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Abstract 

 

Autonomous driving is the most challenging research field in automotive in recent years, 

alongside emissions reduction. Particularly, the progressive reduction of the human driver’s 

contribution in the vehicle control loop, started with the first milestones in the active safety 

field as ABS and ESP and with the aim of completely getting rid of the human driving, is 

increasing constantly the road safety eliminating the human error. 

Since 2017, Formula Student competition is including a Driverless class, too, in order to 

stimulate students and future engineers to face the design and realization of a Driverless race 

car prototype. The specific rules of this class regulate the design and implementation of the 

crucial subsystems for a driverless vehicle: the perception, the actuators, and the safety 

components. 

This thesis work is a contribution to the development of the Driverless prototype by 

Politecnico di Torino. More specifically, the first part concentrates on the communication 

and testing of the Remote Emergency System (RES), which is a radio component useful to 

give remote commands to the vehicle. It is really important since it can activate the 

Emergency Braking System (EBS) if the team remotely notices issues during the 

autonomous mission. The second part focuses on the design of the Autonomous System state 

machine, which is the upper supervisor of the vehicle decision-making part because, on the 

basis of the inputs from sensors and remote commands, it is in charge of activating the 

actuators and the specific control algorithm for the selected mission. 

The work followed a step-by-step methodology, starting from the theoretical bases and the 

simplest model, and adding improvements just once the previous updates were verified. 

However, the work on RES started directly with physical testing to rebuild its behaviour 

using software as Busmaster, Simulink Vehicle Network Toolbox, and Vector CANdb++. 

Concerning the state machine instead, the design is all virtual in MATLAB and Simulink 

Stateflow environments, giving physical meaning to the variables in order to simplify the 

subsequent implementation in the vehicle control unit. 
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Chapter 1 – Introduction 

 

1.1 Background 

Vehicles are the most important mean of ground transportation for moving people and goods. 

From ACI data, 52 401 299 vehicles were running in Italy in 2019; in particular, automobiles 

were 39 545 232 units [1]. The very first models of automobiles were invented and built in 

the late 1800s during the Second Industrial Revolution, children of the new studies in the 

fossil fuels [2]. They have always been a concentration of the most innovative technologies 

since in a relatively small volume there is the generation of power, the exchange of forces 

with the ground, the control of the movement, and the accommodation for people and 

luggage. For example, in 1876 Nikolas August Otto invented the first car equipped with a 

four-stroke internal combustion engine, which was optimized for gasoline feeding and 

became the most adopted power unit during the First World War. Moreover, the automotive 

industry has led for years the revolutions in the production field; for instance in 1908, Ford 

Model T was the first vehicle manufactured through an assembly line and its production in 

series standardized this kind of production process in 1913 [3]. 

Nowadays, alongside emissions control, the automotive research is focused on safety both 

for passengers and the other road users. With 1.4 million people dying of road injuries in 

2016, the World Health Organization listed road injuries in the top ten of global causes of 

death [4]. From ISTAT data, 172 183 accidents with injuries happened in Italy in 2019. The 

first three causes of crashes are distraction while driving (15.1% of accidents), lack of respect 

of the right of way (13.8%), and high speed (9.3%) [5]. Vehicle safety is usually classified 

into three big branches: preventive safety, concerning the ability of the vehicle to keep the 

driver updated on corrective manoeuvres to be taken, passive safety, which involves the 

restrain systems and the energy absorption by deformations of the vehicle body when crash 

is unavoidable, and active safety, regarding systems and design criteria allowing the driver 

to avoid the collision [6]. As the previous numbers state, human factor is the main criticality, 

so active safety is the most challenging safety area today. The Anti-lock Braking System 

(ABS) and the Electronic Stability Program (ESP) are the first milestones in the active safety, 

which evolution is now represented by ADAS (Advanced Driver Assistance Systems) such as 

the Adaptive Cruise Control and the Lane Keeping System. The future seems to be the 

transition towards Autonomous Driving (AD) which would revolutionise the way of 
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travelling since people would be just passengers in a computer-controlled vehicle that will 

ensure safety controlling the speed and continuously monitoring in real time the urban 

environment. 

 

1.2 Autonomous driving: historical milestones 

The idea of a self-controlled vehicle was already developed in the Middle Ages. As a matter 

of fact, some sketches demonstrate that also Leonardo da Vinci was roughly planning this 

possibility. Later, many scientific fictious novels imagined a world with robotized vehicles. 

The first prototypes of self-driving cars appeared in the 1920s, but they heavily relied on 

specific external inputs; for example, the car behind was controlling the protype, known as 

“Phantom Auto” [7].  

In 1939 at the General Motors Futurama exhibit during the World’s Fair in New York, there 

was the promise of an automated highway system for the United States revolutionising the 

transport of people and freight. In fact the advantages for the industrial world would be in 

terms of productivity, reducing the time spent in a vehicle, road safety, costs of congestion, 

energy consumption, and pollution. From 1980 to 2003, automotive university research 

focused both on “dumb” vehicles needing the guide of the surrounding infrastructures and 

on autonomous vehicle independent from the road. From 2003 to 2007, the U.S. Defense 

Advanced Research Projects Agency (DARPA) launched three “Grand Challenges” for 

driverless vehicles that enhanced the autonomous technology [8]. In 2004, the first challenge 

was hold in the Mojave Desert on a 150 miles track, but the best vehicle just covered 7 miles. 

In 2005, 5 vehicles over 23 succeeded in covering, and the winner of the second challenge 

was the Stanford University because their vehicle completed the track in 7 hours. Finally, 

the 2007 challenge was hold in aeronautical camp in California simulating an urban 

environment, and the challenge was to complete the 60 miles track in less than 6 hours. 

Carnegie Mellon University won [9].  

More recently, private companies have advanced in autonomous driving. Google Driverless 

Car initiative has developed and tested a fleet of cars and started campaigns to demonstrate 

the potentialities of the technology. For example, it can offer mobility to the blind. In 2013, 

Audi and Toyota both unveiled their research programs at the annual International Consumer 

Electronics Show in Las Vegas. Nissan has also recently announced plans to sell autonomous 

cars by 2020 [8]. The most famous revolutionary car company is Tesla by Elon Musk which 
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is developing self-propelled vehicles really fast thanks to the vehicle ability of learning from 

the other vehicles of the family while working together. In particular, they send each other 

signals processed by their sensors, exchanging information about changing lanes and 

obstacle detection. So, vehicles can improve day by day [7]. 

Other milestones in the autonomous driving history can be seen in Figure 1. 

 

Figure 1. Autonomous driving milestones [7] 

 

Many advantages about autonomous vehicles can be listed: 

 Reduction of crashes, eliminating the human factor, particularly due to imprudence 

and alcohol effect. This leads also to an overall social welfare benefit 

 Mobility for those who are currently unable or unwilling to drive, leading to better 

independence, access to essential services, and reduction of social isolation 
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 Reduction of traffic congestion and its cost, since vehicles will adjust their path 

knowing the traffic conditions and people could however undertake other activities 

while in the vehicle 

 Land use, since people could live further from the city cores avoiding to waste time 

in driving. This could revolutionise also the cities layout to a more dispersed and 

low-density architecture without the need of human-driver centred infrastructures 

 Decrease of emissions and better energy use, thanks to a smoother driving style and 

a lighter vehicle structure, consequence of the reduced crash probability [8]. 

 

1.3 Autonomous driving: SAE levels and layout 

The first classification in the automotive field is between automated vehicles and 

autonomous vehicles. The former class includes all the improvements useful to make “more 

automatic” vehicles, in particular concerning the driver assistance (ADAS). The latter 

describes the last step in the automation. More specifically, Regulation 2019/2144 of the 

European Parliament and of the Council of 27 November 2019 on type-approval 

requirements for motor vehicles defines automated vehicle and fully automated vehicle based 

on their autonomous capacity: an automated vehicle is a vehicle designed to be conducted 

by a human driver which must be the supervisor also when the vehicle takes itself the control 

in certain period; an autonomous vehicle, instead, is directly designed to get the driver out 

from the control loop in all the traffic situations [10] [12]. 

SAE (Society of Automotive Engineers) has standardized the “Levels of Driving 

Automation” in standard J3016 (Figure 2) [11]. 
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Figure 2. SAE J3016 Levels of Driving Automation [11] 

 

The first three levels require the mandatory supervision of the human driver regarding 

steering, braking, and accelerating as needed to guarantee road safety; they are also referred 

as Driver Support Features. The last three include features not requiring the control of the 

driver, and they are known as Automated Driving Features. More deeply: 

 Level 0: the automation features are confined to warnings, mainly sound or dashboard 

signals, and momentary assistance. Examples: Automatic Emergency Braking, Blind 

Spot warning, Lane departure warning 

 Level 1 (“hands on”): the automation features share the control of the vehicle with 

the driver for the control of the steering OR brake/acceleration support. Examples: 

Lane Centering OR Adaptive Cruise Control, Parking Assistance where steering is 

machine-controlled, while speed is driver-controlled. “Hands on” means that the 

driver must be always ready to retake the full control. This was the autonomous level 

of Tesla Autopilot since 2014 

 Level 2 (“hands off”): the automation features support the driver in steering AND 

brake/acceleration. Examples: Lane Centering AND Adaptive Cruise Control. 

“Hands off” does not mean that the driver can literally detach his hands from the 

steering wheel, on the contrary it is steel mandatory, but during the automatic 

manoeuvre, the driver does not make any actions and he just supervises 

 Level 3 (“eyes off”): the features can drive the car only under well specified 

conditions, and the driver can safely turn away his attention. However, the driver 
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must be ready to retake the control within a certain period specified by the car maker 

since there are still problems in terms of liability. In practice, the autonomous 

features can be assimilated to a co-driver. Examples: Traffic Jam Chauffeur 

 Level 4 (“mind off”): similarly to the previous level, self-driving intervenes in limited 

spatial areas or under well specified circumstances, but in addition the driver’s 

attention is not required for safety. Outside those conditions, the vehicle must stop 

safely. Pedals and steering wheel may not be installed. Examples: robotic taxi or 

robotic delivery only covering a selected region at a specific time 

 Level 5 (“steering wheel optional”): it is the last step for self-driving vehicles under 

all conditions [11] [12] 

The maximum findable level now on the market is the third. 

A variety of sensors are needed for this transition to autonomous world, such as radar, 

LIDAR (Light Detection And Ranging), sonar, GPS, odometry and inertial measurement 

units to perceive the surrounding environment [12]. Advanced control systems, including 

sensor fusion, read sensory information to compute optimized navigation paths, as well as 

to detect obstacles and relevant signage. The V2X communication is also becoming more 

and more important for sharing road information between vehicles and enclosing them in 

safe infrastructural boundaries; governments are supporting the creation of a Dedicated 

Short-Range Communication, and 5G will play a key role in this direction. The result of this 

interaction will be the “sharing driver” concept for the first commercially available vehicles 

that will be autonomous just under a certain speed and in specified circumstances. In this 

contest, the mechanical aspects of the vehicle are losing their primary role, gradually 

overwhelmed by control algorithms. In fact, many technology companies, such as Google, 

Apple, Nvidia, are entering in the autonomous automotive world with their own projects 

[10]. 

This technology will be also a help for the electric revolution in the automotive world 

because vehicles would efficiently manage their energy level [10] [12]. 

In general, an autonomous vehicle can be described by three main interconnected 

components families, following a “sense-plan-act” design [8]: 

 Sensors, as described above 
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 Logic Process Unit, which includes software, decision making, checking 

functionality, user interface 

 Mechanical Control Systems, consisting of mechanical servo motors and relays, 

driving wheel control, brake control, throttle control, etc. 

Autonomous vehicles also follow a Layered Modular Architecture as digital technologies 

(Figure 3) [13]. 

 

Figure 3. Layered Modular Architecture for digital technologies [13] 

 

 Device layer: the physical machinery refers to the actual vehicle itself (e.g. chassis, 

body, powertrain), accompanied by a logical capability layer referring to operating 

systems that make it autonomous. The latter connects it with the other layers, while 

the former will be revolutionized, in particular concerning the interiors since the 

vehicle will become a “moving room” 

 Network layer: the physical transport layer refers to the radars, sensors and cables 

which create the communication skeleton of the autonomous vehicle. Next to that, 

logical transmission contains communication protocols and network standards to 

communicate the digital information with other networks and platforms or between 

layers 
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 Service layer: it runs the applications and their functionalities that “serves” the 

autonomous vehicle, and its owners, as they extract, create, and store content with 

regards to the driving history, traffic congestion, roads, or parking abilities 

 Contents layer: it contains the sound and images to improve driving and 

understanding capabilities [12] 

Issues about safety, from external attacks and reliability of the components, and accidents 

liability are the now the most important obstacles for the spreading of this technology, as 

well as the revolution of the architectures and cities. 

 

1.4 Autonomous driving: remote control 

“A remote-control vehicle is defined as any vehicle that is teleoperated by a means that does 

not restrict its motion with an origin external to the device. This is often a radio control 

device, cable between control and vehicle, or an infrared controller” [14]. 

