

POLITECNICO DI TORINO

Department of Mechanical Engineering

Master’s Degree Thesis
(2019-2020)

Design optimization of Hybrid

Electric Vehicles based on Deep
Learning algorithms

Thesis advisors

Daniela Anna Misul

Claudio Maino

Alessandro Falai

Alessia Musa

Candidate

Alessandro Di Mauro

Abstract
Recent years have seen the flourishing of the so-called green wave and environment-

related topics have been discussed in many ways for various reasons. The use of Hybrid
Electric Vehicles (HEVs) is a valid way to achieve tank-to-wheel (TTW) CO2 emissions
reduction.

The choice of the design parameters, such as engine displacement or power of the
electric machine, remains of fundamental importance. To this end, various algorithms
have been deployed to effectively calculate the TTW CO2 emissions of a specific HEV
layout. One of this is Dynamic Programming (DP). However, it cannot always be used as
it requires high computational power and time.

The main goal of this study is to develop an algorithm that can be used in the context
of optimized design of HEVs. The tool to be developed should be far lighter than other
deterministic algorithms such as DP and ensure comparable results at the same time.

The technology of choice is Deep Learning Neural Networks (DNNs). It is a branch of
machine learning so a part of the vaster field of Artificial Intelligence. This particular kind
of algorithms mimic the behaviour of a human brain: various connections between
different layers of neurons enable the flow of information and the possibility for the net
to adjust itself and learn.

A pipeline of two DNNs is implemented to assess whether the vehicle will successfully
complete the driving cycle of choice (feasibility), and in that case predict the TTW CO2
emissions. The dataset available is composed by a set of different design parameters for
HEVs. The pipeline is trained in Supervised Learning.

Promising results emerge from the study as the AI algorithm is able to produce
feasibility predictions with an accuracy higher than 95%, and TTW CO2 estimates with
less than 1% error. The implementation is based on Keras and Tensorflow libraries.

4

Contents

Abstract __ 3

Introduction __ 9

1.1. Motivations ___ 9

1.2. Technological solutions ___ 9

1.3. Control logics overview___ 10

1.4. Technical choices ___ 11

1.5. Project contribution and dissertation outline _____________________________________ 14

Neural network theory overview ____________________________ 15

2.1. History and modern scenario __ 15

2.2. Neural Network main features ___ 17

2.2.1. Activation functions ___ 18

2.2.2. Fully connected architecture __ 20

2.3. Training algorithm___ 21

2.3.1. Forward propagation __ 21

2.3.2. Backward propagation ___ 23

2.3.3. Validation ___ 25

2.4. Loss functions __ 26

2.5. Hyperparameters ___ 27

2.5.1. Number of layers and neurons ___ 28

2.5.2. Learning rate __ 28

2.5.3. Batch size ___ 30

2.5.4. Epochs ___ 32

2.6. Adam optimizer __ 34

2.7. Initialization ___ 36

2.8. Hyperparameters' tuning ___ 37

2.8.1. Grid search __ 38

2.8.2. Random search ___ 38

2.8.3. Bayesian optimization ___ 40

2.9. K-folds cross validation ___ 41

5

Data management __ 43

3.1. Data acquisition __ 43

3.1.1. Dynamic programming ___ 44

3.2. Dataset composition ___ 47

3.3. Data manipulations for labels generations __ 49

3.4. Data split __ 49

3.5. Data normalization __ 50

Neural networks based model_______________________________ 52

4.1. Working environment and libraries ___ 52

4.2. Metrics ___ 54

4.2.1. cDNN metric ___ 54

4.2.2. rDNN metric ___ 56

4.3. Model general logic ___ 57

4.4. Multi-stage Deep Neural Network model __ 58

4.5. Learning curves ___ 60

4.6. Optimization methods ___ 61

4.6.1. Dropout layer __ 61

4.6.2. Early stopping __ 62

4.6.3. Regularizer __ 64

4.7. Batch normalization ___ 65

4.7.1. Keras batch-norm issue in cDNN ___ 67

4.7.2. Keras computation logic __ 70

4.8. Hyperparameters’ space and random search logic _________________________________ 72

4.8.1. Hyperspace definition ___ 72

4.8.2. Hyperparameters’ selection logics __ 74

Results and discussion _____________________________________ 78

5.1. Preliminary analyses for the cDNN __ 78

5.1.1. Database selection __ 78

5.1.2. Sensitivity analysis __ 81

5.1.3. False negatives distribution ___ 86

6

5.1.4. Architecture recognition ___ 87

5.2. Pipeline simulations ___ 89

5.3. False positives analysis ___ 94

Conclusions __ 95

Bibliography ___ 96

List of figures

Introduction
Figure 1. Structure of A.I. theories. ___ 12
Figure 2. Deep Learning performance behaviour]. ___ 12
Figure 3. Supervised and Unsupervised Learning common use. ___________________________________ 13

Neural network theory overview
Figure 4. Deep learning related publications per year. ___ 16
Figure 5. Meetings and material per nations. __ 16
Figure 6. Every industry wants intelligence. __ 16
Figure 7. Representation of a single neuron. SISO system. ______________________________________ 18
Figure 8. Sigmoid activation function. __ 18
Figure 9. Hyperbolic Tangent activation function. ___ 19
Figure 10. ELU activation function. ___ 19
Figure 11. ReLU activation function.__ 19
Figure 12. Leaky-ReLU activation function. __ 19
Figure 13. Neural network visualized. __ 20
Figure 14. Forward propagation. __ 22
Figure 15. Forward and Backward Propagation visualized. ______________________________________ 24
Figure 16. Gradient Descent visualized. ___ 25
Figure 17. Shallow and deep neural networks performance curve. ________________________________ 28
Figure 18. Low and High Learning Rate. ___ 29
Figure 19. Local minimum issue. ___ 29
Figure 20. Learning curves for various learning rate amplitudes. _________________________________ 29
Figure 21. Full batch gradient descent learning curve. ___ 30
Figure 22. Mini batch gradient descent learning curve. ___ 31
Figure 23. Full batch, mini batch and stochastic gradient descent. ________________________________ 31

7

Figure 24. Under fitting and overfitting for classification tasks. __________________________________ 32
Figure 25. Under fitting and overfitting for regression tasks. ____________________________________ 32
Figure 26. Overfitting learning curve. ___ 33
Figure 27. Possible undefitting curve.. __ 33
Figure 28. Adam and other algorithms on MNIST database. _____________________________________ 35
Figure 29. Adam and other algorithms on IMDB database. ______________________________________ 35
Figure 30. Random initialization compared with He initialization. Classification task. _________________ 36
Figure 31. Grid search for a two dimensional problem. ___ 38
Figure 32. Grid search and random search visualized. __ 39
Figure 33. Log normal and normal distribution. ___ 39
Figure 34. Bayesian optimization process. ___ 40
Figure 35. Train, validation and test sets. ___ 41

Data management
Figure 36. 4-folds cross validation steps. __ 42
Figure 37. Possible simple HEV architectures visualized. __ 43
Figure 38. WHVC velocity profile. __ 43
Figure 39. Dynamic programming grid and connections. _______________________________________ 44
Figure 40. Dynamic programming for an HEV control strategy. __________________________________ 45
Figure 41. Dynamic Programming simulation possible results. ___________________________________ 46
Figure 42. Effect of normalization on gradient descent. __ 51

Neural networks based model
Figure 43. Example of confusion matrix. __ 54
Figure 44. Coefficient of determination visualized. __ 56
Figure 45. cDNN and rDNN functioning logic. __ 59
Figure 46. Loss function (left) and MCC (right) at different epochs – classification step. _______________ 60
Figure 47. Loss function and R squared at different epochs - regression. ___________________________ 60
Figure 48. Dropout strategy visualized. ___ 62
Figure 49. Early stopping on loss function. ___ 62
Figure 50. Early stopping montoring Accuracy. ___ 63
Figure 51. Early stopping with patience. __ 63
Figure 52. Visual comparison of different normalization techniques. N is the batch dimension; C is the
channel/feature dimension. __ 66
Figure 53. Cross-entropy (upper part is also zoomed-in) to varying of the epochs. ____________________ 67
Figure 54. Accuracy to varying of the epochs. __ 67
Figure 55. Randomly selected example fluctuating prediction. ___________________________________ 69
Figure 56. Accuracy trend to varying of the epochs after decreasing momentum term to 0.85. _________ 71
Figure 57. Sub-sectors generation. (a) whole hyperspace; (b) 2 sectors per axis; (c) 4 sectors per axis. ____ 75

Results and discussion
Figure 58. MCC for the three architectures. Preliminary analyses. ________________________________ 79
Figure 59. EM1SpRatio for P2 an P3 architectures. __ 80
Figure 60. FDsSpRatio for P4 architecture. ___ 80
Figure 61. Matthews Correlation Coefficient at varying t/t split. P4 architecture. ____________________ 82

file:///C:/Users/Alessandro/Desktop/Progetto%20Tesi/Paper%20and%20other/Tesi%20Alessandro%20Di%20Mauro.docx%23_Toc51657838
file:///C:/Users/Alessandro/Desktop/Progetto%20Tesi/Paper%20and%20other/Tesi%20Alessandro%20Di%20Mauro.docx%23_Toc51657839

8

Figure 62. False negatives and false positives at varying t/t split. P4 architecture. ___________________ 83
Figure 63. Matthews Correlation Coefficient at varying t/t split. P4 architecture. ____________________ 84
Figure 64. False negatives (light green) and false positives (dark green) at varying t/t split. ____________ 85
Figure 65. False negatives distribution for varying t/t split. ______________________________________ 86
Figure 66. Multiclass classification net. Architecture recognition. _________________________________ 87
Figure 67. Multiclass classification net. Architecture recognition. Manifest EM position. ______________ 88
Figure 68. Pipeline simulations. True labels and predictions. _____________________________________ 90
Figure 69. Pipeline simulations. Relative error. ___ 92
Figure 70. Pipeline simulations. Relative error frequency distribution. _____________________________ 93

Introduction: Motivations.

9

Introduction

1.1. Motivations
The last few years have seen increasing interests in environment-related topics in both public

opinion and national governments. As it is well known, more stringent regulations are declared
almost every year to preserve the existing equilibrium and hopefully reverse dangerous trend [1]; it
is our responsibility to comply with them. Among the aforementioned topics, vehicles pollutants
emissions, and relative legislations, are surely a key point of the discussion. Direct consequence of
these thematic are for sure important changes in private companies’ guidelines, both for economic
growth and regulations compliance. These changes are in turns the leading factor in the
technological thrive we are seeing with respect to “green technologies”.

As already stated, vehicle emissions are one of the most discussed point of the whole green wave.
It is no surprise that the automotive industry is also one of the most affected ones. Conventional
Internal Combustion Engine (ICE) vehicles are characterized by some well-known problems with
respect to the abovementioned thematic. In particular, they emit pollutants (e.g.: NOx, CO, CO2 and
unburned hydrocarbons) in order to produce the power required by the driver. All these chemicals
are of course harmful to the environment. Moreover, it should be reminded that petroleum and its
derivatives are surely not renewable.

Obviously, it is impossible to just abandon once and for all the automotive industry and all the
advantages it assures to our society. All that being said, it is necessary to research and develop new
and more refined technologies to comply with the environment needs, now more challenging than
ever. The areas of research are extremely wide and include mechanical systems, control systems,
pollutants reduction systems and many more fields such as hybrid vehicles, Hybrid Electric Vehicles
(HEV) in particular. All those areas of development require precise and fast design analyses, fast
prototyping, and extreme computational accuracy. In this scenario, the aid of automatic tools during
the design phase is essential and the related advantages are very clear.

1.2. Technological solutions
The need to comply to more and more stringent regulations in terms of vehicles emissions really

stretched the areas of research in which modern companies are working. One of the most
prominent and promising field of development in this sense is surely electric traction [2].

When talking of electric traction, a simple distinction to well define the scenario is possible:
Battery Electric Vehicles (BEV) and Hybrid Electric Vehicles (HEV). As the name suggests, the first
category achieves traction by a battery pack and an electric machine; the specifications are based
on the particular type of BEV and the expected mission it is supposed to endure. These vehicles are
mostly appreciated because of their capability of achieving zero emissions Tank-To-Wheel (TTW);
they surely represent a viable option to drastically reduce local pollution in big urban aggregates.
Their limitations are however as evident as their strengths: the large battery packs introduce

Introduction: Control logics overview.

10

problems in terms of space and weight management; their reduced autonomy range is not always
enough, especially for extra-urban missions; this problems is also amplified by the hours-long
charging time; finally, batteries disposal is today a not completely solved issue that needs to be
addressed quickly. HEVs, on the contrary, use both ICE traction and electric traction. The general
system is obviously more complicated, and this is one of the main drawbacks of these technologies
as it means higher costs. However, this approach solves the issues related to the autonomy range
thanks to the contemporary use of the electric motors and the ICE. Moreover, it anyway ensures
lower emissions, especially in urban conditions where the electric traction really shines, and of
course lower consumption [3].

HEVs in particular can be classified on the basis of their specific architecture. Two main categories
arise, namely Series and Parallel HEVs. Series-HEV represents today a niche field of application; this
is because of the nature of the architecture: the ICE is only connected to the electric motor via an
inverter, and its only function is to produce electric power to charge the battery or to power the
electric motor. This means that the ICE is not directly connected to the wheels, so that the electric
motor must comply with the entire power request. Moreover, the ICE cannot operate in charging
and powering mode at the same time: this requires the knowledge of the mission in advance with
fair precision, otherwise the vehicle will be forced to use the ICE only to propel himself (usually the
ICE is small) or to stop and use it to charge the battery-pack. On the other hand, parallel-HEVs can
obtain driving power from the ICE and the electric motor at the same time. Both “power-lines”
converge into a coupling device that allow to sum the torques coming from the two power sources.
This approach to HEVs is currently the most commonly used by car manufacturers as it ensures a
wider range of application. Notice that further classifications of parallel_HEV are also possible on
the basis of the position of the electric motor (e.g.: P2, P3 and P4) It should be mentioned that
“complex architectures” also exist, namely series-parallel-HEVs, that combines the advantages of
the two categories.

1.3. Control logics overview
With the term “Control Logic” we are referring to the strategy upon which the vehicle decides

what to perform at a particular moment in time. It is of key importance when talking of HEVs power
management: a good control strategy is essential to achieve the best performance possible and fully
exploit the capabilities of this technologies. In general, a control logic takes as input some
parameters related to the state of the vehicle (e.g.: speed, road gradient, power requested by the
driver) and can give as output choices regarding, for example, the gear to be selected, the power
split between ICE and electric motor, the necessity to enter in battery charging mode and so on.
These parameters are usually chosen by the control logic to achieve better fuel consumption or
better pollutants emissions.

Different control logics have been developed to comply with different needs: time and
computational limitations, the need to find a true optimal solution or the possibility to implement
the logic on an actual vehicle. Three families of control logics can be identified: heuristic strategy,
static optimization methods, and global optimization methods [3].

As it is known, a heuristic approach is based on the concept of “good-enough” decisions, based
on the occurrence of certain events. Fuzzy logics, Neural Networks, and Rule Based strategies belong
to this category. In general, they perform a specific action based on predefined control variables.

Introduction: Technical choices.

11

Obviously, they are not capable of generating true optimal solutions, however they are extremely
light from a computational point of view and can be easily implemented on-board.

Static optimization refers to the concept of instantaneous optimization of the equivalent fuel
consumption. The state variables of the vehicle are transposed into an equivalent amount of fuel
consumption via a predefined formula and the controlled parameters are changed to minimize it.
“Equivalent Consumption Minimization Strategy” (ECMS) is part of the category. Since this strategy
minimize the equivalent fuel consumption formula for each time instant, so not considering the
whole of the mission, it cannot guarantee a true optimal solution. There is however the possibility
to implement them on-board.

