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Summary

In recent years, Smart Metering Infrastructure (SMI) has enabled the easy col-
lection of high frequency building-related energy consumption data. There-
fore, it becomes necessary to extract from meter level data as much informa-
tion as possible in order to optimize building energy management, by reducing
losses due to inefficiencies or anomalous behaviour of sub-systems and equip-
ment. This paper proposes an innovative top-down Anomaly Detection and
Diagnostics (ADD) methodology able to automatically detect at whole building
meter-level anomalous energy consumption and then perform a diagnosis on
the sub-loads responsible of that anomalous behaviour. The process consists of a
multi-step procedure combining various data mining techniques. An evolution-
ary classification tree is firstly implemented to discover frequent and infrequent
daily aggregated energy patterns opportunely abstracted through an Adaptive
Symbolic Aggregate approXimation (ASAX) process. Then a post-mining analy-
sis based on Association Rule Mining (ARM) is performed to discover the main
sub-loads affecting the detected anomalous energy patterns at high meter level.
The methodology is tested on metering data related to the electrical load of a
transformer substation of a university campus, leading to the development of a
tool useful to support the energy management with an effective characterization
of energy demand at a daily scale.
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Chapter 1

Introduction

In the last years, the building sector is continuously increasing its energy de-
mand, accounting for one-third of global energy consumption [28]. According
to the International Energy Agency (IEA) this trend is the result of a combination
of different factors: extreme climatic events, increasing demand for building en-
ergy services and the easier access to electricity and ownership of heating and
cooling appliances in emerging economies. At the actual state energy efficiency
innovations and sustainable policies are not able to keep pace with the energy in-
crease demand rate. However, sustainability concerns and energy targets set by
the international community [1] enhanced researches and development efforts
for energy savings.

Next to building envelope and construction improvements, higher plug-load
devices efficiency and energy-efficient equipment, a consistent part of energy re-
duction potential hides behind energy management strategies. Malfunctioning
of sensors or control logics, unexpected environment conditions, wrong settings,
human or equipment-related faults is the cause of massive energy waste. Build-
ings are full of energy savings potential, implementation of energy management
strategies and automatic control could save up to 22% of building energy con-
sumption by 2028 [2]. This is the reason why many governments are adopt-
ing policies, like the European Energy Performance of Building Directive [32],
incentivizing the installation of Building Automation Systems (BAS) and Smart
Metering Infrastructure (SMI) to implement energy management strategies for
reducing energy wastes and operational costs.

In this context, it is worth reminding how the adoption of Information Tech-
nology (IT) is disruptively changing and transforming the building sector. The
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1 – Introduction

most interesting side of technological advancement in electronics and measure-
ments instrumentation and its wide adoption, is the reduction of costs of sen-
sors installation and data storage [26]. This aspect lead to a broader adoption
of Advanced Metering Infrastructure (AMI) which are enabling the collection of
massive amounts of data that could lead, if effectively analyzed, to significant
energy savings [13]. The quantity, quality and detail of data and the successive
analysis and results strongly depend on the set up of the sensors infrastructure.
Those sensors measures, depending on the level of detail provided, can be clas-
sified as follows:

• Meter level: refers to aggregated measures at whole building level of vari-
ables such as the electrical energy for lighting, cooling, ventilation or gas
consumption for heating;

• System level: refers to aggregated measures of a particular system such as
the electrical load absorbed by a pump, boiler, fans or terminal unit;

• Detailed-level: refers to punctual measures of a particular variable such as
temperature or flow rate.

By their nature, buildings are complex systems in which constant interactions
between humans, technological systems, whether and physical phenomena are
present. As a consequence, related data are heterogeneous and can be catego-
rized as follows:

• Climatic data: dry bulb temperature, dew point temperature, pressure, hu-
midity, wind speed, solar radiation, total rainfall;

• Phisical parameters: floor area, heated gross volume, U-value, aspect ratio,
window-to-wall ratio, orientation, other thermo-physical parameters;

• Operational data: systems operational data of Heating, Ventilation and Air
Conditioning (HVAC), indoor temperature, energy consumption, energy price,
renewable energy production, indoor environmental quality parameters

• User related data: occupancy, number of occupants, number of ON/OFF ap-
pliances, opening/closing windows, social economic factors;

• Time variables: season, month, date, day of the week, the hour of the day.

Because of this heterogeneity, lack of standard storage processes and the in-
effectiveness of traditional statistical analysis to process huge amounts of data,
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1 – Introduction

research and development in this field could unlock the building energy savings
potential.

Artificial Intelligence (AI), advanced data analytics and machine learning are
the tools that have the potential to fill this gap on the technical point of view,
since they are capable of handling large data, enhancing and speeding up anal-
ysis and offer new insights in data.

In the building field, Energy Management and Information Systems (EMIS) is
a family of data analytics tools rapidly evolving that offers insights of energy
use, building performance and control optimization, providing energy savings
up to 20% [19].

A first classification of EMIS tools is formulated considering if their function-
alities are enabled at meter- or system-level, those can be summarized and clas-
sified as shown in Figure 1.1. The first category of EMIS considers data mea-
surements at a high level (e.g., data retelated to the total load or of the main
sub-loads) while system-level EMIS are focused on more detailed data related
to the operation of specific systems or components. Benchmarking, Energy In-
formation Systems (EIS) and Building Automation Systems (BAS) are the more
traditional tools, in this framework, the focus will be on the advanced Decision
Support Systems (DSS) which are Advanced Energy Information Systems (AEIS),
Fault Detection and Diagnosis (FDD) and Automated System Optimization (ASO),
reported with light blue background in Figure 1.1.

Figure 1.1: EMIS tool classification according to detail of data and detail of anal-
ysis. Adapted from [19].

• Energy benchmarking: consists in the analysis of annual energy data to rank
the building performance among its peer. Is a useful tool for the assesment
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1 – Introduction

of energy consumption but does not offer a detailed insight on how to im-
prove the performance;

• Building Automation System (BAS): they are a measuring infrastructure com-
posed of sensors, controls and other components that acquire system level
data and automatically manages and controls many complex systems such
as air conditioning, heating and cooling, lighting and security systems;

• Energy Information Systems (EIS/AEIS): consists of on hardware part (sen-
sors, acquisition system, storage) used for the collection and storage of data
and a software part used for the analyses and display of building-related
data. The basic EIS consist of monthly bill consumption analysis and Key
Performance Index (KPI) calculation to track the performance in time of a
given building or a portfolio of buildings. The more advanced tools use
meter-level, system-level and detailed-level data and proposes innovative
machine learning algorithms to automatically analyse, interact and display
data, to identify energy savings opportunities;

• Fault Detection and Diagnostic systems (FDD): consists of a software that,
analysing high-frequency system-level data from BAS, automates the detec-
tion of anomalous behaviour and offers a diagnosis of the potential causes.
Unlike a simple alarm, FDD applies machine learning algorithms on BAS

data providing a more detailed description of the fault and can lead to a
significant energy saving;

• Automated System Optimization (ASO): consists of a software that continu-
ously analyzes BAS data and modifies control outputs to optimize HVAC

operation, while maintaining occupant comfort. An example is the rein-
forcement learning approach.

The integration of innovative data analytics methods in DSS with BAS mea-
surements can contribute to great energy savings opportunities. BAS systems
continuously store a considerable amount of high-frequency real-time measure-
ments of many variables (temperature, humidity, power, etc.), mainly used to
fulfil control strategies. Moreover, it can also provide simple threshold-based
alarms when measured data are out of range. However, the analytical capabil-
ities of BASs are not enough developed for supporting users in gaining insight
into measured data.

To this purpose EMIS can be employed, in particular EIS which are intended
as tools focused on meter-level monitored data that are not usually integrated
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1.1 – Literature review

with BAS. In this context extracting knowledge from meter-level data results of
paramount importance considering that modern SMI make it possible to have
available high frequency measurements of total electrical load and of the main
sub-loads even if a BAS is not installed in a building.

This work proposes an EIS tool to perform an Anomaly Detection and Di-
agnostics (ADD) analysis by exploiting meter-level data in order to support the
prompt detecting of possible anomalies and inefficiencies. ADD procedures are
usually performed offline or on small subsets of historical data, but more and
more interest is growing in creating automatic real-time techniques to analyse
data. In this thesis is presented an innovative top-down ADD methodology con-
ceived for working in streaming which allows the automatic detection of anoma-
lies at whole building level and performs a diagnosis to evaluate the sub-load
responsible for the anomalies detected.

1.1 Literature review

The importance of systematically analyse building-related data with the pur-
pose of energy saving is evident from the massive research work that is being
performed. Researches can be categorized in the following categories:

• Prediction of energy consumptions;

• Energy profiling;

• Fault detection and diagnosis;

• Anomaly detection and diagnosis;

• Benchmarking;

• Study on occupant behavior.

In this framework the focus will be just on energy profiling, fault and anomaly
detection and diagnostics.

Energy profiling Energy profiling employs machine learning algorithms to per-
form the characterization of energy trend and patterns in time, or load profiling.
Automatically detect those patterns allows enhancing not only building man-
agement strategies but even grid operation and reliability in smart city context
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1 – Introduction

[15]. Energy profiling has been successfully employed in grid management, cus-
tomer classification [4] and tariff definition for the energy market as reported in
[9].

The objects of the analysis are usually high dimensional time series represent-
ing energy consumption either at the whole-building level and system level. The
most used dimensionality reduction for time series handling is Symbolic Aggre-
gate approXimation (SAX) which permits to convert the numeric time series into
a symbolic alphabetic string in which it is possible to recognise frequent and
unfrequent patterns, called respectively motifs and discords.

A top-down automated procedure was proposed by [31] to discover and fil-
ter motifs in whole-building energy consumption, through SAX dimensionality
reduction, clustering and effective visualisation.

Fault Detection and Diagnosis FDD data mining techniques are specifically
designed to recognise and detect infrequent patterns. In literature, two types of
FDD approach can be identified: component level (bottom-up) or whole building
level (top-down).

Bottom-up approaches are more effective to find the root cause of anomalies
since the analysis is performed on component level, excluding complex rela-
tionships with other building systems or external variable. Many FDD appli-
cations have been performed on system-level in particular on chiller [17] and
HVAC systems [30]. ARM is widely used as a post-mining method to discover in-
frequent patterns [17], [22] creating a specific system-level FDD enhancing oper-
ation and changing conventional inefficient management strategies. Association
Rule Mining (ARM) is particularly suitable in analysing large database; an exam-
ple is the rules extraction to reduce energy wastes in academic spaces lighting
[20].

Top-down approaches allow finding components faults by analysing the whole
building energy consumption. This is a very challenging task since many vari-
ables must be considered, and often it fails to capture particular patterns on
system-detail data. Very few studies are performed on aggregated loads with
a top-down approach for discovering component or system faults.

