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Abstract 

The global warming issue has stimulated the research in studying new solutions to 

decrease energy consumption. Energy used for building thermoregulation plays an important 

role in the whole energy consumption in developed countries. Model predictive control is an 

innovative tool utilized to optimize energy consumption and consequently reducing the 

production of greenhouse gases. Model Predictive Control exploits a model representing the 

controlled system to simulate it and use the outputs to optimize the control strategy. Cause 

the wide variety of building stock there is not a common methodology for modeling buildings 

and hence the modeling task is the most time demanding in all the process of designing and 

setting up a model predictive control. This thesis aims to develop and evaluate RC network 

models with the grey-box modeling method and investigate in some implementations. The 

models represent an office building that has been designed and simulated on EnergyPlus. Two 

RC models have been developed on Modelica with three resistors and three capacitors. Grey-

box modeling implies that some parameters of the models are estimated by a data-driven 

algorithm. At this scope, the ModestPy python library has been utilized. An additive 

component has been added in one of the two RC models to improve the ability of the model 

to represent the reference building. The function of the implementation is to calculate the 

solar irradiance components hitting each wall according to the geometry of the controlled 

building. Each model has been used to predict the internal temperature of the office building 

for all the heating period of a typical year in Torino. The accuracy of the predictions has been 

evaluated with the root mean square error. From the results, it is deduced that the 

implementation in the RC model does not lead to visible improvements.    
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1 Introduction 

Energy used for building thermoregulation plays an important role in the whole energy 

consumption in developed countries. In Europe, according to the European directive 

2010/31/EU, buildings consume around 40% of total EU energy consumption and are 

responsible for approximately 36% of greenhouse gases production [1]. Greenhouse gases are 

the main cause of global warming and acting on the building energy consumptions can 

significantly affect their global production. Exploiting renewable energy sources rather than 

fossil fuels is the first choice to reduce the greenhouse gases but it is not always possible. 

Other strategies aim to increment the energy efficiency of buildings to reduce energy 

consumption without reducing the comfort of the people. Increasing the thermal insulation 

of the walls to reduce the thermal load required is probably the most known strategy for 

increasing the energy efficiency of a building. Another method is to increase the performance 

of the control system of the devices present in a building. The controls are responsible for the 

amount of energy consumed by the devices and increasing their performance means to save 

energy when it is not necessary. For instance, the HVAC system of a building has its own 

control that turns it on and off and set the amount of energy to introduce into the building 

during the time. Nowadays PID (Proportional, Integral and Derivative) controls are the most 

efficient control systems commonly used in buildings, but recent studies demonstrate that 

model predictive controls can surpass the performance of PIDs on building devices, such as 

the HVAC system[2]. Model predictive control (MPC) is a technology widely utilized in some 

sector like the automotive, but it still rare to find in the building sector but is particularly 

investigated in the last decade. Model predictive control is a control tool that predicts the 

state of the controlled system and runs an optimization algorithm of the control signal during 

the predictions. In the building sector, the input signal can be the heat load of the HVAC 

system. In this way, optimization of the loads can bring a reduction of energy consumption 

and greenhouse gas production. One of the main important components of the MPC is the 

model that makes possible the predictions. Unfortunately, modeling a dynamic system such 

as a building is not a straightforward task cause the considerable variety of exogenous and 

endogenous variables in the real building stock and the not existence of an established and 

common methodology from literature. The big efforts to configure and calibrate MPC models 

is the main reason this strategy is still not been implemented at any scale. 

In literature there are three main ways to model a building. The first one is the white-box 

approach, where the models can give very accurate predictions, but their modeling needs an 

in-depth knowledge of the reference building composition, for example, the wall structure 

and materials, and its behavior. This kind of knowledge is difficult to obtain, especially in old 

buildings. An example of a white-box model used in an MPC control system is given in the 
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article [3] where the control model was developed on EnergyPlus [4]. The second big group 

are the black-box models that are based on time-series data analyzation. There are no physical 

equations, but the model equations are deduced from either statistic methods or machine 

learning algorithms. In [5] artificial neural network (ANN) is used to design the control model 

for an MPC system for a residential house. The third and last method is grey-box modeling, it 

is a mix between the two previous ones taking the main advantages from them. In the grey-

box model there are physical equations, but the physical parameters are obtained by machine 

learning. 

This thesis focuses on grey-box modeling where the models are formulated as a system of 

a variable number of thermal resistances and thermal capacities, called RC model as 

abbreviation. For example, in [6]  the authors try to find the best level of complexity of the RC 

system in order to forecast the internal temperature of three real buildings, which are two 

residential buildings and one office building. The parameters are estimated based on historical 

data of internal temperature, heat consumption of the building, outdoor air temperature, and 

global solar radiation on the horizontal surface. Occupancy and internal gains of the buildings 

are not considered. Since the models represent the building as a single temperature zone, the 

internal temperature is the weighted average of the various room temperatures. From this 

study results that the best RC model to represent the buildings is a 4R2C system, however, it 

has to be considered that slow dynamic characterizes the buildings as the daily fluctuation of 

internal temperature is at most of 3 K. Article [7] analysis the factors that can affect the 

accuracy of an RC grey-box model and consequently the MPC performance, such as building 

design, model structure and model order. EnergyPlus has been used to simulate two reference 

buildings with one temperature zone, one with lightweight walls and one with heavyweight 

walls. Three different RC model are tested (1R1C, 3R3C, 5R4C) on both the EnergyPlus models. 

From the results, it is deduced that the thermal envelope of the building affects the model 

accuracy considerably. Indeed, the RC model is more precise when the reference building has 

heavyweight walls than lightweight walls because of the slower dynamics of the system in the 

first case due to the greater thermal mass.  

From literature, it appears that building with fast dynamics could be more difficult to 

represent with an RC model. The accuracy of the predictions is crucial in MPC system because 

the optimization is compiled based on the ability of the model to represent the controlled 

system. In addition to the accuracy, also the length of a reliable prediction is a factor consider. 

The core of this thesis is, precisely, applied the knowledge of the grey-box modeling approach 

for representing an office building and investigating in some methodologies to improve the 

accuracy of the model. The typical strategy to improve the accuracy of an RC model is to vary 

the number of thermal resistances and capacitances losing sometimes the physical 

representation of the reference building. For this reason, a new strategy is tested in this work.  

The strategy tested in the thesis is to calculate the various components of solar radiation 
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according to the building geometry and location in order to give the model more accurate 

information. 

The remainder of the thesis is structured as follows. Chapter 2 describes the method used 

in this work in order to design and test the building model, the method is followed by a 

description of the tool actually exploited. Chapter 3 presents the graphical results of the work 

lingering on the accuracy of the models prediction, after the results are described they are 

discussed to explain them and finally Chapter 5 summarize the main results of the thesis. 
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2 Materials and Methods 

The necessity of reducing energy consumption and greenhouse gases emission has 

become crucial nowadays to contrast global warming. The energy consumed in developed 

countries for the building thermal regulation covers more than the third of all consumptions. 

A work of efficiency in buildings can significantly impact on the total energy consumptions and 

greenhouse gases production. The efficiency can be done improving the structure, for 

example, increasing the thermal resistance of the external walls, or avoiding wastes of energy. 

The two paths can be done simultaneously. This thesis focuses on the second one, the 

optimization of energy utilization in buildings, especially by the HVAC systems. HVAC systems 

are commonly controlled by temperature-gradient controls or TPI (Time Proportional and 

Integrated) controls. In recent years Model Predictive Controls have become more interesting 

in the buildings field because it has been observed that those controls can decrease the energy 

consumption of the HVAC system comparing the traditional control tools. This thesis studies 

some aspects of the development of a Model Predictive Control concerning its model.   

2.1 Model Predictive Control 

Model Predictive Control (MPC) is a control algorithm widely used to control dynamics 

systems. The MPC is composed of two main components: the model representing the 

controlled system, and an optimization tool. Figure 2.1 shows the scheme of the operation of 

the MPC. 

 
Figure 2.1 Scheme of the MPC operation 

 

 The model predicts a variable c of the reference system after a short period h, that 

variable depends on the input variable u, the initial state of the reference system, which 

includes the variable u and all other variables S. The job of the optimization tool is to 

determine the best value of the input variable u in order to obtain the desired value of the 

variable c in the model, minimizing the variable x. At a certain time sample t the model is 

initialized with ct and St obtained from the reference system, then the optimization tool 

simulates the model with various input variables u with the aim to satisfy ct+h = cd, cd is the 

desired value of the variable c. The variable u is not a single value but it is the array containing 

a value for each time sample from t to h. The optimization tool transmits the controlled signal 
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for the time sample t+1 to the reference system after having found the best signal u which 

minimize the variable x. The process is repeated at every timestep, in this way the model is 

always updated with the real variables of the controlled system and the optimization tool can 

correct its control signal according to the reference system feedbacks.   

In the building sector model, the predictive controls have been finding their application 

for regulating the HVAC systems and for managing the energy and heat production and 

storage in multi-energy systems. For example, referring to Figure 2.1, the reference system is 

the building with its HVAC plant, c stands for the internal temperature of the building and u 

for the signal to control the HVAC system. The optimization tool with the model finds the value 

of u in order to satisfy the thermal comfort of the people in the building and minimize x, that 

can stand for the energy consumption or energy cost of the building. It is deducible that the 

ability of an MPC to provide good controls depends on the accuracy of the predictions of the 

model. Modeling a building and its components is still very demanding and for this reason the 

penetration of MPC in buildings is slower than in other fields [8]. The model itself is not the 

only issue because buildings dynamic is strongly affected by ambient temperature and sun 

irradiation, meaning also these predictions shall be accurate. The building model uses the 

forecast of the atmosphere condition of the whole time horizon (h) to predict the controlled 

variable. The length of the time horizon depends on the scope of the MPC, for example, for 

an MPC designed for daily thermal storage in a building the time horizon will be of a day. The 

model has to be designed to satisfy a certain accuracy during the whole prediction on the time 

horizon. Greater is the accuracy greater is the benefit of using the MPC. 