Global optimization methods are the only ones that can ensure a true optimal solution to a
specific problem. They consist in algorithms able, given the entire mission, to find a control strategy
that guarantee the minimum of a specific function (the function may be consumption-related only
or based on both consumption and pollutants emissions). As already stated, they need the entire
mission in order to compute a solution, so they are not implementable on-board; moreover, they
are very heavy from a computational standpoint. Dynamic Programming and Genetic Algorithms
are examples of global optimization methods. In particular, Dynamic Programming will be dealt with
more in details in the following chapter since it represents a starting point of this project. The
Genetic Algorithms approach consists in a strategy that, starting from an initial population (various
combinations of controlled parameters), are able to find a single individual that represents the
optimal solution. They simulate the natural “selection process” through the use of a scoring system
that evaluates each individuals of the population, assessing their probability to generate other
similar individuals in successive generations: higher the score, higher the probability.

1.4. Technical choices
The aim of the present project is to provide an efficient and effective tool to be used during the

design phase of an HEV. The tool will give valuable information regarding the best design
parameters, with respect to fuel consumption and CO2 emissions, regarding a specific mission. In
particular, this project represents the extension and refinement of an existing tool that has been
proved to be able to predict the emission of an HEV starting from its design parameters. The
aforementioned tool uses Deep Learning algorithms to achieve this goal, so an algorithm of the
same nature is used to ensure compatibility between the two projects.

Deep Learning (DL) is a specific branch of Machine Learning which sits in the wider field of
Artificial Intelligence [4]. A DL algorithm simulates the biological brain, its connection and
information flows. It can be visualized by a series of interconnected “Layers”, each one consisting in
a series of “Nodes”. Each node can be thought as an element in which an information enters, is
modified, and finally leaves, heading towards the next element. The term “Learning” comes from
the fact that these algorithms are able to adjust themselves through a process of training called
“Back Propagation”. They are extremely well suited for highly nonlinear problems. It is possible to
define two big families of algorithms: Supervised and Unsupervised Learning Algorithms. In the first
category, the algorithm receives both the data and the solutions, and it should train itself on those
solutions. In the Unsupervised algorithms instead, no solution is given to the software that is free to
elaborate the data as it thinks its best. Deep Learning algorithms are a particular type of Supervised
Learning algorithms.

Introduction: Technical choices.

12

Figure 1. Structure of A.I. theories.

The main difference between Deep Learning and “standard” Machine Learning lies on the fact
that the first one is characterized by a more complex structure. This type of architectures is proved
to be able to better learn from big amount of data. It is no surprise that modern companies try to
exploit, as best as they can, the concept of “Big Data”.

Figure 2. Deep Learning performance behaviour].

The learning process for the present project is based on the results of an optimized algorithm of
the Dynamic Programming (DP) type The reasons that have led the choice upon a Deep Learning
algorithm revolve around one concept: even though it is extremely precise and reliable, DP is highly
time consuming and require very good hardware capabilities to perform sufficiently well. On the
other end, if well trained, an algorithm based on Deep Learning can produce god enough results in
an extremely shorter time window. Moreover, as it will be demonstrated and already mentioned in
Figure 2, Deep Learning algorithms can positively exploit an increase in the training dataset. This will
actually be an important point of the present dissertation.

Introduction: Technical choices.

13

Should be mentioned that, based on their core intention, a further classification in possible for
this kind of algorithms. As a matter of fact, Supervised Learning algorithms have usually two main
goals: classification or regression, we define them predictive. Unsupervised Learning methods are
instead used for clustering or anomalies detection and are usually described as descriptive.

Figure 3. Supervised and Unsupervised Learning common use.

Introduction: Project contribution and dissertation outline.

14

1.5. Project contribution and dissertation outline
As already stated, the present project lies in a wider research that has the aim to produce an

efficient tool able to assist the operator in realistic application during the design phase of an HEV.
The pre-existing tool, form which this project starts, effectively predicts tailpipe emissions of an HEV
starting from its design parameters, regarding a specific driving cycle. Deep Learning is the
technology of choice for the aforementioned reasons and the starting datasets are originated from
a Dynamic Programming tool.

From a very general point of view, the DP algorithm achieves two goals at the same time: it
computes the emissions for the optimal sets of design parameters and, in doing so, it distinguish
between configurations that are able to complete the predefined cycle (referred to as feasible
examples/configurations) and configurations that are not (referred to as unfeasible
examples/configurations). The pre-existing tool rely its training phase on feasible examples only
since its aim is a predictive regression. From this situation arises the need for a classification
algorithm that is able to predict in advance which examples are feasible and which are not. It is clear
at this point that such an implementation is a sort of filter to be applied one step before the
regression process. Obviously, since the two algorithms should communicate smoothly, the working
environment is the exact same: the code is written in Python, using Anaconda Spyder as working
environment and Tensorflow as backend. Keras is instead the main library used to develop the net.

In the present project, not only is presented the classification part of the code, it is also analysed
the pipeline composed by the two algorithms developed and the relative compound results. Notice
that different architecture of HEV will be dealt with but, due to reasons that will later be clear, only
one architecture, namely P4-HEV, will be further investigated. The dissertation will start from an
overview on the Neural Network theory and its core features; it will then proceed to explain the
structure of the datasets and their management; finally the logic of the actual algorithm will be
explained and the results showed and discussed.

Future developments should include the possibility to train the nets here presented on a dataset
that also contains information relative to various driving cycle, this will ensure a wider range of
application and a more powerful tool. Moreover, different type of architectures (only fully
connected nets are here analysed) should be also tested in order to assess the most reliable and
accurate one.

Neural network theory overview: History and modern scenario.

15

Neural network theory overview

2.1. History and modern scenario
Even though Artificial Intelligent seems to be a very modern concept, with respect to public

opinion, the idea to design a machine that can mimic the human behaviour is older. The first concept
comparable to the aforementioned idea is probably the Touring Machine and the relative studies of
its inventor Alan Touring. Anyway, the first real effective effort in designing an actual Neural Net is
without a doubt “Perceptron”, presented by Frank Rosenblatt in 1958. It was characterized by only
two layers, input and output, but it relies on the concept of Error Back Propagation, that is the solid
foundation for all the modern application of this fascinating technology. However, it is only in 1986
when a “Multi-layer Perceptron” was presented, featuring and intermediate layer, that this field
really started to thrive.

Unfortunately, even though it was showing promising results, it failed the test of the field
application. This was not because of lack of potential or flaws in the theory behind it, but it was due
to technological limitations related to the hardware available at that time. The new millennium
solved the problem presenting to the public more and more advanced microprocessors.

From this point on, new achievements and results never stopped arriving. In 1998 the first
Convolution Neural Network makes its appearance. This particular type of net is the foundation of
all the image recognition software based on A.I. nowadays. Actually in 2012 AlexNet performs with
excellent results this task, winning ImageNet [5]. Notice that form approximately 2015, the average
performance of the best performing softwares is better than the human performance in that specific
competition. Image recognition is not the only field in which machines have outperformed humans,
just consider the game of chess for example.

The fields of application can be however very different from what the imagination propose: from
faces recognition to generation of fictitious visage, from intelligent digital assistants to public
interests guessing and monitoring. A completely new field of research started from the “simple”
ideas of Touring and many companies related to those arguments are today thriving. Some of the
most resonant names are of course Google, Facebook, IBM, and Amazon. However, many others
smaller companies or even start-ups are creating this innovative substrate over which next
generations will be born [4].

The private sector is surely not the only one interested in this revolution of thinking. Academic
researches regarding Artificial Intelligence applications are flooding the scientific journals and
completely new academic courses are forming.

It really seems a field where the only limitations are “self-imposed”. For sure soon after the
technological progress follows the ethical and public debate.

Neural network theory overview: History and modern scenario.

16

Figure 4. Deep learning related publications per year.

Figure 5. Meetings and material per nations.

Notice that, regarding the private sector, not only new companies are being born having their
core business in Artificial Intelligence, but also companies of different extraction are implementing
AI in their business model. They understand the potential of such a technology and aim to exploit
it.

Figure 6. Every industry wants intelligence.

Neural network theory overview: Neural Network main features.

17

2.2. Neural Network main features
Deep Neural Network structures can be very different from each other on the basis of their aim

and the resources/data at disposal [6]. However, they always show some common features. For the
purpose of this project, it is sufficient to describe predictive models basic working flow. To provide
a sufficient overview, it is convenient to follow the aforementioned working flow.

As already stated, predictive models need a training dataset that is equipped with the exact
solutions for the examples proposed. Such solutions will be referred to as labels. Starting point of
the whole training-predictive process is actually data management and manipulation. This aspect
will be discussed separately in the following chapter.

Once the datasets are ready, the training phase can start. It always consists of two distinct
process, a forward-pass, which will produce an output, and a backward-pass, that is responsible for
the “adjusting” part of the training phase. During the forward-pass, the information coming from
the dataset, namely the entries of the dataset, enters the layer of neurons. These are two key
parameters of every type of neural network. Generally speaking, a neuron can be thought as an
element in which the input value is transformed by a predefined function, the activation function,
and then heads towards the next layer. Different activation functions have been developed to try
and solve various issues; they will be analysed in detail. When this process reaches the last layer, an
output is produced. The output layer varies in structure based on the purpose of the aim: regression
neural networks will have only one neuron since they produce a single value as output; classification
nets usually possess a number of output neurons equal to the number of classes they have to
distinguish. Obviously also the type of data being outputted is different.

At this point the results, right or wrong, are available, we refer to them as predictions. Using
labels as mean of comparison it is possible to compute a value which gives indication on the
predictions’ accuracy. Such value is computed with the use of what is known as Loss Function. Notice
that the term “accuracy” is now indicating a general performance index; more precise terminology
will be introduced, referring to specific performance indices. The Loss Function is the foundation of
the learning algorithm since on its minimization is based the learning process. Since the Loss
Function is based on the predictions of the net, it is clear that different types of output need different
Loss Functions. Moreover, regularizers are used to “force” the loss function to behave in certain
ways, avoiding overfitting for example.

Key feature of the learning algorithm is also what is known as learning rate. In general, it
regulates how “large” the changes are during the adjusting phase of the learning process. This is
probably the parameter that has the greatest impact on net’s performance.

The features abovementioned are usually referred to as hyperparameters. This term is used to
distinguish them from the parameters that the net automatically adjusts during the learning
process, namely the weights. The hyperparameters also need to be adjusted, however they are not
automatically set by the learning algorithm itself. Different kinds of hyperparameters tuning
procedures exist (e.g.: grid search, random search, Bayesian Optimization). Hyperparameter tuning
is probably the most important part of a Deep Learning application since it can greatly influence
predictive performance.

Neural network theory overview: Activation functions.

18

2.2.1. Activation functions
A single neuron with Single Input Single Output (SISO) structure can be represented as in Figure 7.

Figure 7. Representation of a single neuron. SISO system.

Notice that usually the structure of a node is of Multi Input Multi Output (MIMO) type, creating
the so called “fully connected” layout that will be deepened later.

As already mentioned, different kinds of Activation Functions have been studied and tested [7].
The first applications saw the use of Sigmoid function and Hyperbolic tangent function. These
functions have a limited “image”, mathematically speaking (Figure 8, Figure 9). This can be a benefit
or a limitation: if the function is thought for the output layer of a classification net, their results can
be easily interpreted as one class or the other (two border of the function’s image). However, if used
for the inner layers of a deep neural network they can cause troubles: for very high (or very low)
input values, the output is very similar even for very different values. Modern theory saw the
increasing use of “ramp” function. They can effectively boost the learning process by always
ensuring different output values for different inputs; most commonly used ramp functions are
Exponential Linear Unit (ELU), Rectified Linear Unit (ReLU) and Leaky-ReLU (Figure 10, Figure 11,
Figure 12).

Sigmoid Function

Figure 8. Sigmoid activation function.

𝜎(𝑥) =
1

1 + 𝑒𝑥

Neural network theory overview: Activation functions.

19

Hyperbolic Tangent Function

Figure 9. Hyperbolic Tangent activation function.

𝜎(𝑥) =
2

1 + 𝑒−2𝑥
− 1

ELU Function

Figure 10. ELU activation function.

𝜎(𝑥) = {
𝛼(𝑒𝑥 − 1) 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 > 0

ReLU Function

Figure 11. ReLU activation function.

𝜎(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 > 0

Leaky-ReLU Function

Figure 12. Leaky-ReLU activation function.

𝜎(𝑥) = {
0.1𝑥 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 > 0

Neural network theory overview: Fully connected architecture.

20

2.2.2. Fully connected architecture
For the present project an architecture of the type "Fully connected" is selected. As already

introduced, it is a particular type of MIMO system in which each node (neuron) is connected with
all the nodes of the previous and the following layer. This approach, as visualized in Figure 13, gives
an intuition on the name of choice for this kind of algorithms: Neural Networks.

Figure 13. Neural network visualized.

Notice how each neuron relates to the previous and the following ones. From the figure are also
noticeable the Input Layer and the Output Layer. Their structure, namely the number of nodes in
these layers, is dictated respectively by the number of "features" by which each example of the
dataset is composed and the number of outputs we ask the net to produce. Referring to Section 1.5,
this project deals with two fully connected deep neural networks: a Classification Neural Network
(cDNN) and a Regression Neural Network (rDNN). Even though the dataset is basically the same, the
outputs are different in type and purpose: the cDNN has two output neurons (since it choose
between two classes), the rDNN has instead a single neuron output layer (since it predict a single
value). The nature of the Input Layer will be deepened later when explaining the dataset.

When referring to "connections" in neural networks we are referring to sum operations: each
node takes as input the sum of the contribution of all the neurons in the previous layer, each
multiplied by a weight, sums it up with a bias term and the compute the output through some sort
of activation function. Those weights and biases are the parameters on which the learning algorithm
operates, increasing or decreasing them, to learn from its errors.

Increasing the net dimensions, number of hidden layers and neurons for each layer, the learning
potential of the net increases. This concept, even though it looks fairly straightforward, not always
translates into real performance improvements, it could actually be a source of issues as we will see
later. Notice that, for the purpose of this project, an automated search for the correct number of
layers and nodes has been developed.

Neural network theory overview: Training algorithm.

21

2.3. Training algorithm
It has already been introduced that the learning phase is in two steps: a forward and a backward

pass. These two steps take the name of Forward Propagation and Back Propagation. In this chapter
will be explained the mathematical model that composed this type of procedure. Notice that during
the Forward Propagation no parameters adjusting is performed. This step serves the only goal to
produce an output, it is the predictive side of the algorithm. Since the Back Propagation needs a
prediction to start, the forward pass should come first. It is clear that some sort of initialization for
the weights is needed. Different types of initialization have been tested in the literature and some
of them will be introduced in this project.

Without entering in too many details, notice that the dataset available for the training procedure
is only a fraction of the whole dataset. Some of the examples of the complete database are
preserved to perform the evaluation of the neural networks. Two evaluation steps are of key
importance: the validation and the testing. They will be explained in detail in the following chapters.
Anyway, each fraction of the dataset is composed by two main part: the one containing the example
features (X) and the one containing the labels (Y).

2.3.1. Forward propagation
The process by which a neuron's output, relatively to a specific layer "i", is generated can be

effectively described by the following mathematical expression:

{
𝑥𝑘 =∑(𝑤𝑘,𝑗 ∗ 𝑧𝑗) + 𝑏𝑘

𝑚

𝑗=1

𝑧𝑘 = 𝜎(𝑥𝑘)

Where:

• 𝑥𝑘: input of the kth node of layer i

• 𝑚: number of neurons of layer i-1

• 𝑤𝑘,𝑗: weights related to the connection between node k (of layer i) and node j (of layer i-1)

• 𝑧𝑗: output of the jth node of layer i-1

• 𝑏𝑘: bias value for node k

• 𝜎(): activation function

• 𝑧𝑘: output of node k of layer i

For a whole layer "i" we obtain a system that is the following:

{

𝑧1,𝑖 = 𝜎(𝑥1,𝑖)

𝑧2,𝑖 = 𝜎(𝑥2,𝑖)
⋮

𝑧𝑛,𝑖 = 𝜎(𝑥𝑛,𝑖)

Neural network theory overview: Forward propagation.

