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Summary

Numerical methods and simulations in fluid dynamics and Heat Transfer (HT) are constantly

growing in terms of number of both courses offered at universities and active researches in

the field. Nowadays, Computational Fluid Dynamics (CFD) codes are being consolidated as

design tools by the industry and both commercial and open-source codes are available. Any-

way, users of CFD need to have a fully understanding of the numerical methods implemented

in these more complex software in order to give meaning and accuracy to their results.

Therefore, the two main objectives of this project are: firstly, to acquire a basic training

in the numerical resolution of the governing equations in heat transfer and fluid dynamics

problems, acquiring the skills to critically judge their quality through validation techniques

and, secondly, apply the developed knowledge to a real-world case like the heat transfer

study of a flat-plate solar collector.

The project is organized like a work-flow that starts from the most basic numerical meth-

ods and problems to the most complex ones; finalizing the work with a study of a real flat-

plate collector. Chapter 1. ‘Introduction’ contains the work-flow description and a brief

presentation of all the case-study analyzed. Chapter 2. ’Discretization methods and solvers’

contains the fundamental numerical methods with which physical phenomena, described

through appropriate differential equations, are analyzed. Chapter 2. ‘Heat conduction meth-

ods’ is the construction base of all the methods implemented in this work, therefore emphasis

on concepts and calculation details are given here. Chapter 4. ‘Convection and diffusion’ is

focused on the resolution of convection and diffusion problems, with the flow field known

in advance. The Smith-Hutton problem is addressed in this chapter since many of the fea-

tures commonly encountered in practical convection-diffusion problems. Different numer-

ical schemes are presented in and their pros and cons are described. The calculation of

the velocity field itself is finally treated in Chapter 5. ‘Incompressible flow method using

the Navier-Stokes equations’. This chapter describes the implementation of the Fractional

Step Method (FSM) in the solution of the Navier-Stokes equations with the aim to obtain

solutions for two famous benchmark problems: the Lid-Driven Cavity problem and the Dif-

ferentially Heated Cavity problem (DHC). In the DHC problem, momentum equations are

coupled with the energy equation. The problems presented and solved are intended to be a

material base over the analysis of flat-plate solar collector in Chapter 6. ’Numerical analysis

of a flat-plate solar collector’. In the last chapter an analysis of a typical flat-plate solar col-

lector is performed, with a simple one-dimensional (1D) model. The heat transfer between

the absorber plate and the cover is then investigated deeply and the results are compared to

the ones obtained with the 1D model.
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1. Introduction

1. Introduction

This work is intended to provide knowledge in computational and numerical simulation by

means of the development, validation and verification of HT and CFD codes, which will

be related to the resolution of the conservation equations of mass, momentum and energy

applied firstly to several benchmark problems and secondly to a specific case on a field of

interest.

Heat transfer phenomena plays an important role in many industrial and environmental

problems. There is not a single application in the industrial engineering that does not involve,

in some way, HT effects and their accurate prediction. It is widely involved in the generation

of power from conventional fossil fuels, nuclear sources and many renewable sources too.

Heat transfer processes determine the design of industrial equipment such as boilers, con-

densers, turbines and many more. Quite often the challenge is to maximize heat transfer rate

(such as in heat exchangers), or to minimize it (like in insulation-related studies). HT plays

an important part in the design of solar energy conversion systems for water and space heat-

ing, cooling of electronic equipment, or refrigeration and air conditioning systems. Finally,

HT issues also occur in air and water pollution problems and strongly influence climate at

local and global scale.

Computational fluid dynamics is a branch of fluid mechanics that uses numerical analy-

sis and data structures to analyze and solve problems that involve fluid flows. In the last

years CFD has experiences rapid advances and the potential it provides to analyze complex

thermal systems is of considerable interest to the energy engineer. CFD is applied to a wide

range of research and engineering problems in many fields of study and industries, including

aerodynamics and aerospace analysis, weather simulation, natural science and environmen-

tal engineering, industrial system design and analysis, biological engineering and engine and

combustion analysis.

Throughout this work, consolidated numerical methods for HT and CFD are presented

mathematically and are verified through the study of benchmark cases. The work-flow is

organised with the following logic: the numerical methods are presented first for the heat

transfer part and then for the CFD part. The models are presented in order of complexity

and are always described mathematically, implemented in a code and verified on benchmark

cases. This presentation process starts with the one-dimensional heat transfer analysis until

the study of the natural convention in a rectangular cavity inclined at a defined angle. Finally,

knowledge of these methods is applied to a practical case of heat transfer in a solar collector,

demonstrating a real application of these models.

1.1. Objectives

The objectives of the project can be summarized as:

1



1. Introduction

• Acquire a basic training in the numerical resolution of the governing equations in the

fluid dynamics and heat and mass transfer;

• Acquire experience in the field of programming and verification of HT and CFD codes,

along with a correct data visualization;

• Learn the ability to critically judge a general CFD HT code;

• Acquire knowledge of the models commonly used to describe a flat-plate solar collec-

tor;

• Implement acquired knowledge of CFD HT phenomena to a real case-study in a flat-

plate solar collector.

1.2. Scope

• Discretization methods and solvers:

General mathematical approach of the problems involved in the integration of the equa-

tions of fluid dynamics and heat and mass transfer. The finite difference method, the

finite volume method, and the presentation of solvers are presented in this chapter. The

finite volume method is favored in this text;

• Heat conduction methods:

Development of the methodology used to solve the heat equation, based on finite vol-

ume techniques applied to orthogonal, uniform and structured meshes. The resolution

of the linear systems of the discretization equations is done with direct and iterative

methods i.e. Gauss-Seidel method (GS), Tri-Diagonal Matrix Algorithm (TDMA) and

LU factorization. Moreover, a two-dimensional (2D) conduction HT benchmark prob-

lem in transient regime is presented, solved and validated;

• Convection and diffusion:

The generic form of the transport equations with the convective terms is presented. The

different techniques of integration of the equation and the problems of precision (false

diffusion) and convergence (stability) that may occur are explained. Furthermore, a

2D convection-diffusion benchmark problem (the Smith-Hutton problem) is presented,

solved and validated;

• Incompressible flow method using the Navier-Stokes equations:

The problem of solving the Navier Stokes (NS) equations is presented, both from a

physical and numerical point of view. The methodology explained is based on the

Fractional-step method. Additionally, two 2D fluid dynamics benchmark problems,

the Driven cavity flow problem and the Differentially Heated Cavity are presented,

solved, validated and verified;
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2. Discretization methods and solvers

• Numerical analysis of a flat-plate solar collector:

An introductory part on the functioning of a flat-plate solar collector (FPSC) is pre-

sented, followed by a description of a one-dimensional numerical model typically used

to study their performance. One aspect of this model, the heat transfer between the

absorber plate and the cover, is then deepened and analysed with a two-dimensional

model, in order to apply the acquired knowledge and make a comparison between the

2D and 1D model.

2. Discretization methods and solvers

2.1. Finite volume method

The finite volume method (FVM) is a numerical method used to solve partial differential

equations (PDE) in the form of algebraic equations, using conservation laws [1]. The FVM

evaluates a generic variable at discrete locations in the computational domain. This method

divides a domain with a generic geometry into a finite number of elements (a mesh), suc-

cessively used to build finite control volumes (CV). The discretization of the domain can be

performed by implementing a vertex-centred approach (where the nodes of the mesh are the

centres of the finite volume and the boundaries are obtained by connecting the centroids of

each element), or a cell-centred approach (where control volumes coincide with elements)

as shown in Figure 1. After the domain composition, an integral formulation of the balance

Figure 1: Mesh and control volumes in vertex-centred FVM (a,b) and cell-centred FVM (c,d).
Control volumes are highlighted by grey-coloured [1]

equations and a successive approximation of integrals by numerical integration are needed

for each control volume [1]. Considering, for example, the mass transport balance for an

incompressible fluid, under the assumptions of stationary mesh and neglecting the source
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2. Discretization methods and solvers

terms, the conservation law can be written:

∂ρ

∂ t
+∇ ·ρv = 0 (2.1.1)

where ρ is the density and v is the velocity vector. The FVM enforces equation 4.1.1 for a

small control volume defined by the computational mesh so that, for the ith cell, defined by

a volume Vi and a boundary surface Si:

∫

Vi

∂ρ

∂ t
dV +

∫

Vi

∇ ·ρv dV = 0 (2.1.2)

Since finite volume methods discretize the balance equation directly, an obvious virtue of

such methods is the conservation property (the flux entering a given volume is identical to

that leaving the adjacent volume). Because of this feature, the FVM has proved to be very

suitable for the solution of problems in fluid mechanics, as well as in heat and mass transfer.

Equation 2.1.2 can be rewritten by volume-averaging the first term and applying the Gauss

theorem to the second term. Simple manipulations yield:

dρi

dt
+

1
Vi

∮

Si

ρv ·n dS = 0 (2.1.3)

where n is the normal vector to Si, outward from Vi. Function values and derivatives can be

now approximated in a finite difference (FD) fashion, the details are discussed in the further

sections. The equations written for each volume are then assembled, providing a unique

algebraic system to be solved using numerical methods.

2.2. Discretization methods

A numerical solution is a set of numbers from which the distribution of the dependant vari-

able can be constructed[2]. It should be clear that only a finite number of numerical values

can be computed, although this number can be made large enough to satisfy the practical

purposes for certain problems. Considering a generic dependant variable φ , a discretization

equation is an algebraic relation connecting the values of φ for a group of grid points. The

exact solution of the differential equation is replaced by the solution of the discretized equa-

tion which focuses the attention on the values at the grid points, passing from a continuous

domain to a discretized one composed by a finite number of points. For a given differential

equation, the discretization equation can be derived in many ways. The usual procedure for

deriving the FD equations consists of approximating the derivatives with truncated Taylor

series.
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2. Discretization methods and solvers

Figure 2: 1D equally-spaced grid

Considering Figure 2 , where a 1D grid equally spaced is presented, it can be derived from

the Taylor expansion that: (
dφ

dx

)

i

=
φi+1−φi−1

2∆x
(2.2.1)

(
d2φ

dx2

)

i

=
φi+1−φi−1

∆x2 (2.2.2)

where ∆x is the distance between two adjacent grid point. The substitution of these expres-

sions into the differential equation leads to a FD equation.

2.3. Explicit, Crank-Nicolson and Implicit schemes

Equations 2.2.1 and 2.2.2 are used to discretize space derivatives, while regarding the time

derivative other schemes have to be introduced. In order to discuss the discretization in time,

it is convenient to introduce a weighting factor θ , so that a generic derivative dΦ/dt can be

discretized as:
Φn+1 +Φn

∆t
= (1−θ)Φn +θΦn+1 (2.3.1)

where n denotes the "old" (given) values of the function at the grid points at time t and

n+ 1 denotes the "new" (unknown) values at time t +∆t. For certain specific values of the

weighting factor θ , the discretization equation reduces to one of the well-known schemes for

parabolic differential equations. In particular, θ = 0 leads to the explicit Forward-Euler (FE)

method, θ = 0.5 to the Crank-Nicolson (CN) scheme and θ = 1 to the implicit Backward-

Euler (BE) method.

The FE method allows the possibility to calculate the property Φn+1 explicitly from the

known values of Φn. Thanks to this characteristic, this scheme doesn’t require the solution of

a set of simultaneous equation but its convenience is, however, offset by a serious limitation

due to numerical instabilities. For example, in a heat conduction one-dimensional problem

with uniform conductivity and mesh, this condition can be expressed as:

∆t <
ρc(∆x)2

2k
(2.3.2)

where c is the specific heat and k is the heat conductivity. If this condition is not respected,

physically unrealistic results could emerge. The problem about equation 2.3.2 is that as ∆x

is reduced in order to increase the spatial accuracy, a use of a smaller ∆t is forced (perhaps

unnecessarily).
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2. Discretization methods and solvers

The Crank-Nicolson scheme (θ = 0.5) is usually described as unconditionally stable [2].

The "stability", in mathematical sense, simply ensures that some oscillations will eventually

die out but it doesn’t ensure physically acceptable solutions, so that, if a too "large" time-step

is chosen, it is likely to encounter oscillatory behaviour.

The BE method (θ = 1), finally, satisfies the requirements of simplicity and physically

satisfactory behavior. On the other hand, the BE scheme requires the solution of a set of

linear equations and it arises the need of the implementation of a solver. It must be admitted,

however, that for small time-step the CN scheme is more accurate then the BE scheme.

2.4. Boundary conditions

Each CV is defined by one algebraic equation. Volume integrals are calculated in the same

way for every CV, but fluxes through CV faces coinciding with the domain boundary re-

quire special treatment. These boundary fluxes must either be known, or be expressed as a

combination of interior values and boundary data. Since they do not give additional equa-

tions, they should not introduce additional unknowns. Since there are no nodes outside the

boundary, these approximations must be based on one-sided differences or extrapolations.

The different typologies will be discussed in details in the next sections, directly applied at

the different problems presented.

2.5. Solution of Linear Equation Systems

It should be noted that, while constructing the discretization equations, we mold them into a

linear form but do not assume a specific method would be used for their solution. Therefore,

any suitable solution method can be employed at this stage. It is useful to consider the

derivation of the equations and their solution as two distinct operations, and there is no need

that one influences the other.

2.5.1. Tri-diagonal matrix algorithm

The solution of a set of discretized equations for the one-dimensional situation can be ob-

tained with the Gauss-elimination method. Due to the particular simplicity of the set of

equations in the one-dimensional case, the elimination process turns into a convenient al-

gorithm, called the Thomas algorithm or TDMA (TriDiagonal-Matrix Algorithm). TDMA

refers to the fact that all the non-zero elements of the coefficients matrix align themselves

along three diagonals of the matrix.

The detailed presentation of TDMA will not be presented here because it is not directly

the scope of this book and the literature is full of detailed and rigorous explanation of the

algorithm [2].
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2. Discretization methods and solvers

This algorithm is a very robust and efficient direct solver: unlike the more general matrix

methods, the TDMA requires computer storage and computer time proportional only to N,

rather than N2 or N3.

2.5.2. Gauss-Seidel method

The following discussion, as before, aims to explain the general procedure and effectiveness

of the algorithm rather than going into the mathematical details, which the literature is plenty

of.

One of the simplest iterative methods is the Gauss-Seidel method in which the values

of the variable (the temperature in this example) are calculated by visiting each grid point

in a certain order. An initial guess on the temperature field is required in order to start

the algorithm in the beginning, then, for the following steps, the values from the previous

operation will be used. As each grid point is visited, the corresponding value of temperature

is calculated from the neighbors grid points temperature values. If the discretization equation

can be written as:

aPTP = ∑anbTnb +b (2.5.1)

where the subscript nb represents for the neighbor-point value in the computer storage, the

the grid point temperature TP can ba calculated as:

TP =
∑anbT ∗nb +b

aP
(2.5.2)

where T ∗nb is the neighbor point value present in the computer storage. When all grid points

have been visited, one iteration of the algorithm is completed.

The Gauss-Siedel method does not always converge, indeed, a criterion exits in order to

guarantee the convergence of the method. The criterion was formulated by Scarborough [2]

illustrating a sufficient condition for the convergence of the Gauss-Siedel method, that is:

∑ |anb|

|aP|
≤ 1 (2.5.3)

for all equations, and
∑ |anb|

|aP|
< 1

for at least one equation.

The iteration is terminated when a prescribed convergence criterion is satisfied, such as:

|T k
P −T k−1

P | ≤ ε (2.5.4)

where ε is an error in the grid point temperature considered acceptable and k refers to the

level of the iteration.
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2. Discretization methods and solvers

Although the convergence of the Gauss-Siedel method can be granted, one of the major

disadvantage is that its converge could be too slow when a "large" number of grid points

are involved. The reason of this slowness is due to the fact that the method transmits the

boundary condition information at a rate of one grid interval per iteration.

2.5.3. LU factorization

Let A ∈ R
n×n. Two suitable matrices L and U , lower triangular and upper triangular, can be

constructed such that:

A = LU (2.5.5)

Equation 2.5.5 is an LU-factorization of the matrix A. It can be demonstrated that, if A is

non-singular, so both L and U and thus their diagonal elements are non-null.[3] In such a

case, solving Ax = b leads to the solution of the two triangular systems:

Ly = b, Ux = y (2.5.6)

Both systems are easy to solve with a forward substitutions algorithm and a backward sub-

stitutions algorithm. Details can be found in [3]. Determining the elements of the factors L

and U requires about 2n3/3 operations.[3]

2.5.4. Direct and Iterative methods

The reader will notice that, when moving to multi-dimensional domains, the discretizations

process of the differential equations is a straightforward extension of the one-dimensional

case. However, regarding the resolution algorithm, that is not true. Indeed, the simple

tridiagonal-matrix algorithm (TDMA) can’t be used anymore due to the penta-diagonal na-

ture of the coefficient matrix in the two-dimensional problems.

Direct methods compute the solution to a problem in a finite number of steps. These

methods would give the precise answer if they were performed in infinite precision arith-

metic. Examples include Gaussian elimination and the LU-factorization method for solving

systems of linear equations. [4]

In contrast to direct methods, iterative methods are not expected to terminate in a number

of steps. Starting from an initial guess, iterative methods form successive approximations

that converge to the exact solution only in the limit of a convergence criterion. Examples

include Gauss-Seidel method, Krylov subspace methods and multigrid methods. In compu-

tational matrix algebra, iterative methods are generally needed for large problems.

Iterative methods are more common than direct methods in numerical analysis for certain

reasons. Direct methods for solving the algebraic equations could be a possibility but, in

multi-dimensional problems, they are much more complicated and require large amounts

of time and computer storage. A direct method may be acceptable for a linear problem,

8



3. Heat conduction methods

due to the fact that the algebraic equations have to be solved only once; but in nonlinear

problems, since the single equations have to be solved repeatedly with updated coefficients,

direct methods are usually not efficient [2].

The alternative is the iterative methods; methods that starts from a guessed temperature

field, for example, and use the algebraic equations in some manner to obtain an improved

field. Successive repetitions of the iterative algorithm should lead to a solution that is suffi-

ciently close to the correct one.

It does not exist the "perfect" choice of a method but it really depends on the problem

structure and the required accuracy that one wants to reach.

3. Heat conduction methods

3.1. The Heat Diffusion Equation

The major objective in a conduction-based problem is to determine the temperature field in

a medium resulting from conditions imposed on its boundaries. In other words, the tem-

perature distribution has to be found, which represents how temperature varies throughout

the medium; once this distribution is known, the conduction heat flux in any point of the

medium could be computed from Fourier’s law. The knowledge of the temperature field is

useful for a lot of engineering problems: for example it could be used to study the structural

integrity of a solid through determination of thermal stresses, expansions, and deflections.

Another popular application is the optimization the thickness of an insulating material or

to determine the compatibility of special coatings or adhesives used with the material [2].

The heat diffusion equation can be derived applying the energy conservation on a differen-

tial control volume, identifying the energy transfer processes and introducing the appropriate

rate equations. The result is a partial differential equation whose solution is the temperature

field of the medium, given certain boundary conditions. Considering a medium within which

there is no bulk motion (advection) and the temperature distribution T (x,y,z) is expressed in

Cartesian coordinates, the following equation can be obtained:

ρc
∂T

∂ t
=

∂

∂x

(
kx

∂T

∂x

)
+

∂

∂y

(
ky

∂T

∂y

)
+

∂

∂ z

(
kz

∂T

∂ z

)
+ q̇ (3.1.1)

where ρ (kg/m3) is the density of the medium, c (J/kg/K) is the specific heat capacity, k

(W/m/K) is the heat conductivity and q̇ (W/m3) is the rate at which energy is generated per

unit volume in the medium .