Anomaly Detection and Diagnosis While frequent patterns and loads are usu-
ally the focus of energy profiling, infrequent patterns or anomalies are usually
filtered out. Anomaly detection as an outlier identification process is used in
[3] where abnormal energy profiles are filtered out through a clustering process
in order to create an accurate prediction model. Many studies were performed
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to discover similarities and anomalies in consumption patterns; for example [7]
introduced different similarity measures in order to rank anomalies.

In the context of ADD, techniques are specifically designed to recognize and
detect infrequent patterns at meter-level. ADD methods to analyse energy con-
sumption time series are various. A classical statistical approach is proposed in
[12] where control chart is used to detect anomalies in energy consumption time
series. More advanced machine learning approach is reported in [25] where joint
use of SAX and ARM is employed to find deviant events of multivariate time se-
ries in a production line.

1.2 Novelty

This work proposes an EIS tool to perform an ADD analysis by exploiting meter-
level data in order to support the prompt detecting of possible anomalies and
inefficiencies. In this thesis is presented an innovative top-down ADD method-
ology conceived for working in streaming which allows the automatic detection
of anomalies at whole building level and performs a diagnosis to evaluate the
sub-load responsible for the anomalies detected.The field of investigation was
considered very interesting since very few researches have been performed, and
the potential energy savings that could derive from a robust method is relevant.
The created methodology novelty can be summarized as follows:

• It allows avoiding the computational burden of analyzing each data stream
from sensors since it is a multi-level approach. In fact, at a higher level, it
analyses continuously exclusively the aggregated building electrical load,
and only if the overall consumption does not match the expected one, it
analyses the lower level sub-loads data. In this sense it is a top-down ADD

approach created with the objective of analyze meter level electrical load
and perform a diagnosis of sub-loads anomalies;

• It enhances classical time series mining processes by extracting from the
time series multiple aggregated features. Not only information related to
the mean value, but always the information about the trend (trend angle)
are extracted;

• It combines multiple advanced data mining techniques (association rule
mining, globally optimum classification models, classification and regres-
sion trees, adaptive symbolic approximation)
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• It is an accurate, robust, scalable and automatic process can be integrated
into existing energy management systems. Moreover, its multi-level struc-
ture allows reducing the number of alerts to only the relevant cases (only
for higher electrical load).

The rest of the thesis is organized as follows. In Chapter 2 an overview of
the data mining methods used is presented. Chapter 3 presents the case study
on which the methodology is tested and results obtained. In Chapter 4 is de-
scribed the methodology proposed. Finally Chapter 5 and Chapter 6 presents
respectively the results obtained and a critical insight, concluding with possible
improvements and further developments.
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Chapter 2

Data analysis methods

The knowledge extraction from building-related data is usually performed by
domain experts, which based on their experience can interpret relations among
data and extract useful information about the building performance and energy
use. However, the ever-increasing amount of data makes more and more chal-
lenging the actual analysis from domain experts. In particular, the traditional
statistical techniques often fails to effectively analyze and exploit the great po-
tential that lies behind the systematic analysis of those data. For this reason,
the analysis of building-related data is performed through Data Mining (DM)
techniques. Just like any analysis algorithm, the right choice depends on the
application. In building data analytics, the most used algorithms are clustering,
association rules and classification trees.

In the following sections, the data mining methods employed are reviewed
under a theoretical point of view. The methods description is not intended to be
exhaustive, but it is aimed to underline the usefulness in the framework of the
study and building energy data exploitation.

2.1 Dimensionality reduction

Meter-level data are collected in so-called time series: a two-dimensional ma-
trix where each row correspond to a single observation in time and is composed
by one column containing the time and another containing the value of a given
variable. The sampling frequency determines the time interval between two con-
secutive observations and for building application, it is usually in the order of
minutes. The resulting high-dimensional time series is computationally expen-
sive to store and almost unfeasible to analyse directly. Many dimensionality
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2 – Data analysis methods

reduction techniques were proposed in the literature; one of the most promising
is the SAX and in particular its implementation ASAX. In the following sections
those two will be presented.

2.1.1 Symbolic Aggregate approXimation

The Symbolic Aggregate approXimation (SAX) is a dimensionality reduction tech-
nique that allows time series compression while preserving its fundamental char-
acteristics; this technique it was firstly introduced by [33]. This process dis-
cretizes the original time series in sub-sequences, each of them is then converted
into alphabetic symbols through an encoding process, and finally combined into
a string. The resulting string is much shorter than the original time series and
enables various data mining techniques while reducing the computational cost.
The SAX process is summarized in the following paragraphs.

Standardization

This process is the first and fundamental preprocessing step of the time series
analysis because it allows the algorithm to focus on the structural features of the
time-series instead of the amplitude-driven ones. A given time series y(t) =

{y1, . . . yn} of length n with mean µ and standard deviation σ is transformed
into a new time series Z(t) = {Z1, . . . Zn} of length n with zero mean µ = 0 and
unitary standard deviation σ = 1 through the equation (2.1).

Z(t) =
y(t)− µ

σ
(2.1)

This process allows simplifying the analysis through the use of Z-scores, which is
a measure of the position of data and represents how many standard deviations
it is far from the mean of a standard normal distribution N(0,1). If the value is
positive, the value lies above the mean; if negative it lies below. Z-scores allows
to easily calculate the area under a normal Gaussian distribution and will be
useful when dividing the distribution into equally probable areas.

Chunking

The standardized time series Z(t) = {Z1, . . . Zn} of length n is divided into N
non-overlapping sub-sequences, or chunks, T = {T1, . . . TN} whose length is
chosen on the specific context. Each sub-sequence is further divided into W
segments called time windows τ = {τ1, . . . τW}. The parameter W is also called
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2.1 – Dimensionality reduction

word size. During this process, it is possible to choose time windows with equal
or different length, based on user preference. The tuning of the length of time
windows can be performed with different machine learning algorithms and can
be useful when the time series presents within the chunk different trends.

Feature extraction

In this process an aggregated numerical feature is calculated in the generic time
window τi and this value is taken as representative of the data contained in it.
Extracted aggregated features tends to underline some aspect of the time series
while losing some other information. The analyst choses which feature is the
most significant and whether one or more features are needed for the purpose of
the study. The most used and known is the Piecewise Aggregate Approximation
(PAA) introduced by [10] which performs a constant approximation of the time
series Z(t) by replacing the values that fall into the same time window τi with
their mean . This is the feature extracted in the classic SAX process.

Encoding

The encoding consists in setting an alphabet size (α) and assigning an alpha-
betic character to each time window, according to where the extracted numerical
feature lies within a set of vertical breakpoints β = {β1, . . . βα−1} identified ac-
cording to the feature distribution shape. These breakpoints are calculated in
Z-score, according to the alphabet size and under the hypothesis that the time
series can be approximated as Gaussian distribution. If so, it is possible to divide
the area below the distribution into equiprobable regions, creating a breakpoints
table or lookup table (see Table 2.1). Finally, the encoding can be assigned for
each window τ, creating a word of length W for the chunk N. The original nu-
merical time series y(t) of length n is then transformed into a alphabetic string
Z(α) of length W ∗ N.

In Figure 2.1 an example of SAX is reported. A standarized time series Z(t)
with n = 192, shown in black, is divided into two chunks Ti and Ti+1 of 24 h
each. In this example, five time windows (W = 5) of equal length are identified
for each chunk and the alphabet size is set to five (α = 5), meaning that four
breakpoints β are identified through the lookup Table 2.1. The Gaussian distri-
bution is shown on the right side of the Figure in ligth blue and the SAX break-
points in dashed blue lines. The time series is then approximated through PAA

(red segments), and for each segment, the corresponding symbol is assigned.
The original time series for the time window Ti+1 is converted from a numerical
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2 – Data analysis methods

Table 2.1: Breakpoints or lookup table according to alphabet size.

β
α

3 4 5 6

β1 −0.43 −0.67 −0.84 −0.97
β2 0.43 0.00 −0.25 −0.43
β3 0.67 0.25 0.00
β4 0.84 0.43
β5 0.97

vector into an alphabetic string "adecb", reducing it from a 96-dimensional object
in a 4-dimensional one.

Figure 2.1: Example of SAX process applied on a standardized time series Z(t).
The parameters used are T = 24 h, W = 5, α = 5.

2.1.2 Adaptive Symbolic Aggregate approXimation

The Adaptive Symbolic Aggregate approXimation (ASAX) algorithm is an imple-
mentation of the original SAX, and was firstly introduced in [6]. The main dif-
ference is that the breakpoints identification based on the hypotheses of equally
probable regions of Gaussian distribution is rejected; this permits ASAX to han-
dle distributions different from standard normal which is the great limit of the
original method.
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2.1 – Dimensionality reduction

In this algorithm no standardization is needed, and the first step is the chunk-
ing as describes in the previous paragraph. The feature extraction is performed
and then follows the encoding. The key difference between this algorithm and
SAX lies in the breakpoints identification. This process is handled through an
adaptive method, based on K-means clustering [6]. The iterative algorithm aims
to find the distribution partition (i.e. breakpoints) that minimizes the clusters
total representation error, which is the objective function of the K-means.

In the following the steps of the algorithm are explained. Since it is an it-
erative process, the generic iteration will be labeled with the index subscript j.
Is assumed that the feature extracted is the mean value for each time window
through a PAA process.

Given the PAA array representation of the original time series, we denote by
xn the generic nth PAA value. The starting point is the definition of the alphabet
size α, which correspond to the number of clusters K, and the initial breakpoints
β
(0)
i with i = {0, . . . , α − 1}, β

(0)
0 = −∞ and β

(0)
α = +∞. Those breakpoints are

calculated with the hypotheses of normal distribution and divide the distribu-
tion into equally probable regions; they represent the initialized starting point.

At each iteration j, the centroid c(j)
i between two consecutive breakpoints

[β
(j−1)
i , β

(j−1)
i+1 ) is calculated as the center of mass of all Ni PAA points that fall

between them.
c(j)

i =
1
Ni

∑
x∈[β(j−1)

i ,β(j−1)
i+1 ]

xn (2.2)

Then the new breakpoints β
(j)
i are moved to the mean value between two

consecutive centroids c(j)
i and c(j)

i+1.

β
(j)
i =

c(j)
i + c(j)

i+1
2

(2.3)

The total representation error Residual Sum of Squares (RSS) is calculated as
follows:

RSS =
K

∑
i=1

∑
x∈[β(j−1)

i ,β(j−1)
i+1 ]

(xn − c(j)
i )2 (2.4)

Then the relative error e(j) of the RSS is compared with a user-defined toler-
ance ē. If the condition 2.5 is satisfied the algorithm keeps running otherwise it
stops.

e(j) =
RSS(j−1) − RSS(j)

RSS(j−1)
> ē (2.5)
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In Figure 2.1 an example of ASAX is reported. A time series y(t) with n = 192,
shown in black, is divided into two chunks Ti and Ti+1 of 24 h each. In this
example, five time windows W = 5) of inequal length are identified for each
chunk and the alphabet size is set to five (α = 5), meaning that four breakpoints
β are identified. The time series distribution is shown on the right side of the
Figure in red and the ASAX breakpoints in dashed blue lines. Looking at the dis-
tribution is easy to understand how classic SAX would result in a consistent loss
of information by assuming a normal Gaussian distribution. The time series is
then approximated through PAA (red segments), and for each segment, the corre-
sponding symbol is assigned. The original time series for the time window Ti+1
is converted from a numerical vector into an alphabetic string “abdca”, reducing
it from a 96-dimensional object in a 4-dimensional one.