22

{

𝑥1,𝑖 = 𝑏1,𝑖 + 𝑧1,𝑖−1 ∗ 𝑤1,1 + 𝑧2,𝑖−1 ∗ 𝑤1,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤1,𝑚
𝑥2,𝑖 = 𝑏2,𝑖 + 𝑧2,𝑖−1 ∗ 𝑤2,1 + 𝑧2,𝑖−1 ∗ 𝑤2,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤2,𝑚

⋮
𝑥𝑛,𝑖 = 𝑏𝑛,𝑖 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,1 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤𝑛,𝑚

So now is clear that:

{

𝑧1,𝑖 = 𝜎(𝑏1,𝑖 + 𝑧1,𝑖−1 ∗ 𝑤1,1 + 𝑧2,𝑖−1 ∗ 𝑤1,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤1,𝑚)

𝑧2,𝑖 = 𝜎(𝑏2,𝑖 + 𝑧2,𝑖−1 ∗ 𝑤2,1 + 𝑧2,𝑖−1 ∗ 𝑤2,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤2,𝑚)
⋮

𝑧𝑛,𝑖 = 𝜎(𝑏𝑛,𝑖 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,1 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤𝑛,𝑚)

It is best practice to write the system in matrix form, the system is then:

[

𝑥1,𝑖
𝑥2,𝑖
⋮
𝑥𝑛,𝑖

] = [

𝑤1,1 𝑤1,2 … 𝑤1,𝑚
𝑤2,1 𝑤2,2 … 𝑤2,𝑚
⋮ ⋮ ⋱ ⋮

𝑤𝑛,1 𝑤𝑛,2 … 𝑤𝑛,𝑚

] ∗ [

𝑧1,𝑖−1
𝑧2,𝑖−1
⋮

𝑧𝑚,𝑖−1

] +

[

𝑏1,𝑖
𝑏2,𝑖
⋮
𝑏𝑛,𝑖]

It reduces to:

�̅�𝑖 = 𝒘 ∗ 𝑧�̅�−1 + �̅�

And finally:

𝑧�̅� = 𝜎(𝒘 ∗ 𝑧�̅�−1 + �̅�)

Notice that 𝑧�̅� and consequently 𝑏 are vectors with dimension "nx1", with n being the number of
neuron of the ith layer; 𝑧�̅�−1 is a vector "mx1", with m being the number of neurons of the layer i-1;
finally 𝒘 is a matrix with dimension "nxm".

Figure 14. Forward propagation.

Neural network theory overview: Backward propagation.

23

2.3.2. Backward propagation
This is the beating heart of the learning process. As a reminder, notice that here the algorithm is

using the training set only. Should be clear by now that each example in the dataset produces an
output which dimensions are dictated by the specific application. The Loss Function (L) however
calculates a "loss-value" for each entries; all these values need to be combined in a single quantity,
assessing the performance of the net on the whole set (or a portion of it). To combine all the losses
another function is used: the Cost Function (J).

If we indicate the predictions as "�̂�" and the labels as "𝑦" we can summarize the concept above
as follows:

𝐿𝑜𝑠𝑠 = 𝐿(�̂�, 𝑦)

𝐶𝑜𝑠𝑡 =
1

𝑙
∑𝐿(�̂�𝑖, 𝑦𝑖)

𝑙

𝑖=1

The quantity "l" refers to the number of examples analysed in a single pass. Different approaches
are present in the theory. The most general one and the first one to be implemented, and probably
the best choice for very small dataset, is the procedure to consider the entire dataset. A more
modern approach is to consider a portion of the dataset for each pass or even only one example.
More detailed information are given below.

Since Cost and Loss Functions depend on predictions, so weights and biases, and labels, and since
labels are constant throughout the learning process, we can conclude that both functions finally
depend on weights and biases.

𝐶𝑜𝑠𝑡 = 𝐽(𝑤, 𝑏)

The key point of the back propagation is to minimize the function "J".

All the algorithms here analysed are based on the concept of "Gradient Descent" [8]. As the name
suggests, the procedure relies on the computation of the Gradient of the Cost Function; notice that
function J has usually a high number of variables. The Gradient gives information regarding the
"direction" of the steepness of the function. Using an iterative approach, the algorithm searches for
the minimum of the cost function, moving in the direction indicated by the gradient.

The general formulation of the algorithm can be written as:

𝑤𝑛+1 = 𝑤𝑛 − 𝛼∇𝑤𝐽(𝑤𝑛)

The formulation is usually more complicated than this, based on the choice of the chosen
Optimizer. Parameter "α" is of great importance, it represents the so-called Learning Rate. It can be
thought as the "distance" covered by each iterative step. The choice of the Learning Rate is without
a doubt one of the most important step in the optimization phase; however, since it is very difficult

Neural network theory overview: Backward propagation.

24

to assess a single value for the whole process, modern optimizer modify it in order to adapt it to the
specific situation.

Figure 15. Forward and Backward Propagation visualized.

Notice how, during backward propagation, it is available the gradient of the loss function with

respect to the output:
𝜕𝐿

𝜕𝑧
. However, what is needed is the derivative of the loss function with respect

to the parameters to be adjusted, the weights and biases. This is achieved by product of derivatives,
as depicted in Figure 15. The loss function is differentiated several times during this process.

Once the partial derivatives with respect to each weight are available, the adjusting process takes
place with a formulation that in general is:

{
𝑤𝑖+1 = 𝑤𝑖 − 𝛼 ∗

∂L(w, b)

∂w

𝑏𝑖+1 = 𝑏𝑖 − 𝛼 ∗
∂L(w, b)

∂b

Neural network theory overview: Validation.

25

The partial derivatives with respect to each weight will represent the quantity
𝜕𝐿

𝜕𝑧
 for the

subsequent step of the backward propagation. The iterative procedure goes on as explained,
adjusting the weights to "descent" along the cost function in the direction of maximum steepness.

Figure 16. Gradient Descent visualized.

As already stated, the number of examples processed in one pass is not standard and it actually
depends on the type of optimizer chosen. For completeness, notice that each time an algorithm
goes through the whole training dataset, this is called an epoch.

2.3.3. Validation
It is common use to evaluate the net after each epoch to monitor the performance on a set of

examples that the net is not trained on [10]. This practice enables the operator to see if the learning
procedure is going smoothly. The procedure is called validation and the dataset used takes the name
of Validation Set. As the training set, also this one is composed by two parts: examples and labels.
Notice however that the validation set, or better, its predictions are never back-propagated. The
sole role of the validation process is to monitor the performance throughout the learning procedure,
not to adjust the weights and biases.

As we will see later, on the basis of validation results, different architectures are compared, and
the best-performing is selected. Since we are choosing a particular architecture on the basis of its
results, validation performance cannot be taken as a reference for future field applications.

Neural network theory overview: Loss functions.

26

2.4. Loss functions
It has already been introduced that different goals for a neural network means different Loss

Functions [11]. This project manages a pipeline of two deep neural networks, the first one operates
a binary classification action and the second one performs a regression. It is then no surprise that
the two DNNs have separate loss function.

The rDNN, already developed and available at the beginning of this project, uses the well-known
Root Mean Square Error (RMSE) function. It is described by the following expression:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2
𝑛

𝑖=1

The RMSE gives valuable information regarding the fitness of predictions with respect to the true
labels. Moreover, it has one important features: since its value depends on the square of the error,
it is sensible to outliers. In the context of this project it was important to avoid strong outliers: a
slightly wider point cloud is to be preferred to a narrower one that shows a strong outlier.

The cDNN, which development is a contribution of the present project, implements instead what
is known as Binary Cross Entropy function. It is a particular case of the more general Cross Entropy.
The formulation is as follows:

𝐽(𝜃) =
1

𝑛
∑𝑦𝑖 ∗ log(�̂�𝑖) + (1 −

𝑛

𝑖=1

𝑦𝑖) ∗ log (1 − �̂�𝑖)

Looking at the possible values of 𝑦𝑖 and �̂�𝑖 it is clear the behaviour of the function:

• 𝑦𝑖: true labels of the n examples. There are only two possible values: 0 or 1.

• �̂�𝑖: predictions. The possible values vary from 0 to 1 continuously.

In the summation term, there are two part, only one at a time will be "activated": the first one if
the label is 1, the second one vice versa. The logarithmic term, ideally, should be 0: this would means
a perfect prediction. Obviously this will not be the case; it is however reasonable to think that in
most cases �̂�𝑖 values will be similar to the labels so the logarithmic function is used to produce a
value near to zero if the prediction is similar to the labels.

Notice finally that Cross Entropy computed with this formulation gives always negative values.
This is dealt with in different ways, the most common and practical ones are two: ignore the issue
and develop a code to maximize the cost function instead of minimize it; or simply add a minus to
the formulation.

Neural network theory overview: Hyperparameters.

27

2.5. Hyperparameters
The hyperparameters are the main governing features of the behaviour and the structure of the

net itself. The term is used to distinguish them from the weights and biases, usually called
parameters of the net. The predictive performance of the net are strictly related to the choice of
the hyperparameters, so the process by which they are selected is of fundamental importance.
Notice that even a slight change in one of their values could drastically change the results of the
prediction process or the learning capabilities of the net.

However, it should be reminded that, even though a single hyperparameter can influence the
performance, acceptable results are achievable only by analysing the overall behaviour of the
particular combination of hyperparameters. This concept means that, in the context of field
applications, one-dimensional analyses should be only the starting point for the optimization of the
net. It is far more important to test different combinations of hyperparameters than make one of
them vary, keeping the other constant.

When referring to these features it can be distinguished between "structural" and "optimizer-
related" hyperparameters. Type of architecture (e.g.: fully connected, convolutional o, recursive),
number of internal layers, number of neurons per layer are examples of structural hyperparameters.
They influence the very structure of the net, and in turn the shape of the cost function. The second
category is instead related to the behaviour of the optimizer of choice. It includes learning rate,
epochs, regularizer, batch size, optimizers, and initialization. Notice that any particular characteristic
of the net the designers wish to let vary and analyse can be considered a hyperparameter.

With reference to Figure 16, notice how the cost function is a two-dimensional function is a three-
dimensional space. This is an extreme simplification. Should be clear by now that the cost function
depends on all the weights and biases present in the net:

𝐶𝑜𝑠𝑡 = 𝐽(𝑤, 𝑏)

To have a two-dimensional cost function it would mean that only two parameters are present,
and the resultant net will be an extremely simple one since the weights stand also for the number
of connections.

Not only the function is not that simple, there are also more than one cost function to be analysed
since it depends on the hyperparameters. The resulting problem of minimization is therefore
extremely vast.

Neural network theory overview: Number of layers and neurons.

28

2.5.1. Number of layers and neurons
As already stated, these two parameters are the driving factors for the structural shape of the

net. Theoretically speaking a single layer neural network can approximate any continuous function.
This statement holds true because of the Universality Theorem [12] which explanation is beyond the
scope of this project. More recent studies however proved that an increasing number of layer
(increasing depth of the net) should guarantee a better learning potential. This is true especially
when dealing with big data.

Figure 17. Shallow and deep neural networks performance curve.

2.5.2. Learning rate
Learning rate is probably the hyperparameter by definition. It is the one parameter around which

gravitate most of the concept of neural networks as they are here presented. As above mentioned,
it represents the amplitude of the descending step along the cost function following the gradient.
In general, a higher learning rate produces a faster convergence due to the increased step size.
However, a big step is not always desirable, it can in fact cause stability issues and sensitivity to
outliers; it can even cause diverging behaviour: it is however rare, since a diverging learning curve
is very evident and the possible causes are only a few with a too high learning rate being the most
probable. A smaller learning rate is of course more stable and less sensitive to outliers but, due to
the decreased size of the step it needs more iterations to converge to the minimum of the cost
functions. In addition, a too small learning rate could get the algorithm stuck in a local minimum,
with the gradient not being able to point in the correct direction.

Neural network theory overview: Learning rate.

29

Figure 18. Low and High Learning Rate.

Figure 19. Local minimum issue.

An interesting point of view is achieved by looking also at the Learning Curves of a specific
algorithm. This is actually the main instrument by which developers monitor the behaviour of the
net. They give valuable information regarding not only the performance but also the integrity of the
learning algorithm.

Figure 20. Learning curves for various learning rate amplitudes.

Neural network theory overview: Batch size.

30

2.5.3. Batch size
With the term Batch Size we refer to the number of examples processed in a single pass, both in

forward and backward propagation. This concept, crucial during training, is also valid during strictly
predictive phases, however it does not influence the results of the prediction in this case.

Referring to Section 2.3.2, the cost function is actually calculated on a number of examples that
is the batch size. The result, and the ensuing changes to the weights, are done on the basis of those
example only. For clarity, let us resume the logical steps:

1. Forward Propagation with examples' features
2. Computation of the Cost Function using the true labels
3. Back propagation and weights changes

On the basis of the actual numerosity of the batch, we distinguish:

• Full Batch Gradient Descent: it uses the whole training set for every single pass. This means
that each iteration corresponds to an epoch of the learning process. This approach is the
only one guaranteed to find the minimum point (assuming no local minima are present)
because every step of the descending process take into accounts all the examples, so the
gradient always points in the direction of maximum steepness. However, one strong
limitation is the time needed to process all the examples in one pass. This issue is magnified
when the training set is very vast. The resulting learning curve is usually very smooth.

Figure 21. Full batch gradient descent learning curve.

• Mini Batch Gradient Descent: this approach is based on the concept for which a good enough
update of the weights can be achieved using only a limited amount of training examples. It
is clear that, since the cost function is computed on a portion of the training set, the gradient
in this case does not point in the direction of maximum steepness. It can happen, and it does
happen, that the cost function increase after a pass, but the general trend is of course
decreasing. In this case one iteration does not coincide with one epoch. This approach is
usually more rapid, even though it cannot guarantee the optimal solution to be find.
However, due to the possible wrong steps that could happen, it is best practice to reduce

Neural network theory overview: Batch size.

31

the learning rate as the process advances, so as to avoid too large step in the incorrect
direction. This is referred to as Learning Rate Decay and it can represents another
hyperparameter. As the batch size tends to the whole training set size, the curve becomes
smoother and smoother as the process tends to the full batch gradient descent.

Figure 22. Mini batch gradient descent learning curve.

• Stochastic gradient descent: without loss of precision it can be considered as a mini batch
gradient descent with only 1 example for each batch. The updates are very frequent,
although very imprecise. This leads to an extremely erratic exploration of the cost function
that usually translates in higher computational time and worse results in term of learning
performance.

Figure 23. Full batch, mini batch and stochastic gradient descent.

Neural network theory overview: Epochs.

32

2.5.4. Epochs
Number of epochs defines how many times the learning algorithm goes through the whole

training set. In general it should be high enough to give the net the opportunity to learn properly,
so to avoid underfitting, but no so high to cause overfitting. These are two possible issues that can
happen during the learning phase. It is important to notice that the number of epochs is not the only
parameter that intervene in this behaviour. Net complexity, so depth and number of neurons, also
plays an important role: the higher the learning potential of the net, more likely is the overfitting to
occur.

The analysis of the learning curve is again of fundamental importance to spot and fix fitting
problems. The comparison between training loss and validation loss, as we will see, gives valuable
information.

Figure 24. Under fitting and overfitting for classification tasks.

Figure 25. Under fitting and overfitting for regression tasks.

Let us now analyse the two situations:

• Overfitting: in general a net is said to be overfitting when it performs incredibly well on the
training set, even perfect fit is achievable, but fail to generalize to never seen before
examples. Referring to Figure 24 and 25, a classification net for example could come up with
extremely complex boundaries to include all the training example, but those borders does
not apply decently to the whole problem. Similarly, a one dimensional overfitting function
could increase the degree of its polynomial shape to pass through each training point,
however this does not mean that the trend is well approximated. Using validation learning
curve we are able to spot this situation: the training curve always decreases as the validation
curve initially decreases (algorithm learning) and then increases (net overfitting).

Neural network theory overview: Epochs.

33

Figure 26. Overfitting learning curve.

• Underfitting: underfitting can be described as the opposite problem of overfitting. The net
has not got sufficient time to learn. As a consequence, the error (so the loss function) is high
in both training and validation. Referring to Figure 24 and 25 once again, it is evident the
issue related with underfitting. This particular situation can also be caused by a non-
sufficiently complex architecture: should be clear by now that depth and neurons dictates
the learning potential, if they are not enough for the application underfitting can occur.
Underfitting is more difficult to spot from the learning curve since it leads to almost identical
behaviour of training and validation. However, if the performance are not sufficient we can
talk of underfitting issues.

Figure 27. Possible undefitting curve..

Neural network theory overview: Adam optimizer.