 

2.2 RC modeling methodology 

The model intended for a MPC can be of various kinds, both physical or empirical, but it is 

preferred as simple as possible in order to have a low computational cost and be able to be 

exploited by the optimization tool. For buildings, grey-box modeling is very suitable for 

designing models for MPC systems because it consents to keep the model simple guaranteeing 

a good accuracy of the predictions. Moreover, with grey-box modeling, there is no need to 

know all the widely amount of details of the building structure, which is very difficult to obtain 

from an already existing building. In fact, the physical properties of the reference building are 

lumped in some parameters, which are estimated by a machine learning algorithm. The only 

requirement to model a building is to provide the building with some sensors, if not already 

present, in order to produce a historical data series of some variables, usually internal 

temperature and heating load from the HVAC system are enough. Summing up grey-box 

modeling is composed of two steps. The first one is the physical modeling of the building; the 

physics of the building is kept as simple as possible and its equations are characterized by a 

finite number of parameters. The second step is to determine the values of the parameters 
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from the historic data series of the modeled building and other data relative to the external 

ambient thanks to a data-driven algorithm.  

The work of this thesis follows the two previous steps of grey-box modeling. The RC 

network analogy has been adopted to model buildings. It derivates from the electrical circuit 

theory using the knowledge of resistors and capacitors. In the analogy, the electrical units are 

exchanged with thermal units. The four electrical physical quantities that characterize an RC 

circuit are electrical resistance, capacitance, voltage and electric current and become, 

respectively, thermal resistance, heat capacitance, temperature and heat flux. This modeling 

methodology simplifies the description of a spatially distributed system, a building, into a 

discrete system of elements which are the thermal resistors and the heat capacitors; each of 

those characterized by an equation. Equation 1 and Equation 2 describe the thermal resistor 

element and the heat capacitator element, respectively.  

 

𝛥𝑇 = 𝑅 ∗ 𝑞 (1) 

𝑑𝑇

𝑑𝑡
∗ 𝐶 = 𝑞 (2) 

where 𝛥𝑇 is the difference of temperature at the ends of the resistor, 𝑅 is the thermal 

resistance, 𝑞 is the heat flux, 
𝑑𝑇

𝑑𝑡
 is the temporal derivative of the temperature in the heat 

capacitator and 𝐶 is the heat capacity.  

 

The complete model is presented as a system of the two previous equations plus the 

boundaries conditions. 𝑅 and 𝐶 are the parameters that characterize the components of the 

model and represent the physical property of the elements in the reference building. For 

example, a wall and its distributed heat capacity can be represented by a heat capacitator with 

the proper heat capacity. The proper value to assign to a parameter can be identified with a 

data-driven algorithm.  

The procedure of building and setting an RC model is an iterative process. Figure 2.2 shows 

the iterative process. It starts with collecting the data from the building sensors and external 

environment; the most used data are the ambient temperature and the internal zone 

temperature, the horizontal solar irradiance, and thermal loads of the HVAC and the internal 

heat gains. A first model is designed with a certain number of resistors and capacitors, each 

of them characterized by a parameter. Then the machine learning algorithm use the collected 

data in a certain period to estimate the RC model’s parameters. Subsequently, the model is 

set with the new estimated parameters and it is validated and tested on a different period 

than the learning one. The validation consists of comparing the outputs obtained from the 

model with the relative same variables from the building data collected in the validation 

period and corresponding to the same time sample. Then if the accuracy of the predictions of 

the model satisfies the control system requirements the process stops, otherwise the process 

restarts at the model designing. The model structure gets changed, for example adding new 
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resistors or capacitors and the new RC model is subjected again to the machine learning 

algorithm to estimate the parameters. Then a new validation follows and the goodness of the 

model is questing and the loop can restart another time or end. 

 

 
Figure 2.2 Scheme of grey-box modelling for a building 

 

   

2.3 Simulation tools 

This paragraph presents the tools used in this thesis in order to simulate a reference 

building, designing an RC model and estimate its parameters. The tools here described are 

EnergyPlus for simulating the building, Modelica for modeling the lumped model, and 

ModestPy with PyFMI to training and simulate the lumped model.  

2.3.1 EnergyPlus 

EnergyPlus can be used to simulate a realistic building and collect the many variables from 

simulations. EnergyPlus is an energy analysis and thermal load simulation program for the 

dynamic of buildings and it can be used through its user interface EP-Launch on Windows or 

any other third-party interfaces. Its development is funded by the U.S. Department of Energy’s 

(DOE) Building Technologies Office (BTO). EnergyPlus was initially written in FORTRAN90, but 
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after 2014 it is all converted to C++. Its structure aims to be object-oriented and modular for 

facilitating the use [9].  

The starting point in an EnergyPlus modeling process is the building description that 

begins with the geometrical structure. It is proven that the geometrical structure does not 

have to be very precise to have a valid final result in the simulation. The EnergyPlus guide 

suggests which assumptions can be made regarding, for example, windows and internal 

walls[9]. What has to be well defined is if a building structure is a heat transfer surface which 

divides two ambient with different temperature, like the roof, the floor and the external walls, 

or a heat storage like the internal walls if they do not separate two thermal zones. Every 

construction component must be characterized by a sequence of materials with their physical 

properties, EnergyPlus has many datasets that can be useful for this task. Moreover, there are 

also databases for setting the time schedule of utilization of some device such as the HVAC 

system or the building lights. 

An important aspect to consider in the building model is the thermal zoning since 

EnergyPlus performs every calculation in relation to a thermal zone. A thermal zone is defined 

as a volume of air at a uniform temperature, a good practice is to zoning the area according 

to the HVAC systems, a whole area served by the same system is a thermal zone, and 

temperature setpoints, if two rooms are served by the same HVAC system but they have two 

different temperature setpoints then they are different temperature zones. Another factor 

that can affect the zoning is sun exposure, e.g., a region of the building is reached by more sun 

radiations it can lead to an increase of temperature.  

Once the building description is completed, any other module can be implemented such 

as the zone equip module, the windows glass module and air loop module. For simulating the 

model, EnergyPlus requires the weather information of the building location, the proper 

format of data file is epw. The final result is obtained by the interaction between two main 

simulation loops: the heat and mass balance simulation give some conditions to the building 

systems simulation giving feedback to update the heat and mass balance. From the simulation, 

accordingly to the modules used, it is possible to obtain the temperature of each temperature 

zone by the time, the power used for heating and cooling, the air humidity, the occupancy 

comfort provided by temperature, humidity and lights, and any other information a module 

can calculate.  

2.3.2 Modelica 

Modelica is a free objective-oriented modeling language developed by the Modelica 

Association, a non-profit organization located in Sweden[10]. Modelica aims to model 

complex and heterogeneous systems, and the Modelica Standard Library contains about 1600 

model components with about 1350 functions from many domains. The libraries can be 

developed by anyone and shared.   
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Models are visually described as schematics, components linked between each other, 

examples can be found in Figure 2.3. The connections are constructed from the ports of each 

component. Internally, a component is described by another schematic or by some equations, 

the ports are the inputs and outputs of the internal structure. The syntax of a Modelica model 

is divided into two main parts, the first one is where everything inside the model is declared 

such as variables, parameters and models. The second one, introduced with the word 

“equation”, is where the equations of the model can be placed, involving parameters and 

variables, or where the connections can be stated.  

 

 
Figure 2.3 Modelica schematics example [10] 

 

An essential characteristic of Modelica is that equations allow acausal modeling. From a 

practical point of view, it means that an equation can be read either from left to right or vice 

versa, not like in programming language where an equation is a statement which describes 

what the element on the left-hand is by an expression, but this element cannot be used to 

determine an element on the right. Indeed, on the left side of an equation on Modelica can 

be present even an expression. Moreover, for this reason, equations can be placed in any 

order and not in the order they are expected to resolve because they are solved as a system. 

This aspect makes a model reusable for every situation when its equations are needed.  

There are many available Modelica simulation environments, both commercially and free 

of charge, to graphically edit and browse a Modelica model and to perform model simulations 

and other analysis. OpenModelica[11] is a free Modelica environment and it has been used in 

this thesis to design RC models of a building.  
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With Modelica, it is easy to represent and build the RC network thanks to the graphical 

schematic. Each component is a model with ports in order to connect one model to another 

and communicate the values of temperature and heat flux. The thermal resistor is a box with 

two ports and a parameter for the thermal resistance, the three equations which describe the 

model are the following: 

𝑇𝑎 =  𝑇𝑝𝑜𝑟𝑡.𝑎 (3) 

𝑇𝑏 =  𝑇𝑝𝑜𝑟𝑡.𝑏 (4) 

𝑇𝑎 − 𝑇𝑏 = 𝑅 ∗ 𝑞 (5) 

where 𝑇𝑝𝑜𝑟𝑡.𝑎 and 𝑇𝑝𝑜𝑟𝑡.𝑏 are the temperatures of the two ports a and b, 𝑅 is the thermal 

resistance and 𝑞 is the heat flux. 

 

The heat capacitator is characterized by only one port, the thermal capacitance parameter 

and three equations, which are: 

𝑇 =  𝑇𝑝𝑜𝑟𝑡 (6) 

𝑑𝑒𝑟𝑇 =
𝑑𝑇

𝑑𝑡
 (7) 

𝐶 ∗ 𝑑𝑒𝑟𝑇 =  𝑞𝑝𝑜𝑟𝑡 (8) 

where 𝑇𝑝𝑜𝑟𝑡 and 𝑞𝑝𝑜𝑟𝑡 are respectively the temperature and the heat flux indicated by the port. 

 

Error! Reference source not found. shows a simple example of an RC model of a building 

composed of one thermal resistance and one thermal capacitance plus other components. 

The number of resistor and capacitator determine the order of the model, as shown in Figure 

2.4 can be called 1R1C. The components on the picture are, in order from left to right, an input 

port (Tamb) which is connected to a block (Tambient) that convert the scalar input values in 

temperature values, ThermalResistor express the resistance between the outdoor ambient 

and the building and it can be identified as the building walls, but with no heat capacity. All 

the thermal capacity of the building is lumped in the thermal capacitator block 

(ThermalCapacitator), Tsensor is a component that reads the temperature of the thermal 

capacitator port and transmits it to an output port (Tzone). There can be any number of 

resistors and capacitors and other components such as heat flux block that allow a specific 

amount of heat flow rate to be injected in a port. Every link in the schematic represents an 

equality equation between the thermal quantities of the connected ports. It is important to 

mention that in an RC model all the heat transfers are linear because they are expressed only 

by the thermal resistance, while in reality, heat exchanged by radiations is a non-linear 

phenomenon. Despite that, a representation of a building with only linear heat transfers has 

been demonstrated that it is able to well approximate the reference building. The radiation 

heat exchanges behave similarly to the linear heat exchanges because of the low temperature 

difference between the building structures [12]. 
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Figure 2.4 Example of a RC building model 

  

RC models can be very complicated, but for an MPC purpose, the design is kept as simple 

as possible just for having a satisfying prediction of the controlled variables. The complexity 

of the model increases the computational time especially for the optimization of the inputs 

that is compiled every timestep.  