Equation 3.1.1 is the general form, in Cartesian coordinates, of the heat diffusion equation;

its solution is the temperature field T (x,y,z) as a function of time. A more general equation
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3. Heat conduction methods

can be written in the following form:

ρc
∂T

∂ t
= ∇ · (k∇T )+ q̇ (3.1.2)

valid for an-isotropic medium and general geometry.

3.2. One-Dimensional Steady State Conduction

Considering a one-dimensional steady state problem, in Cartesian coordinates, equation

3.1.1 reduces to:
d
dx

(
k

dT

dx

)
+ q̇ = 0 (3.2.1)

where x in the independent space variable. To derive the discretization equation, the grid-

point cluster shown in Figure 3 is implemented.[2] The attention is focused on the grid point

P, which has the grid point E and W as its neighbors, where E represents the east side (positive

x direction) and W stands for the west side (negative x direction). For the one-dimensional

problem under consideration, a unit thickness is assumed in the y and z directions. Thus,

the volume of the CV shown in Figure 3 is ∆x× 1× 1. Integrating equation 3.2.1 over the

control volume: (
k

dT

dx

)

e

−

(
k

dT

dx

)

w

+
∫ e

w
q̇ dx = 0 (3.2.2)

If the derivatives dT/dx are evaluated with Equations 2.2.1 and 2.2.2 and assuming a

Figure 3: Grid-Point cluster for the one dimensional problem [2]

piecewise-linear profile, the resulting equation will be:

ke(TE −TP)

(δx)e
−

kw(TP−TW )

(δx)w
+ q̇∆x = 0 (3.2.3)

where, in this equation, q̇ is assumed to be an average value over the control volume. It is

useful to rearrange the discretization equation in the following form:

−aW TW +aPTP−aETE = b (3.2.4)
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3. Heat conduction methods

where:

aW =
kw

(δx)w
,

aE =
ke

(δx)e
,

aP = aE +aW ,

b = q̇∆x

For the grid points shown in Figure 3, it should be noted that the distances (δx)e and (δx)w

does not have to be equal. Indeed, the use of a nonuniform grid is often preferable, allowing

a more effectively use of computing power; there is no need to employ a fine grid in regions

of the domain where the dependant variable T changes relatively slowly with x. The suitable

grid for a problem is not known before the actual computation, however, one normally has

the some qualitative expectations, based on physics assumptions, from which some guidance

can be obtained [2]. Another way is firstly use a coarse grid in order to find the pattern of

T (x) and, secondly, construct a nonuniform grid based on the knowledge acquired.

3.3. Boundary conditions implementation

The heat diffusion equation for the 1D steady state is a second order differential equation,

meaning that, in order to find the unique solution, additional boundary conditions equations

must be written. Equation 3.2.4 can only be applied to internal nodes of the grid, while there

is a need to write two additional equations to treat the nodes at the borders. The same 1D

grid as Figure 2 is considered. Usually three kinds of boundary conditions are encountered

in heat conduction:

1. Given boundary temperature

2. Given boundary heat flux

3. Boundary heat flux defined through a heat transfer coefficient and the surrounding

fluid’s temperature

3.3.1. Dirichlet Boundary Conditions

The first boundary condition is straightforward and no additional equations are required. For

example, if T0 is the imposed temperature on the right-side of the grid, it will be sufficient to

put:

Tend = T0 (3.3.1)
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3. Heat conduction methods

3.3.2. Neumann Boundary Conditions

With the second type of boundary conditions, the following equations can be written, de-

pending if the left or the right side are considered:

− k1

(
dT

dx

)

x=x1

=−q (3.3.2)

− kend

(
dT

dx

)

x=xend

=−q (3.3.3)

where q (W/m2) is the heat flux imposed on the boundary, it is considered negative because

it is supposed to enter the domain. Equations 3.3.2 and 3.3.3 can be simply discretized in:

T2−T1 =
q∆x

k1
(3.3.4)

Tend−Tend−1 =
q∆x

kend
(3.3.5)

3.3.3. Robin Boundary Condition

The third boundary conditions type is similar to the second one but, in this case, the heat flux

is generated by convection with a fluid. Two additional equations can be derived, considering

the left or right-side boundary:

− k1

(
dT

dx

)

x=x1

= h(Tf −T1) (3.3.6)

− kend

(
dT

dx

)

x=xend

= h(Tf −Tend) (3.3.7)

that can be simply discretized in:

(
1+

h∆x

k1

)
T1−T2 =

h∆x

k1
Tf (3.3.8)

(
1−

h∆x

kend

)
Tend−Tend−1 =−

h∆x

kend
Tf (3.3.9)

where h (W/m2/K) is the heat transfer coefficient and Tf (K) is the surrounding fluid tem-

perature.

3.4. Interface Conductivity

In Equation 3.2.4, the conductivity ke has been used to define the value of the conductivity

on the control-volume face e, while kw similarly refers to the interface w. There are often
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Figure 4: Distances associated with the interface e [2]

cases in which the conductivity depends on the position in the domain; non-uniformity can

arise from non-homogeneity of the material, as in a composite slab, or from conductivity

variations due to temperature distribution. Referring to Figure 4, the most straightforward

method in order to find the interface conductivity ke is to assume a linear variation of k

between grid points P and E [2], so that:

ke = fekP +(1− fe)kE (3.4.1)

where fe is the interpolation factor, defined as the ratio of the distances:

fe ≡
(δx)e+

(δx)e
(3.4.2)

However, it can be shown that this simple-minded approach can lead to rather incorrect

results in some cases and it cannot handle the abrupt changes that can occur in a composite

material [2]. Considering that, a good representation of the heat flux qe is one of the main

objectives, a steady one-dimensional analysis for the composite slab between P and E can be

performed, leading to:

qe =
TP−TE

(δx)e−/kP +(δx)e+/kE
(3.4.3)

Then, a combination of Equations 3.4.1 and 3.4.2 yields:

ke =

(
1− fe

kP
+

fe

kE

)−1

(3.4.4)

If the interface is placed midway between point P and E, so that fe = 0.5, then:

ke =
2kPkE

kP + kE
(3.4.5)
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3.5. Unsteady One-Dimensional Conduction

The unsteady one-dimensional heat-conduction equation can be written as:

ρc
∂T

∂ t
=

∂

∂x

(
k

∂T

∂x

)
+ q̇ (3.5.1)

The discretization techniques presented before can also be extended to the unsteady case.

Applying the discretizations at Equation 3.5.1, the unsteady one-dimensional heat conduc-

tion equation is:

−an+1
W T n+1

W +an+1
P T n+1

P −an+1
E T n+1

E = an
W T n

W +an
PT n

P +an
ET n

E +bn (3.5.2)

where

an+1
W =

∆tθαw∆x

(δx)w

an+1
P = 1+

∆tθ∆x

ρc

(
ke

(δx)e
−

kw

(δx)w

)

an+1
E =

∆tθαe∆x

(δx)e

an
W = ∆t(1−θ)

αw∆x

(δx)w

an
P = 1−

∆t(1−θ)∆x

ρc

(
ke

(δx)e
−

kw

(δx)w

)

an
E = ∆t(1−θ)

αe∆x

(δx)e

bn =
q̇n∆t

ρc

always referring to the grid shown in Figure 3. Moreover, α = k
ρc (m2/s) is the thermal

diffusivity and ∆x = 2
xE−xW

is assigned in order to obtain a clearer equation.

3.6. Unsteady Two-Dimensional Conduction

In Figure 5 it is represented the portion of a two-dimensional grid. For the grid point P, points

E and W denote its x-direction neighbors while N and S denote the y-direction neighbors.

All the nomenclature introduced for the one-dimensional situation can be extended to the

two-dimensional situations as well. The PDE relative to the two-dimensional heat equation

can be written as:

ρc
∂T

∂ t
=

∂

∂x

(
k

∂T

∂x

)
+

∂

∂y

(
k

∂T

∂y

)
+ q̇ (3.6.1)
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Figure 5: Control volume for the two-dimensional situation

It is straightforward to discretize equation 3.6.1 simply extending the 1D derivations to the

two-dimensional case. In this work, the explicit scheme and the implicit scheme are pre-

sented. The explicit scheme leads to:

T n+1
P = aW T n

W +aET n
E +aPT n

P +aNT n
N +aST n

S +b (3.6.2)

where:

aW =
∆x∆tαw

(δx)w

aE =
∆x∆tαe

(δx)e

aP = 1−∆x∆t

(
αe

(δx)e
+

αw

(δx)w

)
−∆y∆t

(
αn

(δy)n
+

αs

(δy)s

)

aN =
∆y∆tαn

(δy)n

aS =
∆y∆tαs

(δx)s

b =
q̇∆t

ρc

Similarly as ∆x definition, ∆y = 2
xN−xS

.
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Being an explicit method, the grid point temperature TP depends only on known temper-

atures so that it does not require the solution of a linear system. However, exactly as the

one-dimensional situation, the explicit method is only stable if [5]:

2α∆t

min((∆x)2,(∆y)2)
≤ 1 (3.6.3)

having considered a simplified case of a uniform medium and uniform mesh ∆x = (δx)e =

(δx)w and ∆y = (δy)n = (δy)s.

The fully implicit method leads, on the other hand, to the following discretized equation:

aST n+1
S +aW T n+1

W +aPT n+1
P +aNT n+1

N +aET n+1
E = T n

P +bn (3.6.4)

where:

aS =−
∆y∆tαs

(δy)s

aW =−
∆x∆tαw

(δx)w

aP = 1+∆x∆t

(
αe

(δx)e
+

αw

(δx)w

)
+∆y∆t

(
αn

(δy)n
+

αs

(δy)s

)

aN =−
∆y∆tαn

(δy)n

aE =−
∆x∆tαe

(δx)e

b =
q̇∆t

ρc

The coefficients are practically the same as the explicit discretized equation, but its reso-

lution is completely different.

3.7. Boundary conditions implementation

The heat diffusion equation for the two-dimensional case requires boundary conditions sim-

ilarly to the 1D situation. The same three kinds of boundary conditions will be discussed

(given boundary temperature, given boundary heat flux and given boundary heat flux defined

through convection with a fluid).

3.7.1. Dirichlet Boundary Conditions

These conditions are again straightforward. If a boundary temperature is imposed, it is suf-

ficient to put all the grid points temperature of the border equal to the known temperature

(T0):

Tedge,i = T0 ∀i (3.7.1)
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3. Heat conduction methods

Figure 6: Control volume for an up-side heat flux boundary condition

Figure 7: Control volume for a right-side heat flux boundary condition

where i is a generic edge grid point index.

3.7.2. Neumann Boundary Conditions

Two possible examples are shown in Figure 6 and 7.

Differently from the one-dimensional case, the two-dimensional one requires a solution

of a set of equations due to the more complex geometry. Applying an energy balance to the

case shown in Figure 6, it is possible to write the following equation:

aW TW +aPTP +aETE = b (3.7.2)

where:

aW =
kw∆y

2∆x

aP =−
ks∆x

∆y
−

ke∆y

2∆x
−

kw∆y

2∆x
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x[m] y[m]
p1 0.30 0.40
p2 0.30 0.80
p3 0.90 0.90

Table 1: Problem coordinates

aE =
ke∆y

2∆x

b =−q∆x−
ks∆x

∆y
TS−

q̇∆x∆y

2

A similar equation can be written for the right-side situation.

3.7.3. Robin Boundary Conditions

The procedure is similar to the imposed heat flux situation but in this particular case:

q = h(Tf −TP) (3.7.3)

where Tf is the external fluid temperature. Deriving the discretized equation for the right-side

situation:

aSTS +aPTP +aNTN = b (3.7.4)

where:

aS =
ks∆x

2∆y

aP =−h∆y−
kw∆y

∆x
−

kn∆x

2∆y
−

ks∆x

2∆y

aN =
kn∆x

2∆y

b =−hTf ∆y−
kw∆yTW

∆x
−

q̇∆x∆y

2

All these set of equations can be solved efficiently with the Thomas Algorithm due to the

tridiagonal disposition of the coefficient matrix. In the next section, a two-dimensional tran-

sient conduction problem is presented and discussed in the details.

3.8. A Two-dimensional Transient Conduction Problem

3.8.1. Problem definition

A very long rod is composed of four different materials (M1 to M4), represented with differ-

ent colours in Figure 8. All the lines are parallel to the coordinate axis. The coordinates of

the points p1 to p3 are given in Table 1 and properties of the materials are given in Table 2.
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Figure 8: General scheme of the proposed problem

ρ[kg/m3] cp[J/kgK] k[W/mK]
M1 2500 970 180
M2 2700 930 140
M3 2200 710 150
M1 1700 920 140

Table 2: Physical properties
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3. Heat conduction methods

Cavity wall Boundary condition
Bottom Isotherm at T = 18.00 oC
Top Uniform heat flow per length q = 89.00 W/m
Left In contact with a fluid at Tg = 35.00 oC and h = 8.00 W/m2/K
Right Uniform temperature T = 11.00+0.006t oC (where t is the time in seconds)

Table 3: Boundary Conditions

Each of the four sides of the rod interacts with the surrounding in a different manner,

as described in Table 3. The initial temperature field is T = 11oC. and the transient heat

conduction will be studied up to 10000 s.

In order to understand the many differences between a fully explicit and a fully implicit

method, both will be implemented in a C++ code and the results will be discussed and

compared.

3.8.2. General considerations

The two-dimensional heat diffusion equation, for this case problem is:

ρc
∂T

∂ t
=

∂

∂x

(
k

∂T

∂x

)
+

∂

∂y

(
k

∂T

∂y

)
(3.8.1)

Similar to Equation 3.6.1 but without the heat generation term.

The domain considered is a square where, on every side, a different typology of boundary

condition is imposed (Dirichlet, Neumann and Robin). Furthermore, the domain is formed

by a four different materials with different properties. The composite material complicates

the definition of the coefficients of the discretized equations along with the necessary use of

the interface conductivity as explained in section 3.4.

The mesh generated for this problem is uniform, for simplicity purposes. Although, the

resolution algorithm works with even a non-uniform grid which could lead to similar accu-

racy with lower computational costs. A non-uniform grid could lead to more precision if it is

made with a correct criteria, like refining the grid where the temperature field presents steep

gradients.

For both the methods presented, the definition of the coefficients is the same but, obvi-

ously, the resolution algorithm is different. The C++ program developed for this purpose

aims to be the most reusable as possible, in order to implement the algorithms to successive

and different problems.

The domain is discretized in the x-direction and y-direction, obtaining a finite number of

control volumes and nodes. The map temperature of all the nodes for a given instant t = 0 s is

known on the entire domain. The discretized heat equation shall be applied over all the nodes

of the domain to find the discretization coefficients. In this way, the calculated coefficients

are the input parameters of the solver, needed to calculate the temperature map of the next
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time instant t = 0+∆t. The time instant is then updated and the process is repeated. The

detailed solution of the problem can be summarized in the following algorithm:

1. Input data needed:

• Physical data

• Geometrical data

• Boundary Conditions definition

2. Discretization of the domain

3. The initial temperature map is known

4. Update the time instant t ′ = t +∆t and propose a guessed solution for the solver, such

as the temperature field of the previous iteration

5. Calculation of the improved temperature field with the preferred solver

6. If t = 10000 s, print the results, otherwise repeat from 4.

3.8.3. Explicit and Implicit methods details

The explicit scheme leads to almost the same equation as Equation 3.6.2, obviously with no

heat generation involved:

T n+1
P = aW T n

W +aET n
E +aPT n

P +aNT n
N +aST n

S (3.8.2)

with the same exact coefficients definition. The boundary conditions are imposed with the

methods illustrated in Section 3.7. The only "new" type is the one considered on the right

boundary when a sort of Dirichlet boundary condition varying with time is imposed. This

condition can be easily handled by applying Equation 3.7.1 at each time step.

The explicit method has its own advantages and disadvantages as explained already be-

fore. Briefly, the explicit method is easy to solve because it doesn’t require a simultaneous

resolution of a set of equations and it is really efficient considering the computational time.

Although, it presents restrictive limitation due to the numerical stability, that, in a 2D prob-

lem, are even amplified respect to the one-dimensional situation. Indeed, referring to the

stability condition 3.6.3, it is clear that reducing the ∆x and ∆y simultaneously will lead to

a even higher reduction of the time step, in order to maintain numerical stability. So that in

problems that doesn’t require an accurate study of the transient process, it could be rather

useless and increase the computational time by orders of magnitude.

The implicit scheme leads, on the other hand, to the same Equation 3.6.4 but, as for the

explicit scheme, without the heat generation term:

aST n+1
S +aW T n+1

W +aPT n+1
P +aNT n+1

N +aET n+1
E = T n

P (3.8.3)
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Figure 9: Numbering scheme for a 2D grid [5]

Although the coefficients are the same calculated for the explicit resolution of the problem,

the implicit resolution is more complicated since a solver has to be implemented and "book-

keeping" issues arise [5]. Two solvers have been implemented: one iterative method, the

Gauss-Siedel solver, already discussed, and the Gauss Elimination method achieved through

the LU factorization. The LU factorization, or decomposition, factors a matrix as the product

of a lower triangular matrix and an upper triangular matrix as already explained in details in

Section 2.5.3. It has to be taken into account that the algorithm for the factorization requires
2
3n3 floating-point operations, leading to high computational time when a great number of

grid points is used. The book-keeping issues refers to the mapping of the Ti, j to the entries

of a temperature vector T (k), as opposed to the more intuitive matrix T (i, j) that can be used

in the explicit scheme. Figure 9 represents one of the possible numbering scheme for a 2D

grid.

3.8.4. Assumptions and Expectations

The assumptions considered for this problem can be summarized as:

• Two-dimensional heat diffusion, x and y axis while the z-axis is neglected.

• The thermophysical properties are constant for each material.

• Cell-centered discretization: average values over each cell (temperature, density, spe-

cific heat and thermal conductivity).

Considering that this is a pure conduction problem, making expectations on the physical

results could be quiet simple and straightforward. There is no heat source in the domain
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α
(

m2

s

)

M1 7.423e-05
M2 5.576e-05
M3 9.603e-05
M4 8.951e-05

Table 4: Materials’ Thermal Diffusivity

so that all the energy transfer is due to the boundary conditions imposed. Temperature is

supposed to arise in the north-east part of the rod’s section, considered that on the right side

the boundary, the temperature continues to increase over time and on the upper side there is a

linear heat flows that impacts on the domain. On the other hand, the temperature field should

be at lower values in the south-west area of the domain, where a fixed 18 oC temperature is

imposed on the bottom part. The rod is in contact with a fluid at Tg = 35 oC on the west side,

that, in a first moment of the simulation, will increase the temperature field in the area but,

eventually, it could prevent an increase of the temperature when it goes over the 35oC.

The fact that the properties of the materials are not constant imply that the heat is trans-

ferred in a different rate through the domain. In a sense, thermal diffusivity is the measure of

thermal inertia [6]. In a substance with high thermal diffusivity, heat moves rapidly through

it because the substance conducts heat quickly relative to its heat capacity, meaning that the

temperature field will be more "smooth" in the areas of Material 3 and 4, that have the highest

α and will be more steep in the other two materials.

3.8.5. Grid Independence study

The mesh chosen for the problem is a uniform rectangular mesh, whose nodes are defined

as the intersection of two 1D mesh, one on the x-direction and the other on the y-direction.

Sometimes it could be useful to use a non-uniform mesh in order to obtain better results and

perform a more efficient simulation. In this problem though, this operation is not necessary

due to the relative simplicity and the fact that there is not any focus on a particular section of

the domain.