34

2.6. Adam optimizer
The pre-existing project, starting ground for the present project, analysed different optimizers to

define the one of choice. However, the results in that case showed that it was possible to achieve
more or less the same performances in terms of prediction accuracy. Notice that AdaGrad was
chosen because it would find acceptable configurations more often than the others.

In the context of this study another approach has been adopted. Since the author believes that
sufficient literature is present to compare different optimizers, it has been chosen Adam on the
basis of the publication relative to this particular algorithm [13].

Adam was presented by Diederik Kingma from OpenAI and Jimmy Ba from the University of
Toronto in their 2015 ICLR paper. The name "Adam" it is not an acronym and it is derived from
"Adaptive Moment Estimation".

Adam differs from classical Mini Batch Gradient Descent since it does not maintain a single
learning rate for each weights' update. Quoting directly from the paper:

<<The method computes individual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients>>.

The authors proceed to explain how Adam combines the advantages of two other very commonly
used optimizers, namely Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square
Propagation (RMSProp):

• Adagrad: it maintains a per-parameter learning rate that improves performance on
problems with sparse gradients (e.g. natural language and computer vision problems)

• RMSProp: it maintains per-parameter learning rates that are adapted based on the average
of recent magnitudes of the gradients for the weight (e.g. how quickly it is changing). This
means the algorithm does well on online and non-stationary problems (e.g. noisy)

In fact, Adam makes use of the average of the second moments of the gradients, additionally o
the first one. With these two averages Adam updates the parameter-specific learning rates. The just
mentioned average is a moving average.

Besides from the mathematical standpoint it is of great interest to look at the compared results
given in the abovementioned study. Referring to Figure 28 and 29, it is clear that Adam, and quoting:

<< […] compares favourably to other stochastic optimization methods>>

Adam was applied to the logistic regression algorithm on the MNIST digit recognition and IMDB
sentiment analysis datasets, a Multilayer Perceptron algorithm on the MNIST dataset and
Convolutional Neural Networks on the CIFAR-10 image recognition dataset.

http://dpkingma.com/
https://jimmylba.github.io/
http://www.iclr.cc/doku.php?id=iclr2015:main
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-cnn-from-scratch-for-cifar-10-photo-classification/

Neural network theory overview: Adam optimizer.

35

Figure 28. Adam and other algorithms on MNIST database.

Figure 29. Adam and other algorithms on IMDB database.

For the abovementioned reasons Adam is the optimizer of choice for both the classification and
regression deep neural networks of the pipeline.

Neural network theory overview: Initialization.

36

2.7. Initialization
When the net is activated the first time, during the first forward propagation, the weights of all

connections are of course not adjusted yet. A starting point is therefore necessary to compute
predictions for the first time and build the learning process on them. Notice that the optimization
process is dependent on this phase. As it is already been explained, the loss function depends on
the weights so choosing a combination of them means to choose the starting point for the
descending process of the learning phase. A good initialization can therefore greatly contribute to a
fast learning process.

Different approaches have been tested and some general considerations are possible. In
particular, we should always avoid initializing to zero (or any other constant values) all the weights.
This, even though it seems plain and simple, can cause problems. Since the update of the weights is
based on the computation of the gradient that in turns is related to the weights-based loss function;
if all the weights are equal so will be the updates and the weights connected to the same neuron
remain the same. This is known as symmetry problem and should always be avoided.

Modern approaches starts instead from a random initialization. This means that the weights are
set to a random value at the start of the process. The procedure breaks effectively the symmetry.
However, some issues are still present. In particular, if some weight is set to a very small or a very
large value. To avoid this problem, the values are often normalized/standardized between -1 and 1,
for example. This kind of initialization can draw values from mainly two types of distribution:
uniform or normal.

Some of the best initialization are the so called "Xavier" and "He" initialization, respectively for
tanh and ReLU activation functions. They ae defined as "size informed" initialization. They are in fact
multiplied by a factor that takes into account the size of the previous layer of neurons:

√
1

𝑠𝑖𝑧𝑒𝑙−1

This formulation can assume different forms and values, but the general concept remains the
same.

Figure 30. Random initialization compared with He initialization. Classification task.

Neural network theory overview: Hyperparameters' tuning.

37

Two common issues are the so called vanishing and exploding gradient. Even though they are
not solely related to weights initialization, this is proved to be one of the main causes.

With Vanishing Gradient is described the phenomenon by which the gradient calculated during
back propagation, and the relative updates, is too small; this cause the weights to be insufficiently
adjusted and in turns a not acceptable learning process.

Exploding Gradient is the exact opposite: the gradient becomes bigger and bigger, causing the
algorithm to diverge completely.

2.8. Hyperparameters' tuning
Should be clear by now that the hyperparameters, or better their combination, are the main

influencing factors in terms of net performance. Should also be reminded that acting on a single
parameter at a time is extremely counterproductive since the principle of superposition of effects
does not apply to these kind of problems. Moreover, for different training sets or different training
set's sizes, the combination that grants the best performance is not assured to remain the same.
These considerations lead to the need to implement an automatic searching technique that is able
to assess which combination is more likely to perform the best. Remember that since we are training
the algorithm on a set of examples that at best is very similar to future applications but never
identical, we cannot have the certainty that the selected combination will be the best possible one.

It turns out that the choice of the correct combination of parameters is also far more time
consuming than the actual training of the net once the combination has been chosen. This is
however obvious: the hyperparameters' tuning procedure is essentially a technique that involves
several training and testing steps.

Several searching technique have been proposed, from the basic concept of just manually try
different combinations and analyse the results to more complex algorithm that are able to explore
the so called "hyperparameters' space" more systematically. The most common searching
techniques are for sure grid search and random search. They are of straightforward application and
fairly simple to implement. Another promising technique is Bayesian optimization. This procedure
scan the hyperparameters' space applying a logic that should ensure better results.

The space in which these algorithm search needs to be defined beforehand. It is usually very
wide, especially if there are no insights regarding the problem to be tackled. All the parameters that
we impose to vary can be considered as the degree of freedom of this optimization problem.

Neural network theory overview: Grid search.

38

2.8.1. Grid search
Given a finite number of possible combinations, this is the only searching method that is assured

to find the absolute best among them. The functioning simple: the algorithm simply tries out every
single possible combination in the grid, saves their results and chooses the best performing
combination.

Figure 31. Grid search for a two dimensional problem.

This technique shows two main drawbacks. The first one is related to computational time: as it
turns out, trying every single combination is extremely time consuming, especially for very large
hyperparameters' spaces. It is not uncommon to deal with spaces with six or seven dimensions, and
very complex tasks require even more dimensions. The second, and probably more important
drawback, is the impossibility to use continuous distribution to create the space to be analysed: this
method requires the implementation of a grid. It can be forced to vary its steps in different ways
(e.g. logarithmically), but it should remain a grid. This limits the possibility to effectively explore the
space, unless a very fine grid is implemented prolonging the search even more.

2.8.2. Random search
By far the most used technique nowadays. It can be implemented with extreme ease and grants

very good results. It draws casually from the space a certain number of combinations and tests them
out. Once the results re ready, it chooses the best. In fact, given a certain amount of tries, it is likely
to perform better than grid search or better, given a certain performance goal it is likely to find a
combination that allows those performance faster than grid search. Even though it is
counterintuitive, the concept becomes obvious when visualized.

Neural network theory overview: Random search.

39

Figure 32. Grid search and random search visualized.

Referring to Figure 32, it can be noticed how in a hypothetical 2-dimensional problem that is
composed of parameters of different importance, random search allows the algorithm to explore
more the space. In particular, notice how for grid layout the algorithm is only seeing 3 different
values for the important parameter, since the majority of them is superposed if projected along the
corresponding axis. Moreover, random search allows to use continuous distributions so unlocks the
possibility to spot areas of the space the grid was blind to. These considerations, combined to the
fact that a random search algorithm is also easy to parallelize on multiple machines, leads
developers to usually prefer random search rather than grid search.

Also in the case of random search, the axes of the hyperspace in which the algorithm searches,
namely the various hyperparameters, can be forced to vary in a particular way. This is of great
importance to explore significantly different areas of the space: having a great number of tries
drawn from a space whose boundaries are too close, is not so interesting. It would be better, for
example, to have the same number of tries in different order of magnitude rather than almost
equally spaced samples.

Figure 33. Log normal and normal distribution.

Neural network theory overview: Bayesian optimization.

40

2.8.3. Bayesian optimization
Bayesian optimization is a particular kind of black-box optimization algorithm based on the Bayes

Theorem. Without diving into the statistical and mathematical details, which are beyond the scope
of this study, we can state that:

<<Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior
probability, the probabilities of observing various data given the hypothesis, and the observed data
itself>> [14]

This applies to machine learning, for example, when it comes to predict the areas of the
hyperspace that is more likely to show good results in minimizing a certain objective function [15].
Notice that in this case the objective function is not simply the loss function, it is rather the algorithm
of hyperparameters' tuning itself.

Although showing very good results, the implementation is not so simple. Moreover, it is very
difficult to parallelize. For these reasons it not the most common choice of modern application.

Notice that it has been tested in the present study but due to complications the results were not
coherent, so they have been discarded.

Figure 34. Bayesian optimization process.

The figure shows how the acquisition function (the one that dictates the area of the space to
investigate) draws samples from the most valuable zones of the target function (red zones in the
upper-right quadrant).

Neural network theory overview: K-folds cross validation.

41

2.9. K-folds cross validation
The importance of testing the net on data it never saw should be clear by now. There are several

ways to assess the overall possible performance of a neural network during the hyperparameters'
tuning phase.

Something to keep in mind is the heuristic nature of this kind of predictive algorithm. Moreover,
since it needs to learn from a set of examples, even though it is possible to make them sufficiently
representative of the problem, there will always be the possibility that the training set is somehow
biased. At minimum, it can be stated that it influences the learning process. Also, when validating
the results on a set of examples, the validation set could also influence the performance of the net.
The stability and coherence of the measure are therefore at risk if the dataset is not sufficiently
numerous. When there is the risk of biased measurements of the net performance a helpful
instrument is the so called k-fold cross-validation, which functioning will here be explained.

In general, when creating the dataset to be used (training set, validation set and test set), the
test set is usually selected first, in a casual manner and after properly shuffle the whole training set.
The choice of the ratio, referred here as t/t ratio, by which the test set is selected is important in
order not to have a too sparse test set or a too small training set.

K-folds cross validation involves the choice of a certain number of folds by which the
"training+validation" set is divided. Then, the training and validation process is repeated "K" number
of time, varying the validation set each time from the subset selected. This procedure allows to have
"K" differently composed training sets and "K" different validation sets, without ever seeing the test
set yet.

In particular, with reference to Figure 36, the operational steps are the following (notice that a
4-fold cross validation is used):

1. Training using subsets 1, 2 and 3. Validating using subset 4 – 1st metric available.
2. Training using subsets 1, 2 and 4. Validating using subset 3 – 2nd metric available.
3. Training using subsets 1, 3 and 4. Validating using subset 2 – 3rd metric available.
4. Training using subsets 2, 3 and 4. Validating using subset 1 – 4th metric available.

Once the four metrics have been computed and the average value is available, considerations on it
are possible and, if necessary, the net is tested on the test set.

Entire Dataset

Training + Validation Test

Figure 35. Train, validation and test sets.

Data management: K-folds cross validation.

42

 Test

1 + 2 Test

3 + 4 Test

Test

4 1 + 2 + 3

3 4

2 1

1 2 + 3 + 4

Figure 36. 4-folds cross validation steps.

Data management: Data acquisition.

43

Data management

3.1. Data acquisition
Main goal of the present project is to produce a tool that should be able to reproduce a Dynamic

Programming (DP) algorithm prediction accuracy, with extremely lower computational time. This
specific kind of numeric simulation represents probably one of the best performing algorithm in
terms of prediction accuracy; it is however a purely deterministic approach, meaning that the entire
mission should be known a-priori and the simulation time will surely be high. It is then no surprise
that the data that compose the datasets are direct results of said DP algorithm; in this way the nets
are trained to reproduce exactly those results.

In this study different architectures will be dealt with, namely P2, P3 and P4 HEV architecture.
Three different datasets are therefore at disposal (plus a P2 dataset that was used only few times
to run preliminary simulations; this dataset in however older than the others and its data are
considered less reliable), one for each architecture.

Figure 37. Possible simple HEV architectures visualized.

The DP's simulations are based on the World Harmonized Vehicle Cycle (WHVC). It is a chassis
dynamometer test developed based on the same set of data used for the development of the World
Harmonized Transient Cycle (WHTC). For completeness, the velocity profile of the WHVC is given
below.

Figure 38. WHVC velocity profile.

https://dieselnet.com/standards/cycles/whtc.php

Data management: Dynamic programming.

44

3.1.1. Dynamic programming
Since on its functioning is based the data acquisition, it is considered useful to describe in more

details how Dynamic Programming operates.

The working flow is based on a decision making process relying on a backward-forward logic. A
control grid is implemented in order to describe all possible states of the system and the path
connecting them; the system is composed by a finite number of control variables that define the
possible inner point of the grid; a state variable is also monitored.

Figure 39. Dynamic programming grid and connections.

Referring to Figure 39, the goal is to reach point "K", starting from point "A" and using the shorter
path possible. The values present on the arrows represent the length of the path connecting two
states of the grid. The logic is to compute, starting from the final point, the shorter path connecting
the previous nodes to the one considered, each node at a time. The shorter path is addressed as
cost-to-go path/distance. So for example, the cost-to-go distances for nodes H, I and J are
respectively 5, 3 and 7 (only one possible path in this layer). Going on to the previous layer, the cost-
to-go distances for nodes E, F and G are:

E. 5 + 3 = 8. Passing through node I.
F. 5 + 3 = 8. Passing through node I.
G. 7 + 2 = 9. Passing through node J.

The procedure continues back to the starting point, searching for the cost-to-go distances for all
the nodes. Finally, a value for point A will be available and it will be the cost-to-go of the all path
connecting points A and K.

The same logic can be applied to control strategy optimization of HEVs. Each step will then be a
different time instant of the mission and each node will be a powertrain state. In this application,
Figure 40, the only state variable is the State Of Charge (SOC) of the battery, and only three states
for it are possible: Low, Medium or High.

Data management: Dynamic programming.

45

Figure 40. Dynamic programming for an HEV control strategy.

Each node is actually the combination of the two control variables: Front Power Flow and Gear
Number. Regenerative Breaking is applied during braking action. Control variables are also
discretized to reduce the computational effort required by the optimization algorithm. In particular:

• Front Power Flow: battery charge (-1, -0.5), pure thermal (0), power split (0.5) and pure
electric (1)

• Gear Number: 1st, 2nd, 3rd, 4th, 5th and 6th

The dynamic model of the vehicle (for a P2 architecture) is described by the following system of
equations that links the velocity and power of the vehicles component to the control variables:

{

 𝜔𝑡𝑐𝑑 = 𝜏𝑔𝑏(𝐺𝑁) ∗ 𝜏𝑓𝑑𝑓 ∗

𝑉𝑣𝑒ℎ
𝑅𝑤

𝜔𝑖𝑐𝑒 = 𝜏𝑡𝑐𝑑,𝑖𝑐𝑒 ∗ 𝜔𝑡𝑐𝑑
𝜔𝑒𝑚𝑓 = 𝜏𝑡𝑐𝑑,𝑒𝑚𝑓 ∗ 𝜔𝑡𝑐𝑑

𝑃𝑒𝑚𝑓,𝑚𝑒𝑐ℎ = 𝐹𝑃𝐹 ∗ 𝑃𝑡𝑐𝑑,𝑚𝑒𝑐ℎ
𝑃𝑖𝑐𝑒,𝑚𝑒𝑐ℎ = (1 − 𝐹𝑃𝐹) ∗ 𝑃𝑡𝑐𝑑,𝑚𝑒𝑐ℎ

Similar equations ae available also for P3 and P4 architectures.

As aforementioned, the aim of the optimization algorithm is to minimize a certain function. In
this case the cost function has the following structure:

𝐽 = 𝛼(
𝐹𝐶

𝐹𝐶𝑟𝑒𝑓
) + (1 − 𝛼)(

𝑁𝑂𝑥
𝑁𝑂𝑥,𝑟𝑒𝑓

)

Where FC is the cumulative fuel consumption over the mission and NOx are the cumulative NOx
emissions over the mission. "α" is instead a weighting factor that "shifts the attention" of the
algorithm on fuel consumption or emissions: different strategy are therefore available, from FC-

Data management: Dynamic programming.