2.3.3 ModestPy and PyFMI 

ModestPy [13] is an opensource Python tool developed for estimating parameters in FMI-

compliant models through an optimization problem. FMI stands for Functional Mock-up 

Interface and it is a standardized and unified model execution interface with the scope to 

allow model exchange and co-simulation of dynamic models. Models can be designed in many 

programming languages or simply built in different software and hence the interaction 

between them is not always possible. With FMI standard a modeling tool is able to generate 

and export a c/c++ code representing the dynamic model as a box with inputs and outputs 

[14]. This package of codes is called functional mock-up unit (FMU) and it can be integrated 

into a simulation environment and used as a proper model. With FMI 2.0, which is the latest 

version, an FMU set Model-Exchange always has a solver inside to compute the time equations 

without any specific library in the simulation tool.  On Python, FMUs can be load and execute 

through the opensource package PyFMI [15] and it was integrated into ModestPy.   

During the optimization precess, ModestPy operates with a cost function that relates the 

measured data of the reference system and the data calculated by the model with the 

estimated parameters. Cost function can be calculated using either the total mean-square 

error (MSEtot) or the total normalized mean-square error (NMSEtot), calculated as follows: 

 

𝑀𝑆𝐸𝑡𝑜𝑡 = ∑
∑ (�̂�𝑖

𝑡−𝑌𝑖
𝑡)

2𝑁
𝑡=1

𝑁𝑖 , (9) 

𝑁𝑀𝑆𝐸𝑡𝑜𝑡 = ∑
𝑀𝑆𝐸𝑖

�̅�𝑖
2𝑖 ,  (10) 
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where �̂�𝑖
𝑡 is the measured value of the variable i at time step t, 𝑌𝑖

𝑡 is the simulated variable 

i at time step t, �̅�𝑖 is the mean measured valued of variable i, N is the number of time steps and 

𝑀𝑆𝐸𝑖 is the mean-square error for variable i.  

 

MSE is suggested for models with one output or with comparable physical outputs, for the 

rest of cases, NMSE is the more indicated.  

ModestPy has two algorithms implemented for the estimation of the parameters that are 

a genetic algorithm (GA) and a generalized pattern search (GPS), also it can interface with 

some algorithms from the ScyPy[16] eco-system. GA is a metaheuristic global search algorithm 

that allows ModestPy to make the estimation of the parameters with no assumptions of the 

model and hence make ModestPy easier to use. The genetic algorithm is an algorithm inspired 

by natural selection and it is based on operations of tournament-based selection and 

crossover. Each parameter to estimate is coded in binary as a string of 0s and 1s. In the 

optimization problem, in every iteration, those strings get mutated and then selected the ones 

which lead to a minor cost function. The algorithm stops when the maximum number of 

iterations is reached or when the cost function does not decrease. Since GA does not 

guarantee that the global optimum is found as its heuristic characteristic, it is coupled to a 

GPS algorithm to refine the solution. GPS is a simple gradient-free local search method. The 

algorithm starts from the values obtained from the GA optimization and performs a series of 

orthogonal explorative moves of a pre-selected step-size by changing one parameter at a time 

and evaluating the cost function. If the given step size does not reduce the cost function value, 

it is reduced by a factor of 2 and the procedure is repeated. The algorithm stops when the 

procedure does not improve anymore the cost function value[13]. The GPS algorithm, as the 

GA algorithm, does not require assumptions on the model because it does not need a gradient 

and hence the model equations can be even not differentiable or continuous.  

ModestPy is specifically designed to facilitate the estimation of the parameters in building 

and HVAC models for the purpose of MPC. Thanks to its algorithms and structure ModestPy is 

very user-friendly and it allows estimate parameters on a very large kind of models, always 

coded as an FMU, without known precisely how they are designed.  ModestPy, as already 

mentioned, has to be used on Python, both 2.7 and 3 are good, and the user needs to interact 

with only one class. This class is called Estimation and has two methods inside which are 

estimate() and validate(). The first one is the method related to the parameters estimation 

and it needs five arguments that are as follows: the path of the working directory where all 

the results will be saved, the FMU path, a Pandas[17] DataFrame of the model inputs, a 

dictionary with the known parameters and their values, a dictionary with the parameters to 

estimate and their bounds, and finally a Pandas DataFrame of the known values obtained from 

the model with the previous inputs. Some optional arguments can be added to the class like 

the max iterations and tolerance of both GA and GPS and the method for calculating the cost 

function. The parameters are given as a dictionary. With validate(), instead, a validation of the 
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parameters can be done, the starting and final time of the validation have to be inserted in 

the estimate() method as an argument. It returns the validation error as the cost function and 

the Pandas DataFrame of model outputs.  

 

2.4 Case study 

The case study presented in this thesis follows the procedure introduced in the Method 

paragraph. Figure 2.5 shows how the indications in the main blocks of Figure 2.2 have been 

applied in the case study underlining the tool used and the outputs obtained from each of 

them. The data of a building have been decided to be obtained from the simulation of a model 

in EnergyPlus. The model is simulated through the EnergyPlus interface EP-launch. Using a 

EnergyPlus model instead of a real building make the acquisition of the data much faster and 

avoids problems such as the lack of values. Moreover, from EnergyPlus is possible to know 

every detail of the model to make some eventual verification. The data generated by the 

simulation will be used during the parameter machine learning and the model validation and 

test. The model design of the lumped model has been done on OpenModelica utilizing the 

Modelica language. From this step, it has been produced the RC models used in the thesis and 

their relative FMUs. The machine learning of the RC model parameters have been done with 

the Python library ModestPy and the script has been written and compiled on PyCharm[18], 

which is an interface for working with Python. ModestPy works with the FMU of the RC model. 

From this step, the parameters of the lumped model have been estimated. The last step 

consists of the validation end testing of the RC model. The FMU of the RC model is set with 

the estimated parameters and then it is simulated using some of the data from the EnergyPlus 

model as inputs and some other as references to compare with the results of the RC model 

simulation. 

 
Figure 2.5 Scheme of the method applied to the case study 
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2.4.1 EnergyPlus model 

This model wants to represent a single-storey office building of 1050 m2 of area. The aim 

of the model is to simulate a real office building and to collect the variables needed to estimate 

the parameters of a relative RC model.  The building is designed with two window facades on 

west and east side, it is visible in Figure 2.6. The whole area is divided into three thermal zones: 

the two big rooms with the façades and the hall in between. Zone 1 is the room on the east 

side, Zone 2 is the one in the middle and Zone 3 is the room with the window on the west side. 

Some internal mass has been added to the EnergyPlus script to represent the walls which 

divided Zone 1 and Zone 3 into two and three spaces, respectively. The roof of the building 

has been set as a surface not hit by sun and windows. Table 2.1 shows the constructions used 

in the EnergyPlus model with their material compositions and the relative physical properties. 

 
Figure 2.6 Geometrical representation of the office building 
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 Materials Thickness 

[m] 

Density 

[kg/m3] 

Conductivity 

[W/m-K] 

Heat 

capacity 

[J/kg-K] 

Windows Clear 0.003  0.9  

Air space*     

Clear 0.003  0.9  

Exterior walls Brick 0.1016 1920 0.89 790 

Insulation 0.0508 43 0.03 1210 

Air space*     

Gypsum 0.019 800 0.16 1090 

Floor Medium concrete 0.2032 800 1.11 920 

Acoustic tile 0.0191 368 0.06 590 

Air space*     

Heavy concrete 0.1016 2240 1.95 900 

Wood 0.0254 608 0.15 1630 

Roof Heavy concrete 0.1016 2240 1.95 900 

Air space*     

Insulation 0.0508 43 0.03 1210 

Acoustic tile 0.0191 368 0.06 590 

Partition walls Gypsum 0.019 800 0.16 1090 

Air space*     

Gypsum 0.019 800 0.16 1090 

*For the air space EnergyPlus assigns only a thermal resistance [m2K/W] of 0.15 

Table 2.1 EnergyPlus model components and materials 

The model presents two internal gains: one is due to the occupancy in the building and 

the other one is due to the lights. These gains are set accordingly to two schedules taken from 

the EnergyPlus dataset which simulate the presence of people and the utilization of lights 

during a week in a typical office. The schedules give the percentage of a total value per every 

time interval. The total value is calculated by EnergyPlus in function to some parameters set. 

For the lights, the parameter watt per zone floor area has been set to 3 W/m2 for Zone 1 and 

Zone 3, i.e. the office area, while a value of 1 W/m2 has been set for Zone 2, i.e. the hall. For 

the occupancy, the parameter number of people must be set for every zone, here, in Zone 1 it 

has been set to 20, in Zone 2 to 5 and in Zone 3 to 40, with the number of people and their 

activity value, 100 W/person, EnergyPlus can calculate the total occupancy value. There are 

many other parameters that can be changed, but it has been decided to leave them as they 

were already configured. Figure 2.7 shows the values of the internal gains due to people 

presence and light utilization in a week accordingly to the office schedules. 
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Figure 2.7 Occupancy and lights schedule 

 

The building is also characterized by an HVAC system that has been implemented in 

EnergyPlus. A temperature setpoint of 21 °C has been chosen for Zone 1 and Zone 3 during 

the heating period, while a setpoint of 18 °C for Zone 2. The HVAC template chosen for the 

scope of this model is the Ideal Load Air System that simulates an air system able to meet the 

heating and cooling load of the building in order to maintain the setpoint temperature. For 

every timestep, the system calculates the thermal load to reach the setpoint taking into 

consideration all the other phenomenon of heat exchange that occurs during that timestep. 