Actually, this kind of vehicles is not used for road transport, but they have many application 

fields especially in hazardous environments. Space probes, submarines, army robot for 

buried bombs, automated guided vehicles, and toys are the most common. Many of this 

examples have the traction and trajectory remotely controlled by joysticks. 

Remote-control vehicles can be seen as a grey area of the autonomous world because a 

person still controlling the vehicle is needed. However, since the passage to level 5 

autonomous vehicles will require other 10 or 20 years of research, many companies and 

universities promote teleoperations technologies for remotely control autonomous vehicles 

if necessary. In this way, a human operator could monitor a fleet of autonomous vehicles 

intervening when any of those cars cannot move safely. For example, Google’s Waymo 

tested fully driverless cars in California, provided the presence of remote operators [15]. 

Cellular network is currently the most used communication technology for remote control. 

4G networks are too weak for this purpose because they need vehicles running at a much 

slower speed to exchange safety information. In fact, network requirements for remote 

operation include broad coverage, high data throughput, and low latency. Those 

requirements could enable continuous video streaming and the possibility to send commands 

between a remote operations center and a vehicle (Figure 4). In this contest, the future 5G 

will bring a number of benefits to remote control systems, including core network slicing 
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that will enable priority service provisioning, and radio access to bring ultra-low latency, 

with a round trip time below 4 ms, and beamforming for high throughput and capacity. Some 

delays are still present in this possible configuration of radio control, as the video encoding 

and decoding, and the servo-driven mechanics [16]. 

 

Figure 4. Possible 5G remote control of public transport [17] 

 

In general, communication over a specific network is the most studied methodology to 

remote control a vehicle. A patent from Toyota Motor Engineering and Manufacturing North 

America Inc. describes a method to remotely drive a driverless car when it encounters an 

unexpected driving environment for the autonomous mode, as for example a road 

construction. The information captured by the sensors, especially cameras and LIDAR, is 

sent to a remote server in a communication network. Additionally, the sent data can be 

optimized for conserving bandwidth just selecting their fundamental subset. A remote 

operator is then contacted with a request to take control of the vehicle; he receives those 

data, and he can manually remotely drive in real-time the vehicle until the end of the 

unexpected environment, or he can just send the commands that the autonomous vehicle 

should follow to exit from the unwanted situation. Of course, the autonomous vehicle needs 

enough memory and processing capability to store and execute the commands from the 

operator [17]. 

An older patent from Caterpillar Inc. shows the potentiality of using radio communication 

to interrupt the autonomous operation of a vehicle. The considered autonomous vehicle 

includes a navigator, a machine control module, an engine control module, a transmission 

control module, and other systems to permit autonomous operation. In autonomous mode, 

the navigator delivers a speed command and a steering angle command for the vehicle. In 
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tele-operation mode, a tele-panel communicates the speed and steering angle commands to 

the navigator through a radio link. The navigator then provides these commands to the 

machine control module to operate the vehicle. Remote control is initiated by establishing 

radio communication with the vehicle navigator using the tele-panel (Figure 5). The 

exclusive coupling between the vehicle and the tele-panel is guaranteed by their identifiers 

that are transmitted by the tele-panel before the tele-driving begins. If the communication is 

interrupted during this mode, the vehicle enters in a locked state and it halts [18]. 

 

Figure 5. Tele-operation mode of an autonomous vehicle [18] 

 

This last possible remote control of a driverless vehicle is very similar to the discussion in 

the next chapters about the Remote Emergency System (RES). 

 

1.4 Formula Student Driverless 

Formula Student is an educational engineering competition among worldwide universities 

with the purpose to introduce young engineers into the demanding environment of 

motorsport competition in terms of design, manufacturing, and financing. The challenge is 

to design and construct a single-seater formula style race car (Figure 6) that will be judged 

in terms of engineering design and costs during static events, and in terms of performances 

during the dynamic events [19]. 
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Figure 6. PoliTo SC19 

 

The main characteristic of this competition is its attention to the future; in fact, there is the 

possibility to compete either with an internal combustion engine vehicle or with an electric 

vehicle. Moreover, starting from 2017 in Germany, the Driverless competition has begun 

with many students involved in the study and design of the new autonomous frontiers of the 

automotive industry.  

The design of the driverless vehicle must follow the rules fixed in the annual rulebook by 

the organization. Those rules mainly supervise the design of the steering actuator, the 

Emergency Braking System (EBS), the RES, and all the sensors and control algorithms 

needed to move the car autonomously. Of course, the whole vehicle must follow the 

traditional rules also for the mechanical parts and for the traction systems.  

 

1.5 Methodology 

This thesis work followed a step-by-step methodology. The study and the mastery of the 

theoretical basis and of the used software platforms were the first step.  

In the first part concerning the RES, the thesis is also practice-oriented giving the priority to 

physical testing of the supplied components in order to understand their response by reverse 

engineering, and to verify the real functioning of the understudy subsystem. 

In the second part regarding the Autonomous System state machine, the design of the virtual 

models starts from basic schemes to verify the acquired knowledge and the initial 
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behaviours. Solidified those aspects, further progresses focus on giving stronger physical 

meanings and interacting with the other subsystem of the vehicle. 

 

1.6 Objectives of the thesis 

The following thesis has mainly two objectives: to study the behaviour of the supplied RES 

and to integrate in the EBS test bench; then, to design the Autonomous System state machine 

that will interface on one hand the sensors and the RES, and on the other hand the steering 

actuator and the EBS. Both those last subsystems were designed and tuned simultaneously 

with the other members of the team. The starting vehicle is PoliTo SC19 (Figure 6), which 

competed in the Electric Vehicle (EV) class in 2019 and now the Driverless division of the 

PoliTo Squadra Corse is updating for the Driverless Vehicle (DV) competition. 
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Chapter 2 – Theoretical bases 

 

2.1 Finite-state machines 

As written in the book “Switching and Finite Automata Theory”, “a finite-state machine (or 

finite automaton) is an abstract model describing the synchronous sequential machine and 

its spatial counterpart, the iterative network” [20]. A sequential machine takes in one set of 

inputs each clock cycle to produce one set of outputs [21]. Thus, if at a time instant t, an 

input signal x(t) was to be applied to a machine M, then its response z(t) would depend on 

x(t) as well as on the past input signals to M. Moreover, since a given machine M might have 

an infinite basket of possible histories, it would need an infinite memory for storing them. 

Implementing machines with infinite storage capabilities is of course impossible, so past 

histories of these machines can affect their future behaviour in only a finite number of ways 

giving to the machine only a finite number of decisional paths [20]. An easy scheme to 

understand the functioning of a state machine is reported in Figure 7 [23]. 

 

Figure 7. Finite state machine [23] 

 

In details, from the book “Theory of Computing: a gentle introduction”, in mathematical 

terms a deterministic finite automaton (DFA) is described by a quintuple 𝐴 = {𝑄, 𝛴, 𝛿, 𝑠, 𝐹} 

where: 

 Q is a finite set of states 

 Σ is a finite input alphabet 
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 δ is a transition function from 𝑄 × Σ to Q 

 𝑠 ∈ 𝑄 is the initial state of the automaton 

 𝐹 ⊆ 𝑄 is the set of favourable states [22] 

The term deterministic is used to point out that every action of the automaton is fully 

determined by its current state and the input. 

This book provides also a simple image to visualize a DFA: it can be seen as a movable 

reading head that can read an input tape made by a finite number of cells in which there is 

an input character of the alphabet Σ (Figure 8). Initially, the reading head is at the leftmost 

cell of the input tape. The main part of the automaton is its finite control device: at the initial 

time it is in the state s and at any time it is in a state 𝑞 ∈ 𝑄. At regular time intervals, the 

moving head reads 𝑎 ∈ Σ of the next cell of the input tape and the DFA can pass from the 

state 𝑞 to 𝑞ᇱ = 𝛿(𝑞, 𝑎). Thus, the new state is completely determined by the input and the 

original internal state. At the end, the moving head reaches the end of the input word; at this 

moment, if the machine is in a favourable state 𝑞 ∈ 𝐹, the input word is classified as accepted 

by the machine. Otherwise, the classification is not accepted. The set of all the accepted 

words by the DFA is called language accepted by the automaton, denoted as L(A) [22]. 

 

Figure 8. Deterministic Finite Automaton example [22] 
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The typical representation of a state machine is through a directed graph commonly called 

State Transition Diagram (STD) (Figure 9). The nodes represent the states, while the arrows 

represent the transitions, and they are labelled with the required input coming from the 

alphabet of the machine for that transition [22] [23]. The initial state can be highlighted with 

different methods, in this case the symbol > has been chosen. 

 

Figure 9. State Transition Diagram [22] 

 

The book “Theory of Computing: a gentle introduction” introduces also the nondeterministic 

finite automaton (NFA). It is a quintuple 𝐴 = {𝑄, 𝛴, ∆, 𝑠, 𝐹} where: 

 Q is a finite set of states 

 Σ is a finite input alphabet 

 𝑠 ∈ 𝑄 is the initial state of the automaton 

 𝐹 ⊆ 𝑄 is the set of favourable states 

 ∆⊆ 𝑄 × (Σ × {𝑒}) × 𝑄 is the transition relation [22] 

Every triple (q, a, p) in ∆ is represented by an arrow connecting the states q and p and 

docketed “a” in the state diagram of the automaton A. Two important differences from the 

deterministic vision can be explained thanks to the state diagram: an arrow can be labelled 

by the empty string “e” and some states can have no coming out arrows labelled with some 

symbols 𝑎 ∈ Σ. The empty string means that the NFA can jump from the state q to the state 

p whenever it wants. In this way, trap states can be avoided, which are a typical case of the 

deterministic machines that remain stuck in a state that can accept all the alphabet returning 

the current state [22].  

It can be demonstrated that for each nondeterministic finite automaton A, there is a 

deterministic one A’ equivalent to A. Equivalent automaton means that it can accept the 



25 

 

same language. Many conversion algorithms exist and the decision between deterministic 

and nondeterministic is made specifically for the case of study since there are no 

computational advantages [22]. 

Another important classification is between Mealy machines and Moore machines. 

A Mealy machine is a deterministic finite-state machine whose output depends on its actual 

state and the input [23]. From the mathematical point of view, a Mealy machine is a 6-tuple 

𝑀 = {𝑄, 𝑠, 𝛴, 𝛬, 𝑇, 𝐺} where: 

 Q is the finite set of states 

 s is the initial state 

 Σ is the input alphabet 

 Λ is the output alphabet 

 T is the transition function 𝑇: 𝑄 × Σ → Q, computing the future state from the pairs 

of a state and an input symbol 

 G is the output function 𝐺: 𝑄 × Σ → Λ, computing the output symbol from the pairs 

of a state and an input symbol [24] 

The typical scheme of a Mealy machine is the one in Figure 7, so, in practice, it is the most 

general case of state machine.  

Moore machine, instead, is a deterministic finite-state machine whose output depends just 

on its actual state (Figure 10) [23]. In computation theory, it is defined as a 6-tuple 𝑀 =

{𝑄, 𝑠, 𝛴, 𝛬, 𝑇, 𝐺}, where G is the only difference with the previous definition because it is an 

output function 𝐺: 𝑄 → Λ, correlating each state to the output alphabet [25]. 

 

Figure 10. Moore machine [23] 
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The main advantages of Mealy machines are the reduced number of state and the faster 

response to the input. Nevertheless, Moore machines have a better control on the evolution 

of the machine, in fact output change is always one cycle later with respect to state change, 

while in Mealy ones, input change can cause output change as soon as the transition happens. 

Consequentially, they result to be easier to test and tune [23] [24] [25].  

 

2.2 MATLAB Simulink Stateflow 

Stateflow is a MATLAB Simulink toolbox adapt for modelling and simulating, through a C 

compiler, state machines and flow charts (Figure 11). It is also possible to analyse and debug 

the modelled machine thanks to animations and integrity control systems [26].  

 

Figure 11. State machine block in Simulink [26] 

 

Once inserted the block in the Simulink environment, it is possible to enter in the 

development environment of the state machine itself by double-clicking on the block. The 

design of the machine is based on sketching its state transition diagram. 

A finite state machine is a representation of an event-driven (reactive) system. In an event-

driven system, the system responds to an event by making a transition from one state to 

another. This transition occurs if the condition defining the change is true [26]. Two kinds 

of states can be modelled in Stateflow:  

 Exclusive states (OR states), following the defined hierarchy, those states can work 

singularly and are characterized by a continuous line (Figure 12) 
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 Parallel states (AND states), characterized by a dotted line and by a number defining 

the functioning sequence (Figure 13), they can work both singularly and 

simultaneously. 

 

Figure 12. OR state [26] 

 

Figure 13. AND state [26] 

 

Sub-states and sub-machines can be written inside a state. 

