POLITECNICO DI TORINO

Master of Science - level Engineering and Management

Master of Science Thesis

Analysis of the critical supply of carbon fiber components in a luxury firm of the automotive industry

Advisor

Student Adolfo Azzarone

Domenico Augusto Francesco Maisano

Summary

1.	INTR	ODUCTION	
2.	THE	COMPANY	7
	2.1 HIST	DRY	7
	2.2 BUSI	NESS OVERVIEW	9
	2.3 Car (MODELS	10
	2.3.1	Sports models	
	2.3.2	Gran Turismo models	
	2.3.3	Special series models	
	2.3.4	Icona series models	
	2.4 Supp	LY CHAIN AND LOGISTICS DEPARTMENT	14
	2.4.1	Product definition – SCM of starting models	
3.	сом	POSITE MATERIALS	
	3.1	CARBON FIBER MATERIALS	
4.	SCOF	PE AND OBJECTIVES OF THE ANALYSIS	
5.	ANA	LYSIS OF CRITICAL SUPPLY OF CARBON FIBER COMPONENTS	
	5.1	Approach and methodology	
	5.1.1	Internal data mining	
	5.1.2		
	5.1.3	Evaluation and interpretation	24
	5.2	ANALYSIS OF CRITICAL SUPPLY OF CARBON FIBER COMPONENTS OF F8 TRIBUTO AND F8 SPIDER	25
	5.2.1	F8 Tributo and F8 Spider internal data mining	
	5.2.2	F8 Tributo and F8 Spider external data mining	
	5.2.3	Evaluation and interpretation	
	5.3	CROSS-CHECK WITH OTHER CAR MODELS	64
	5.3.1	F8 Tributo and 488 Pista	65
	5.4	ALIGNMENT BETWEEN PLANNED ORDERS AND PRODUCTION CAPACITY	68
6.	SUPF	LIERS MANAGEMENT DURING COVID-19 EMERGENCY	
	6.1	THE QUESTIONNAIRE	71
	6.2	SUPPLIERS' READINESS EVALUATION	72
7.	CON	CLUSIONS	
A	PPENDIX		
so	OURCES /	ND WEBSITES	
	LECTURES		84

RI	NGRAZIAMENTI	86
	VV EDJITES	.04
	WEBSITES	<u>8</u> 1
	PUBLIC DOCUMENTS AND TEXTBOOKS	.84

Introduction

1. Introduction

The following thesis is based on the work performed during an internship in Ferrari S.p.A., in Maranello, which started in March 2020 and finished in September 2020.

The internship was conducted in the Supply Chain and Logistics department in the Gran Turismo division, in particular in the Product Definition functional area, which deals with the starting models, car models that are not yet produced in series.

The objective and the scope of the internship was to support the Supply Chain Management (SCM) activities and to implement a new management and monitoring system for the critical supply of composite materials, in particular carbon fiber components.

Indeed, in recent years the production output of Ferrari has sensitively increased: in 15 years, from 2004 to 2019, the units shipped doubled. Accordingly, the employment of carbon fiber components has widened, thanks to higher economic feasibility and greater manufacturability.

This led to a new need for an approach specifically designed for the Supply Chain Management of carbon fiber components, in order to spot criticalities in advance and take corrective or preventive measures to avoid missing items in the production line.

The work performed during the internship consists in an analysis of the critical supply of carbon fiber components, starting from the collection of data about internal production needs, detection of carbon fiber components from the Bill of Materials (BOM) of the car models, car options involved, forecasts of percentage of adoption of carbon fiber options etc.

Subsequently, suppliers' production capacity values are collected as well, in order to compare the Ferrari production needs with the suppliers' production capacity and verify if potential insufficient production capacity is detected.

The material planners who work in the Supply Chain and Logistics department already do this work, but partially. For each project (i.e. car model), a team of material planners is assigned and each of them has the responsibility of the procurement of a group of components and sub-systems according to a functional division, for instance: engine, hybrid system, external or internal components etc.

Although the Supply Chain Management of all the components, including the carbon fiber ones, are assigned to the material planners, a dedicated and focused management of the carbon fiber parts is not already in place. The analysis explained in the following thesis is positioned transversally

4

among the various material planners and gives the opportunity to have a holistic view of the procurement and the supply capacity of carbon fiber components.

During the internship, the dedicated management system designed to analyze the critical supply of carbon fiber components have been applied to three car models, with their variants, if present:

- F8 Tributo and F8 Spider;
- SF90 Stradale and SF90 Stradale Spider;
- Roma.

However, the methodology and the approach are the same, hence, in order to avoid repetitions and redundancies, only the analysis of the F8 Tributo and F8 Spider is presented and explained in this work.

It passes through four macro steps:

- Internal data collection;
- External data collection;
- Data processing;
- Suggestion of corrective and preventive measures to take.

Because of high confidentiality of some data and information, supplier companies are mentioned not with their real business names, but through pseudonyms; for the same reason, production ramp-up of Ferrari car models is not expressed through the actual values but through percentage values computed as follows:

- the "100" value is attributed to the peak of the production ramp-up of the F8 Tributo and F8 Spider (expressed in daily production rate), which is observed in November 2020;
- all the remaining values are derived by computing a proportion with respect to the "100" value.

All the data mentioned in this work are obtained with this method, hence not only production values of the F8 Tributo and F8 Spider, but also production rate of the other discussed car models, as well as production capacity values of suppliers etc.

Clearly, the "100" value is not the maximum observable value in the thesis, it is just a point of reference to compute the remaining data.

The thesis is divided into seven chapters and it is structured as follows:

Introduction

- chapter 1: introduction of the work and of the topics that will be discussed;
- chapter 2: presentation of the company with its products and the functional area where the internship was conducted;
- chapter 3: introduction to properties and characteristics of composite materials and, specifically, carbon fiber components;
- chapter 4: detailed explanation of the scope and the objective of the analysis;
- chapter 5: it is the heart of the thesis, firstly the methodology and the approach are presented, then it is applied practically to the Ferrari F8 Tributo and Ferrari F8 Spider models;
- chapter 6: after the presentation of the results of the analysis, it is given a quick view of how the crisis caused by the Corona Virus was managed from a SCM perspective. In this case, the car model taken into consideration is the SF90 Stradale, because during the months of April, May, June and July 2020, it should have started to be produced in series, hence the outbreak of the pandemic coincided with a delicate phase of development synchronized with suppliers, some of them established in other countries;
- chapter 7: conclusions of the work are presented and explained.

2. The company

Ferrari S.p.A. is an Italian car manufacturer positioned among the world's leading luxury brands, focused on design, engineering, production and sale of the world's most recognizable luxury performance sports cars. The Ferrari brand is a symbol of exclusivity, innovation, state-of-the-art sporting performance and Italian design and engineering heritage. Its name, history and reputation are closely associated to the Formula 1 racing team, Scuderia Ferrari, the most successful team in Formula 1 history. From 1950, the inaugural

Figure 1: Ferrari logo.

year of Formula 1, through the end of 2019, Scuderia Ferrari has won 238 Grand

Prix races, 16 Constructor World titles and 15 Drivers' World titles. In addition, Ferrari is one of the most successful racing teams in Sportscar,

Prototypes and Gran Turismo Championships, such as the World Sportscar Championship and the Endurance FIA. It boasts several victories in the classic endurance races, as the 24 hours of Le Mans, the 12 hours of Sebring, the 24 hours of Daytona etc.

Figure 2: Scuderia Ferrari designs, engineers and produces its cars in Maranello, Italy, and sells *Ferrari logo.* them in over 60 markets worldwide through a network of 166 authorized dealers

operating 187 points of sale.

At the end of 2019, Ferrari counted 4,285 employees, of these 4,043 were based in Maranello, € 3,766 million of net revenues and € 699 million of net profit.

2.1 History

Figure 3: historic entrance in Via Abetone Inferiore of the Ferrari plant in Maranello, Modena.

Ferrari was founded in 1947, when, through the historic gate of Via Abetone Inferiore in Maranello, the first Ferrari branded car came out, the Ferrari 125 S. However, the origins of the company are indissolubly linked to the founder's life, Enzo Ferrari. He dedicated his entire life to car racing. Pilot of Alfa Romeo in 1924, five years later he founded the Scuderia Ferrari, with the aim of allowing his partners to participate in the races.

After the interruption of all racing activities during the World War II, the first Ferrari began to be designed and constructed.

During the 50s important changes occurred: at the end of the decade, Ferrari was known worldwide. From a sporting point of view the first achievements were reached: it won the first Gran Prix in 1951 while in 1952 and 1953 Alberto Ascari won the World Championship.

Between 1950 and 1960, sales tripled.

Enzo Ferrari transformed the firm in a public corporation in 1960 and in 1969 signed an agreement with FIAT for the sale of 50% of stock. In the second half of the decade, Scuderia Ferrari triumphed several times in both the Pilot and the Constructor World Championships.

During the 80s, the company faced a sensitive moment. Enzo Ferrari died in 1988 and FIAT increased its stake in the company up to the 90%, while the remaining 10% remained in the hands of Enzo's son, Piero Lardi Ferrari.

The new millennium brought many significant achievements: in Formula 1 from 2000 to 2008, Scuderia Ferrari wins thirteen World Championships (six Pilots World Championships and seven Constructors World Championships).

Meanwhile several successful car models came to market and, most of all, new branding one car with which he won the 2002 World Championship. policies were implemented. After the first

Figure 4: Michael Schumacher driving the Ferrari F2002, formula

Ferrari Store inauguration in Maranello in 2002, new several openings took place worldwide in cities such as St. Petersburg, Dubai, Abu Dhabi, New York, Singapore.

The results of such successful policy are clear in the recent years: Ferrari has been awarded the title of the world's strongest brand for two consecutive years, in 2019 and 2020, by Brand Finance, the leading international independent brand valuation and strategy consultancy.

Indeed, the past decade has seen a period of strong expansion.

The company has broadened its presence in emerging markets such as Middle East, China, Japan and the rest of East Asia, while strengthening its position in the USA, United Kingdom and Germany.

In 2015, FCA sold 10% of its Ferrari shares with the aim of an IPO (Initial Public Offering) and on October 21th Ferrari was listed in the New York Stock Exchange.

Ferrari became an independent, publicly traded company following its separation from FCA, which was completed on January 3rd, 2016.

2.2 Business overview

Ferrari divides the regional markets into EMEA, Americas, Mainland China, Hong Kong and Taiwan, and Rest of APAC, representing respectively 48.3 percent, 28.6 percent, 8.3 percent and 14.8 percent of units shipped in 2019.

More specifically, at the end of 2019 the 10,131 unit shipments were distributed as follows:

Figure 5: Ferrari market distribution in 2019.

In Figure 5:

- Middle East includes the United Arab Emirates, Saudi Arabia, Bahrain, Lebanon, Qatar, Oman and Kuwait;
- Rest of EMEA includes Africa and the other European markets not separately identified;

- Americas includes the United States of America, Canada, Mexico, the Caribbean and Central and South America;
- Rest of APAC mainly includes Japan, Australia, Singapore, Indonesia, South Korea, Thailand and Malaysia

2.3 Car models

The product offering includes four main strategic pillars: the sports range, the GT range, special series and Icona. The product range at the end of 2019 comprises five sports cars, four GT cars and two special series cars, as well as the Icona cars, introduced in 2018 with the Ferrari Monza SP1 and SP2.

Currently, Ferrari offers the broadest ever model range, which is able to offer a highly differentiated product line-up that can meet the various needs of new customer segments (in terms of sportiness, comfort, on-board space, design) and that meets also the existing clients' needs.

The diversified product offering includes different architectures (such as front-engine and mid-rear engine), engine sizes (V8 and V12), technologies (atmospheric, turbo-charged, hybrid, electric), body styles (such as coupes and spiders), and seats (2 seaters, 2+2 seaters and 4 seaters).