The grid independence study analyzes both the different meshes and the different time-

steps used for both the explicit and implicit resolution. The finest mesh achievable is a

uniform mesh with δx = δy = 5mm and ∆t = 1 s, in compliance with the simulation time of

the order of magnitude of few hours maximum.

Although the grid independence study can be performed also for the explicit resolution,

it is certainly constrained by the limits of the numerical instability, so that not all the com-

bination of time-steps and mesh refinements make sense. The chosen parameter is the tem-

perature of a point in the north-east region of the domain, with coordinates x = 0.73 m and

y= 0.62 m. Normally, the maximum or minimum temperature is chosen to assess the grid in-

dependence but due to the nature of the boundary conditions imposed, these values are fixed
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Implicit - LU Implicit - GS

Tloc,1 Tloc,2 ε time [s] Tloc,1 Tloc,2 ε time [s]
δx = 0.3 m 71.00 18.00 3.17e-02 5.76 71.00 18.00 3.09e-02 4.81
δx = 0.1 m 60.47 27.78 1.17e-02 14.23 61.53 27.41 1.41e-02 11.21

δx = 0.05 m 57.03 31.15 1.01e-03 154.78 57.75 31.14 1.30e-03 124.64
δx = 0.01 m 56.13 31.81 3.44e-04 1.40e04 56.01 31.76 3.57e-04 1.13e04

Table 5: Mesh Grid Independence, for the GS solver and LU solver

Explicit

Tloc,1 Tloc,2 ε time [s]
δx = 0.3 m 71.00 18.00 2.60e-01 6.52
δx = 0.1 m 61.78 27.54 9.31e-02 11.21

δx = 0.05 m 58.15 31.33 2.69e-02 25.37
δx = 0.01 m ns ns ns ns

Table 6: Mesh Grid Independence, explicit method

as, respectively, 71oC and 18oC. It is preferable to always use a punctual parameter because

it could be more subjected to the grid changes and to the solver oscillation, despite some

sort of average value that it is not capable to catch this behaviours. In Table 5 the mesh grid

independence results are shown, imposing a ∆t = 1 s and calculating the numerical relative

error as follows:

ε =
||T −Tre f ||

||Tre f ||
(3.8.4)

Considering Tre f as the best achievable numerical solution, where the the symbolical "||v||"

represents the Euclidean norm, defined as:

||v||=

√√√√
N

∑
k=1

|vk|2 (3.8.5)

where v is a generic vector. It can be noted that for the combination of δx = 0.01 m and

∆t = 1 s the explicit method is not stable (ns) due to Equation 3.6.3, so that the simulation

should implement a CFL condition, to be checked at each time-step, in order to prevent it to

diverge.

The same study is performed on the time-step of the simulation, considering a fixed mesh

of δx = δy = 5mm. Results are presented in Table 7.

The grid independence study on the mesh size and the time step refinishing has been

performed for both the implicit schemes and the explicit scheme in order to highlight their

differences. It can be easily noted that the relative error is higher on the explicit scheme,

indicating a slower convergence if compared to the implicit schemes; moreover, with the

time-step set at 1 s, the explicit scheme is not stable with a mesh size of 0.01 m or finer. De-

spite the greater error that is developed using the explicit scheme, it has its point of strength
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Implicit - LU Implicit - GS

Tloc,1 Tloc,2 ε time [s] Tloc,1 Tloc,2 ε time [s]
∆t = 1000s 47.4 30.02 1.68e-02 24.76 47.10 29.45 1.71e-02 10.56
∆t = 500s 48.45 30.12 1.57e-02 57.87 47.93 29.59 1.52e-02 21.47
∆t = 100s 52.74 31.89 4.56e-03 303.12 51.32 30.27 9.32e-03 112.49
∆t = 10s 56.09 31.75 9.45e-04 3091.6 55.13 31.42 1.89e-03 1147.31

Table 7: Time-Step Grid Independence, comparing LU and GS solver

in the time of execution, especially with the most refined mesh. On the other hand, the time-

step analysis could only be performed on the implicit resolutions due to instability issues.

The choice of time-step is found to be most relevant, in term of numerical errors; indeed,

a relatively big time-step is likely to led to greater errors when compared to the use of less

refined mesh. The numerical errors are also shown in Figure 10 and 11 where it is clear that,

both for the mesh and the time-step, the error decreases as the number of control volumes

or the number of time intervals increase, indicating a successful grid independence of the

problem. It has to be taken into account that the "relative numerical error ε" can not be taken

as a measure of the overall accuracy of the implicit schemes. Indeed, the comparison is be-

tween two completely different solvers: an iterative one (GS) and a direct one (LU). While

GS reaches an approximate solution, LU computes the exact solution (in machine preci-

sion). It is then useful to compare the solution time with different solver’s relative tolerance,

calculated as:

εs = max

(
T ∗i −Ti

Ti

)
(3.8.6)

that is the maximum relative error of a iteration of the solver. In Table 8 the computational

time comparison of GS and LU is presented, with different εs values. It can be noted that GS

computational time is the lowest until εs = 10−10 but when an higher accuracy is pursued

(such as εs = 10−12 and εs = 10−14), the computational time of GS increase significantly and

the direct solver would be preferable.
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Explicit Implicit - LU Implicit - GS

∆t [s] time [s] time [s] εs time [s]

1 2.74 14.23

10−6 11.21
10−8 12.39
10−10 13.46
10−12 14.26
10−14 15.37

10 0.05 1.84

10−6 1.36
10−8 1.52
10−10 1.71
10−12 1.89
10−14 2.06

100 ns 0.55

10−6 0.32
10−8 0.40
10−10 0.45
10−12 0.53
10−14 0.58

Table 8: Computational time and εs of the GS and LU solvers compared to the explicit
scheme, with δx = 0.1 m and several ∆t

Figure 10: Mesh size grid independence plot
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Figure 11: Time step grid independence plot

Therefore, it is quite understandable that for problems that do not require a really accurate

resolution (up to machine precision), an iterative solver is preferable due to its faster compu-

tation time and satisfying accuracy, but if high accuracy is needed, the iterative solver is not

the optimal solution anymore.
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3.8.6. Simulation results

Figure 12: Evolution of temperature of representative nodes

Figure 12 shows the temperature evolution of a representative node for each material of the

rod, from t = 0 s to t = 10000 s. The representative points have been taken as the center of

each material although it is not correct to think they represent the uniform evolution of the

totality of the material. The evolution of the temperatures can be thought as a superposition

of a transient regime from until reaching the steady-state given by left-side, bottom-side and

top-side boundary conditions, in addition to a constant perturbation due to the right-side

boundary condition. Material 3 and Material 4 have the lower thermal inertia (defined as

I =
√

kρcp); this explains why they would last less to reach the fictional steady-state, while

Material 1 and Material 2 (especially Material 1) present a clear transient regime before

reaching the linearity.

The simulation overall results are presented as timestamps of the transient process at the

times t = 2500 s, 5000 s, 7500 s and 10000 s as shown in Figure 13.
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(a) Timestamp at t = 2500 s (b) Timestamp at t = 5000 s

(c) Timestamp at t = 7500 s (d) Timestamp at t = 10000 s

Figure 13: Simulation results at different timesteps

The overall results are as expected, showing the highest temperatures in the right upper

part and lowest temperatures in the left lower region. The heat transmission rate is higher in

the upper region due to the heat flow impacting on the top part of the domain and this cause

the isotherms curves to be closer in the right-lower angle and gradually thinned out towards

the opposite angle. The timestamps have been taken from the implicit resolution through the

use of the Gauss-Siedel iterative method. Despite the LU factorization solver is equally valid

for the resolution of this problem, the iterative solar is preferable for its higher computational

speed, particularly when the mesh becomes more refined.
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4. Convection and diffusion

This section shows how the FVM is applied to a model of convective transport: the 2D

convection-diffusion equation. First of all this section introduces and compares the numer-

ical schemes adopted for the convective term in transport equations, then some benchmark

problems are presented, solved and discussed. The convection-diffusion equation is a model

of transport of heat, mass and other passive scalars (Φ). Convection is created by fluid flow

and the goal of this section is to obtain a solution for Φ in the presence of a given fluid flow.

The fluid flow knowledge is not discussed at this point, it could have come from an exper-

iment, be given as analytical solution or simply be guessed. The origin of the flow field is

irrelevant in this discussion[2]. Applying the FVM to this equation allows different schemes

for approximating the convection term to be compared. This chapter should be considered a

brief introduction to the topic of convection modeling schemes. The schemes considered are

the upwind difference scheme (UDS), the central difference scheme (CDS), the exponential

difference scheme (EDS), the hybrid scheme and the power-law scheme.

4.1. The convection-diffusion equation

The general PDE is:
∂ (ρΦ)

∂ t
+∇ · (ρ~vΦ) = ∇ · (Γ∇Φ)+S (4.1.1)

where ~v is the given flow field, Γ is the diffusion coefficient and S the source term. The

quantities Γ and S refers to a particular meaning of the general variable Φ. The equation can

be seen as a sum of four different terms (from left to right): the unsteady term, the convection

term, the diffusion term and the source term. Moreover, it should be remembered that the

word "diffusion" is used in a generalized sense. The diffusion flux due to the gradient of

the general variable Φ is −Γ
∂Φ

∂x j
[2] which, for different meaning of Φ, could represent

chemical-species diffusion flux, heat flux, viscous stress, etc. Actually the expressions
∂

∂x j
denotes the sum of three terms for the three coordinate directions. In the end, since the given

flow field has to satisfy the continuity equation:

∂ρ

∂ t
+∇ · (ρ~v) = 0 (4.1.2)

the general PDE can also be written as:

ρ
∂Φ

∂ t
+ρu j

∂Φ

∂x j
=

∂

∂x j

(
Γ

∂Φ

∂x j

)
+S (4.1.3)

From this form of the equation, it follows that, for given distribution of ρ , u j, Γ and S, any

solution Φ would both satisfy both the equations.[2]
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4.2. Steady state one-dimensional convection and diffusion

As it hass been done for the chapter about heat diffusion, much can be learned from the con-

sideration of the simplest case. So that a steady one-dimensional situation with no sources is

considered; the governing differential equation is:

d
dx

(ρuΦ) =
d
dx

(
Γ

dΦ

dx

)
(4.2.1)

where u is the velocity in the x direction. Also, the continuity equation becomes:

ρu = constant (4.2.2)

In order to derive the discretization equation, the grid cluster shown in Figure 14 is similar

Figure 14: One-dimensional grid point cluster [2]

to the one introduces in the last section. It is convenient to assume that e is located midway

between P and E. The different discretization schemes are discussed in the next paragraphs.

4.2.1. CDS

Integration of Equation 4.2.1 over the control volume of Figure 14 leads to:

(ρuΦ)e− (ρuΦ)w =

(
Γ

dΦ

dx

)

e

−

(
Γ

dΦ

dx

)

w

(4.2.3)

The diffusion term is discretized as already shown in the heat diffusion chapter and, for the

convection term, the same choice of profile would at first seem natural, resulting:

Φe =
1
2
(ΦE +ΦP) and Φw =

1
2
(ΦP +ΦW ) (4.2.4)

The factor 1
2 arises from the assumption of the interfaces being midway. Now, Equation 4.2.3

can be written as:

1
2
(ρu)e(ΦE +ΦP)−

1
2
(ρu)w(ΦP +ΦW ) =

Γe(ΦE −ΦP)

(δx)e
−

Γw(ΦP−ΦW )

(δx)w
(4.2.5)
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The values Γe and Γw have to be obtained in the same way in the previous chapter ke and kw

were obtained. In the end, to arrange the equation more compactly, the new two symbols F

and D are introduced as follows:

F ≡ ρu, D≡
Γ

δx
(4.2.6)

Both have the same dimensions; F indicates the strength of the convection (or flow), while

D is the diffusion conductance. It should be noted that, whereas D remains always positive,

F can take positive or negative values depending on the direction of the flow. With the new

symbols introduced:

aPΦP = aEΦE +aW ΦW (4.2.7)

where

aE = De−
Fe

2

aW = Dw +
Fw

2

aP = De +
Fe

2
+Dw−

Fw

2
= aE +aW +(Fe−Fw)

4.2.2. UPS

The upwind scheme recognizes that a weak point in the CDS scheme is the assumption that

the convected property Φe at the interface is the average of ΦE and ΦP, and it proposes a

different description. In the UPS scheme, the value of Φ at an interface is equal to the value

of Φ at the grid point on the upwind side of the face, so that:

Φe = ΦP i f Fe > 0, (4.2.8)

Φe = ΦE i f Fe < 0

The value of Φw can be similarly defined. Replacing then Equation 4.2.4 with this concept,

the discretization equation becomes:

aPΦP = aEΦE +aW ΦW (4.2.9)

where

aE = De +max(−Fe,0)

aW = Dw +max(Fw,0)

aP = De +max(Fe,0)+Dw +max(−Fw,0) = aE +aW +(Fe−Fw)

where the operator max(A,B) denotes the greater of A and B. The essence of the UPS can

be explained referring to the "tank-and-tube" model (Gosman,Pun et al, 1969). As shown
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Figure 15: Tank-and-tube model

in Figure 15, the control volumes can be thought to be stirred tanks that are connected by

short and thin tubes. The flow through the tubes represents convection while the conduc-

tion through the tank represents diffusion; each tank contains a uniform temperature fluid.

Therefore, it is appropriate to assume that the fluid flowing in each connecting tube has the

temperature that prevails in the upstream side; the fluid is not able to know anything about

the tank toward which it is heading, but would carry the full legacy of the tank from which it

has come [2].

4.2.3. The exact solution

The governing Equation 4.2.1 can fortunately be solved exactly when Γ is taken as a constant.

If a domain 0≤ x≤ L is used, with the boundary conditions:

At x = 0 Φ = Φ0, (4.2.10)

At x = L Φ = ΦL

the solution of Equation 4.2.1 is:

Φ−Φ0

ΦL−Φ0
=

exp(Px/L)−1
exp(P)−1

(4.2.11)

where P is the Peclet number, defined by:

P≡
ρuL

Γ
(4.2.12)

The Peclet number can be seen as the ratio of the strength of convection and diffusion. The

behaviour of the exact solution can be understood from Figure 16, where the variation Φ∼ x

has been plotted for different values of the Peclet number. In the limit of zero Peclet number,

the Φ∼ x variation is linear because the problem reduces to a pure diffusion (or conduction)

problem. When the flow is in the positive x direction (P > 0), the values of Φ in the domain

seem to be more influenced by the upstream value Φ0. As the Peclet number increases, the

values of Φ tend to remain very close to the upstream value. The situation is reversed if the

flow is towards the negative x direction. Now, the assumption made when deriving the UPS

scheme seem to be correct although it is used for all the values of P, not just for large values.
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Figure 16: Exact solution for the one-dimensional convection-diffusion problem [2]

Moreover, the UPS always calculates the diffusion term from a linear Φ∼ x profile and thus

overstimates diffusion at large values of P.

4.2.4. Outline of other methods

In this section, other 3 methods are discussed but the mathematical details are not presented.

The details can be found in [2].

The exponential scheme

A total flux J is defined as the sum of the convection flux ρuΦ and the diffusion flux

−ΓdΦ/dx. Thus,

J = ρuΦ−Γ
dΦ

dx
(4.2.13)

With this definition, Equation 4.2.1 becomes:

dJ

dx
= 0 (4.2.14)

This equation can be integrated over the control volume and the exact solution 4.2.11 can

be used as a profile between points P and E. With further mathematical manipulation a

discretized equation can be cast into the standard form:

aPΦP = aEΦE +aW ΦW (4.2.15)

where

aE =
Fe

exp(Fe/De)−1
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4. Convection and diffusion

aW =
Fwexp(Fw/Dw)

exp(Fw/Dw)−1

aP = aE +aW +(Fe−Fw)

When used for the one-dimensional problem, this scheme gives the exact solution for any

Peclet number of grid size.

The Hybrid Scheme

The hybrid scheme was developed by Spalding (1972). The hybrid scheme is constructed in

connection with the exponential scheme. In order to appreciate this connection, the dimen-

sionless form aE/De is plotted in Figure 17, as a function of the Peclet number Pe Certain

Figure 17: Variation of the coefficient aE/De with Peclet number [2]

specific properties of the exact variation or aE/De can be noted:

For Pe −→+∞,
aE

De
−→ 0,

For Pe −→−∞,
aE

De
−→−Pe,

At Pe = 0,
aE

De
= 1−

Pe

2

The three straight lines represented on the figure are this limiting cases and they can be seen

as a reasonable approximation to the exact curve so that a discretized equation is derived and

written in the following compact way:

aPΦP = aEΦE +aW ΦW (4.2.16)

where

aE = max(−Fe,De,−
Fe

2
,0)
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4. Convection and diffusion

aW = max(−Fw,Dw,
Fw

2
,0)

aP = aE +aW +(Fe−Fw)

The Power-Law Scheme

It can be seen from Figure 17 that the hybrid scheme really differs from the exact solution

at Pe = ±2 and it seems quite premature to set the diffusion equal to zero as soon as |Pe|

exceeds 2 [2]. The scheme, developed by Patankar (1979), provide a better representation of

the exponential behaviour. The parameter aE/De can be written in a compact way as:

aE = De ·max

(
0,

(
1−

0.1|Fe|
5

De

))
+max(0,−Fe) (4.2.17)

4.2.5. A Generalized Formulation

A generalized formulation is developed in Patankar (1979) where all the schemes presented

can now be thought of as merely different choice of a function A(|P|):

aPΦP = aEΦE +aW ΦW (4.2.18)

where

aE = DeA(|Pe|)+max(−Fe,0)

aW = DwA(|Pw|)+max(Fw,0)

aP = aE +aW +(Fe−Fw)

Expressions for A(|P|) are listed in Table 9 Before leaving the one-dimensional situation, a

Scheme Formula for A(|P|)
Central difference 1−0.5|P|

Upwind 1
Hybrid max(0,1−0.5|P|)

Power law max((0,1−0.5|P|)5)
Exponential |P|/[exp(|P|)−1]

Table 9: Function A(|P|) for different schemes

brief comparison between the schemes is presented. The value of a grid point ΦP is predicted

by the various schemes for given values of ΦE = 1 and ΦW = 0 and plotted for various

values of P in Figure 18 All the schemes, excepted the CDS, give a physically realistic

solution inside the range 0-1 established by the imposed values. Since it is the grid Peclet

number that influences the behaviour of these numerical models, the grid could, in principle,

be refined until P is small enough (<2) for the CDS scheme to yield reasonable solutions.
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4. Convection and diffusion

Figure 18: Prediction of ΦP by the various schemes for a range of Peclet numbers [2]

However, an excessively fine grid could not be feasible and, in any case, it is really better to

pursue a numerical model that gives physically realistic solution even for coarse grids.

4.3. Discretization Equation for two-dimensional problems

All the one-dimensional discussion can be properly extended to a two-dimensional situation,

referring to the control volume of Figure 19. The details of the derivation are not given in

this work but they can be found again in the literature [2].

The two-dimensional discretization equation can be written as:

aPΦP = aEΦE +aW ΦW +aNΦN +aSΦS +b (4.3.1)

where:

aE = DeA(|Pe|)+max(−Fe,0),

aW = DwA(|Pw|)+max(Fw,0),

aN = DnA(|Pn|)+max(−Fn,0),

aS = DsA(|Ps|)+max(Fs,0),

a0
P =

ρ0
P∆x∆y

∆t
,

b = SC∆x∆y+a0
P +Φ0

P,

aP = aE +aW +aN +aS +a0
P−SP∆x∆y
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4. Convection and diffusion

Figure 19: Control Volume for the two-dimensional situation [2]

The function A(|P|) can be selected from Table 9 for the desired scheme. Some physical

understanding of the discretized equation can be given even at this stage. The neighbor

coefficients aE , aW , aN , and aS represent the convection and diffusion influence at the four

surfaces of the CV, in terms of the flow rate F and the conductance D. The term a0
PΦ0

P can

be thought of as the known Φ content inside the control volume at the time t, divided by the

time step.