Some actions can be also programmed inside the state mainly linked to the output of the 

machine. The syntax is “action_type: action;”. The main action types are: 

 Entry (abbreviation “en”), the action is executed as soon as the state becomes active 

 Exit (abbreviation “ex”), the action is executed just before a transition out of the state 

 During (abbreviation “du”), the action is executed when the state is active, and a 

specific event occurs 

 Bind, an event or data object is linked to the state so that only that state and its 

children can broadcast the event or change the data value 
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 On event/message_name, the event is executed when the state is active, and it 

receives a broadcast of the specified event or message in the command [26] 

Transitions are modelled by arrows exiting from one state and entering in the next one and 

above it the actions and conditions of the transition are reported following the syntax: 

event_trigger[condition]{condition_action}/transition_action (Figure 14). 

 

Figure 14. Transition with condition [26] 

 

The event_trigger is that event that initializes the transition; it can be also absent and in this 

case every event can start the transition, or there can be multiple events connected by the 

logical link OR (|) [26]. 

The condition is a Boolean operation which determines if the transition can happen or not 

[26]. 

The condition_action is an operation that is executed before reaching the next state if the 

condition is true, even if at the end the state is not reached [26].  

The transition_action, instead, is an operation executed only if the next state can be reached. 

Otherwise it is ignored [26]. 

A particular kind of transition is the default transition (Figure 15), really important in an 

exclusive system since it highlights the starting condition [26]. 
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Figure 15. Default transition [26] 

 

Junctions can be used to eliminate useless states, joining transitions, and exiting new ones 

with a specific hierarchy (Figure 16) [26]. 

 

Figure 16. Junction [26] 

 

History junctions exist, too; they are indicated with an encircled “H” inside the state and 

allow the machine to remember the last sub-state before the transition out of the state. In this 

way, in case of return in that state, the machine will start from last executed sub-state instead 

of the default one [26]. 

Finally, actions and transition conditions can be also linked to temporal logical operators. 

The syntax is operator(n, E). The operators are:  

 After, which returns “true” if the event E happens at least n times after the state is 

activated 
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 Before, which returns “true” if the event E happens less than n times after the state is 

activated 

 At, which returns “true” if the event E happens at the n-th time after the state is 

activated, the counter is reset every time the state is activated 

 Every, which returns “true” every n-th activation of the event E after the state is 

activated, the counter is reset every time the state is activated 

 TemporalCount(E), which increases of 1 the counter and returns the value of the 

event E every activation of E in the state, the counter is reset every time the state is 

activated also in this case [26] 

Temporal logical operators with absolute time can be used just substituting the event E with 

the chosen unit of measure, usually seconds (sec) or milliseconds (msec). 

The input and output data must be defined in the section Symbols pane, based on the symbols 

used to indicate the events and the conditions. Exiting from the chart, in the Simulink 

environment, the input and output will become ports that can be interfaced with the usual 

Simulink tools. 

 

2.3 dSpace Scalexio  

dSpace Scalexio (Figure 17) is a family of modular real-time systems for hardware in the 

loop (HIL) and rapid control prototyping (RCP) applications. HIL is a testing technique to 

verify the behaviour of the control models and of the components of a subsystem during the 

prototyping phase just connecting the electronic control unit to sensors and actuators 

representing the undertesting subsystem on a bench [28]. RCP is another method to test and 

iterate the control strategies automatically importing the mathematical models, for example 

from MATLAB Simulink, to a real-time real I/O machine [29].  
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Figure 17. dSpace Scalexio family [27] 

 

Main benefits of dSpace Scalexio are: 

 Scalability to any required processing and I/O requirements 

 High-performance processor for fast computation of large and complex model 

 Comprehensive, precise, and fast I/O capabilities based on FPGA (Field 

Programmable Gate Array) technology 

 IOCNET (I/O Carrier Network technology optimized for demanding real-time 

requirements in terms of latencies and bandwidth) real-time backbone with low jitter 

and high bandwidth for best-in-class closed-loop performance 

 Use of several third-party simulation environments via Functional Mock-up Interface 

(FMI) support [27] 

Concerning autonomous vehicles, dSpace is suitable for: 

 Data replay: “reprocessing of real-world data to validate perception and sensor fusion 

algorithms” 

 Simulation models: “vehicle and traffic simulation featuring ground truth sensors, 

intelligent driver models, the integration of road networks and environments from 

HD maps, consistent support of standards, and open interfaces for execution in real 

time or faster than real time” 

 Sensor simulation: “virtual reproduction of the entire sensor transmission channel in 

order to simulate environments as perceived by cameras, radars, and lidar sensors” 
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 Sensor fusion test: “validation of perception and sensor fusion algorithms by means 

of physics-based sensor models, real-time simulation, and synchronous raw sensor 

data injection into high-performance processing units” 

 Radar black-box testing: “over-the-air stimulation of radar sensors with up to four 

echoes” 

 Testing LTE and 5G application in a virtual environment: “open- and closed-loop 

test setups to provide an end-to-end solution for connected and cooperative 

autonomous vehicles” [27] 

dSpace Scalexio AutoBox (Figure 18) is the compact solution for in-vehicle tests thanks to 

its improved shock and vibration resistance and an optimized cooling system. Moreover, it 

has an integrated power supply for 12 V, 24 V, and 48 V electrical systems, 7 I/O slots, and 

a very precise real-time processing unit [27]. 

 

Figure 18. dSpace Scalexio AutoBox [27] 

 

2.4 dSpace MicroAutoBox 

dSpace MicroAutoBox (Figure 19) is a compact stand-alone prototyping unit useful also for 

in-vehicle testing of its major subsystems, as powertrain, chassis, body, ADAS, electric 

systems, and x-by-wire solutions. It is a real-time system for performing test in fullpass and 

bypass scenarios [30].  
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Figure 19. dSpace MicroAutoBox [30] 

 

Fullpass (Figure 20) means that a new entire ECU with its control logic has to be developed 

from the start, so the different control strategies can be tested and tuned directly by the 

prototyping unit at the early stage before producing the physical ECU since modifications 

after the production would be more expensive, time consuming, and inflexible. In this way, 

developers can concentrate mainly on the algorithm design without having to worry about 

memory space and computing power [31]. 

 

Figure 20. Fullpass prototyping [31] 

 

In bypass-based prototyping, instead, existing ECU software is optimized or partially revised 

(Figure 21). The original ECU executes all the functions that will remain unchanged, while 

the new algorithms are calculated in MicroAutoBox. The necessary input data and results are 

exchanged between the MicroAutoBox and the original ECU. If the existing ECU already 

features the I/O data required by the new control strategy, just an appropriate ECU interface 

with the prototyping unit has to be managed. If the algorithm instead requires additional 

data, the I/O interfaces of MicroAutoBox, to directly connect new sensors or actuators to the 

vehicle bus [30]. 
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Figure 21. Bypass prototyping [30] 

 

The in-vehicle mounting is ensured by the ISO 16750-3:2007 certification for shock and 

vibrations. In this way MicroAutoBox can be also used directly as vehicle control unit, 

similarly to a fullpass scenario, as it happens in Polito Squadra Corse SC19. Moreover, there 

are MicroAutoBox variants with interfaces for all major automotive bus systems: CAN, CAN 

FD, LIN, K/L-Line, FlexRay, and Ethernet. In particular, thanks to the Ethernet port, a PC 

can be directly hot-plugged for application download, model parametrization, and data 

analysis. CAN interfaces and topology are easy to configure by means of the dSPACE 

blocksets RTI CAN and RTI CAN MultiMessage (RTI = Real-Time Interface). The RTI 

library (Figure 22) provides a blockset that lets users implement the functionality and I/O 

capabilities of MicroAutoBox fast and conveniently, directly into controller models created 

with the development software MATLAB/Simulink/Stateflow [30]. 

 

Figure 22. RTI blockset [30] 
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2.5 Remote Emergency System (RES) 

The Remote Emergency System (RES) is a standard requirement for Formula Student DV 

consisting in a remote control (sender) and a vehicle module (receiver) (Figure 23). The 

receiver includes a normally-open relay which must be part of the Shutdown Circuit (SDC). 

The SDC is an electric circuit composed of switches for the activation the main subsystems, 

particularly the electric traction system, a low voltage battery, and protection components 

[32]. 

 

Figure 23. Remote Emergency System [33] 

 

It has essentially two functions: 

 Stop button: when pressed, it must trigger the DV Shutdown Circuit (SDC) by a non-

programmable logic only manually resettable. Triggering the SDC means performing 

an emergency braking manoeuvre by the EBS 

 Race-control-to-vehicle communication: it can send the Go signal to the vehicle that 

replaces the green flags for the race start [32] 

The apparatus is provided by Gross-Funk GmbH as a combination of the models GF2000i-

codec (receiver) and T53R98 (sender) based on the application of radio signals to operate a 

technical device from a separate location as well as to transfer information. The main 

characteristics are: 

 SIL3 (Safety Integrity Level) / EN61508 certification 

 430 ÷ 440 MHz communication band 
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 88 mW signal strength 

 12 V or 24 V supply voltage (0.26 A at 12 V) for the receiver 

 450 g, 173 mm x 113 mm x 35 mm 

 IP20 receiver (protection against solids penetration but no from liquids and 

vapors) / IP65 sender (total protection) 

 -20 ÷ +60 °C operating temperature, -30 ÷ +80 °C storage temperature [33] 

The receiver (Figure 24) has a CANopen interface with the following properties: 

 1000 kbit/s, 125 kbit/s, 250 kbit/s, and 500 kbit/s in standard configuration 

 Cyclic PDOs (Process Data Objects) containing states of switches (Go signal) 

and radio 

 Warning 200 ms in advance to shutdown, contained in the cyclic PDO, if a signal 

loss is detected [33] 

 

Figure 24. Connections at the RES receiver [33] 

 

The CANopen is a communication protocol and a device profile specification for embedded 

devices in automated systems. Following the OSI (Open Systems Interconnection) model, it 

implements the network layer and the layers above to the CAN protocol, which rules, instead, 

the physical layer and the data link layer. In particular, the network layer regulates the packet 

routing in the network. CAN bus can only transmit packets with 11-bit ID, a remote 

transmission request (RTR) bit and 0 ÷ 8 bytes of data; so, CANopen divides the 11-bit ID 

in 4-bit function code, mapping the used protocols and giving priority to critical functions, 

and 7-bit CANopen node ID [35] [36] [37].  
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RES receiver communicates with the CAN master device following two protocols: the NMT 

and the PDO, standardized CiA 301 standard.  

The NMT protocol stands for Network Management and it is characterized by a master-slave 

structure. Through NMT services, nodes are initialised, started, monitored, resetted or 

stopped. A state machine (Figure 25) shows the different modes that the CAN slave, in this 

case the RES receiver, can enter [38]. 

 

Figure 25. NMT protocol state machine [38] 

 

In the RES case as soon as the slave is booted up, it passes into the PreOperational state and 

singnalizes its initialization to the master. Then the master gives the permission to enter in 

the Operational mode which is the one required for the PDO protocol. The NMT 

initialization message is written as CAN-ID = 0x700 + Node-ID + single data byte 0x00. 

The NMT message to pass to the Operational mode is of the kind CAN-ID = 0x000, byte 1 

= 0x01 (requested state), byte 2 = addressed Node-ID (if the message is for all the nodes 

byte 2 = 0x00) [33]. 

Once in the Operational state, the RES receiver uses Process Data Object (PDO) protocol 

to communicate with the CANopen master because it processes real time data. There are two 

kinds of PDOs: transmit and receive PDOs (TPDO and RPDO), with RPDO it is possible to 

send data to the device, and with TPDO it is possible to read data from the device, for 

example with RPDO it is possible to start a connected device. PDO can be also synchronous 

or asynchronous depending if the transmission happens just after the receiving of a SYNC 

message from the master [39]. The RES receiver transmits cyclic status messages of 8 bytes 

containing PDOs 2000 – 2007 cyclically every 30 ms. Each PDO has a length of 1 byte, 

CAN-ID = 0x180 + Node-ID. PDO 2000 contains information about the status of the switch 
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K2, bit 1, and the button K3, bit 2, and, as a consequence, of the Go signal. The “Emergency 

Stop” is signalized by PDO 2000, bit 0, and PDO 2003, bit 7. Moreover, PDO 2006 contains 

the radio quality, from 0 to 100%, and PDO 2007 summarizes several radio states, for 

example bit 6 signalizes a pre-alarm radio communication interruption 200 ms in advance to 

shutdown [33]. 

The portable transmitter is equipped with a LED display indicating the actual operating 

modes as well as faults in the following manner: 

 LED off: transmitter is switched off 

 LED flashing permanently: transmitter is switched on 

 LED flashing fast: power pack warning, the power level is too low, and the control 

will turn off after 10 minutes 

 LED blinks slowly after switching on the machine: 0-position alert [34] 

0-position monitoring is a check against inadvertent or defective starting that can involve 

both the transmitter and the receiver. For what concerns the transmitter, the electronics 

monitor the operational elements; if they are not in the resting position when the transmitter 

is switched on, it indicates the 0-position alert and avoids transferring the control command. 

Concerning the receiver, it expects a 0-position message after a switching on or a stand-by: 

if those messages are not received, the receiver does not engage any function [34]. 