2.3.1 Sports models

812 SUPERFAST

With its 800 PS and 6,496 cc, it's the most powerful naturally aspirated engine ever for a vehicle produced in series. It merges innovative contents and a hidden special meaning, as the V12 was the first engine designed and produced by the "Prancing horse". It accelerates from 0 to 100 km/h in 2.9 seconds and it has a top speed of 340 km/h.

The company

812 GTS
It is the open top version of the 812 Superfast.
F8 Tributo
This model climbs on a central-rear, 3.9 L twin-turbocharged V8 engine. With 720 PS and a specific power of 185 PS/l, this is the most powerful V8 Ferrari ever. It is based on the same unit that has been used for other models and has been awarded for three years in a row "International Engine of the Year". It accelerates from 0 to 100 km/h in 2.9 seconds and its top speed is above 340 km/h.
F8 Spider
It takes inspiration from the F8 Tributo and adds some features such as the Retractable Hard Top (RHT).
SF90 Stradale
The beginning of a new era in Ferrari history with the introduction of the first PHEV (Plug-in Hybrid Electric Vehicle) produced in series. It is the most powerful Ferrari road car ever made with a total of 1000 PS (220 PS supplied by three electric motors in addition to 780 PS supplied by the V8
internal combustion engine). It accelerates from 0 to 100

km/h in 2.5 sec and from 0 to 200 km/h in 6.7 sec.

The company

2.3.2 Gran Turismo models

Roma

Characterized by timeless design and unique refinement, this model is powered by a V8 turbo engine, which unleashes 620 PS with a weight/power ratio of 2,37 kg/PS. It accelerates from 0 to 100 km/h in 3.4 seconds, from 0 to 200 km/h in 9.3 seconds and a top speed of 320 km/h.

Portofino

Lighter than its predecessor, the California T, with its 600 PS it goes from 0 to 100 km/h in 3,5 sec. The Retractable Hard Top, the capacious trunk, and great habitability allow having sportiness, elegance and comfort merged together.

GTC4Lusso

With four seats, steering rear wheels, four-wheel drive and great habitability, this model targets those customers who demand comfort. 690 PS and a record-breaking weight/power ratio for the category are the distinctive features of this 6,262 cc front-mid mounted V12 engine. It accelerates from 0 to 100 km/h in 3.4 seconds and it has a top speed of 335 km/h.

GTC4Lusso T

It is the first Ferrari model with four seats and a rear wheel drive which climbs on a 3,855 cc twin-turbocharged V8 engine. It is dedicated to those customers who search for sportiness together with versatility and high frequency of use. It accelerates from 0 to 100 km/h in 3.5 seconds and it can reach 320 km/h of top speed.

2.3.3 Special series models

488 Pista

Its development has its roots in the racing environment after five Constructors titles of FIA WEC from 2012, through several solutions in engine, dynamics and aerodynamics of the vehicle. The V8 engine unleashes 720 PS and a specific power of 185 PS/I as for the F8 Tributo and F8 Spider.

488 Pista Spider

It is the Ferrari spider with the best performance ever, with a remarkable weight/power ratio (1,92 kg/PS).

2.3.4 Icona series models

The Icona series car models take inspiration from the iconic cars of the past and interpret them in a modern way with innovative technology and materials.

Monza SP1 and Monza SP2

These models revive the concept of the 50s "barchette" which became famous thanks to the victories of Scuderia Ferrari and the gentlemen who drove them. They are specifically designed for collectors. Both of them are powered by a naturally aspirated 6,496 cc V12 engine, which unleashes 810 PS. As for the racing cars, carbon fiber components have been largely employed. The only difference between them is that the Monza SP1 has just one seat, while the Monza SP2 has two.

The company

2.4 Supply Chain and Logistics department

The main function of the Supply Chain and Logistics department is the management of the flow of goods in inbound and outbound as well as inside and between the company infrastructures (Supply Chain Management or SCM). It involves the movement and storage of raw materials, of work-in-process inventory and of finished goods as well as end-to-end order fulfilment from point of origin to point of consumption.

This work will focus on supply chain activities in inbound, hence procurement of raw materials and assembled goods in order to fulfil the internal production needs. It consists in a cross-functional approach because, in order to implement planning methodologies and to ensure harmonization between procurement and production, the Supply Chain department needs to keep a constant information and communication flow not only with the Production department but also with the Technological, Quality, Purchasing and Marketing departments:

- Technological dept. is necessary in order to understand the function and the application of the components;
- Quality dept. informs if the incoming parts are satisfactory according to the company quality standards;
- Purchasing dept. is responsible for the agreements with suppliers, including deals on equipment, investments and costs;

Commercial dept. provides *department*.
relevant data about sales
forecasting, adoption percentages of option etc.

Figure 6: Information and communication flow of Supply Chain and Logistics department.

In the automotive industry, the Supply Chain & Logistics function has a crucial role, as companies like Ferrari are Original Equipment Manufacturers (OEMs). This type of firms assembles and sells

material and components that are partly manufactured by other companies in the supply chain, under their own brand name. The OEM supply chain can be depicted also as a supply pyramid in which at the top there is the OEM, in this case Ferrari, while in the lower levels suppliers of modules, components and parts, called also tier 1, tier 2 and tier 3 suppliers, respectively. Naturally, there is no limit in the structure of sub-suppliers, hence, depending on the complexity of a supply chain and on the distance from the OEM, there will be n-tier suppliers.

Figure 7: pyramidal structure of the supply chain in case of an Original Equipment Manufacturer (OEM).

2.4.1 Product definition – SCM of starting models

Each car model passes through different technological and organizational phases before being produced in series (Start of Production or SOP). The path that needs to be crossed depends on particular issues related to global performance, manufacturability, good aesthetic result, compatibility, synergy among components and so forth.

Figure 8: phases of a new car model

All those car models that are currently in the phases before series production are referred to as *starting models*. The latter require high effort and attention from a Supply Chain Management perspective, because of the numerous changes that involve components.

Passing through all these stages, vehicle meaningfulness continuously increases. Meaningfulness refers to the level of definition of employed components and adopted manufacturing processes.

In the initial phases (e.g. "mulotipo", prototype) most of the components are not defined, as well as the assembly process. Moving forward Advance Pre-Series, Advance Series and Pre-Series cars, the level of definition of components and processes (that is to say meaningfulness) improves, until the 100% is reached, hence allowing the Start of Production.

Components employed in the early stages of the development of a car model, for instance in the prototypal stage, are likely to be modified because of their low meaningfulness.

Specifically:

- "Mulotipo": in this phase frame, suspension, steering, brakes, electrical systems, cooling system are tested;
- Prototype: here the car begins to take shape and both internally and externally it is more similar to the final version; in this phase aerodynamics and interior quality are tested;
- Advance Pre-Series (PAV): it serves as an intermediate step between Prototype and Advance Series, few changes may be made;
- Advance Series (AV): production tolerances and supply chain are verified; what is called *project debug* is performed;
- Pre-series (PS): cars are realized in the production line with the aim of testing the process; indeed, what is called *process debug* is performed.

After the Pre-Series cars, a new phase is approached: Off Tool Off Process (OTOP). In the automotive industry, this expression is used when all the components, tools, equipment and processes have

been tested, verified, defined and confirmed. Once a project enters in the OTOP phase, the series production can officially begin.

Graph 1: qualitative representation of meaningfulness of a car model in function of the percentage of type D components

In order to distinguish among components of different nature basing on their meaningfulness, the following classification is considered:

- type C components: prototypal components and processes;
- type D components: highly meaningful components and processes, almost final;
- type E components: final components and processes, quality control is passed.

Focusing only on the distinction between type C and type D components, the higher the number of type D components, the lower the number of type C ones. Hence, the x-axis of Graph 1 can be interpreted as increasing percentage of type D components or decreasing percentage of type C components.

As explained previously, once the OTOP phase is reached, the series production begins, but not all the components cease to be critical from a procurement point of view. Indeed, after the Start of Production, most of the car parts continues to be managed by the Supply Chain & Logistics branch which deals with starting models: the Product Definition area. Then, the Supply Chain Management will progressively shift to the Supply Chain and Logistics area, which deals with series production models.

3. Composite materials

A composite material is a combination of two macroscopically identifiable materials with different physical and chemical properties. When they are combined, they create a material which is specialized to do a certain job, for instance to become stronger, lighter or resistant to electricity. The reason for their use over traditional materials is that they improve the properties of their base materials and are applicable in many situations.

3.1 Carbon fiber materials

Carbon fibers are fibers about 5–10 micrometres in diameter and composed mostly of carbon atoms. They present several physical and mechanical advantages including high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, and motorsports. However, they are relatively expensive.

Figure 9: carbon fiber sheet ready for lamination

Figure 10: finished carbon fiber rear diffuser

In industrial application, carbon fibers are usually combined with other materials to form a composite. When impregnated with a plastic resin and baked, it forms carbon-fiber-reinforced polymer (it is referred simply to as carbon fiber) which has a very high strength-to-weight ratio and

is extremely rigid. Carbon fibers are also combined with other materials, such as graphite, to form reinforced carbon-carbon composites, which have a very high heat tolerance.

The excellent properties of carbon fiber materials have boosted its application in the past years (Graph 2) and have sensitively decreased its unit price (Graph 3).

Graph 2: worldwide carbon fiber demand through years; values in 2018, 2020 and 2022 are forecasted values; results of a study published on Statista.com by M. Garside.

Graph 3: price trend of carbon fiber materials in the past 8 years; Infosys paper "Carbon composites are becoming competitive and cost effective" by Shama Rao, Simha, Rao, and Ravi Kumar.

Although carbon fiber employment is spreading and widening, allowing lower prices, better manufacturing techniques and higher feasibility, it is still a critical material due to long production lead time and delicate process steps. These aspects are problematic in several application fields such as, military, medical, aerospace. On top of that, high quality standards and stringent aesthetics requirements that characterize a luxury company like Ferrari make the production and supply of carbon fiber components even more critical.

From a Supply Chain Management perspective, carbon fiber components require higher attention.

4. Scope and objectives of the analysis

Ferrari has been increasing production volumes year by year, reaching 10,131 car shipments in 2019, a new record. Accordingly, carbon fiber application has been widening, as it was shown from a macro perspective in the previous chapter. These phenomena lead to a substantial rise of Ferrari demand for carbon fiber components.

From these assumptions a new internal and organizational need is born: to analyse in the medium and the long term the suppliers' production capacity of carbon fiber components in order to verify if they are able to satisfy production needs.

This approach aims to detect potential criticalities in advance, before delays in components delivery occur and in order to avoid missing items in the production line.

The medium and long-time horizons are crucial in this type of study because, when criticalities are detected, the possible actions to take may require time and money.

It is fundamental to remember that this type of study has the aim of spotting *potential* criticalities. It means that there is no certainty in whatever conclusion or statement that can be expressed during the analysis, both in positive and negative aspects:

- in case a particular car option or item is considered potentially non critical, it doesn't erase any chance of missing items in the production line or other supply issues that could be related to several causes (quality issues, specific issues of the supplier's production line, wearing of tools, unexpected peak from customers for some car options etc.);
- on the opposite, if a car option is recognized as critical from a production capacity perspective, it does not mean that issues will necessarily come up if preventive and corrective actions are not undertaken.

All the quantitative and semi-qualitative results of the following study need to be accompanied by other instruments, in order to implement an optimal decision-making process.

5. Analysis of critical supply of carbon fiber components

5.1 Approach and methodology

Before going into details analysing suppliers' production capacity of carbon fiber components for a specific car model, the adopted methodology is explained in the following paragraphs.