The three-dimensional discretization will not be presented because it is out of scope for

this work.

4.4. Benchmark Problems

Two simple but explanatory problems are presented in this section. The difference schemes

differences will arise and the false diffusion topic will be introduced.

4.4.1. Bidimensional flow with a unidimensional variation of the variable Φ

solved in the same direction of the flow

. This problem is the simplest possible but it can be useful to validate the convection-

diffusion equation, given a fluid field. Referring to Figure 20, the given fluid field is:

u(x,y) =U0
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4. Convection and diffusion

v(x,y) = 0

The governing differential equation is 4.2.1 with no sources and the steady state analyt-

Figure 20: Schematics of the problem

ical solution is the same as Equation 4.2.11. The problem is solved with the numerical

techniques presented in the past sections and all the methods described are compared in

Figure 21. In order to have a better understanding of the methods, a coarse mesh with

(a) ∆x = 0.1 (b) ∆x = 0.01

Figure 21: Solution of the problem with different numerical schemes

∆x = (δx)e = (δx)w = 0.1 and a finer mesh ∆x = (δx)e = (δx)w = 0.01 are implemented.

The coarse mesh highlights properly the differences of the schemes: the CDS, power-law

and exponential schemes are indistinguishable from the exact solution (indeed, for a one-

dimensional problem, the exponential scheme is the exact solution) while the hybrid and the

UPS scheme shows a lower convergence. Details of the numerical error can be found in

Table 10, calculated with Equation 3.8.4 with the due differences; in this case the reference
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4. Convection and diffusion

value is the exact analytical solution. As expected, UPS scheme has the higher errors then

ε (∆x = 0.1) ε (∆x = 0.01)
UPS 1.82e-01 3.27e-02
CDS 4.14e-02 5.61e-04

Hybrid 4.14e-02 5.61e-04
Power law 4.17e-03 1.06e-04

Exponential 7.64e-17 6.97e-15

Table 10: Relative error of the numerical schemes

the other schemes. It can also be noted that, when refining the mesh, the numerical errors de-

crease for every scheme (the exponential scheme error is practically the machine precision).

The power law scheme results to be the most accurate scheme so far.

4.4.2. Unidimensional flow with a unidimensional variation of the variable solved

in the perpendicular direction of the flow

It will be immediately clear that this situation is the same as a conduction in a moving solid,

independently of the velocity field. Indeed, for this problem the velocity field is:

Figure 22: Schematics of the problem

u(x,y) = 0

v(x,y) =V0

and the exact analytical solution is

Φ = Φ0 +
ΦL−Φ0

L
x (4.4.1)

40



4. Convection and diffusion

It is straightforward to understand that, since u = 0 and being a one-dimensional flow, equa-

tion 4.2.1 becomes:
d
dx

(
Γ

dΦ

dx

)
= 0 (4.4.2)

and the problem becomes a pure diffusion one where Γ has the same role that the thermal

conductivity had in the previous sections. Therefore the problem has been solved with the

same procedure of the first benchmark problem. Results are provided in Figure 23. As

Figure 23: Solution of the problem with different numerical schemes

expected, the solution is linear and all the schemes are able to perfectly predict the analytical

solution.

4.4.3. Two-dimensional Diagonal Flow

The first two-dimensional problem is diagonal flow in the main diagonal of a square domain.

The velocity field can be represented as:

u(x,y) =V0 · cos(α)

v(x,y) =V0 · sin(α)

For this kind of flow, the solution is known for an infinite total Peclet number:

Φ = Φ1 above the diagonal (4.4.3)

Φ = Φ2 below the diagonal

It’s the first time that the flow is oblique to the grid lines and that there is a nonzero gradient
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4. Convection and diffusion

Figure 24: Schematics of the problem

of the dependant variable in the direction of the flow. This problem highlight properly the

matter of the "False Diffusion". If the coefficients of Equation 4.2.7 and Equation 4.2.9 are

compared, it can be shown that the UPS scheme is the equivalent to replacing Γ in the CDS

scheme with Γ+ρuδx/2. So that the upwind scheme seems to augment the true diffusion

coefficient Γ with a fictitious (false) diffusion coefficient ρuδx/2. Therefore, it could be easy

to conclude that the CDS scheme, being a second-order accuracy scheme, is more accurate

than the upwind scheme. In fact, the matter is more complicated. It can be shown [2] that

the so-called false diffusion coefficient ρuδx/2 could be a desirable at large Peclet numbers,

because it actually corrects the wrong implications that occurs from the central-difference

scheme. In any case, the matter of false diffusion is never serious at low Peclet number

because the real diffusion is large in comparison; on the other hand, at large Pecler numbers,

the false diffusion is more important and it should be taken into account.

The diagonal flow is hence solved again using a coarse (δx = δy= 0.1) mesh and a refined

(δx = δy = 0.01) mesh in order to study the solution sensitivity to the mesh. The problem

is solved with a large Peclet number (Pe −→ +∞) with a diffusion coefficient that tends to 0.

Moreover, two schemes have been used, CDS in results are shown in Figure 25 and UPS in

Figure 26 where they are compared with the ideal solution with Γ = 0.

It is immediately clear that the CDS scheme provides more accurate results for both the

coarse and fine mesh. From Table 11 it is clear that CDS has the smaller numerical error

while all the other schemes present the same higher error due to the order of convergence of

the schemes. The UPS scheme suffers the false diffusion due to the scheme formulation itself

ε (∆x = 0.1) ε (∆x = 0.01)
CDS 6.90e-02 7.54e-03
UPS 1.34e-01 6.72e-02

Hybrid 1.34e-01 6.72e-02
Power law 1.34e-01 6.72e-02

Exponential 1.34e-01 6.72e-02

Table 11: Relative error of the numerical schemes

and the fact that the flow is oblique to the grid lines, as explained before. An approximate
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4. Convection and diffusion

(a) ∆x = 0.1 (b) ∆x = 0.1, ideal solution

(c) ∆x = 0.1, ideal solution (d) ∆x = 0.01, ideal solution

Figure 25: Solution of the problem with UPS scheme

expression for the false diffusion coefficient for a two-dimensional situation has been given

by Vahl Davis and Mallinson (1972):

Γ f alse =
ρU∆x∆y sin2θ

4(∆y sin3θ +∆x cos3θ)
(4.4.4)

where U is the resultant velocity, and θ is the angle (between 0 and 90o) made by the velocity

vector with the x direction. With a real Γ = 0, Γ f alse has been found equal to 35.3 for the

coarse mesh and 3.53 for the fine mesh. This explains how the solution is really sensitive to

the grid. In order to reduce the false diffusion the grid should be as refined as possible and

the grid should align with the fluid flow. Schemes that would give less false diffusion have

been worked out [10] but their discussion, considering the more complexity, is out of scope

for this work.
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4. Convection and diffusion

(a) ∆x = 0.1 (b) ∆x = 0.1, ideal solution

(c) ∆x = 0.1, ideal solution (d) ∆x = 0.01, ideal solution

Figure 26: Solution of the problem with CDS scheme

4.5. The Smith-Hutton problem

In a well-known paper published in 1982, Smith and Hutton presented results of several

authors’ attempts to numerically solve a specially devised test problem involving streamline

curvature typical of recirculating flows and steep variations in the transported scalar [7]. This

problem [Smith Hutton, 1982] is defined, solved and discussed next.

4.5.1. Problem definition

The two-dimensional test problem devised by Smith and Hutton is concerned with steady-

state convection and diffusion of a scalar field, defined by the general variable Φ in a pre-

scribed velocity field. The governing equation is:

∂ (ρΦ)

∂ t
+∇ · (ρ~vΦ) = ∇ · (Γ∇Φ) (4.5.1)

without the internal source. A solenoidal velocity field is given as:

u(x,y) = 2y(1− x2) (4.5.2)
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4. Convection and diffusion

v(x,y) =−2x(1− y2)

that produces the pattern of streamlines shown in Figure 27. The following boundary condi-

Figure 27: Scheme of the Smith-Hutton problem

tions are imposed for the variable Φ, where α = 10:

Φ = 1+ tanh[(2x+1)α] y = 0; x ∈ (−1,0) (inlet) (4.5.3)

∂Φ

∂y
= 0 y = 0; x ∈ (0,1) (outlet)

Φ = 1− tanh(α) (elsewhere)

Therefore Φ is essentially 0 everywhere on x = 0 except close to the origin of the coordinates

where Φ = 2. The problem is solved for a range of Peclet numbers (10, 103,106) and it is

verified with another numerical solution given by CTTC center of Terrassa, Spain.

4.5.2. Algorithm development

The following assumptions has been made in the resolution of the problem:

• Steady state

• Pure two-dimensional flow where the z-axis flow is neglected.

• Constant thermophysical properties,

• FVM with cell-centered discretization and average values over each cell.
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4. Convection and diffusion

The domain is discretized in small rectangles and the nodes are placed in the center of each

control volume. Thus, the discretized equation is:

aPΦP = aEΦE +aW ΦW +aNΦN +aSΦS (4.5.4)

with the same coefficient of Equation 2.3.1. Obviously, the source term is not present. After

obtaining all the discretization coefficients, the property map is calculated employing the GS

solver. The proposed algorithm for the resolution of the Smith-Hutton problem is presented

below.

1. Problem input data:

• Physical data (ρ ,Γ)

• Geometrical data

• Numerical data and boundary conditions

• Choice of the convective scheme.

2. Guess of the property field Φ[i, j] needed by the solver.

3. Calculation of the discretization coefficient according to the chosen scheme.

4. Calculation of the property map Φ[i, j] using the GS solver

5. Print the results

4.5.3. Verification

The problem is solved with the usual schemes for convection and the results are validated

with a reference solution provided by the CTTC. In particular, the properties at the outlet

are compared in the following figures. The problem has been solved with a regular mesh of

200x100 nodes.
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4. Convection and diffusion

(a) Outlet property values with ρ/Γ = 10

(b) Outlet property values with ρ/Γ = 103

(c) Outlet property values with ρ/Γ = 106

Figure 28: Outlet property values with different Peclet numbers

It can be seen from Figure 28 that, for ρ/Γ = 10, all the numerical schemes appear to

behave in a similar way and that they encounter some difficulty on predict the value at x = 0.

For ρ/Γ = 103 some differences among the schemes start to arise and it can be noted that the

CDS is the best performing one, followed by the Power-law scheme and secondly by UDS

and the hybrid scheme. The CDS scheme leads to more accurate results for all the reason

explained in section 4.4.3 while the other schemes are affected more by the false diffusion.
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The results for ρ/Γ = 106 behave similarly to the previous situation, having better results

using the CDS scheme. In Tables 12, 13 and 14 the results are presented with more detail

and with the calculation of the relatives errors of all the implemented scheme.

x Ref CDS UDS Hybrid Power-law

0 1.989 1.849 7.02% 1.849 7.09 % 1.849 7.02% 1.849 7.02%
0.1 1.402 1.384 1.26% 1.379 1.64% 1.384 1.26% 1.384 1.26%
0.2 1.146 1.136 0.85% 1.129 1.44% 1.136 0.84% 1.136 0.86%
0.3 0.946 0.940 0.61% 0.932 1.41% 0.940 0.61% 0.940 0.63%
0.4 0.775 0.770 0.55% 0.763 1.54% 0.771 0.55% 0.771 0.57%
0.5 0.621 0.618 0.44% 0.611 1.61% 0.618 0.44 % 0.618 0.46%
0.6 0.480 0.478 0.37% 0.472 1.70% 0.478 0.37% 0.478 0.40%
0.7 0.349 0.348 0.22% 0.343 1.70% 0.348 0.22% 0.348 0.26%
0.8 0.227 0.227 0.20% 0.223 1.78% 0.227 0.20% 0.227 0.24%
0.9 0.111 0.111 0.35% 0.110 1.31% 0.111 0.35% 0.111 0.31%
1.0 0.000 0.000 - 0.000 - 0.000 - 0.000 -

Table 12: Results for ρ/Γ = 10

x Ref CDS UDS Hybrid Power-law

0 2.000 2.000 0.00% 2.000 0.00% 2.000 0.00% 2.000 0.00%
0.1 1.999 2.000 0.05% 1.999 0.00% 2.000 0.05% 2.000 0.05%
0.2 1.9997 1.999 0.005% 1.997 0.02% 1.999 0.02% 1.999 0.03%
0.3 1.985 1.992 0.34% 1.941 0.22% 1.974 0.56% 1.970 0.75%
0.4 1.841 1.824 0.91% 1.611 1.25% 1.698 7.75% 1.688 8.34%
0.5 0.951 0.967 1.65% 0.897 5.60% 0.907 4.65% 0.908 4.54%
0.6 0.154 0.149 3.42% 0.273 7.70% 0.220 42.6% 0.228 4.78%
0.7 0.001 0.006 503.2% 0.040 3880.3% 0.021 1992.5% 0.023 2206.3%
0.8 0.000 0.000 - 0.003 - 0.000 - 0.000 -
0.9 0.000 0.000 - 0.000 - 0.000 - 0.000 -
1.0 0.000 0.000 - 0.000 - 0.000 - 0.000 -

Table 13: Results for ρ/Γ = 103

The table enrich what it was discussed with the figures. The relative error calculation is

not possible when the reference values are 0. Moreover, the relative errors are really high at

x = 0.7 due to the fact that the correct values are really small and not accurately predicted by

any of the schemes.

4.5.4. Results

Figure 29 shows the property Φ map for the three cases of the problem. These maps were

obtained using a CDS scheme. It can be noted that as ρ/Γ increases, the map turns more sym-

metric. The Smith-Hutton problem is an excellent test of a numerical convection-diffusion

scheme, especially in the high-convection regime [7]. Moreover, the transported variable
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x Ref CDS UDS Hybrid Power-law

0 2.000 2.000 0.00% 2.000 0.00% 2.000 0.00% 2.000 0.00%
0.1 2.000 2.000 0.00% 2.000 0.00% 2.000 0.00% 2.000 0.00%
0.2 2.000 2.000 0.00% 2.000 0.02% 2.000 0.02% 1.999 0.02%
0.3 1.999 1.999 0.01% 1.980 0.96% 1.980 0.96% 1.980 0.96%
0.4 1.964 1.963 0.02% 1.717 12.6% 1.717 12.6% 1.717 12.6%
0.5 1.000 1.000 0.02% 0.904 9.60% 0.904 9.60% 0.904 9.60%
0.6 0.036 0.036 0.9% 0.205 470.5% 0.205 470.3% 0.205 470.3%
0.7 0.001 0.001 30.8% 0.017 1631.6 % 0.017 1629.7% 0.017 1626.7%
0.8 0.000 0.000 - 0.000 - 0.000 - 0.000 -
0.9 0.000 0.000 - 0.00 - 0.000 - 0.000 -
1.0 0.000 0.000 - 0.00 - 0.000 - 0.000 -

Table 14: Results for ρ/Γ = 106

displays a rapid change over a small distance within the flow, simulating the a consequence

of a source, the mixing of two streams of different temperature, etc.
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(a) Property Φ map for ρ/Γ = 10

(b) Property Φ map for ρ/Γ = 10

(c) Property Φ map for ρ/Γ = 10

Figure 29: Property Φ map with different Peclet numbers

UDS is characterized by false diffusion, which can be noticed at high Peclet numbers.

The scheme, anyway, gives physically plausible results. Exponential-based schemes such as

Hybrid and Power-law, all revert to first-order upwinding and they present the same problem.

CDS tends to give unrealistic results when the mesh refinement is insufficient but, if the mesh

is refined, an accurate solution will result. There does not appear to be a perfect scheme. On

regular meshes, all the methods submitted showed evidence of false diffusion.
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5. Incompressible flow method using the Navier-Stokes

equations

This section shows how the Fractional Step Method (FSM) [11] is applied to incompressible

flows of Newtonian fluids in order to solve the velocity-pressure coupling in the Navier-

Stokes Equations (NSE). The fractional step method (FSM) provides an approach that does

not use pressure in a predictor step to estimate the projected velocity as an approximate

solution of the momentum equation (like in the SIMPLE algorithm). Consequently, it is

required to couple a pressure equation which determines the minimum perturbation that will

make the predictor velocity incompressible. It is also important to recall that the role of

the pressure in an incompressible flow is to enforce continuity; in some sense, it is more a

mathematical variable than a physical one. [12]. There are two main goals of this chapter;

the first is to depict the FSM employing staggered meshes for its solution, and the second

is to assess the performance the numerical schemes presented in Section 4.2 in the solution

of tow model problems, the Lid-Driven Cavity flow problem and the Differentially Heated

Cavity flow problem.

5.1. Introduction to the Fractional Step Method

The FSM has become a very popular technoque for solving the incompressible NSE. The

main reasons of its popularity is due to the fact that it has better performance than other

methods such as SIMPLE-like algorithm [8][2]. Fractional step methods are also referred to

as projection methods because the system of equations given can be interpreted as a projec-

tion into a divergence-free velocity space. The predictor velocity, is an approximate solution

of the momentum equations, but because the predictor velocity is obtained with no pressure

gradient contribution it cannot satisfy the incompressibility constraint at the next time level.

Therefore, the Poisson equation determines the minimum perturbation that will make the

predictor velocity incompressible [14]. Under the assumptions of incompressible flows of

Newtonian fluids, the dimensionless governing equations in primitive variables are:

∂u

∂ t
+(u ·∇)u =

1
Re

∆u−∇p (5.1.1)

∇ ·u = 0 (5.1.2)

where Re is the dimensionless Reynolds number defined as:

Re =
ρV0L

µ
(5.1.3)

where ρ and µ are the density and the dynamic viscosity of the working fluid and L and V0

are the characteristic length and velocity, respectively.
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5.1.1. Application of the Helmholtz-Hodge decomposition theorem

In this section, the Helmholtz-Hodge decomposition theorem is applied to the incompressible

NSE [14]. According to the Helmholtz-Hodge theorem, a given vector field ω , defined in a

bounded domain Ω with smooth boundary δΩ, is uniquely decomposed in a pure gradient

field and a divergence-free vector parallel to δΩ.

ω = a+∇φ (5.1.4)

where,

∇ ·a = 0 a ∈ ω (5.1.5)

Let Π(·) be a projector operator. It projects any vector field onto a divergence-free space

∇ ·Π(a) = 0 (5.1.6)

Now, taking the NSE and applying the projector operator

Π

(
∂u

∂ t
+∇p

)
= Π

(
−(u ·∇)u+

1
Re

∆u

)
(5.1.7)

Since the velocity field is incompressible for hypothesis, the transient term remains un-

changed when projected:

Π

(
∂u

∂ t

)
=

∂u

∂ t
(5.1.8)

While the projection of the pressure gradient vanishes

Π(∇p) = 0 (5.1.9)

Therefore, the NS equations can be split in two different parts: a divergence-free vector and

a gradient of a scalar field.

∂u

∂ t
= Π

(
−(u ·∇)u+

1
Re

∆u

)
(5.1.10)

∇p =−(u ·∇)u+
1

Re
∆u−Π

(
−(u ·∇)u+

1
Re

∆u

)
(5.1.11)

The Helmholtz-Hodge decomposition theorem ensures that this decomposition is unique.

Finally, applying the divergence operator to 5.1.11 and using thr projector definition (Eq.