Those are all safety specifications particularly important when, depending on local 

conditions, frequency interruptions can occur, and the machine turn off as “safe mode”. 

All important and safety functions are controlled by the dead man’s switch function to avoid 

any unintentional movement. A dead man's switch is a switch that is designed to be activated 

or deactivated if the human operator becomes incapacitated. Unintentional movements must 

be avoided in particular if they can start unintended functions. 

The radio system has to be safety tested in regular intervals. Two main verifications have to 

be done: 

 The “stop test”. It is recommended to be done daily at start of the operations: at the 

beginning, the transmitter is off, and a function allowing a visible and safe movement 

is selected; then, the transmitter is switched on, the selected function is pressed and 

held, and finally, the “stop” button is pressed. The function must stop immediately, 

and the “stop” button must snap into its place without rebounding 
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 The “inspection of the dead man’s switch”. At the beginning, the transmitter is off, 

and a visible and safe function is selected. That function is pressed and held, then the 

transmitter is switched on, and the machine may not take any movement showing the 

fast flashing LED (there are also modes with an additional acoustical signal). After 

that, the function is released, the warn signal stops, and the LED flashes permanently. 

Pushing again the same function, this must work now as usual 

 “0-position of the master switch verification”. Occasionally, the rebound of the 

master switch to the 0-position must be verified because it can be affected by dirt 

[34] 

Considering the RES transmitter, the Stop button is a dead man’s switch, and it is used to 

turn on the device, too, just unlocking it. Inside the Stop button there is also the LED for the 

monitoring of the operating mode. A turning switch is also present for selecting the radio 

channel in case of common initial frequency with another transmitter; the receiver stops for 

few seconds during the change. 

Finally, the receiver is tested against electromagnetic interferences, but malfunctions can 

still occur due to induction currents, power regulators, frequency converters, high 

performance radio transmitter, spark gaps, high-voltage generators, power inverter, and 

similar. Thus, the positioning is constrained by the presence of those elements, and classic 

suggestion for electromagnetic compatibility should be followed, as short connecting cables 

and free-wheeling diodes for radio interference suppression [34]. 

 

2.6 CAN communication 

Control Area Network (CAN) is “an International Standardization Organization (ISO) 

defined serial communications bus originally developed for the automotive industry to 

replace the complex wiring harness with a two-wire bus” taking the durability of the system 

at the same level of the entire vehicle (10÷20 years). The CAN bus was developed by 

BOSCH as a multi-master, message broadcast system that specifies a maximum data rate of 

1 megabit per second (bps). Unlike a traditional network, such as USB or Ethernet, CAN 

does not send large blocks of data point-to-point from node A to node B under the 

supervision of a central bus master. In a CAN network, many short messages like temperature 

or RPM are broadcast to the entire network, which provides for data consistency in every 
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node of the system. Data consistency refers to the usability of data. The vehicle CAN network 

is made of many different ECUs exchanging information, from the one of the engine to the 

one controlling the ABS, and so on. Each node can both send and receive messages, but not 

simultaneously. For non-critical subsystems such as air-conditioning and infotainment, 

where data transmission speed and reliability are less critical, LIN bus standard is used [40]. 

Considering the OSI standard, CAN bus standardizes just the first two layers: the Physical 

layer and the Data Link layer, in turn, divided in Medium Access Control (MAC) and Logical 

Link Control (LLC). Above layers, such the Network layer, are useless because any routing 

protocol is needed in a closed network where only ECUs are addressed [40] [41]. 

The Physical layer (Figure 26) is characterized by a passive bus topology made by copper 

twisted pair cables with nominal impedance of 120 Ω. This bus uses differential wired-AND 

signals; differential means that 2 complementary signals are sent to eliminate noise by 

subtraction of the signals. Two signals, CAN high (CAN_H) and CAN low (CAN_L) are 

either driven to a dominant state with CAN_H > CAN_L, or not driven and pulled by passive 

resistors to a recessive state with CAN_H ≤ CAN_L. A 0 data bit encodes a dominant state, 

while a 1 data bit encodes a recessive state, supporting a wired-AND convention, which 

gives nodes with lower ID numbers priority on the bus [41].  

ISO 11898-2, also called high-speed CAN (bit speeds up to 1 Mbit/s on CAN, 5 Mbit/s on 

CAN-FD), uses a linear bus terminated at each end with 120 Ω resistors. For high-speed 

CAN, any device transmitting a dominant (0) means CAN_H wire towards 5 V and the 

CAN_L wire towards 0 V, while if no device is transmitting a dominant, the terminating 

resistors passively return the two wires to the recessive (1) state with a nominal differential 

voltage of 0 V (receivers consider any differential voltage of less than 0.5 V to be recessive 

for tolerance). This is the standard for automotive application [41]. 

ISO 11898-3, also known as low-speed or fault-tolerant CAN (up to 125 kbit/s), uses a linear 

bus, star bus or multiple star buses connected by a linear bus, and it ends at each node by a 

fraction of the overall termination resistance. The overall termination resistance should be 

close to, but not less than, 100 Ω. Low-speed fault-tolerant CAN works in the same way of 

high-speed CAN, but with larger voltage drops. The dominant state is transmitted by driving 

CAN_H towards the device power supply voltage (5 V or 3.3 V), and CAN_L towards 0 V, 

while the termination resistors pull the bus to a recessive state with CAN_H at 0 V and 

CAN_L at 5 V. The receiver should just consider the sign of CAN_H – CAN_L [41]. 
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Figure 26. CAN bus physical layer [41] 

 

Moreover, the mechanical aspects of the Physical layer are not formally specified; each car 

maker or in general each CAN device can have different connectors, often custom [41]. The 

most common connector is the 9-pin D-sub type male connector with a pin configuration as 

shown in the following Figure 27. 

 

Figure 27. CAN 9-pin D-sub type connector 

 

Passing to the communication engineering field, 4 different kind of packets can be 

transmitted: 

 Data frame, useful to transmit information through push mechanism 

 Remote frame, useful to request data from the other nodes through pull mechanism 

 Error frame, useful to reset the system informing all the nodes that an error occurred 
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 Overload frame, useful to reserve the bus for very high priority frames deleting what 

is already in the channel [42] 

The CAN protocol can follow two different standards for the Data packet structure. The ISO-

11898:2003 Standard, with the standard 11-bit identifier, provides for data rates from 125 

kbps to 1 Mbps (Figure 28). It was later amended with the “extended” 29-bit identifier 

(Figure 29) [40]. 

 

Figure 28. Standard CAN data frame [40] 

 

The meaning of the acronyms in Figure 28 is the following: 

 SOF is the Start Of Frame and it is a single dominant bit with the aim of reserving 

the bus for the transmission and synchronization 

 11-bit Identifier, known also as Arbitration Field, it has information about the 

transmitter, the receivers, and the priority of the message: the lower the binary value, 

the higher the priority 

 RTR is the Remote Transmission Request bit and it is an extra-priority bit for data 

frames with respect to remote frames if the transmitter and receivers are the same 

 IDE is the IDentifier Extension bit and it is dominant if the frame is in standard format 

 r0 is a recessive bit at the transmitter 

 DLC is the Data Length Code and it is made of 4 bits to indicate the number of bytes 

(0÷8). It forms the Control Field with r0 and IDE 

 Data field, up to 8 bytes in order to have real time control 

 CRC is the Cyclic Redundancy Check field with 15 bit of parity check and 1 recessive 

bit of delimiter 

 ACK is the Acknowledgement field where the transmitter sends a recessive bit, while 

the receivers overwrites it with a dominant bit only if the CRC has not any error. A 

recessive final bit works as delimiter 
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 EOF is the End Of Frame with 7 bits and it must be recessive, and it disables bit 

stuffing, that is a technique to ensure enough transitions to maintain synchronization 

inserting a bit of opposite polarity after five consecutive bits of the same polarity 

 IFS is the InterFrame Space with 7 bits containing the time required by the controller 

to move a correctly received frame to its proper position in the network [41] 

 

Figure 29. Extended CAN data frame [40] 

 

Figure 29 shows the data frame for the Extended CAN protocol. Advantage of this new 

protocol is the increment of the maximum nodes in the network since the Identifier can 

assume 229 values. It has the same standard message with these additions: 

 SRR is Substitute Remote Request which substitutes the RTR in the position of the 

Standard frame. It is a recessive bit in order to give priority to Standard frame if the 

11-bit identifier is the same 

 IDE is soon after the SRR and it is a recessive bit for Extended CAN data frame 

 r1 is an additional reserve bit that is recessive in case of Extended format [40] 

The Remote frame is essentially equal to the Data frame without the Data field [42]. 

Bus errors are bits errors, stuff errors, form errors, ACK errors, and CRC errors [42]. The 

Error frame is composed of 3 fields:  

 the Error flag that is a field with 6 consecutive dominant bits to interrupt and destroy 

other communications in the bus. All the nodes in the network receive it and respond 

with 6 recessive bits 

 the Error delimiter with 8 additional recessive bits when the bus error has been 

detected 

 the Interframe space with 3 bits [42] 

The Overload frame is similar to the Error frame [42]. 

The MAC layer regulates the encapsulation of the data, the access to the common medium, 

and errors control. The CAN bus protocol is a Carrier-Sense Multiple-Access protocol with 
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Collision Detection and Arbitration on Message Priority (CSMA/CD+AMP). CSMA means 

that each node on a bus must wait for a prescribed period of inactivity before attempting to 

send a message. CD+AMP means that collisions are resolved through a bit-wise arbitration, 

based on a pre-programmed priority of each message in the identifier field of a message. The 

higher priority identifier always wins bus access [40] [42]. 

The LLC layer has the functions of overload notification and acceptance filtering, alongside 

the multiplexing function [42]. 

Many implementations of CAN bus-based higher-level protocols exist. CAN in Automation 

(CiA) is the international users and manufacturers organization that develops and supports 

CAN-based higher-layer protocols and their international standardization, and CANopen can 

be found among these protocols [40]. 
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Chapter 3 – RES testing and implementation 

 

3.1 Test bench 

At beginning of the driverless vehicle assembling, a simple test bench (Figure 30) was 

prepared in order to activate the supplied RES and to understand its real performances.  

 

Figure 30. RES test bench 

The test bench arrangement is the following: Eutron power supply (12 V), connecting electrical cables, RES receiver, CAN 

db9 connector, PCAN-usb adapter, and pc. The cables are connected to the power supply through pins and to the RES 

receiver through a screw terminal block. The DB9 connector is welded to two small cables fixed in the previous terminal 

block. 

 

The voltage supply is an Eutron D.C. Power Supply Low Power 1-n Output (Figure 31) that 

allows to impose the voltage handling the knobs and monitor the current flowing. The cables 

connection is done by pins, while in the receiver the cables are fixed thanks to a screw 

terminal block (Figure 33). The imposed voltage is 12 V. Above it, there is an Agilent digital 

multimeter5 (Figure 31) useful to measure electric signals in the output ports of the RES 

receiver. In fact, triggering the toggle switch K2 or the push switch K3 translates into output 

voltage of 12 V respectively from output ports 1 or 2. 
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Figure 31. Eutron voltage supply and Agilent multimeter 

 

The RES receiver is set to node ID 0x011 as specified in the FSG Competition Handbook 

[33] with a chosen baud rate of 1 Mbit/s. The setting is done by the DIP switch (Figure 32) 

on one side of the receiver. Moreover, the CAN connection (Figure 33) has on one side the 

screw terminal block and on the other two small cables welded to a CAN DB 9 female in the 

pins 2, CAN low, and 7, CAN high. 

 

Figure 32. RES DIP switch 

 

Figure 33. RES receiver, cabling, and CAN db9 connector 
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A PCAN-usb adapter Kvaser Leaf Light v2 (Figure 34) is directly attached to the CAN DB 

9 female on one side and to a PC on the other. It allows to include in the CAN network also 

the PC with a maximum performance of 8000 messages per second, each time-stamped with 

100 microsecond accuracy. 

 

Figure 34. PCAN-usb adapter Kvaser Leaf Light v2 

 

Their own antennas are also mounted on the transmitter and receiver and the radio frequency 

is chosen as channel 1 of the RES. 

The first activity concerned the registration of the CAN messages sent by the receiver. 

Busmaster is the software used to couple the PC with the created CAN network. As soon as 

the receiver receives voltage, it sends the boot-up NMT message with CAN-ID=0x711, as 

forecasted considering the previous chapter, DLC=1, and Data byte=00, as indicated in the 

FSG Competition Handbook [33]. 