The HVAC system works accordingly to another schedule that states the on/off status of the 

system in an office building. All the other parameters of this template have been left as 

default.   

Finally, the simulation has been run with the weather file of Torino, used in the demo as 

well. The variables collected from the simulation is each zone air temperature, each zone 

internal gains (lights and occupancy), each zone sensible heating and cooling energy, and 

outside ambient air-dry bulb temperature. The variables are collected with a timestep of 900 

seconds. Figure 2.8 presents the data of the sensible heat coming from the HVAC system 

during the first week of January. According to the office HVAC schedule of EnergyPlus, the 

HVAC is on from 6 am to 10 pm. 
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Figure 2.8 Heat load from the HVAC system during a whole week of January 

 

 

2.4.2 RC model and parameter learning 

In literature, many authors state that a 3R3C model is often able to represent the dynamic 

of a building[19], for this reason, the first model chose to represent the EnergyPlus model is 

exactly a 3R3C. Moreover, the 3R3C representation of the building is well representative of 

the building structure and the exchanges of heat that involve them, as described below. The 

RC model is structured with three heat capacitors that represent the external walls, the 

internal air of the building and the mass inside the building, for example, the internal walls for 

dividing the rooms. The three thermal resistors stand for the heat resistance between the 

external ambient and the external walls, between the external walls and the internal air and 

between the internal air and the internal mass. The thermal resistors express the only possible 

heat exchanges that the model considers. Figure 2.9 shows the 3R3C model designed on 

OpenModelica, other than the capacitors and resistors there are other five inputs interfaces. 

The interfaces allow the input of the variables: ambient temperature, horizontal solar 

irradiance, heat gain from building occupancy, heat load of the HVAC system and heat gain 

from the building lights. The blocks with two red arrows are simply modules to convert a scalar 

value to Watt. The horizontal sun irradiance is split into two parts, one is directed to the 
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external walls capacitator, as in reality the part that hit the external walls. The other one is 

connected to the internal mass capacitator referring to the radiation passing through the 

windows and heating the internal mass of the building. Before the external walls capacitator 

and the internal mass capacitator, there are two blocks that multiply the irradiance for a 

certain factor. The HVAC thermal load is connected directly with the internal air capacitator 

as the heat is immitted in the building through an air system and so almost immediately 

exchanged with all the internal air. The occupancy thermal gain is connected to the internal 

air capacitator because it has been hypothesized that the heat exchanged is latent heat and 

there is not a radiative component. At the same time, the lights heat gain is connected to the 

internal mass capacitator because the heat is only in the form of radiations. A red 

thermometer is linked to the internal air capacitator, which is its temperature sensor and after 

that, there is an output interface. The Tzone output stands for the building variable which 

corresponds in the EnergyPlus model to the internal building temperature. Since the 

EnergyPlus model has three temperature zones and therefore three temperatures variables, 

a single value has been obtained from them doing a weighted average of the temperatures on 

the area of each zone. 
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Figure 2.9 schematic of the 3R3C model built on OpenModelica 

 

The model presents a total of eight parameters that are tuned to vary in order to let 

ModestPy determine them. The parameters are the two factors relative to the solar irradiance 

and three thermal resistances and three heat capacities. All the resistances and capacitances, 

excepted for the internal air heat capacitance, are related to the area of the walls or to the 

floor area. In this way it is easier to set the higher and lower boundaries during the estimation 

of the parameters and check if their values are physically possible. Table 2.2 contains all the 

parameters to estimate in the 3R3C model and a relative brief description.  
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 Description 

RRwalle Thermal resistance between the external 

ambient and the external walls. It is related 

to the area of the external walls [m2K/W]. 

RRwalli Thermal resistance between the external 

walls and the internal air. It is related to the 

area of the external walls [m2K/W]. 

RRi Thermal resistance between the internal 

mass and the internal air. It is related to the 

floor area [m2K/W]. 

Cawall Thermal capacity of the external walls on 

the area of the external walls [J/K-m2]. 

Cair Thermal capacity of the internal air volume 

[J/K] 

Caint Thermal capacity of the external walls on 

the area of the external walls [J/K-m2]. 

ALPHAwall External walls absorption factor per area 

[m2]. 

ALPHAint Internal mass absorption factor per area 

[m2]. 

Table 2.2 Descriptions of the parameters utilized in the RC model 

 On ModestPy the parameters dictionary must contain a hypothetical starting value, a 

lower limit and an upper limit. The starting value is not important for the success of the 

estimation, it can also be neglected in the ModestPy script. The boundaries, on the contrary, 

are very useful and it is proven that the more they are narrow more the prediction of the 

model is accurate, always if in the boundaries there are the optimum values for the 

parameters[7]. Find the right boundaries is not a deterministic procedure and it can take some 

attempts. Thermal capacities in the RC models can be easily referred to some thermal capacity 

of the EnergyPlus model, or of the reference building. For example, the capacity of the 

external wall capacitator in RC model can be representative of the whole capacity of all 

external walls in EnergyPlus model and hence its value should be similar to the EnergyPlus 

one. For the resistances, this reasoning cannot be done because the resistances in RC models 

are not representative of some identified resistances in the EnergyPlus model. The 

approximate values of the EnergyPlus capacitances have been calculated in the following way. 

For every component, the total thickness has been calculated as the sum of the thickness of 

every material layer in that component. The density and specific heat of each component has 

been calculated with a weighted average of the density and specific heat of every material on 

the total thickness. At this point, the total area of all external walls has been multiplied for the 

external wall thickness, for the external wall density and for the external wall specific heat 
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giving the total heat capacity in Joule on Kelvin. Same has been done with the floor, the roof 

and the internal walls. Equations 11, Equation 12, Equation 13 and Equation 14 explain the 

calculation made before.  

 

𝑡𝑐 = ∑ 𝑡𝑖
𝑖

 (11) 

𝑑𝑐 = ∑
𝑑𝑖 ∗ 𝑡𝑖

𝑡𝑐𝑖
 (12) 

𝑐𝑝𝑐 = ∑
𝑐𝑝𝑖 ∗ 𝑡𝑖

𝑡𝑐𝑖
 (13) 

𝐶𝑐 = 𝐴𝑐 ∗ 𝑡𝑐 ∗ 𝑑𝑐 ∗ 𝑐𝑝𝑐 (14) 

where  𝑡𝑖 is the thickness of each material layer, 𝑡𝑐 is the thickness of the component, 𝑑𝑖 is the 

density of each material, 𝑑𝑐 is the density of the component, 𝑐𝑝𝑖 is the specific heat of each 

material, 𝑐𝑝𝑐 is the specific heat of the component, 𝐶𝑐 is the heat capacity of the component 

and 𝐴𝑐 is the component area.  

 

The sum of external walls and roof heat capacity divided by external walls and roof area 

has been assumed as the heat capacity on the area of the external walls capacitor in the 3R3C 

model, while internal mass and floor give the heat capacity on the area of the internal mass 

capacitor. The external walls area is 455 m2, the internal mass area is 560 m2 and the roof or 

the floor are 1050 m2 each. It needs to be noticed that the values just calculated are an 

approximation because calculated with approximative calculations. For example, the volume 

is calculated without considering where the walls intersect each other. Their scope is just to 

give a reference of the order of magnitude of the parameters to set proper limit values in the 

ModestPy script. Table 2.3 shows the lower and upper limits utilized for each parameter. 

 Lower limit Upper limit 

RRwalle 0.1 8.0 

RRwalli 0.1 8.0 

RRi 0.01 3.0 

Cawall 1e4 1e6 

Cair 1e5 1e7 

Caint 1e4 1e6 

ALPHAwall 0 60 

ALPHAint 0 40 

Table 2.3 Upper and lower bound of each parameter utilized during the parameters learning. 

Thermal resistances bounds are taken similar to the limits in the article [7] where there is 

a 3R3C model, same for ALPHAwall and ALPHAint. Cawall and Caint bounds are chosen to be 

one order of magnitude lower and greater than the values estimated previously. Also for Cair 

the range is of one order of magnitude around the approximated value, which is calculated 
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from the total volume of the building, the air density and the air specific heat at normal 

conditions.  

The Pandas Dataframes of the model inputs and model known values are obtained from 

the EnergyPlus variables report and the weather file. The variable report, which is a csv file, 

has been simply coded as a Dataframe through Pandas library on Python, while ladybug.py 

[27] library has been utilized for the epw file to convert the file in a Pandas Dataframe and 

selecting the global horizontal irradiance variable. The Dataframe of the known variables 

contains the values assigned to the output interface of the 3R3C model (Tzone). The 

Dataframe of the model inputs contains ambient temperature, global horizontal irradiance, 

heat gains from occupancy and lights and HVAC thermal load. The algorithm of ModestPy for 

the estimation of the parameters has been set with a maximum number of iterations for the 

genetic algorithm of 15 and a tolerance of 0.001, while for the generalized pattern search the 

maximum number of iterations is 500 and the tolerance is 1e-6. From OpenModelica the model 

has been exported as an FMU and path of its repository has been indicated in the script for 

ModestPy. With all the requirements, ModestPy can run and estimate the parameters of the 

model.  

2.4.3 Solar module 

Sun radiations are very effecting on the temperature of buildings. From this consideration, 

it has been thought to increase the accuracy of the data regarding heat gained from the sun. 

The solar radiation hitting a body is composed of three components: direct, diffuse and 

reflected. Direct radiation, called also beam radiation, is the radiation which travels a straight 

line from the sun to the body surface. The diffuse radiation consists of the part of sunlight that 

reaches the surface body after being scattered by molecules and particles in the atmosphere. 

The reflected radiation is the component that gets reflected by another surface before 

reaching the body surface. From the building geometry, it is possible to calculate the amount 

of radiation hitting the building at every timestep knowing the sun position.  

The two information about the sun position to know are the sun altitude and azimuth. Sun 

altitude is the angle between the horizon plane and the sun while the azimuth is the angle on 

the horizontal plane of the projection of the line joining the sun and the observer. There are 

different conventions for the azimuth angle, the one used in this work states that the angle is 

zero when the projection coincides with south direction, it is positive moving clockwise and 

negative counterclockwise. 
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Figure 2.10 Sun altitude and azimuth 

Sun altitude and azimuth are necessary to calculate the incident angle of the sun rays on 

a certain surface, for vertical surfaces, like the walls, the formula is the following: 

 

𝑐𝑜𝑠𝜗 = 𝑐𝑜𝑠𝛽 ∗ cos (𝛹 − 𝛹𝑠) (15) 

where 𝜗 is the incident angle,  𝛽 is the sun altitude, 𝛹 is the sun azimuth and 𝛹𝑠 is the azimuth 

of the surface which is referred to the projection of the normal to the surface. 