5.1.6), leads to the Poisson equation for the pressure

∇p = ∇ ·

(
−(u ·∇)u+

1
Re

∆u

)
(5.1.12)
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If R(u) stands for the convective and diffusive terms:

R(u)≡−(u ·∇)u+
1

Re
∆u (5.1.13)

For incompressible flows, the role of the pressure gradient is to project the vector field R(u)

into the divergence-free space.

Figure 30: Convective and viscous term vector field decomposition [14]

5.1.2. Time-integration method

The final form of the fractional step method would depend on the time-integration method

chosen. Here, for the sake of clarity, it is proposed a fully explicit time integration scheme.

To simplify the notation, momentum equation can be rewritten as

∂u

∂ t
= R(u)−∇p (5.1.14)

For the temporal discretization, a central difference scheme is used for the time derivative

term
∂u

∂ t

∣∣∣n+1/2 ≈
un+1−un

∆t
+O(∆t2) (5.1.15)

a fully explicit second-order Adams-Bashfort scheme for R(u)

Rn+1/2(u)≈
3
2

R(un)−
1
2

R(un−1)+O(∆t2,∆xm) (5.1.16)

and a first order backward Euler scheme for the pressure-gradient term. Incompressiblity

constraint is treated implicitly. Thus, the following semi-descritized NSE is obtained

un+1−un

∆t
=

3
2

R(un)−
1
2

R(un−1)−∇pn+1 (5.1.17)
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∇ ·un+1 = 0 (5.1.18)

It can be noted that the pressure gradient forces (projects) the predictor velocity field to be

incompressible (∇ ·un+1 = 0). This projection is derived from the well-known Helmholtz-

Hodge vector decomposition theorem, whereby the predictor velocity up, can be uniquely

decomposed into a divergence-free vector, un+1, and the gradient of a scalar field, ∇p̃. This

decomposition is written as

up = un+1 +∇ p̃ (5.1.19)

where the predictor velocity vector up is given by

up = un +∆t

(
3
2

R(un)−
1
2

R(un−1)

)
(5.1.20)

and the pseudo-pressure is p̃ = ∆t
ρ pn+1. Taking the divergence of Eq. (5.1.19) yields a

Poisson equation for p̃.

∇ ·up = ∇ ·un+1 +∇ · (∇p̃)−→ ∆p̃ = ∇ ·up (5.1.21)

Once the solution is obtained, un+1 results from the correction

un+1 = up−∆ p̃ (5.1.22)

Therefore, the algorithm for the integration of each time step is

1. Evaluate R(un).

2. Evaluate up from Eq. (5.1.20.)

3. Evaluate ∇ ·up and solve the discrete Poisson equation, Eq. (5.1.21).

4. Obtain the new velocity field with Eq.(5.1.22)

5.1.3. Determination of ∆t

Due to stability reasons, explicit temporal schemes introduce severe restrictions on the time

step, while implicit discretization would improve the overall stability. Therefore, having

considered an explicit method in the view of formulation simplicity, the time-step ∆t must

be bounded by the CFL condition [13] given by

∆t

(
|ui|

∆xi

)

max

≤Cconv (5.1.23)

∆t

(
ν

∆x2
i

)

max

≤Cvisc (5.1.24)
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where the bounding values Cconv and Cvisc must be smaller than unity. In this case, the

recommendations given by [15] are adopted, using values Cconv = 0.35 and Cvisc = 0.2, re-

spectively.

5.1.4. Solution of Poisson Equation

Since the formulation is fully explicit, the only system to be solved is the pressure Pois-

son Eq.(5.1.21). Therefore, the efficient resolution of this equation is of critical importance.

When the velocity field is computed through the predictor velocities, it is necessary to calcu-

late the pressure gradient at each node. Supposing a 1D situation, and isolating the velocity

at instant t = n+1 from Eq.(5.1.19), it yields to the following equation

un+1
P = up

P−
∆t

ρ

(
pn+1

E − pn+1
W

2∆x

)
(5.1.25)

Having considered the 1D spacial grid of figure 31.

Figure 31: 1D spatial discretization [16]

The problem in equation 5.1.19 is that the gradient of pressure at the node P is independent

of the pressure at node P and it can generate a nonphysical pressure distribution even if the

velocity field has reached convergence. For example, considering the values

pWW = 100, pW = 0, pP = 100, pE = 0, pEE = 100.

it can be observed that verifies ∇pn+1 = 0 although it is a nonphysical solution. A possible

solution to this problem is to use staggered meshes. In this way, it is possible to avoid the

checkerboard problem.

5.1.5. Staggered Meshes

A displaced or "staggered" grid for the velocity components was first used by Harlow and

Welch in [2]. In the staggered grid, the velocity components are calculated for the points that

lie on the faces of the control volumes. Figure 32 is a basic example of a staggered mesh.

The main mesh is only used to get the pressure field. Then, it is easy to see that the

nodes which belong to the main mesh are located at the cell faces of the staggered meshes. It

enables to compute the pressure gradient at the determined node of the staggered mesh, since

it is exactly in the middle between the two main nodes of the mesh. Doing this, checkerboard
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Figure 32: Example of a staggered mesh [9]

problem is avoided. However, it means that all the ’x’ components of the velocity will be

computed in the staggered ’x’ mesh, and the ’y’ components in the staggered ’y’ mesh.

Figure 33: Control volumes for a staggered grid: for mass conservation and scalar quanti-
ties (left), for x-momentum (center) and for y-momentum (right). Extracted from
[12]

Figure 33 shows that the control volumes for u and v, are displaced with respect to the

control volume for the continuity equation. The advantages of implementing a staggered

grid have their own prices. A computer program based on a staggered grid must carry all

the indexing and geometric information about the locations of the velocity components and

some tiresome interpolations are needed. In any case, the benefits of the staggered grid are

worth the additional complexity.

5.2. The Lid-Driven Cavity flow problem

The Driven Cavity Flow problem is a model problem that has served repeatedly for test-

ing and evaluating numerical techniques. The results of this problem, for moderately high

Reynolds (Re) number values, have been published in a number of sources, using a variety
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of solution procedures, including an attempt to analytically extract the corner singularities

from the dependant variable of the problem [17]. Some accurate results are now available

for high Re also [17] and they will be used for validating the resolution methods explained

in this work.

5.2.1. Problem definition

Laminar incompressible flow in a square cavity whose top wall moves with a uniform veloc-

ity in its own plane is considered. A simple scheme is shown in figure 34.

Figure 34: Scheme of Lid-Driven Cavity problem [18]

The Reynolds number is an input of the problem, since it determines the performance of

the fluid. Velocities u and v are zero in the right, left and bottom walls; in the top side, the

velocity is horizontal and equals to 1 m/s. The boundary conditions are that the pressure

gradient normal to the walls is zero. The cavity is modeled as a 1x1 m2 square. It is required

to solve the velocity field (x and y directions), in particular, numerical values corresponding

to the velocity profiles for horizontal and vertical lines passing through the geometric center

of the cavity. Cases to be assessed are Re = 100,400,1000,3200.

5.2.2. Code development

Problem assumptions

1. Pseudo-transient simulation with adaptive time step;

2. Two-dimensional problem, the third dimension is taken as unity;

3. The cavity is square, with L = 1 m and H = 1 m;

4. FVM, cell-centered discretization: average values over each cell;

5. Constant thermophysical properties: density ρ and viscosity µ;

6. All the velocity at the faces are calculated according to a convective scheme.
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Mesh generation

The FSM method is applied along with uniform meshes. Three meshes are created as shown

in Fig. 32 and Fig. 33: the main mesh is used for pressure while the additional two staggered

meshes are created for the calculations of the velocity fields. The implemented mesh is

shown in Fig. 35.

Figure 35: Pressure, staggered-x and staggered-y meshes [19]

Code equations

At each time step, the following equations give a unique un+1 and pn+1.

1. up = un +∆t
(

3
2R(un)− 1

2R(un−1)
)

2. ∆ p̃ = ∇ ·up

3. un+1 = up−∆p̃

4. ∆tn+1 = min(∆tc,∆td)

These equations have to be discretized in the different components of the velocity field.

1 - x component of v

The x component of the predicted velocity is calculated as:

up = un +

[
3
2

R(un)−
1
2

R(un−1)

]
(5.2.1)

Where:

R(u) =−(v ·∇)u+
1

Re
∆u (5.2.2)

58



5. Incompressible flow method using the Navier-Stokes equations

If R(u) is integrated over the staggered-x control volume and then the divergence theorem is

applied

∫

Vcv

R(u) dVcv =−
∫

Vcv

(v ·∇)u dVcv +
∫

Vcv

∆u dVcv =−
∫

Scv

(v ·∇)u ·n dScv +
∫

Scv

∇u ·n dScv

(5.2.3)

Introducing the second-order approximations

R(u)Vcv = [−(u)eueAe +(u)wuwAw− (v)nunAn +(v)susAs] +

1
Re

[
uE −uP

dEP
−

uP−uW

dWP
+

uN−uP

dNP
−

uP−uS

dSP

] (5.2.4)

As said before, the convective schemes are used to calculate the velocities at the faces (u) f

and (v) f and linear interpolation is used to estimate the terms (u) f and (v) f ; an example is

shown in Fig.36.

Figure 36: Approximation of the velocities at the faces. [CTTC,2017]

1 - y component of v

The same procedure is applied to the y component of the predicted velocity.

vp = vn +

[
3
2

R(vn)−
1
2

R(vn−1)

]
(5.2.5)

Where

R(v) =−(v ·∇)v+
1

Re
∆v (5.2.6)

Integrating again R(v) over the staggered-y control volume and applying the divergence the-

orem.

∫

Vcv

R(v) dVcv =−
∫

Vcv

(v ·∇)v dVcv +
∫

Vcv

∆v dVcv =−
∫

Scv

(v ·∇)v ·n dScv +
∫

Scv

∇v ·n dScv

(5.2.7)
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Introducing the second-order approximations

R(u)Vcv = [−(u)eveAe +(u)wvwAw− (v)nvnAn +(v)svsAs]+

1
Re

[
vE − vP

dEP
−

vP− vW

dWP
+

vN− vP

dNP
−

vP− vS

dSP

] (5.2.8)

2 - Poisson equations

Integrating over the main mesh control volume and applying the divergence theorem

∫

Vcv

∆ p̃n+1 dVcv =
∫

Vcv

∇ ·up dVcv (5.2.9)

∫

Scv

∇ p̃n+1 ·n dScv =
∫

Scv

up ·n dScv (5.2.10)

And introducing the second-order approximations

pn+1
E − pn+1

P

dEP
Ae−

pn+1
P − pn+1

W

dWP
Aw +

pn+1
N − pn+1

P

dNP
An−

pn+1
P − pn+1

S

dSP
As =

1
∆t

[(up)eAe− (up)wAw +(vp)nAn− (vp)sAs]

(5.2.11)

Rearranging in the usual discretization equation

aP pn+1
P = aE pn+1

E +aW pn+1
W +aN pn+1

N +aS pn+1
S +bP (5.2.12)

Where

aE =
Ae

dEP

aW =
Aw

dWP

aN =
An

dNP

as =
As

dSP

aP = aE +aW +aN +aS

bP =−
1
∆t

[(up)eAe− (up)wAw +(vp)nAn− (vp)sAs]

The GS solver is used in order to solve this set of equations.

Boundary conditions

Two types of boundary conditions are applied to the problem.

1. Prescribed velocity

Referring to Fig.34 and considering the system of coordinate origin in the lower left
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corner

u(x,y) =U on H = 1 (5.2.13)

u(x,y) = v(x,y) = 0 elsewhere (5.2.14)

2. Pressure gradient

The pressure gradient is zero along all the borders.

∂ p

∂n
= 0 everywhere (5.2.15)

3 - Updated velocity field on staggered - x mesh

The new velocity field can finally be calculated. Referring to Fig. 37 the x component can

be calculated as:

un+1
P = up

P−

(
∂ p̃

∂x

)n+1

P

(5.2.16)

un+1
P = up

P−
p̃n+1

B − p̃n+1
A

dBA

Figure 37: Geometric relation of the main mesh and the x-staggered mesh.[CTTC,2017]

It can be noted that for the velocities un+1
P of the x-staggered mesh, pn+1(i, j + 1) and

pn+1(i, j) are the correspondent pressure for pn+1
B and pn+1

A respectively; another advantage

for using staggered meshes.

3 - Updated velocity field on staggered - y mesh

Similar calculations are performed on the y component of the velocity field.

vn+1
P = vp

P−

(
∂ p̃

∂y

)n+1

P

(5.2.17)

vn+1
P = vp

P−
p̃n+1

B − p̃n+1
A

dBA
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Figure 38: Geometric relation of the main mesh and the y-staggered mesh.[CTTC,2017]

Again, it can be noted that for the velocities vn+1
P of the y-staggered mesh, pn+1(i+1, j)

and pn+1(i, j) are the correspondent pressure for pn+1
B and pn+1

A respectively.

4 - Choice of the new time step

The CFL (Courant-Friedrich-Levy) condition has to be respected in order to maintain nu-

merical stability.

∆tc = min

(
0.35

∆x

|v|

)
(5.2.18)

∆td = min

(
0.20

ρ∆x2

µ

)
(5.2.19)

∆t = min(∆tc,∆td) (5.2.20)

This equations are valid only for a uniform mesh where ∆x = ∆y

5.2.3. Description of the algorithm

The algorithm proposal for the resolution of the problem is presented in Fig.39 and explained

below.

1. Input Data

• Physical data: Reynolds number and the square domain dimensions;

• Numerical data: number of control volumes, convective scheme and convergence

criteria (δ );

• Boundary conditions: u,v= 0 at boundaries, except u=U at the upper boundary;

2. Mesh generation.

It is necessary to compute the 3 different meshes as explained before. Each mesh has

to have the following data: position of the nodes, areas of the cell faces and volumes;
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Figure 39: Fractional Step Method code scheme [9]
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3. Initial calculations

The values of the initial velocities for each staggered mesh have to be set: un[i, j],

vn[i, j], un+1[i, j], vn+1[i, j]. Moreover, the first time is computed as: ∆t =min(∆tc,∆td)

4. Calculation of the vector field R(u);

The value of R(u) is calculated for the current and previous instant, with the chosen

convective scheme;

5. Calculation of the predicted velocities;

6. Computation of the pressure fiels.

With the predictor velocities is possible to calculate the coefficients of the discretized

Poisson equation, and the resultant linear equations are solved through a linear solver;

7. New velocity field computation.

With the predictor velocities and the pressure field at time ′n+ 1′ it is possible to get

the new velocity field for each staggered mesh;

8. Steady state condition verification

If the solution becomes steady, then the velocity field will not change enough and the

iterations will stop. Otherwise, if the new velocity field changes more than the criteria

established (δ ), the iterations will continue with a new time step. In mathematical

formulas, if

max(|un+1[i, j]−un[i, j]|)≤ δ AND max(|vn+1[i, j]− vn[i, j]|)≤ δ (5.2.21)

convergence is reached, otherwise the program keeps running;

9. Update of the velocity field.

The velocity field is updated as follows

un−1←− un, un←− un+1

vn−1←− vn, vn←− vn+1

10. Calculation of the new time-step.

If the solution is still unsteady, new time step has to be chosen following the criteria of

Courant-Friedrich-Levy;

11. Print the results.

If the solution is steady, get the final results.
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Figure 40: Benchmark solution: u [17]

5.2.4. Verification

In order to verify the code, the results are compared with a benchmark solution extracted

from literature [17], which are shown in tables 40 and 41 . The main code uses QUICK

scheme, although it is compared with CDS scheme and UDS. However, results with QUICK

are analysed for Reynolds below 5,000, since, as the flow gets turbulent, much finer meshes,

which imply much higher computational costs, are needed (unless turbulence models are

implemented, which is out of the scope of this work).
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Figure 41: Benchmark solution: v [17]

A grid independence study is done in order to analyse the influence of the mesh on the

results. Three meshes are employed (25,50 and 100 nodes) and the error is calculated for

each mesh and each Reynolds number. Figure 43 represents the error of both the components

of the velocity field respect to the benchmark solution. As it has been said, the solution is

given only in determined points, so an interpolation has been performed in order to get an

approximation of the velocity values at the determined coordinates of the solution, enabling

to compare the velocities. Figure 43(a) and 43(b) shows the error between the horizontal

velocities in the vertical central line. It can be noted that the error increases when increasing

the Reynolds number; this behaviour is due to the fact that the flow becomes more turbulent

and it is more difficult to achieve a steady solution without the use of a more refined mesh.

It is also possible to observe that increasing the number of nodes decreases the error, that

is what is expected. The same behaviour is also shown in figure 43(c) and 43(d), where the

error of vertical velocities on the horizontal line is shown.

The second part of the study consists in comparing the benchmark solution from tables

40 and 41 with the results obtained through different meshes. This comparison is presented

in Fig. 45, where the x component of the velocity along the vertical center line and the y

component along the horizontal center line are shown for different Reynolds number. It can

be noted that the points retrieved from the benchmark solution aren’t enough to achieve an

accurate shape in the graph, so it is important that the computes solution coincides with these

points.
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(a) Error vs Re number for u velocity components
(b) Error vs number of elements for u velocity com-

ponents

(c) Error vs Re number for v velocity components
(d) Error vs number of elements for v velocity com-

ponents

Figure 42: Relative errors compared with benchmark solution [17]
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(a) u, Re = 100 (b) v, Re = 100

(c) u, Re = 400 (d) v, Re = 400

(e) u, Re = 1000 (f) v, Re = 1000

Figure 43: Lid-Driven Cavity results compared with benchmark solutions
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(g) u, Re = 3200 (h) v, Re = 3200

Figure 43: Lid-Driven Cavity results compared with benchmark solutions

The obtained results seem to have a good accordance with the proposed benchmark values.

Anyway, the results are not exactly coincident due to the coarse mesh involved, but they show

the same trend and the same flow behaviour. It has to be noted that there is a point of the

benchmark solution, for Re= 400 (Figure 43(d)), which really seem to divert to implemented

solution.

All the results shown have been calculated, as said before, with the QUICK scheme. Any-

way, the lower-order schemes UDS and UDS have been implemented to evaluate their per-

formance. In Table 15 the average error relative to the benchmark solution is shown, for all

the used meshes and schemes.

Mesh Reynolds UDS CDS QUICK

25x25

Re = 100 35.1% 5.3% 2.9%

Re = 400 ∞ 10.1% 3.8%

Re = 1000 ∞ 13.4% 6.5%

Re = 3200 ∞ ∞ ∞

50x50

Re = 100 9.7% 2.1% 1.5%

Re = 400 ∞ 2.3% 1.8%

Re = 1000 ∞ 3.7% 2.5%

Re = 3200 ∞ ∞ ∞

100x100
Re = 1000 - - 1.1%

Re = 3200 - - 1.9%

Table 15: Lid-Driven Cavity average relative errors

"n.c" indicates a non-convergence of algorithm while for the most refined (100x100) only

Re = 1000 and Re = 3200 were simulated, because good accuracy was already reached in

the other simulations.
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5.2.5. Final results

In the following pages contour plots of horizontal and vertical components of the velocity

field and streamlines are shown.

In Figure 45 the contours plots of the horizontal and vertical component of velocity are

displayed. The main remarkable aspect of these plots is that the areas of positive and neg-

ative velocity become more elongated with the increasing of Re number. This is due to the

diffusive term being less predominant for higher Re. This phenomenon can be seen both for

the horizontal and vertical velocities. In the end, it is clear observing Figure 45 the clockwise

motion of the fluid inside the square cavity.

