England, will also be shown.

Before we analyse the results over several problem instances, we will show in detail one of them.
In this instance, the target starts outside the city of Stirling has for destination a location near
Glasgow.

Figure 5.1: The target path is a slightly thicker line connecting Stirling (center) to a location
outside Glasgow (lower-left).

The target is lost at time 291 after the beginning of the tracking. In order to have comparable
results, both the times windows and the expected detection time will be shown as time after
this moment, when the search begins. The candidate search patterns C are computed by the

38

Monte Carlo simulation. By default they are 30 (resulting from 15 time checks, each providing
two candidate locations) and their time windows ()are as follows:

sp1 90.0-91.0 sp2 90.0-95.0 sp24 845.0-950.0
sp5 259.0-290.0 sp32 1036.0-1160.0 sp10 463.0-485.0
sp16 640.0-725.0 sp38 1254.0-1355.0 sp17 695.0-755.0
sp33 1118.0-1235.0 sp11 477.0-560.0 sp53 1718.0-1910.0
sp45 1486.0-1655.0 sp25 872.0-980.0 sp54 1704.0-1880.0
sp46 1486.0-1655.0 sp6 272.0-290.0 sp39 1295.0-1475.0
sp68 2100.0-2300.0 sp61 1922.0-2120.0 sp69 2127.0-2315.0
sp62 1909.0-2105.0 sp78 2318.0-2480.0 sp88 2509.0-2780.0
sp103 2945.0-3170.0 sp79 2277.0-2540.0 sp89 2509.0-2780.0
sp104 2904.0-3200.0 sp96 2713.0-3005.0 sp97 2740.0-3035.0

Their locations are also shown in figure 5.2, where we see that the UAV is searching one of the
first ones while the target is elsewhere.

Figure 5.2: Blue circles are the 30 candidate search patterns for this problem instance.

In table 5.2, we compare the solutions that the four solvers (Greedy Algorithm, the Constraint

39

Programming formulation, the Planning approach and Distributed Algorithm) find when they
optimize with respect to G(Σ) = P (Σ), i.e. when k = 0.

Greedy CP Planning Distributed

Plan sp1, sp38, sp62,
sp97, sp104

sp1, sp11, sp38,
sp46, sp97, sp104

sp1, sp11, sp38,
sp46, sp97, sp104

sp1, sp11, sp32,
sp68, sp97, sp104

P (Σ) 0.92322029387704 0.93395287517952 0.93395287517952 0.93096355967337
T (Σ) 10287.5 10369.5 10369.5 10792.5

As we can see, CP and Planning find the same optimum while the result of Distributed is slightly
worse. Overall, their solutions are all quite close to each other - this is a feature of most seeds.
In fact, their plans share quite a few search patterns (sp1, sp97 and sp104, for example, are in
all four solutions), that are most likely responsible for most of the probability, while the most
struggling part if finding which others provide the best additional increments. Other data on
the Distributed algorithm are the following: the Markov chain does approximately two millions
iterations (1871968) and roughly 0.18% of them are feasibles plans. There are many repetitions,
however, and the number of distinct plans evaluated is actually 1484. As we will we see, this is
approximately half of the total estimated number of feasible plans. This behaviour is consistent
throughout all seeds, and it implies that the algorithm finds the true optimum approximately
50% of the times.

Now, we will show the optimum of the objective function

G(Σ) = P (Σ) − k · T (Σ)

that the solvers found averaged over 40 seeds and for several values of k. Each solver was given
60 seconds of time to find their solution. In fact, all of them (except the Greedy Algorithm)
guarantee to eventually find the optimum if enough time is given, but for a limited time their
performances are not the same. The Greedy Algorithm is different because it directly builds
a solution with a fast routine that only takes a few seconds. We also display results for three
different values of the tradeoff parameter k. Following the approach of previous work on this
SaT simulator, for each problem instance we define (recalling that t̄σ is the midpoint of the time
window of σ and that it is assumed to be the time at which the detection in σ would happen)
the maximum time of detection

t∗ = max
σ∈åC {tσ}.