5.1.1 Internal data mining

Before collecting data about production capacity from suppliers, it is necessary to begin the study from the car model that will be the object of the analysis, in particular:

- to identify the car model parts that are made of carbon fiber in their standard version (100% of the produced cars will be assembled with that component in carbon fiber);
- to identify and list all the car options that involve carbon fiber components;
- to identify the car model parts that are made of carbon fiber depending on the option that is chosen by the client (absorption rate of that component in carbon fiber lower than 100%); in this case if the car option that impacts a particular component is not chosen, that car part will not be in carbon fiber;
- to collect absorption rates of car options based on forecasts performed by the Commercial dept.;
- to identify and link all the part numbers (items with an identification code attached) to each option of interest;
- to identify destination markets for each component (depending on different regulations and rules, some parts may be different according to the market, for instance right-hand and lefthand drive countries);
- to identify the suppliers of each item of interest;
- to derive the production ramp-up curve for the car model of interest, in order to consider the production needs through the months.

Theoretical or **Forecasted Absorption Rates (FAR)** of an option refer to the percentage of the produced cars that are expected to be assembled with the particular component/s associated to the relative option. In other words, it is the expected percentage of cars that will be requested by customers with that option.

They are forecasted by the Commercial dept. in the initial phases of the project and represent a significant parameter in the decision-making process about how much the suppliers need to be equipped. High absorption rates require a higher amount of installed lamination tools for the production of carbon fiber components, in order to ensure a satisfactory material flow towards the Ferrari manufacturing plant. Moreover, these decisions need to be taken precisely and early, because the tooling and set-up procedures may require several weeks, up to 8-10 weeks.

On the other side, also **Real Absorption Rates (RAR)** can be derived by extracting orders placed in the Enterprise Resource Planning (ERP) system. This is surely a reliable value because it is computed by looking to the cars that will be actually produced, but, in contrast, it refers to a short time horizon. In the following analysis, **Key Performance Indicators (KPIs)** will be computed considering the Forecasted Absorption Rates, but, at the same time, Real Absorption Rates will be taken into account as an auxiliary element to evaluate some criticalities, mostly in the short term.

After the collection of the data previously mentioned, the production need through months of each component is computed.

It is affected by:

- Forecasted Absorption Rate of associated option;
- destination market;
- production ramp-up curve of the car model.

By combining all these data and information together, it is possible to derive the specific production need for each item over time.

5.1.2 External data mining

Once the internal data mining phase is concluded, it is necessary to collect the production capacity of the suppliers for each component. These data will be determined by:

- total number of equipped lamination tools agreed with Ferrari;

- time required to progressively install lamination tools;
- production time for each piece;
- maintenance and useful life of equipment and tools;
- work shifts (managed by supplier);
- work force employed.

The data mining phase is now concluded. Both production needs and suppliers' production capacity have been collected and can be compared, in order to spot potential criticalities.

5.1.3 Evaluation and interpretation

During the evaluation process, it is crucial to remember that the data involved in the analysis deal with maximum production capacity, not with actual production plan and delivery of items. Number of delivered parts can be:

- lower, in the case Ferrari orders (which depend on production on a day-by-day basis) are simply lower than the maximum production capacity of the supplier;
- higher, in the case a supplier cumulates stock during low demand periods and begins to deliver just-produced parts together with in-stock ones in high demand periods.

In this stage, the performance evaluation process is simple and immediate:

Figure 11: first evaluation of suppliers based on their production capacity.

In case of low production capacity, a generalization of the approach can be tricky, because the gravity of the criticality depends on several factors such as total duration of insufficient production capacity, severity of insufficiency and so forth.

If an intervention is necessary, two possible actions can be taken:

Figure 12: possible actions to undertake in case of detection of insufficient production capacity of a supplier.

Clearly, improving supplier equipment is costly and require more effort, as other departments need to be involved. It is advisable to act in this way when big differences between supplier production capacity and production needs are observed.

5.2 Analysis of critical supply of carbon fiber components of F8 Tributo and F8 Spider

Ferrari F8 Tributo is produced in two versions:

• Ferrari F8 Tributo, coupé (from now on it will be referred to as simply F8 Tributo);

Figure 13: front and back view of F8 Tributo.

Analysis of critical supply of carbon fiber components

Figure 14: internal view of F8 Tributo.

• Ferrari F8 Spider.

Figure 15: front and back view of F8 Spider.

Figure 16: Internal view of F8 Spider.

5.2.1 F8 Tributo and F8 Spider internal data mining

In this paragraph, all the relevant data useful for the analysis are collected within the company, thanks to the Enterprise Resource Planning system and communication links with colleagues who work internally and externally to the Supply Chain and Logistics function.

Most of the components are in common between the two versions but in some cases, a distinction needs to be made because of specificity of parts.

Regarding this model, there are not parts in carbon fiber in the standard version.

5.2.1.1 Options and absorption rates

Therefore, the next step can be performed: identification of all the options that involve carbon fiber items associated to Forecasted Absorption Rates (FAR) computed by the Commercial dept.:

	F8 Tributo and F8 Spider				
Functional group	Option FAR		Option description		
INTERNAL	LEDS	90%	VOLANTE IN CARBONIO CON LEDS		
EXTERNAL	CEAI	55%	S-DUCT SU COFANO IN CARBONIO		
EXTERNAL	CEXG	55%	BAFFI SU PARAURTI ANTERIORE IN CARBONIO		
EXTERNAL	FCWS	55%	SPLITTER SU PARAURTI ANTERIORE IN CARBONIO		
EXTERNAL	CEXF	55%	MOSTRINA PROIETTORE IN FIBRA DI CARBONIO		
EXTERNAL	CEIS	55%	MOSTRINA PRESE ARIA LATERALI IN FIBRA DI CARBONIO		
EXTERNAL	CEXS	55%	COPRIBRANCARDO ESTERNO IN FIBRA DI CARBONIO		
EXTERNAL	CEXD	55%	ESTRATTORE POSTERIORE IN FIBRA DI CARBONIO		
INTERNAL	CIDL	31%	ALLESTIMENTO ZONA GUIDA IN FIBRA DI CARBONIO + VOLANTE CON LEDS		
INTERNAL	CILR	46%	BRIDGE TUNNEL IN FIBRA DI CARBONIO		
INTERNAL	CIDH	46%	MANIGLIE PORTA IN FIBRA DI CARBONIO		
INTERNAL	CFPA	24%	PALETTE IN CARBONIO RACING		
INTERNAL	DATR	44%	INSERTI PLANCIA IN FIBRA DI CARBONIO		
INTERNAL	CIIP	44%	VELE COPRISTRUMENTO IN CARBONIO		
INTERNAL	CITZ	44%	PARTE SUPERIORE TUNNEL IN FIBRA DI CARBONIO		
INTERNAL	CIPZ	44%	PANNELLI PORTA IN FIBRA DI CARBONIO		
INTERNAL	CIMP	44%	CARBONI INTERNI OPACHI		
INTERNAL	CISK	44%	BATTITACCO ESTERNO IN FIBRA DI CARBONIO		
EXTERNAL	MNFC	33%	ENGINE COVERS IN FIBRA DI CARBONIO		
EXTERNAL	CEL2	33%	PARATIE VANO MOTORE IN FIBRA DI CARBONIO		
INTERNAL	RSCH	33%	SEDILE RACING IN CARBONIO CORSA		
INTERNAL	CIZB	33%	ZONA BAULE IN CARBONIO		
EXTERNAL	CUPC	12%	COPPETTE RUOTA IN FIBRA DI CARBONIO		
INTERNAL	RSCD	11%	SEDILE RACING IN CARBONIO DAYTONA		
EXTERNAL	RMCF	10%	CERCHI RUOTA IN CARBONIO		

Table 1: list of options that involve carbon fiber components for F8 Tributo and F8 Spider.

Then, options that are associated to specific parts of only one of the two versions are identified and listed:

	F8 Tributo					
Functional group Option FAR		FAR	Option description			
EXTERNAL	EXTERNAL CERB 55%		TERMINALE COFANO POST IN CARBONIO			
EXTERNAL	EXTERNAL CEL2 33%		PARATIE VANO MOTORE IN FIBRA DI CARBONIO			
EXTERNAL	BONF	15%	TELAIETTO COFANO MOTORE IN CARBONIO			

Table 2: list of options that involve carbon fiber components for F8 Tributo.

	F8 Spider					
Functional group Option FAR		FAR	Option description			
EXTERNAL	EXTERNAL CERB 55%		TERMINALE COFANO POST IN CARB E GRIGLIA MOTORE			
EXTERNAL	EXTERNAL CERF 50%		INSERTO MONTANTE B IN CARBONIO SPIDER			
EXTERNAL	CEL2	33%	PARATIE VANO MOTORE IN FIBRA DI CARBONIO			

Table 3: list of options that involve carbon fiber components for F8 Spider.

The option CEL2 is listed in all the three tables. This means that some of the items associated to CEL2 are in common between coupé and spider versions, while other parts are specific for each one of the two versions.

5.2.1.2 Items identification

Once all the options involving carbon fiber have been listed, it is necessary to derive the components that are assembled when the above mentioned options are activated.

This procedure can be implemented by looking to the constraints attached to the items in the ERP system, in particular in the Bill of Materials (BOMs). If a part number shows a "validate" type constraint together with an OPT (option) code, it means that the particular component is assembled only if that OPT is activated.

Through many iterations, all the part numbers linked to the above listed options are obtained.

Similarly, by interpreting the BOMs of each component, the destination market can be found.

Indeed, from the code, several pieces of information can be extracted such as car model, model year, market destination.

At end of the research, the following table is derived:

			F	8 Tributo + F8 Spider				
Functional group	Option	Option description	Item code	Item description	Market	FAR	RAR	
INTERNAL	LEDS	VOLANTE IN CARBONIO CON LEDS	73520444	VOLANTE CPL F142MFL CARB+LED	ALL	90%	95%	
EXTERNAL	CEAI	S-DUCT SU COFANO IN	914076	COPER.EST.CENT.PROLUNGA CARB.C	ALL	55%	13%	
		CARBONIO	904557	IMBOCCO S-DUCT CARB. COFANO AN	ALL	55%		
EXTERNAL	CEXG	BAFFI SU PARAURTI ANTERIORE IN	73530344	PARAURTO ANT.CS FLICK INF.LAT	NO USA, CAN	44%	20%	
		CARBONIO	73574244	PARAURTO ANT.CS FLICK LAT. CA	USA, USL, CAN	22%		
EXTERNAL	FCWS	SPLITTER SU PARAURTI ANTERIORE IN	73530744	PARAURTO ANT.CS.MOSTRINA CENTR	NO USA, CAN	44%	25%	
		CARBONIO	73574144	PARAURTO ANT. CS MOSTR.CENTR.C	USA, USL, CAN	22%		
EXTERNAL	CEXF	MOSTRINA PROIETTORE IN FIBRA DI	881792	PRESA ARIA FRENI DX CPL CARB.	ALL	55%	11%	
			CARBONIO	881787	PRESA ARIA FRENI SX CPL CARB.	ALL	55%	
EXTERNAL	CEIS	MOSTRINA PRESE ARIA LATERALI IN FIBRA DI	891184	ALA LATERALE CARBONIO DX CPL	ALL	55%	61%	
		CARBONIO	891163	ALA LATERALE CARBONIO SX CPL	ALL	55%		
EXTERNAL	CEXS	COPRIBRANCARD O EXTERNAL IN FIBRA DI CARBONIO	73527944	RIVESTIM. SOTTOPORTA DX CPL CA	ALL	55%	16%	
			73528044	RIVESTIM. SOTTOPORTA SX CPL CA	ALL	55%		
		ESTRATTORE	906929	SCIVOLO ESTRATTORE CPL BASE CA	ALL	55%		
EXTERNAL	CEXD	POSTERIORE IN FIBRA DI	899283	PORTELLA CENTRALE IN CARBONIO	ALL	55%	21%	
		CARBONIO	786906	PORTELLA LATERALE DX CARBONIO	ALL	55%		
			786905	PORTELLA LATERALE SX CARBONIO	ALL	55%		
			ALLESTIMENTO ZONA GUIDA IN FIBRA DI	863731	NQS ECE OPT NERO CARB	NO USA	55%	
INTERNAL	CIDL	CARBONIO +	863752	NQS USA OPT NERO CARB	SOLO USA	22%	61%	
		VOLANTE CON LEDS	327251	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%		
			892382	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%		
INTERNAL	CILR	BRIDGE TUNNEL IN FIBRA DI	881252	BRIDGE COMANDI F1 CARBONIO CPL	NO USA, USL, CAN	28%	60%	
		CARBONIO	896471	BRIDGE COMANDI F1 CARB LUCI US	USA, USL, CAN	18%		
INTERNAL	CIDH	MANIGLIE PORTA IN FIBRA DI	912466	MANIG TIRAPO CARBON LUCIDO SX	ALL	46%	24%	
		CARBONIO	918560	MANIG TIRAP CARBON LUCIDO DX C	ALL	46%		
	CEDA	PALETTE IN	881217	GRUPPO COM.CAMBIO F1 RACING KE	ALL	24%	120/	
INTERNAL	CFPA	CARBONIO RACING	890896	GRUPPO COM.CAMBIO F1 RACING CA	ALL	24%	13%	