 

For the RC model, it is needed the power coming from sun radiations this physical 

dimension is called irradiance and it is express in W/m2. Direct irradiance, diffuse irradiance 

and reflected irradiance are calculated with Equation 16, Equation 17 and Equation 18, 

respectively. 

 

𝐸𝑏 = 𝐸𝑏𝑛 ∗ 𝑐𝑜𝑠𝜗 (16) 

𝐸𝑑 = 𝐸𝑑ℎ ∗
1 + 𝑐𝑜𝑠𝜑

2
 (17) 

𝐸𝑟 = 𝐸𝑡ℎ ∗ 𝜌 ∗ (1 −
1 + 𝑐𝑜𝑠𝜑

2
) (18) 

Where 𝐸𝑏 is the normal component of the direct irradiance on the surface, 𝐸𝑏𝑛 is the total 

direct irradiance, 𝐸𝑑  is the diffuse irradiance, 𝐸𝑑ℎ is the total diffuse irradiance on the 

horizontal plane, 𝜑 is the inclination of the surface, 90° if vertical, 𝐸𝑟 is the reflected irradiance, 

𝐸𝑡ℎ is the total irradiance on the horizontal plane and 𝜌 is the albedo, which represents the 

ration of radiations reflected by a surface. 
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It has been decided to neglect the reflected irradiance as part of the inputs in the RC model 

because it depends on the surrounding environment of the building, the albedo parameter, 

and hence it is difficult to determine. However, reflected irradiance is usually a minor part of 

the total irradiance in cities, like Torino, where buildings are short and the surrounding is dark. 

The two elements of sun positions in Torino have been calculated every 15 minutes by the 

Python library Pysolar [28] giving the city latitude, longitude and altitude. 𝐸𝑏𝑛, 𝐸𝑑ℎ, and 𝐸𝑑ℎ 

have been obtained from the EnergyPlus weather file of Torino. A model to calculate the 

irradiance hitting the building external walls and the windows has been built on Modelica. The 

scope of the model is to calculate the two irradiance components at every timestep, according 

to the geometry and position of the building. This model can then be integrated into the 3R3C 

model. Figure 2.11 shows the structure of the model. It calculates the solar power hitting the 

four external walls of a building summing the values obtained with Equation 16 and Equation 

17 multiplied for the relative wall areas (windows included). Same thing with the area of the 

window to obtain the heat destinated to the internal mass. The difference between the first 

and second value gives the power that hits only the external walls. In the model, there are 

four blocks, one for each wall, in order to calculate the direct irradiance only when the walls 

are oriented toward the sun. In Figure 2.12 there is the 3R3C model implemented with the 

preview model. It presents more inputs interfaces than the simple 3R3C model but the 

parameters to estimate are the same, only ALPHAwall and ALPHAint change their significance. 

Since irradiance is already multiplied by the area, these parameters represent the fraction of 

heat which get absorbed. Lower and upper limits change as well and they take into account 

lights reflection and transparency of surfaces.  

 Lower limit Upper limit 

ALPHAwall 0.0 0.25 [6] 

ALPHAint 0.0 0.95 [20] 

Table 2.4 Lower and upper bounds for ALPHAwall and ALPHAint  
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Figure 2.11 schematic of the sun component built on OpenModelica 
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Figure 2.12 schematic of the 3R3C model with the sun component on OpenModelica 

Figure 2.13 shows an example of the heat signal calculated by the sun block for four days. 

The blue line is the heat that is directed to the external wall capacitator, while the orange line 

is the heat directed to the internal mass capacitator. It is notable that the windows are on the 

east and west façades of the EnergyPlus model because the orange line is characterized by 

two peaks every day and a drop between them. The drops indicate the noon of every day 

because at the time the sun is oriented toward the south and the windows are not hit directly 

by the sun rays.  
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Figure 2.13 Example of the heat flux destined to the external walls and to the windows calculated by 

the solar component 

 

2.4.4 Model training and validation 

The two RC models, from now on called Basic and Sun, have been tested on the same 

periods and with the same procedures in order to verify if adding the sun component to the 

Basic model will bring some improvements and to find the best strategy to training and exploit 

the models in this case study.  First, the two models have been trained for six months, from 

October to February, where the HVAC system is used only for heating. At each day of the 

period, the parameters learning has been computed on one, three, five and seven previous 

days. In this way, for every day four sets of parameters have been found that have been used 

after to validate the models. The validation of the model has been done thanks to PyFMI. At 

every day, the FMU is loaded on PyFMI and all the variables, inputs and outputs are initialized 

with the data from the EnergyPlus model at the first time sample of the day. For every set of 

estimated parameters, the FMU parameters are set whit their relative values and three 

validations are performed, for a prediction horizon of one, three and seven days. The root 

mean square error (RMSE) is utilized as a parameter to evaluate the accuracy of the 

predictions, it indicates the average deviation of the predicted values from the real values at 

a certain time sample for all the time of the prediction. As lower is the RMSE value as more 

the prediction is accurate. Its calculation is described in the equation below: 
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𝑅𝑀𝑆𝐸 =  
√∑ (�̂�𝑖

𝑡
− 𝑌𝑖

𝑡
)

2
𝑁
𝑖

𝑁
  

(19) 

where, as for Equation 1, �̂�𝑖
𝑡 is the measured value of the variable i at time step t, 𝑌𝑖

𝑡 is the 

simulated variable i at time step t and N is the number of time steps. 

  

Three Pandas Dataframes have been generated during this procedure and then converted 

in csv file. One with columns equals the number of parameters to estimate and rows equal to 

the number of training procedures performed. Each column contains the value of the relative 

parameter estimated for every training procedure. A second DataFrame contains the RMSEs 

calculated comparing the EnergyPlus model data and the after simulation RC model data both 

on the learning period, the DataFrame has four columns, each relative to a learning length, 

and raws equal to the number of days in the whole testing period. The last DataFrame contains 

the RMSEs calculated for the validation procedures, the columns are organized as follow: first 

the RMSEs calculated on one, three and seven days after the learning of one day, then the 

three RMSEs calculated after three days of leaning, the three RMSEs calculated after five days 

of learning and finally the three RMSEs calculated after seven days of learning, for a total of 

12 columns. The rows are equal to the number of days in the whole testing period. 

The office building is characterized by a specific schedule and this brings the building 

thermal dynamic to have five days, from Monday to Friday, with a very similar behaviour 

between each other, while Saturday and Sunday different. The aim of the models is to predict 

the building dynamic during the working days, for this reason, a new training and validating 

procedure has been run on a new period where from the original period every Saturdays and 

Sundays have been removed. The procedure is exactly equal to the previous one and produces 

the same results. The two periods of training and validating, with and without the weekends, 

will be called respectively “Complete period” and “Selected period” from now on.  
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3 Results and Discussion 

This chapter contains the graphical results of the procedures of training and validating the 

models described in Chapter 2. The 3R3C model with the component to calculate the solar 

irradiance according to the geometry will be called in this chapter “Sun model”. The 3R3C 

model without the implementation will be called “Basic model”. 

 The first three graphs show examples of predictions compared to the EnergyPlus data of 

the same time samples. These examples are reported to graphically demonstrate how the RC 

model can predict the temperature of the EnergyPlus building and make some consideration 

about the behaviour observed in all the tests done.  

 
Figure 3.1 Example of a prediction of one day after a learning period of one day. 

 

Figure 3.1 shows the comparison between the prediction of one day made from the Basic 

model with the set of parameters estimated on the previous day to the prediction and the 

EnergyPlus building temperature of the same day. The two axes of the graph indicate on the 

abscissa the time of the day in hours, and on the ordinate the internal temperature of the RC 

model and of the EnergyPlus building in Celsius degree. Both the lines in the figure start at 

time 72 h, which corresponds to the midnight of the previous day, and end at midnight of the 

analyzed day, time 96. It is notable that for the first six hours the RC mode does not follow the 

EnergyPlus line, leading to a difference between them of about 1 °C. At time 78 (6 am), when 

the HVAC system is turned on, the EnergyPlus model has a strong steep rise of the duration of 
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two hours, and the temperature goes from below 15 °C to around 21 °C, which is the 

temperature setpoint. During this period, the RC model overlaps the orange line, even if it 

starts from a different temperatures. The period from time 80 to time 94 is the period in which 

the temperature on the EnergyPlus model is kept around the setpoint, in fact, the orange line 

is horizontal and slightly above the 21 °C. The blue line does not coincide with the EnergyPlus 

line anymore but it has an oscillatory behaviour remaining under that. The maximum 

difference in temperature in this period does not exceed 0.5 °C. The last temporal section 

represents the free-floating period after the HVAC system is turned off. It last two hours from 

10 pm to 12 pm. Like in the initial period, the two lines diverge from each other, ending with 

a temperature difference greater than 1 °C.  

 
Figure 3.2 Example of a prediction of one day after a learning period of three days. 

 

Figure 3.2 reports an example similar to Figure 3.1, but in this case, the parameters set to 

the FMU of the Basic model have been determined with three days of training and the 

predicted day is two days ahead. The two lines start at around 16.5 °C and go down 

maintaining a reletively constant and small difference for the 6 hours of free-floating before 

the HVAC system is turned on. During the ramp, the RC model line coincides with the 

EnergyPlus line for most of the period, but at the end, the blue line is faster and reach a 

temperature around 21.6 °C while the orange line stops at 21 °C. Next, the blue line rejoins 

the EnergyPlus line in a couple of hours and continues to approximate the orange line with 

little fluctuation for all the rest of the day. 
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Figure 3.3 Example of a prediction of three days after a learning period of three days 

 

Figure 3.3 shows an example of three days prediction with the parameters coming from 

three days learning period. In this figure, it is notable that the RC model line approximates the 

EnergyPlus line better on the free-floating period and on the ramps where the temperature 

increases rapidly after the HVAC system is just turned on.  During both the three periods of 

setpoint temperature maintenance in the EnergyPlus model, the blue line has an oscillatory 

behaviour with two peaks, one at the end of the ramps and one around the center of the 

periods. The oscillations have an amplitude greater than 1 °C and they end when the free-

floating periods start. At this instant, the RC model temperature is lower than the EnergyPlus 

temperature.   