Then, the verification of the PDO communication followed, but due to the necessity of CAN 

master, an additional step was needed; thanks to MATLAB Simulink and the Vehicle 

Network Toolbox, a fictious master was programmed to send a message with ID=0x000, 

DLC=2, and Data bytes=01 00 (Figure 35). In this way, the PC can send the NMT message 

to pass in the Operational state to all the nodes in the CAN network for simplicity. In this 

case, the RES receiver is the only node in the network. 
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Figure 35. Simulink fictious CAN master 

 

The isolated block is CAN Configuration which defines the channel and its baud rate. The 

channel can be physical, as in this case of study, or virtual thanks to the software itself. Then, 

the block in between is the CAN Pack useful to translate a MATLAB signal into a CAN 

message. Three main roads can be taken: use of the raw data, manual definition of the 

message choosing the ID, the DLC, and the related signals, and definition of the message 

through DBC file. Finally, there is the CAN Transmitter that is in charge of the message 

insertion in the CAN network, once imposed the channel and the typology of transmission. 

 

Figure 36. Busmaster interface 

 

Once the NMT node control message is sent, the RES receiver starts sending cyclic PDOs 

every 30 ms to update the CAN master about its state. Acting on the RES transmitter, we 

can read 4 different messages thanks to Busmaster (Figure 36). Those messages are reported 

in the following table: 
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ID Message DLC  Data Byte (Hex) K2 K3 STOP 

0x191 0x191 8 01 00 00 80 00 00 64 01 off off off 

‘’ ‘’ ‘’ 03 00 00 80 00 00 64 01  on off off 

‘’ ‘’ ‘’ 05 00 00 80 00 00 64 01 off on off 

‘’ ‘’ ‘’ 00 00 00 00 00 00 00 00 off off on 

 

The respect of the indication in the FSG Competition Handbook about the PDOs is 

guaranteed. In fact concerning PDO 2000, so the first byte, 03 (hexadecimal) = 0000 0011 

(binary), so the bit 1 is equal to 1 when the switch K2 is in ON position, 05 (hexadecimal) = 

0000 0101 (binary), so the bit 2 is 1 when the switch K3 is pushed. Moreover, in PDO 2003, 

80 (hexadecimal) = 1000 0000 (binary) because the last bit shows that the Stop button is not 

pushed. In PDO 2005, 64 (hexadecimal) = 100 (decimal), therefore the radio quality is 100% 

due to the proximity of the transmitter and receiver on the bench. The last message of zeros 

is linked to the pushing of the Stop button and the consequent opening of the receiver internal 

relay [33]. 

 

3.2 DBC file definition and testing 

A more realistic and simpler simulation of the RES communication can be done using a DBC 

file. A DBC file is an “ASCII (American Standard Code for Information Interchange) based 

translation file used to apply identifying names, scaling, offsets, and defining information, 

to data transmitted within a CAN frame”. It is essentially a database and the most common 

way to handle identification and translation of data from the raw CAN message to a 

meaningful physical value. For any given CAN ID, a DBC file can identify some or all the 

data within the CAN frame [43]. 

Based on the registered exchanged packet in the RES communication, the writing of a 

specific DBC file was possible. The used freeware was VectorCANdb ++ Editor. This 
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software offers the possibility to create a CAN database for different standards adapting the 

template. For sake of simplicity, the basic CAN template was chosen. The organization of 

the software follows a hierarchical tree (Figure 37) that can be exploited with a top-down or 

a bottom-up methodology. 

 

Figure 37. DBC hierarchical tree 

 

In this case of study, the definition of the network was not necessary; so, following a top-

down approach, the messages were the first defined objects. As Figure 37 shows, three kinds 

of messages are stored in the DBC file and they are characterized by the ID and the DLC:  

 NMT_boot: CAN-ID = 0x711 and DLC = 1, it is the NMT boot-up message 

 NMT_operational: CAN-ID = 0x0 and DLC = 2, it is the NMT message to pass into 

operational state 

 PDO: CAN-ID=0x191 and DLC = 8, as the name suggests, it codifies the PDO 

communication 

Then, the signals were defined. Each 8-bit signal is linked to a message. For example, as it 

is possible to read in Figure 37, 8 PDO signals are written in the DBC file because the PDO 

message contains 8 bytes of data. Signals are characterized by their number of bits, value 

type, offset, maximum and minimum values. In case of finite number of values, the signal 
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can be defined by value tables. Considering the RES communication, the following signals 

are present in the DBC file: 

 boot: linked to the message NMT_boot, it has 8 bits, and it is defined by a value table 

in which the value 0x0 is translated as “ON” 

 operational_1: it is the first byte of the message NMT_operational, and it is defined 

a value table in which the value 0x1 is translated as “operational_mode” 

 operational_2: it is the second byte of NMT_operational, and its value table defines 

0x0 as “all nodes”, since in this case the message would be sent to all the nodes in 

the network, and 0x11 as “RES_ID”, because in this case the message would be sent 

only to the RES receiver 

 PDO2000: it is the first byte of the message PDO, and its value table defines 0x0 as 

“OFF”, 0x1 as “ON”, 0x3 as “K2_GO”, and 0x5 as “K3_GO”. The meaning of the 

values is explained in the table in the previous paragraph 

 PDO2001: it is the second byte of the message PDO, and its value table defines 0x0 

as “standard”, since there are no other signals emitted by the receiver in this byte 

 PDO2002: it is the third byte of the message PDO, and its value table defines 0x0 as 

“standard”, since there are no other signals emitted by the receiver in this byte 

 PDO2003: it is the fourth byte of the message PDO, and its value table defines 0x0 

as “E-STOP” and 0x80 as “ON” 

 PDO2004: it is the fifth byte of the message PDO, and its value table defines 0x0 as 

“standard”, since there are no other signals emitted by the receiver in this byte 

 PDO2005: it is the sixth byte of the message PDO, and its value table defines 0x0 as 

“standard”, since there are no other signals emitted by the receiver in this byte 

 PDO2006: it is the seventh byte of the message PDO, and it is defined with unsigned 

value type, so all positive numbers, minimum = 0 and maximum = 100, unit = %. 

This byte describes the radio quality in percentage, as also written previously 

 PDO2007: it is the last byte of the message PDO, and its value table defines 0x0 as 

“E-STOP” and 0x1 as “ON” 

It is easy to notice that the codification of the signals follows the registered messages thanks 

to Busmaster. Having the DBC file allows to bypass the CANopen communication protocol 

because the messages can be already tracked in the CAN bus lower layers. 
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Once prepared the DBC file, a further step in the simulation was done including the blocks 

CAN Receiver and CAN Unpack and defining the CAN messages directly with the DBC file. 

In this way, the Simulink model can also work as receiver (Figure 38). The first block, once 

defined the channel and the sample time, has as outputs the CAN message and a trigger to a 

Function-Call subsystem. To translate the CAN message, the Function-Call subsystem must 

include the block CAN Unpack which in practice works symmetrically to the CAN Pack with 

the same possible configurations. 

 

Figure 38. NMT transmission and PDO receiving 

 

In this simulation, two fictious switches are useful to initialize the sending of the 

NMT_operational message. The block with the constant 17 (decimal) means that the 

communication is directed only to the RES receiver. The time of the simulation is infinite 

because the information coming in the cyclic PDOs can be read in real time. The most 

significant PDOs, the 2000 and the 2006, are also displayed to understand the state of the 

receiver. In the case of the Figure 38, the two zeros displayed means that the Stop button is 

pushed. 

Last step in the Simulink environment was the simulation of the entire communication cycle 

(Figure 39) developing the previous model in Figure 38. As a matter of fact, another CAN 

receiver was implemented in the model to receive the NMT boot-up message and to 

elaborate it into a signal for the NMT transmission. This elaboration consists of using the 

signal boot exiting from the CAN unpack to send the signals operational_1 and 
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operational_2. Adding 1 and 17 respectively to the received 0, it is possible to create the two 

data to translate in a CAN messages with the CAN Pack block. 

 

Figure 39. Complete RES communication model 

 

In figure 39, the displayed 3 means that the switch K2 is in ON position and the radio quality 

is 100%; in fact the switch was physically triggered, and the radio quality was at the 

maximum because the receiver and the transmitter were very close during the test. 

 

3.3 Integration in the EBS and testing 

Firstly, in order to understand in the proper manner the following discussion, the designed 

EBS of the SC19 must be described both in its fluid-mechanical part and electrical circuit. 

The design starting point is always the FS Rulebook; it requires only the use of passive 

systems with mechanical energy storage, and it can be part of the hydraulic brake system 

[32]. In the SC19 case, the hydraulic braking system is already an emergency braking system 

since the 90% of the braking pedal travel activates just the regenerative braking for the 

maximum energy recovery during manoeuvres. After many redesign of a braking pedal 

actuator, the team shifted to the direct activation of the braking lines in order to fulfil the 

redundancy requirements. As Figure 40 shows, the EBS is fully redundant because it is built 

on the redundancy of the braking system itself that has two separate hydraulic circuits for 

the front and rear wheels. 
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Figure 40. Hydro-pneumatic EBS scheme 

 

The mechanical energy storage is a high-pressure canister of 9 cubic inches usually used in 

paintball and soft-air guns. The air inside is stored at 200 bar, and the first pressure regulation 

is done directly by the output port of the canister to 58.6 bar. Then, another pressure 

regulator is mounted on the canister to bring the pressure to 10 bar. The pneumatic line starts 

from this last regulator and finds a 3-ways 2-positions manual valve; this valve is useful to 

put the EBS in armed state turning the valve in the position connecting the input port from 

the canister to the rest of the pneumatic line, and it is necessary also to manually discharge 

the system after an emergency stop connecting the port for the pneumatic line to the external 

environment. This valve has also an intermediate position that locks both the outputs. The 

next pneumatic component is a normally open 3-ways 2-positions solenoid valve; it has the 

goal of locking the passage of the compressed air during autonomous or manual driving and 

opening for EBS activation. In fact, the following component is a hydro-pneumatic 

intensifier that converts the pneumatic pressure into hydraulic pressure boosting it for the 

disc brakes. It works thanks to its geometry; the compressed air moves a cylinder with a bore 

of 40 mm until closing the connection to the master cylinder oil reservoir, which leads to the 

increase of the oil pressure thanks to the reduction of the bore to 18 mm of the rod in the oil 

side of the intensifier. In this way, the 10 bar of pneumatic pressure ideally transforms into 
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49 bar of oil pressure at the equilibrium ( 𝑝 = 𝑝
ௗೌೝ

మ

ௗ
మ  ). Before reaching the pistons of 

the disc brakes, there is a shuttle valve useful for the connection to the existing braking lines 

as output, but also to preserve the functioning of the braking pedal during manual driving. 

The 3/2 solenoid valves are supplied by the Low Voltage Circuit of the vehicle. This circuit 

is powered by a 24 V battery and it includes all the electrical components not involved in 

the creation and release of traction power. As the FSG Guidebook suggests, a normally open 

relay should be present upstream the two parallel solenoid valves [33]. This electrical 

component works as a switch; if its coil is excited by the Shutdown Circuit (SDC), it is closed 

to let the Low Voltage battery supply the solenoid valves, if the SDC opens in a point, the 

current doesn’t flow anymore in the coil and the relay opens interrupting the voltage supply 

to the solenoid valves, so activating the EBS. The Shutdown Circuit (SDC) (Figure 41) is a 

safety circuit needed to halt the High Voltage System, in charge of the traction, in case of 

any danger directly by the buttons on the dashboard for the driver, internal switches (BOTS, 

BSPD, …), and the Accumulator Isolation Relays (AIRs), needed to break the electric circuit 

of the high voltage battery pack in the case of crash, short circuit, overheating, and other 

emergencies. The RES receiver normally open relay is also inserted in the SDC in order to 

lock the traction system and to initialize an EBS manoeuvre [32]. 

 

Figure 41. Shoutdown Circuit scheme from FS rulebook [32] 
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The test bench for the integration of the EBS with the RES followed the CAD positioning for 

the hydro-pneumatic components and their supports (Figure 42), while the electrical cabling 

respected the connections of the two circuits. Nonetheless, the cables length was not the 

same as it will be in the vehicle, and the power supplies for the two circuits were independent 

for connections simplicity. So, on one hand there was the circuit of the relay switch and the 

solenoid valves and on the other hand there was the connection between the RES receiver 

relay and the EBS relay coil. The RES receiver was supplied independently to avoid making 

parallel connections.  

Some differences in the configuration of the test with respect to the designed physical 

implementation were still present. The compressed air was supplied by a compressor directly 

connected to the tested line to have infinite air charges, and the intensifier was locked with 

a bolt at the output port since the hydraulic lines were not delivered yet. The air pressure was 

lowered to 5 bar to keep the team safe during the first tests and to avoid damaging the piston 

inside the intensifier; in fact, if it reached the end stroke, it would hit the bolt with a very 

high concentrated force even for a steel component. The pressure sensor in Figure 40 was 

substituted with a pressure switch because its purpose is just to inform the central control 

unit that the EBS has pressure in the line (armed state) or not. So, a pressure switch with a 

pressure threshold equal to the minimum one needed for a safe EBS manoeuvre is enough. 

Its output is a digital signal for the control unit, and it is captured by an oscilloscope in the 

test bench. It is pneumatically connected to the circuit with a T joint and its presence is a 

definitive design choice also for the final mounting. 

