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Abstract
The aim of this thesis is to find the mechanical properties of a non-homogeneous material

in the hypothesis of elastic behaviour.

To overcome the problems of conventional testing, in which the macroscopic properties are
determined, and identify the real Poisson’ s ratio of a material, the spatial distribution of dis-
placements has been measured. To obtain, what is called, a displacement field, Digital Image
Correlation (DVC), is used. Thanks to the DVC it has been possible to obtain displacement
field measurements from a 3D image series (from initial to deformed), results of a test.

The 3D images treated in this thesis are either synthetically generated, or as a result of
x-ray tomography on a real experiment.
In both cases the initial configuration of the specimens has been chosen with increasingly
complicated morphologies. Starting from the homogeneous configuration, up to a specimen
with many void spherical defects.
In the synthetic case, once the image of the initial configuration is generated, it is deformed
with a displacement field resulting from a Finite Element simulation.
In the case where the campaign of experiments is carried out once the material has been chosen
with the desired configuration, the images are obtained thanks to in-situ tomography, combin-
ing x-ray tomography and uniaxial compression testing. Once the images are generated, these
are correlated to produce the real displacement field, from which the boundary conditions are
extracted.

The boundary conditions are then applied in Finite Element simulations. The FE meshes
are representative of the initial configuration of the material. In the simulation the linear
elastic behaviour is assumed, and in each of them different values are chosen for the elastic
constants of the material (output of the treatment). The result of each simulation is a simu-
lated displacement field.

By searching which simulated displacement field is the most similar to the real displace-
ment field it has been possible to identify Poisson’s ratio of the material tested.

(315 words)
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1 Introduction
In civil engineering, the security of knowing the materials used, their behaviour and their param-
eters is extremely important.
Over the years many mathematical models have been created, in order to describe the materials,
the models are derived from experimental data, and they divide the materials into classes of be-
haviour. Each model idealizes, more or less, a real behaviour of a studied material.

Each class has its own law that describes the behaviour, one material in particular is specify
according to the constants that are present in the law, more the function is mathematically com-
plex greater is the number of constants, if the law is a straight line there are only two parameters
that specify the material.
Therefore, if is assumed to know a priori in which of these models a material belongs, only the
constants of the law must be defined. These are determined by experimental tests.

Conventional material testing, are global processes that are only able to extract the average
response of the material. In this kind of test results are global data with no information between
measurement points, therefore, in the case of non-homogeneous material or processes, the informa-
tion that characterize the heterogeneity and the state of the boundary conditions are lost. [Viggiani
and Hall 2008, Grediac 2004]

Without the certainty that the material is perfectly homogeneous, as well as the instrumenta-
tion for the test, the parameters that are derived from this test are not precisely the parameters
of the material studied.

In recent years more innovative techniques have been developed that allow to obtain, not global
measurements, but field records of a quantity, which are called Full-field measurements. Not only
do they have the ability to best manage anisotropic and heterogeneity, they also have the advan-
tage of being non-contact techniques.

In order to study the behaviour of materials it is standard to have the measurement of de-
formations as a function of an applied stress. In full field measurements, this translates into the
measurement of displacement field from field measurements taken of samples deforming. In this
case the measurements of the deformation fields (Figure 1 c) are obtained using the Digital Image
Correlation between the 3D image of the initial and final configuration. These 3D images are pro-
duced with tests, performed inside the x-ray tomograph (Figure 1 a and b) or form the simulations
of mechanical tests.

Figure 1: Vertical cut of images, from initial configuration, deformed configuration and displace-
ment field (in px) in the z direction result of the DVC.

To find the parameters of a constitutive law, full field measurements are embedded with finite
element simulations.[Grediac 2004]
In this work the simulations aim for an output (simulated displacement field) that is as close to
reality (real displacement field from the DVC) as possible so that the parameters used in the sim-
ulation are also the parameters of the real material.
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To generate the mesh that is simulated, the initial sample configuration, visible in Figure 1a,
is projected in a generic mesh with tetrahedral elements.
In order to simulate the actual test to which the specimen has been subjected, the boundary con-
ditions derived from the real displacement field (result of the DVC) are imposed in the procedure.

In particular is searched one of the two elastic parameters (Poisson’s ratio) that gives shape to
the linear elastic constitutive law.

To complete the procedure described, two different approaches can be used, both developed in
this thesis.

The first approach involves starting with an experimental campaign: using an x-ray in-situ
mechanical test is possible to obtain 3D images in sequence showing how the specimen deforms
with increasing load (corresponding to a compression test). Since the behaviour of the material
is supposed to be linear elastic to obtain representative parameters, it is not necessary to have
different load steps, in fact it is sufficient the last deformed configuration that corresponds to the
total load. At the end of the load test, two 3D images are realized, the first in initial configuration
and the second in deformed configuration. Both images are characterized by a certain texture
(function of the material and observation scale) and by a noise, due to the instrumentation used.

The second method has a more theoretical approach. It involves the generation of an image
(3D) that is representative of an elastic material with defects in it. Since this is a simulated image
it is possible to control and compare many of the parameters that affect the accuracy of the final
results. As in the experimental case also in this approach, it is necessary to obtain a deformed
image. This is done starting the initial configuration, simulating the mechanical test, which de-
formed the specimen, with finite element simulations are used.
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2 Theoretical background: Constitutive laws
Real materials have a discrete nature, but at an engineering level mathematical models require
that they are studied through the mechanics of continuous bodies, macroscopic physical systems in
which the size of the observed phenomena is such that it is not effects of the molecular structure of
matter and for which it is assumed that matter is uniformly distributed and that it fills the space
that the body occupies.[Lancellotta 2008]

The language of continuous mechanics is based on the tensor notation in which it is possible
to define mathematical entities of the second order that represent deformations and stresses.
The tensor of deformations is defined starting from the infinitesimal strains, shown in Figure 2 in
the x,y plane.

Figure 2: Infinitesimal strains, (Lancellotta, 1995).

• Longitudinal strain:
Ô11 = Ôxx = δux

δx
, Ô22 = Ôyy = δuy

δy
, (1)

Ô33 = Ôzz = δuz

δz
(2)

• Shear strain:

Ô12 = Ô21 = γxy = δux

δy
+ δuy

δx
, Ô13 = Ô31 = γxz = δux

δz
+ δuz

δx
(3)

Ô23 = Ô32 = γzy = δuz

δy
+ δuy

δz
(4)

[Ôij ] =

Ô11 Ô12 Ô13
Ô21 Ô22 Ô23
Ô31 Ô32 Ô33

 (5)

The stress tensor is a linear mapping that associates to each unit normal n the traction vector t,
acting on the surface of outward normal n, the diagonal components act normal to the coordinate
planes and are called normal stresses, while the off-diagonal components act tangential to the
coordinate planes and are called shear stresses.