The three previous graphs want to show that after more than one day of parameters 

learning, the prediction is always more accurate in the free-floating period than whit only one 

day of learning. This is caused by the fact that when the model simulates more than one day, 

the temperature at the starting of the HVAC system must be at a proper value in order to let 

the temperature reach the setpoint and stay around it. If this does not happen, there will be 

an error in the simulation that will continue to shift, up or down, the temperature line while 

the days go on. During the model training, this constrain followed as well. However, it has 

been observed that a good accuracy in representing the free-floating periods does not lead to 

being as much accurate in the HVAC controlled periods. During one day of training, instead, 
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the accuracy in the HVAC controlled time is more important to the machine learning algorithm 

because is the major part of one day.  

3.1 Benchmark on the whole heating season 

In this paragraph, the results of the learning and validating procedure on the whole 

heating season are presented for both Basic and Sun model. The “Complete period” goes from 

October to March, including all the days of a week, Saturdays and Sundays. Further on, 

“Selected period” will be called the period from October to March with no Saturdays and 

Sundays. The DataFrame with the RMSEs of the parameters validations has been elaborated 

to obtain the arithmetic average of the RMSEs characterized by the same learning length and 

prediction length. There have been obtained 18 values in total. Figure 3.4 compares the 

average RMSEs of one day predictions for each learning period length. In the bar plot, the 

colour blue indicates the average RMSEs calculated with the data from the Basic model 

training and validating process, while the orange is relative to the Sun model. The bars are 

grouped by the same parameters training period length, in order, 1 day, 3 days, 5 days and 7 

days. With 1 day of training, the average RMSEs of both models exceed the 2 °C and Basic 

model average is greater than Sun model ones. With 3 days of learning the blue column is 

shorter than the orange ones and both do not surpass the 1 °C value. The values of the average 

RMSEs from 5 days learning are around 1 °C and also in this case the Basic model RMSEs is 

slightly minor than the Sun model RMSE. The last two bars, relative to a training period of 7 

days, have practically the same hight which does not exceed 1 °C. 
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Figure 3.4 Comparison between the average RMSEs of one day predictions from Basic model and from 

Sun model 

 

The same kind of plots, but built with the RMSEs of 3 days and 7 days of prediction can be 

found in the Appendix. They have not been shown in Results because besides the general 

increments of values of the average RMSEs due to the increment of the prediction length, the 

behaviour of the bars reflects the behaviour in Figure 3.4. One day of learning leads to the 

greatest RMSEs of which Basic model ones are the highest. For the other learning lengths, the 

RMSEs are all comparable and the predictions of the Basic model always have a slightly better 

accuracy. 

 The fact that the values of the average RMSEs coming from the prediction length of 1 day 

are much higher than the other values does not correspond with the results expected, 

especially for 1 day of prediction. In literature, for making a 1 day prediction, it is usually 

suggested to compile the parameters training on the previous day because it is reasonable 

that the two days would have very similar behaviour.  Figure 3.4 seems to deny that, but the 

reason can be imputed to the schedules of the office building. For this reason, the data in the 

DataFrame of the accuracy of the predictions have been reorganized in order to group all the 

RMSE values relative to every day of the week. This work has been done only with the Basic 

model data. The results of this elaboration bring for every day twelve average RMSEs 

characterized by the length of the learning period and the length of the prediction, which 

starts on that day. The results of Mondays and Tuesdays are visible in Figure 3.5 and Figure 
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3.6, respectively. The graphs present for every learning length three bars indicate the average 

RMSEs relative to the three prediction horizons: 1, 3 and 7 days.   

 
Figure 3.5 Average RMSEs of the predictions starting on Mondays 

 

In Figure 3.5 all the values of 1 day learning length exceed the values of 10, while the other 

RMSEs do not and stay below 2. For the cases regarding 3 days, 5 days and 7 days of training, 

the most accurate prediction are always the ones of 1 day. Values greater than 10 for an 

RMSEs of internal temperature of a building mean that the parameters estimated are not 

suitable to represent that system. The predictions starting on Monday use the parameters 

learned on the previous days when the learning length is 1 day, the model is trained on 

Sunday, where the EnergyPlus building has not heat gained from the HVAC system, from the 

occupancy and the lights in the building. It is a day with a completely different behavior 

compared to Monday and that is the reason why the accuracy is so low for the predictions 

with 1 day of learning; when the learning period increase, the parameters are trained on days 

with the office schedule as on Monday and so the accuracy become better. 
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Figure 3.6 Average RMSEs of the predictions starting on Tuesday 

 

Figure 3.6 presents the same data of Figure 3.5, but relative to Tuesday. The bars of the 

predictions with 1 day of learning are arranged like a ladder: the RMSE value of 1 day 

prediction is between 1 and 2, the value of 3 days prediction between 3 and 4 and the value 

of 7 days prediction around 7. In all the other learning length, the accuracy of the predictions 

is comparable between each other, with the RMSE values that exceed 1 in few cases, but also 

for these learning lengths the prediction of 7 days is the less accurate then the prediction of 3 

days and the prediction of 1 day is the most accurate. The graphs of the other days of the 

week mimic Figure 3.6.  

Comparing Figure 3.5 with Figure 3.6 shows that with one day of learning, if the day to 

predict is different from the day used for the training the parameters and the model will not 

provide an accurate prediction. The utilization of Sundays to training the model to predict 

Mondays explain why in Figure 3.4 the average RMSEs of 1 day learning are double the values 

of the other learning length. From Figure 3.6 it is deductible also that with one day of learning, 

the accuracy of the predictions of more than 1 day decreases in relation to the increasing of 

simulating days. This is explainable also by what previously said about the example of 1 day 

training and 1 day prediction in Figure 3.1. Since in 1 day learning it is not important that the 

parameters lead, at the end of the day, that the simulated temperature coincides with the real 

building temperature if the overall accuracy is good. Nevertheless, if those parameters are 
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used to simulate more days, the starting temperature of the second day will be already wrong 

and so all the predictions will be affected by this error.  

 

3.2 Benchmark on weekdays 

This paragraph contains similar results of the previous paragraphs but obtained doing the 

process of learning and validation on the period from October to March, considering only the 

weekdays, from Monday to Friday. Figure 3.7 shows the average RMSEs of the 1 day 

validations carried out with the Basic model and the Sun model. 

 
Figure 3.7 Comparison between the average RMSEs of one day predictions from Basic model and from 

Sun model 

 

At 1 day of learning the two bars reach the same high, which is slightly above 1 °C, at 3 

days of learning, the blue column is a bit higher than the orange one, both express values 

greater than the 1 day prediction values, but they are still below 1.5 °C. 5 days of learning is 

characterized by having the shortest columns of the graph, both Basic and Sun models, which 

are practically identical. Their values are still above 1 °C. The last bars present in the graph are 

relative to 7 days of learning and their peaks reach around 1.5 °C; the average accuracy of Sun 

model, in this case, is a bit worse than the average accuracy of the Basic model. Comparing 

Figure 3.7 with Figure 3.4, it is notable that the main difference between them is the high of 
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the bars at 1 day of learning. Using the Selected period, the average of the RMSEs of 1 day 

learning decrease of about 1 °C with respect using the Complete period, demonstrating that 

removing the weekends from the days of learning leads to decreasing the error of the 

validation after 1 day of parameter training. The other columns in the graph have a slightly 

increasing, this can be caused by the fact that removing the learnings on Saturedays and 

Sundays, also the validations on these days are not done anymore, which were characterized 

by the lowest RMSEs and they do not contribute any more to the RMSE average. The plot with 

average RMSEs of the validation on Sundays are visible in the Appendix. 

Observing all the graphs produced from the validations on the Complete and Selected 

period there is no evidence that the 3R3C model with the component able to calculate the sun 

irradiance components provides better predictions than the 3R3C without that 

implementation. The reason is that in both Basic and Sun models, the parameters to estimate 

that regulate the solar heat gains are the same number. The two heat flux sources of Sun 

model receive two different signals compared to the respective heat flux sources of the Basic 

model, but all these signals are modulated by the relative parameter, which can make them 

very similar and cancel the more realistic sun inputs in Sun model.     

In the next figure, all the average RMSEs from the Basic model are shown, the same graph 

relative to the Sun model is visible in the Appendix, but it looks like this one. Figure 3.8 is 

composed of 12 colored squares, each of them represents the value of the average RMSEs of 

the validations characterized by each learning length and each validation length. The learning 

length is reported on the abscissa axis and the prediction length on the ordinate axis. The 

colors of the cells indicate a value according to a scale, the scale starts with yellow and ends 

with black, the more the color is darker more the value is high. The darkest block of the figure 

is the average RMSE of 7 days of prediction and 1 day of learning, which is purple, next to it, 

there are two red cells, relative to 7 days of prediction and 3 days of learning, and 3 days of 

prediction and 1 day of learning. The other blocks have various shades of orange, the two 

lightest are indicated by 1 day prediction and 1 day learning and 1 day prediction 5 days 

learning.  
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Figure 3.8 Heatmap of average RMSEs obtained from the validations with the Basic model 

 

From Figure 3.8 it is visible that, also now that the days have all the same behaviour, a 

model training of one day is not suitable for doing prediction longer than one day. This 

deduction can also be applied to 3 days of learning length, in fact when the model predicts 7 

days the accuracy decreases and also in literature, it is quite established that for predicting a 

certain time period the learning period shall have the same length. Another thing notable from 

the graph is that passing from 5 days of learning to 7 days of learning, the accuracy of all the 

prediction decreases. This fact is not expected, even more, if compared with the results of the 

Complete period, where 7 days of predictions lead always to better accuracy than 5 days. An 

explanation to this can be found in the building temperature data utilized both for training 

and validating the model. From the original file used in the Complete period procedure, the 

data relative to the weekend days have been cut, making Fridays be followed by Mondays; 

the temperature at the last time sample of Friday and the one at the first sample of Monday 

are not connected by any physics relation and can be quite different. This discontinuity can 

affect both the validation and the training which is based on a series of validation on the same 

period of the training. The discontinuity is present only on the building data, and not in the 

data from the simulation of the model, it happens that the model determines the temperature 

of the first sample of Monday based on the last temperature of Friday and continue the 

simulation from that value, but in the real data the first sample of Monday is not correlated 

from Friday temperature. In this way the model starts the simulation already of Monday from 
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the wrong temperature value. This error can be transmitted along all the simulation, 

decreasing the overall accuracy. This phenomenon can happen in all the prediction lengths 

longer than one day, but in 7 days prediction, it can happen twice. 