Figure 2.2: Example of ASAX process applied on a time series y(t). The param-
eters used are T = 24 h, W = 5, α = 5.

Focus on feature extraction

One of the steps of SAX is the choice of the aggregation feature to be extracted and
encoded. As already said, this feature has to be carefully chosen, and the choice
strongly depends on which aspect of the time series the analyst want to under-
line. The most used and known is the PAA but many other statistical features
can be extracted (variance, kurtosis, skewness) not only from the time domain
but even from other domains such the frequency one [21]. Others features repre-
senting essential characteristics of time series can be worth to be extracted; one
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of these is the trend angle [24]. This feature is particularly effective in describ-
ing the time series trend, and it will be used in this work. Given a time series
y(t) = {y1, . . . yn} of length n in a given time window τ = {τ1, . . . τW}, defined
∆p(t1) and ∆p(tn) the first order distance between the initial and final point with
the time series mean ȳ, it is possible to define a trend triangle and trend angle as
shown as in Figure 2.3.

1. θ < 0 the trend is negative;

2. θ < 0 the trend is positive;

3. θ ≈ 0 the trend is almost stable.

In the context of building this feature could be very useful in identifying
rapidly growing or decreasing electrical loads, adding a remarkable information
to the analysis.

Figure 2.3: Definition of trend feature triangle and trend angle for a generic time
series y(t). On the left side the time series (blue) and its mean value (red) within
a given time window τ, On the right side the trend triangle and the trend angle
definition.

2.2 Classification

Classification is the task to assign a class label to unlabeled data instances through
a classifier model, providing prediction or description of a given data set.

A general data set consists of a collection of instances or observations D =

{d1, . . . , dN}, each of them is characterised by a set of predictor attributes x and
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a target attribute or class label y. The classification model creates a relationship
between the set of attributes x (input) and the class label y (output), in other
words, can classify instances through the analysis of the predictive attributes.
The model is created through an inductive learning algorithm using a training
set, which is a data frame with attributes and labelled instances. Once the model
is created, it is used on a test set, which is a data frame with attributes and unla-
belled instances, in order to deduce the unknown class labels. The performance
of the model can be evaluated through the comparison between the predicted la-
bels and the real labels of the test set. A general description of the classification
process is reported in Figure 2.4.

Figure 2.4: Classification process.

The tree classifier is the most commonly used classification model thanks to
its understandable graphical representation, an example is shown in Figure 2.5.
Depending on the type of target attribute, discrete categorical or continuous nu-
merical, the tree is called, respectively, classification tree or regression tree. The tree
consists of three kinds of nodes connected by branches:

• Root node: is the first node of the tree and is characterized by no incoming
branches and only outgoing branches. It contains all the instances;

• Internal node: is characterized by one incoming branch and two outgoing
branches. It contains a subset of the previous node;

• Leaf node (or terminal node): is characterized by one incoming branch and
no outgoing branches. It contains a subset of the previous node, and this
subset is considered satisfactory for the classification. At each leaf node is
assigned a class label.
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2.2 – Classification

Figure 2.5: Classification tree description.

2.2.1 Recursive partitioning

The basic algorithm used to construct a decision tree is a recursive partitioning
forward approach [16] which is used to create the so called Classification And
Regression Trees (CART).

In the beginning, all the instances are contained in the root node. Then it is
expanded by a binary split on an attribute that is chosen through an adequate
splitting criterion. This process continues until a stopping criterion is satisfied.
In the following paragraphs each step is described in detail.

Splitting crieterion

It is the criteria to choose the attribute test condition for the binary splitting; it
decides how the instances of the parent node should be distributed into the child
nodes. This criterion tends to split instances in order to create purer child nodes
in which most of the instances have the same class label. This criterion tends to
maximise homogeneity at each split, yielding to locally optimum split.

The impurity I(A) measures how different the class labels are within the same
node [29]. It can be expressed as the sum on all the classes c of a function of the
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relative frequency p of instances belonging to a class i contained in node A.

I(A) =
c

∑
i=1

f (pi,A) (2.6)

The functions, or indeces, that can be used are various, the most used are the
Gini index (2.7) and the entropy (2.8). Each of them is zero if the node is pure
(contains only instances from one class pi,A = 1) and maximum if labels are
equally partitioned.

fGini = 1 −
c

∑
i=1

pi,A
2 (2.7)

fEntropy = −
c

∑
i=1

pi,A ∗ log2(pi,A) (2.8)

The variation of impurity ∆I, also known as purity-gain, between the parent
and the child node is calculated to identify the best attribute condition for the
split. The attribute that gives the higher impurity variation is selected.

Stopping criterion

It is the criterion chosen to stop the growth of the tree. The basic algorithm stops
the growth only when the generated node has instances of the same label or the
same attributes. Sometimes it is better to terminate the growth to avoid data
fragmentation: when a leaf node contains a few data, and they are not enough
statistically significant. Another reason for which a stopping criterion should be
set is to avoid model overfitting: when the model learns the particular patterns
in the test set, reducing test error, but fails to generalize or predict correctly,
increasing test error. Stopping criteria are, for example, the minimum number of
observation in each leaf node or the number of splits.

Next to the stopping criterion, a complexity parameter cp ∈ [0; 1], which
quantify the cost in complexity of the model when adding a new node, could
be defined. By doing so, the full tree is constructed and then pruned: the higher
the cp the smallest the tree (cp = 1 only root) while the lowest the cp the largest
the tree (cp = 0 full tree). This parameter is calculated in the validation phase.

Validation

This phase has the goal to test the generalization performance or the ability, of
the prediction model, to perform on independent data. The most used method
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is the re-sampling method called k-fold Cross Validation (CV); it permits to esti-
mate the test error and to select the appropriate level of flexibility for the model.

It divides the dataset D of size N in k folds of approximately equal size if
k = N this case is called Leave One Out Cross Validation (LOOCV). At each
iteration, one of the folds k is selected as the test set, while the others k − 1 are
used as train set. Once the model is trained and tested the test error is computed.
This procedure is repeated for k times, and the overall error is computed as the
mean of the single test errors. In this phase, is chosen the complexity parameter
for which cross-validation error is minimized.

2.2.2 Globally optimum evolutionary tree

Another process that can be used to create a classification tree is the globally
optimum evolutionary algorithm. The evolutionary tree algorithm is based on
a stochastic algorithm that aims to construct a globally optimum classification
model [18]. This process randomly initializes the root node split, then at each
iteration variation operators (i.e., split, prune, major split rule mutation, minor
split rule mutation, crossover) are applied. The survivor is selected, and the pro-
cess repeated until stopping criterion is satisfied. The advantage of this model
is that it tends to offer higher accuracy in prediction than recursive partitioning
algorithms while maintaining the same interpretable tree structure.

The main peculiarity of the globally optimum classification trees lies in its
stochastic nature. At each iteration the algorithm applies to the model the fol-
lowing variation operators:

• Split this operator randomly select a leaf node and assign it a random split
rule that generated two child nodes;

• Prune this operator randomly select an internal node and prunes it remov-
ing all its child nodes from the tree;

• Major/minor split rule mutation this operator randomly select an internal node
and modifies the splitting rule;

• Crossover this operator randomly select two subtrees and exchange their po-
sition.

Those variation operators are randomly applied to the model following a
probability distribution set by the user.
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2.3 Clustering

Clustering is the process of grouping instances of a database based on similarity
within some attributes of those instances. The goal is to create groups (clus-
ters) in which object shows remarkable similarities among them compared to
objects of other clusters [5]. The similarity measure is usually defined with a
mathematical formula (for example the euclidean distance), and the clustering
algorithm aims to minimize this objective function. Clusterings algorithms can
be categorized into partitional or hierarchical. In the first case, the observations are
divided into non-overlapping subsets called clusters. The hierarchical clustering
generates non-overlapping clusters and each cluster can be further divided into
subclusters and so on, creating a tree structure. In the following, the partitional
K-means clustering and hierarchical clustering are presented.

2.3.1 K-means clustering

K-means is a partitional prototype-based clustering. It defines the prototype as
the mean point of a set of objects.

Given a dataset D = {x1, . . . xn} of n instances, the user sets the number of
clusters K in which the dataset has to be divided, and the initial centroid c(0) =
{c(0)1 , . . . c(0)K } for each cluster C = {C1, . . . CK}. Then each element x is assigned
to the closest centroid ci, and the points assigned to the same centroid forms a
cluster Ci. The centroid of each cluster is then updated based on the points that
belong to the cluster. This process continues iteratively until no points change
cluster or the centroid remains the same with a certain error threshold c(i−1) ≈
c(i). In the following paragraphs each step is described in detail.

Chose initial centroid

A careful choice of the initial centroids c(0) and number of clusters K is the key
to perform an effective clustering since the result is greatly depending on initial
conditions. The centroids can be chosen by the user, can be picked randomly,
chosen after multiple runs of the clustering algorithm or chosen after hierarchical
clustering of a sample of point of the dataset.

Create cluster

For each element x the proximity measure to all the centroids ci is computed,
the element is then assigned to the relative cluster Ci. The proximity measure
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quantifies the distance between an element and the centroid; different types of
measures can be chosen regarding the type of elements to be analysed. The most
widely used measure in K-means is Euclidean distance L2 = dist(x, ci).

Update centroid

Once the proximity measure is defined the clustering algorithm has to recom-
pute the centroid, maximizing the similarities between cluster elements by min-
imizing of a objective function. Given the Euclidean distance as proximity mea-
sure the Sum of the Squared Errors (SSE) can be used as objective function. It
sums the error squared between an element and the closest centroid.

SSE =
K

∑
i=1

∑
x∈Ci

dist(x, ci)
2 (2.9)

Given two clusters, the best clustering is the one that has the smallest SSE be-
cause it means that the points are closer to the centroid, and this better represents
the cluster. It can be demonstrated that the centroid that minimises the SSE is the
mean.

In Figure 2.6 a three steps K-means clustering is performed to a simple set
of instances. At first glance in the data points is possible to distinguish three
natural clusters so K = 3 is chosen. User-defined centroids c(0) are represented
with stars. It is possible to see how the algorithm shifts the initial centroids
toward the centre of the respective cluster in the successive iterations.