46

oriented to NOx oriented. At each step the less expensive action is performed to keep function J as
low as possible.

Moreover, at the start of the simulation, boundary conditions are imposed, namely SOC-start
and SOC-final. This means that usually the state of charge at the end should be higher or equal to
the SOC at the beginning of the simulation. In this way, complete depleting strategy for J
minimization are avoided.

Possible results, coming from a study that used the application here described, could be the
following.

Figure 41. Dynamic Programming simulation possible results.

The results above were obtain on an Artemis Motorway Driving Cycle (AMDC) simulation.

Data management: Dataset composition.

47

3.2. Dataset composition
The three available datasets have the same general structure. They are composed of 1500

examples. Here lays the major difference with the pre-existing project: in that context the dataset
was of 5000 example, and the vast majority of them was feasible (the layouts they represented was
able to complete the driving cycle); now the 1500 examples are for a third unfeasible. This condition
means that the Regression Deep Neural Network will now have much less example to train on. At
the same time, also the Classification one will train on fewer examples. We will see that the
dimension of the training set represents a key point for the performance.

Each example in the datasets is composed of 8 features. From the tables is evident that the
datasets P2 and P3 presents the same feature, dataset P4 instead does not. This is because the first
two share the implementation of a speed-coupling device that connects the electrical machine to
the rest of the system. P4 architecture instead include the electrical machine on a separate axle, so
we should consider the transmission ratio of that axle.

In general, the features can be described as follows:

• EngDispl: engine displacement, measured in litres; it is the displacement of the ICE.

• PE ratio: it is the ratio between the Electrical Machine power and the maximum energy
of the battery pack.

𝑃𝐸 =
𝑃𝑒𝑚
𝐸𝑏𝑎𝑡

• EM1Power/EMsPower: power of the electrical motor, measured in kiloWatts.

• EM1SpRatio: transmission ratio at the speed-coupling device.

• FDpSpRatio: transmission ratio of the primary axle.

• FDsSpRatio: transmission ratio of the secondary axle.

• CrateDis: maximum Crate during discharge of the battery. Defined as:

𝐶𝐷𝑖𝑠 =
1ℎ

𝑡𝐼=𝑚𝑎𝑥

where tI=max is the discharging time at max intensity current.

• CrateCh: maximum Crate during charge of the battery. Defined as:

𝐶𝐶ℎ =
1ℎ

𝑡𝐼=𝑚𝑎𝑥

where tI=max is the charging time at max intensity current.

• CO2ttw: CO2 tank-to-wheel measured in grams; values as predicted by the DP algorithm.

A sample of the three datasets follows.

Data management: Dataset composition.

48

Table 1
Extract of the P2 dataset.

Ex EngDispl
[l]

PE ratio
[-]

EM1Power
[kW]

EM1SpRatio
[-]

FDpSpRatio
[-]

CrateDis
[-]

CrateChar
[-]

CO2ttw
[g]

1 3,0573 7,797852 118,9307 4,147461 3,09473 11,8418 7,0020 331,5416
2 2,9045 9,96582 74,8877 4,377930 3,23145 11,0215 7,35352 10000
… … … … … … … … …

1500 2,8156 28,32031 59,082 4,449219 4,65430 7,9336 10,5117 10000

Table 2
Extract of the P3 dataset.

Ex EngDispl
[l]

PE ratio
[-]

EM1Power
[kW]

EM1SpRatio
[-]

FDpSpRatio
[-]

CrateDis
[-]

CrateChar
[-]

CO2ttw
[g]

1 4,7029 5,200195 123,8721 4,893555 3,49707 6,802734 10,82227 341,2689
2 2,7428 5,610352 122,3682 4,334961 3,782227 6,216797 8,876953 336,2393
… … … … … … … … …

1500 3,7719 28,55469 61,2305 3,519531 3,962891 10,95703 8,378906 10000

Table 3
Extract of the P4 dataset.

Ex EngDispl
[l]

PE ratio
[-]

EMsPower
[kW]

FDpSpRatio
[-]

FDsSpRatio
[-]

CrateDis
[-]

CrateChar
[-]

CO2ttw
[g]

1 2,6158 5,073242 106,0303 4,142578 14,79883 8,759766 9,287109 377,1168
2 3,9209 5,063477 113,208 4,576172 10,47461 7,998047 8,033203 389,4292
… … … … … … … … …

1500 3,9406 29,25781 52,0508 4,689453 10,44141 6,339844 11,54297 10000

Data management: Data split.

49

The CO2ttw feature represents the true label for the training process. As mentioned more than
once, the present project implements a pipeline of a cDNN and an rDNN. Since the two nets have
different goals, the labels should be different too.

It can be noticed from the tables that in the CO2ttw column some 10000 values are present.
Those values are fictitious ones: it is the way in which the DP software tells the operator that a
certain example could not complete the cycle.

3.3. Data manipulations for labels generations
From the considerations just mentioned it is clear that some manipulations are necessary. In

particular, to obtain an effective labels feature column the following operations where performed
prior to any type of simulation:

• A copy of the entire dataset is saved as it is.

• The values different from 10000 are substituted with "1", meaning a feasible example.

• The values equal to 10000 are substituted with "0", meaning an unfeasible example.

These steps allows to create a dataset that can be used for the cDNN only: the information
regarding the actual emissions is not present anymore.

To train the rDNN, after the classification step of the pipeline, all the feasible example will point
to the starting dataset in which the CO2 values are present. In this way we are able to train the rDNN
effectively.

3.4. Data split
From Section 2.9 should be clear the logic behind the generations of the training, validation and

test set. To summarize, the whole dataset is shuffled and divided into X-set (the features of the
examples) and Y-set (the labels); then a t/t ratio is chosen and the test set is randomly selected.
Supposing the procedure explained in Section 3.3 has already been performed, it is now possible to
proceed with the Hyperparameters' tuning procedure as already described. Notice that the
procedure include various k-fold cross validation. In this application K is equal to 8, so eight subsets
are created for the validation process.

After a hyperparameters' combination has been selected, the cDNN is tested on the test set. At
this point the procedure goes on to the regression step. The training set for the rDNN is directly
derived from the classification one: the examples that was feasible in the cDNN training set make
up for the rDNN one. For the validation set the procedure is the same since they actually derive from
the same bigger dataset. The test set for the regression step is more complex. Since the net should
be tested considering also the performance of the classification step, the true positive examples of
the classification test set are isolated; a test is performed on them. The net is also separately tested
on the false positives (unfeasible examples marked as feasible by the cDNN).

Data management: Data normalization.

50

3.5. Data normalization
Normalize the data used is surely standard practice in Deep Leaning application. It is indeed

proven that the net can greatly benefit from the normalization of the training set. This practice is
especially needed when the distribution of the data that will be used is not clearly known.

Moreover, unless we know for sure that all the features we are managing range in the same order
of magnitude, it is mandatory to normalize the input data between some values or in the same order
of magnitude. With reference to Table 1, 2 and 3, it can be observed that the feature corresponding
to the power of the electric motor reaches values of a hundred and more. This is for sure a valid
reason to normalize the data.

Notice that the normalization technique is applied only to the X-set, namely the examples'
features, and not to the Y-set. Moreover, since the net will be learning from a normalized dataset,
also the validation and test sets should be normalized, otherwise the results will not be consistent.

Different technique have been used in different application to achieve an effective normalization
of the data. In the context of this project it is implemented the standardization technique. The
function is the following:

�̃� =
𝑥 − �̅�

𝑠𝑡𝑑(𝑥)

Where:

• �̃�: new entry of the dataset after normalization.

• �̅�: mean of all the example for the specific feature considered (column of the dataset).

• 𝑥: entry of the dataset before normalization.

• 𝑠𝑡𝑑(𝑥): standard deviation of the specific feature considered (column of the dataset).

This type of normalization is preferred to the one used in the pre-existing project because it is
believed to better deal with outlier values. In particular, it was used the min-max scaling technique,
which implements the following formula:

�̃� =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

Where:

• �̃�: new entry of the dataset after normalization.

• 𝑥𝑚𝑖𝑛: minimum value of the specific feature.

• 𝑥𝑚𝑎𝑥: maximum value of the specific feature.

This procedure, although effectively limiting the range of all the features between 0 and 1, suffers
from the fact that a single outlier could cause the dataset not be evenly distributed. Imagine for
example the case in which all EM-Power features are between 0kW and 50kW except for one value
that is 100kW. The min-max scaling would restrict the vast majority of the dataset between 0 and
0.5. This cannot happen with a standardization because every example is considered to make up for
the scaling factors, namely the average and the standard deviation.

Should be mentioned that however the standardization cannot accomplish the squeeze of the
dataset between two a-priori known values, and those values will not be the same for all the
features. However, the key point is to force the dataset to be in the same order of magnitude.

Data management: Data normalization.

51

Figure 42. Effect of normalization on gradient descent.

From Figure 42 it is evident that, in case of non-normalized features, the gradient descent algorithm
could get into complications. This phenomenon in related to the fact that he cost function could
assume an "uneven" shape, like the one depicted in the figure. This cause the algorithm to bounces
back and forth along the cost function. Normalizing the data effectively reduce this possibility and
the convergence is more fast and the overall process more stable.

Neural networks based model: Working environment and libraries.

52

Neural networks based model

4.1. Working environment and libraries
The development of the present project has been carried out using Python 3 programming

language. The reasons of this choice are evident: Python is based on a very simple syntax offering at
the same time numerous tools and libraries for different applications. Moreover, they are usually
well performing but very user-friendly.

In this context, some of the main libraries used are listed below:

• Tensorflow: created by the Google Brain
team, it is an open source library for
numerical computation and large-scale
machine learning. Tensorflow offers a vast
choice of machine learning and deep learning
models and algorithms. It uses Python to
provide a convenient front-end API for
building applications with the framework,
while executing those applications in high-
performance C++. It is used in this project as
back-end library.

• Keras: Keras is an open-source neural
network library written in Python. It is capable
of running on top of Tensorflow, Microsoft
Cognitive Toolkit, R, Theano, or PlaidML.
Designed to enable fast experimentation
with deep neural networks, it focuses on
being user-friendly, modular, and extensible.
It was developed as part of the research effort
of project ONEIROS (Open-ended Neuro-
Electronic Intelligent Robot Operating
System), and its primary author and
maintainer is François Chollet,
a Google engineer.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/PlaidML
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Google

Neural networks based model: Working environment and libraries.

53

• Scikit-learn: it is a free software machine
learning library for the Python programming
language. It features
various classification, regression and clustering
algorithms including support vector
machines, random forests, gradient boosting
and k-means, and is designed to interoperate
with the Python numerical and scientific
libraries NumPy and SciPy.

• NumPy: it is a library for the Python
programming language, adding support for
large, multi-dimensional arrays and matrices,
along with a large collection of high-
level mathematical functions to operate on
these arrays.

• Pandas: it is a software library written for
the Python programming language for data
manipulation and analysis. In particular, it
offers data structures and operations for
manipulating numerical tables and time series.

• Matplotlib: it is a plotting library for
the Python programming language and its
numerical mathematics extension NumPy. It
provides an object-oriented API for embedding
plots into applications using general-
purpose GUI toolkits.

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Plotter
https://en.wikipedia.org/wiki/Library_(computer_science)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/GUI_toolkit

Neural networks based model: cDNN metric.

54

4.2. Metrics
Before entering into model's details, it should be explained how the performance of the nets ae

being evaluated. Once again, keep in mind that the model is based on two different deep neural
networks: one for classification and one for regression. It is therefore obvious that at least two
different metrics should be used.

In general a "metric" is a function that, given predictions and true labels, is able to summarize the
performance of the net on a specific simulation. For clarity, are considered "metrics" only single-
value quantity, so for example a confusion matrix (often used in the context of this project) is not
one, even though being a crucial tool to analyse classification performance.

4.2.1. cDNN metric
The results of a classification task are generally structured in predicted labels and true labels. In

the context of this process, a binary classification task is present: the cDNN should predict only two
classes, feasible (1) or unfeasible (0). All the considerations present in this paragraph are therefore
related to binary classification; however, should be stated that the concepts here present are all
extensible to multi-class classification.

In a binary classification problem only four different outcomes are possible, referring to the
above mentioned predicted and true labels. They are:

• True Positives (TP): feasible examples correctly marked as feasible.

• False Positives (FP): unfeasible examples incorrectly marked as feasible.

• True Negatives (TN): unfeasible examples correctly marked as unfeasible.

• False Negative (FN): feasible examples incorrectly marked as unfeasible.

The prediction for all the examples present in a dataset can be summarized in a particular table
called confusion matrix. Using this tool, a complete overview of the performance is given; however,
is up to the operator to judge the results. This means that an algorithm cannot take decisions based
on this tool, or better, some kind of data should be harvest from it.

Figure 43. Example of confusion matrix.

Neural networks based model: cDNN metric.

55

Different single-values metrics are computable starting from the above mentioned table. Three
of the most used ones are surely Accuracy (Acc), F1 score (F1) and Matthews Correlation Coefficient
(MCC).

They are computed using the following relations:

• Accuracy:

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁) + (𝑇𝑁 + 𝐹𝑃)
=
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁

This quantity represents the fraction of correct predictions that net was able to produce.
This is surely the most intuitive way of describing the performance of the net during
classification phase. It ranges from 0 to 1.

• F1 score:

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑖𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
= 2 ∗

𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅

Where:
➢ Precision, or Positive Predicted Value (PPV):

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

➢ Sensitivity, or True Positive Rate (TPR):

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 score is a compound measure that takes into account both precision (fraction of the
predicted positives that are indeed positives) and sensitivity (fraction of true positives
correctly predicted as such). It values the most the positive class in its computation. Even
though it is not as intuitive as Accuracy, it is a more stable evaluation of predictive
performance: in case of strongly uneven dataset, with only few positive examples, is able
to correctly judge is the net is performing well. It ranges from 0 to 1.

• Matthews Correlation Coefficient:

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

MCC takes into account all four classes of binary classification. It is indeed believed to be
the best “one-number” performance indicator [17], since it is considered the most
informative one. Notice that, differently from the F1 score it correctly judges the
predictive performance regardless of the choice for the positive class. In fact, in the
previous example, if the class are inverted, the F1 score could now be misleading. The
MCC instead will continue to give consistent measurements.

Neural networks based model: rDNN metric.

56

For the abovementioned reasons the MCC is chosen to be the driving factor in the
hyperparameters' selection process and during performance assessment for the classification phase.
It ranges from -1 to 1.

4.2.2. rDNN metric
The regression task needs a metric that is able to measure how much the model's predictions

deviate from the true values of the dataset. The chosen tool to accomplish this result is R squared,
also known as R2 or Coefficient of Determination.

It can be computed using the following formula:

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

Where:

• 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − ȳ)
2

𝑖

• 𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖

• ȳ: mean value of the true labels

• 𝑦𝑖: true value

• 𝑓𝑖: predicted value

It is of common use in statistics and in general for linear regression performance assessment. It
should be noted that its possible values range from -inf to 1.

The R squared coefficient is a way of comparing the "simple average" approximation to the model
predictions. In particular:

• R2=1: perfect fit by the model on the true labels.

• R2=0: the model is performing like the "average approximation" would perform.

• R2<-inf: the model prediction are in contrast with the true labels trend.

Figure 44. Coefficient of determination visualized.

Neural networks based model: Model general logic.

57

DP

Unfeasible

Feasible

4.3. Model general logic
As stated various time, the model is actually a pipeline of two deep neural networks. Let us now

recap the overall logic behind it.

The model is in two stage:

1. Assess feasibility: a classification-DNN (cDNN) is used to predict whether a specific layout is

capable of completing the cycle or not (feasible or unfeasible)

2. Predict CO2 emissions: a regression-DNN (rDNN) is used to predict the CO2 emitted by the

feasible layout.