Analysis of critical supply of carbon fiber components

			922005	SATELLITE DX PASS. CARB. CPL	NO AUS, UK	33%	
	DATR	INSERTI PLANCIA IN FIBRA DI	891898	SATELLITE SX GUIDATORE CARB CP	ALL	44%	
INTERNAL		CARBONIO					41%
			892196	SATELLITE DX GUID CARB CPL	ALL	44%	
	DATR GDX	INSERTI PLANCIA IN FIBRA DI CARBONIO	899428	SATELLITE SX PASSEG CAR LUC GD	UK, AUS	11%	
			892176	VELA SUP SX CARB OP CPL	NO AUS, UK	33%	
		VELE	892178	FUSIONE SUP SX GUID CARB OP CP	NO AUS, UK	33%	
	CIIP	COPRISTRUMENT	892181	SATELLITE SX GUIDATORE CARB OP	ALL	44%	
		O IN CARBONIO	892599	VELA SUP DX CARB OP CPL	NO AUS, UK	33%	
INTERNAL			892596	FUSIONE SUP DX GUID CARB OP CP	NO AUS, UK	33%	5%
			892598	SATELLITE DX GUID CARB OP CPL	ALL	44%	5/0
		VELE	899359	VELA SUPER SX CARB OPACO GDX C	UK, AUS	11%	
	CIIP GDX	COPRISTRUMENT	899305	VELA SUPERIORE DX CARB OPACO G	UK, AUS	11%	
		O IN CARBONIO	936682	FUSIONE SUP DX GUID CARB GDX	UK, AUS	11%	
			899358	FUSIONE FINIZ SUP SX CARB OPA	UK, AUS	11%	
INTERNAL	CITZ	PARTE SUPERIORE TUNNEL IN FIBRA DI CARBONIO	891932	CORNICE MOBILE CARBONIO LUCIDO	ALL	44%	12%
	CIPZ	PANNELLI PORTA IN FIBRA DI	908592	COMP PAN+TASC PORTA SX CAR LUC	NO AUS, UK	33%	
INTERNAL		CARBONIO	908597	COMP PAN+TASC PORTA DX CAR LUC	NO AUS, UK	33%	3%
INTERNAL	CIPZ GDX	PANNELLI PORTA IN FIBRA DI CARBONIO	909716	COMP PAN+TASCA PORTA CARB LUC	UK, AUS	11%	
			909714	COMP PAN+TAS PORT CARB LUC DX	UK, AUS	11%	
	CISK	BATTITACCO EXTERNAL IN FIBRA DI CARBONIO	86538300	BATTICALCAGNO EST.DX CARBONIO	ALL	44%	
INTERNAL			86538200	BATTICALCAGNO EST.SX CARBONIO	ALL	44%	17%
			915177	BATTICALCAGNO EST.DX CARBONIO	ALL	44%	
			915176	BATTICALCAGNO EST.SX CARBONIO	ALL	44%	
EXTERNAL	MNFC	ENGINE COVERS IN FIBRA DI	902970	Polmone aspirazione DX CPL	ALL	33%	3%
		CARBONIO	902971	Polmone aspirazione SX CPL	ALL	33%	
EXTERNAL	CEL2	PARATIE VANO MOTORE IN FIBRA DI CARBONIO	86935100	PARATIA EST.CENT.VANO MOT.CPL	ALL	33%	11%
INTERNAL	RSCH	SEDILE RACING IN CARBONIO CORSA	-	-	-	33%	20%
			881765	COPERTURA ESTETICA DX CPL CARB	ALL	33%	
			881763	COPERTURA ESTETICA SX CPL CARB	ALL	33%	
	CIZB	ZONA BAULE IN CARBONIO	881773	MOSTRINA SOTTOPARABREZZA DX CP	NO AUS, UK	25%	
INTERNAL			881771	MOSTRINA SOTTOPARABREZZA SX CP	NO AUS, UK	25%	1%
			881769	COPERTURA ESTETICA CENTRALE CP	ALL	33%	
		ZONA BAULE IN	895812	MOSTRINA SOTTOP DX CPL GDX CAR	UK, AUS	8%	
	CIZB GDX	CARBONIO	895839	MOSTRINA SOTTOP. SX CPL GDX CA	UK, AUS	8%	

EXTERNAL	CUPC	COPPETTE RUOTA IN FIBRA DI CARBONIO	281089	COPPETTA COMPLETA PER CERCHI	ALL	12%	6%
INTERNAL	RSCD	SEDILI RACING DAYTONA	-	-	-	11%	9%
	DMCE	CERCHI RUOTA IN	866268	CERCHIO POST 11J X 20 CARBONI	ALL	10%	2%
EXTERNAL	RIVICE	RMCF CARBONIO	866267	CERCHIO ANT 9J X 20 CARBONIO	ALL		

Table 4: carbon fiber items associated to the relative options for F8 Tributo and F8 Spider.

Regarding option RSCH and RSCD, associated items have been not considered because they are Carry Over (CO) items. This term precisely refers to an extension of the original area of application. In other words, they are items that were or are assembled also for other car models. They are not part of the study because criticalities should be lower, because of the absence of tooling cost and time and because production ramp-up curve of supplier is determined and stable.

	F8 Tributo								
Functional group	Option	Option description	ltem code	Item description	Markets	FAR	RAR		
EXTERNAL	CERB	TERMINALE COFANO POST IN CARBONIO	890807	PARETE INF.COND.SPOILER POST.C	ALL	55%	9%		
		PARATIE VANO MOTORE IN FIBRA DI CARBONIO	826052	PARATIA EST.SOTTOL.VANO MOT.CA	ALL	33%			
	CEL2		813260	PAR EST SX CPL VA MOT CAR ASTA	ALL	33%			
EXTERNAL			880045	PARATIA EST.DX MOTORE CARB.AST	ALL	33%	15%		
			911776	PARATIA EST.DX CARB.MOT.STABIL	ALL	33%			
			880045	PARATIA EST.DX MOTORE CARB.AST	ALL	33%			
			782017	PARATIA ESTET.SX VANO MOTORE C	ALL	33%			
EXTERNAL	BONF	TELAIETTO COFANO MOTORE IN CARBONIO	855145	COFANO POSTERIORE IN CARBONIO	ALL	15%	0%		

Table 5: carbon fiber items associated to the relative options for F8 Tributo.

				F8 Spider			
Functional group	Option	Option description	ltem code	Item description	Markets	FAR	RAR
	CEDD	TERMINALE COFANO POST IN CARB E GRIGLIA MOTORE	73730844	CONDOTTO SPOILER POST.CPL CARB	ALL	55%	30%
EXTERNAL	CERB		958397	GRIGL.USC.ARIA COF.MOT.DX CPL	ALL	55%	
			958423	GRIGL.USC.ARIA COF.MOT.SX CPL	ALL	55%	
EXTERNAL	INSERTO CERF MONTANTE B IN CARBONIO SPIDER	87586400	MOSTRINA ESTETICA SX MONT.B CS	ALL	50%	24%	
		CARBONIO SPIDER	87586000	MOSTRINA ESTETICA DX MONT.B CS	ALL	50%	
EXTERNAL	CEL2	PARATIE VANO MOTORE IN FIBRA	938571	PARATIA EST.DX CPL VANO MOT.CA	ALL	33%	4%
		DI CARBONIO	938572	PARATIA EST.SX CPL VANO MOT.CA	ALL	33%	

Table 6: carbon fiber items associated to the relative options for F8 Spider.

Subsequently, a further inspection of the selected item codes has been performed and the following Carry Over options, together with the previously mentioned, have been identified:

- RSCH
- RSCD
- RMCF
- CUPC
- CERF

They will not be object of the analysis anymore because of their Carry Over nature: from a production capacity perspective, criticalities should not emerge.

For each option, both the Forecasted Absorption Rate and the Real Absorption Rate are associated.

Specifically for the Forecasted Absorption Rate, the values shown in the tables above take already into account the influence of the destination market.

In general, the market is distributed as follows:

- USA, USL and CAN stand for United States of America, USA light (which refers to those countries that have similar regulations and rules as USA with few differences) and Canada, respectively; to them a 40% of total distribution is attributed;
- GDX markets, which are those countries with right-handed drive cars, such as United Kingdom, Australia, Japan; 25% of the total distribution is dedicated to them;

 Rest of the GSX market, i.e. countries with left-handed drive excluding areas of USA, USL and CAN markets; it refers to countries in Europe (excluding UK), Middle East and others. 35% of the total distribution is attributed to these markets.

The previous distribution percentages have been taken into account together to the absorption rates in order to compute the final value of Forecasted Absorption Rates for each item. Hence, given an absorption rate AR:

Case	Item Forecasted
	Absorption Rate
Item can be mounted in cars with any destination market	AR
Item can be mounted only in USA, USL and CAN cars	AR * 40%
Item can be mounted only in cars with any destination market	AR * 60%
excluding USA, USL and CAN	
Item can be mounted only in GDX cars	AR * 25%
Item can be mounted only in GSX cars	AR * (40%+35%)

Table 7: how to compute the specific absorption rate of an item according to its market destinations.

In case of destination markets not categorized as in the table above, approximations have been made. For instance, in the case of USA + CAN markets, the same percentage of USA + USL + CAN have been used.

Most of the above listed components are actually sub-assembled products, which are composed by carbon fiber parts but also by other materials that should not be critical. In order to isolate the analysis only to the carbon fiber components, it is necessary to investigate which are the particular parts that are made of carbon fiber and the relative supplier. In some cases, tier 2 suppliers need to be involved as they supply tier 1 companies of the carbon fiber parts and then the latter assemble the component to be delivered to Ferrari.

5.2.1.3 F8 Tributo and F8 Spider production ramp-up

Now that all the items in carbon fiber have been identified and listed, associated with their specific Forecasted Absorption Rate, it is necessary to collect data about the production ramp-up of the F8 Tributo and F8 Spider.

	F8 Tributo	F8 Spider	F8 Tributo + F8 Spider					
Month	Daily production rate							
June - 2020	59,8	8,5	70,5					
July - 2020	63,2	11,5	74,8					
August - 2020	54,7	12,0	66,7					
September - 2020	45,7	26,9	72,2					
October - 2020	52,6	28,2	80,8					
November - 2020	53,8	46,2	100,0					
December - 2020	49,1	47,0	96,2					

Table 8: production ramp-up on a daily basis, month by month, of F8 Tributo and F8 Spider from June to December 2020.

Graph 4: production ramp-up on a daily basis, month by month, of F8 Tributo and F8 Spider from June to December 2020.