[σij ] =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (6)

The behaviour of materials is strictly dependent on their constitution and is made explicit by
the constitutive laws with which it is possible to predict the response of a deformable medium
subject to load histories that are not necessarily simple.

In particular in this work the hypothesis of linear elastic behaviour is accepted as valid for the
materials studied. This leads to a very simple constitutive law and also gives the possibility to
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have a solution in closed form.
An ideal solid is defined elastic if in any phase of unloaded loading, its response is characterized
by a biunivocal correspondence between tensions and deformations.
Consequently, all the work spent during the deformation is completely returned once the disturbing
cause is removed.
Introducing the hypothesis of linear bond, schematization in Figure 3, of initial unformed state and
null tensional state in the absence of deformations, it is possible to obtain the following constitutive
law:

[σij ] = DijhkÔhk (7)
Dijhk is a tensor of the fourth order called stiffness tensor in which 21 independent elastic constants
appear.

Figure 3: Schematic representation of the stress-strain diagram, linear elastic behaviour , (Lancel-
lotta, 1995).

Introducing the hypothesis of isotropic medium it is possible to arrive at the inverse bond
expressed in the form:

[Ôij ] = − υ

E
σkkδij + 1 + υ

E
σij (8)

in which the elasticity modulus E and Poisson’s ratio υ are shown.
In the case of a specimen subject only to the axial stress component σzz

(σyy=σxx=0) by measuring the longitudinal expansion Ôzz the Young modulus represents the
σzz to Ôzz ratio, by measuring the lateral contraction suffered by the specimen, the Poisson’s
ratio corresponds to the ratio between the lateral contraction/dilation and the longitudinal dila-
tion/contraction.

E = σzz

Ôzz
υ = −Ôyy

Ôzz
= −Ôxx

Ôzz
(9)

In an engineering compression test the force applied to the specimen is measured and the initial
Section of it is known, from these two quantities it is possible to derive σzz, Equation (10), from
the measurement of the initial and final dimension of the sample it is possible to obtain Ôzz, Ôyy,
Ôxx, Equation (11).

σzz = Fzz

A0
(10)

Fzz: instantaneously applied load perpendicular to the specimen section, A0: initial area of the
specimen section.

Ôzz = lz,i − lz,0

lz,0
(11)

lz,0 is the initial length, , lz,i is the instant length. The other longitudinal strains are derived in a
similar way.

It is therefore possible to obtain Young’s modulus and Poisson’s ratio with a simple com-
pression/traction test. The problem with tensile testing and in general in conventional material
testing, is that the specimen response is characterized only globally, therefore, in the case of non-
homogeneous material or processes, the true material behaviour is lost.
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The defects within the material make the macroscopic response to loads different from the
homogeneous material behaviour .
To understand how defects modify the material response and correctly identify elastic parameters,
it is necessary to have full-field measurements, which provide a field record of a quantity and are
well suited to analyze the specific mechanical properties of heterogeneous materials because of their
anisotropic and heterogeneous nature.[Viggiani and Hall 2008; Grediac 2004]

For procedures of identification of parameters for constitutive laws it is required the mea-
surement of full field displacements, which can be determined with various techniques, the image
correlation is the technique adopted in this work. In particular, digital volume correlation will be
performed starting from 3D images of the initial configuration and the deformed configuration of
a sample.

5



3 Tools
In this section the tools that will be used in the work are introduced at a more theoretical level.

3.1 X-ray tomography
X-ray tomography has been firstly commercialized in the 70’s for medical applications. It allows
to visualize 3D images of the object being scanned.
It is a technique increasingly used in the field of materials science because it provides the possibility
to make correlations between the properties of materials and their microstructure. [Salvo et al.
2010; Babout 2006]

The overall concept of X-ray tomography is an extension of classical X-ray radiography, and
is based on the attenuation of the X-ray (function of the density) beam through the specimen.
X-ray radiography provides only a projection of the sample volume on a single plane, the result
is a two-dimensional array. X-ray tomography combines information from a series of projections,
each of which is recorded at a different angle between sample and detector. These projections,
usually named a scan, are obtained by rotating the specimen, subjected to the x-ray beam.

By assembling the 2D radiographs using a filtered back projection algorithm available in the
XAct software (provided by RX-Solutions, Annecy, France), it is possible to obtain the variation
of the attenuation of the X-rays in the sample volume. The data is obtained in the form of a
three-dimensional array of voxels. The grey value of each voxel describes the X-ray attenuation
calculated at that position.

Figure 4a illustrates the principle of X-ray tomograph.

Figure 4: (a) Principle of tomography; (b) Synchrotron and laboratory tomograph. (from [Salvo
et al. 2010]

There are two categories of tomographs (Figure 4b): The laboratory tomographs where the
X-ray beam is divergent, the spatial resolution varies from a few millimeters down to one micron.
The synchrotron sources where the X-ray beam is parallel and the spatial resolution varies between
40 and 0.5 mm.

There are several ways of doing tomography in materials science, in this work laboratory to-
mography and in particular interrupted in situ tomography has been performed. Interrupted in
situ tomography requires specific testing devices (furnaces, compression–tension machine) mounted
directly on the tomograph. The same sample is then scanned, mechanical tests need to be inter-
rupted during the scan.
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Laboratoire 3SR (Grenoble) hosts a specialised laboratory tomograph built by RX-Solutions
(Annecy, France), the setup is shown in Figure 5.

Figure 5: In-situ x-ray facility at Laboratoire 3SR.

The in-situ test starts with a first scan with the unloaded sample, the resulting image is called
reference image. After the first scan the loading system is activated, the tests carried out in this
case are always uniaxial compression. After the first loading step, this is blocked and a second
scan is performed. And so on until the target load is obtained.
In this way a 3D image is obtained for each loading step.

As mentioned in the introduction, the one described is one of two methods by which 3D images
in initial and deformed configuration are obtained, the synthetic method will be explained later.

3.2 Digital Image Correlation
Digital Image Correlation (DVC), which appeared in the early 1980s ([Lucas et al. 1981]), is de-
signed to measure the displacement fields of surfaces (or in volumes, Digital Volume Correlation)
of stressed specimens from images acquired at different stages of loading.[Grédiac and Hild 2012]

The DVC procedure followed in this work is implemented in the open source software spam
based on the formulations found in [Lucas et al. 1981], [Hild and Roux 2012] and [Tudisco et al.
2017].