2.3.2 Hierarchical clustering

As already said, hierarchical clustering consists of creating a series of nested
clusters. There are two basic approaches to address to hierarchical clustering.
The first is the agglomerative clustering that consists of starting with single point
clusters and then merge the closest pair of clusters. The second is divisive cluster-
ing that consists of starting with one unique cluster and then split the clusters.
This kind of clustering can be graphically viewed though a dendogram which
shows the cluster relationships and the merging order. In the following, only the
agglomerative clustering is reviewed since is the technique used in this frame-
work.

The basic agglomerative algorithm approach consists in defining a proximity
measure, compute a proximity matrix for all the instances, merge the closest
clusters and update the proximity matrix until only one cluster remains. The
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Figure 2.6: Example of K-means with K = 3. Adapted from [5].

key of this algorithm lies in the definition of proximity measure; there are three
possibilities:

• Single link or MIN: the proximity is defined as the minimum distance be-
tween any of the two points of two different clusters;

• Complete link or MAX: the proximity is defined as the maximum distance
between any of the two points of two different clusters;

• Group average: the proximity is defined as the average distance between all
pairs of two different clusters

A simple example of single link clustering is visible in Figure 2.7. A set of six
points in a 2D space are represented in the left side of the Figure. The single link
agglomerative clustering defines as proximity measure the minimum distance
between two points of two different clusters. The dendogram reported on the
right shows that the first two points merged to create a cluster are p3-p6 and then
p5-p2. The two resulting clusters are then merged, since the distance between p2
and p3 is less than the distance between any other point. Finally p4 is aggregated
and followed by p1.
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Figure 2.7: Example of single link hierarchical clustering. Adapted from [5].

2.4 Association rules mining

Association Rule Mining (ARM) is a widely used technique that allows to extract
static causal relationship and correlations between attributes of a dataset; the ob-
jective is to find a group of variables (items) that frequently occur together in a
database. This technique can only handle categorical variables and is computa-
tionally costly; many algorithms were created in order to optimize the task. The
most used is the iterative Apriori algorithm based on frequent itemset that al-
lows to extract static rules from a categorical transactional dataset [11]. Associa-
tion rules are defined between set of items (or itemset) in the form A ⇒ B where
A is the itemset called antecedent or Left Hand Side (LHS) and B consequent
Right Hand Side (RHS) and A ∩ B = ∅. Rules extraction is a usually restricted
to only an item in the consequent. To illustrate the concept, a small transactional
database of four transactions with three categorical items {a, b, c} is reported in
Table 2.2, where an example of association rule can be {b, c} ⇒ {a}.

Table 2.2: Example of transactional database.

ID Itemset

1 {a, b, c, d}
2 {a, d}
3 {d}
4 {c, d}
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Some user-defined parameters (confidence support and lift) have to be set,
in order to evaluate the significance of the obtained rule. A domain expert sets
those parameters according to each particular case.

The support is calculated as the intersection between the antecedent A and
consequence B, expressing the co-occurrence of the two events:

supp(A ⇒ B) = P(A ∩ B) (2.10)

The confidence is defined as the conditional probability between A and B, it
gives the probability of the consequent event in all baskets containing the an-
tecedent:

conf(A ⇒ B) = P(A|B) (2.11)

The lift is the ratio between the confidence and support and gives the corre-
lation between the conditional probability of B and the probability of B without
assumptions.

lift(A ⇒ B) =
P(A|B)

P(B)
(2.12)

When lift > 1 it means that is more probable that B is correlated with A
while if lift < 1 it means negative correlations, if lift = 1 there is no correlation
at all. This parameter is particularly important since allows to select the most
interesting rules [27].
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Chapter 3

Case study

The case analysed refers to the energy consumption of a medium voltage trans-
former station that serves a part of the main campus of Politecnico di Torino
(PoliTo), one of the most important Italian technical university and is located in
Turin. The central engineering campus, constructed in 1958, undergo many in-
terventions and expansions over the year, covering in total almost 200 000 m2.
In the more recent past another area of 150 000 m2, called Cittadella Politecnica,
was added to the campus offering even more academc spaces, lecture halls, lab-
oratories and services.

The campus is electrically fed by a loop of ten medium voltage transformer
substations, which provide low voltage to the distribution system and utilities.
This electrical configuration permits to reduce losses and improve performance.
Each substation, identified through a letter, provides electricity to a given area
of the campus. In Figure 3.1 is shown the map of the substations, while in Table
3.1 the connected facilities are listed.

Thanks to the Living Lab facility1, this electrical network is equipped with
numerous digital monitoring devices that perform real-time measurements of
electrical power. Those meter level data provide information about the electri-
cal load of a given substation. In some cases, a sub-meter level measurements
permit to further detail the electrical load of a given facility.

The substation under study is the "substation C" which provides electrical
energy to several facilities of the campus, for an overall served area of almost
42 000 m2. The facilities connected to this substation are: a staff canteen (Canteen),

1This service makes available consumption monitoring data able to stimulate virtuous be-
havior among students and workers of Politecnico di Torino. Accessible at the following link:
http://smartgreenbuilding.polito.it/panoramica/

35

http://smartgreenbuilding.polito.it/panoramica/
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Figure 3.1: Electrical substations of PoliTo (Map data © OpenStreetMap contrib-
utors, Map layer by Esri).

the department of mathematics (DIMAT), the data centre (Data centre), a print
shop (Print shop), a bar (Bar Ambrogio), the administration building (Rectory)
and a heating/cooling mechanical room (Refrigeration unit2), lecture rooms
and computer labs. However only some of these facilities are equipped with
metering infrastructure.

Living Lab provided for the substation C a dataset almost 175 295 average
power measurements (kW) related to the total electrical load and to some sub-
loads. Data are available with a time-stamp of 15 minutes from 1st January 2015
to 31st December 2019, with no remarkable discontinuities. The hierarchical
structure of the dataset is shown in Figure 3.2: the first level (Meter-level to-
tal load in blue) refers to the aggregated electrical load, while the second level
(Meter-level sub-load in yellow) shows the breakdown among the available sub-
loads. The Figure shows the breakdown of the average annual energy consump-
tion as well, calculated on the years 2015-2019.
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Table 3.1: List of facilities fed by electrical substations.

ID Facilities

A Department of Management and Production engineering (DIGEP), Department of Me-
chanical and Aerospace engineering (DIMEAS), lecture rooms.

B Department of Energy and Nuclear engineering (DENERG), Department of Environ-
mental and Territorial engineering (DIATI), Department of Structural and Building en-
gineering (DISEG), Bar Denise, lecture rooms.

C Mathematics department (DIMAT), central administration, Rectorate, central engineer-
ing library, press center, Bar “Ambrogio”, staff canteen, chiller substation, data center,
lecture rooms, computer labs.

D Department of Automation and Computer Science (DAUIN), Lnguage center (CLA),
Institute of Electronics and Information Engineering and Telecommunications (DET).

E Department of Environmental and Territorial engineering (DIATI), Department of Ap-
plied Science and Technology (DISAT), lecture rooms.

F Department of Automation and Computer Science (DAUIN) , Department of Electron-
ics and Telecommunications (DET), secretariat..

X lecture rooms, computer labs, offices, Start-up incubator (I3P).
Y canteen, lecture rooms, Mario Boella institute..
Z lecture rooms, offices.

The first level of the database provides the total electrical load of the substa-
tion. Energy consumption of those facilities that don’t have a metering infras-
tructure, like lecture rooms and computer labs, are aggregated under a unique
instance, called Unlabeled. This accounts for 48.85% of the total energy con-
sumption and since it is not directly measured, cannot be assigned to a specific
end use. On the other hand, facilities that have a measuring infrastructure are
aggregated under the variable called Labeled and account for 51.24% of the total
energy consumption.

Within the labeled energy it is possible to make a clear distinction on the
share devoted to each sub-loads. The bar "Ambrogio" and the canteen are at
disposal for students and campus personnel and account respectively for 2.75%
and 15.98% of the total electrical energy consumption of substation C. The uni-
versity data centre accounts for the 13.17% of the total energy consumption. The
Rectory corresponds to 3.84% of energy consumption and the mathematics de-
partment (DIMAT) for 2.21%. A large share of energy consumption (12.18%) is
connected to the refrigeration unit. The equipment located in the refrigeration
unit room includes hot and chilled water circuits and auxiliaries such as recircu-
lation pumps. The hot water is provided from a heat exchanger, while the chilled
water is provided by two chillers of nominal electrical power of 220 kW and a
rated cooling capacity of 1120 kW, and a reversible water-water heat pump, with
nominal power and cooling capacity of 165 kW and 590 kW, respectively.
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Figure 3.2: Hierarchical structure of the electrical load database under study.

During 2015-2019 equipment and energy patterns have changed, along with
energy management procedures, leading to a reduction of electrical energy de-
mand. Those changes mainly affect the reduction of unlabeled electrical con-
sumption and refrigeration unit consumption.

An interesting analysis can be performed on the substation’s operational costs
associated with electricity. Costs change according to the time of use and the type
of customer. In the case of PoliTo, Living Lab reports that the tariff is similar to
the residential sector. Considering a mean reference value of 0.15 EUR/kWh the
cost for electrical energy for the substation C in 2015 was 401 502 EUR while in
2019 was of 357 008 EUR , resulting in a reduction of 44 494.5 EUR in five years. It
is evident that a continuous effort in reducing energy wastes, investing in more
efficient equipment and smarter energy management procedures could abruptly
reduce operating costs.

In the following sections with the use of raw data visualization of the power
distributions and with the use of boxplots to identify the average hourly, weekly
and monthly pattern, each database instance will be described in detail.
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3.1 Unlabeled

The unlabeled load refers to an aggregated electrical load of all those facilities
that are not directly measured. Services included in this load are: external and
internal lighting system, circulation fans of HVAC, computers and plug loads,
security systems, and elevators. Those services are at the disposal of lecture
rooms, computer labs and central administration offices.

As can be seen in Figure 3.3 the power distribution has a peak at 70 kW and
270 kW , median value around 90 kW and shows a quite accentuated positive
skewed tail.

On a daily base, Figure 3.4, shows a regular pattern. During night hours
(21:00-5:00) the median value is ≈ 90 kW with low variance.

An increase of median electrical load of almost ≈ 160 kW from 5:00 to 10:00
takes the electrical load to a stable value of ≈ 250 kW.

On a weekly base, Figure 3.5, a conspicuous decrease of the median electrical
load and its variance is visible during weekends, due to the weekly university
break and the absence of lessons and university staff.

On a monthly base, Figure 3.6 no significant pattern is visible, the median
electrical load is ≈ 100 kW , only in August is visible a drop of the median value
and a variance reduction.

3.2 Labeled

The labeled electrical load is composed of the sum of all the meter-level sub-
loads measurements. In the following paragraphs each sub-load will be de-
scribed in detail.