5.2.1.4 Items production need

By multiplying daily production rate month by month with Forecasted Absorption Rates of each item, the specific production need related to each component is obtained.

					Month							
F8 Tributo + F8 Spider						jun-	jul-	aug-	sep-	oct-	nov-	dec-
					20	20 Da	20 ilv.car	20 produ	20 action	20 rate	20	
	ltem code	Item description	Markets	FAR	RAR	70,5	74,8	66,7	72,2			96,2
Option							Sn	ecific I	orodu	ction n	eed	
							40					
LEDS	73520444	VOLANTE CPL F142MFL CARB+LED	ALL	90%	95%	63,7	67,5	59,8	65,0	72,6	90,2	86,8
CEAI	914076	COPER.EST.CENT.PROLUNGA CARB.C	ALL	55%	- 13%	38,9	41,0	36,8	39,7	44,4	55,1	53,0
	904557	IMBOCCO S-DUCT CARB. COFANO AN	ALL	55%		38,9	41,0	36,8	39,7	44,4	55,1	53,0
CEXG	73530344	PARAURTO ANT.CS FLICK INF.LAT	NO USA, CAN	44%	20%	31,2	32,9	29,5	31,6	35,5	44,0	42,3
	73574244	PARAURTO ANT.CS FLICK LAT. CA	USA, USL, CAN	22%	20%	15,4	16,7	14,5	15,8	17,9	21,8	21,4
FCWS	73530744	PARAURTO ANT.CS.MOSTRINA CENTR	NO USA, CAN	44%	250/	31,2	32,9	29,5	31,6	35,5	44,0	42,3
	73574144	PARAURTO ANT. CS MOSTR.CENTR.C	USA, USL, CAN	22%	25% 2%	15,4	16,7	14,5	15,8	17,9	21,8	21,4
051/5	881792	PRESA ARIA FRENI DX CPL CARB.	ALL	55%	- 11%	38,9	41,0	36,8	39,7	44,4	55,1	53,0
CEXF	881787	PRESA ARIA FRENI SX CPL CARB.	ALL	55%		38,9	41,0	36,8	39,7	44,4	55,1	53,0
CEIS	891184	ALA LATERALE CARBONIO DX CPL	ALL	55%	619/	38,9	41,0	36,8	39,7	44,4	55,1	53,0
	891163	ALA LATERALE CARBONIO SX CPL	ALL	55%	61%	38,9	41,0	36,8	39,7	44,4	55,1	53,0
CEXS	73527944	RIVESTIM. SOTTOPORTA DX CPL CA	ALL	55%	169/	38,9	41,0	36,8	39,7	44,4	55,1	53,0
	73528044	RIVESTIM. SOTTOPORTA SX CPL CA	ALL	55%	16%	38,9	41,0	36,8	39,7	44,4	55,1	53,0

CEXD	906929	SCIVOLO ESTRATTORE CPL BASE CA	ALL	55%	- 21%	38,9	41,0	36,8	39,7	44,4	55,1	53,0
	899283	PORTELLA CENTRALE IN CARBONIO	ALL	55%		38,9	41,0	36,8	39,7	44,4	55,1	53,0
	786906	PORTELLA LATERALE DX CARBONIO	ALL	55%		38,9	41,0	36,8	39,7	44,4	55,1	53,0
	786905	PORTELLA LATERALE SX CARBONIO	ALL	55%		38,9	41,0	36,8	39,7	44,4	55,1	53,0
CIDL	863731	NQS ECE OPT NERO CARB	NO USA	55%	61%	38,9	41,0	36,8	39,7	44,4	55,1	53,0
	863752	NQS USA OPT NERO CARB	SOLO USA	22%		15,4	16,7	14,5	15,8	17,9	21,8	21,4
	327251	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%		38,9	41,0	36,8	39,7	44,4	55,1	53,0
	892382	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%		38,9	41,0	36,8	39,7	44,4	55,1	53,0
CILR	881252	BRIDGE COMANDI F1 CARBONIO CPL	NO USA, USL, CAN	28%	60%	19,7	20,9	18,8	20,1	22,6	28,2	26,9
	896471	BRIDGE COMANDI F1 CARB LUCI US	USA, USL, CAN	18%		12,8	13,7	12,0	12,8	14,5	17,9	17,5
СІДН	912466	MANIG TIRAPO CARBON LUCIDO SX	ALL	46%	24%	32,5	34,6	30,8	33,3	37,2	46,2	44,4
	918560	MANIG TIRAP CARBON LUCIDO DX C	ALL	46%		32,5	34,6	30,8	33,3	37,2	46,2	44,4
СГРА	881217	GRUPPO COM.CAMBIO F1 RACING KE	ALL	24%	- 13%	17,1	17,9	15,8	17,5	19,2	23,9	23,1
	890896	GRUPPO COM.CAMBIO F1 RACING CA	ALL	24%		17,1	17,9	15,8	17,5	19,2	23,9	23,1
	922005	SATELLITE DX PASS. CARB. CPL	NO AUS, UK	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
-------------	---	-----------------------------------	---------------	-------------	------	------	------	------	------	------	------	------
DATR	891898	SATELLITE SX GUIDATORE CARB CP	ALL	44%	41%	31,2	32,9	29,5	31,6	35,5	44,0	42,3
	892196	SATELLITE DX GUID CARB CPL	ALL	44%		31,2	32,9	29,5	31,6	35,5	44,0	42,3
DATR GDX	899428	SATELLITE SX PASSEG CAR LUC GD	UK, AUS	11%		7,7	8,1	7,3	8,1	9,0	11,1	10,7
	892176	VELA SUP SX CARB OP CPL	NO AUS, UK	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
	892178	FUSIONE SUP SX GUID CARB OP CP	NO AUS, UK	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
CIIP	892181	SATELLITE SX GUIDATORE CARB OP	ALL	44%		31,2	32,9	29,5	31,6	35,5	44,0	42,3
Chr	892599 VELA SUP DX CARB OP CPL NO AUS, UK 33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6			
	892596	FUSIONE SUP DX GUID CARB OP CP	NO AUS, UK	33% 2 5%	23,1	24,8	21,8	23,9	26,5	32,9	31,6	
	892598	SATELLITE DX GUID CARB OP CPL	ALL		31,2	32,9	29,5	31,6	35,5	44,0	42,3	
	899359	VELA SUPER SX CARB OPACO GDX C	UK, AUS	11%		7,7	8,1	7,3	8,1	9,0	11,1	10,7
CIIP	899305	VELA SUPERIORE DX CARB OPACO G	UK, AUS	11%		7,7	8,1	7,3	8,1	9,0	11,1	10,7
GDX	936682	FUSIONE SUP DX GUID CARB GDX	UK, AUS	11%		7,7	8,1	7,3	8,1	9,0	11,1	10,7
	899358	FUSIONE FINIZ SUP SX CARB OPA	UK, AUS	11%	11%	7,7	8,1	7,3	8,1	9,0	11,1	10,7
CITZ	891932	CORNICE MOBILE CARBONIO LUCIDO	ALL	44%	12%	31,2	32,9	29,5	31,6	35,5	44,0	42,3

	1			_				1	1		1	i
0.07	908592	COMP PAN+TASC PORTA SX CAR LUC	NO AUS, UK	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
CIPZ	908597	COMP PAN+TASC PORTA DX CAR LUC	NO AUS, UK	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
CIPZ	909716	COMP PAN+TASCA PORTA CARB LUC	UK, AUS	11%	3%	7,7	8,1	7,3	8,1	9,0	11,1	10,7
GDX	909714	COMP PAN+TAS PORT CARB LUC DX	UK, AUS	11%		7,7	8,1	7,3	8,1	9,0	11,1	10,7
	86538300	BATTICALCAGNO EST.DX CARBONIO	ALL	44%		31,2	32,9	29,5	31,6	35,5	44,0	42,3
cicit.	86538200	BATTICALCAGNO EST.SX CARBONIO	ALL	44%	470/	31,2	32,9	29,5	31,6	35,5	44,0	42,3
CISK	915177	BATTICALCAGNO EST.DX CARBONIO	ALL	44%	17%	31,2	32,9	29,5	31,6	35,5	44,0	42,3
	915176	BATTICALCAGNO EST.SX CARBONIO	ALL	44%		31,2	32,9	29,5	31,6	35,5	44,0	42,3
MNFC	902970	Polmone aspirazione DX CPL	ALL	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
WINFC	902971	Polmone aspirazione SX CPL	ALL	33%	3%	23,1	24,8	21,8	23,9	26,5	32,9	31,6
CEL2	86935100	PARATIA EST.CENT.VANO MOT.CPL	ALL	33%	11%	23,1	24,8	21,8	23,9	26,5	32,9	31,6
	881765	COPERTURA ESTETICA DX CPL CARB	ALL	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
	881763	COPERTURA ESTETICA SX CPL CARB	ALL	33%		23,1	24,8	21,8	23,9	26,5	32,9	31,6
CIZB	881773	MOSTRINA SOTTOPARABREZZA DX CP	NO AUS, UK	25%	5% 1%	17,5	18,8	16,7	17,9	20,1	25,2	23,9
	881771	MOSTRINA SOTTOPARABREZZA SX CP	NO AUS, UK	25%		17,5	18,8	16,7	17,9	20,1	25,2	23,9
	881769	COPERTURA ESTETICA CENTRALE CP	ALL	33%	_	23,1	24,8	21,8	23,9	26,5	32,9	31,6

CIZB GDX	895812	MOSTRINA SOTTOP DX CPL GDX CAR	UK, AUS	8%	5,6	6,0	5,1	6,0	6,4	8,1	7,7
GDA	895839	MOSTRINA SOTTOP. SX CPL GDX CA	UK, AUS	8%	5,6	6,0	5,1	6,0	6,4	8,1	7,7

Table 9: specific production need for each item on a daily basis, month by month, for F8 Tributo and F8 Spider.

									Month)		
		F8 Tributo				jun-	jul-	aug-	sep-	oct-	nov-	dec-
						20	20	20	20	20	20	20
							D	ally car	produ	ction ra	ite	
O ution	Item	the second second second		FAR	RAR	59 <i>,</i> 8	63,2	54,7	45,7	52,6	53,8	49,1
Option	code	Item description	Markets	FAK	КАК		SI	pecific	produc	tion ne	ed	
CERB	890807	PARETE INF.COND.SPOILER POST.C	ALL	55%	9%	32,9	34,6	29,9	25,2	29,1	29,5	26,9
	826052	PARATIA EST.SOTTOL.VANO MOT.CA	ALL	33%		19,7	20,9	17,9	15,0	17,5	17,9	16,2
	813260	PAR EST SX CPL VA MOT CAR ASTA	ALL	33%		19,7	20,9	17,9	15,0	17,5	17,9	16,2
CEL2	880045	PARATIA EST.DX MOTORE CARB.AST	ALL	33%	15%	19,7	20,9	17,9	15,0	17,5	17,9	16,2
	911776	PARATIA EST.DX CARB.MOT.STABIL	ALL	33%		19,7	20,9	17,9	15,0	17,5	17,9	16,2
	782017	PARATIA ESTET.SX VANO MOTORE C	ALL	33%	3%	19,7	20,9	17,9	15,0	17,5	17,9	16,2
BONF	855145	COFANO POSTERIORE IN CARBONIO	ALL	15%	0%	9,0	9,4	8,1	6,8	7,7	8,1	7,3

Table 10: specific production need for each item on a daily basis, month by month, for F8 Tributo.