"Spam, the Software for the Practical Analysis of Materials is a Python library that
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has evolved to cover needs of data analysis from 3D x-ray tomography work and corre-
lated random fields with mechanical applications."[Stamati et al. 2020]

The input data of the analysis are the gray level distributions, of the image of the first config-
uration, known as the reference image f(x) and the second configuration, called deformed image
g(x). The two images are related to each other from the mechanical transformation Φa (called
deformation function in spam), following Equation (12)

g(Φa(x)) = f(x) (12)

The aim is to evaluate the apparent transformation Φa on a region of interest (ROI) R of the
reference image starting from the knowledge of the gray levels f and g. DVC exploits a texture
that must be the signature of each element, simply transported by Φa.
Due to acquisition noise and other sources of imperfection [Grédiac and Hild 2012, Hild and Roux
2012], Equation (12) is actually never strictly satisfied. Therefore, it is normally formalised to
tolerate white Gaussian noise and is written in a weak form over the domain of interest (containing
more than 1 voxel).
The correlation procedure here consists in minimising the sum of squared differences (SSD) between
the reference image, f(x), and the deformed one, g(x), corrected by Φ0(x) (Equation 13). Note that
this similarity criterion is compatible with the assumption of white Gaussian noise [Buljac et al.
2018].
This problem is solved through an iterative procedure (spam used the Newton-Raphson method),
until convergence is achieved.

C =
Ú

R

[f(x) − g(Φ0(x))]2dx (13)

This quantity is null when Φ0(x) is equal to Φa(x)). However, in real cases C can’t not be zero,
due to acquisition noise and other sources of imperfection.

In this work the local approach will be exploited in which the transformation Φ0 over R is
decomposed into a multitude of independent and local transformations calculated in independent
subvolumes called zones of interest (ZOIs) or correlation window, the outcome is a field of discrete
deformation functions for the whole region of interest.[Stamati 2020]
The size of the correlation window is strongly related to the texture of the material.

In SPAM the convergence criterion which is implemented is based on the norm of the deforma-
tion function increment between two successive iteration steps, it is set to ëδΦ ë< 10−6.

In order for Newton-Raphson’s method to converge it is necessary to insert a first guess that is
close enough to the right solution. This first step is obtained considering the whole images as the
domain for correlation. What is obtained is a single deformation function called registration Φreg.

As already mentioned, for the iterative algorithm to converge, each local calculation should
start close enough to the right solution. Therefore, the application of the computed registration
Φreg to each point of the grid is most of the times an essential initial guess.

The code for the Local Digital Image Correlation will return, for each measurement point/node
(thus the centre of correlation window), a specific Φ0, along with the following information:

• The point’s number;

• The point’s Z,Y,X position;

• The point’s Z,Y,X displacement;

• The error for each sub-volume: final difference in grey-levels between the reference image
and g(Φ0(x)) subvolumes with a normalisation applied;

• The number of iterations until convergence (equal to the number of maximum iterations if
convergence is not reached);
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• The return status:

– 2 = Convergence: reached desired δΦmin;
– 1 = Not Convergence: stopped by hitting the maximum number of iterations without

diverging;
– -1 = Divergence: error is more than 80% of previous iteration error;
– -2 = Iterative procedure stopped: singular matrix M cannot be inverted;
– -3 = Divergence: diverged on displacement or volumetric change condition;
– -4 = Margin alignment for reference image and deformed image subvolumes failed (the

iterative procedure never started);
– -5 = Greylevel condition or mask failed (the iterative procedure never started);
– -6 = NaNs in initial Φ field (probably coming from pixel search or input binned field);

For more information [SPAM, documentation].

3.3 Finite Element simulation
As will be explained later, the step after the LDIC, for procedures of identification, are finite
element simulations. This requires the generation of a FE mesh which represents the initial con-
figuration of the material.

SPAM is used to create the mesh (unstructured 3D mesh made of 4-node tetrahedra) and to
project morphology into it. From the 3D image of the initial configuration it is possible to extract
the characteristics of the morphology of the meso-structure.
The first thing to do is to identify the different phases in the image, assigning to each one a precise
value.

In case the image comes from x-ray tomography, the gray values represent the attenuation coef-
ficient inside the scanned sample, so dense phases are characterized by high grayvalues, low-density
phases by low grayvalues.

Figure 6: Representative vertical slices and greylevel histograms of the corresponding reconstructed
3D volumes for a uniaxial tension.

Figure 6 shows the vertical central slice of the reconstructed 3D images coming from the first
(before loading) scans of a uniaxial tension. By eye the different phases are easily distinguishable.

If the phases have very different densities, the gray values will have an easily identifiable thresh-
old, directly obtaining a binary image in which 0 represents phase(1) and 1 represents phase(2).
However, in the case shown in Figure 6, the matrix has low density, which leads to grayvalues
similar to those in correspondence of the voids.
At the scale of observation, however,the matrix is a more heterogeneous material compared to
pore. This means that the variation of greyvalues inside this material should be more irregular.
Instead of separating the solid phase based on the absolute greyvalues, is adopted an approach
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that is based on the variation of the greyvalues.
The variance map of the 3D image is calculated. It is based on a selected structuring element,
given by the formula: V AR(X) = E(X2) - E(X)2 , where E(X) is the averaged greyscale im-
age over a structuring element (binary matrix, defined by its shape and size, that selects a local
neighbourhood around a voxel of interest). The structuring element should be just large enough to
separate low and high variance regions, while remaining sufficiently small to capture the smallest
pore to be segmented, but also to preserve the details of the pore’s shapes.
The computed variance map of the representative vertical slice (cropped) is shown in Figure 7a.
Afterwards, by isolating with a thresholding operation the lower variance areas (pores) and dis-
carding the, a binary image containing only the segmented matrix is obtained (see Figure 7b).

Figure 7: Representative vertical slices and greylevel histograms of the corresponding reconstructed
3D volumes for a uniaxial tension.

Once the binary image is obtained, it is possible to continue with the creation of a “homoge-
neous” FE mesh, independently of any morphology, as can be seen in Figure 8a.
the first operation consists in projecting the identified morphology onto the FE mesh. The first
step in order to project the phases onto a mesh is to compute a distance field corresponding to
each inclusion type phase.
Using this field instead of a raw binary phase field is mandatory since the computation of the
interface vector requires a gradient to compute a accurate orientation.
In the reported case there is only one phase beyond the matrix, so it is necessary to make only one
distance field.
Finally the final FE mesh is created by projecting the distance field file (pores) into the empty FE
mesh. In Figure 8b, the final result can be seen.
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Figure 8: Unstructured 3D mesh made of 4-node tetrahedra, and FE mesh which represents the
initial configuration of the material.

Once the mesh is generated the simulations are performed by FEAP (Finite Element Analysis
Program). [Taylor 2014].

In FEAP the required inputs, in addition to the mesh itself, are the constitutive law (linear
elastic) and the type of loading.
The purpose of the simulations is to realistically recreate the test that generated the deformed
configuration g(x).
There are various kinds of loading that can by used including fixed displacement [Maire andWithers
2014, Rieger et al. 2018], fixed stress [Veyhl et al. 2011], or using an effective medium surrounding
the sample [Maire et al. 2007].