For example, in the problem instance previously analysed we have t∗ = 3057.5, midpoint of sp103.
As mentioned in section 3.3, we have that A = k−1 must be larger than t∗, meaning that k must

40

k = 0 k = 0.25(t∗)−1 k = 0.5(t∗)−1 k = 0.75(t∗)−1 k = (t∗)−1

Greedy 0.9179083 0.9065239 0.8985676 0.8856578 0.8703581
CP 0.9323648 0.9114946 0.8986684 0.8853056 0.8702885

Planning 0.9314915 0.9155787 0.9005554 0.8858280 0.8705217
Distributed 0.9294582 0.9125766 0.8988027 0.8831834495 0.8705886

be smaller than (t∗)−1. Therefore, we display results by fractions of (t∗)−1. From this table,
we clearly see that the Greedy Algorithm performs quite well, arriving close to the optimum.
As mentioned in 5.1.1, this is due to the properties of submodularity of the objective function.
They are all quite close to each other and the Distributed Algorithm’s performance is satisfactory,
given its simplicity with respect to the Constraint Programming approach, which needs a model
to be defined and an external, commercial solver, and with respect to the Planning approach.
However, it also falls short of their benchmark, failing to outperform them consistently.

Now we show the performance of the Distributed algorithm over time, studying both the average
number of distinct plans found and the average optimum at 30 seconds, 1 minute, 2 minutes, 3
minutes, 4 minutes and 5 minutes. The results are an average over 20 seeds, and the optimization
was conducted with respect to G(Σ) = P (Σ) (k = 0). We see that eventually the optimum
reaches a plateau, although the time limit of one minute is too restrictive and leaves room for
improvement.

Figure 5.3: Average optimum over time for the Distributed algorithm.

Finally, we show results over a different map, this time a region of northern England whose
geography of this region is more urban than Scotland’s. Results are averaged over 40 seeds, and

41

again they are the result of optimization with respect to G(Σ) = P (Σ) (k = 0). The results

Scotland England

Greedy Algorithm 0.9191073412 0.8861336183
Constraint Programming 0.9323615072 0.8943964071

Planning approach 0.9323627057 0.8942147043
Distributed Algorithm 0.9297457115 0.8894374257

are similar: the numerical results are close to each other, Greedy Algorithm underperforms the
others, and Distributed Algorithm obtains slightly worse results of the two competitors.

Figure 5.4: The simulation over northern England.

42

Chapter 6

Conclusions and future work

This work has shown that distributed algorithms are effective in tackling Search-and-Tracking
problems and, more generally, can be used to solve planning problems with combinatorial fea-
tures, where it is necessary to develop a plan choosing between conflicting tasks. When compared
to the planning approach and the Constraint Programming paradigm, the distributed algorithm
appears to be a more elegant and simple solution. It is also a flexible solution in many regards.
Since it is a solution proposal algorithm, agnostic with respect to the objective function, it can
be used to evaluate several performance functions at the same time. However, it has not been
possible yet to consistently outperform existing approaches.

In order to do so, there exist a different approach that is worth of being further investigated and
could be the topic of future work. Instead of discretizing the time window and creating κ nodes
for each search pattern, it could be more effective to have a single node for each search pattern
σ and to consider the time instant t as an action. In this framework, nodes must choose whether
they should activate and, if they choose so, they also must pick at what time they start out of
[t−σ , t+σ]: their action space would be

Aσ = {0} ∪ [t−σ , t+σ]

where 0 symbolizes that the node σ is not selected. In this case, the nodes are V = åC. We say
that two nodes σ and σÍ of actions tσ ∈ Aσ, tσÍ ∈ AσÍ are in conflict if they have chosen actions
such that it is impossible to execute both, i.e. if their actions t and tÍ are not 0 and either

tσ + dσ +Do(σ, σÍ) > tσÍ

or
tσÍ + dσÍ +Do(σÍ, σ) > tσ

43

holds. We define the graph by stating that there are edges between nodes that are in conflict for
some choice of action, which amounts to:

E = {(σ, σÍ) : (t+σ + dσ +Do(σ, σÍ) > t−σÍ) ∨ (t+σÍ + dσÍ +Do(σÍ, σ) > t−σ)}.