Finally, Table 3.1 shows the seconds spent to estimate the parameters with Basic model 

and Sun model. The python script has been run by console by Pycharm on a computer with a 

processor Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical 

Processor(s). The four columns contain the computational time for completing the estimation 

of the parameters on a learning period of 1, 3, 5 and 7 days. With the same learning length, 

the training with the Basic model is always faster than with the Sun model. On 1 day learning 

the difference is very small, 7 seconds, while on 7 days is around three minutes. The difference 

is caused by the simulation time of the respective FMUs, during the training the FMUs are 

simulated 515 times. It is plausible that the Sun model requires a longer computational time 

because it has some components in addition to the Basic model. The duration of the learning 

can be increased or decreased changing some parameters in the estimate() function of 

ModestPy, such as the maximum number of cycles or the minimum tolerance. Moreover, the 

computational cost depends on the number of parameters to estimate. 

 

 1 day 3 days 5 days 7 days  

Basic model 132 s 321 s 346 s 708 s 

Sun model 139 s 363 s 597 s 876 s 

Table 3.1 Computational time for parameters learning 

On an MPC system for a building, the parameters learning is usually done maximum every 

24 hours in order to utilize the parameters determined on the day before to estimate the next 

day. The maximum value in the previous table is 876 seconds, which correspond around to 15 

minutes, meaning that for setting the model with the proper parameters the learning has to 

be done maximum 15 minutes before the time to run the optimization algorithm. 

Understandably, a delay of 15 minutes on the starting of the optimization does not really 

affect the goodness of the optimization itself. In conclusion, the computational cost of the 

parameters learning is not a factor on which basing the choice of the learning length, the only 

factor to consider is the accuracy of the predictions.  

 

3.3 Comparison of the grey-box model with ISO standards 

In this section, the 3R3C basic model will be compared with the two standards: UNI EN 

ISO 13790[21] and UNI EN ISO 52016-1[22]. They both[22][21][21][21] introduce a building 

model composed by resistors and capacitors whit deterministic and analytical procedures to 

identify the parameters. In particular, the first standard introduces a model with 5 resistors 

and one capacitator representing the whole construction, while the second one presents a 
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model composed by modules of one resistor and one capacitator connected between each 

other in order to describe any component of the building. These models are validated by 

different works [22][23], which state that the RC analogy is a valid practice for designing 

dynamic building models. The comparison is made by applying the case study reported in the 

article [21] where an EnergyPlus model has been modeled using both the ISOs to the Basic RC 

model built in this thesis. The article evaluates the reliability in mimic the EnergyPlus model 

of two RC models, one done following the UNI EN ISO 13790 and the other one following the 

UNI EN ISO 52016-1. The evaluation has been made during 12 days in which the HVAC system 

was off and the estimation of the accuracy of the models has been done on the building 

temperature with three parameters: the RMSE, the Mean Bias Error (MBS) and the Coefficient 

of Variation of RMSE (Cv(RMSE)). MBS and Cv(RMSE) are calculated as following: 
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where �̂�𝑖
𝑡 is the measured value of the variable i at time step t, 𝑌𝑖

𝑡 is the simulated variable i at 

time step t and N is the number of time steps. In this case, the measured variable is the variable 

obtained from the EnergyPlus model.  

 

Table 3.2 shows the parameters calculated for each model in the article. The raw called 

Threshold reports the thresholds for MBS and Cv(RMSE) contained in the ASHRAE Guideline 

14[24]. 

 RMSE MBS Cv(RMSE) 

UNI EN ISO 13790 1.16 °C -4.2% 4.7% 

UNI EN ISO 52016-1 0.21 °C 0.2% 0.9% 

Threshold - +- 10% 30% 

Table 3.2 RMSE, MBS and Cv(RMSE) of two analytical RC models 

With the 3R3C Basic, the same procedure performed in the article has been tried to be 

simulated. The model has been trained with the free-floating temperature data of the 

EnergyPlus model and then with the estimated parameters, a prediction of as many days has 

been done. It has to be declared before comparing the results that the EnergyPlus models of 

the article and this thesis are different and so the ambient data used for the predictions. Figure 

3.9 shows the graphical validation of the Basic model on the 12 days predictions with the 

building in free-floating mode. The starting date of the prediction has been chosen with no 

particular reason because it has no sense comparing the same period with the article since 

the inputs data are different. 
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Figure 3.9 Validation of 12 days after a learning period of 12 days 

 

The prediction starts at the 1st of February and ends at the 13th. The blue curve tracks the 

indoor temperature of the Basic model while the orange curve the one of the EnergyPlus 

model. The two curves vary in a range of temperatures between 10 °C and 20 °C. From the 

graph, the parts of each day are visible: the daylight when the temperature increases, and the 

night when the temperature decreases. The RC model line always follows the trend of the 

orange line, sometimes less precise than others. For example, in the first 7 days, during the 

night, the RC model predicts the lowest temperature almost 1 °C lower than the EnergyPlus 

one and sometimes the blue line does not reach the orange highest peaks. Table 3.3 reports 

the RMSE, MBS and Cv(RMSE) calculated with the predictions of the RC model and the 

EnergyPlus model data. The RMSE has a value of 0.72 °C, which is between the values of the 

RMSE of the two ISO models and the MBS and Cv(RMSE) which are -3.09% and 2.1%, 

respectively, are widely inside the range of the ASHRAE guideline thresholds. These results 

state that the Basic model described in this thesis and designed with the grey-box RC model 

is comparable, regarding the accuracy, to the RC models described in the standards.    

       

 

 RMSE MBS Cv(RMSE) 

3R3C free-floating 0.72 °C -3.09% 2.1% 

Table 3.3 RMSE, MBS, Cv(RMSE) of the Basic model prediction 
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4 Conclusions 

This thesis aims to model a dynamic system such as a building with the grey-box method, 

designing an RC model and then determining its parameters by a data-driven algorithm, that 

can be  used in a  model predictive control (MPC). Two RC models have been investigated, one 

composed by three thermal resistors and three heat capacitors and the other one with the 

same components plus a module calculating the solar irradiance on the building according to 

the clear-sky equations and the building’s geometry. The model has been built in Modelica 

and then coded in functional mock-up units (FMUs). The parameters of the models have been 

determined by using the Python library ModestPy, which employs a genetic algorithm and a 

pattern search algorithm. The reference building has been chosen an EnergyPlus model of an 

office building. A selection of variables from the EnergyPlus model simulation has been used 

to determine the RC models parameters and to validate them. The RC models have been 

tested along the whole heating period of the office building: at every day multiple parameters 

estimations and validations have been performed. The root mean square error (RMSE) has 

been calculated for each set of parameters and elaborated in order to compare the two 

different RC models and evaluate their accuracy.  

The EnergyPlus model used in this thesis has a dissimilarity compared the reference 

buildings or building models used in literature as it has a relatively fast dynamic. In fact, the 

internal temperature of the building can go from about 10 °C to 21°C in two hours. All the 

other works in literature account for buildings characterized by a slow dynamic and a variation 

of internal temperature, during a whole day, lower than 5 °C. With such a fast dynamic, it is 

more difficult designing a lumped model and its accuracy tends to be lower than with a slow 

dynamic. For this reason, the benefit of adding an analytical model to account the sun 

irradiation has been investigated. 

The results show that the two RC models are almost identical; their predictions are 

characterized by very similar values of RMSE, meaning that there is not an indication to utilize 

one model respect the other in any situation. Consequently, the choice of the model can be 

made according to other factors. The RC model, called Basic model, is simpler to design and 

understand and faster in compiling. Nevertheless, it has been shown that the computation 

time is not a relevant parameter for the choosing of the model. Considering that these two 

models should be implemented in a model predictive control for hypothetical real buildings, 

the data for the predictions can not be as much easy to obtain as from the EnergPlus model. 

The MPC uses predictions of the inputs variable to determine the dynamic of the controlled 

system and thus optimize the controlled variable.  An MPC with the Basic model needs as input 

the external ambient temperature, the heat gain from the occupancy and from the building 

lights, and the total horizontal solar irradiance. Instead, with the Sun model, the inputs would 

be the same plus the total direct irradiance and the total diffuse irradiance. Predictions of the 

total horizontal irradiance are available in some weather forecast but the total direct 
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irradiance and the total diffuse irradiance are more difficult to find. This fact makes the Basic 

model the first choice because it is able to give the same predictions accuracy of the Sun model 

using fewer inputs and mostly, the inputs more available.  

The values of the average RMSEs are comparable with the values reported in literature[7], 

where the average RMSEs of the predictions of a 3R3C model for a building with fast dynamic 

are all included between 2 °C and 3°C, while for a building with low dynamic are all below 1.5 

°C. However, the values of RMSEs do not confirm that the lumped model is good to be used 

in an MPC, they can only be compared with other values in the literature for a general 

comparison. The reliability of a model can be established only by the MPC exploiting the 

model. In fact, for an MPC with the task of reducing the energy consumption for the heating, 

a good model is the one that will lead to an effective reduction of the energy consumption of 

the controlled system with respect to the building without the MPC.   