In this work to deform the specimen, instead of using idealised boundary conditions, are used
the boundary conditions extracted from the displacement field obtained by the LDIC.

In every simulation it is necessary to insert also the elastic parameters.
These are not known and the final output of the procedure. The Equilibrium Gap Method is used
to identify them.

3.4 Equilibrium Gap Method, EGM
In order to do the identification, over the years, different methods based on the kinematics measure-
ments and FE simulation have been developed, such as the "Constitutive Equation Gap Method"
[Ladeveze and Leguillon 1983], the "Reciprocy Gap Method" [Bui 1995], the "Equilibrium Gap
Method" [Claire et al. 2004] or the "Finite Element Updating" [Kavanagh and Clough 1971].

In this study is followed the Equilibrium Gap Method. It involves considering a wide range of
different elastic parameters that are simulated. A simulated displacement field is derived from each
simulation. Minimizing the difference between the real displacement field produced by DVC and
the simulated displacement fields obtained with FE (called displacement residual) allows to obtain
the simulation more similar to reality, the one in which the input parameters are, appossimatively,
the elastic parameters of the material.[Grédiac and Hild 2012]
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4 Simulated kinematic fields
The first procedure that is studied is the one without experimental campaign, in which therefore
the displacement field does not come from a real test, but from a simulated test.
The Figure 9 where the whole procedure is schematically shown, is explained in the next section.
(4.1).

Figure 9: Project flowchart for identification of elastic material parameters from simulated kine-
matic fields.
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4.1 Methodology, Homogeneous case
This Section explains the methodology needed to complete the procedure with a purely simulated
approach, going to exploit the first application: homogeneous case.
In Figure 9 the work is schematized, the flowchart is divided into 4 sections, below, each of these
steps is explained.

The homogeneous case is the first one that is treated because it is useful to define the order of
magnitude of the error between the actual displacement field and the simulated displacement field
in the basic case (using exactly the input elastic parameters).
This analysis is divided into two parts: homogeneous material, no noise and homogeneous material,
presence of noise.

The procedure is useful to identify the effect that parameters have on the displacement field.
Once the parametric analysis has been completed, the identification of the Poisson’s ratio is carried
out.

4.1.1 Step 1: Specimen Generation

In Figure 10 the first step is extracted from the general flowchart.

Figure 10: Project flowchart for Specimen generation.

In the absence of experimental outputs, it is necessary to generate an image of the initial
configuration.
In this first operation the parameters whose effects are interesting are many, first of all the shape
and size of the sample itself. To understand the effects of these also in relation to the calculation
time.
A cube with a 141 mm (Figure 11) side is chosen to begin with. This measurement will then be
increased finding the Poisson’s ratio more precisely without affecting the times too much.

Figure 11: cube, l = 141 mm, central cut, No Texture.

Once the basic specimen has been generated, it is possible to insert the defects inside it, thus
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generating different types of configuration modifying the shape, size, position, number, orientation
and mechanical properties of the defects in relation to the matrix. For the homogeneous case this
operation is not done.

At this point it is necessary, for the purpose of image correlation, to add a texture to the
specimen. To do this, a random field based on a normal distribution is added to the gray values
of the image, using Spam. The random field is characterized by the standard deviation, how each
value moves away from the mean value, and by a correlation length. The correlation length is the
characteristic distance over which the normalised pair correlation function of the signal decays to
50%, the smaller the correlation length the finer the texture and vice versa. When the correlation
length is too small, i.e., in the order of one pixel, the signal might no longer be distinguished from
the noise. When is too big, close to the size of the DVC correlation window, there will not be a
good texture to exploit and the correlation presents difficulties.

The following correlation lengths are used for the parametric analysis:

• No noise: correlation length = 3, 5, 10 mm;

• With noise: correlation length = 3, 7 mm.

The random field in Figure 12 has a standard deviation of 0.3 and acorrelation length
(lc) of 3, 5 and 10 mm.

Figure 12: cube, l = 141 mm, central cut, No Texture, lc = 3-5-10 mm

Finally, it is important to remember that each measurement is error-prone, so to make the
synthetic images more realistic, normally distributed Gaussian noise is added to each voxel. The
standard deviation of the Gaussian noise is selected based on the resulted Signal to Noise Ratio
(SNR), which is defined as:

SNR = σT X + σnoise

σnoise
→ σnoise = σT X

SNR
(14)

In general:

• SNR = 10 acceptable image quality;

• SNR = 40 excellent image quality.

The following SNR are used for the parametric analysis:

• With noise: SNR = 10, 20, 30, 40.

14



In Figure 13 the Gaussian noise with a SNR = 10 (a) and SNR = 40 (b) is added to a
configuration with correlation length = 3 mm.

Figure 13: cube, l = 141 mm, central cut, lc = 3 mm, SNR = 10 and SNR = 40

4.1.2 Step 2: Deformed configuration

Generated the initial specimen with a texture suitable for correlation, and realistic noise, it is
necessary to generate the deformed configuration of the specimen itself. In Figure 14 the procedure
to obtain the deformed configuration is schematised.

Figure 14: Project flowchart for Deformed configuration generation.

This step can be divided into:

• FE Mesh Generation

• Deformed configuration (as a mesh)

• Deformed configuration (as an image)
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In order to obtain the deformed configuration, finite element simulations are performed, using
the FEAP software. In this case the parameters to work with are first the parameter of the
mesh, which is a FE mesh of 4-noded tetrahedra elements, generated with randomly and evenly
distributed nodes in space, the parameter, that can be specified, is the characteristic spacing
between nodes (lchar).
Second, the parameters of the simulation:

• Type of loading that is applied to the specimen;

• Elastic parameters (these are the input parameters, those that should be found at the end
of the discussion).

Being the homogeneous case the generic 141 mm side mesh is already the mesh where every
tetrahedron is associated to a phase of the material, so the step that involves the projection of the
morphology can be skipped, as reference see Figure 8 from Section 3.3.

In general it is necessary to project the initial configuration, in the generic mesh with the di-
mensions in mm of the sample (note in general the images have dimensions in px).

Four different meshes are simulated, with different characteristic spacing between FE
nodes, lchar = 3, 5, 7, 10, shown in Figure 15.

Figure 15: cube, l = 141 mm, central cut, lchar = 3 mm, lchar = 5 mm, lchar = 7 mm, lchar =
10 mm.

Once the mesh is created it is possible to proceed with the simulation, obtaining as output the
deformed configuration (displacement field)as seen in Figure 16.
In the simulation is applied a displacement of 3 mm in the Z direction to the top of the
sample and fixed base. The elastic parameters chosen are:

• E = 10e3 (MPa);

• υ= 0.2.
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Figure 16: Axial displacement field in a FE mesh with lchar = 5 mm, applied displacement: 3 mm
in z direction in z = 141 mm.