									Month	1		
		F8 Spider				jun-	jul-	aug-	sep-	oct-	nov-	dec-
		i o spidei				20	20	20	20	20	20	20
				-			D	aily car	produ	ction ra	ate	
Option	Item	Item description	Markets	FAR	RAR	8,5	11,5	12,0	26,9	28,2	46,2	47,0
option	code	tem description	IVIAI KELS	1 AN	NAN		S	pecific	produc	tion ne	ed	
	73730844	CONDOTTO SPOILER POST.CPL CARB	ALL	55%		4,7	6,4	6,4	15,0	15,4	25,2	26,1
CERB	958397	GRIGL.USC.ARIA COF.MOT.DX CPL	ALL	55%	30%	4,7	6,4	6,4	15,0	15,4	25,2	26,1
	958423	GRIGL.USC.ARIA COF.MOT.SX CPL	ALL	55%		4,7	6,4	6,4	15,0	15,4	25,2	26,1
CE1 2	938571	PARATIA EST.DX CPL VANO MOT.CA	ALL	33%	- 4%	3,0	3,8	3,8	9,0	9,4	15,4	15,4
CEL2 -	938572	PARATIA EST.SX CPL VANO MOT.CA	ALL	33%	4%	3,0	3,8	3,8	9,0	9,4	15,4	15,4

 Table 11: specific production need for each item on a daily basis, month by month, for F8 Spider.

In the matrixes above, many of the collected information are synthetized into a unique representation mean, also adding data about production need specific to each item. The latter has been computed by multiplying the daily production rate of the car model in its version in the month of interest (in the blue boxes) with the specific Forecasted Absorption Rate of each item.

Now, the expected quantities of each item that will be demanded by Ferrari on a daily basis are known.

5.2.2 F8 Tributo and F8 Spider external data mining

A further step can now be performed: collecting relevant data and information directly from suppliers, in order to derive their production capacity over time.

Theoretically, maximum production capacity refers to how many parts can be produced according to equipment (i.e. lamination tools) and work force. The data that will be collected should be called "Maximum delivery capacity", which is of interest for Ferrari, because it considers process scraps as well as subsequent production steps, such as coating and finishing, which are non-negligible in terms of lead time and criticalities. For simplicity, it is called just production capacity.

Therefore, the number of equipped lamination tools or the equipment plan of the lamination tools is surely a fundamental input in the computation of production capacity. Indeed, by considering number of currently equipped lamination tools and process time, a quantity of daily average processed parts can be derived, but it is not sufficient. In addition to that, supplier considers the overall process scrap rate and the overall processing time (including subsequent production steps such as coating and finishing).

Production capacity values computed considering all the above-mentioned aspects can be interpreted as reliable.

For the Product Definition area is fundamental to be aware of all these aspects and contributions, because, thanks to the deep understanding of the process steps, decisions about supplier equipment can be made.

Moreover, Ferrari is deeply involved in such decisions and directly invests for equipment and tooling in order to reduce dependency on suppliers, which can be strategically dangerous, and because of:

- high components specificity,
- high quality standards,
- process complexity,
- expensiveness of parts.

Through this modus operandi, suppliers are very transparent and Ferrari can leverage on more flexibility, because, by enabling a strong co-development strategy, it can operate and make changes more freely.

From the perspective of the suppliers it is convenient as well, in order to reduce the occurrence of hold-up problems: they are situations where two parties refrain from cooperating thus increasing the bargaining power of one of them reducing profits and leading to severe economic cost for the other party.

5.2.2.1 Suppliers' production capacity

In the following matrix, the specific production capacity for each item is listed, as daily production capacity, in each month from June 2020 to December 2020.

	F8 T	ributo + Spid	er			jun- 20	jul-20	aug- 20	sep- 20	oct- 20	nov- 20	dec- 20
Option	Item code	Item description	Markets	FAR	Supplier		[Daily pro	duction	capacit	y	
LEDS	73520444	VOLANTE CPL F142MFL CARB+LED	ALL	90%	ALPHA SPA	66,2	66,2	70,5	72,6	81,2	89,7	89,7
CEAL	914076	COPER.EST.CENT.PROLU NGA CARB.C	ALL	55%	BETA SPA	17,1	32,1	42,7	42,7	51,3	51,3	51,3
CEAI —	904557	IMBOCCO S-DUCT CARB. COFANO AN	ALL	55%	BETA SPA	17,1	32,1	42,7	42,7	51,3	51,3	51,3
	890505	FLICK AERO INF. LAT. SX CARBON	ALL	55%	GAMMA SPA (tier 2)	54,7	54,7	54,7	54,7	54,7	54,7	54,7
CEXG	890502	FLICK AERO INF. LAT. DX CARBON	ALL	55%	GAMMA SPA (tier 2)	54,7	54,7	54,7	54,7	54,7	54,7	54,7
FCWS	890546	MOSTRINA CENTR.CARBONIO	ALL	55%	GAMMA SPA (tier 2)	54,7	54,7	54,7	54,7	54,7	54,7	54,7
65.V5	881792	PRESA ARIA FRENI DX CPL CARB.	ALL	55%	KAPPA SRL	42,7	47,0	47,0	47,0	47,0	47,0	47,0
CEXF	881787	PRESA ARIA FRENI SX CPL CARB.	ALL	55%	KAPPA SRL	42,7	47,0	47,0	47,0	47,0	47,0	47,0
CEIS	891184	ALA LATERALE CARBONIO DX CPL	ALL	55%	EPSILON SRL	42,7	46,2	51,3	76,9	76,9	76,9	76,9
CEIS	891163	ALA LATERALE CARBONIO SX CPL	ALL	55%	EPSILON SRL	42,7	48,7	51,3	76,9	76,9	76,9	76,9

051/0	73527944	RIVESTIM. SOTTOPORTA DX CPL CA	ALL	55%	KAPPA SRL	49,1	49,1	49,1	49,1	49,1	49,1	49,1
CEXS	73528044	RIVESTIM. SOTTOPORTA SX CPL CA	ALL	55%	KAPPA SRL	49,1	49,1	49,1	49,1	49,1	49,1	49,1
	906929	SCIVOLO ESTRATTORE CPL BASE CA	ALL	55%	KAPPA SRL	21,4	25,6	25,6	34,2	38,5	42,7	49,1
CEVE	899283	PORTELLA CENTRALE IN CARBONIO	ALL	55%	KAPPA SRL	21,4	25,6	25,6	34,2	38,5	42,7	49,1
CEXD	786906	PORTELLA LATERALE DX CARBONIO	ALL	55%	EPSILON SRL	34,2	34,2	34,2	64,1	64,1	64,1	64,1
	786905	PORTELLA LATERALE SX CARBONIO	ALL	55%	EPSILON SRL	34,2	34,2	34,2	64,1	64,1	64,1	64,1
	863731	NQS ECE OPT NERO CARB	NO USA	55%	ZETA SPA	76,9	76,9	76,9	76,9	76,9	76,9	76,9
	863752	NQS USA OPT NERO CARB	SOLO USA	22%	ZETA SPA	76,9	76,9	76,9	76,9	76,9	76,9	76,9
CIDL	327251	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%	ALPHA SPA (tier 2)	170,9	170,9	170,9	170,9	170,9	170,9	170,9
	892382	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%	ALPHA SPA (tier 2)	170,9	170,9	170,9	170,9	170,9	170,9	170,9
CILR	881252	BRIDGE COMANDI F1 CARBONIO CPL	NO USA, USL, CAN	28%	TETA SPA	61,5	61,5	61,5	61,5	61,5	61,5	61,5
	896471	BRIDGE COMANDI F1 CARB LUCI US	USA, USL, CAN	18%	TETA SPA	61,5	61,5	61,5	61,5	61,5	61,5	61,5
	912466	MANIG TIRAPO CARBON LUCIDO SX	ALL	46%	KAPPA SRL	34,2	40,6	40,6	42,7	42,7	42,7	42,7
CIDH	918560	MANIG TIRAP CARBON LUCIDO DX C	ALL	46%	KAPPA SRL	34,2	40,6	40,6	42,7	42,7	42,7	42,7
СГРА	881217	GRUPPO COM.CAMBIO F1 RACING KE	ALL	44%	ALPHA SPA (tier 2)	170,9	170,9	170,9	170,9	170,9	170,9	170,9

	890896	GRUPPO COM.CAMBIO F1 RACING CA	ALL	44%	ALPHA SPA (tier 2)							
	922005	SATELLITE DX PASS. CARB. CPL	NO AUS, UK	33%	TETA SPA	38,5	38,5	38,5	38,5	38,5	38,5	38,5
DATR	891898	SATELLITE SX GUIDATORE CARB CP	ALL	44%	TETA SPA	46,2	46,2	46,2	46,2	46,2	46,2	46,2
	892196	SATELLITE DX GUID CARB CPL	ALL	44%	TETA SPA	46,2	46,2	46,2	46,2	46,2	46,2	46,2
DATR GDX	899428	SATELLITE SX PASSEG CAR LUC GD	UK, AUS	11%	TETA SPA	15,4	15,4	15,4	15,4	15,4	15,4	15,4
	892176	VELA SUP SX CARB OP CPL	NO AUS, UK	33%	TETA SPA	38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892178	FUSIONE SUP SX GUID CARB OP CP	NO AUS, UK	33%	TETA SPA	38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892181	SATELLITE SX GUIDATORE CARB OP	ALL	44%	TETA SPA	46,2	46,2	46,2	46,2	46,2	46,2	46,2
CIIP	892599	VELA SUP DX CARB OP CPL	NO AUS, UK	33%	TETA SPA	38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892596	FUSIONE SUP DX GUID CARB OP CP	NO AUS, UK	33%	TETA SPA	38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892598	SATELLITE DX GUID CARB OP CPL	ALL	44%	TETA SPA	46,2	46,2	46,2	46,2	46,2	46,2	46,2
	892618	FUSIONE SUP DX GUID CARB OP RU	EU (RUS)		TETA SPA	38,5	38,5	38,5	38,5	38,5	38,5	38,5
CIIP	899359	VELA SUPER SX CARB OPACO GDX C	UK, AUS	11%	TETA SPA	15,4	15,4	15,4	15,4	15,4	15,4	15,4
GDX	899305	VELA SUPERIORE DX CARB OPACO G	UK, AUS	11%	TETA SPA	15,4	15,4	15,4	15,4	15,4	15,4	15,4
	936682	FUSIONE SUP DX GUID CARB GDX	UK, AUS	11%	TETA SPA	15,4	15,4	15,4	15,4	15,4	15,4	15,4

CIIP GDX	899358	FUSIONE FINIZ SUP SX CARB OPA	UK, AUS	11%	TETA SPA	15,4	15,4	15,4	15,4	15,4	15,4	15,4
CITZ	891932	CORNICE MOBILE CARBONIO LUCIDO	ALL	44%	TETA SPA	50,0	50,0	50,0	50,0	50,0	50,0	50,0
CIPZ	908592	COMP PAN+TASC PORTA SX CAR LUC	NO AUS, UK	33%	KAPPA SRL	25,6	25,6	29,9	34,2	38,5	38,5	38,5
CIPZ	908597	COMP PAN+TASC PORTA DX CAR LUC	NO AUS, UK	33%	KAPPA SRL	25,6	25,6	29,9	34,2	38,5	38,5	38,5
CIPZ	909716	COMP PAN+TASCA PORTA CARB LUC	UK, AUS	11%	KAPPA SRL	25,6	25,6	29,9	34,2	38,5	38,5	38,5
GDX	909714	COMP PAN+TAS PORT CARB LUC DX	UK, AUS	11%	KAPPA SRL	25,6	25,6	29,9	34,2	38,5	38,5	38,5
	86538300	BATTICALCAGNO EST.DX CARBONIO	ALL	44%	TETA SPA	76,9	76,9	76,9	76,9	76,9	76,9	76,9
СІЅК	86538200	BATTICALCAGNO EST.SX CARBONIO	ALL	44%	TETA SPA	76,9	76,9	76,9	76,9	76,9	76,9	76,9
CISK	915177	BATTICALCAGNO EST.DX CARBONIO	ALL	44%	TETA SPA	76,9	76,9	76,9	76,9	76,9	76,9	76,9
	915176	BATTICALCAGNO EST.SX CARBONIO	ALL	44%	TETA SPA	76,9	76,9	76,9	76,9	76,9	76,9	76,9
MNFC	902970	Polmone aspirazione DX CPL	ALL	33%	KAPPA SRL	21,4	25,6	25,6	29,9	29,9	29,9	29,9
WINFC	902971	Polmone aspirazione SX CPL	ALL	33%	KAPPA SRL	21,4	25,6	25,6	29,9	29,9	29,9	29,9
CEL2	86935100	PARATIA EST.CENT.VANO MOT.CPL	ALL	33%	TETA SPA	65,4	65,4	65,4	65,4	65,4	65,4	65,4