A stream function is a scalar function which is defined by the following two expressions

[20]:

u =
∂Ψ

∂y
(5.2.22)

v =−
∂Ψ

∂x
(5.2.23)

Streamlines are a family of curves that are instantaneously tangent to the velocity vector of

the flow, so that
u

v
=

dx

dy
(5.2.24)

Combining Eq. 5.2.24 with Eqs. 5.2.22 and 5.2.23 leads to:

∂Ψ

∂x
dx+

∂Ψ

∂y
dy = 0 (5.2.25)

Then, the function is constant along a streamline and the stream function is completely de-

fined except for an integration constant, which it is set to zero at the coordinates origin:

Ψ(x,y) =
∫ y

0
uδy−

∫ x

0
vδx−

∫ x

0

(∫ y

0

∂u

∂x
δy

)
δx (5.2.26)
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(a) u, Re = 100 (b) v, Re = 100

(c) u, Re = 400 (d) v, Re = 400

(e) u, Re = 1000 (f) v, Re = 1000

Figure 44: Velocity components u and v contour plots for different Re numbers
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(a) u, Re = 3200 (b) v, Re = 3200

Figure 45: Velocity components u and v contour plots for different Re numbers

(a) Ψ atRe = 100 (b) Ψ atRe = 400

(c) Ψ at Re = 1000 (d) Ψ at Re = 3200

Figure 46: Stream function line plots for different Re numbers
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By observing Figure 46 it is easy to see that the streamlines for lower Reynolds show a

smoother flow, especially for Re = 100, where no strong eddies at the corners are visible. As

Reynolds number increases, the centre of rotation moves towards the centre of the cavity and

three eddies gain in strength. The first eddy makes its appearance at the lower-right corner

of the cavity, followed by another at the lower-left corner while the last one appears at the

upper-left corner.

5.2.6. Discussion

The results are overall satisfying, CDS and QUICK schemes reached convergence for Re =

100,400 and 1000; their accuracy is comparable at lower Reynolds values. CDS is the sim-

plest scheme of second-order accuracy and it offers a good compromise among accuracy and

simplicity although its performance becomes worse when increasing the Reynolds number,

if compared to QUICK scheme. UDS performs with the worst accuracy and it does not seem

capable of handling this kind of problems.

In general, when Re increases, coarse grid could not be implemented in the method due to

the raising of turbulent behaviour and mesh refinement becomes mandatory. For Re > 3200

it is not feasible to reach convergence because the computer time really increases, having the

need to use a fine mesh of at least 200x200. Finally, it has been found that the relative error

is significant near the walls; this could be solved refining the mesh, as said before, or using

a non-uniform mesh with an higher density of CVS near the walls as shown in Figure 47.

Figure 47: A non-uniform grid with 32x32 CVs, extracted from [12]

In this work, the implemented mesh is regular for simplicity purposes and for this reason

the convergence of the results for high Re is limited, also due to the limits of the computer

processor used.
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5.3. The Differentially Heated Cavity (DHC) flow problem

Buoyancy-driven flow in a square cavity with vertical sides which are differentially heated is

a suitable vehicle for testing and validating computer codes used for a wide variety of practi-

cal problems such as nuclear reactor insulation, ventilation of rooms, solar energy collection

and crystal growth in liquids. [21].

5.3.1. Problem Definition

This problem consists of a fluid confined in a 2D square cavity with its lateral walls at

different temperature and its upper and lower walls being adiabatic. The wall at the left

side will remain at a higher temperature than the one at the right, thus leading the fluid to a

clockwise rotation. Unlike in the Lid-Driven Cavity problem, where the upper wall moves

at a certain speed, in this case any of the walls moves, so velocity is equally prescribed in all

the cavity boundary being both of its component null. A sketch of the problem may be seen

in the figure below.

Figure 48: Sketch of the DHC problem

This is a case in which the source of the movement is the buoyancy term in the Navier-

Stokes momentum equation. In such cases the Boussinesq approximation is applied. It

basically consists in assuming that the variations in the fluid’s density are neglected, thus

leading to an incompressible flow, except in the volumetric forces, where this variations

gain importance and are to be taken into account, since they are responsible for the fluid’s

movement.

5.3.2. Governing Equations

The equations involved in this problem are mass and momentum conservation (Navier-

Stokes equations and continuity equation) along with an additional equation of energy con-
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servation, not present in the Lid-Driven Cavity problem. The set of equations is:

∇ ·v = 0 (5.3.1)

ρ

(
∂v

∂ t
+(v ·∇)v

)
=−∇p+µ∇2v+ρg (5.3.2)

ρcp

(
∂T

∂ t
+(v ·∇)T

)
= k∇2T (5.3.3)

Boussinesq approximation

The Boussinesq approximation is used in natural convection problems and it states that the

density differences are small enough to be neglected, except where they have an influence on

the buoyancy term (basically where they are multiplied by the acceleration of gravity g). This

approximation replaces the density in the buoyancy term by an expression which depends on

temperature. This dependency is achieved by introduction the thermal expansion coefficient

β :

ρ = ρ0−β (T −T0), β > 0 (5.3.4)

While the remaining desnities that appear in the equations will remain constant. Thus, equa-

tion 5.3.2 becomes:

ρ0

(
∂v

∂ t
+(v ·∇)v

)
=−∇p+µ∇2v+ρ0g−β (T −T0)g (5.3.5)

Non-dimensional equations

It is convenient to convert the equations into non-dimensional expression in order to provide

general and scaled solutions. The quantities which will be used to scale the variables of the

problem are L,ρ ,cp and k . The non-dimensional variables are then defined in the following

expressions.

r̃ =
r

L
(5.3.6)

ν̃ =
ν

ρcpL
k

(5.3.7)

t̃ =
t

ρcpL2

k

(5.3.8)

p̃ =
t

ρ
(

cpL
k

)2 (5.3.9)

T̃ =
T −Tc

Th−Tc
(5.3.10)

Substituting the dimensional variables into equations 5.3.1, 5.3.2 and 5.3.3 the following

non-dimensional equations can be obtained. The subscript "˜ " is omitted for simplicity pur-
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poses. From now on, it is assumed that all the equations and variables are non-dimensional.

∇ ·v = 0 (5.3.11)

∂v

∂ t
+(v ·∇)v =−∇p+Pr∇2v+Pr Ra T ûg (5.3.12)

∂T

∂ t
+(v ·∇)T = k∇2T (5.3.13)

Where ûg is a unit vector indicating the direction of the acceleration of gravity. Two non-

dimensional numbers arise from this derivation: the Prandtl Pr number and the Rayleigh Ra

number. It should be noted that the non-dimensional solution of the problem depends only

on these two numbers, which for this problem are defined as:

Pr =
cpµ

k
(5.3.14)

Ra =
gβ

µ k
ρcp

(Th−Tc)L
3 (5.3.15)

Generally speaking, the Prandtl number is a dimensionless parameter representing the ratio

of diffusion of momentum to diffusion of heat [22]. Contrary to other dimensionless numbers

such as the Reynolds number, Pr number does not contain any length scales in its definition

and it depends only on the fluid and the fluid state. On the other hand, the Rayleigh number

is associated with buoyancy-driven flow and it describes the behaviour of fluids when the

mass density of the fluid is non-uniform [23].

5.3.3. Code development

Problem assumption

The assumptions are the same of the Lid-Driven Cavity flow problem, except for the fact that

the density is not a constant properties

Mesh generation

Three meshes are created in a similar way of the previous problem. The main mesh is used

for the scalar values of pressure and temperature while the other two staggered grids are cre-

ated for the calculation of the velocity field.

Code equations

In this problem, the time integration has to be performed for two different equations: mo-

mentum and energy conservation. For the first equations, the same methodology used in the

Lid-Driven Cavity problem is adopted while the Energy equation can be solved implement-

ing an implicit or an explicit scheme.

Momentum Equation

It is necessary to define a new term containing the diffusive term and the flotation term. Such
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term is so defined:

R(v) =−(v ·∇)v+Pr∇2v+Pr Ra T ûg (5.3.16)

It differs from the term 5.1.13 for the addition of the source term resulting for the Bousi-

nessq approximation. The rest of the steps are analogous as described in section 5.1.2. The

main difference is on the limitations on the time step. For this problem, the CFL condition

becomes:

∆t

(
|ui|

∆xi

)

max

≤Cconv (5.3.17)

∆t

(
Pr

∆x2
i

)

max

≤Cvisc (5.3.18)

Where Cconv and Cvisc are again 0.35 and 0.2 respectively.

Energy Equation

As it has been said in before, the energy equation may be solved using an implicit scheme as

much as an explicit one. If an explicit scheme is to be used, a second order Adams-Bashforth

approximation could be equally used. However, an implicit scheme is preferable, as it avoids

numerical instabilities and it has been found the execution is not so higher. So, integrating

equation 5.3.12 with respect to time:

∫ tn+1

tn

∂T

∂ t
dt = T n+1−T n =

∫ tn+1

tn
(−(v ·∇)T +∇2T )dt ≈ [−(vn+1·)T n+1 +∇2T n+1]∆t

Rearranging the terms:

T n+1−T n

∆t
=−(vn+1 ·∇)T n+1 +∇2T n+1 (5.3.19)

It is obvious that the velocity field is needed in order to obtain the temperature distribution

in the whole domain. Therefore, momentum equation must be solved in first place. Once the

velocity field is obtained, the energy equation can be solved.

Spatial-integration

Momentum equation

Momentum equation’s discretization follows the same procedure explained in section 5.2.2.

Energy Equation

Integrating equation 5.3.19 over a certain control volume:

∫

Vcv

T n+1−T n

∆t
dVcv =−

∫

Vcv

(vn+1 ·∇)T n+1dVcv +
∫

Vcv

∇2T n+1dVcv (5.3.20)

For the sake of clarity the different terms are developed separately.

Transient term
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∫

Vcv

T n+1−T n

∆t
dVcv =

T n+1
P −T n

P

∆t
Vcv (5.3.21)

Convective term

∫

Vcv

∇ · (vn+1T n+1)dVcv =
∮

Scv

vn+1T n+1 · n̂ dScv

≈ Fn+1
e T n+1

e +Fn+1
n T n+1

n −Fn+1
w T n+1

w −Fsn+1T n+1
s

(5.3.22)

Diffusive term

∫

Vcv

∇ · (∇T n+1)dVcv =
∮

Scv

∇T n+1 · n̂dScv ≈

≈

(
∂T n+1

∂x

∣∣∣∣e−
∂T n+1

∂x

∣∣∣∣
w

)
∆y+

(
∂T n+1

∂x

∣∣∣∣n−
∂T n+1

∂x

∣∣∣∣
s

)
∆x≈

≈

(
T n+1

E −T n+1
P

∆xde

−
T n+1

P −T n+1
W

∆xdw

)
∆y+

(
T n+1

N −T n+1
P

∆ydn

−
T n+1

P −T n+1
S

∆yds

)
∆x (5.3.23)

If the variables at the walls of the cell are computed using a CDS scheme, then a simple

expression of the following form may be derived for each control volume:

aPT n+1
P +aNT n+1

N +aST n+1
S +aET n+1

E = bP (5.3.24)

Where the coefficients are:

aP =
∆x∆y

∆t
+

∆y

∆xde

+
∆x

∆ydn

−
∆x

∆yds

+
Fn+1

e

2
+

Fn+1
n

2
−

Fn+1
w

2
−

Fn+1
s

2
(5.3.25)

aE =−
∆y

∆xde

+
Fn+1

e

2
(5.3.26)

aW =−
∆y

∆xdw

−
Fn+1

w

2
(5.3.27)

aN =−
∆x

∆ydn

+
Fn+1

n

2
(5.3.28)

aS =−
∆x

∆yds

−
Fn+1

s

2
(5.3.29)

bP =
T n

P ∆x∆y

∆t
(5.3.30)
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These coefficients are valid for every internal control volumes. Regarding the boundary

conditions the coefficient must be slightly modified, as always. In the case of the upper or

lower walls of the cavity, where the walls are adiabatic, the condition imposed is:

∂T

∂y
= 0 (5.3.31)

Regarding the volumes in contact with the left and right walls, where the temperature is

prescribed, the coefficients are:

a′P = 1, a′i6=P = 0, b′P = Tc i f east side (5.3.32)

a′P = 1, a′i6=P = 0, b′P = Th i f west side (5.3.33)

5.3.4. Verification

The verification is made using the benchmark solution provided by G. Davis [21]. These

results are, in order of appearance:

• |Ψ|mid the stream function at the mid-point of the cavity;

• |Ψ|max the maximum absolute value of the stream function and its locatiomn;

• umax the maximum horizontal velocity on the vertical mid-plane of the cavity together

with its location;

• vmax the maximum vertical velocity on the horizontal mid-plane of the cavity together

with its location;

• Nu the average Nusselt number throughout the cavity;

• Nu1/2 the average Nusselt number on the vertical boundary at x = 0 together with its

location;

• Numax the maximum value of the local Nusselt number on the boundary at x = 0 to-

gether with its location;

• Numin the minimum value of the local Nusselt number on the boundary at x = 0 to-

gether with its location;

The Nusselt number (Nu) is a dimensionless number and it represents the ratio of convective

to conductive heat transfer at a boundary in a fluid. A Nusselt number of value one represents

heat transfer by pure conduction, between 1 and 10 is characteristic of laminar flow while

turbulent flow usually are defined by Nusselt numbers in the 100-1000 range.[24] Its calcu-

lation procedure is presented in the following steps [21]. The local heat flux in a horizontal
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direction at any point in the cavity is:

q(x,y) = uT −
∂T

∂x
(5.3.34)

If the heat flux is knwon for each point of the mesh the local heat transfer can be computed

as:

h(x,y) =
q(x,y)

Th−Tc
(5.3.35)

and finally the local Nusselt number would be:

Nu(x,y) =
h(x,y)L

k
(5.3.36)

Therefore, the Nu can be averaged depending on the desired extracted value. In Table 16 the

results are compared with the benchmark solution.

Ra

103 104 105 106

|ψ|mid 1.174 1.177 5.071 5.110 9.111 9.157 16.320 16.784

|ψ|mid - - - - 9.612 9.747 16.750 17.004

x - - - - 0.285 0.718 0.151 0.855

y - - - - 0.601 0.402 0.547 0.392

umax 3.649 3.660 16.178 16.192 34.73 34.789 64.63 65.121

y 0.813 0.825 0.823 0.834 0.855 0.871 0.850 0.872

vmax 3.697 3.701 19.617 19.631 68.59 68.711 219.36 221.018

x 0.178 0.182 0.119 0.127 0.066 0.081 0.0379 0.042

Nu 1.118 1.118 2.243 2.248 4.519 4.543 8.800 8.931

Nu1/2 1.118 1.118 2.243 2.248 4.519 4.543 8.799 8.931

Nu0 1.117 1.118 2.238 2.248 4.509 4.543 8.817 8.930

Numax 1.505 1.509 3.528 3.545 7.717 7.802 17.925 18.387

y 0.092 0.088 0.143 0.151 0.081 0.072 0.0378 0.034

Numin 0.692 0.687 0.586 0.581 0.729 0.722 0.989 0.972

y 1.000 0.994 1.000 0.993 1.000 0.995 1.000 0.994

Table 16: Comparison between the obtained results with a 100 x 100 mesh and the bench-
mark solution [21]

In general, the obtained results are similar to the ones given in [21]. However, there

are some discrepancies. All the results are over estimated respect to the benchmark ones.

Moreover, for greatest two values of Ra number, the location of the maximum absolute value

of the stream function really differs from the benchmark value. This could be explained

considering the symmetry of the flow: a small error on the value of the stream function
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could change the position from one side to the other of the cavity. For this reason, the

relative error can be reasonably computed with the corresponding symmetric value respect

to the plane y = x. For the first two values of Rayleigh number, the maximum absolute value

of the stream function are located at the centre of the cavity (this is the reason why no values

are shown in the table). The relative errors are shown in Table 17.

Ra

- 103 104 105 106

|ψ|mid 0.175 0.123 0.401 1.551

|ψ|max - - 0.382 1.451

x - - 0.001 4.002

y - - 0.684 0.375

umax 0.033 0.032 0.121 0.714

y 0.881 0.871 0.603 1.204

vmax 0.034 0.022 0.168 0.774

x 1.147 0.911 6.074 5.561

Nu 0.000 0.212 0.441 1.477

Nu1/2 0.000 0.212 0.441 1.482

Nu0 0.098 0.444 0.667 1.257

Numax 0.145 0.327 1.099 2.347

y 7.701 1.421 7.502 7.502

Numin 0.154 0.198 0.287 1.655

y 0.502 0.502 0.503 0.503

Table 17: Relative error (%) between the obtained results with a 100 x 100 mesh and the
benchmark values [21]

5.3.5. Results and discussion

The results presented in this section correspond to air or a fluid with similar properties,

since the Prandtl number has been set to 0.71. The most refined mesh is a grid of 100x100

nodes, identically to the one used for the Lid-Driven Cavity flow. Four cases are presented,

corresponding to 4 different Rayleigh numbers Ra = 103, 104, 105, 106,

Contour plots

Temperature contour plots of Fig. 48 show the influence of the Ra on the temperature

field: for low values of Ra the temperature field is stratified, showing almost a linear incre-

ment from the hot wall at the left to the cold one. When Ra increases, the effect of convection

becomes more visible and forces the fluid to rotate clockwise: fluid in contact or near the

left wall heats up and consequently decreases its density, causing its upward movement due

to the buoyancy forces, while the fluid near the right wall is cooled and its density decreases,
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Figure 49: Temperature contour plots for different Ra numbers
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Figure 50: Horizontal velocity component u contour plots for different Ra numbers

causing its downward movement. . As the Ra increases more, the fluid’s recirculation be-

comes stronger and the mixing of the fluid is more effective. At Ra = 106 temperature is

transported mainly because of convection while the effect of conduction becomes negligible.

In figures 50 and 51 the contour plots for the velocity fields are shown.

It can be clearly seen that the horizontal component velocity field agrees with the clock-

wise motion of the flow. At lower Ra the maximum velocity magnitudes are found in the

symmetry axis of the cavity. As the Ra increases, the velocity magnitude maximum increases

too and it is found that the maximum values of velocity tend to move to the corners.

The tendency of the vertical component of the velocity field is very similar to the horizon-

tal velocity field. Positive values (upwards motion) are located at the left wall while negative

values (downwards motion) are located at the right wall of the cavity. The main effect of

increase Ra is the stretching of the areas where velocity is higher, leading to high velocity

gradients near the walls. It can be noted that at the centre of the cavity the velocities have

the smallest values, similarly to horizontal velocity.

In Figure 52 the streamline field is presented.
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Figure 51: Vertical velocity component v plots for different Ra numbers
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(a) Ψ atRa = 103 (b) Ψ atRa = 104

(c) Ψ at Ra = 105 (d) Ψ at Ra = 106

Figure 52: Streamline plots for different Ra numbers
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Streamlines represent the clockwise motion of the fluid inside the cavity. For the first two

values of Ra the fluid movement is very similar, though in the second case being it faster.

For the third case, the main rotation vortex divides into two smaller ones. For the highest

Rayleigh value the vortexes stretched to the corners forming a z-like shape. This can be

explained with the fact that the fluid is heated up fast and gains such vertical velocities that

it makes it difficult for the fluid to follow the rotation appropriately.

6. Numerical analysis of a flat-plate solar collector

6.1. Introduction

A solar collector is a heat exchanger that converts solar radiation into heat. It differs from

a conventional heat exchanger for the fact that the latter usually perform a fluid-to-fluid ex-

change where radiation is an unimportant factor [25]. On the contrary, in solar collectors,

energy is transferred from a distant source of radiant energy to a fluid. Flat-plate solar col-

lectors are usually designed for applications that requires the fluid to go up to 100oC above

the ambient temperature [25]. They use both beam and diffuse solar radiation and little

maintenance is required. Flat-plate solar collector are usually found in solar water heating,

buildings heating, air conditioning and industrial heat processes.