From the FE simulation the displacements in the nodes of each tetrahedron are obtained. To
get an image of the deformed configuration it is necessary to interpolate the information, present
in correspondence of the nodes, in the centres of each voxel of the image of the initial configuration.
In this way from the FE simulation the images of synthetic deformed configurations are obtained,
as shown Figure 17.

Figure 17: Deformed configuration as image, lchar = 3-5-7-10 mm, applied displacement: 3 mm
in z direction in z = 141 mm

If the analysis is done considering also the noise at this point a random distribution similar
(with the same parameters) to the one added to the initial configuration must be added, to the
simulated deformed image. As per the final step of the specimen generation described in Section
4.1.1.
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4.1.3 Step 3: Local Digital Volume Correlation, Extracting the boundary conditions

In Figure 18 the third step is extracted from the general flowchart.

Figure 18: Project flowchart for Extracting the boundary conditions.

This step can be divided into:

• Getting L-DIC displacement field

• Interpolation of the DVC displacement field to the nodes of the FE mesh

• Extracting the boundary conditions

Once the two images corresponding to the initial and final configuration have been obtained, the
next step is to use the LDIC in order to measure the displacement field that maps the reference to
the deformed image. An important parameter for LDIC is the correlation window which is related
to texture of the matrix material and size of the defects. For each configuration of the parametric
analysis (different lc, lchar and SNR) an L-DIC with half windows size, hws, of 3, 7 and 14
mm is made.
The displacement field in spam gives information about translation, rotation and normal and shear
strain in each correlation window. In order to obtain the correlation of most of the points it is
necessary to help the L-DIC with an initial guess. This initial guess is obtained by comparing the
two overall images getting the deformation in the centre of the image. Below are shown in Figure
19 and Figure 20, the return status (see chapter 3.2) and the displacements in z direction, for the
case Correlation length = 3 mm, Characteristic length = 3 mm.

Figure 19: Results from LDIC, return status, lc = 3 mm, lchar = 3 mm, hws = 3, 7 and 14.
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For each correlation window are given information about the status of the procedure, can be
seen how for most of the windows RS = 2, which as mentioned in the chapter 3.2 means that in
those windows the correlation is successful.

Figure 20: Results from LDIC, lc = 3 mm, lchar = 3 mm, axial displacement field, hws = 3, 7 and
14 mm.

Figure 20 shows how the smaller the correlation window size, the more measurement points,
which results in a highly spatially resolved displacement field, however, having less information
to correlate, the noise is higher. With bigger window, local information might be lost, but the
displacement field is less noisy.

The next step is the interpolation of the DVC displacement field to the nodes of the FE mesh.
As can be seen from the previous pictures, the outermost frame of points do not correlate, so it is
advisable to delete these points.
At this point the interpolation of the data from the centre of the voxels to the tetrahedra nodes of
the mesh of the cropped image is doneas seen in Figure 21.

Figure 21: Axial displacement field from DVC interpolated using the mesh, lc = 3 mm, lchar = 3
mm, hws = 3, 7 and 14.

From the Figure 21 it is possible to notice how, for small correlation windows, the displacement
field is more noisy.

Finally it is possible to extract the boundary conditionsas seen in Figure 22.
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Figure 22: Boundary Condition, lc = 3 mm, lchar = 3 mm, hws = 7 mm.

4.1.4 Inter Step: reference residual field

The reference residual field is the displacement residual between the real deformed configuration
and the simulated deformed configuration, using in the simulation the same input elastic parame-
ters.

This analysis is divided into two parts:

• Homogeneous material, no noise;

• Homogeneous material, presence of noise.

The procedure is useful identify the effect that the previously discussed parameters have on the
displacement field.
Once the reference values for the residuals has been obtained, the identification of the Poisson’s
ratio is carried out.

In order to obtain the simulated deformed configuration in Figure 23, a FE simulation is
performed by applying the boundary conditions, visible in Figure 22. The elastic parameters
chosen are the same as the "real" deformed configuration:

• E = 10e3 (MPa);

• υ= 0.2.

Figure 23: Simulated displacement field, lc = 3 mm, lchar = 3 mm, hws = 3, 7 and 14 mm.

By subtracting the interpolated displacement field (Figure 21) and the simulated displacement
field (Figure 23) the residuals are obtained, each for each configuration.

residuali = ëuDV CtoF E
i − uSimulated

i ë (15)
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• u: displacement;

• i: displacement component.

In order for the residual to be more significant, it is good to normalize it, using maximum displace-
ment.

residuali,Norm = ëuDV CtoF e
i − uSimulated

i ë
uDV CtoF e

i,max

(16)

No Noise
Below are the middle sections of six of the fields obtained in the analysis without noise.

Figure 24: Displacement residual, direction z, cube, l = 141 mm, central cut, lc = 3 mm, lchar =
3 mm, hws = 3, 7 and 14 mm.

Figure 25: Displacement residual, direction z, cube l = 141 mm, central cut, lc = 10 mm, lchar =
10 mm, hws = 3, 7 and 14 mm.

In order to quantify not only visually, but also mathematically which set of parameters leads
to the simulated deformed configuration closer to the reference one, the following error definition
between the two displacement fields is used:

errori = 1
N

n=NØ
n=0

ëuDV CtoF e
i − uSimulated

i ë
ëuDV CtoF e

i ë
(17)

• i: displacement and error component;

• n: each nodes of the mesh;

• N: total number of nodes of the mesh.
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Figure 26: Error, cube, l = 141 mm, No Noise, lc = 3, 5 and 10 mm, lchar = 3, 5, 7 and 10 mm,
hws = 3, 7 and 14 mm.

In order to have a clearer idea of the trends, errors are reported for each case in Figure 26.

Comparing these values can been seen that in the homogeneous case the finer the texture (lc
smaller) the smaller the error, the curves are joined in groups of four meaning that the character-
istic length of the mesh does not influence the results (as it is logical to expect for an homogeneous
case). The most influential parameter is the correlation window the higher it is, the better the
results. Once the hws is 14 the other parameters lose relevance.

With Noise
At first realistic noise levels are used, following the definition of Signal to Noise Ratio seen above.
The parameters used are:

• lc = 3, 7;

• SNR = 10 (acceptable), 20, 30, 40 (excellent);

• lchar = 3, 7;

• hws = 3, 7, 14.

One of the objectives of parametric analysis with noise is to find a value of SNR such as to have
a jump in error. The noise levels analysed made the errors increase but the results are always
acceptable (except for hws = 3), as can be seen in Figure 27a, so in a second phase, the error levels
have been increased, decreasing the SNR: 2, 4, 6, 8, just for the case lc3, lchar3, hws3-7-14.
Observing the errors that are obtained in Figure 27b it is possible to notice the jump between
acceptable and not acceptable for SNR 4 and a big jump for SNR 2.
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Figure 27: Error, cube, l = 141 mm, With Noise, lc = 3, 5 mm, lchar = 3, 7 mm, hws = 3, 7 and
14 mm, SNR = 10, 20, 30, 40 (a). Error, cube, l = 141 mm, With Noise, lc = 3 mm, lchar = 3
mm, hws = 3, 7 and 14 mm, SNR = 2, 4, 6, 8, 10, 20, 30, 40 (b).