3.2.1 Print Shop

The Print shop "Copysprinter" is a facility at disposal for student located in the
first underground floor next to the university library.

The electrical load of this facility is mainly connected to printers and comput-
ers. As can be seen in Figure 3.3 the power distribution shows two peaks, one
around 0 kW power absorption and the other in correspondence of ≈ 10 kW.
The distribution shows a highly positive skewed tail.

On a daily base, Figure 3.4, shows a regular operating pattern. During closing
hours (19:00-6:00) the median value is ≈ 0 kW meaning that all the appliances
are switched off.
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An increase of median electrical load from 6:00 to 9:00 takes the electrical load
to a stable value of ≈ 6 kW. This plateau is maintained until 17:00 and then a
sharp decrease until zero suggest the switching off of the appliances.

On a weekly base, Figure 3.5, a considerable decrease of the median electrical
load is visible during weekends, in particular on Sundays the load is exactly zero
since the print shop is completely closed.

On a monthly base, Figure 3.6 the median electrical load of ≈ 2 kW is almost
constant, and the only sharp reduction of variance is visible in August, Septem-
ber and December when the university is closed due to the summer and winter
holidays.

3.2.2 Mathematics department

The mathematics department (DIMAT) is located at the 3rd and 4th floor of the
central building. The electrical load of this facility can be divided into lighting
equipment, computers, fan coils and plug loads. As can be seen in Figure 3.3 the
power distribution has a median value around 6 kW and shows a small positive
skewed tail.

On a daily base, Figure 3.4, shows a regular pattern. During night hours
(21:00-8:00) the median value is ≈ 6 kW with a low variance, an increase of me-
dian electrical load of almost ≈ 1.5 kW from 8:00 to 10:00 takes the electrical load
to a stable value of ≈ 7.5 kW. This plateau is maintained until 19:00 and then a
decrease until the night hours values is visible from 19:00 to 21:00.

On a weekly base, Figure 3.5, a small decrease of the median electrical load is
visible during weekends, due to the weekly university break and the absence of
lessons and students.

On a monthly base, Figure 3.6 the median electrical load of ≈ 7.5 kW is almost
constant, and the only sharp decrease is visible in August when the university
and all the connected services are shut down due to the summer holidays.

3.2.3 Bar Ambrogio

The bar "Ambrogio" is located at the ground floor of the central building. The
electrical load of this facility is connected to all the necessary appliances used
to provide a bas service to customers. Those appliances can be divided into
base-load ones (refrigerators) and peak-load ones (electrical ovens, dishwasher).
The total electrical load will necessary present a high variance of values and
power absorption peaks. As can be seen in Figure 3.3 the power distribution has
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a median value around 10 kW and shows a quite accentuated positive skewed
tail.

On a daily base, Figure 3.4, shows a regular pattern. During night hours
(21:00-8:00) the median value is ≈ 5 kW with low variance and correspond to
the electrical load of appliances such as refrigerators.

An increase of median electrical load of almost ≈ 11 kW from 5:00 to 10:00
takes the electrical load to a stable value of ≈ 16 kW. This period corresponds
to the opening of the bar and the coffee break. This plateau of the electrical load
with high variance is maintained until 13:00 when the lunch break ends. Then a
gradual decrease until the night hours values is visible from 14:00 to 21:00.

On a weekly base, Figure 3.5, a conspicuous decrease of the median electrical
load is visible during weekends, due to the weekly university break and the
absence of lessons and students.

On a monthly base, Figure 3.6 the median electrical load of ≈ 7 kW is almost
constant, and the only sharp decrease of median and variance reduction is visible
in August when the university and all the connected services are shut down due
to the summer holidays.

3.2.4 Rectory

The Rectory contains a part of the administration offices of the university. The
electrical load of this facility, as the DIMAT ones, can be divided into lighting
equipment, computers, fan coils and plug loads. As can be seen in Figure 3.3 the
power distribution is very similar in the shape to the DIMAT one (small positive
skewed tail), but has a higher median value around 10 kW.

On a daily base, Figure 3.4, shows a regular pattern. During night hours
(21:00-8:00) the median value is ≈ 9 kW with a low variance, an increase of me-
dian electrical load of almost ≈ 5 kW from 8:00 to 10:00 takes the electrical load
to a stable value of ≈ 14 kW. This plateau is maintained until 17:00 and then a
decrease until the night hours values is visible from 19:00 to 21:00.

On a weekly base, Figure 3.5, a small decrease of the median electrical load
and variance reduction is visible during weekends, due to the weekly university
break and the absence people working.

On a monthly base, Figure 3.6 the median electrical load of ≈ 11 kW is almost
constant with a small increase during winter months.
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3.2.5 Refrigeration unit

The so called refrigeration unit, is a cooling substation that serves the HVAC of
the main building of the campus. The equipment located in this room includes
hot and chilled water circuits and auxiliary water pumps used for the hot wa-
ter recirculation in radiators. The hot water is provided from a heat exchanger,
while the chilled water is provided by two chillers of nominal electrical power
of 220 kW and a rated cooling capacity of 1120 kW, and a reversible water-water
heat pump, with nominal power and cooling capacity of 165 kW and 590 kW,
respectively.

As can be seen in Figure 3.3 the power distribution has an highly positively
skewed distribution with a median value around ≈ 19 kW.

On a daily base, Figure 3.4, shows a regular pattern. During night hours
(21:00-8:00) the median value is ≈ 0 kW with a low variance, an increase of me-
dian electrical load from 6:00 to 7:00 takes the electrical load to a stable value of
≈ 40 kW. This plateau is maintained until 18:00 and then a decrease until the
night hours values is visible from 19:00 to 21:00.

On a weekly base, Figure 3.5, a sharp decrease of the median electrical load
to 0 kW is visible during weekends, due to the weekly university break and the
absence of spaces occupancy.

On a monthly base, Figure 3.6 it is possible to see that in summer the median
electrical load hits its peak in July with a value of ≈ 100 kW. This summer be-
haviour is explained by the intensive use of the chillers. During winter months
the electrical load is not zero because of the power absorption of the recirculation
pumps.

3.2.6 Data Center

The university data centre hosts all the university servers and provides all the
information technologies services to the main campus. The electrical load of
this facility is mainly connected to the server base electrical load and the room
chiller. This cooling system, aided by an indirect free cooling strategy, helps to
avoid overheating and dusting of electronic components. This facility, for its
nature, is continuously switched on and electrically fed.

As can be seen in Figure 3.3 the power distribution has an almost normal
distribution with a median value around ≈ 36 kW.

On a daily base (Figure 3.4) and weekly base (Figure 3.5), it shows a flat pat-
tern with median value of ≈ 36 kW with a low variance. This reflects the nature
of the load.
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On a monthly base, Figure 3.6, a seasonality increase of the median electrical
load can be seen in the summer months. This is connected to the higher electrical
power required from the chiller plant (especially from compressor) to cool down
the data centre environment.

3.2.7 Canteen

The canteen is located at the ground floor of the central building. The electrical
load of this facility is connected to all the necessary appliances used to provide
a the canteen service to the university staff. Those appliances can be divided
into base-load ones (refrigerators and a dedicated air handling unit) and peak-
load ones (electrical ovens, dishwasher). The total electrical load will necessary
present a high variance of values and power absorption peaks like the bar "Am-
brogio" sub-load. As can be seen in Figure 3.3 the power distribution has a me-
dian value around 17 kW, another peak at 44 kW and shows a quite accentuated
positive skewed tail.

On a daily base, Figure 3.4, shows a regular pattern. During night hours
(18:00-6:00) the median value is ≈ 20 kW with low variance and correspond to
the electrical load of appliances such as refrigerators.

An increase of median electrical load of almost ≈ 100 kW from 6:00 to 8:00
takes the electrical load to a stable value of ≈ 120 kW during the morning hours,
corresponding to the dishes preparation. Another increase in the median power
absorption up to ≈ 150 kW is present during the early afretnoon hours when the
lunch is served, then a gradual decrease is visible from 14:00 to 17:00.

On a weekly base, Figure 3.5, a conspicuous decrease of the median electri-
cal load and variance reduction is visible during weekends, due to the weekly
university break and the absence of lessons and university staff.

On a monthly base, Figure 3.6 the median electrical load of ≈ 20 kW is almost
constant, only in August is visible a drop of electrical load and its variance when
the university and all the connected services are shut down due to the summer
holidays.

43



3 – Case study

Figure 3.3: Meter-level power distributions of total loads (circled in blue) and
sub-loads (circled in yellow).
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Figure 3.4: Box-plots of hourly electrical load (from 2015 to 2019) divided by
sub-systems.
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Figure 3.5: Box-plots of daily electrical load (from 2015 to 2019) divided by sub-
systems.
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Figure 3.6: Box-plots of monthly electrical load (from 2015 to 2019) divided by
sub-systems.

47



48



Chapter 4

Methodology

The proposed process aims to develop a two-level ADD methodology capable of
making in a first step a high-level detection on meter level total load time series
and in a second step a diagnosis on sub-loads. The methodology is based on
different data mining techniques and follows the flow chart structure shown in
4.1. In the following sections, each step is described in detail.

Figure 4.1: Flow chart explaining the adopted methodology.

4.1 Preprocessing

This process is crucial for the further developments of the analysis because a
good pre-processing is an assurance for the robustness and accuracy of the re-
sults.
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The dataset used in this study includes electrical load data (from substation
C measurements) and climatic data (from PoliTo meteo station) from 1st January
2015 to 31st December 2019 with 15 min sampling frequency.

First of all, inconsistencies from the database are removed. Negative power
measurements are removed a priori since they are not physically acceptable. In
the case under study, all the systems are electrical loads, thus the only admitted
electrical behaviour is the power absorption from the grid. Zero or nearly-zero
value power measurements for loads with continuously operating systems (re-
frigerators, emergency lighting) were considered inconsistent and removed as
well.

The second step consists of the identification and removal of outliers. In time
series analysis the outliers are observations unlikely to occur given the variance
of the observations of the rest of the time series [27]. They can be distinguished
into punctual outliers and sequence outliers, in this phase only punctual outliers
are considered. Those anomalies are usually linked to a malfunctioning of the
measurement system.

An effective way to visualize variables distributions and detect outliers is the
boxplot because it provides in just one visual representation a lot of quantitative
information. In fact, the spacing between the parts of the boxplot indicate the
degree of dispersion of data and skewness of the distribution. In particular, in
the boxplot are reported:

• First quartile Q1,(25%) : the point between the smallest value and the me-
dian;

• Second quartile or median Q2,(50%) : the middle value of the dataset;

• Third quartile Q3,(75%) : the point between median and the highest value;

• Inter-quartile distance or range IQR: the distance between Q2 and Q1;

• Minimum (min) : Defined as Q2 − 1.5IQR;

• Maximum (max) : Defined as Q3 + 1.5IQR;

• Outliers: all the values that fall outside the maximum or minimum.