The formulation of the model can therefore be written as:

{
𝐹𝑒𝑎𝑠 = 𝑓(𝐷𝑒𝑠𝑃𝑎𝑟𝑠, 𝜃𝑐)

𝐶𝑂2 = 𝑓(𝐷𝑒𝑠𝑃𝑎𝑟𝑠(𝐹𝑒𝑎𝑠), 𝜃𝑟)

Where Feas are the feasible layouts as spotted by the cDNN; DesPars are the design parameters,
namely the entry of the dataset before normalization; DesPars(Feas) are the design parameters of
the layout classified as feasible; finally 𝜃𝑐 and 𝜃𝑟 are the features of the cDNN and the rDNN like
hyperparameters, weights and activation functions. The two functions that appear in the
formulation will be learnt by the NNs and the weights will be automatically adjusted.

Before each of the two abovementioned stage, a pre-processing of the data is needed to
eliminate any dimension differences.

Moreover, an automatic hyperparameter selection, based on random search, is performed to
avoid the need to manually search for optimal features configuration.

The whole logic behind the model can therefore be summarized as follows.

Vehicle
model

Database
extraction

Database
normalization cDNN Discard

Database extraction and
normalization

CO2 prediction rDNN

Neural networks based model: Multi-stage Deep Neural Network model.

58

4.4. Multi-stage Deep Neural Network model
As already stated, the aim of this project is to design a tool able to extract patterns that lead to

a CO2 prediction. The DP algorithm intrinsically works in two ways: it is capable to assess which
layout will complete the cycle and for those who can, asses its CO2 emissions. Even though its
performances are excellent, they come at a high time cost. To match these capabilities and
overcome time related problems, two DNNs are implemented in the model.

A schematic of the DNNs pipeline is presented below.

Both DNNs are composed of an input layer, several hidden layers, and an output layer. To avoid
gradient vanishing problems and to enhance convergence efficiency ReLU activation function is used
in the hidden layers [18]. Different studies have also demonstrated that a batch-normalization layer
can speed-up the convergence especially for DNNs [19], therefore it is applied in this project in both
nets. Finally, a dropout-layer is used in the rDNN to reduce overfitting. Adam (adaptive moment
estimation) algorithm is implemented in both nets since it ensures a fast convergence and stable
update of the weights and biases, together with an effective learning rate automatic control.

The cDNN will produce a binary output indicating whether the example is feasible or not. If it is,
it will reach the rDNN and a value of CO2 will be predicted.

The following figure visually represents the pipeline, highlighting its core features.

Notice how modules like “batch-norm layer” or “dropout layer” are included sequentially after
the actual hidden layer of the net. This visualization in used because it reflects the actual
implementation in Keras environment. In fact, Keras provides for a sequential framework that
allows the operator to stack layer on top of the other using simple sequential lines of code. This
approach, although being restrictive for more advanced developers, allows beginners to effectively
construct very complex architecture with few lines of code. This is also one of the reasons why Keras
environment was chosen in the first place.

Neural networks based model: Multi-stage Deep Neural Network model.

59

If unfeasible

If feasible

Figure 45. cDNN and rDNN functioning logic.

Batch-norm layer Hidden layers

 Input layer

Output layer

Batch-norm layer

cDNN

Discard

rDNN

 Input layer

Hidden layers

Output layer

Batch-norm layer

Drop-out layer

Batch-norm layer

Drop-out layer

ReLU activation function

ReLU activation function

ReLU activation function

ReLU activation function

Sigmoid activation function

Linear activation function

Neural networks based model: Learning curves.

60

4.5. Learning curves
After the definition of the needed datasets, the model architecture and some basic parameters

(e.g.: first learning rate, regularizer coefficient, number of layers and neurons), first trials are
possible in order to implement correctly what has been addressed to as Learning Curves.

Those are functions describes the learning process. They are obtained by extracting the value of
the Loss Functions (remember there are two separate loss functions to analyse) after each epoch of
the Training Process both on the Training Set and on the Validation Set. With this procedure we are
able to monitor if the learning process is consistent or if it is showing strange behaviour. An example
of the learning curves obtained from actual simulations are presented below.

Figure 46. Loss function (left) and MCC (right) at different epochs – classification step.

Figure 47. Loss function and R squared at different epochs - regression.

Neural networks based model: Dropout layer.

61

It has already been mentioned how, from the interpretation of these curves, it is possible to spot
incorrect learning process. In this particular example, referring to Figure 46 and looking at the loss
function, it is possible to spot a slight overfitting. The zoomed section of the graph shows indeed
that the validation and training curves are actually diverging slightly. This phenomenon is more
evident looking at the MCC behaviour, in particular for the best split curve (blue).

Other possible misbehaviour could be the plateauing of the validation curve at too high values,
meaning an underfitting or at least an incorrect value for α, namely the learning rate.

Those curves helped greatly in preventing selection of evidently wrong epoch number. This we
know can cause different problems, including the two abovementioned.

4.6. Optimization methods
The theory offers various tools to intervene on the behaviour of the nets, and in turns on their

performance. Some of them were studied in the context of this project and implemented if
considered a valid option to enhance the overall results. The vast majority of them has been
implemented in order not to incur in overfitting, even if it does not show clearly.

4.6.1. Dropout layer
Dropouts are a very interesting approach to the overfitting problem. The core functioning is

surprisingly simple: during each pass of the earning process (meaning each forward-backward
cycle), a fraction of the neurons of each hidden layer are shut down. This means that they do not
take part neither in the prediction or the weights update process. The selection of the neurons that
will be shut down is completely random. The probability of a single neuron shutting down is passed
to the software that automatically carries on the random selection. Should be highlighted that
during the prediction phase, when the net is actually used or during validation/testing, all the nodes
are at net’s disposal. This could generate some inconsistencies between training and validation
performance (e.g.: validation performance higher than training). However, this phenomenon shows
up usually during the first few epochs of the training and then disappears.

It has been proved [20] that this way of proceeding effectively helps the net to avoid overfitting.
This could be explained by the fact that, since the net can no longer rely on each single neuron (all
of them could potentially be deactivated), it is forced to learn the general pattern of the trend rather
than creating precise internal path that lead to a perfect training fit.

Neural networks based model: Early stopping.

62

Figure 48. Dropout strategy visualized.

Referring to Figure 45, notice that Dropout Layers are only present in the rDNN. Even though it is
considered an effective method to overcome overfitting, another method was already implemented
in the Classification Deep Neural Network. Some preliminary trials verified that it was enough to
avoid overfitting. Moreover, it is added sequentially using Keras environment.

4.6.2. Early stopping
As the name suggests, early stopping stops the training process in advance with respect to when

it was design to. This method is usually adopted to avoid overfitting when it is happening; so, it does
not prevent it, rather it stops it. Even though being simple and usually effective, it is not used in the
present project. The reasons for this choice will be clearer later, however in general the authors
where interested in analysing the whole training process and, if the procedure was stopped, this
would not be possible.

Figure 49. Early stopping on loss function.

Neural networks based model: Early stopping.

63

Referring to Figure 49 the benefits of such a technique are evident. It should be stated that the
loss function is not the only quantity that can be monitored in order to apply early stopping. One of
the selected metrics could be monitored, namely R2, the MCC or Accuracy. However, it should be
kept in mind that the two approaches not always coincide, this is true especially for classification
tasks. In fact, a lower loss function (Cross Entropy) does not always imply higher Accuracy. This is
because classification tasks are based on a Decision Thresholds. Once again, this theme will be
deepened later.

Figure 50. Early stopping montoring Accuracy.

Moreover, referring to Figure 46 and 47, notice how the MCC is more noisy than R2. Early
stopping is actually very sensible to noisy signal, especially if patience coefficient is not used.
Patience is a parameter that controls how many epochs the algorithm waits before stopping the
training procedure in hopes of future improvements. This is another reason for which early stopping
is not here implemented.

Figure 51. Early stopping with patience.

Neural networks based model: Regularizer.

64

4.6.3. Regularizer
Regularization is another common technique used to tackle the overfitting issue. The logic is

simple: since the weights’ update depends directly on the Cost Function, we can add a penalty term
to the Cost Function that takes into account the size of each term. So, being the goal of the algorithm
to minimize the Cost Function, a side effect of the whole process will also be to keep the weights’
size. In practice:

𝐽𝑡𝑜𝑡 = 𝐽𝑙𝑜𝑠𝑠 + 𝐽𝑟𝑒𝑔

We have already described how low values for weights help to have better prediction and in
particular more stable model. This effect can be thought using the concept for which the net
becomes more sparing in assigning weights values and, instead of relying on particular nodes
excessively increasing their size, relies on the whole set of neurons.

The most common used regularizer terms are for sure L2 (or Ridge) regularizer and L1 (or Lasso)
regularizer. The difference is in the penalty term used.

L2 regularizer term is the following:

𝐽𝑟𝑒𝑔 =
1

2
∗ 𝜆 ∗∑|𝑤2|

𝑖

The term used in the Ridge regularizer as we can see depends on the sum of the squared weights.
So, thinking at back propagation, the derivative term with respect to al the weights will have a direct
dependence on the size of the weights that will tend to decrease it.

L1 regularizer term is instead:

𝐽𝑟𝑒𝑔 =
1

2
∗ 𝜆 ∗∑|𝑤|

𝑖

It is evident that the only difference is the lack of a square in the summation term. This will lead
to a constant derivative term. If the weights are reduced more and more toward zero, with Lasso
regularizer we can achieve the “zeroing” of the weight. This is good for model compression since it
reduces the computational effort of the algorithm (you do not need to calculate path with zero
weights). However, this can also lead to a loss of predictive power for the same reason. L1 is usually
preferred for very sparse signals.

The coefficient λ indicates the “aggressiveness” of the penalty applied to the Cost Function and
in turns to weights’ updates. It is straightforward to understand why: the larger λ, the greater the
penalty and the reduction of the weights.

In this application is preferred the L2 regularization after few preliminary trials. It will be applied
to every hidden layer.

Neural networks based model: Batch normalization.

65

4.7. Batch normalization
Batch normalization is an incredibly powerful tool to implement in any neural network

application, and especially in Deep Neural Network applications.

As explained in [19], during the training of a neural network the distribution of the weights can
change drastically, this phenomenon is defined by authors as Internal Covariate Shifts and is
considered a cause of possible slowdowns during the learning process.

The functioning of this technique is fairly straightforward: after the computation of the outputs
of each neuron for a specific layer, the mean and standard deviation of all the features across the
batch are computed; they are then used to normalize the all the outputs. Moreover, some scaling
factors are introduced in order to be able to intervene on the resulting distribution. The general
procedure can be summarized with the following expressions:

𝜇𝐵 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

𝜎𝐵
2 =

1

𝑚
∑(𝑥𝑖 − 𝜇𝐵)

2

𝑚

𝑖=1

�̅�𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

𝑦𝑖 = 𝛾 ∗ �̅�𝑖 + 𝛽

Where:

• 𝑚: number of examples in the minibatch.

• 𝑥𝑖: output of the neuron.

• 𝜇𝐵: mean value of the batch’s single feature outputs.

• 𝜎𝐵
2: variance of the minibatch.

• �̅�𝑖: output after normalization.

• 𝑦𝑖: final output after shift and scaling.

• 𝛾, 𝛽: learnable parameters.

This technique has been proven to generates faster convergences and in general higher
performance.

it is however affected by some criticality:

• Variable batch size: If batch size is of 1, then variance would be 0 which does not allow
batch norm to work. Furthermore, if we have small mini-batch size then it becomes too
noisy and training might affect. There would also be a problem in distributed training. As,

Neural networks based model: Batch normalization.

66

if you are computing in different machines then you must take same batch size because
otherwise γ and β will be different for different systems.

• Recurrent Neural Networks (RNNs): In an RNN, the recurrent activations of each time-step
will have a different story to tell (i.e. statistics). This means that we must fit a separate
batch norm layer for each time-step. This makes the model more complicated and space
consuming because it forces us to store the statistics for each time-step during training.

Batch normalization is actually not the only norm technique that has been developed. Some of
the others are Weights Normalization, Layer Normalization, Instance Normalization and Group
Normalization.

Figure 52. Visual comparison of different normalization techniques. N is the batch dimension; C is the channel/feature

dimension.

These techniques differ from each other on the basis of the “dimension” across which the
normalization is performed:

• Batch-norm: it normalizes single features across the batch.

• Layer-norm: it normalizes single examples across all features.

• Instance-norm: it normalizes single instances.

• Group-norm: in-between technique.

Moreover, a switchable normalization technique has been proposed which is able to switch from a
method to another depending on which technique performs the best.

Neural networks based model: Keras batch-norm issue in cDNN.

67

4.7.1. Keras batch-norm issue in cDNN
Referring to Figure 45, it is evident that a batch-norm layer is implemented after each hidden

layer. This produced huge benefits to the predictive performance of the net from the very early
stages of the project. However, some criticalities have emerged too.

In particular, a very strange behaviour of the cDNN was spotted from the learning curves. This is
a practical proof of the extreme importance of such an analysis. The trend abovementioned was
evident only in the validation learning curves; the learning algorithm was therefore not believed to
be the cause.

Figure 53. Cross-entropy (upper part is also zoomed-in) to varying of the epochs.

Figure 54. Accuracy to varying of the epochs.

Neural networks based model: Keras batch-norm issue in cDNN.

68

Figure 53 and especially Figure 54 show the abovementioned behaviour. As it is evident, there is
a critical decrease of the Accuracy starting from about epoch 20 to epoch 50; then the Accuracy
goes up again to stabilize around epoch 120. Notice how the performance at the final epoch are
however acceptable and seem to not be influenced by this behaviour. Anyway, it was considered
important to understand the causes of this trend.

The Loss Function curve have not showed any particularly strange behaviour, or better, the
author was not able to spot one; this is due to both the scale used and the formulation of the Loss
Function for the classification task, namely the Cross-Entropy. Notice that, even though the
Matthews Correlation Coefficient was considered the main metric in evaluating the performance,
Accuracy is here selected to present the results because of its straightforward meaning and
interpretation.

For clarity, the author proposes again the formulation for the monitored quantity:

• Cross-Entropy: 𝐽(𝜃) =
1

𝑛
∑ 𝑦𝑖 ∗ log(�̂�𝑖) + (1 −
𝑛
𝑖=1 𝑦𝑖) ∗ log (1 − �̂�𝑖)

• Accuracy: 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁

Should be clear by now that Cross-Entropy is a “value-related” quantity; by this expression, the
author means that the value it assumes depends on the difference of the true labels and the
predictions. Now the predictions are a continuous distribution from 0 to 1; the Cross-Entropy is
sensible to all the possible values, regardless from the predicted class. At the same time, Accuracy
is instead a “class-related” quantity; this means that it is only sensible to change in class, driven by
a decision threshold that usually, and also in the present application, is set to 0.5.

Let us analyse a practical example: suppose monitoring a prediction for a specific example which
true label is feasible (1). The prediction to varying of the epochs goes at first from 0.3 to 0.49: being
all the predicted values under 0.5, the predicted class will be 0, so the Accuracy will also be 0 since
no correct prediction was made however, the Cross Entropy is decreasing; the learning goes on and
the prediction goes from 0.49 to 0.51: now that the threshold is crossed the Accuracy jumps to 1 but
the Cross-Entropy does not change much since the values are only 0.02 apart; in the last segment of
the training the prediction finally converges to 0.96 from 0.51: the Accuracy stays the same but the
Cross-Entropy is drastically decreased. The example just presented explains the possible
discrepancies between the two metrics here used. The same concept applies to MCC and it indeed
showed the strange trend.

To correctly analyse the problem, it has been implemented a module that is able to monitor the
progression of a prediction throughout the learning process. The example is chosen randomly, and
the procedure was iterated several times observing the same behaviour for numerous examples.

Neural networks based model: Keras computation logic.

69

Figure 55. Randomly selected example fluctuating prediction.

Figure 55 describes exactly what is happening for several examples. They pass from being
predicted correctly to being misclassified, then they come back to correct classification.

Several possible causes were explored and in particular:

• Overfitting: the classical diverging behaviour of the Loss Function is however not present
and after 100 epochs the trend seems to disappear. This is not the standard indication of
overfitting and classical remedy seemed indeed not to work. This possibility was then
discarded.

• Stochastic nature of the algorithm: as we already know, Adam optimizer is a particular
kind of mini-batch gradient descent algorithm. So, the algorithm has a stochastic core
functioning, based on the random selection of the mini-batch to process at each pass.
This was the most promising reason however, after researches in the literature, no similar
cases were found. For this reason, this possibility was also discarded.