If for hws 7 and 14 even with a noise level equal to SNR = 4 an acceptable error is obtained in
the case of hws 3 a good result is achieved for SNR = 10.

4.1.5 Step 4: Identification of elastic parameters

In Figure 28 the fourth step is extracted from the general flowchart.

Figure 28: Project flowchart for the identification.

This step can be divided into:

• Simulated deformed configurations

• Identification of elastic parameters

In order to obtain the simulated deformed configurations, a number FE simulations are per-
formed by applying the boundary conditions, shown in Figure 22 and different elastic parameters
in each configuration. In order to identify the elastic parameters, the error, defined in Equation
(17), obtained by comparing the interpolated displacements from the DVC and the simulated dis-
placement fields is minimized. In practice what is done is to compute the error for each input
Poisson’s ratio. These error values are then used to approximate an interpolation function (cubic),
the minimisation (Nelder–Mead method) of which leads to the identification of the Poisson’s ratio.

Having analysed the effects that the various parameters have with respect to the generation of
errors in the displacements, it is possible to begin to evaluate, for a single case, the errors in the
evaluation of the elastic parameters.
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For the homogeneous case Young’s modulus does not influence the displacements, as the stress are
not known. Therefore the identification focuses only on Poisson’s ratio. It is possible to identify
the ratio of the Young’s moduli when two materials (matrix, particles) are present.
The case under analysis is the following:

• cube side 141 mm (cropping to a cube side 100 mm);

• lc = 3 mm, lchar = 3 mm, hws = 7;

• No noise, SNR = 2, 4, 6, 10, 20;

• Applied deformation 3 mm in the z direction to the top of the sample and fixed base, input
parameters:υ= 0.2, E = 10e3 MPa;

• Different simulated deformed configurations with different Poisson’s ratios as input:

νsimulated = [0.15, 0.25, 0.01] (18)

Obtained all displacement fields, the error is evaluated:

Figure 29: Identification homogeneous material, traction.

The results for the identification of the homogeneous case subjected to traction can be seen in
Table 1.

Identification υ l = 141 mm, lc = 3 mm, lchar = 3 mm, hws = 7
input υ = 0.20

No Noise υmin = 0.200
SNR = 20 υmin = 0.200
SNR = 10 υmin = 0.199
SNR = 6 υmin = 0.199
SNR = 4 υmin = 0.192
SNR = 2 υmin = -

Table 1: Identification homogeneous material, traction.

By varying the noise good results are obtain up to SNR = 6, for SNR = 4 the procedure can
find a υ value, but it is far from the input value, for SNR = 2 no result can be found.

Once the identification for this simple homogeneous case is verified, it is useful to confirm that
for different types of load and sample size the minimum of the error function is in the immediate
vicinity of the input Poisson’s ratio value.
A comparison is made between:
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• Cube 141, lc = 3 mm, lchar = 3 mm, hws = 7, input parameters: υ =0.2, E = 10e3 MPa,
imposed deformation = +3 mm z direction (traction), No noise, SNR = 2, 4, 6, 10, 20;

• Cube 141, lc = 3 mm, lchar = 3 mm, hws = 7, input parameters: υ =0.2, E = 10e3 MPa,
imposed deformation = -3 mm z direction (compression), No noise, SNR = 2, 4, 6, 10, 20;

• Cube 141, lc = 3 mm, lchar = 3 mm, hws = 7, input parameters: υ =0.2, E = 10e3 MPa,
imposed deformation = +3 mm x direction ("shear"),No noise, SNR = 2, 4, 6, 10, 20;

• Cube 400, lc = 3 mm, lchar = 3 mm, hws = 7, input parameters: υ =0.2, E = 10e3 MPa,
imposed deformation = +8.51 mm z direction (traction), No noise, SNR = 2, 4, 6, 10, 20;

For the large specimen an imposed deformation = +8.51 mm z direction is chosen, so that it
is in proportion to the deformation applied to the small specimen.

These four configurations can be seen in Figures 30.

Figure 30: Homogeneous cases, different types of load and sample size.

The results of the identification are visible in Figure 31 and more summarized in the table 2.
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Figure 31: Identification homogeneous cases, different types of load and sample size.

Identification υ different types of load and sample size
input υ = 0.20

traction, small υmin = 0.198
compression υmin = 0.202

"shear" υmin = 0.199
traction, big υmin = 0.200

Table 2: Identification homogeneous, material,different types of load and sample size.

For the homogeneous case the identification is always verified (for SNR values greater than 4).

4.2 Case with a large void spherical defect
Once the procedure for the homogeneous case is verified, is possible to proceed to the introduction
of defects in the in the synthetic sample. As a first step, a single spherical defect is inserted.
Features:

• cube side = 400 mm;

• correlation length = 3 mm;

• defects: central sphere, radius = 20, 50, 100 mm;

• SNR = 20;

• input parameters for FE simulations: υ=0.2, E = 10e3 MPa;

• imposed deformation = +8.51 mm z direction (traction);
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Figure 32: Cases with central sphere, l = 400 mm, lc = 3 mm, radius = 20, 50, 100 mm.

At first it is useful to make a parametric analysis in order to find the characteristic length of
the mesh that can well identify the defect and that does not require too much calculation time.
To do this, a comparison of the macroscopic stress-strain response is done. A larger number of
diameters are considered for this parametric analysis. Analysed case:

• lchar = 5, 6, 10, 15 mm;

• radius = [10, 120, 10] mm.

What is done is the extraction of the displacements and related forces from the tensile test simu-
lations. Young’s modulus and the stress-displacement graph are then obtained following the pro-
cedure explained in the chapter 2, Equation (9). Finally, it is possible to compare the Emacroscopic

obtained and the Einput = 10e3 MPa. Since the curves obtained are many, only one graph is
reported, Figure 33.

Figure 33: Macroscopic stress-strain response radius = 90, 100, 120 mm, lchar = 5, 6, 10, 15 mm.

In general the curves are very similar to each other. When radius = 10 mm is practically like
the homogeneous case, it finds exactly the input E. Increasing the size of the sphere the 4 curves
with the same sphere move away from each other, so lchar becomes more influential. The sphere
is not well represented when lchar is bigger (Figure 34) with the result that Young macroscopic
moduli found with coarse meshes are more dispersed.
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Figure 34: Difference in representation of a sphere of radius 40 mm between a mesh with lchar =
6 mm and lchar = 15 mm.