The first and third quartiles are joined respectively to the minimum and max-
imum by a line called whisker. In the following study, the boxplot used is called
Turkey plot, and it is slightly different because the whisker is extended not to
the maximum/minimum but to the maximum value within 1.5 ∗ IQR.
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Moreover, boxplots allow to summarize and visualize the overall distribution
and decide the tolerance band outside which outliers can be removed (see Fig-
ure 4.2). In positively skewed distributions (like electrical load) many outliers
are found above the third quartile Q3; setting a standard 1.5IQR band of toler-
ance could result in a significant loss of information. This is why only points
lying outside 5IQR from 3rd quartile are removed. For highly skewed distribu-
tion (refrigeration unit) the threshold is set to 10IQR. Then missing values are
replaced through linear interpolation.

Figure 4.2: Outlier detection and handling of a positive skewed distribution.

4.2 Time series abstraction

The second step is the dimensionality reduction of the time series through the
implementation of Adaptive Symbolic Aggregate approXimation (ASAX), as de-
scribed in Section 2.1.2. This phase is composed of time window identification,
time series reduction using PAA, breakpoints identification and encoding.

Classification And Regression Trees (CART) is used to identify unequal time
window length, considering the total electrical load as a numerical target and the
hours of the day as a predictive attribute. Once time windows are evaluated, the
Piecewise Aggregate Approximation (PAA) approximation is performed trans-
forming the original time series into a N ∗ W data frame. The hypotheses of
equally probable regions of Gaussian distribution is rejected, and breakpoints
are identified through the Adaptive Symbolic Aggregate approXimation (ASAX)
procedure by choosing the appropriate alphabet size through a single linkage
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hierarchical clustering process. This process is implemented through the R pack-
age NbClust [23], which allows to simultaneously evaluate the clustering quality
through the use of 30 different indexes. Each index proposes a number of clus-
ters and the optimal number is selected following a majority rule.

4.3 Detection at meter level data

Detection is performed on the aggregated electrical load of substation C, using
a globally optimum classification tree. In each time window, the total electrical
load symbol is predicted by the tree, which uses as explanatory variables a com-
bination of meteorological info (as the external temperature), calendar info (day
type, holiday) and energetic info (sub-loads mean electrical load).

The model is constructed through a test-train-validation process. The dataset
used contains at least one year of observations 80% of data is used for training
and 20% for testing. Validation is performed on another dataset, not previously
employed in model construction, in order to avoid dependencies.

Given a specific time window and a particular boundary condition, the model
can predict the expected symbol with high accuracy. In the resulting leaves
nodes, the symbol referring to the most frequent electrical load presents a high
probability of occurrence compared to all other symbols, which express infre-
quent behaviours. The most occurring symbol represents the “normal" opera-
tion, while the others are potential anomalies and are further investigated in the
diagnosis phase.

4.4 Diagnosis at sub-meter level data

Once the classification model is created, it is possible to proceed with the post-
mining phase in which the training dataset is further described in order to find
historical relationships between infrequent total electrical load letters and sub-
loads anomalies. The process is described in Figure 4.3.

Given the interest in detecting higher electrical load than usual, only tree’s
leaves nodes that show infrequent symbols corresponding to higher electrical
load are considered. Those symbols are extracted and stored in a categorical
data frame. Thanks to tree’s decision rules it is possible to retrieve additional
explanatory variables, from sub-loads time series, and enrich this data frame. In
particular, information about the mean value and the trend angle are extracted.
They are categorized through an ASAX encoder and then added to the data frame.

52



4.4 – Diagnosis at sub-meter level data

This data frame is then transformed in a transactional database on which As-
sociation Rule Mining (ARM) is applied. The Left Hand Side (LHS) is composed
of the additional sub-loads’ categorical variables, while Right Hand Side (RHS)
contains only the total electrical load anomalous symbol. ARM extract a set of
rules which connects the electrical load infrequent behaviour with the sub-load
conditions.

Resulting rules are then reported in a scatter plot and then sorted and filtered
setting appropriate interest measures parameters. Filtered rules are then stored
within an anomaly library where they are ranked and clearly show which sub-
loads conditions (for example high electrical load or significantly uptrend) is
responsible for the aggregated electrical load behaviour. The tool gives a critical
insight into the historical load behaviour and, when implemented in real-time
load analysis, can give useful hints on which sub-load energy management ac-
tions are needed.
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Figure 4.3: Sub-meter level diagnosis methodology description.
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Chapter 5

Results

The previously described methodology was applied to the case study presented
in Chapter 3. The quantitative analysis of data is performed through the open
source statistical software R and results related to each stage are reported in the
following sections.

5.1 Preprocessing

The pre-processing phase allowed to handle missing values and remove outliers.
The procedure was applied to both electrical load and climatic dataset.

The electrical load dataset includes 175 295 observations; punctual outliers
due to wrong measurements were detected (Figure 5.1), while other anomalies
or missing values were not identified. Outliers were removed and filled in with
linear interpolation. The total aggregated electrical load carpet plot is reported
in Figure 5.2. The loads are usually turned on at 6.00 a.m. and switched off
at 19.00 p.m. The electrical load increases from 8.00 a.m. until 16.00 p.m. and
then starts to decrease. This hourly pattern is visible periodically every week-
day, while during the weekend it can be seen a much lower electrical load. The
same carpet plot representation has been constructed for all the sub-loads: Print
shop in Figure 5.4, DIMAT in Figure 5.5, Bar Ambrogio in Figure 5.6, Rectory
in Figure 5.7, Refrigeration unit in Figure 5.8, Data centre in Figure 5.9, Canteen
in Figure 5.10, Not allocated in Figure 5.3. From those carpet plots is visible the
sub-loads seasonality dependency, like in refrigeration unit2, and dependency
on the academic year of student-related facilities such as canteen.

The climatic dataset contains 156 579 observations of external temperature, 42
missing values and periods of missing measurements from October-December
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2015, August-November 2016 and August-September 2019.
The relative carpet plot is shown in Figure 5.11. Some extreme values of

temperature were removed a priori, since unrealistic, like temperatures below
−50 ◦C and over 50 ◦C. Then missing values are filled with linear interpolation.

Figure 5.1: Outliers identification through boxplots.
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Figure 5.2: Carpet plot for the electrical load of Total Power

Figure 5.3: Carpet plot for the electrical load of Not allocated
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Figure 5.4: Carpet plot for the electrical load of Print Shop

Figure 5.5: Carpet plot for the electrical load of DIMAT
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Figure 5.6: Carpet plot for the electrical load of Bar Ambrogio

Figure 5.7: Carpet plot for the electrical load of Rectory
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Figure 5.8: Carpet plot for the electrical load of Refrigeration unit2

Figure 5.9: Carpet plot for the electrical load of Data centre
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Figure 5.10: Carpet plot for the electrical load of Canteen

Figure 5.11: Carpet plot for the external air temperature
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5.2 Time series abstraction

In order to undergo the data transformation and dimensionality reduction, the
original time series of electrical load was chunked into 24 h intervals since a daily
periodical pattern was observed.

The time windows of daily load profiles were evaluated though Classification
And Regression Trees (CART), considering the total electrical load as a numerical
target and the hours of the day as a predictive attribute. The aggregated electrical
load from 2015 to 2019, was used. The resulting tree is shown in Figure 5.12.

Figure 5.12: CART tree for the sub-daily time window identification

Holidays and weekends were excluded from the analysis since they usually
present flat profiles with low variance and include those days in the model
would have reduced the accuracy of the results. The splitting criterion adopted
is based on the variance reduction around the numerical target’s mean, in each
leaf node. By doing so, it allows the daily pattern to be split into homogeneous
consumption time windows. As a stopping criterion a minimum number of ob-
jects in the child nodes at each split was set, in order to have a time window
length of 2 h, at least. The parameter expressing this condition is calculated as
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follows:

minbucket = (Ndays − Ndays,excluded) ∗
Wmin,length

Wtimestep
(5.1)

Where minbucket the minimum number of object in the child node, Ndays the
total number of daily load profiles available, Ndays,excluded the total number of
daily load profiles excluded, Wmin,length = 120 min the minimum required length
of time window in minutes and Wtimestep = 15 min the time-step corresponding
to the sampling frequency. A maximum number of splits was set as an other
stopping criterion (maxdepth = 10).

The regression tree automatically identifies the optimal number of windows
thanks to a cost complexity pruning process. The tree grows entirely and then
is pruned iteratively until the root is reached. At each step, the complexity pa-
rameter cp was computed. This process can be seen in figure 5.13 where the
complexity parameter connected to the tree size is plotted against the LOOCV

error. When the tree is fully expanded cp is zero, reducing the size (i.e. the num-
ber of leaves) cp increases reaching the maximum when only the root is present.
If the computed cross-validation error falls within one standard error (1 − SE
rule) the trees are statistically equivalent (below the red line), so the simplest
tree (smallest size) is chosen for the model [8].

Figure 5.13: Complexity parameter and tree size determination.

The resulting tree, shown in Figure 5.12, has five leaves which correspond to
five time windows, which are summarized in Table 5.1. It can be seen that the 1st

and 5th time window correspond to the night hours during which the university
is closed and not occupied. In contrast, the others time windows correspond
to the university’s operational hours. The length of the time windows is very
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different from one another. This means that the tree is effective in isolating time
windows in which there is an abrupt load variation (see the 2nd time window)
from other behaviours.

Table 5.1: Sub-daily time windows for total electrical power

Time window Hours Rounded Hours Duration

1 00:00 - 06:23 00:00 - 06:29 6 h 30 min
2 06:24 - 08:53 06:30 - 08.59 2 h 30 min
3 08:54 - 15:38 09:00 - 15:44 6 h 45 min
4 15:39 - 19:08 15:45 - 19:14 3 h 30 min
5 19:09 - 24:00 19:15 - 24:00 4 h 45 min

Once the time windows were identified and features extracted from the database,
Adaptive Symbolic Aggregate approXimation (ASAX) was performed on the to-
tal electrical load time series for each time window. The time interval used is
from January 2015 to December 2019.

A fundamental parameter to be set is the alphabet size (α) which determines
how many characters are going to be used to for the encoding, and so the number
breakpoints the algorithm needs to find. While in [8] a domain expert chooses
the alphabet size, in this framework an unsupervised technique of single-link
hierarchical clustering was used, setting an interval of potential values for the
optima number of clusters between 3 and 8. According to the majority rule, the
optimal number of clusters is 6 so the alphabet size, was assumed to be equal six
(α = 6).

The initial breakpoints, calculated under equally probability assumption, were
used as initialization of ASAX iterative algorithm. As it can be seen in Figure 5.14,
those breakpoints (dotted lines) are not able to divide the distributions effec-
tively, producing narrow intervals at low values and wider intervals for higher
values. The final adaptive breakpoints (solid lines) were evaluated once a toler-
ance of 10−10 on the representation error is reached.