6.1.1. Description of flat-plate collectors

A typical liquid-heating flat-plate solar collector scheme is shown in Figure 53.

Figure 53: Cross section of a basic flat-plate solar collector [25].

The "black" absorber plate is the solar absorbing surface that transfers the absorbed en-

ergy to a fluid, the covers are envelopes applied to reduce convection and radiation losses

to the ambient while the back insulation minimizes the conduction losses. Flat-plate solar

collectors are almost always found in a fixed position, like a roof or a vertical wall, with an

orientation optimized depending on the location and time of the year.
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6.1.2. Basic energy balance equation

The performance of a solar collector can be described with an energy balance that shows

how the incident solar energy is converted into useful energy gain, thermal losses, and op-

tical losses. In particular, solar radiation absorbed by a collector per unit area of absorber

S [W/m2] is equal to the difference between the incident solar radiation and the optical

losses.

The thermal energy losses to the external ambient by conduction, convection, and infrared

radiation is described with the product of an overall heat transfer coefficient UL

[
w

m2 K

]
times

the difference between the mean absorber plate temperature Tpm [K] and the ambient temper-

ature Ta [K]. Therefore, at steady state, the useful energy of a collector of area Ac [m2] is the

difference between the absorbed solar radiation and the thermal losses:

Qu = Ac[S−UL(Tpm−Ta)] (6.1.1)

The problem of this apparently straightforward equation is that the mean absorber plate tem-

perature is not easy to calculate or measure since it depends on many parameters such as the

collector design, the solar radiation and the entering fluid condition. Therefore, Equation

6.1.1 have to be reformulated so that the useful energy can be calculated with the inlet fluid

temperature and a parameter called the collector heat removal factor, which can be evaluated

analytically or measured. The collector efficiency can be defined as the ratio of the use-

ful heat produced in a time interval to the incident solar energy evaluated in the same time

interval:

η =

∫
Q̇udt

Ac
∫

GT dt
(6.1.2)

If the conditions are assumed to be constant over in the time considered (usually one hour),

the efficiency reduces to:

η =
Qu

IT AC
(6.1.3)

6.1.3. Collector overall heat loss coefficient

In order to simplify the study of the thermal losses in the solar collector, it is useful to

introduce the concept of an overall loss coefficient. The thermal network of Figure 54 will

be considered.
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Figure 55: Equivalent thermal network for flat-plate solar collector [25]

Figure 54: Thermal network for a two-cover flat-plate collector: (a) in terms of conduction,
convection, and radiation resistances; (b) in terms of resistances between plates
[25]

At some defined location on the plate where the temperature is TP, solar energy of amount

S is absorbed by the plate. The absorbed energy S divides into thermal losses through the

top and bottom and to useful heat gain. The purpose of this section is to reduce the complex

thermal network of Figure 54 to the simplest possible of Figure 55.

The energy loss through the top is due to the convection and radiation between the absorber

plate and cover. The energy transfer between the plate at Tp and the first cover at Tc1 is the
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same as between two adjacent covers and is also equal to the energy losses to the ambient.

Therefore, the loss through the top per-unit area can be evaluated through the heat transfer

between the absorber plate to the first cover:

qloss,top = hc,p−c1(Tp−Tc1)+
σ(T 4

p −T 4
c1)

1
εp
+ 1

εc1
−1

(6.1.4)

where hc,p−c1 is the convection heat transfer coefficient, εp and εc1 are the emissivities of the

absorber plate and of the cover and σ is the Stefan–Boltzmann constant . Eq. 6.1.4 can be

rearranged as:

qloss,top = (hc,p−c1 +hr,p−c1)(Tp−Tc1) (6.1.5)

where

hr,p−c1 =
σ(Tp−Tc1)(T

2
p +T 2

c1)
1
εp
+ 1

εc1
−1

(6.1.6)

The resistance R3 can be then expressed as

R3 =
1

hc,p−c1 +hr,p−c1
(6.1.7)

A similar expression can be written for R2, the resistance between the covers. Although this

theoretical analysis was performed for a collector with two covers, in reality most collector

have only one cover. The resistance from the top cover to the surroundings has the same

form as Equation 6.1.7. Even though the radiation resistance from the top cover exchange

heat with the sky at Ts, this resistance is referenced to the ambient temperature for simplicity

, so that the radiation heat transfer coefficient can be written as

hr,c2−a = σεc
T 4

c2−T 4
a

T 4
c2−T 4

a

(6.1.8)

The resistance to the surroundings R1 is then given by

R1 =
1

hc,c2−a +hr,c2−a
(6.1.9)

For this two-cover system, the top loss coefficient from the collector plate to the ambient is

Ut =
1

R1 +R2 +R3
(6.1.10)

The top loss coefficient has to be calculated with an iterative process, using Equations

6.1.4 through 6.1.35. The cover temperature has to be guessed at first, from which the con-

vective and radiative heat transfer coefficients between the plate and cover can be calculate.

With these estimates, Equation 6.1.35 can be solved for the top loss coefficient. The heat
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losses from the collector top are evaluated with the top loss coefficient times the overall tem-

perature difference, and since the energy exchange between plates corresponds also to the the

overall heat loss, a new set of cover temperatures can be calculated with an energy balance.

Beginning at the absorber plate, a new temperature is calculated for the first cover. This

new first cover temperature is used then to find the next cover temperature, and so on. For a

general pair of tow plates i and j, the new temperature of plate or cover j can be expressed in

terms of the temperature of plate or cover i as

Tj = Tj−
Ut(Tp−Ta)

hc,i− j−hr,i− j
(6.1.11)

The iterations continue until the cover temperatures do not change for a set tolearance.

The energy loss through the bottom of the collector is again modelled with two series of

resistors, R4 and R5, in Figure 55, where R4 represents the heat transfer resistance to the

insulation and R5 represents the convection and radiation resistance to the ambient. The

magnitudes of R4 and R5 are such that it is usually possible to assume R5 is zero and all

resistance to heat flow is due to the insulation [25]. The back loss coefficient Ub can be

evaluated as:

Ub =
1

R4
=

k

L
(6.1.12)

where k and L are the insulation thermal conductivity and thickness, respectively. For most

collectors the evaluation of edge losses is complicated. However, in a well-designed system,

the edge loss should be small so that it is not necessary to predict it with great accuracy

[25]. The edge losses are assumed to occur around the perimeter of the collector system.

The losses through the edge should be referenced to the collector area. If the edge loss

coefficient–area product is (U/A)edge, then the edge loss coefficient, based on the collector

area Ac, is

Ue =
(UA)edge

Ac
(6.1.13)

If it is assumed that all heat losses occurs to the same sink temperature Ta, the collector

overall loss coefficient UL contains the top, bottom, and edge loss coefficients:

UL =Ut +Ub +Ue (6.1.14)

6.1.4. Temperature distribution between tubes and the collector efficiency

factor

The temperature distribution between two tubes can be derived with the temporary assump-

tion that the temperature gradient in the flow direction is negligible. The sheet-tube config-

uration is shown in Figure 56. The distance between the tubes is W , the tube diameter is

D, and the sheet is thin with a thickness δ . The temperature gradient through the sheet is
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Figure 56: Sheet and tube dimensions [25]

Figure 57: Energy balance ona fin element [25]

considered negligible, being the material a good conductor. The sheet above the bond is at

a base temperature Tb. The region between the center-line separating the tubes and the tube

base is treated as a classical fin problem [25]. The fin, shown in Figure 57(a), is of length

(W −D)/2. An elemental region of width ∆x and unit length in the flow direction is shown

in Figure 57(b). An energy balance on this element yields

S∆x−UL∆x(T −Ta)+

(
−kδ

dT

dx

)∣∣∣∣x−
(
−kδ

dT

dx

)∣∣∣∣
x+∆x

= 0 (6.1.15)

where S is the adsorbed solar energy previously defined. Dividing through by ∆x and

finding the limit as ∆x approaches zero yield

d2T

dx2 =
UL

kδ

(
T −Ta−

S

UL

)
(6.1.16)

The two boundary conditions are symmetry at the center-line and the known base temper-

ature Tb:
dT

dx
|x=0 = 0, T |x=(W−D)/2 = Tb (6.1.17)

The detailed solution of the equation can be found in [25]. The energy conducted to the

region of the tube per unit of length in the flow direction can now be found by evaluating

Fourier’s law at the fin base:

q′f in = (W −D)[S−UL(Tb−Ta)]
tanh m(W −D)/2

m(W −D)/2
(6.1.18)
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where, for convenience, m is defined as:

m =

√
UL

kδ
(6.1.19)

It is convenient to use the concept of a fin efficiency to rewrite Equation 6.1.18 as

q′f in = (W −D)F [S−UL(Tb−Ta)] (6.1.20)

where

F =
tanh[m(W −D)/2]

m(W −D)/2
(6.1.21)

The useful gain of the collector also includes the energy collected above the tube region. The

energy gain for this region is

q′tube = D[S−UL(Tb−Ta)] (6.1.22)

and the useful gain for the tube and fin per unit of length in the flow direction is the sum of

Equations 6.1.20 and 6.1.22:

q′u = [(W −D)F +D][S−UL(Tb−Ta)] (6.1.23)

The total useful gain from Equation 6.1.23 is transferred to the fluid through the heat

flow resistance between the bond and the tube-to-fluid resistance. The useful gain can be

expressed in terms of the two resistances as

q′u =
Tb−Tf
1

h f iπDi
+ 1

Cb

(6.1.24)

where Di is the inside tube diameter and h f i is the heat transfer coefficient between the

fluid and the tube wall. The bond conductance Cb can be estimated from knowledge of the

bond thermal conductivity kb, the average bond thickness γ and the bond width b [25]. On a

per-unit-length basis,

Cb =
kbb

γ
(6.1.25)

The base temperature Tb has to be eliminated from the equations and obtain an expression for

the useful gain in terms of dimensions, physical parameters and the local fluid temperature.

Solving Equation 6.1.26 for Tb, substituting it into Equation 6.1.23, and solving the result

for the useful gain yields:

q′u =WF ′[S−UL(Tf −Ta)] (6.1.26)
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Figure 58: Energy balance on a fluid element [25]

where the collector efficiency factor F ′ is given as:

F ′ =
1/UL

W
[

1
UL[D+(W−D)F ] +

1
Cb

+ 1
πDih f i

] (6.1.27)

At a particular location, F ′ is the ratio of the actual useful energy gain to the useful gain

that would result if the absorber had been at the local fluid temperature Tf . Another inter-

pretation for the parameter F ′ becomes from the denominator of Equation 6.1.27, which is

the heat transfer resistance from the fluid to the ambient air. This resistance will be given the

symbol 1/Uo. The numerator is the heat transfer resistance from the absorber plate to the

ambient air so that F ′ is the ratio of these two heat transfer coefficients:

F ′ =
Uo

UL
(6.1.28)

The collector efficiency factor is essentially a constant for any collector design and fluid flow

rate even though the factor F ′ is a function of Ul and h f i, that have some sort of temperature

dependence but it can be assumed negligible. [25].

6.1.5. Temperature distribution in flow direction

The useful gain per unit flow length as calculated from Equation 6.1.26 is the heat transferred

to the fluid. The fluid enters the collector at temperature Tf i and increases in temperature until

it exits at temperature Tf o.

Referring to Figure 58 an energy balance on the fluid flowing through a single tube of

length ∆y is performed:

(
ṁ

n

)
CpTf |y−

(
ṁ

n

)
CpTf |y+∆y +∆yq′u = 0 (6.1.29)

where ṁ is the total collector flow rate and n is the number of parallel tubes. Dividing by ∆y

and finding the limit as ∆y approaches zero and substituting in Equation 6.1.26 for q′u yields:

ṁCp
dTf

dy
−nWF ′[S−UL(Tf −Ta)] = 0 (6.1.30)

93



6. Numerical analysis of a flat-plate solar collector

if F ′ and UL are assumed independent of position, then the solution of the fluid temperature

at any position y is:
Tf −Ta−S/UL

Tf i−Ta−S/UL
= exp

(
−

ULnWF ′y

ṁCp

)
(6.1.31)

finally, if the collector has length L in the flow direction and the outlet fluid temperature is

Tf o at y = L, the equation can be rearranged as:

Tf o−Ta−S/UL

Tf i−Ta−S/UL
= exp

(
−

ULAcF ′

ṁCp

)
(6.1.32)

where the quantity (nWL) is the collector area Ac.

6.1.6. Collector heat removal and flow factor

It is useful to define a parameter that establishes a relation between the actual useful energy

gain of a collector to the useful gain if the whole collector surface were at the fluid inlet tem-

perature [25]. This parameter is called the collector heat removal factor FR. In mathematical

form is defined as:

FR =
ṁCp(Tf o−T f i

Ac[S−UL(Tf i−Ta]
(6.1.33)

with further passages [25] the equation can be written as:

FR =
ṁCp

AcUL

[
1− exp

(
−

AcULF ′

ṁCp

)]
(6.1.34)

FR defines the ratio of the actual heat transfer to the maximum possible heat transfer. The

maximum possible useful energy gain in a solar collector occurs when the whole collector

is at the inlet fluid temperature because heat losses to the surroundings are at a minimum, so

that FRtimes this maximum possible useful energy gain is equal to the actual useful energy

gain Qu:

Qu = AcFR[S−UL(Ti−Ta)] (6.1.35)

With Equation 6.1.35, the useful energy gain is finally calculated as a function of the inlet

fluid temperature, that was the scope of all the derivation. The inlet fluid temperature is

usually known or it is easy to measure. The effect of the parameter FR is to reduce the useful

energy gain from what it would have been if the whole collector absorber plate had been at

the inlet fluid temperature.

6.2. Analysis of a flat-plate solar collector with a one-dimensional

model

The performance of a typical flat-plate solar collector can be simply analyzed with a one-

dimensional model, derived thanks to all the considerations and equations of Section 6.1.
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Latitude Φ 41.39o

Day (June 15th) n 167
Surface inclination β 15.30o

Surface orientation γ 0 (south)

Table 19: Input data for the solar incident calculation

The flat-plate collector is supposed to be located in the city of Barcelona (Spain). Its perfor-

mances will be analysed during a typical summer day and with a fixed orientation towards

the sun, the sky will be assumed clear.

6.2.1. Calculation of the instantaneous incident solar radiation

The objective of this section is to obtain the total incident solar radiation IT for the desired

day, necessary for the calculation of the parameter S previously mentioned. This data can

be simply measured or retrieved from a weather data station and then elaborate though a

radiation model to calculate the instantaneous incident solar radiation for the desired day

and solar collector inclination. The Weather Data file is provided in a .stat extension where

the average monthly global horizontal radiation is provided. The data is reported in Table

18.

January 6.80

February 9.65

March 13.88

April 18.54

May 22.25

June 24.03

July 23.37

August 20.42

September 16.46

October 11.40

November 7.73

December 6.04

Table 18: Monthly solar radiation average values for Barcelona [MJ/m2day]

The input data for the calculation (and their description) are listed in Table 19

The day can be chose quite arbitrarily, however, June is the month with the highest average

radiation while the day it was chosen for simplicity purposes (no interpolation between the

data is needed). Moreover, the inclination of the collector is calculated in order to maximize

the impacting solar radiation and the collector is obviously oriented to south to maximize the

solar exposure time.
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The clearness index is defined as:

Kt =
H

H0
(6.2.1)

H0 is the extra-terrestrial radiation, evaluated with the following equation:

H0 =
86400Gsc

π

[
1+0.033cos

(
360n

365

)](
cosΦcosδ sinωs +

πωs

180
sinΦsinδ

)
(6.2.2)

where:

1. Gsc = 1367 W
m2 is the solar constant;

2. δ is the declination of the sun. The declination is the angular position of the sun at

solar noon with respect to the plane of the equator; it can be calculated with:

δ = 23.45sin

(
360

284+n

365

)
(6.2.3)

3. ωs is the sunset hour angle, defined by the relation

cos ωs =−
sin Φ sin δ

cos Φ cos δ
=−tan Φ tan δ (6.2.4)

After obtaining the clearness index, the rateo of the diffuse radiation over the total can be

evaluated as follows [25]:

Hd

H
=





0.9 for Kt ≤ 0.17

1.188−2.272Kt +9.473K2
t −21.865K3

t +14.648K4
t for 0.17 < Kt ≤ 0.75

−0.54Kt +0.632 for 0.75 < Kt ≤ 0.80

0.2 for Kt > 0.80
(6.2.5)

Now the diffuse radiation Hd can be computed. The interest though, in analysing a solar

collector, is in calculate the instantaneous radiation I and its components "beam", "diffuse"

and "reflected", denoted by the subscripts b, d and ρ . From statistical studies is possible to

obtain correlations which relate H and I [25]. Two coefficients are defined:

rt =
I

H
(6.2.6)

rd =
Id

Hd
(6.2.7)

where:

rt =
π

24
(a+b cos ω)

cos ω− cos ωs

sin ωs−
πωs
180 cos ωs

(6.2.8)
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rd =
π

24
cos ω− cos ωs

sin ωs−
πωs
180 cos ωs

(6.2.9)

a = 0.409+0.5016 sin (ωs−60) (6.2.10)

b = 0.6609−0.4767 sin (ωs−60) (6.2.11)

Now, the fact that the radiation is impacting on a tilted t surface has to be taken into

account. The total instantaneous solar radiation can be calculated as:

It = Ib,t + Id,t + Iρ,t (6.2.12)

The beam radiation is evalueated as:

Ib,t = IbRb (6.2.13)

where

Rb =
cos θ

cos θz
(6.2.14)

θ and θZ are respectively the incident angle of radiation for the tilted surface and for a

horizontal surface, they are calculated with geometric considerations that can be found in

[25]. Adopting an isotropic model, the diffuse radiation is:

Id,t = Id

(
1+ cos β

2

)
(6.2.15)

and the reflected radiation is:

Iρ,t = Iρ

(
1− cos β

2

)
(6.2.16)

where ρ is the albedo of the surrounding surfaces. With this simple radiation model, the

instantaneous radiation for a tilted surface, in a chosen position and in a chosen day of the

year can be evaluated. The results are shown in Figure 59.

6.2.2. Evaluation of the total heat loss coefficient

In order to calculate the total heat loss coefficient of a solar collector, an iterative procedure

has to be performed as explained in section 6.1.3. The algorithm is explained below:

1. Assume a cover temperature T ∗c ;

2. Evaluate the radiation heat transfer coefficients hr,p−c and hr,c−a;

3. Evaluate the plate-cover convective heat transfer coefficient hc,p−c = Nu k
L ;

4. Evaluate the top loss coefficient Ut ;

97



6. Numerical analysis of a flat-plate solar collector

Figure 59: Instantaneous solar radiation for the solar collector, in Barcelona on June 15th

5. Re-evaluate the cover temperature imposing an energy balance qc−p = qloss, leading

to:

Tc = Tp−
Ut(Tp−Ta)

hc,p−c +hr,p−c
(6.2.17)

6. if Tc 6= T ∗c −→ T ∗c = Tc and go to 2

7. Evaluate the convection and radiation fluxes as well as the total losses by the cover.

At point 3 there is a crucial evaluation for the correct analysis of the collector’s perfor-

mances. The Nu can be evaluated from a correlation or calculated with the numerical meth-

ods used in this work. In particular, the Nu number can be calculated with the methods

explained in section 5.3, treating the tri-dimensional space between the absorber and the

plate as a rectangular 2D cavity. Both the correlation and the numerical method will be im-

plemented and their differences discussed. In the pure one-dimensional analysis performed

in section 6.2.3, the Nu is calculated thanks to a correlation [25]:

Nu = 1+1.44

[
1−

1708(sin (1.8β ))1.6
Ra cos β

][
1−

1708
Ra cos β

]
+

[(
Ra cos β

5830

)1/3

−1

]

(6.2.18)

.