We wish to have no nodes in conflict and that for any inactive node he cannot activate without
being in conflict with some neighbour. With a similar construction of the previous algorithm,
for y ∈ X configuration let

Ψ(σ)(y) =


0 if yσ Ó= 0 and (σ, yσ), (σÍ, yσÍ) are not in conflict, ∀σÍ ∈ Nσ

0 if yσ = 0 and ∀t ∈ [t−σ , t+σ] ∃σÍ ∈ Nσ : (σ, t), (σÍ, yσÍ) are in conflict

−1 otherwise

be the negative indicator of violation either one of those constraints. The potential function is

Ψ : {0, 1}V −→ R

Ψ(x) =
Ø
σ∈V

Ψ(σ)(x).

Again, Ψ(x) counts with the negative sign how many nodes are in violation of a constraint.
Unlike before, now x ∈ X corresponds to a feasible plan if and only if Ψ(x) = 0. The utilities are

uσ(x) =
Ø

σÍ∈Nσ∪{σ}

Ψ(σÍ)(x).

and, like before, count with a negative sign how many nodes in Nσ ∪ {σ} are in violation.
Therefore, the problem is not anymore that of sampling maximal independent sets: now nodes
directly choose what their time assignments should be. One of the issues of this approach is that
now the Noisy Best response is a discrete stochastic process, with the Markov property, but on a
continuous state space. Although this is an issue for the existence of a stationary distribution, it
is actually not a problem for the choice of a new action. Consider node σ and suppose he needs
to pick a new action t from Aσ = {0}∪ [t−σ , t+σ], sampling from the (now continuous) distribution

1
Zη

!
eηuσ(t,x−σ)"

t∈Aσ
.

However, the fact that other nodes’ actions x−σ are fixed implies that uσ(·, x−σ) is piecewise
constant over Aσ, which makes it very easy to sample t.

Another relevant issue that could be addressed is the generalization of the distributed approach
to the multidrone case. One again, the most simple way this could be done is by changing
the actions that each node could choose from and defining Φ accordingly. For example, for two
drones we could have the action set A = {0, 1, 2, 12}, meaning respectively that the seach pattern

44

is assigned to no drone, to drone 1, to drone 2, or to both drones.

The main issue of all of these approaches, of course, is again the size of the state space, that
increases exponentially. As mentioned, the issue is partially limited by the capacity of the
Markov chain of being attracted by higher values of Φ, thus travelling only throughout the most
interesting region. Nevertheless, experiments show that the size of the state space still must
be contained and could severely affect performance. The challenge of distributed algorithms,
therefore, is to be able to effectively describe the problem with a limited number of nodes, a
limited number of actions, or with carefully designed utility functions.

45

Bibliography

[1] Piacentini, C.; Bernardini, S.; and Beck, J.C. (2019), Autonomous Target Search with Mul-
tiple Coordinated UAVs. In Journal of Artificial Intelligence Research (JAIR), vol. 65.

[2] Bernardini, S.; Fox, M.; Long, D., & Bookless, J. (2013). Autonomous search and tracking
via temporal planning. In Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS).

[3] Como G., Fagnani, Giacomo Como and Fabio Fagnani, Lectures on Network Dynamics.

[4] Piacentini, C.; Fagnani, F.; Bernardini, S. (2020), Through the lens of sequence sbumodu-
larity. In Proceedings of the Thirtieth International Conference on Automated Planning and
Scheduling (ICAPS 2020).

[5] IBM, CP optimizer CPLEX.
https://www.ibm.com/se-en/analytics/cplex-cp-optimizer

[6] Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2015. An extension of metric temporal
planning with application to AC voltage control. Artificial Intelligence 229:210–245.

[7] Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010. Forward-Chaining Partial-Order
Planning. In Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS-10).

[8] Bernardini, S.; Fox, M.; Long, D.; and Piacentini, C. 2016, Leveraging Probabilistic Reason-
ing in Deterministic Planning for Large-Scale Autonomous Search-and-Tracking.

46

https://www.ibm.com/se-en/analytics/cplex-cp-optimizer

	Introduction
	Mathematical background
	Notions of graph theory
	Network games
	Game theoretic approach to problems over networks
	Sampling of maximal independent sets

	Autonomous target search
	Construction of the optimization problem
	Constraints
	Objective function

	The Distributed algorithm
	Pseudocode
	Adjustments and heuristics
	Parameter tuning

	Results
	Other algorithms
	Greedy Algorithm
	Constraint Programming approach
	Planning approach

	Comparisons

	Conclusions and future work