• Batch-norm layer: after methodical tries on different sections of the program, the author
observed that deactivating the batch-norm layer the behaviour seemed to disappear.

At this point further researches proved that indeed the Batch Normalization Layer was the cause
of the trend. In particular, the issue depends on how the normalization is actually performed in
Keras environment.

Neural networks based model: Keras computation logic.

70

4.7.2. Keras computation logic
At its core, Keras environment include two different computational stages of phases. In particular,

as the website of Keras itself explains, it uses “training mode” during training phases and “inference
mode” for all the phases that somehow involves predictions without backpropagation. This means
that during Validation, Keras works in inference mode.

The main difference between the two modes, for what concerns the issue here addressed, lays
in the computational procedure of the means and variances needed for the normalization. More in
details:

• Training mode: mean and variance are calculated for the single batch. So, for each batch
the following operations are performed:

➢ Computation of mean and variance for each neurons output across the whole
batch (so if the layer has 3 nodes and the batch has 10 examples, it will produce 3
means and 3 averages computed across 10 values each)

➢ Standardization of all the output using the mean and variance just computed.

• Inference mode: mean and variance are mobile averages computed as the training
advances. So, the procedure is the same, however the mean and variance used for the
normalization is computed as follows:

𝑚𝑛𝑒𝑤 = 𝛽 ∗ 𝑚𝑜𝑙𝑑 + (1 − 𝛽) ∗ 𝑚𝑛𝑒𝑤 𝑏𝑎𝑡𝑐ℎ

Where:

o 𝑚𝑛𝑒𝑤 𝑏𝑎𝑡𝑐ℎ : is the statistics coming from the latest training batch.
o 𝑚𝑜𝑙𝑑: is the statistics coming from the penultimate training batch.
o 𝑚𝑛𝑒𝑤: is the statistics used for current batch in validation.
o 𝛽: is the momentum term.

Momentum term 𝛽 is the key concept regarding this issue. It dictates how fast the moving
average adapts to changes in the considered statistics. Observing the formula, it can be noticed that
a new value will give a contribution of “(1 − 𝛽)”. Consider that the standard value chosen by Keras
for β is 0.99. This means that a new value will contribute for only 1% of the average. The problem
with this approach is then that the average statistics are very slow to adapt to the changes. This in
turns cause the Batch-Norm Layer to use completely inconsistent statistics.

Indeed, after the first back propagation the weights will be adjusted causing the neurons’ output
to change accordingly. The newly adjusted weights however generate outputs that are completely
out of range with respect to the one used before: their distribution is shifting. This finally leads to
certain neurons’ paths being extremely fallacious, hence the first branch of the trend in Figure 55.

After some epochs, the moving averages finally catch-up with the actual outputs of the single
neurons. Validation predictions then slowly converge to more reasonable ones. This explains the
descending branch of Figure 55.

To overcome the problem a β value of 0.85 has been introduced.

Neural networks based model: Keras computation logic.

71

Figure 56. Accuracy trend to varying of the epochs after decreasing momentum term to 0.85.

As it is evident from the graph in Figure 56, the trend that was present before is now completely
gone.

Neural networks based model: Hyperspace definition.

72

4.8. Hyperparameters’ space and random search logic
At this point, the general architecture of the two nets is available. Moreover, all the tools that

the pipeline is going to use are implemented correctly. Last step is therefore to define the
Hyperparameters’ space (hyperspace) and the logic behind the selection process.

It has already been discussed how a well-selected hyperparameters can undoubtably increase
performance. The general idea behind an automated algorithm for their selection is to make the
pipeline able to adapt to different scenarios and datasets. Moreover, it is not granted that the same
net will be selected every time: each time the starting dataset is shuffled in a different manner, so
the whole process becomes extremely stochastic.

In the following section will be described the hyperspaces of the two nets and reasons behind
their choices.

4.8.1. Hyperspace definition
Should be kept in mind that even if some preliminary analyses are needed to spot some general

trends, focusing too much on one-dimensional analyses is a mistake. The performance of a Deep
Neural Network strongly depends on the combination of its hyperparameters rather than on their
specific value.

For this reason, the strategy adopted in the context of this project is different from the one
adopted in the pre-existing one. Rather than executing a big set of one-dimensional analyses, a quite
large hyperspace is defined, and long simulations are deployed.

For the cDNN the hyperspace is 5-dimensional, and it is the following:

Table 4

cDNN hyperspace

Learning rate 0.00001 – 0.1

Hidden Layers 1 – 15

Neurons first hidden layer 20 – 300

L2 regulrizer 0.0001 – 0.09

Batch size 16 – 516

The hyperspace for the rDNN is kept the same as in the pre-existing project; it is 6-dimensional.

Neural networks based model: Hyperspace definition.

73

Table 5

rDNN hyperspace

Learning rate 0.005 – 0.5

Hidden Layers 1 – 6

Neurons first hidden layer 30 – 80

Batch size 8 – 64

Weights initialization

Xavier,
Random,
truncated

normal

Dropout 0 – 0.7

Notice that the activation functions are ReLUs for the hidden layers of both nets; cDNN has a
sigmoid activation function as output and rDNN has again a ReLU. Adam is the optimizer of choice
of both nets.

It can be noticed from the two tables that is present an hyperparameter called “Neurons first
hidden layer”; with this expression the author is referring to a design choice operated in the pre-
existing project. Since it was too expensive to search for a specific number of neurons for each layer,
it was decided that each hidden layer should contain half the neurons of the previous one. The
relation is therefore the following:

𝑁𝑖 =
𝑁𝑖−1
2

Where 𝑁𝑖 is the number of neurons for the current layer; 𝑁𝑖−1 is of course the number of neurons
of the previous one.

For completeness, the dropout coefficient is indicating the probability to deactivate the neuron.
Moreover a L2 regularizer of 0.01 is chosen for the rDNN.

Neural networks based model: Hyperparameters’ selection logics.

74

4.8.2. Hyperparameters’ selection logics
The algorithm behind the hyperparameters’ choice is based on random-search. The reasons for

this choice have already been explained; anyway they can be summarized by stating: for a given
amount of time, considered not enough to explore the entire hyperspace, random search is likely
to perform better or at least as good as grid search. Bayesian optimization was proven to be
effective, however due to difficulties in implementing it, it was discarded.

Also in this case there are two separate algorithms, one for the cDNN and one for the rDNN. Since
the algorithm developed in the context of the pre-existing project was thought to be valid, it is
leaved as it is, only slightly modified to overcome an issue that was spotted in the code. The
abovementioned issue could have led to the discard of some configurations that was actually better
than the ones retained.

Just to resume, a Random Search is based on the concept that, after a hyperspace is defined, a
number of random configurations are selected and validated; the validation procedure that is
chosen is a k-fold cross validation able to ensure reliable estimate of a configuration performance
in a possible future application.

The algorithm dictating the choice of the cDNN’s hyperparameters is the following:

1. The whole hyperspace is divided into smaller “hypercubes” (they are just sub-spaces). To
accomplish this result is sufficient to set a value for the number of sectors each axis should
be split into; the algorithm automatically considers the resulting hypercubes in the following
steps. For this application, a standard value of 3 is chosen for each axis.

2. A set of combinations is selected from the whole hyperspace. In the first stages of the study
this set was quite large and included 60 tries to cope with the vastity of the hyperspace. The
goal of this preliminary search is to select promising sub-sectors in which perform a finer
search. To accomplish this, a threshold MCC value is set as a control. Each sub-sector that
shows at least one combination performing better or equal to that threshold is selected for
next step.

3. A new set of combinations is choses for each promising sub-sector. The best performing one
is selected as the one representing the whole sub-sector.

4. After point 3 is complete, all the combinations selected for each sub-sector are compared
and the best performing one is selected to be tested.

5. Final training is performed.
6. The resulting cDNN is tested on the Test Set and the results are analysed.

Notice lastly that each evaluation is the result of a k-fold cross validation with K=8. Moreover, it
should be kept in mind that the best configuration is considered such on the basis of its average
MCC score during cross validation; the procedure, as explained in Section 2.9, includes the random
selection of portions of the train/validation set to be assembled in a training set and a validation
set. This means that there will be a “best performing split”. The final training at point 5 is performed
choosing as training set the just mentioned split. Finally, if less than three sub-spaces performed
well enough, the three best performing are selected and further analysed.

Neural networks based model: Hyperparameters’ selection logics.

75

Figure 57. Sub-sectors generation. (a) whole hyperspace; (b) 2 sectors per axis; (c) 4 sectors per axis.

Procedure start

Sub-spaces generation

Number of sectors

Random search in the
whole space

Number tries

Number tries

Evaluate MCC.
Higher than
threshold?

No
Discard

Yes

Random search in the
sub-space

Compare and find
best configuration.

Train and test.

Neural networks based model: Hyperparameters’ selection logics.

76

Main feature of this algorithm is that is always able to produce at least one configuration,
regardless of the specific MCC score. This choice was made to avoid the possibility of never-ending
loops showing up in case of wrong threshold being set.

The algorithm behind the rDNN hyperparameters’ selection logic is the following:

1. A random search is started.
2. If the configuration shows a high enough R score, then a 5-fold cross validation is performed.
3. Now the procedure splits in two branches:

a. If no configuration has been selected yet, the mean value of the loss function of the
5 folds should be at maximum 10% higher than the one showed in the preliminary
analysis. This is to ensure a stable-performing configuration.

b. If a configuration has already been selected, sufficient condition is to show a mean
loss function across the 5 folds that is lower than the already selected one.

4. When all the pre-defined tries have been extinguished, the procedure saves he best
performing configuration and trains it on the best split of the cross-validation procedure.

5. The resulting net is tested, and the results analysed

Notice that if at the end of the random search no configuration is selected, even though
experience shows that this is a very remote case, a new random search is started. It is evident that
the procedure can actually get stuck in a loop. However, this have never happened in any of the
simulation performed in the context of this project.

This procedure is the one implemented by the author of this project based on the pre-existing
one. As already stated, the previous one showed a criticality: the control that now is step 3.a was
too restrictive. It also provided for a comparison between mean loss function value and preliminary
value, but it would discard the configuration if the mean were higher than the preliminary one. This
could have led to the discard of configurations that showed better performance of the already
selected one. For his reasons, point 3 was split in two cases as already explained.

Configuration A:

R value high enough
to enter in cross-

validation

Validation: mean loss
function 3.5; minimum loss

function 2.4
Selected as best

Configurazione B:

R value high enough
to enter in cross-

validation.
Preliminary loss 1.1

Validation: mean loss
function 1.4; minimum loss

function 1
Discarded

Neural networks based model: Hyperparameters’ selection logics.

77

The procedure can therefore be schematized as follows.

Where “Control 1” is point 2 and “Control 2” is point 3 (that distinguish two cases).

Procedure start

Random search

Number of tries

Control 1 Discard

Cross validation

Yes

No

Control 2
No

Discard

Yes

Compare and find
best configuration.

Train and test.

Results and discussion: Database selection.

78

Results and discussion

5.1. Preliminary analyses for the cDNN
Before exposing the final simulations and results some preliminary analyses need to be

accounted for. It is reminded that the main goal of the project is to produce a tool that is able to be
used in substitution of (or in combination with) Dynamic Programming. The chosen technology for
the achievement of this goal is Deep Learning and in particular a Pipeline of two Deep neural
Network. Given the abovementioned considerations, the final results of the project are considered
the ones regarding the whole pipeline, even though the vast majority of the whole study has been
to produce the code relative to the Classification Deep Neural Network (cDNN).

The starting point of the whole project, besides the study of the theory and the pre-existing
project, has been to select a dataset from the three at disposal. After this section, different analyses
will be presented. They include:

• Preliminary sensitivity analysis and detailed sensitivity analysis.

• False negatives and false positives trend.

• False negatives distribution.

• Multiclass classification net for architecture recognition.

5.1.1. Database selection
Three starting databases were available, corresponding to P2, P3 an P4 architecture. However,

the analysis of all three datasets would have meant too much time and resources. For this reason,
a preliminary study has been conducted across the three databases to assess which one was the
worst performing.

The simulations included:

• 60 tries for the first stage random search.

• 60 tries for each sub-sector random search.

The hyperspace was the following:

Table 6

Database selection hyperspace

Learning rate 0.00001 – 0.1

Hidden Layers 1 – 15

Neurons first hidden layer 20 – 300

L2 regulrizer 0.0001 – 0.09

Batch size 16 – 516

Results and discussion: Database selection.

79

Notice that it coincides with the one presented in Section 4.8.1.

The graph that follows resumes the three abovementioned simulations.

Figure 58. MCC for the three architectures. Preliminary analyses.

The results were quite interesting: for no evident reasons, and in many other “manual”
simulations, P4 database was performing at lower performances in terms of classification. Many
observations regarding the distribution of the design parameters were made, however no decisive
conclusions have been made.

One possible explanation was given looking at two design parameters, that are actually the ones
that distinguish from P4 and P2/P3, at least in for the algorithm. As we know, P2 and P3 architecture
use a speed coupling device to connect the Electrical Motor to the transmission system in a point
that depends on the specific architecture. Instead, P4 directly connects the Electrical Motor to the
secondary axle. So P2 and P3 architectures includes a parameter called “EM1SpRatio” (the speed-
coupling device transmission ratio), and P4 includes a parameter called “FDsSpRatio” (transmission
ratio at the secondary axle differential).

Results and discussion: Database selection.

80

Figure 59. EM1SpRatio for P2 an P3 architectures.

Figure 60. FDsSpRatio for P4 architecture.

The graphs above clearly show how the “EM1SpRatio” is more “characterizing”. With this
expression the author means that, using the abovementioned feature, the cDNN could acquire a
trend more easily since the vast majority of the feasible example have a value for that feature that
is under the mean value of the entire distribution. This phenomenon in not present in “FdsSpRatio”.

For the reasons here described, P4 dataset is chosen as the one to perform the simulations on.

Results and discussion: Sensitivity analysis.

81

5.1.2. Sensitivity analysis
One of the key points of this project is to monitor the classification performance at varying of the

training set size. The assumption behind this procedure is that the performance should benefit from
an increased training set.

Since it is not possible to increase the examples included in the database, the performance of the
net is monitored at varying “train+validation/test split” (t/t split). Should be clear by now that
reducing the portion of examples used for testing, more examples will be available for training. It
should be reminded that it is crucial to use some sort of cross-validation: the k-folds procedure in
particular avoids misleading results caused by strong dependence on a specific training dataset;
moreover, a series of simulations will ensure consistent results.

The simulations showed in Section 5.1.1 served another important goal. Since 60 tries per step
would have meant too much time to carry on the needed simulations, and since too few tries would
have led to poor hyperparameters selection, the hyperparameters’ space is reduced around the
optimal point selected by the algorithm in the abovementioned simulation. In particular, it
highlighted the following hyperparameters combination.

Table 7

Database selection simulation results

Learning rate 0.0021

Hidden Layers 2

Neurons first hidden layer 181

L2 regulrizer 0.03

Batch size 31

So, the hyperspace chosen to perform the other simulations is the following.

Table 8

Sensitivity analysis hyperspace

Learning rate 0.0002 – 0.02

Hidden Layers 1 – 4

Neurons first hidden layer 130 – 230

L2 regulrizer 0.003 – 0.3

Batch size 16 - 128

At first, 8 simulations are performed to further analyse the problem. They are divided as follows:

Results and discussion: Sensitivity analysis.

82

• 2 simulations for 60/40 t/t split: one with 100 epochs training and the other with 250
epochs training.

• 2 simulations for 70/30 t/t split: one with 100 epochs training and the other with 250
epochs training.

• 2 simulations for 80/20 t/t split: one with 100 epochs training and the other with 250
epochs training.

• 2 simulations for 90/10 t/t split: one with 100 epochs training and the other with 250
epochs training.

The results are summarized by the following graph.

Figure 61. Matthews Correlation Coefficient at varying t/t split. P4 architecture.

Figure 61 clearly shows an interesting trend which seems to confirm the initial theory: the
performance increase with increasing training set.