Before connecting all the hydro-pneumatic components, a simple test was performed to 

verify the electrical cabling. The air supply was disconnected but the verification of the 

functionality was confirmed by the internal movement of the solenoid valve when it returns 

in the normally open position due to current interruption. The movement was shown by a 

perceived sound. The opening of the supply circuit of the solenoid valve is done by the 

normally open relay which opens when there is no more current in its coil. The coil is 

supplied by the second circuit where there is the RES receiver relay connected in series; 

when the Stop button is pressed, the RES relay opens interrupting the current in the EBS 

relay coil. The connection between the RES receiver and the EBS relay is shown in Figure 

43. 
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Figure 42. EBS and RES test bench 

The EBS and RES test bench has the following arrangement: Eutron power supply (12 V), RES receiver, EBS relay, 3/2 

solenoid valves, intensifiers, pressure switch, oscilloscope, manual valves, and a compressor (not in photo). Concerning 

the electrical cabling, there are two main circuits and other two just for the supply of the pressure switch and of the RES 

receiver, respectively. The first main circuit starts from the power supply, enters in the RES receiver relay through a screw 

terminal block, passes into the EBS relay coil, and returns into the power supply for the connection with the ground. The 

second one starts from the power supply, too, enters in the EBS relay switch, then in the EBS solenoid valve, and returns 

into the power supply for the ground connection. The compressed air flows from the compressor to the intensifier, passing 

through a manual valve useful to charge/discharge the circuit, a T-joint for the pressure measure, and the solenoid valve 

for the activation of the system. 
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Figure 43. RES and EBS connection through the EBS relay 

 

Then, the main test was performed connecting all the pneumatic pipes as it is possible to see 

in Figure 42. The first action was opening the connection with the compressor but keeping 

the manual valve in off-position to build-up pressure in the first part of the air line. Then, 

the stand-by of the power supplies was released and the pressure switch signalled 0 V since 

there was no pressure downstream the manual valve, so the EBS was disarmed. Some white 

noise can be also seen from the oscilloscope signal (Figure 44). 

 

Figure 44. Oscilloscope signal: EBS disarmed (0 V) 
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Then, the manual valve was turned to connect the input to the EBS line. The pressure build-

up helps the commutation of the purchased 3/2 solenoid valve because it is piloted by an 

input pressure of at least 4 bar. At this moment, the pressure switch was signalling 5 V, so 

EBS armed (Figure 45). Of course, some disturbances of the electrical signals were shown 

by a non-perfect value of the voltage (5.12 V). 

 

Figure 45. Oscilloscope signal: EBS armed (5 V) 

 

Finally, the Stop button was pushed, and simultaneously the solenoid valve returned in the 

open position giving pressure to the intensifier. The activation was noticed also thanks to a 

strong sound similar to a gunshot of a compressed-air gun due to the strong compression of 

the air entrapped in the space between the intensifier rod and the closure bolt. Despite a 

relatively low output pressure around 24 bar by manual computation, a very high force was 

produced such to move of some millimetres the bolt out of the output threading. 

Releasing the Stop button, all the power supplies were repristinated, and the solenoid valve 

discharged the intensifier thanks to the connection between the intensifier line and the output 

silencer in the triggered position.  
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Chapter 4 – Autonomous state machine design 

 

4.1 Formula Student autonomous state machine 

The Formula Student rulebook 2020 strictly regulates the design of the Autonomous state 

machine for the driverless vehicle in section DV 2.4. It is mandatory to implement in the 

Autonomous System (AS) of the vehicle the imposed state machine (Figure 46) without any 

other states or transitions [32]. 

 

Figure 46. AS state machine [32] 

 

Before entering in the details of the state, a list of the acronyms and the functionality of the 

named systems is useful: 

 TS: Tractive System 

 R2D: Ready-to-Drive, it is typical of the electric vehicles and it means that the motor 

can respond to the position of the accelerator pedal, measured thanks to a position 

sensor 

 SA: Steering Actuator 

 SB: Service Brake 

 EBS: Emergency Brake System 
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 ASSI: Autonomous System Status Indicator, it is a LED lamp indicating the actual 

state of the vehicle. There are three ASSIs on the vehicle; two must be located on 

each side of the vehicle behind the driver’s compartment in a specific region below 

the main hoop, while the other one must be positioned in the rear, on the vehicle 

centreline.  To favour the visibility of the light also in sunlight, they have a dark 

background 

 ASMS: Autonomous System Master Switch, it is a switch that allows the voltage 

supply to the steering and braking actuators 

The rulebook imposes to strictly follow the order of the numbered transitions. The default 

transition is in the state AS Off. In this state, the vehicle is completely off and standstill. 

Selecting the Manual driving mode deactivating the EBS, keeping the ASMS in off position, 

and activating the traction system, the vehicle can be driven only by a human driver or 

pushed externally. Just turning the vehicle off, the transition back to AS Off happens. In order 

to select the AS Ready state, the EBS must be armed, the ASMS must be set in the “on” 

position, and then, the traction system turned on. In this state, the braking and steering 

actuators are supplied by the Low Voltage System (LVS), but the vehicle is still not sensitive 

to the accelerator pedal position, it is braked to prevent rolling on a slope up to 15%, and the 

ASSI is yellow continuously. It is possible to return in the previous state just turning off the 

ASMS and releasing the brakes. The AS Driving state is initialized just giving the “Go” 

signal through the RES and waiting 5 seconds of delay. This is the state in which the various 

Autonomous Missions, still listed in the rulebook, can be performed and it is signalled by 

the ASSI yellow flashing. As soon as the mission is finished and the vehicle speed is 

measured equal to zero, the autonomous machine passes into AS Finished. In this state, the 

traction system turns off, the steering actuator too, and an EBS manoeuvre is performed to 

stop the vehicle in a safe position; the ASSI is continuously blue. The AS Emergency is the 

specific state for safety, highlighted by the ASSI flashing in blue. This state is reached from 

the autonomous states when failures occur with the traction system switched on. Failures 

can be in the perception system, in the LVS, in the SDC, and in the control algorithms. The 

EBS can be triggered also by pushing the Stop button of the RES transmitter when unwanted 

behaviour of the vehicle is noticed by the team. The RES triggering translates into AS 

Emergency state also from AS Finished state. In the AS Emergency state, the vehicle must 

emit an intermittent sound with an on/off frequency between 1 and 5 Hz, duty cycle of the 

50%, sound level between 80 and 90 dBA fast weighting, and duration between 8 and 10 s 
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after the transition. From AS Emergency, it is possible to pass just into AS Off when the 

intermittent sound is “off”, the ASMS is switched off, and the brakes are released. The return 

into AS Off is done also from AS Finished just turning off the ASMS and releasing the brakes. 

It is important to underline that the EBS release may only be done by manual steps [32]. 

 

4.2 Design and testing of the autonomous state machine in Stateflow 

environment 

The first design of the state machine (Figure 47) starts with the 7 states imposed by the 

rulebook. In each state, the outputs of the system are defined with the command “entry” 

because the actions must happen as soon as the state becomes active.  

 

Figure 47. First model of the AS state machine 

 

The input and output variables have the same acronyms of the rulebook, and they are defined 

into the Symbols Pane (Figure 48) window of the software. The variables have just Boolean 

values (1 = on and 0 = off) in order to verify just the responsiveness and the behaviour of 

the model. Only the ASSI variable has 4 values because it is linked to the 4 state that the 

ASSI LED can assume. 



63 

 

 

Figure 48. Symbols pane 

 

The simulation is done with infinite stop time to test simultaneously the response of the state 

machine to the inputs. All the inputs are controlled by toggle switches (Figure 49).  

 

Figure 49. AS state machine model during simulation 

 

The transition to the Manual Driving state is execute turning off the ASMS switch and then 

turning on the START_button switch which simulates the real TS switch on the vehicle to 

turn on the High Voltage system for traction. In this state, the lamp signalling the ASSI is 

grey (ASSI = 0). Then, just turning off the START_button, the machine passes to AS Off, 

grey lamp, and it can pass into AS Ready turning on the ASMS and afterwards, switching on 

the START_button; the ASSI lamp becomes yellow (ASSI = 1). The return in the previous 

state happens just turning off the ASMS_button. From the AS Ready state, the machine can 
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go into AS Driving simulating the RES signal with the toggle switch RES; the ASSI lamp 

becomes red (ASSI = 2) as it is possible to see in Figure 49 which was taken during a 

simulation of the model. From AS Ready and AS Driving, the AS Emergency can be triggered 

by the signal EBS_sensors which simulates any possible error in the vehicle that would 

trigger the EBS, for example errors in the perception system, in the electric circuit or just the 

RES Stop button. The state AS Finish is reached when the vehicle velocity is equal to zero 

and it is highlighted by the ASSI lamp coloured in sky blue (ASSI = 4); in this simple model 

also the speed is commanded by a switch but in reality it is linked to the measures coming 

from the Inertial Measurement Unit (IMU). From this last state, the machine can return into 

AS Off switching off the ASMS or it can pass into AS Emergency switching off the RES 

toggle switch simulating the press of the RES Stop button. AS Emergency has the ASSI lamp 

in dark blue (ASSI = 3). The passage from AS Emergency to AS Off happens switching off 

the ASMS. 

The order for transitions with two conditions is established using a junction, as for example 

the 5 seconds delay before the RES triggering for the passage to AS Driving. 

Figure 49 displays the functioning of the designed model: the current state, AS Driving, is 

highlighted by blue boundaries and the red ASSI lamp is also visible. The values of the 

outputs are displayed, too. The simulation must be paced with simulation time per wall clock 

second equal to 1 to have real time answers. In this way, the 5 seconds delay of the transition 

to AS Driving can be verified (Figure 50). 

 

Figure 50. Verification of the 5 seconds delay for AS Driving transition 
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4.3 Integration of the AS state machine with the RES model in Simulink 

First refinement of the previous simple model is the integration of the AS state machine with 

the RES model explained in Figure 39.  

The refinement starts creating the two subsystems (Figure 51). The outputs of the RES 

subsystem are the most significant PDOs: PDO2000 for information about the switches K2 

and K3, and on the Stop button, PDO2006 for the radio quality. Those outputs become inputs 

for the AS state machine subsystem allowing the elimination of the RES toggle switch. 

 

Figure 51. RES and AS state machine models integration 

 

Then, as Figure 52 shows, the transition to AS Driving can be signalized by the PDO2000 

variable when it becomes equal to 3 or 5. The OR logic is implemented with a | spacing the 

two conditions. PDO2000 equal to 0 means pressed Stop button of the RES transmitter, so 

transition to AS Emergency. This transition can happen even when the radio quality, 

PDP2006, becomes too poor; in this case a value less of the 10% is not allowed because it 

means that the radio communication with the moving vehicle can be delayed or unable 

leading to the impossibility of stopping it in case of dangerous situations. 
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Figure 52. Updated AS state machine with RES inputs 

 

The good and simultaneous behaviour of this model can be seen in the next two figures: the 

first shows that triggering the toggle switch K2, the state machine passes into AS Driving 

state as the red ASSI lamp demonstrates (Figure 53); the last evidences the functioning of 

the RES Stop button to enter in the AS Emergency state, in fact the lamp is dark blue and the 

light inside the button is “off” (Figure 54). 
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Figure 53. RES providing the Go signal 

 

Figure 54. RES providing the Emergency stop 
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4.4 Integration with EBS hydro-pneumatic and electrical models 

Following the idea of validating the AS state machine through virtual simulations, giving 

physical meaning to the input and output variables was the priority. The step-by-step 

methodology was still followed increasing the simulation complexity only after having 

verified the success of the first update. 