Carpet plots were used to understand the distribution of symbols during the
day and along the year, while histograms were used to visualize the occurrence
frequency of symbols in each time window. In Figure 5.15(a) are reported the
carpet plot and histograms referring to the encoded total electrical load time
series. The figure shows that in time window 1 and 5, the most frequent symbols
are "a" and "b", that corresponds to a low load during the night hours. In time
window 2 and 4, corresponding to early morning and late afternoon, there is
a prevalence of medium load identified with symbol "d", corresponding to the
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Figure 5.14: Step by step identification of adaptive breakpoints through the
ASAX algorithm applied on the aggregated total electrical load.

switch on of the systems. In time window 3, the symbols "e" and "f" are the most
frequent since the electrical load in the middle of the day is the highest. On a
yearly base analysis, it can be seen that the load pattern has changed, with an
overall trend in reducing electrical absorption. In particular in time window 1
and 5 the symbol "b" reduced its frequency in favour of the previous symbol
“a”; the same trend is shown in time window 3 where symbol “f” reduced it
frequency in favour of the symbol “e”.

65



5 – Results

(a) (b)

Figure 5.15: ASAX representation of the total electrical load: (a) carpet plot (b)
histogram distribution of letters along the time windows and along the years

5.3 Detection at meter level data

Once the total electrical load time series is reduced in dimension and encoded
the detection model can be constructed. For each time window, a globally op-
timum classification tree is developed in order to investigate further the depen-
dency of the total electrical load (i.e. target variable) on boundary conditions
such as the external temperature or day of the week (i.e. predictive variables).
This tree aims to construct a model with very accurate decision rules, so in the
leaf node, a high occurring symbol can be found. If so, the low occurrence sym-
bols are potential anomalies for the given time window. Those anomalies will be
further investigated in order to understand which sub-system can be imputed
for infrequent behaviour.

Only data from 2018 was used for the model construction since in order to
build a more accurate classification model that can be used as an anomaly detec-
tion tool is better to train the model on recent past data.
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A process of cross-validation between test and train set is used to construct
and select the model. The 2018 data was split by sampling randomly each week
80% of the days for train and 20% of days. Validation of the model is performed
on data on the first month of 2019. In order to create a model that automatically
learn new patterns as the building energy consumption behaviour changes, the
idea is always to train and test the model on the last year of data and apply it on
o a full month. Once the month ends, it is included in the training-test dataset of
the new model that will be used for the following month.

Predictor attributes included in the tree are:

• The day of the week;

• Whether is a holiday or not;

• Mean external temperature of the time window (Tair);

• Mean external temperature of the previous time window (Tair,pre);

• Mean total aggregated electrical load (in kW) of the previous time window;

• Mean electrical load (in kW) of Canteen and Refrigeration unit 2.

The choice to use as predictive values some sub-loads and not others comes from
the analysis of the variance and the fraction on the total electrical load. The
Canteen and the Refrigeration unit weight respectively for 12,22% and 16,03%
on the total electrical load (Figure 3.2) and, among the sub-loads, they show the
higher variance along 2018, this means that they present peaks and dumps of
electrical load driving the overall electrical load up and down.

The maximum depth parameter of the tree was set to 6, the minimum num-
ber of observations in each node was set to 20, and the default probability set-
ting for variation operators was assumed (20% crossover, 40% mutation and 40%
split/prune).

Since the evtree algorithm and the splitting process are randomly initialized,
the seed for the random number generator is set in the code in order to replicate
the analysis easily.

In the following figures will be reported the classification trees for each time
window, in particular in Figure 5.16 the first, in Figure 5.17 the second, in Figure
5.18 the third, in Figure 5.19 the fourth and in Figure 5.20 the fifth. In general
is possible to see that those trees effectively separate in each leaf node the most
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frequent symbol1 from the others while maintaining a readable and understand-
able format. Decision rules extracted for each time window are reported in a
easely interpretable IF⇒THEN format in Table 5.3.

Many trials were attempted in order to obtain a satisfactory trade-off between
the testing accuracy and validation accuracy. The model performance results are
shown in Table 5.2 where it can be seen that the mean overall accuracy in testing
is around 86% while in validation 89%.

In particular, the first time window shows higher testing and validation ac-
curacy (96.98% and 100% respectively). This is mainly due to the flat profile
that the electrical load shows in this night and early morning period. In fact,
the relative classification tree (Figure 5.16) is very simple: is composed of just
one node in which the most frequent symbol is "a", with a relative frequency
of 97.3%. The lowest training and validation accuracy can be seen in the third
time window (79.45% and 58.06% respectively). Even if in the relative classifica-
tion tree (Figure 5.18) the separation between frequent and infrequent symbols
is well performed, the tree has difficulty in generalizing the behaviour since in
this time window all the sub-loads shows very different operational patterns and
electrical absorption.

As previously said, many trials were performed in order to choose the right
predictive variables and to appropriately chose the test validation proportion.
The training-test procedure avoids learning specific pattern allowing to create
a more generalizable classifier avoiding overfitting on the validation set. The
presented results are those that provide the best performance.

Table 5.2: Accuracy results comparison between test and validation

Time window Test Accuracy Validation Accuracy
[%] [%]

00:00 - 06:29 96.89 100
06:30 - 08.59 82.19 93.55
09:00 - 15:44 79.45 58.06
15:45 - 19:14 86.30 96.77
19:15 - 24:00 86.30 96.77

1The symbols are represented in the figures by numbers in order to calculate more easily
performance parameters in the code. However, there is a correspondence between number and
symbols as follow: 1 → a, 2 → b, 3 → c, 4 → d, 5 → e and f → 6
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5 – Results

Figure 5.16: Globally optimum tree for time window 1 (00:00 - 06:29).

Figure 5.17: Globally optimum tree for time window 2 (06:30 – 08:59).
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5.3 – Detection at meter level data

Figure 5.18: Globally optimum tree for time window 3 (09:00 - 15:44).

Figure 5.19: Globally optimum tree for time window 4 (15:45 - 19:14).
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Figure 5.20: Globally optimum tree for time window 5 (19:15 - 24:00).

5.4 Diagnosis at sub-meter level data

Once the classification model is created, the subset of observations contained
in each node is transformed into a transactional database which contains the
categorical target variable (total electrical load symbol) and some additional ex-
planatory variables related to the sub-loads.

To extract those additional categorical variables, sub-loads time series un-
dergo the same time series abstraction process described for the total electrical
load in Section 5.2. Using the same time window discretization as the total elec-
trical load and the same alphabet size (α = 6) each time series electrical load
is encoded through ASAX. In order to enrich information about sub-loads, the
trend angle is extracted and encoded as well. This feature allows to keep track
of the trend of the time series in the given time window, in particular identifying
if the load presents an increasing, decreasing or stable trend. In this case, the
alphabet size was set to three (α = 3) in order to reflect those three trends.

• θ >> 0 means that the trend angle is positive and so the time series trend is
increasing upward. This condition is codified with the symbol "UP" in red
in figures;
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5.4 – Diagnosis at sub-meter level data

• θ ’ 0 means that the trend angle is almost zero and so the time series does
not present any particular trend . This condition is codified with the symbol
"STABLE" in yellow in figures;

• θ << 0 means that the trend angle is negative and so the trend is decreasing
downward. This condition is codified with the symbol "DOWN" in green in
figures;

The initial breakpoints, calculated under equally probability assumption, were
used as initialization of ASAX iterative algorithm and the final adaptive break-
points were evaluated once a tolerance of 10−10 on the representation error is
reached.

The carpet plot representation for each sub-loads has been constructed and
are represented in the following figures Print shop in Figure 5.21, DIMAT in
Figure 5.22, Bar Ambrogio in Figure 5.23, Rectory in Figure 5.24, Refrigeration
unit in Figure 5.25, Data centre in Figure 5.26, Canteen in Figure 5.27.

In each figure is reported on the left side the encoded electrical load symbol
(a) while on the right side the encoded trend angle (b). From these figures next
to the electrical load information already discussed in Section 5.1 another im-
portant information is added: the trend angle. This feature permits to identify
the load ON/OFF schedule and anomalies in this sense. For example is possible
to identify very regular patterns of for the Print shop in which appliances are
switched on in the 2nd time window and switched off in the 4th time window.
Any behavior different from this one my result in possible anomalies or unusual
schedule and thus can be corrected or avoided in phase of energy management.
This feature permits to enrich the information in the following ARM phase with-
out increasing the computational effort.
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5 – Results

(a) (b)

Figure 5.21: ASAX carpet plot for Print shop.

(a) (b)

Figure 5.22: ASAX carpet plot for DIMAT.
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(a) (b)

Figure 5.23: ASAX carpet plot for Bar Ambrogio.

(a) (b)

Figure 5.24: ASAX carpet plot for Rectory.
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(a) (b)

Figure 5.25: ASAX carpet plot for Refrigeration unit.

(a) (b)

Figure 5.26: ASAX carpet plot for Data centre.
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5.4 – Diagnosis at sub-meter level data

(a) (b)

Figure 5.27: ASAX carpet plot for Canteen.

Then Apriori ARM algorithm is applied on the transactional database using
the R package arules [34]. The RHS is the anomalous total electrical load symbol,
while in the LHS is composed of all possible combination of electrical load sym-
bols and trend angles of sub-loads. The minimum and the maximum number of
items in a transaction is set in order to create resulting rules with one or maxi-
mum two items in the LHS. The minimum support to mine rules is set to 0.005,
and the minimum confidence is set to 0.005.

Redundant rules, equally or less predictive of a more general rule, are re-
moved and the remaining are represented in a scatter plot. This kind of plot
permits to visualize the association rules by representing on the x-axis the sup-
port, on y-axes the confidence and by coloring the points with a gradient scale
representing the lift [14]. Interesting rules are those that are less frequent (i.e.
low support) and have high confidence and high lift. From the scatter plot it is
possible to isolate interesting rules by setting li f t > 1 and con f idence > 0.5.

Those rules are then stored in the anomaly library. The anomaly library is a
database composed of five colums. The first column stores the LHS of the as-
sociation rules, the second columns stores the RHS, the third column stores the
support, the fourth the confidence, the fifth the coverage (support of the RHS)
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and finally the sixth column the lift. This data frame is ordered by decreasing
values of lift. LHS of those rules represent those loads that are significantly influ-
encing the abnormal electrical load and so the anomaly detection of sub-loads
can be concluded.

An example of the procedure is shown in Figure 5.28 for node 5 of the second
time window. In this node the most frequent symbol is “b”, and the only infre-
quent interesting symbol (higher power absorption) is “c”, which constitutes the
RHS. The transactional database used for ARM is composed of sub-loads categori-
cal variables (electrical load symbol and trend angle). Of 338 rules extracted, 180
are redundant and 158 rules are significant. After filtering through the scatter
plot, only 19 remain and they are stored in the anomaly library. In the particular
case, the most frequent items in the anomaly library are Refrigeration unit 2 = d,
Canteen = c and Rectory = d.