For the identification of the next cases is been used lchar = 7 mm because between 6 and 7
there is not a big difference (e.g. in the case sp = 100, E(lchar=6) = 8920 MPa, E(lchar=7) = 8939
MPa), but in terms of times lchar = 7 mm is quite faster.

Once the mesh to be used is chosen, the images of the deformed states can be obtained, Figure
35.

Figure 35: Cases with central sphere, l = 400 mm, lc = 3 mm, radius = 20, 50, 100 mm, lchar =
7 mm, deformed configuration.

At this point it is possible to continue with the step 3 (paragraph 4.1.3) starting from the DVC.
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Figure 36: Cases with central sphere, l = 400 mm, lc = 3 mm, radius = 100 mm, lchar = 7 mm,
hws = 7 mm, return status and displacement in z direction from the DVC (b), displacement in z
direction corrected (c).

As can be seen from Figure 36a, in this case the results are different from the homogeneous
case. Since the defect has no texture in correspondence of the sphere it is not possible to reach
convergence, a mask is set so that in correspondence of the defect the correlation does not even
begin, the RS is equal to -5 and the displacements are set as NaN. In the representation, Figure
36b, such displacements are displayed as 0. From the DVC is also possible to notice that in cor-
respondence of the sphere’s edge some windows don’t correlate, and the displacements associated
with them are incorrect. It is possible to replace the displacements at RS = -1 with the average of
the windows that were successfully correlated, thus obtaining the corrected DVC 36c.

Before interpolating towards the FE mesh, the borders of the displacement field are cropped,
as in the homogeneous case.

The interpolated DVC, corrected and cropped, in the mesh of the initial configuration is shown
in Figure 37.

Figure 37: Interpolated DVC, cases with central sphere, l = 400 mm, lc = 3 mm, radius = 100 mm,
lchar = 7 mm, hws = 7 mm, displacement in z direction from the DVC corrected and interpolated.

To perform the simulations, the boundary conditions obtained from the displacement field in
Figure 37 are imposed on a mesh where the nodes in correspondence of the void are deleted, the
displacement fields obtained are of the type visible in Figure 38.
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Figure 38: Cases with central sphere, l = 400 mm, lc = 3 mm, radius = 100 mm, lchar = 7 mm,
hws = 7 mm, displacement in z direction from the simulated displacement field.

As seen in Section 4.1.4 and 4.1.5, at this point the residuals (one of these is shown in the
Figure 39) and the errors are determined.

Figure 39: Cases with central sphere, l = 400 mm, lc = 3 mm, radius = 100 mm, lchar = 7 mm,
hws = 7 mm, residual field.

As for the homogeneous case, once checked the residual field the next step is the identification
itself, see paragraph 4.1.5.
The results of the identification are visible in Figure 40 and more summarized in the table 3.
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Figure 40: Cases with central sphere, l = 400 mm, lc = 3 mm, radius = 100 mm, lchar = 7 mm,
hws = 7 mm, minimisation of the error.

It is noticeable how, moving away from the homogeneous case, the interpolating curves are less
convex, but the identification is always successful.

Identification υ different defect size
input υ = 0.20

radius = 20 mm υmin = 0.2000
radius = 50 mm υmin = 0.1988
radius = 100 mm υmin = 0.1961

Table 3: Identification case with a large void spherical defect.
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4.3 Case with many void spherical defects
4.3.1 Difference between working on the complete specimen and cropping around a

single sphere

The first case treated is a cube of side 400 mm, with inside 6 spheres of radius 20 mm, a vertical
section of this cube is visible in Figure 41a. It is interesting to try to understand if it might
be possible to get Poisson’s ratio by cropping around a single defect (Figure 41b), instead of
considering the whole cube.

Figure 41: Cases with 6 spheres, l = 400 mm, radius = 20 mm, lchar = 7 mm, hws = 7 mm, initial
configuration, whole sample and cutout around a sphere.

In both cases the value of Poisson’s ratio is retrieve, as can be seen in Figure 45 and more
summarized in the table 5.

Figure 42: Cases with 6 spheres, l = 400 mm, radius = 20 mm, lchar = 7 mm, hws = 7 mm,
minimisation of the error.

Identification υ different types of analysis
input υ = 0.20

whole sample υmin = 0.2000
cutout around a sphere υmin = 0.1961

Table 4: Identification case many void spherical defect, complete specimen and cropping around a
single sphere.
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4.3.2 Big number of defects

The last synthetic example foresees a cube of side 400 mm with inside a number of defects in order
to have void ratio = 0.1, Equation (19).

e = VV

VS
(19)

VV : volume of voids.
VS : volume of solids.

Figure 43 shows one of the cubes, where the defects have a radius of 30 mm.

Figure 43: Cases with big number of defects, l = 400 mm, radius = 30 mm.

To decide the settings to be used, a parametric analysis is performed by trying:

• Radius = 30, 50, 100;

• lc = 3, 5, 7, 9;

• lchar = 7;

• hws = 5, 7, 9, 11, 13.

Using the complete procedure described in the Section 4.1.4, the parameter set that leads to
the lowest error can be found, one of the error surfaces, in the homogeneous case are error curves
Figure 26, is shown visually below.

Figure 44: Cases with big number of defects, l = 400 mm, radius = 30 mm, parametric analysis.
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As can be seen from the graph, the configuration that leads to the smallest error for 30 mm
radius spheres is:

• Spheres 30 mm: lc = 3, hws = 5;

Similarly for the other cases it is found:

• Spheres 50 mm: lc = 5, hws = 11;

• Spheres 100 mm: lc = 7, hws = 13;

At this point the identification process is carried out, obtaining also in this case the Poisson’s ratio,
as seen in in Figure 45 and more summarized in the table 5.

Figure 45: Cases with big number of defects, l = 400 mm, radius = 30/50/100 mm, minimisation
of the error.

Identification υ different spheres size
input υ = 0.20

radius = 30 mm υmin = 0.1998
radius = 50 mm υmin = 0.1895
radius = 100 mm υmin = 0.2052

Table 5: Identification case many void spherical defect, different spheres size.
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5 Experimental kinematic fields
In chapter 4.1 is explained the whole procedure for the identification of Poisson’s ratio in case the
initial and final configuration are simulated, when instead it is possible to obtain them through
x-ray computed tomography what changes in the flowchart in Figure 9 are only Step 1 and Step 2.

The Experimental campaign consists in a uniaxial compression test (with imposed deformation
and force measurement), in which, after each load step, the 3D image of the specimen is acquired
through the tomograph.

In chapter 3.1 is explain how the image of the initial configuration (Step 1) and of the deformed
configuration (Step 2) are generated by the reconstruction of the scans.