The EBS (described in paragraph 3.3) was built on Simulink Simscape (Figure 55). In 

particular, the intensifier is modelled as two translational mechanical converters with fixed 

cases and connected rods; in this way, the pneumatic translational converter represents the 

air chamber of the intensifier, while the hydraulic one represents the oil chamber. The 

canisters are of course constant volume chambers connected to the gas property block with 

data for air. The pressure regulators are modelled with a pressure reducing valve with the 

wanted pressure gauge. The solenoid valves and the manual valves are both modelled with 

a 3-ways 2-position valve; thus, the difference is obviously in the command of the valve: the 

former is commanded by the state machine, the latter by a toggle switch. The geometrical 

and physical data are memorized thanks to the following MATLAB script: 

close all 
clear all 
clc 
  
RefCond.Pressure=206; %[bar] 
RefCond.Temperature=25; %[°C] 
 
%% Constant volume chamber  
CANISTER.TIPPMAN30009ci_volume=0.000147;               %[m^3] 
CANISTER.TIPPMAN30009ci_lenght=0.1365;            %[m] 
CANISTER.TIPPMAN30009ci_radius=0.0492;        %[m] 
CANISTER.TIPPMAN30009ci_pressure=206;                 % [bar] 
CANISTER.TIPPMAN30009ci_diameter_port=0.02059;             % out-port 
diameter (5/8") [m] 
CANISTER.TIPPMAN30009ci_cross_section_area=pi*CANISTER.TIPPMAN30009ci_dia
meter_port^2/4; %[m^2] 
CANISTER.TIPPMAN30009ci_area=24573.16e-6; %[m^2] 
 
%% GAS Properties HA p=206 [bar];T=25 [°] 
AIR.specific_gas_constant=0.2871; %[kJ/(kgK)] 
AIR.compressibility_factor= 1.107; %[] 
AIR.Reference_T_for_gas_properties=298.15; %[K] 
AIR.Specific_h_at_reference_T=256; %[kJ/kg] 
AIR.Specific_heat_cp=1.338; %[kJ/kg/K] 
AIR.dynamic_viscosity=27.77; %[10^-6(Pa*s)] 
AIR.thermal_conductivity=26.24; %[mW/m/K] 
AIR.density=1.184; %[kg/m^3] 
 
%% Pressure reducing valve #1 
PRV.pressure_gauge=55; %[bar]; 
PRV.nominal_diameter=0.01145;  %internal diameter (1/4")[m] 
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PRV.cross_sectional_area=pi*PRV.nominal_diameter^2/4; %[m^2] 
 
%% Pressure reducing valve #2 
PRV2.pressure_gauge2=10; %[bar]; 
PRV2.nominal_diameter2=0.01145;  % internal diameter (1/4")[m] 
PRV2.cross_sectional_area2=pi*PRV2.nominal_diameter2^2/4; %[m^2] 
%% Pipe GAS1 
PIPEGAS.lenght=1.4;     %[m] 
PIPEGAS.outside_diameter=0.006;  %external diameter for HPA lines[m] 
PIPEGAS.inner_diameter=0.004;  %internal diameter for HPA lines[m] 
PIPEGAS.cross_sectional_area=pi*(PIPEGAS.inner_diameter)^2/4; %[m^2] 
 
%% MV 3 WAYS VALVE “T” FEMALE 6700 AIGNEP 
MV.inner_diameter=0.01145;  % internal diameter (1/4")[m] 
MV.cross_sectional_area=pi*MV.inner_diameter^2/4; %[m^2] 
 
%% Pipe GAS2 
PIPEGAS2.lenght=0.08;     %[m] 
PIPEGAS2.outside_diameter=0.006;  %external diameter for HPA lines[m] 
PIPEGAS2.inner_diameter=0.004;  %internal diameter for HPA lines[m] 
PIPEGAS2.cross_sectional_area=pi*(PIPEGAS2.inner_diameter)^2/4; %[m^2] 
 
%% 3/2 NC Solenoid valve 1/4" AIRCOMP  
SV.nominal_diameter=0.01145;  % internal diameter (1/4")[m] 
SV.cross_sectional_area=pi*SV.nominal_diameter^2/4; %[m^2] 
 
%% Pipe GAS3 
PIPEGAS3.lenght=0.03;     %[m] 
PIPEGAS3.outside_diameter=0.006;  %external diameter for HPA lines[m] 
PIPEGAS3.inner_diameter=0.004;  %internal diameter for HPA lines[m] 
PIPEGAS3.cross_sectional_area=pi*(PIPEGAS3.inner_diameter)^2/4; %[m^2] 
 
%% INTENSIFIER gas side  
INTENSIFIER_GAS.dead_volume=5480e-9;  %[m^3] calculated directly from the 
CAD [mm^3] 
INTENSIFIER_GAS.piston=40e-3; %[m] 
INTENSIFIER_GAS.rod=18e-3; %[m] 
INTENSIFIER_GAS.cross_sectional_area=pi/4*(INTENSIFIER_GAS.piston^2); 
% INTENSIFIER_GAS.cross_sectional_area=1144.33e-6;      % [m^2] 
INTENSIFIER_GAS.diameter=0.01145;  %internal diameter (1/4")[m] 
INTENSIFIER_GAS.mass=0.1;                % mover part mass [kg] 
INTENSIFIER_GAS.surface_area=114674.84e-6; %[m^2] 
 
%% INTENSIFIERS oil side  
INTENSIFIER_OIL.bore=18e-3; %[m] 
INTENSIFIER_OIL.piston_area=pi*INTENSIFIER_OIL.bore^2/4;   %[m^2] 
% INTENSIFIER_OIL.dead_volume=30e-9; %[m^3] 
INTENSIFIER_OIL.dead_volume=13404e-9; %[m^3] 
INTENSIFIER_OIL.stroke=16e-3; %[m] 
INTENSIFIER_OIL.mover_mass=0.05; %[kg] 
INTENSIFIER_OIL.max_volume=1e-5 %[m^3] from excel calculation volume of 
oil of front discs 
INTENSIFIER_OIL.max_pressure=38e5; %[Pa] 
INTENSIFIER_OIL.pressure=101325; %[Pa] 
 
%% PIPE OIL A04002-TR FRENTUBO 
PIPEOIL.internal_diameter=2.5e-3; %[m] 
PIPEOIL.passage_area=pi*PIPEOIL.internal_diameter^2/4; %[m] 
PIPEOIL.lenght=1; %[m] 
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Figure 55. EBS Simscape model 

 

Both the front and rear lines were modelled (Figure 56), and both the mean pneumatic 

pressure downstream the manual valves and the mean oil pressure are computed to give a 

feedback to the state machine (Figure 57). In this way, the state machine can understand if 

the EBS is deactivated (mean pneumatic air is null), armed (mean pneumatic air is of 10 bar) 

or activated (mean oil pressure around 49 bar) as imposed by the FS regulation (paragraph 

4.1). 

 

Figure 56. EBS lines 
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Figure 57. EBS integrated with the AS state machine 

 

From Figure 57, it is possible to notice that the feedback into the state machine needs a first 

order filter to give a delay for the real-time simulation. The EBS is the subsystem on the 

right. Concerning the solenoid valves command, if the variable EBS_out is equal to -1, the 

EBS is activated; if it is equal to 1, solenoid valves lock the passage of the air. 

To have this specific values of the EBS_out variable, an artificial mathematical operation is 

added (Figure 58). The state machine was also updated with the new transition conditions 

about the mean air pressure described before (Figure 59). Those new conditions require a 

pressure below 1.5 bar to pass into Manual Driving since the EBS must be deactivated, so 

the pressure in the lines should be the atmospheric one, and a pressure above 8 bar to pass 

into AS Ready, since the system can respect the EBS manoeuvre requirements. 

 

Figure 58. Updated AS state machine for EBS 
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Figure 59. Updated AS chart for EBS 

 

The good response of this implementation is demonstrated by Figure 57 that was taken 

during a EBS simulation triggering the RES Stop button and it shows the dark blue ASSI 

lamp.  

In the following Figure 60, there is the possibility to validate the functioning of the model, 

too. The oil pressure (yellow line) increases as soon as the state machine passes into AS 

Emergency reaching a steady value of around 49 bar. The air pressure (blue line) starts 

increasing before since it is linked to the activation of the manual valves and it has a steady 

value of 10 bar. This steady value is not reached immediately because the first order filter 

has a time constant equal to 1 s for simplicity. The oil pressure (yellow line) has as a dynamic 

behaviour as a second order damped system excited by step input. The small fluctuations of 

the value around the steady state are due to numerical errors in the real-time computation 

that sum-up second after second causing a constant small increase. Those numerical errors 

are caused by the absence of a physical end to the oil line, which is the disc caliper pushing 

on the disc in reality. Therefore, the compressibility of the fluids become not negligible, in 

particular of the air. The axes report the time in seconds on the abscissa (as all the scope in 

a Simulink model) and the pressures in bar. 
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Figure 60. EBS simulation: Air (yellow) and Oil (blue) mean pressures vs time 

 

Then, also the electrical circuit was modelled (Figure 61). For the sake of simplicity, just the 

most important components for the EBS and state machine are present. Starting from the 

Low Voltage Circuit, there are: the ideal voltage source of 12 V modelling the battery, the 

Low Voltage Master Switch (LVMS) that activates the Low Voltage Circuit not reported in 

the model, the Autonomous System Master Switch (ASMS) that activates the Autonomous 

System (AS) part of the circuit, here represented just by the EBS part with the relay and a 

resistance for the solenoid valve electrical absorption. Before the ASMS and still supplied 

by the Low Voltage source, there is in parallel the Shutdown Circuit with its High Voltage 

Master Switch (HVMS) that is in practice the Traction System Master Switch (TSMS), the 

RES receiver relay, and a fictious resistance representing all the current absorption in the 

circuit as one. Many current sensors are in the scheme to give feedback to the state machine 

about the activation of the switches and to command the EBS relay and the solenoid valves. 

Moreover, for the feedback into the state machine that must respect a precise transitions 

order, it is necessary to have the LVMS, the ASMS, and the EBS part in parallel. All the 

resistances have a fictious value of 1 Ω since the scope of the model is just to study the 

response of the systems and how to manage the AS state machine with physical entities. For 

this reason, the electrical characteristics of all the elements is the given one by Simulink, 

too.  
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Figure 61. Simplified Low Voltage and Shutdown circuits 

 

The inputs of the LVMS, ASMS, and HVMS are constants commanded by toggle switches 

as in reality they are physical switches on the body of the vehicle. The RES command is the 

variable EBS_out coming from the state machine since it is equal to 1 when the machine 

goes into AS Emergency. In this way, the RES switch can include all the possible openings 

of the SDC. The outputs are then inputs for the AS state machine and EBS solenoid valves 

following the letters, as visible in Figure 62. 

 

Figure 62. AS State Machine links with the electrical circuits 
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Figure 62 shows the necessities of other first order filters for the real-time simulation and 

many functions since the state machine accepts Boolean values while in the circuit, there are 

analogical values. To reduce the delay introduced by the first order filter, the time constant 

was imposed equal to 0.01 s. The “ASMS command” and the “TSMS command” functions 

are the same since the output variable (ASMS/TSMS) is 1 if there is current flowing in the 

respective loop: 

function ASMS = fcn(ASMSon) 
if ASMSon>1 
    ASMS=1; 
else 
    ASMS=0; 
end 
end 

The “Solenoid command” function is different since it must give 1 if there is no current 

flowing in the EBS loop of the Low Voltage circuit: 

function solCMD = fcn(AScurrent) 
if AScurrent<=0.1 
    solCMD=1; 
else 
    solCMD=-1; 
end 
end 

The inequality with 0.1 is due to the prevision of some tolerance. 

The current flowing in the SDC also gives a feedback with the variable EBS_in since in 

reality the EBS is activated by every failure in this circuit. The function to translate in a 

Boolean command the absence of current is the following: 

function EBS_in = fcn(SDCcurr1) 
if SDCcurr1<=0.1 
    EBS_in=1; 
else 
    EBS_in=0; 
end 
end 

The value of 0.1 has the same meaning of the previous function. 

Validation of this update in the model is given by the following plots. The abscissa is always 

the time in second, while the y-axis can represent the current in Ampere or the pressure in 

bar depending on the plotted variables. 
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Figure 63. Low Voltage circuit current vs time 

 

 

Figure 64. Shutdown Circuit current vs time 
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Figure 65. Autonomous System current vs time 

 

 

Figure 66. Electric circuit simulation: Air (red) and Oil (yellow) mean pressures vs time 

 

The simulation was executed as a real Autonomous driving should be following the steps of 

the theoretical state machine in paragraph 4.1. Firstly, the LVMS is switched on. Then, the 

manual valves are activated, so the air pressure build-up can be seen. The oil pressure grows, 

too, since the solenoid valves are open due to the absence of current caused by the ASMS 

off. So, the ASMS and the HVMS are activated, as Figure 63 shows with the current drops. 

As soon as the SDC has current (Figure 64), also the AS current starts flowing due to the 
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closure of the relay. So, the solenoid valves commutate in the closed state and the oil pressure 

drops to zero. In this situation, the state machine is in AS Ready and a Go signal from the 

RES initialise the transition to AS Driving. Finally, the Stop button of the RES is triggered, 

so the SDC opens, consequentially also the AS part of the Low Voltage circuit opens 

triggering the solenoid valves in open state. This actions are demonstrated by the last parts 

of Figures 64, 65, and 66. Investigating better the plots on the software, it is possible to 

evidence a 40 ms of delay between the SDC current drop and the oil pressure build-up, and 

this is far away the 200 ms of maximum EBS activation time required in the FS regulation. 

 

4.5 Further refinements: Missions, Ready-to-drive, EBS check-up sequence 

Besides the autonomous states, the FS rulebook defines the Autonomous Missions. Those 

must be at least the following: 

 Manual driving 

 Inspection 

 Acceleration 

 Skidpad 

 Autocross 

 Trackdrive 

 EBS test 

The first one is just the selection of the Manual driving state. The Inspection mission must 

be used during the technical inspection when the vehicle is jacked up with removed wheels; 

the drivetrain must slowly spin, and the steering system must follow a sine wave for an 

overall duration of 25÷30 seconds. EBS test is still part of the technical inspection and it 

evaluates the response and the rule-compliance of the EBS when triggering the RES. All the 

other missions respond to the dynamic events of the competition precisely described in the 

rulebook. Acceleration evaluates the acceleration performance on a straight path. Skidpad is 

a constant-steering test using two circular paths to test both the steering directions. Autocross 

evaluates the handling performance on a specific track. Trackdrive substitutes the Endurance 

test for manual driving vehicles and it challenges the driverless vehicle in a closed-loop track 

[32]. 