However, some values are considered outliers: one for all, the MCC of the 70/30 t/t split with 250
epochs train. It shows a peak of 88.2%, clearly out of the trend. For this reason, it is considered
necessary to further deepen the situation with more simulations.

Notice also that in half of the simulations, 100 epochs train performed better than 250 epochs
train and vice versa. This leads to the choice of 250 epochs for future simulations to have a complete
picture of the training behaviour. Moreover, no clear overfitting-related issue are spotted.

In the context of these first 8 simulations, another study is carried out: the number of False
Negatives and False Positives is monitored to spot possible trend. The results re the following.

Results and discussion: Sensitivity analysis.

83

Figure 62. False negatives and false positives at varying t/t split. P4 architecture.

Notice that the values on each bar are normalized: they can be thought as a percentage of
occurrence. Unfortunately, no particular trends are evident.

At this point, 24 simulations are performed, divided in the following manner:

• 6 simulations for 60/40 t/t split: 250 epochs training.

• 6 simulations for 70/30 t/t split: 250 epochs training.

• 6 simulations for 80/20 t/t split: 250 epochs training.

• 6 simulations for 90/10 t/t split: 250 epochs training.

The results of these simulations are averaged, and the standard deviation is computed and
highlighted directly on the histogram.

Table 9

Matthews Correlation Coefficient - P4

 I II III IV V VI mean std

90/10 85,79% 78,79% 80,36% 84,50% 88,79% 85,80% 84,01% 3,16%

80/20 82,92% 82,22% 87,22% 85,09% 84,39% 75,01% 82,81% 3,55%

70/30 82,08% 86,34% 81,59% 76,82% 81,63% 81,62% 81,68% 2,55%

60/40 81,88% 82,13% 76,46% 82,21% 79,69% 76,45% 79,80% 2,33%

Results and discussion: Sensitivity analysis.

84

Figure 63. Matthews Correlation Coefficient at varying t/t split. P4 architecture.

The results of these simulations are surely more reliable than the previous ones since they are
the outcome of 6 independent simulations for each t/t split.

The trend observed before is now clearer and undeniable: as the training set increase in size, the
performance on the test set increase as well.

Now that various simulations with the same set-up are available, it can be observed something
interesting. In the very first simulation, the one related to the database selection, the performance
were higher; here however, they are lower and in all 24 simulations, never reached 90% MCC. This
is believed to be a side effect of the reduced number of tries. Even though the hyperspace is
reduced, a finer search is always going to be beneficial in the long run.

The number of False Negatives and False Positives is here analysed as well. In the tables, all the
values are normalized on a 100-base, meaning that they represent percentage of occurrence once
again.

Table 10
False Negatives - Normalized

 I II III IV V VI mean std
90/10 3 7 5 4 3 2 4,11 1,65
80/20 3 3 2 3 2 4 2,89 0,66

70/30 4 1 4 5 4 2 3,52 1,32
60/40 4 1 6 3 3 4 3,47 1,40

Results and discussion: Sensitivity analysis.

85

Table 10
False Positives - Normalized

 I II III IV V VI mean std
90/10 4 3 4 3 2 5 3,56 0,77
80/20 5 5 4 4 5 8 5,17 1,14
70/30 4 5 4 6 4 7 5,11 0,90
60/40 5 7 5 6 6 7 6,03 0,87

Figure 64. False negatives (light green) and false positives (dark green) at varying t/t split.

Unfortunately, also in this case no particular trend is noticeable. It is only possible to observe the
general increase in performance that in this particular study reflects in a decrease of the overall
incorrect classification.

Results and discussion: False negatives distribution.

86

5.1.3. False negatives distribution
A false negative is an example that is feasible, so able to complete the cycle, but incorrectly

marked as unfeasible by the cDNN. This misclassification exposes the algorithm to a problem of “lost
data”. By this expression, the author means that the algorithm loses some information by assuming
some layout will not complete the driving cycle, so in turns not performing regression on them.

To try and understand if there is a pattern in the false negatives’ misclassification issue, they have
been monitored over the 24 simulations abovementioned. All the false negative examples are here
highlighted in red over the blue distribution of the complete P4 dataset.

Figure 65. False negatives distribution for varying t/t split.

Obviously, the larger the test set the more false negatives will be found. Asides from the decrease
in performance due to the decreasing training set size, this is a pure visual effect due to the fact that
the net is tested on more examples. Anyway, the goal is to observe if any trend occurs.
Unfortunately, no particular trend is evident. The only possible observation is that only the higher
part of the distribution seems to not be affected by the possibility to be misclassified as unfeasible.
The “head” of the distribution instead, seems to be affected, and this could mean that possible good
layouts will be excluded.

Results and discussion: Architecture recognition.

87

5.1.4. Architecture recognition
In this section is presented a side study of the present project. It is addressed to as “side study”

because the main goal was not to predict CO2 value or make feasibility classification. The main goal
of this study was rather to predict the nature of the architecture a layout, given its design
parameters.

To achieve this objective, the net was modified to make it able to perform multiclass
classification. The dataset is also modified: the three datasets are combined into one larger dataset
where the column related to the CO2 emission is no more present; instead, a label feature including
the type of architecture is included (P2, P3 or P4).

Referring to Section 3.2, it is evident that the three datasets have not comparable features. As
already mentioned, P4 has a different feature for the speed ratio regarding the electrical motor
coupling. This issue is dealt with by creating both features in the dataset: if an example does not
include that feature, it is set to zero.

This kind of approach to the problem however introduces a very strong dependency of the label
to a single feature. By this the author means that for the net it will be extremely simple to spot P4
layouts, since they are the only ones characterized by a non-zero “FDsSpRatio” feature. However,
the net will probably not be able to distinguish properly between P2 and P3 architectures since their
datasets are very much comparable. The results clearly confirm this assumption.

Figure 66. Multiclass classification net. Architecture recognition.

Results and discussion: Architecture recognition.

88

Perfect predictions are achieved for P4 layouts; instead a completely random classification is
evident for the other two architectures.

An attempt to “force” the net to recognize the architectures is performed by introducing another
feature to the dataset indicating the position of the electrical motor. In this way we are de-facto
telling the net which architecture is the correct one. The goal was only to verify that the net was
able to correctly pick-up the information for future multi-architecture regression tasks.

Figure 67. Multiclass classification net. Architecture recognition. Manifest EM position.

As it was expected, the net never fails to classify all the tests examples.

One last step of this study is to try a feasibility classification on a hybrid dataset P2/P3. Since the
two datasets are very much comparable, it is plausible to think that the net is able to perform
reasonably well on this task. Indeed, the net was able to perform the feasibility classification with
excellent results. It achieved 96.2% MCC.

In conclusion, it can be stated that, in a future multiclass feasibility classification task, where a
dataset is created as explained in this section, the net will surely be able to perform well even
without the auxiliary feature: it can pick-up the information regarding the P4 architecture from the
“FDsSpRatio” feature and then perform classification normally.

Results and discussion: Pipeline simulations.

89

5.2. Pipeline simulations
After validating the capabilities of the cDNN it is possible to examine the behaviour of the whole

pipeline on a complete “classification + regression” task. It is reminded that the size of the dataset
used for this application is reduced from the one used in the pre-existing project. This in theory can
cause a decrease in performance due to a decrease in training set size.

It should be stated that the pre-existing code is believed to be affected by an issue related to the
normalization method. The previous code applies normalization, namely min-max scaling, to the
test set independently from the training set. It is indeed correct to not consider the test set when
selecting minimum and maximum value of the distribution not to incur in data leakages. However,
the minimum and maximum values used to normalize the test set should be the same as the one
used for training set. Otherwise the distribution of the dataset’s examples could be inconsistent.

The abovementioned issue was causing the net to perform strangely and to produce not
coherent test performance. After addressing the issue, the behaviour normalized, and the
simulations could begin.

The test procedure included 6 simulations, performed on the P4 dataset, and carried out across
the whole pipeline.

The hyperspaces for the two nets are the following.

Table 11

cDNN hyperspace

Learning rate 0.0002 – 0.02

Hidden Layers 1 – 4

Neurons first hidden layer 130 – 230

L2 regulrizer 0.003 – 0.3

Batch size 16 - 128

Table 12

rDNN hyperspace

Learning rate 0.005 – 0.5

Hidden Layers 1 – 6

Neurons first hidden layer 30 – 80

Batch size 8 – 64

Weights initialization

Xavier,
Random,
truncated

normal

Dropout 0 – 0.7

Results and discussion: Pipeline simulations.

90

It is also highlighted that the t/t split is 90/10. So, 90% of the dataset’s examples will be used for
training and validation while the remaining 10% is used for testing. Moreover, since the rDNN

datasets derive directly from the cDNN ones, they will be approximately 2 3⁄ of the corresponding

cDNN ones as they should contain only feasible examples.

The final results are now presented.

Figure 68. Pipeline simulations. True labels and predictions.

I II

III IV

V VI

Results and discussion: Pipeline simulations.

91

The numbers are resumed in the following table.

Highlighted are the best (green) and worst (red) simulations.

The performance is more than acceptable with the worst simulation showing a mean relative
error of only 1%, which translates in only 4.12g of absolute error. It is worth mentioning that R score
punish greatly the performance of the 4th simulation because it considers the difference between
the true labels and the predictions rather than their absolute values. However, this can be avoided
simply increasing the threshold of acceptance during the validation phase. This value was indeed
set to a relatively low one (50%) to be able to analyse suboptimal results as the one highlighted in
red.

Table 13

Pipeline performance - Regression step

Error

R_value Loss Mean Max Min

Absolute Relative Absolute Relative Absolute Relative

I 2,11 0,01 9,39 0,02 0,03 0 92,17% 2,5

II 0,92 0 4,67 0,01 0,01 0 98,83% 1,25

III 1,49 0 7,43 0,02 0,03 0 97,18% 1,77

IV 4,12 0,01 11,48 0,03 0,15 0 67,20% 4,61

V 1,28 0 7,88 0,02 0 0 96,29% 1,93

VI 0,78 0 3,13 0,01 0,01 0 98,86% 1,06

mean 1,78 0,00 7,33 0,02 0,04 0,00 91,76% 2,19

std 1,13 0,00 2,78 0,01 0,05 0,00 11,21% 1,18

Results and discussion: Pipeline simulations.

92

Figure 69. Pipeline simulations. Relative error.

I II

III IV

V VI

Results and discussion: Pipeline simulations.

93

Figure 70. Pipeline simulations. Relative error frequency distribution.

The relative errors and their frequency distribution are perfectly consistent with the results
obtained in the pre-existing project. They are indeed very convincing, and the approach here
presented is believed to be a success.

I II

III IV

V VI

Results and discussion: False positives analysis.

94

5.3. False positives analysis
A False Positive is an example that is unfeasible but is incorrectly marked as feasible by the cDNN,

and a CO2 value will be predicted by the rDNN. The main issue with this type of misclassification is
that a layout that will not be able to complete the driving cycle could potentially be marked as the
best one, and lead to completely fallacious designs.

One last step is to consider the false positive examples separately and perform regression on
them to monitor their predictions in terms of CO2.

Since not all the false positives are equally dangerous, rather they become riskier as they
approach the “head” of the CO2 distribution, it has been chosen to observe only the ones that reach
top 10% of the distribution. The selection procedure is as follows:

1. We note the maximum and minimum predicted value of CO2 for the true positives.
2. We compute the difference between the two and divide the difference by 10.
3. We add the just computed value to the minimum.
4. We observe only the false positives for which the prediction is under this threshold.

The results of this method are resumed in the following table.

Table 14

False positives analysis

 I II III IV V VI

min 364,07 365,14 362,41 366,93 366,33 364,30

top 10% 368,07 369,04 366,63 371,31 370,33 368,11

 False
Positives

363,15 - - 367,26 368,08 -

368,06 - - 367,37 368,20 -

367,19 - - - 368,36 -

- - - - 363,03 -

- - - - 369,30 -

- - - - 367,97 -

In the table are highlighted the threshold value and the minimum value for all the simulations.
Each value reported in the table is under the threshold and the two in red are even under the
minimum.

It is evident that the possibility to mark an unfeasible layout as the best one is present and should
be addressed.

Conclusions

95

Conclusions
To resume, the present project used a total of 3 datasets related to three different
Hybrid Electric Vehicles Architecture, namely P2, P3 and P4. These datasets are the result
of multiple simulations of a Dynamic Programming Algorithm run on the WHVC driving
cycle. They are used to train a Pipeline of two Deep Neural Networks; the first one
performs Classification and has the goal to produce Feasibility Predictions; the second
one performs Regression with the aim to predict Tank-to-Wheel CO2 emissions of a
series of layouts included in the datasets.

The results of the simulations are more than convincing both for feasibility prediction
and regression. There is no doubt that the net correctly picks up the trend hidden in the
Design Parameters and effectively interprets them to produce valuable information.
Obviously, extensive simulations should be carried out for future industrial application,
especially for what concern the issue of the false negatives and false positives.

Could be of interest to test different types of Deep Neural Networks architectures to
try and increase the performances even further. Another interesting development could
be to implement Bayesian Optimization during the hyperparameters’ selection process.
The Architecture Recognition task should be deepened and implemented effectively.
Lastly, the dataset should be extended to include cycle related features, and various
examples coming from different driving cycle should be combined to form a unique
dataset on which train the pipeline.

In conclusion, Artificial Intelligence, and in particular Deep Learning, has been a
reliable tool to approach the tasks related to this project.

There is no doubt that this technology will transform the way we think and interact
with the world.

Bibliography

96

Bibliography
[1] Josh Miller, Li Du, Drew Kodjak (2018), Impacts of world-class vehicle efficiency
and emissions regulations in select G20 countries.

[2] Fuad Un-Noor, Sanjeevikumar Padmanaban, Lucian Mihet-Popa Mohammad
Nurunnabi Mollah and Eklas Hossain (2017), A Comprehensive Study of Key Electric
Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of
Development.

[3] Venditti, Mattia (2015), Innovative Models and Algorithms for the Optimization
of Layout and Control Strategy of Complex Diesel HEVs, Politecnico di Torino.

[4] Cirrincione, Giansalvo, Deep Learning, EXIN.

[5] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks.

[6] Juergen Schmidhuber (2014), Deep Learning in Neural Networks: An Overview.

[7] Bin Ding, Huimin Qian, Jun Zhou (2018), Activation functions and their
characteristics in deep neural networks

[8] Ruder, Sebastian (2016), An overview of gradient descent optimization
algorithms.

[9] Boldrini, Nicoletta (2019), Reti neurali: cosa sono e a cosa servono.

[10] Brian J. Taylor, Marjorie Darrah, Christina D. Moats (2003), Verification and

validation of neural networks: A sampling of research in progress.

[11] Feiping Nie, Hu Zhanxuan, Xuelong Li (2018), An investigation for loss functions

widely used in machine learning.

[12] Yulong Lu, Jianfeng Lu, A Universal Approximation Theorem of Deep Neural

Networks for Expressing Distributions.

[13] Jimmy Lei Ba, Diederik P. Kingma (2015), Adam: a method for stochastic

optimization.

[14] Page 156 of Machine Learning, McGraw Hill.

[15] Jasper Snoek, Hugo Larochelle, Ryan P. Adams, Practical Bayesian Optimization

of Machine Learning Algorithms.

[16] Baodi Zhang, Fuyuan Yang, Lan Teng, Minggao Ouyang, Kunfang Guo, Weifeng

Li, Jiuyu Du (2019), Comparative Analysis of Technical Route and Market Development

for Light-Duty PHEV in China and the US.

Bibliography

97

[17] Davide Chicco, Giuseppe Jurman (2020), The advantages of the Matthews

correlation coefficient (MCC) over F1 score and accuracy in binary classification

evaluation.

[18] Vinod Nair, Geoffrey E. Hinton (2019), Rectified Linear Units Improve Restricted

Boltzmann Machines.

[19] Sergey Ioffe, Christian Szegedy (2015), Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift.

[20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan

Salakhutdinov (2014), Dropout: A Simple Way to Prevent Neural Networks from

Overfitting.

[21] Finesso Roberto (2019), Optimization of the control strategy of HEVs,

Politecnico di Torino.

[22] Roberto Finesso, Ezio Spessa, Mattia Venditti (2016), Robust equivalent

consumption-based controllers for a dual-mode diesel parallel HEV.