	881765	COPERTURA ESTETICA DX CPL CARB	ALL	33%	ΤΕΤΑ SPA	32,5	32,5	32,5	32,5	32,5	32,5	32,5
	881763	COPERTURA ESTETICA SX CPL CARB	ALL	33%	TETA SPA	32,5	32,5	32,5	32,5	32,5	32,5	32,5
CIZB	881773	MOSTRINA SOTTOPARABREZZA DX CP	NO AUS, UK	25%	TETA SPA	26,9	26,9	26,9	26,9	26,9	26,9	26,9
	881771	MOSTRINA SOTTOPARABREZZA SX CP	NO AUS, UK	25%	TETA SPA	26,9	26,9	26,9	26,9	26,9	26,9	26,9
	881769	COPERTURA ESTETICA CENTRALE CP	ALL	33%	TETA SPA	32,5	32,5	32,5	32,5	32,5	32,5	32,5
CIZB GDX	895812	MOSTRINA SOTTOP DX CPL GDX CAR	UK, AUS	8%	TETA SPA	15,4	15,4	15,4	15,4	15,4	15,4	15,4
GDX	895839	MOSTRINA SOTTOP. SX CPL GDX CA	UK, AUS	8%	TETA SPA	15,4	15,4	15,4	15,4	15,4	15,4	15,4

Table 12: suppliers' production capacity specific for each item for F8 Tributo and F8 Spider.

In some cases, the production capacity is associated to a group of item codes, as it is for option CIDL and CFPA, in particular 327251 together with 892382 and 881217 coupled with 890896, respectively. These components present a unified production capacity because they are similar parts, produced with a similar process, exactly in the same lamination tools. They differ just for the coating phase: the result may be a carbon look component or an opaque black one.

Figure 17: example of a carbon look component, specifically the internal central tunnel of the Ferrari 488 GTB

		F8 Tributo				jun- 20	jul- 20	aug- 20	sep- 20	oct- 20	nov- 20	dec- 20
Option	ltem code	Item description	Markets	FAR	Supplier		C	Daily pro	oductior	n capaci	ty	
CERB	890807	PARETE INF.COND.SPOILER POST.C	ALL	55%	EPSILON SRL	34,2	34,2	34,2	34,2	34,2	34,2	34,2
	826052	PARATIA EST.SOTTOL.VANO MOT.CA	ALL	33%	TETA SPA	46,2	46,2	46,2	46,2	46,2	46,2	46,2
	813260	PAR EST SX CPL VA MOT CAR ASTA	ALL	33%	ΤΕΤΑ SPA	17,1	17,1	17,1	17,1	17,1	17,1	17,1
CEL2	880045	PARATIA EST.DX MOTORE CARB.AST	ALL	33%	TETA SPA	17,1	17,1	17,1	17,1	17,1	17,1	17,1
	911776	PARATIA EST.DX CARB.MOT.STABIL	ALL	33%	TETA SPA	17,1	17,1	17,1	17,1	17,1	17,1	17,1
	782017	PARATIA ESTET.SX VANO MOTORE C	ALL	33%	TETA SPA	17,1	17,1	17,1	17,1	17,1	17,1	17,1
BONF	855145	COFANO POSTERIORE IN CARBONIO	ALL	15%	TETA SPA	7,7	7,7	7,7	7,7	7,7	7,7	7,7

Table 13: suppliers' production capacity specific for each item for F8 Tributo.

		F8 Spider				jun- 20	jul- 20	aug- 20	sep- 20	oct- 20	nov- 20	dec- 20
Option	ltem code	Item description	Markets	FAR	Supplier		D	aily pro	ductior	ı capaci	ty	
	73730844	CONDOTTO SPOILER POST.CPL CARB	ALL	55%	BETA SPA (tier 2)	4,3	6,8	8,5	19,2	25,6	25,6	25,6
CERB	958397	GRIGL.USC.ARIA COF.MOT.DX CPL	ALL	55%	BETA SPA	4,3	6,8	8,5	19,2	25,6	25,6	25,6
	958423	GRIGL.USC.ARIA COF.MOT.SX CPL	ALL	55%	BETA SPA	4,3	6,8	8,5	19,2	25,6	25,6	25,6
CEL2	938571	PARATIA EST.DX CPL VANO MOT.CA	ALL	33%	ΤΕΤΑ SPA	21,4	21,4	21,4	21,4	21,4	21,4	21,4
CELZ	938572	PARATIA EST.SX CPL VANO MOT.CA	ALL	33%	ΤΕΤΑ SPA	21,4	21,4	21,4	21,4	21,4	21,4	21,4

Table 14: suppliers' production capacity specific for each item for F8 Spider.

For each part, the related supplier is associated. The information in brackets "tier 2" is explicated when such supplier does not delivery the component to Ferrari but it produces particular parts in carbon fiber that are supplied to a tier 1 producer. Then, the latter assembles carbon fiber and other materials together in order to deliver to Ferrari the sub-assembled product that can be assembled in the production line.

As can be easily seen, some options are associated to items that are produced by different suppliers, hence, with slightly different production capacity. For this reason, it is not possible to perform the analysis on an option basis rather on a specific item basis.

The above tables show two different type of situations:

- some suppliers, such as TETA S.p.A., have completed the equipment phase, as the maximum production capacity is stable over time;
- other suppliers, such as BETA SPA, present an increasing production capacity, meaning that they are currently in the equipment and tooling phase.

The latter situation may require more attention because both Ferrari car production rate and supplier production capacity are increasing. Therefore, it is necessary to check and monitor that the supplier's ramp-up curve is constantly higher than the F8 Tributo one.

Now that all the necessary data have been collected from suppliers, the core activity of the analysis can be performed: **comparing internal production needs with suppliers' production capacity and verify if criticalities emerge.**

5.2.3 Evaluation and interpretation

In the following paragraph the production needs, computed by taking into account Forecasted Absorption Rate of the associated options and market destinations, are compared to the maximum production capacity declared by suppliers, both related to each specific item.

The values shown are average values per day related to the correspondent month.

All the options (linked to the relative items) are grouped according to their Forecasted Absorption Rate (FAR). For each group of options with the same FAR, the specific production need month by month is computed and inserted in the grey boxes.

Below each grey line the item codes are listed with the corresponding production capacity values declared by suppliers. The production capacity values are shown in green or red:

- green if the production capacity for that month is higher than the relative production need (shown above in the grey box in the corresponding column);
- red if the production capacity for that month is lower than the relative production need (shown above in the grey box in the corresponding column).

	F8 Tribu	to + F8 Spider		Daily production rat	e ->	70,5	74,8	66,7	72,2	80,8	100	96,2	
					Rate	jun-	jul-	aug-	sep-	oct-	nov-	dec-	
	Item				ls. Ra	20	20	20	20	20	20	20	
OPT	code	Markets	FAR	Supplier	Specific abs. ←	Daily production capacity							
				Abs./day (ALL MKT)	90%	63,7	67,5	59,8	65,0	72,6	90,2	86,8	
LEDS	73520444	ALL	90%	ALPHA SPA		66,2	66,2	70,5	72,6	81,2	89,7	89,7	
				Abs./day (ALL MKT)	55%	38,9	41,0	36,8	39,7	44,4	55,1	53,0	
CEAI	914076	ALL	55%	BETA SPA		17,1	32,1	42,7	42,7	51,3	51,3	51,3	
CEAI	904557	ALL	55%	BETA SPA		17,1	32,1	42,7	42,7	51,3	51,3	51,3	
CEVC.	890505	ALL	55%	GAMMA SPA (tier 2)		54,7	54,7	54,7	54,7	54,7	54,7	54,7	
CEXG	890502	ALL	55%	GAMMA SPA (tier 2)		54,7	54,7	54,7	54,7	54,7	54,7	54,7	
FCWS	890546	ALL	55%	GAMMA SPA (tier 2)		54,7	54,7	54,7	54,7	54,7	54,7	54,7	
CEVE	881792	ALL	55%	KAPPA SRL		42,7	47,0	47,0	47,0	47,0	47,0	47,0	
CEXF	881787	ALL	55%	KAPPA SRL		42,7	47,0	47,0	47,0	47,0	47,0	47,0	
CEIS	891184	ALL	55%	EPSILON SRL		42,7	45,9	51,3	76,9	76,9	76,9	76,9	
CEIS	891163	ALL	55%	EPSILON SRL		42,7	48,5	51,3	76,9	76,9	76,9	76,9	
CEXS	73527944	ALL	55%	KAPPA SRL		49,1	49,1	49,1	49,1	49,1	49,1	49,1	
CENS	73528044	ALL	55%	KAPPA SRL		49,1	49,1	49,1	49,1	49,1	49,1	49,1	
	906929	ALL	55%	KAPPA SRL		21,4	25,6	25,6	34,2	38,5	42,7	49,1	
CEXD	899283	ALL	55%	KAPPA SRL		21,4	25,6	25,6	34,2	38,5	42,7	49,1	
CEXD	786906	ALL	55%	EPSILON SRL		34,2	34,2	34,2	64,1	64,1	64,1	64,1	
	786905	ALL	55%	EPSILON SRL		34,2	34,2	34,2	64,1	64,1	64,1	64,1	
				Abs./day (CIDL)	31%	21,8	23,1	20,5	22,2	24,8	30,8	29,5	
	863731	NO USA	55%	ZETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9	
CIDL	863752	SOLO USA	22%	ZETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9	
CIDE	327251	ALL	55%	ALPHA SPA (tier 2)		170.0	170,9	170.0	170,9	170.0	170.0	170.0	
	892382	ALL	55%	ALPHA SPA (tier 2)		170,9	170,9	170,9	170,9	170,9	170,9	170,9	
				Abs./day (ALL MKT)	46%	32,5	34,6	30,8	33,3	37,2	46,2	44,4	
			Abs./day (NO USA,USL, CAN)	28%	19,7	20,5	18,4	20,1	22,2	27,8	26,5		
				Abs./day (USA,USL,CAN)	18%	12,8	13,7	12,4	13,2	15,0	18,4	17,5	
CILR	881252	NO USA, USL, CAN	28%	ΤΕΤΑ SPA		61,5	61,5	61,5	61,5	61,5	61,5	61,5	
	896471	USA, USL, CAN	18%	ΤΕΤΑ SPA		61,5	61,5	61,5	61,5	61,5	61,5	61,5	
CIDH	912466	ALL	46%	KAPPA SRL		34,2	40,6	40,6	42,7	42,7	42,7	42,7	
	918560	ALL	46%	KAPPA SRL		34,2	40,6	40,6	42,7	42,7	42,7	42,7	