The selected mission must be indicated by the Autonomous Mission Indicator (AMI) [32]. 
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Missions are fundamental for the driverless car because each one has its own control strategy 

of both the traction system and the steering actuator and also its own path planning strategy. 

The implementation of the missions in the AS state machine happens in the AS Driving state 

where a specific sub-state for each mission can be written (Figure 67). The default mission 

was randomly imposed as the Acceleration one, but the prior selection ensures immediacy 

of the response. In fact, the mission selection must be done during the AS Off state and it is 

a needed transition condition, as Figure 67 shows. Manual driving is the only mission that 

allows to pass into Manual driving state, while the other missions allow to pass into AS 

Ready following an exclusive (OR) logic. The missions are numbered in order to give 

consistency to the variable mission, imposed into the model thanks to the edit block which 

allows to write the value of the variable during the simulation: 

 0 = Manual driving 

 1 = Acceleration 

 2 = Skidpad 

 3 = Autocross 

 4 = Trackdrive 

 5 = EBS test 

 6 = Inspection 

 

Figure 67. State machine with missions 
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Once a mission is active in AS driving, the variable strategy is an output to activate the 

specific control logic. 

Another improvement is the implementation of the Ready-to-drive function. Ready-to-drive 

is the vehicle mode during which the motors can respond to the Acceleration Pedal Position 

Sensor (APPS). The rulebook does not define strictly rules for the activation of this vehicle 

mode after turning on the tractive system; the only clear restriction is the engage of the 

mechanical brakes while the activation procedure (for example by a button on the dashboard) 

is executed by the driver [32].  

Considering the driverless competition, the Ready-to-drive procedure must be done 

autonomously during the transition from AS Ready to AS Driving. So, as also the FSG EBS 

Reference Guide suggests, a MOSFET switch downstream the solenoid valve is added to 

control the mechanical brakes through the central control unit [44]. Thus, the electrical 

scheme was modified to distinguish the front and rear lines in parallel (Figure 68). 

 

Figure 68. Electrical scheme with the two parallel lines 

 

In order to implement the Ready-to-drive procedure in the state machine, the values of the 

variable R2D were changed: 0 = “off”, 1 = “start procedure”, and 2 = “on”. The variable 

R2D becomes 1 thanks to a transition action. Moreover, another variable (RTD) was added 

for the verification of the procedure end during the last transition condition (Figure 69). 
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Figure 69. Ready-to-drive procedure inside the AS state machine 

 

The variable R2D is an output of the chart (Figure 70) that goes inside a function to command 

the MOSFET: 

function MOS = fcn(R2D)   
if R2D==1 
    MOS=0.1; 
else 
    MOS=4.5; 
end 
end 

The values of MOS are justified by the standard threshold voltage pre-imposed by Simscape 

of 2 V. So, MOS less than 2 means switch in off position, and consequentially, mechanical 

brakes activated. 

In Figure 70, the links between the output R2D of the state machine and the electrical circuit 

can be seen. The command of the solenoid valves can be also noticed which follows the 

previous function but splitted into the two lines. 
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Figure 70. Part of the overall Simulink model to highlight the R2D links 

 

Once activated the brakes, the feedback from the mean oil pressure is used to start the R2D 

procedure (Figure 71). As all the feedback in the model, the oil pressure needs to be delayed 

with a very small time constant (0.01 seconds).  

 

Figure 71. R2D procedure and feedback 
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To better understand the idea behind the 4 consecutive functions before the feedback in the 

state machine (Figure 72), at least the part the actual SC19 Ready-to-drive algorithm in 

which those functions will be inserted must be presented: 

%First push, send acknowledge  
if CMD == 1 && rtd==0 && ctor_en==0  
    cmd_ack = 1; 
    TxEn = 1; 
    ctor_en = 1; 
    rtd=0; 
  
elseif CMD == 2 && rtd==0 && ctor_en == 1 && CTOR_STS==8   %Second push, 
send acknowledge, RTD ON 
     
    cmd_ack = 2; 
    TxEn = 1; 
    rtd=1; 

end 

So, the driver must push two times the R2D button on the dashboard to activate this function, 

always keeping the brake pedal pushed. 

The first function block is useful to translate the oil pressure signal into a CMD signal for 

the already existing R2D algorithm: 

function CMD = fcn(p_brakes) 
if p_brakes>=40 
    CMD=1; 
else 
    CMD=0; 
end 

The second block is a fictious function simulating the first push: 

function cmd_ack = fcn(CMD) 
if CMD == 1 
    cmd_ack=1; 
else 
    cmd_ack=0; 
end 
end 

The acknowledgement data is then used to send the second CMD signal: 

function CMD = fcn(cmd_ack) 
if cmd_ack==1 
    CMD=2; 
else 
    CMD=1; 
end 

Eventually, the last block simulates the second push part of the original algorithm: 

function RTD = fcn(CMD) 
if CMD==2 
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    RTD=1; 
else 
    RTD=0; 
end 
end 

The value RTD = 1 is the transition condition needed to pass into AS Driving simultaneously 

with the Go signal. 

 

Figure 72. Ready-to-drive simulation model 

 

The good model compiling is demonstrated by the plot in Figure 73, where the mean air 

(red) and oil (yellow) pressures in bar versus time in seconds are reported. The first mean 

pressures increase is due to the activation of the manual valves before giving power to the 

solenoid valves. The second peak of oil pressure is caused by the Ready-to-drive procedure. 

The last increase in oil pressures stands for the EBS activation at the end of the autonomous 

mission. Lastly, the two releases of pressures follow the deactivation of the manual valves. 

 

Figure 73. R2D simulation: Air (red) and Oil (yellow) mean pressures vs time  

 

Last update of the thesis model is the implementation of the EBS check-up sequence in the 

state machine. This sequence is prescribed by the FS rulebook to verify the possibility of 
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building-up pressure in the brakes before passing into AS Ready [32]. The sequence is 

necessary to discover all kinds of failure not detectable without triggering the EBS, for 

example due to failures in the assembling of the components. It is requested also to verify 

the redundancy of the system and the functioning of the Supervisor [44]. Similarly to the 

R2D sequence, the MOSFETs of the two lines are used to activate and deactivate the EBS. 

The first modifications are in the state machine chart (Figure 74). The activation of the 

ASMS is followed by a transition action, AS_close_SDC = 1, that enables to activate the 

TSMS. This action is a simplification of the Watchdog verification for the Supervisor that 

will be implemented successively. Once the TSMS is activated, another transition action, 

EBScheck = 1, initializes the check-up function. Then, the last transition to AS Ready follows 

the condition of a successful EBS check-up, EBS_result = 1. 

 

Figure 74. Chart modifications for EBS check-up sequence 

 

The EBS check-up function verifies the functioning of the EBS. Firstly, the overall system 

is verified in building-up pressure. In order to give a precise order, an internal variable ack 

is defined and it increments of 1 as the verification step is completed. As ack = 1, the front 

brakes are controlled. Then, only the rear brakes are controlled, and finally, the feedback to 

the state machine is sent. The MATLAB function computing this routine is the following: 
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function [EBS_result , MOSfront_comm , MOSrear_comm]= fcn(EBScheck , 
p_brakes_front , p_brakes_rear) 
  
persistent ack 
if isempty(ack) 
    ack = 0; 
end 
  
if EBScheck == 1 
    MOSfront_comm=1; 
    MOSrear_comm=1; 
else 
    MOSfront_comm=0; 
    MOSrear_comm=0; 
    EBS_result=0; 
end 
  
if (p_brakes_front + p_brakes_rear) >= 80 && EBScheck == 1 
    ack = 1; 
end 
  
if ack == 1  
    MOSfront_comm=1; 
    MOSrear_comm=0; 
end 
  
if p_brakes_front >= 40 && p_brakes_rear <= 1.5 && EBScheck == 1 
    ack = 2; 
end 
  
if ack == 2     
    MOSfront_comm=0; 
    MOSrear_comm=1; 
end 
  
if p_brakes_rear >= 40 && p_brakes_front <= 1.5 && EBScheck == 1 
    ack = 3; 
end 
  
if ack ==3  
    MOSfront_comm=0; 
    MOSrear_comm=0; 
    EBS_result=1; 
else 
    EBS_result=0; 
end 
  
end 
 

The input data are EBScheck from the state machine and the pressures of the front line and 

rear line of the braking system. The output data are the commands for the MOSFETs and 

the feedback to the state machine EBS_result (Figure 75). All the feedback data requires a 

small delay for compiling, as discussed in the other paragraphs. Since the MOSFETs can be 

controlled both by the EBS check-up function and the R2D sequence, a function is required 

to implement a OR logic: 
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function MOSfront_comm = fcn(F , I) 
 
if I == 1 || F == 1; 
    MOSfront_comm=0.1; 
else 
    MOSfront_comm=4.5; 
end 
 
end 
 

 

Figure 75. EBS check-up function feedback and MOSFETs commands 

 

A final complete simulation of typical autonomous routine was done to validate this last 

model. The plot of the mean pressures is useful to understand the behaviour of the AS state 

machine (Figure 76). The two initial steps in the air pressure (red line) are caused by the 

activation of the manual valves. Since the SDC is still open due to the TSMS open, the oil 

pressure (yellow line) increases, too. Once turned on the ASMS and the TSMS, the oil 
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pressure falls immediately to zero and then, the EBS check-up starts with one peak to 49 bar 

due to the verification of the overall system, then, with a reduction to around 25 bar due to 

the verification of the front brakes, and then, a peak always around 25 bar due to the control 

of the rear brakes. After this check, the state machine is in AS Ready, and after 5 seconds the 

Ready-to-drive sequence happens as it can be seen with the new activation of the EBS. As 

soon as the RES Go signal is sent, the oil pressure is released, and the mission starts in AS 

Driving. At the end of the mission, the EBS is triggered and the two final releasing steps of 

the oil pressure are caused by the discharge of the air pressure in the EBS lines thanks to the 

manual valves. 

 

Figure 76. Complete simulation: Air (red) and Oil (yellow) mean pressures vs time 
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Chapter 5 – Conclusions and future steps 

 

As the thesis body is divided into two macro-areas of the work, the conclusions must be 

disclosed following those two, too. 

About the RES, the testing phase was successful both as single subsystem and as integrated 

subsystem with the EBS. Next steps will be concentrated in the mounting inside the vehicle 

and tuning the overall EBS by reproducing a real EBS test as described in the rulebook. 

Moreover, the prepared DBC file will be very useful for the implementation of the RES 

communication with the central control unit. 

Concerning the AS state machine, all the models compiled in Simulink environment, and the 

progressive refinements had the goal of giving more and more physical sense to the inputs 

and outputs. Furthermore, the Simulink models gave the possibility to understand how to 

pilot some electronic components before purchasing them. As it is possible to notice in the 

discussion of Chapter 4, some variables inside the states have still no physical meaning. 

However a preliminary study has been already conducted: 

 The variable TS (traction system) must be commanded by the TSMS as in the 

simulated model, but during the transition from AS Ready to AS Off and from AS 

Driving to AS Finished, the autonomous machine should be able to deactivate the 

traction system without any external command. Thus, next step will be to insert a 

normally-open relay in the SDC that will be piloted by the state machine output TS 

thanks to the connection of the control unit with a MOSFET to give voltage to the 

relay coil. This solution is already used in the existing SDC, so the work will be 

concentrated in the mounting and in the implementation of the command in the state 

machine. All the necessary electric and electronic components have been already 

selected and ordered 

 The variable SA (steering actuator) can have two values; 0 = “deactivated” and            

1 = “activated”. Deactivated means no power supply to the actuator. Two ideas need 

to be tested for this implementation; either to use the CAN communication between 

the central control unit and the steering actuator controller, or implementing a 

similar relay-MOSFET scheme, as for TS 
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 The variable strategy inside the missions will be the trigger for the control strategies, 

which the team is preparing. So, the virtual integration between strategies and state 

machine and its physical test are other future steps of this work 

The Watchdog sequence in the EBS check-up needs also to be studied and implemented. 

The central control unit will be a dSpace MicroAutoBox already mounted in the vehicle. 

dSpace Scalexio will be used instead for the translation from Simulink environment to real 

control environment. This translation will cause some modifications in the state machine 

chart due to the integration with real signals and with the autonomous strategies for the 

missions. 

In the appendix, bigger images of the models in Chapter 4 are reported. More precisely, the 

last overall system and all the last versions of the sub-systems can be better read. 
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Appendix 

1. Complete model: overview 
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2. Complete model: RES – AS state machine link 
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3. Complete model: Electrical scheme sub-system 
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4. Complete model: EBS sub-system 
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5. Complete model: EBS – AS state machine link 
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6. AS state machine sub-system 
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7. AS state machine final chart 
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8. RES communication scheme 
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9. Electrical circuit 
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10. EBS front and rear sub-systems 
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11. EBS hydro-pneumatic model 

 