6.2.3. Results and discussion

A typical flat-plate collector is simulated under test conditions in order to determine the usual

test parameters. The collector has the following characteristics:
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Number of glass covers 1

Back-insulation thickness 0.070 m

Back-insulation thermal conductivity 0.0245 W/mK

Edge loss coefficient 0.098 W/m2K

Plate-to-cover spacing 0.028 m

Circulating fluid Water

Flow (based on gross area) 0.02 kg/s m2

Number of tubes in parallel 8

Distance between tubes 0.115 m

Tube diameter (thin walled) 0.015m

Collector gross length 2.5m

Collector gross width 1.0 m

Bond conductance between tubes and absorber ∞

Absorber plate thickness 0.005 m

Absorber plate material Copper

Absorber plate thermal conductivity 385 W/m2 K

Plate emittance curve [25] −0.00443+0.0003451 ·T +(2.6186 ·10−7)T 2

Cover emissivity 0.84

Cover τα product 0.88

Table 20: Input data for flat-plate solar collector simulation

The test procedure requires a minimum total solar radiation of 800 W/m2 on the collector

aperture with less than 20% diffuse solar radiation, a mass flow rate of 0.02 kg/sm2, and a

wind speed between 2 and 4 m/s. The collector is operated in Barcelona, Spain (latitude

41.4o , longitude 2.2o), on June 15th at a slope of 15.3o (the optimal angle has been found

with the radiation model) on a clear day, an ambient temperature of 20oC in a climate with

a relative humidity of 77%. The inlet temperature varies from 25 to 130oC (at a pressure

of 3 bar to avoid boiling). The wind speed over the collector and its mounting is 2.6 m/s.

The ground reflectance is estimated to be 0.4. The simulation generates a plot of collector

efficiency as a function of (Tin−Ta)/IT and determines values for the linear parameters given

by Equation 6.17.3 and values for the second-order parameters given by Equation 6.17.7.

Solution

The solution algorithm is presented below:

1. Assume mean absorber plate temperature T ∗p and mean water temperature T ∗w ;

2. Determine Ul with the algorithm of Section 6.2.2;

3. Solve for the temperature distribution along the tubes and determine the outlet water

temperature Tf o;
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4. Determine the useful heat transfer to the fluid Qu = ṁcp(Tf o−Tf i)

5. Determine the new mean absorber plate Tp from an energy balance Tp =
(τα)It−Qu/Ac

UL
+

Ta

6. if Tp 6= T ∗p go to step 1.

As with all systems of nonlinear equations, reasonable initial guesses are required. For

this problem for all inlet fluid temperatures initial guesses for the mean plate temperature,

mean fluid temperature and mean cover temperature are needed. In this simulated test all

measurements are assumed to occur very close to noon, so that the instantaneous radiation

is fixed at IT = 809.1W/m2 K, the maximum available for the chosen day. In reality it is

necessary to make adjustments and then wait for steady-state conditions between each test

point [25].

Water properties are evaluated with the an IAPWS IF-97 code in order to have high ac-

curacy. The heat transfer coefficient inside the tube can be calculated with a simplified

procedure that can be retrieved in many heat transfer books (e.g., McAdams, 1954; Kays

and Crawford, 1980; Incropera and DeWitt, 2002). The top loss coefficient , back loss coef-

ficient, and overall loss coefficient are found using the methods of Section 6.1.3. The values

of F ,F ′ and FR are found using the methods of Sections 6.1.4 and 6.1.6. The useful energy

gain is found using Equation 6.1.35. The wind heat transfer coefficient is found using an

approximated correlation of Watmuff et al.(1977)

h = 2.8+3.0 V (6.2.19)

where V (m/s) is the wind velocity.

A linear fit (using the gross collector area) yields η = 0.84− 4.49(∆T/I) and a second

order fit yields η = 0.84−3.37(∆T/I)−6.19(∆T/I)2 where ∆T = Tin−Ta. The efficiency

curve is shown in Figure 60. The efficiency curve is approximated quite perfectly by the

second-order polynomial fit although also the linear fit gives a good approximation. The

solar collector, for the imposed conditions, presents optimal performances, with really high

efficiency for the lowest inlet water temperature. As expected, the efficiency decreases when

the inlet water temperature increases. However, The performances shown in Figure 60 as-

sume that the sun is perpendicular to the plane of the collector, which rarely occurs. For the

glass cover plates of a typical FPC, specular reflection of radiation occurs, thereby reducing

the (τα) product [26]. For this reason, it is important to quantify these effects of angle of

incident of the incident solar radiation. The incidence angle modifier, Kτα , is defined as the

ratio of (τα) at some incident angle θ to (τα) at normal incidence (τα)n. The dependence

of (τα) on the angle of incidence of radiation on the collector varies from one collector to

another, and the standard test methods include experimental estimation of this effect [25].
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Figure 60: Efficiency curve of the flat-plate solar collector, with fixed conditions

The incident angle modifier for beam radiation incident at angle θ is written as:

Kτα(θ) =
(τα)b

(τα)n
(6.2.20)

Then for clear days the useful heat is calculated as:

Qu = AcFR[IT Kτα(τα)n−UL(Ti−Ta)] (6.2.21)

A general expression has been suggested by Souka and Safwat (1966) for angluar depen-

dance of Kτα for collectors with flat covers as:

Kτα = 1−b0

(
1

cos θ
−1

)
(6.2.22)

where b0 is constant called the incident angle modifier coefficient. For a single glass cover,

the factor b0 is about 0.1 [26]. For the chosen flat-plate collector, a value of 0.136 is chosen.

In the practice, the test are done with beam incident angles of 0o, 45o and 60o, usually

changing the slope of the collector. The problem with changing the slope of this typical flat-

plate collector is that changing the slope will impact the convection between the absorber

plate and the cover, so that this aspect will be further analysed in the next sections with a

numerical simulation.
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(a) Dependence on (θ ) (b) Dependence on (1/cos θ −1)

Figure 61: Incidence angle modifier as function of (θ ) (a) and (1/cos θ −1) for a collector
with a flat cover.

6.3. Numerical simulation for the free convection heat transfer

phenomena between absorber and cover

For the design of the performance of solar collectors, the heat losses towards the environ-

ment play an important role in determining the efficiency of the collector. It is known that the

mayor heat losses are from the top through the glass cover [27], thus the accurate calculation

of the heat losses from the top of the collector to the surroundings is very important. Gen-

erally, these losses are calculated with approximated heat transfer coefficients, such as the

ones for two inclined parallel plates (Duffie and Beckmann, 1991), also used in this work.

One of the many important objectives in designing solar collectors is to reduce the heat loss

through the covers so that care must be taken. In this last section, a numerical investigation

of the natural convection heat transfer in a tilted rectangular, such as the cavity between the

absorber plate and the cover of a flat plate solar collector, is presented. A first parametric

study is performed varying the aspect ratios 10≤ A≤ 80), inclination angles (15≤ β ≤ 45)

and Rayleigh numbers (104 ≤ Ra ≤ 106) of the tilted cavity, in order to validate the model

comparing the results to literature. Secondly, an analysis is performed on the exact same col-

lector analyzed with the one-dimensional model in order to compare the Nu number obtained

and enlighten their differences.

6.3.1. Problem definition

A rectangular cavity with a length L and a height H is shown in Figure 62. Two sidewalls

(West and East) are assumed thermally insulated (in reality heat losses through the edges

are present), and the other walls are at constant temperatures Th and Tc, respectively. Air

inside the cavity is considered. The Rayleigh numbers are between 104 ≤ Ra≤ 106, and the

aspect ratios of 8, 40 and 80 are considered in the computations. The inclination angles are
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Figure 62: Rectangular cavity physical scheme [27]

in the range of 15o-45o. Others parameters selected are ∆T = 50K ,which corresponds to

temperature difference between the absorber plate, Th, and the cover, Tc, in solar collectors.

The assumptions are the same of the DHC problem, except for the fact that the gravity

vector now has two components, in spite of one, along the x and y axis. This does not change

much the equations of Section 5.3.3 but the discretization procedure has to take into account

the change of direction of the acceleration of gravity. As always, three meshes are created

to store the data of the scalar values and the velocity field. The mesh are created for each

simulation according to the dimension of the cavity and to achieve a computational time of

the order of minutes because of the high number of cases studied. As it was made in the

DHC cavity study, the Pr number is assumed to remain constant.

6.3.2. Validation of the 2D model

In Figure 63 two test case are simulated, with the exact ratio and Ra of two literature publi-

cations [28][29] in order to compare the simulated results with experimental measures. The

1D model is also plotted to show its accuracy. At first glance the two-dimensional model

results are similar to the experimental ones but some differences have to be noted. First of

all, for these relatively low aspect ratio (A), at β = 15o the calculated Nu number is almost

always higher then the experimental ones (even though in Figure 63 (a) it is congruent with

Inaba results) while when β increases, the Nu shows a descending behaviour similar to the

experiments and to the 1D model, although the slope is not monotone but it slightly oscillate.

This oscillation could be generated from a slower convergence of the simulation when the

slope increases, because the flow becomes more turbulent due to the more important role of

the gravity acceleration in modifying the flow field. In order to guarantee the grid of indepen-

dence of the results, further simulations have been performed for Ra = 22340, 105, 106 and

A = 8.4, shown in Figure 64. It can be noted that the results have a strong grid dependence

only for Ra = 106 because, due to flow approaching turbulence, a stable solution is difficult

to obtain with a coarse mesh. The evolution of the computed overall Nu over time it is shown
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(a) Case study - 1
(b) Case study - 2

Figure 63: Model validation with experimental data with fixed ”A” and ”Ra”

also in Figure 65 for A = 8.4 and Ra = 23340 and it can be clearly seen that the oscillations

stop after ∼ 500 iterations. Nevertheless, the overall results are generally satisfying and

show a good accordance with the experimental results, especially considering that the Nus-

selt number predicted by the 2D model is on the order of the results from experiments and

1D model, while some discrepancies on the trend are observed. These discrepancies may

be attributed to aspects such as the presence of thermal radiation, not considered in the 2D

model, as well as the fact that the compared experimental results may not fully represent the

physics of the flow simulated by the 2D flow, among others. These issues will be addressed

in the future works.

In order to pursue a better understanding of the difference of implementing a relatively

simple one-dimensional model and a rather more complex two-dimensional one, further sim-

ulation are performed with a wide range of geometrical ratio of the cavity while changing

also the Ra number and the inclination of the cavity. In particular 36 simulation are per-

formed changing at least one of those parameters, results are shown in Figure 66 and Table

21. In the table are shown also the used mesh for each simulation. In order to have a reason-

able computational time, the total number of CVs was take similar to the ones used in the

simulation of the DHC problem (∼ 10000). The mesh has been changed along with ratio of

the cavity. For high ratio the length L of the cavity has to increase a lot in order to achieve the

desired Ra so it is natural to increase the number of CVs in the direction of L; nevertheless,

the interest is in the phenomena that happen along the H direction of the cavity, thus it was

preferred to maintain, also for high ratio, a significant number of CVs, although H was only

a few centimeters long.

The overall results are satisfying and they do not show any important difference, but there

are some general observation that can be made looking at the figures. For low geometrical

ratio A, the second-dimensional model, particularly for Ra = 106, tends to underestimate the

Nu respect to the correlation. For A = 40 and for Ra = 105 and Ra = 106 the simulated Nu is

104



6. Numerical analysis of a flat-plate solar collector

Figure 64: Grid Independence for several Ra and A = 8.4

Figure 65: Global Nu for Ra = 23340 and A = 8.4
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Ratio (A) Mesh Ra β Nucorr Nu2D

10 150x65

104

15o 2.219 2.501
25o 2.179 2.162
35o 2.116 1.699
45o 2.020 2.205

105

15o 3.946 4.083
25o 3.891 3.619
35o 3.805 2.970
45o 3.685 3.730

106

15o 6.928 6.696
25o 6.812 6.230
35o 6.634 6.455
45o 6.385 5.497

40 170x45

104

15o 2.219 2.439
25o 2.179 2.119
35o 2.116 1.224
45o 2.020 1.251

105

15o 3.946 4.167
25o 3.891 4.137
35o 3.805 3.847
45o 3.685 3.865

106

15o 6.928 7.014
25o 6.812 7.645
35o 6.634 7.417
45o 6.385 7.109

80 180x35

104

15o 2.219 2.575
25o 2.179 2.199
35o 2.116 1.175
45o 2.020 1.213

105

15o 3.946 4.315
25o 3.891 4.163
35o 3.805 3.906
45o 3.685 3.421

106

15o 6.928 7.687
25o 6.812 7.811
35o 6.634 6.760
45o 6.385 6.641

Table 21: Nu calculated with the 2D simulation compared with 1D correlation
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(a) Parametric study with A = 10 (b) Parametric study with A = 40

(c) Parametric study with A = 80

Figure 66: Comparison between 1D correlation and 2D simulation of the average Nusselt
number inside a rectangular inclinated cavity

now overestimated respect to the correlation while for Ra = 104 the Nu continues to be un-

derestimated. The situation for high geometrical ratios A = 80 does not change significantly,

the Nusselt is overestimated at high Rayleigh numbers while it is underestimated at low Ra.

It has to be noted that the 1D correlation does not take into account the geometrical ratio

and the major discrepancies (if the 2D simulation is assumed more accurate) are found for

Ra = 106, probably due to the fact that the flow is approaching the turbulence and the corre-

lation is not accurate enough to take into account the phenomenon. Moreover, the effect of

the β on the average Nusselt number is almost negligible if compared to the effect of the Ra

number, so that the inclination of a solar collector should be designed looking at maximizing

the impacting solar radiation rather than the minimizing the heat thermal losses through the

environment.
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A 89.3
Ra 1.48 ·105

β 15.3

Table 22: Parameter simulation for a "real" flat-plate solar collector

6.3.3. Two-dimensional simulation results and comments

A flat-plate solar collector with the same exact specification of Section 6.2.3 is simulated in

order to have a direct comparison with the two models. The simulation parameters for this

simulation are shown in Table 22.

The resulting Nusselt calculated with the simulation is Nusim = 4.19 while the one calcu-

lated with the correlation is Nucorr = 3.91. The simulation estimates a higher Nusselt number

as expected with the considerations explained in Section 6.3.2. The results are shown in Fig-

ures 67 to 70. It can be noted from these figures that all the presented results show a repeating

pattern along the length of the collector, for this reason not all the simulation domain is pre-

sented in favour of only two sections (left and right sides) of the cavity. All the contour plot

patterns have a characteristic length of ∼ 1.5÷ 2 times the distance from the absorber and

the cover. It can be seen in Figure 67 that the temperature is higher in each "pattern section"

center, where heat is transported mainly by advection. Indeed, highest temperature regions

are characterized by highest vertical velocities. Figure 70 shows the creations of small vortex

all along the collector cavity, it is clearly visible that two different vortexes are alternating

when moving along the cavity, one of them presents higher velocity vectors while the other

one has less intensity. All the velocity field plots recall the DHC cavity plots of Figure 50

and 51 at Ra = 104 and same comments could be made about the slope of the velocity com-

ponents contour plots. It is interesting that different "small" vortexes are created instead of

only a "big" one; it can be explained by the fact that the inclination of the cavity is not ele-

vated (β = 15.3o) and that the distance between the absorber plate and the cover is little if

compared to the collector length. It was found from the simulations of Section 6.3.2 that the

vortexes tend to stretch out when increasing the β in a similar way as shown in Figure 71,

causing a slight reduction of the Nu and the overall loss to the ambient.

Regarding the matter of validating the code, further work is surely needed. In this work,

the code applied to this rectangular cavity was only validated properly for a square cavity

with β = 0 in Section 5.3. The verification that has been done for the square cavity, however,

is not enough to ensure the validity of the code. Although a comparison of the average

Nusselt obtained with the results of two experiments and a correlation has been performed,

correct validation requires an accuracy check over much more data (again, as in Section

5.3.4). Furthermore, the calculated Nusselt is an average value, not punctual and therefore

not suitable for such a study. A future approach could be to find in the literature a benchmark
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(a) Left side

(b) Right side

Figure 67: Temperature contour plots
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(a) Left side

(b) Right side

Figure 68: Horizontal velocity component u contour plots
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(a) Left side

(b) Right side

Figure 69: Vertical velocity component v contour plots
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(a) Left side

(b) Right side

Figure 70: velocity field vector plot

Figure 71: Streamlines for a cavity of A = 16, Ra = 104 for β = 15o−35o[27]
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case with all the necessary data or to verify the code with an experimental setup, with a

similar collector installed in the same place and under the same conditions.
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7. Conclusions and possible future research

This study was intended to provide the author of this paper with expertise in the field of

numerical methods applied to Heat Transfer and Computational Fluid Dynamics. Thanks to

the development of this work, a general knowledge of the methods and numerical algorithms

used to solve complex equations such Navier-Stokes was acquired.

In general terms, the scope and the of the study has been accomplished. The first part

of the study, the development of the numerical methods and the resolution of benchmark

problems, has produced satisfying results, since the developed codes solutions coincided

with benchmark solutions with a reasonable accuracy, with slight discrepancies due to the

different numerical methods and approximations that were used or to the different types and

refinements of meshes.

One of the most remarkable achievements of this first study is the fact that one learns

how to obtain good solutions with a desired order of accuracy. Moreover, the ability to

discuss a solution has been acquired. When applying a numerical method to some physical

phenomenon, it is always necessary to check that the solution makes sense from both a

numerical point of view (e.g. with a grid independence) but also from a physical point of

view. For this reason, in all sections of the project there is, first of all, a verification that

the code developed works correctly and then an analysis of the phenomenon from a physical

point of view, trying to provide an explanation of the phenomenon analysed and why the

solution obtained can be considered reliable.

In the final part of the work, these numerical methods were applied to a study of a flat-plate

solar collector. A brief introduction on the operation of this type of collectors was provided,

together with a one-dimensional model to analyse the performance of the collector. The

study of natural convection in a cavity has therefore been applied to the study of heat transfer

between the absorber plate and the cover, allowing a comparison with the one-dimensional

model. Although the results of this last analysis have been in line with some experiments

found in literature, a validation must be further deepened with an accurate research of a

benchmark case in literature or with a measurement and an experimental study of a collector

operating in the same conditions and in the same geographical position. Nevertheless, it has

been demonstrated that HF and CFD codes can be used (and are often used) in many energy

applications and can prove to be a truly versatile and powerful tool in the hands of an energy

engineer.

Regarding the future research, surely an experimental study of a flat-plate collector should

be developed and used as a benchmark setup for the validation of CFD and HT codes. The

next step can be to expand the area of validity of these codes in the phenomenon of turbu-

lence. Turbulence is present in many practical applications and consists of a real step forward

in the development of CFD codes. A further improvement in the code would certainly be

to move from a two-dimensional domain to a real three-dimensional domain, thus opening
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up the possibility of simulating phenomena, both in turbulent nature and in geometries that

cannot be simplified into two or one dimension. Once the code developed has been found

to be satisfactory, the possible applications are countless. One possibility is the accurate

simulation of energy production processes using renewable sources, such as flat-plate so-

lar collectors or concentrating solar collectors, which are widely used in Spain and which

certainly need a high level of optimisation for their use to be profitable.
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