The future work of this thesis is to utilize the RC models to set up an MPC for the HVAC 

system of a building and study the effects of the accuracy of the model predictions on the 

ability of the MPC to save energy. Nowadays, there are some options for developing an MPC 

based on the model of the controlled system. With a model coded in Modelica language, 

JModelica[25] offers tools for running optimization problems on the inputs of a model, 

unfortunately, it is not anymore an opensource program from January 2020. Another available 

and free tool is MPCPy[26] that has been developed exactly for optimizing the control signals 

of buildings devices. MPCPy is very young and still under development, i.e. it does not always 

work properly. An advantage that MPCPy has over JModelica is that it allows the user to avoid 

the programming of the interaction between the optimization tool and the model. For this 

reason, it is the first choice for proceeding forward in this work. 
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Appendix A 

Figure A. 1 shows the results obtained from the 3 days predictions made with the Basic 

model and the Sun model on the Complete period. The bars indicate a better performing of 

the Basic model rather than the Sun Model, only with 1 day learning length Sun model 

predictions are more accurate than Basic model predictions. All the values of the average 

RMSEs are under 2 °C except for the average with 1 day learning length. 

 
A. 1 Comparison between the average RMSEs of three days predictions from Basic model and Sun 

model. Complete period. 
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Figure A. 2A. 1 shows the results obtained from the 7 days predictions made with the Basic 

model and the Sun model on the Complete period. Similar to Figure A. 1, the average values 

of the RMSEs of the Basic sun predictions are lower than the values of the Sun model, except 

for 1 day learning length.  The average RMSEs are below 2 °C for 5 and 7 days of learning 

length, around 2 °C for 3 days of learning length and are over 5 °C for 1 day of learning length. 

 

 
A. 2 Comparison between the average RMSEs of seven days predictions from Basic model and Sun 

model. Complete period. 
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Figure A. 3 shows the average values of the RMSEs of the predictions starting from Sunday 

on the Complete period. All the bars stay around the value of 1 °C, only the bar indicated by 1 

day of learning length and 7 days of prediction reaches almost 2 °C. On 5 days of predictions, 

the three bars have the same high, on the other leaning lengths the blue is the shortest and 

the green is the highest.  

 
A. 3 Average RMSEs of the predictions starting on Sundays. Complete period. 
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Figure A. 4 shows the results obtained from the 3 days predictions made with the Basic 

model and the Sun model on the Selected period. The bars indicate the Sun model be slightly 

more accurate than the Basic Model on 1 day and 5 days of learning length. 5 days of learning 

length provides the lowest average RMSE, which are between 1 °C and 1.5 °C. 

 

 
A. 4 Comparison between the average RMSEs of three days predictions from Basic model and from Sun 

model. Selected period. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

55 

Figure A. 5 shows the results obtained from the 7 days predictions made with the Basic 

model and the Sun model on the Selected period. On 1 day and 7 days of learning length, the 

Basic model column is higher than the Sun model ones, on the other learning lengths, the 

columns reach the same value. The average RMSE of the Basic model and the Sun model start 

from 1 day of learning length at about 5 °C and constantly decrease on 3 days and 5 days of 

learning length going down 2 °C. On 7 days of learning length, the values increase going back 

around 2 °C. 

 

 
A. 5 Comparison between the average RMSEs of seven days predictions from Basic model and from 

Sun model. Selected period. 
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Figure A. 6 shows the average RMSEs of the prediction characterized by prediction length 

and learning length. The predictions are made with the Sun model on the Selected period. The 

value of each average RMSE is indicated by color according to the color scale on the right of 

the figure. The most accurate predictions are of 1 day and with the parameters of the model 

estimated on 1, 3 and 5 days. With 5 days of learning length also the predictions of 3 days 

have the average RMSE comparable with the average RMSE of 1 day prediction length. 

 
A. 6  Heatmap of average RMSEs obtained from the validations with the Sun model. Selected period 

 

 

 

  



 

 

57 

Bibliography 

[1] European Commission, “In focus: Energy efficiency in buildings | European Commission,” 
Focus Energy Effic. Build., no. February, 2020, [Online]. Available: 
https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-feb-17_en. 

[2] A. Afram and F. Janabi-Sharifi, “Supervisory model predictive controller (MPC) for 
residential HVAC systems: Implementation and experimentation on archetype sustainable 
house in Toronto,” Energy Build., vol. 154, pp. 268–282, 2017, doi: 
https://doi.org/10.1016/j.enbuild.2017.08.060. 

[3] C. Corbin, G. Henze, and P. May-Ostendorp, “A model predictive control optimization 
environment for real-time commercial building application,” J. Build. Perform. Simul., vol. 
2012, Jan. 2012, doi: 10.1080/19401493.2011.648343. 

[4] X. Pang, M. Wetter, P. Bhattacharya, and P. Haves, “A framework for simulation-based real-
time whole building performance assessment,” Build. Environ., vol. 54, pp. 100–108, 2012, 
doi: https://doi.org/10.1016/j.buildenv.2012.02.003. 

[5] A. Afram, F. Janabi-Sharifi, A. S. Fung, and K. Raahemifar, “Artificial neural network (ANN) 
based model predictive control (MPC) and optimization of HVAC systems: A state of the art 
review and case study of a residential HVAC system,” Energy Build., vol. 141, pp. 96–113, 
2017, doi: https://doi.org/10.1016/j.enbuild.2017.02.012. 

[6] H. Harb, N. Boyanov, L. Hernandez, R. Streblow, and D. Müller, “Development and 
validation of grey-box models for forecasting the thermal response of occupied buildings,” 
Energy Build., vol. 117, pp. 199–207, 2016, doi: 10.1016/j.enbuild.2016.02.021. 

[7] D. H. Blum, K. Arendt, L. Rivalin, M. A. Piette, M. Wetter, and C. T. Veje, “Practical factors 
of envelope model setup and their effects on the performance of model predictive control 
for building heating, ventilating, and air conditioning systems,” Appl. Energy, vol. 236, no. 
December 2018, pp. 410–425, 2019, doi: 10.1016/j.apenergy.2018.11.093. 

[8] G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Bemporad, “Model Predictive 
Control (MPC) for enhancing building and HVAC system energy efficiency: Problem 
formulation, applications and opportunities,” Energies, vol. 11, no. 3, 2018, doi: 
10.3390/en11030631. 

[9] EnergyPlus Documentation, “EnergyPlus Documentation Getting Started with EnergyPlus 
Basic Concepts Manual -Essential Information You Need about Running EnergyPlus,” p. 78, 
2015, [Online]. Available: https://doi.org/10.1016/j.dib.2019.104316. 

[10] H. Ramírez, J. Jiménez-Cabas, A. Bula, and Modelica Association, “Modelica Language 
Specification,” Data Br., vol. 25, no. July, p. 104316, 2017, doi: 10.1016/j.dib.2019.104316. 

[11] OSMC, “OpenModelica User ’ s Guide,” 2018. 
[12] M. Długosz, “Aggregation of state variables in an RC model,” Build. Serv. Eng. Res. Technol., 

vol. 39, no. 1, pp. 66-80r, Jul. 2017, doi: 10.1177/0143624417723159. 
[13] K. Arendt, M. Jradi, M. Wetter, and C. T. Veje, “ModestPy: An Open-Source Python Tool for 

Parameter Estimation in Functional Mock-up Units,” Proc. Am. Model. Conf. 2018, Oct. 9-
10, Somb. Conf. Center, Cambridge MA, USA, vol. 154, no. October, pp. 121–130, 2019, doi: 
10.3384/ecp18154121. 

[14] A. Falcone and A. Garro, “Distributed Co-Simulation of Complex Engineered Systems by 
Combining the High Level Architecture and Functional Mock-up Interface,” Simul. Model. 
Pract. Theory, vol. 97, no. August, p. 101967, 2019, doi: 10.1016/j.simpat.2019.101967. 

[15] C. Andersson, J. Akesson, and C. Fuhrer, “PyFMI: A Python Package for Simulation of 
Coupled Dynamic Models with the Functional Mock-up Interface,” Tech. Rep. Math. Sci., 
no. 2, pp. 1–40, 2016. 

[16] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open Source Scientific Tools for Python,” Jan. 
2001. 

[17] W. McKinney, “Data Structures for Statistical Computing in Python,” Proc. 9th Python Sci. 
Conf., vol. 1697900, no. Scipy, pp. 51–56, 2010, [Online]. Available: 



 

 

58 

http://conference.scipy.org/proceedings/scipy2010/mckinney.html. 
[18] “PyCharm.” [Online]. Available: http://en.wikipedia.org/wiki/PyCharm. 
[19] Y. Kwak, J. H. Huh, and C. Jang, “Development of a model predictive control framework 

through real-time building energy management system data,” Appl. Energy, vol. 155, pp. 
1–13, 2015, doi: 10.1016/j.apenergy.2015.05.096. 

[20] C. Visivo, “Qualita’ edilizia.” 
[21] I. Ballarini, A. Costantino, E. Fabrizio, and V. Corrado, “The Dynamic Model of EN ISO 52016-

1 for the Energy Assessment of Buildings Compared to Simplified and Detailed Simulation 
Methods,” Proc. Build. Simul. 2019 16th Conf. IBPSA, vol. 16, pp. 3847–3854, 2020, doi: 
10.26868/25222708.2019.210431. 

[22] British Standards Institution, “ISO 52016: Energy performance of buildings -- Energy needs 
for heating and cooling, internal temperatures and sensible and latent heat loads,” p. 204, 
2017, [Online]. Available: https://www.iso.org/standard/65696.html. 

[23] J. Vivian, A. Zarrella, G. Emmi, and M. De Carli, “An evaluation of the suitability of lumped-
capacitance models in calculating energy needs and thermal behaviour of buildings,” 
Energy Build., vol. 150, pp. 447–465, 2017, doi: 10.1016/j.enbuild.2017.06.021. 

[24] Measurement of energy, demand and water savings / American Society of Heating, 
Refrigerating and Air-Conditioning Engineers. Atlanta, GA: Ashrae, 2014. 

[25] J. Åkesson, M. Gäfvert, and H. Tummescheit, “JModelica---an Open Source Platform for 
Optimization of Modelica Models,” in 6th Vienna International Conference On 
Mathematical Modelling,Vienna, Austria,2009-02-11, 2009. 

[26] Blum D and Wetter M, “MPCPy: An Open-Source Software Platform for Model Predictive 
Control in Buildings,” Proc. 15th IBPSA Conf., pp. 1381–1390, 2017, doi: 
10.26868/25222708.2017.351. 

[27]  “lbt-ladybug project description,” 2020. Available: https://pypi.org/project/lbt-  

ladybug/. 

[28]     “pysolar repository”. Available: https://github.com/pingswept/pysolar. 

 

 

https://pypi.org/project/lbt-