Figure 5.28: Diagnosis procedure of extracting, filtering and selecting only rele-
vant association rules from node 5 of time window 2.
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5.5 Simulation of application

The methodology is intended to be implemented in an EIS that provides real-
time data analysis using meter-level data. The EIS system continuously collects
data, and once a time window is concluded, the total electrical load symbol is
calculated employing ASAX and compared to the one predicted by the globally
optimal tree. Three possible cases can be found applying this model:

• The actual symbol is the same as the predicted symbol. This means that
given the boundaries conditions the total energy consumption of that time
window is as expected, no further diagnosis is requested;

• The actual symbol is different from the predicted symbol and indicates a
lower electrical load than expected. This means that given the boundaries
conditions the mean electrical load of that time window is lower than ex-
pected, no further diagnosis is requested since the focus of the methodology
is to find infrequent behaviors that cause higher consumption;

• The actual symbol is different from the predicted symbol and indicates a
higher electrical load than expected. This means that given the boundaries
conditions the mean electrical load of that time window is higher than ex-
pected; a further diagnosis is needed.

In the latter case, the diagnosis is enabled. Given the boundaries conditions,
the corresponding leaf node of the classification tree is identified, and the tool
automatically extracts new association rules related to anomalous behavior and
then compares them to the ones contained in the anomaly library. If there is a
match, those items or rules robustly identify which sub-loads are connected to
the anomaly.

5.5.1 One month simulation

In the first part of this simulation example, the methodology is applied on Jan-
uary 2019. The process of detection through the tree evolutionary tree is per-
formed on all the time windows and results are shown in Figure 5.29. Only in
the 2nd and 5th time windows happen that the actual symbol is different from
the predicted symbol and indicates a higher electrical load than expected, re-
spectively “c” instead of “b” and “b” instead of “a”. Both of those anomalies
happened on Friday 2019-01-04.
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Time window 2

Once identified the day and the time window of the anomaly the corresponding
tree’s leaf node is identified as well. In this case the anomalous electrical load
of Friday 2019-01-04 belongs to the 2nd time window and node number 5. The
diagnosis process is enabled, and new association rules are extracted and com-
pared with the anomaly library of the respective node. In this example, there is
a partial match of the rules on the following items:

• Print shop electrical load symbol “c”

• Refrigeration electrical load unit symbol “c”

• Canteen electrical load symbol “c”

• Canteen trend angle symbol “UP”

Those are the sub-loads that cause the increase of total electrical load. A fur-
ther graphical analysis is conducted in Figure 5.30 to assess the validity of this
conclusion. The graph shows a comparison between of the total electrical load,
Refrigeration unit, Print shop and Canteen. Only 2nd time window is shown
on the x-axis: in red the anomalous data related to 2019-01-04 while in green is
shown the frequent “normal” behavior of the given load in the training period
(from 01-01-2018 to 31-01-2018). Along with the effective electrical load (solid
lines) are reported the PAA in dashed line.

We can verify that the combined effect of higher mean power absorption of
these three loads and the early switch of the canteen after 8:00 a.m., testified by a
high trend angle, lead to higher overall electrical load. The mean total electrical
load switches from 236.28 kW (symbol “b”) to 283.09 kW (symbol “c”), and it
is easy to verify that those loads contribute for almost 90% of the power shift
upward of the total electrical load.

Time window 4

Once identified the day and the time window of the anomaly the corresponding
tree’s leaf node is identified as well. In this case the anomalous electrical load
of Friday 2019-01-04 belongs to the 4th time window and node number 2. The
diagnosis process is enabled, and new association rules are extracted and com-
pared with the anomaly library of the respective node. In this example, there is
a partial match of the rules on the following items:

• Rectory electrical load symbol “c”
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• Refrigeration unit electrical load unit symbol “c”

• Canteen electrical load symbol “b”

Those are the sub-loads that cause the increase of total electrical load. A fur-
ther graphical analysis is conducted in Figure 5.31 to assess the validity of this
conclusion. The graph shows a comparison between of the total electrical load,
Refrigeration unit, Rectory and Canteen. Only 2nd time window is shown on the
x-axis: in red the anomalous data related to 2019-01-04 while in green is shown
the frequent “normal” behavior of the given load in the training period (from
01-01-2018 to 31-01-2018). Along with the effective electrical load (solid lines)
are reported the PAA in dashed line.

We can verify that the combined effect of higher mean power absorption of
these three loads lead to higher overall electrical load. The mean total electrical
load switches from 153.34 kW (symbol “a”) to 207.97 kW (symbol “b”).

5.5.2 Six month simulation

In this second part of the simulation application the methodology is tested on
the first six months of 2019 in order to assess the accuracy of the results as the
times passes and the whole building patterns changes. The retraining process
consists in successive steps:

1. Suppose that the actual date is 01/01/2019;

2. Train and test the methodology (classification tree + ARM) on the past year
of data Itraini,test = [01/01/2018; 01/01/2019);

3. Use the methodology from now to the end of the month on the interval
Ivalidation = [01/01/2019; 01/02/2019) ;

4. Once the month is concluded (Actual date 01/02/2019) retrain and retest
the methodology (classification tree + ARM) on the past year of data Itraini,test =

[01/02/2018; 01/02/2019);

5. Repeat steps 3 and 4

By doing so the methodology is retrained monthly providing higher valida-
tion accuracy as shown in Table 5.4. In this table the case A refers to accuracy
results of not retrained model (i.e. the model constructed only on 2018 data)
while the case B refers to the monthly retrained model. It can be seen that the
average validation accuracy calculated as the mean of all the accuracies of all
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the time windows, in case A is 78.77% which is lower than case B where it is
82.85%, confirming that the retrain strategy is efficient in capturing the mutation
of energy behaviour providing better performances.

Table 5.4: Validation accuracy results comparison between not retrained model
(A) and retrained model (B)

Time window
February March April May June

A B A B A B A B A B
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

00:00 - 06:29 100 100 100 100 100 100 100 100 86.67 86.67
06:30 - 08.59 100 100 96.77 96.77 60.00 53.44 22.58 22.58 66.67 90.00
09:00 - 15:44 57.14 85.71 64.52 100 50.00 76.67 77.42 58.06 60.00 76.67
15:45 - 19:14 100 100 96.77 96.77 76.67 76.67 80.65 64.52 60.00 66.67
19:15 - 24:00 89.29 89.29 77.42 77.42 90.00 90.00 96.77 100 60.00 63.33

Mean 89.29 95.00 87.10 94.19 75.33 79.36 75.48 69.03 66.67 76.67
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Figure 5.29: Confusion matrix for the evtree classification tree predicting January
2019 total electrical load symbol. In the red square the anomalous behavior to be
investigated.
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Figure 5.30: Focus on electrical load in period 2 node 5, comparison between the
detected anomalous electrical load on 2019-01-04 and the normal behavior.
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Figure 5.31: Focus on electrical load in period 4 node 2, comparison between the
detected anomalous electrical load on 2019-01-04 and the normal behavior.
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Chapter 6

Conclusion

This paper focused on the development of a top-down ADD methodology able
to analyze meter-level electrical load data in order to detect anomalous pattern
and perform a diagnostic process on sub-loads through ARM.

This methodological framework was conceived to be a highly scalable and
reliable tool ready to be implemented in energy data acquisition systems that
can help to promptly detect anomalies and avoid energy wastes to be prolonged
over time.

In this framework, the aim was to create an automatic procedure by using
as much as possible methods in which the supervised choice of parameters is
limited to only the necessary ones. A right choice of parameters for a particular
building could be the wrong choice for another, and an incorrect setting could
cause an important loss of accuracy.

The time window size and alphabet size for the ASAX encoding are essential
parameters. In [31] is reported an interesting sensitivity analysis based on these
two parameters, showing that a tradeoff between window numbers and alpha-
bet size has to be found in order to minimize the variance between patterns and
resolution needed. In this thesis the time window number was chosen by us-
ing a CART and the alphabet size by a hierarchical clustering evaluation. Once
those parameters are set, the ASAX encoding procedure is completely automatic.
Moreover the conducted analysis shows that considering a trend angle as fea-
ture a robust sub-loads characterization can be performed without adding any
computational burden.

Regarding the classification model, in this framework no sensitivity analysis
was performed, the choice of the variations operators probability correspond to
the default choice c20m40sp40 [18]. For a detailed sensitivity analysis on how the
choice of variation operators affect the misclassification rate of the classification
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tree refer to [4].
Moreover the selection of the predictive variables for the evolutionary tree

needs particular attention. The overall energy consumption of a building is
strongly connected to occupancy schedule, environmental conditions, thermo-
physical features of the building, users behaviour. For this reason, those vari-
ables should be all included in the classification model and could help in de-
scribing infrequent but non-anomalous patterns. On the other hand, trustworthy
values are difficult to retrieve or measure with continuity. For sure, the inclusion
of those variables could qualitatively increase the model predictions.

A further interesting aspect of being considered is related to the data that
should be used for training and how often training is needed. Is well known
that building electrical load varies along the years due to the electrification of
end uses and the seek of the higher performance of appliances and facilities. For
this motivation, a good trade-off between re-training rate and computational
effort should be performed with monthly retrain of the classification tree and an
update of ARM anomaly libraries. By maintaining to one year the size of an ideal
moving window the new month would be included while the corresponding
month of the previous year excluded. In this way, the models would keep pace
to the change of energy consumption patterns.

Moreover, the methodology could lead to the construction of "normal" knowl-
edge database to compare future operation and identify anomalies or a database
of anomalies and detect directly if those happens, and filling with new observa-
tion the database.

Finally, further developments of this work may include a real time implemen-
tation in Politecnico di Torino Energy Information Systems (EIS) and deployment
in a real case application.
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Acronyms List

AEIS Advanced Energy Information Systems

ADD Anomaly Detection and Diagnostics

AI Artificial Intelligence

AMI Advanced Metering Infrastructure

ARM Association Rule Mining

ASAX Adaptive Symbolic Aggregate approXimation

ASO Automated System Optimization

BAS Building Automation Systems

CART Classification And Regression Trees

CV Cross Validation

DM Data Mining

DSS Decision Support Systems

EIS Energy Information Systems

EMIS Energy Management and Information Systems

FDD Fault Detection and Diagnosis

IEA International Energy Agency

HVAC Heating, Ventilation and Air Conditioning

KPI Key Performance Index

IT Information Technology

89



– Acronyms List

LHS Left Hand Side

LOOCV Leave One Out Cross Validation

PAA Piecewise Aggregate Approximation

PoliTo Politecnico di Torino

RHS Right Hand Side

RSS Residual Sum of Squares

SAX Symbolic Aggregate approXimation

SMI Smart Metering Infrastructure

SSE Sum of the Squared Errors
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