5.0.1 Material

The first step for this experimental campaign is the research of the materials to be tested. Since
the work is limited to the elastic theory the materials selected had to be elastic, and in order to
correctly measure the forces exerted during the compression test the material had to be sufficiently
rigid. Moreover, in order to guarantee the functioning of the correlation it had to have a texture
that could be seen in the images.
Trying to follow these criteria, a pool foam noodle made of expanded polyethylene and a cellulose
sponge are chosen.

For the foam noodle 3 different specimens are made, shown in Figure 46, all cylindrical with
size ratio 1/2, diameter = 50 mm, height = 100 mm.

• NFH: noodle foam homogeneous;

• NFD: noodle foam with a defect, cylindrical void with axis perpendicular to the axis of the
sample;

• NFDBC: noodle foam with a defect, cylindrical void with axis perpendicular and also un-
favourable boundary conditions.

Figure 46: Noodle foam, Sample 1, 2 and 3, respectively, homogeneous, with defect, with defect
and bad boundary conditions.
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For the sponge, Figure 47, a cylindrical specimen with a 40 mm side is made.

Figure 47: Sponge sample.

These samples recall the cases analyzed in the Section 4.1, 4.2 and 4.3.2: Homogeneous, One
large defect, Big number of defects.

5.0.2 In-situ experiments

Noodle Foam For the three case of the NF the voltage and current of the x-ray source are set to
100 kV and 500 mA, and the voxel size is set to 68 mm. Projections are acquired in 1120 different
angular positions between 0 and 360.

NFH
For the first sample eight scans are performed. Figure 48 show the experimental macroscopic force-
displacement curve the experiments. The loading steps where the tomographic scans are carried
out are indicated.

Figure 48: Noodle foam, Sample 1 macroscopic force-displacement curve.
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NFD
For the second sample three scans are performed. Figure 49 show the experimental macroscopic
force-displacement curve the experiments. The loading steps where the tomographic scans are
carried out are indicated.

Figure 49: Noodle foam, Sample 2 macroscopic force-displacement curve.

NFDBC
For the third sample three scans are performed. Figure 50 show the experimental macroscopic
force-displacement curve the experiments. The loading steps where the tomographic scans are
carried out are indicated.

Figure 50: Noodle foam, Sample 3 macroscopic force-displacement curve.
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Sponge For the three case of the NF the voltage and current of the x-ray source are set to
100 kV and 300 mA, and the voxel size is set to 43 mm. Projections are acquired in 1120 different
angular positions between 0 and 360. For the sponge three scans are performed. Figure 51 show
the experimental macroscopic force-displacement curve the experiments. The loading steps where
the tomographic scans are carried out are indicated.

Figure 51: Sponge, macroscopic force-displacement curve.

Macroscopic Young’s modulus
From the force-displacement information is possible to derive macroscopic Young’s module, follow-
ing the Equation (9) in chapter 2:

• Pool Noodle (from sample 1) Emacroscopic Ä 1 MPa;

• Sponge Emacroscopic Ä 0.01 MPa.
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By assembling the 2D radiographs using a filtered back projection algorithm available in the
XAct software (provided by RX-Solutions, Annecy, France), the reconstructed 3D image of the
scanned specimen is obtained.

The Figures 52 and 53 show the central horizontal and vertical slices of first scans (where the
specimens are at rest), respectively for NFH, NFD, NFDBC and for the sponge.

Figure 52: Central horizontal and vertical slices of the reconstructed 3D images of the SCAN 1,
Noodle foam, respectively, NFH, NFD, NFDBC.
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Figure 53: Central vertical slices of the reconstructed 3D images of the SCAN 1, Sponge.

5.1 Step 3: Local Digital Image Correlation, Extracting the boundary
conditions

As in the paragraph 4.1.3, once the images of the initial configuration and the deformed configu-
ration are obtained, it is possible to continue with the LDIC.

In the real case during the test the sample is also subjected to rigid body motion, this has been
automatically subtracted by Spam during the correlation.

As in simulated cases, when the sample is homogeneous the DVC has no windows that do not
correlate, if away from the edges, the result is a smooth displacement field.

Figure 54: NFH, results from LDIC Scan2-Scan3, axial displacement field, hws = 25 px.

On the other hand, if the defect is present, there are windows that do not correlate:
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Figure 55: NFD, results from LDIC Scan1-Scan2, return status, hws = 25 px.

It is possible to replace the displacements at RS = -1 with the average of the displacements
surrounding the windows in consideration, thus obtaining the correct DVC, as seen in paragraph
4.2.

From the DVC is possible to obtain Young’s modulus form and Poisson’s ratio, σzz is calculated
in the classical way, using force and area, Equation (9), the longitudinal strains are found from the
displacement field in which ∆l can be obtained in pixels.

• Pool Noodle (from sample 1) EDV C Ä 1.34 MPa/ υDV C Ä 0.44.

• Sponge EDV C Ä 0.016 MPa.

The rest of the procedure is analogous to the simulated case, the mesh is created from the
cropped initial configuration (Figure 56a) and then the cropped DVC is interpolated in the mesh
as shown in Figure 56 b.

Figure 56: NPH, mesh of the initial configuration, and DVC interpolated in the mesh.
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5.2 Step 4: Identification of elastic parameters
5.2.1 NPH

The boundary conditions are extracted from 56 b and simulations with different Poisson’s ratios
are carried out. One of the displacement fields (obtained for υ = 0.40) with the residual is shown in
Figure 57, where (a) is the interpolated DVC field, (b) is the simulated field and (c) is the residual.

Figure 57: NPH axial displacement field DVC interpolated in the mesh, axial displacement field
simulated, residual z direction.

Figure 58: NPH, minimisation of the error.

As can be seen from Figure 58, in which the error minimisation is displayed, the value found
for Poisson’s ratio is υmin = 0.4080.

5.2.2 Noodle foam, heterogeneous, Sponge

For the remaining samples the procedure is not successful, it is not possible to find a minimum of
the interpolating function of the error values.
There may be a number of reasons why it is not possible to make the identification. Since the
materials are not rigid enough the displacements applied are very modest, this could have caused
the information from the DVC to have the same order of magnitude as the noise.
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6 Conclusions and Perspectives
In chapter 4 it has been demonstrated how the combination of full field measurements and finite
element simulations allows the very precise identification of Poisson’s ratio, when images are sim-
ulated. Identification is also possible in case the noise level in the images is very high (so much to
be in realistic) bringing the procedure to break only for SNR values less than 8 (an SNR = 10 is
considered acceptable).

On the contrary, in the case of real images, obtained with a tomograph, it has been possible to
identify Poisson’s ratio only in the homogeneous case, for which, in general, conventional material
tests are enough to find the elastic parameters.

To complete the discussion, at simulated level it would be interesting to insert in the initial
configuration some defects that are not empty, but that are a second material, so that it would be
possible to attempt the identification also for the ratio between Young’s moduli.

As far as the experimental part is concerned, testing a more rigid elastic material, thus being
able to impose greater deformations could be a solution.
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