				Abs./day (CFPA)	24%	17,1	17,9	16,2	17,5	19,7	24,4	23,1
						,						
				Abs./day (ALL MKT)	44%	31,2	32,9	29,5	31,6	35,5	44,0	42,3
				Abs./day (GDX MKT)	11%	7,7	8,1	7,3	8,1	9,0	11,1	10,7
			Abs./day (NO AUS, UK)	33%	23,1	24,8	21,8	23,9	26,5	32,9	31,6	
CFPA	881217	ALL	44%	ALPHA SPA (tier 2)		170,9	170.0	170.0	170.0	170.0	170,9	170.0
СГРА	890896	ALL	44%	ALPHA SPA (tier 2)		170,9	170,9	170,9	170,9	170,9	170,9	170,9
	922005	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
DATR	891898	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
	892196	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
DATR GDX	899428	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
	892176	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892178	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892181	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
CIIP	892599	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892596	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
	892598	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
	892618	EU (RUS)		TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
	899359	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
CIIP	899305	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
GDX	936682	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
	899358	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
CITZ	891932	ALL	44%	TETA SPA		50,0	50,0	50,0	50,0	50,0	50,0	50,0
CIPZ	908592	NO AUS, UK	33%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
CIPZ	908597	NO AUS, UK	33%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
CIPZ	909716	UK, AUS	11%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
GDX	909714	UK, AUS	11%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
	86538300	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
сіѕк	86538200	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
CISK	915177	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
	915176	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9

				Abs./day (ALL MKT)	33%	23,1	24,8	21,8	23,9	26,5	32,9	31,6
				Abs./day (GDX MKT)	8%	6,0	6,0	5,6	6,0	6,8	8,1	8,1
				Abs./day (NO AUS, UK)	25%	17,5	18,4	16,7	17,9	20,1	24,8	23,9
MNFC	902970	ALL	33%	KAPPA SRL		21,4	25,6	25,6	29,9	29,9	29,9	29,9
WINFC	902971	ALL	33%	KAPPA SRL		21,4	25,6	25,6	29,9	29,9	29,9	29,9
CEL2	86935100	ALL	33%	TETA SPA		65,4	65,4	65,4	65,4	65,4	65,4	65,4
	881765	ALL	33%	TETA SPA		32,5	32,5	32,5	32,5	32,5	32,5	32,5
	881763	ALL	33%	TETA SPA		32,5	32,5	32,5	32,5	32,5	32,5	32,5
CIZB	881773	NO AUS, UK	25%	TETA SPA		26,9	26,9	26,9	26,9	26,9	26,9	26,9
	881771	NO AUS, UK	25%	TETA SPA		26,9	26,9	26,9	26,9	26,9	26,9	26,9
	881769	ALL	33%	TETA SPA		32,5	32,5	32,5	32,5	32,5	32,5	32,5
CIZB	895812	UK, AUS	8%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
GDX	895839	UK, AUS	8%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4

Analysis of critical supply of carbon fiber components

Table 15: comparison between suppliers' production capacity and Ferrari production needs for F8 Tributo and F8 Spider.

	F8 Tributo)		Daily production rat	:e ->	59,8	63,2	54,7	45,7	52,6	53,8	49,1	
					rate	jun-20	jul-20	aug-20	sep-20	oct-20	nov-20	dec-20	
ОРТ	Item code	Markets	FAR	Supplier	Specific abs. rate \leftarrow		Daily production capacity						
				Abs./day (ALL MKT)	55%	32,9	34,6	29,9	25,2	29,1	29,5	26,9	
CERB	890807	ALL	55%	EPSILON SRL		34,2	34,2	34,2	34,2	34,2	34,2	34,2	
				Abs./day (ALL MKT)	33%	19,7	20,9	17,9	15,0	17,5	17,9	16,2	
	826052	ALL	33%	ΤΕΤΑ SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2	
	813260	ALL	33%	ΤΕΤΑ SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1	
CEL2	880045	ALL	33%	ΤΕΤΑ SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1	
	911776	ALL	33%	ΤΕΤΑ SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1	
	782017	ALL	33%	ΤΕΤΑ SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1	
				Abs./day (ALL MKT)	15%	9,0	9,4	8,1	6,8	7,7	8,1	7,3	
BONF	855145	ALL	15%	ΤΕΤΑ SPA		7,7	7,7	7,7	7,7	7,7	7,7	7,7	

Table 16: comparison between suppliers' production capacity and Ferrari production needs for F8 Tributo.

	F8 Spider			Daily production ra	te ->	8,5	11,5	12	26,9	28,2	46,2	47			
					rate	jun-20	jul-20	aug-20	sep-20	oct-20	nov-20	dec-20			
ОРТ	Item code	Markets	FAR	Supplier	Specific abs.	Daily production capacity									
				Abs./day (ALL MKT)	55%	6,0	6,4	6,4	15,0	15,4	25,2	26,1			
	73730844	ALL	55%	BETA SPA (tier 2)		4,3	6,8	8,5	19 ,2	25,6	25,6	25,6			
CERB	958397	ALL	55%	BETA SPA		4,3	6,8	8,5	19,2	25,6	25,6	25,6			
	958423	ALL	55%	BETA SPA		4,3	6,8	8,5	19,2	25,6	25,6	25,6			
			Abs./day (ALL MKT)	33%	3,4	3,8	3,8	9,0	9,4	15,4	15,4				
CEL2	938571	ALL	33%	TETA SPA		21,4	21,4	21,4	21,4	21,4	21,4	21,4			
CELZ	938572	ALL	33%	TETA SPA		21,4	21,4	21,4	21,4	21,4	21,4	21,4			

Table 17: comparison between suppliers' production capacity and Ferrari production needs for F8 Spider.

The above matrixes allow elaborating a quick interpretation of the general picture. However, some of the already mentioned data was omitted for layout reasons, such as options description, items description etc. The complete and extended matrixes can be found in the Appendix.

Some of the considered options are clearly noncritical from a production capacity perspective.

In other cases, options show a number of criticalities that cannot be neglected.

Starting from these data, it is possible to compute summary tables that give immediate information about most critical periods and suppliers.

F8 TRIBUTO + F8 SPIDER								
Period	% of potentially critical items							
June-2020	23%							
July-2020	23%							
August-2020	14%							
September-2020	3%							
October-2020	11%							
November-2020	34%							
December-20	21%							

Table 18: months criticalities basing on suppliers' insufficient production capacity.

F8 TRIBUTO + F8 TRIBUTO SPIDER								
Supplier	% of sufficient supply capacity							
KAPPA SRL	70%							
EPSILON SRL	81%							
ALPHA SPA	79%							
TETA SPA	89%							
BETA SPA	56%							
ALPHA SPA (tier 2)	100%							
GAMMA SPA (tier 2)	86%							
Total	84%							

Table 19: suppliers' evaluation based on their sufficient production capacity.

When the same firm is a tier 1 supplier for some components and a tier 2 supplier for others, the two cases have been distinguished, because when a supplier is tier 2 for Ferrari, the responsibility and Supply Chain Management fall on the corresponding tier 1 supplier.

The most critical month is November, as expected, because the production ramp-up for the F8 Tributo has its peak in that period.

In September, very low percentage of potentially critical items is observed. This can be the result of a still stable car production rate, with respect to previous months, in concordance with a tooling and equipment phase for suppliers that is consolidating in the same period.

Among suppliers, BETA SPA S.p.A. is the most critical in relative terms, but in absolute terms it is not, as it produces a very low number of components.

TETA S.p.A. shows good results with almost 90% of sufficient supply capacity. It is a very significant datum, because it produces many components destined to the F8 Tributo and F8 Spider.

There are a lot of collected data and results, hence, it could be complex to give a quick and intuitive interpretation. For this reason, a synthetic view of the above listed data is given below.

Option	FAR	RAR	ок / ко	KO starting from
	F8 1	RIBUTO +	F8 SPIDER	
LEDS	90%	95%	КО	July-20
CEAI	55%	13%	КО	June-20
CEXG	55%	20%	КО	November-20
FCWS	55%	25%	КО	November-20
CEXF	55%	11%	КО	November-20
CEIS	55%	61%	ОК	-
CEXS	55%	16%	КО	November-20
CEXD	55%	21%	КО	June-20
CIDL	55%	61%	ОК	-
CILR	46%	60%	ОК	-
CIDH	46%	24%	КО	November-20
CFPA	44%	13%	ОК	-
DATR	44%	41%	ОК	-
CIIP	44%	5%	ОК	-
CITZ	44%	12%	ОК	-
CIPZ	44%	3%	ОК	-
CISK	44%	17%	ОК	-
MNFC	33%	3%	КО	June-20
CEL2	33%	11%	ОК	-
CIZB	33%	1%	КО	November-20
		F8 TRIBL	JTO	
CERB	55%	9%	КО	July-20
CEL2	33%	15%	КО	June-20
BONF	15%	#N/D	КО	June-20
	· · · · · · ·	F8 SPID	ER	
CERB	55%	30%	КО	June-20
CEL2	33%	4%	ОК	-
	1 1			

Table 20: synthetic view of the criticalities linked to option involving carbon fiber component for F8 Tributo and F8 Spider.

In Table 20, each option object of the analysis is associated to the relative Forecasted and Real Absorption Rates. In addition, two more pieces of information are provided:

- OK: if all the items associated to the option OPT_i show supplier production capacity higher than production need for each time period, that OPT_i is considered as non-critical;

- KO: if at least one item associated to the option OPT_i shows at least in one time period an insufficient production capacity, it is considered as critical;
- in the case an OPT is considered critical, the first month in which such criticality is observed is provided.

However, this is a useful table in order to quickly determine critical and non-critical option, but gravity and duration of criticalities are not explicated.

In Tables 21 and 22, it is possible to observe each item in which months is critical and the gravity of such criticalities, thanks to the employment of a Key Performance Indicator (KPI), called "Delta". It is simply:

$$Delta = \frac{Supplier\ maximum\ capacity}{day} - \frac{Production\ need}{day}$$

Each Delta value is referred to a specific item in a determined period.

If it is negative the supplier production capacity in the relative period is insufficient and, depending on the absolute value of Delta, the criticality can be worrying or under control.

In the same tables, daily production rates of F8 Tributo and F8 Spider are reported in order to provide a better interpretation of the Delta values.

					jun-20	jul-20	aug-20	sep-20	oct-20	nov-20	dec-20		
	Forecasted absorption rate				Avg dail	y prod. ra	ate per m	onth F8 1	ributo +	F8 Tribut	o Spider		
	otion		der		70,5	74,8	66,7	72,2	80,8	100,0	96,2		
Option	sorp	Item code	Supplier 70,5 74,8 66,7 72,2 80,8 100,0 96,2 Supplier Supplier Avg daily production rate per month F8 Tributo 59,8 63,2 54,7 45,7 52,6 53,8 49,1 Avg daily production rate per month F8 Tributo Spider Avg daily production rate per month F8 Tributo Spider 59,8 63,2 54,7 45,7 52,6 53,8 49,1										
Opt	d ab	item coue	/þd/	Supplier	59 <i>,</i> 8	63,2	54,7	45,7	52,6	53,8	49,1		
	aste		Col		Avg	Avg daily production rate per month F8 Tribu							
	orec				10,7	11,5	12,0	26,9	28,2	46,2	47,0		
	ш				Delta [(Supplier max cap./day) - (Prod. need/day)]								
	CRITICAL DELTAS												
		906929	C + S	KAPPA SRL	-17,5	-15,4	-11,1	-5,6	-6,0	-12,4	-3,8		
		899283	C + S	KAPPA SRL	-17,5	-15,4	-11,1	-5,6	-6,0	-12,4	-3,8		
CEXD	55%	786906	C + S	EPSILON SRL	-4,7	-6,8	-2,6	24,4	19,7	9,0	11,1		
		786905	C + S	EPSILON SRL	-4,7	-6,8	-2,6	24,4	19,7	9,0	11,1		
CEXF	55%	881792	C + S	KAPPA SRL	3,8	6,0	10,3	7,3	2,6	-8,1	-6,0		
CEXF	55%	881787	C + S	KAPPA SRL	3,8	6,0	10,3	7,3	2,6	-8,1	-6,0		
CEXS	55%	73527944	C + S	KAPPA SRL	10,3	8,1	12,4	9,4	4,7	-6,0	-3,8		
CEXS	55%	73528044	C + S	KAPPA SRL	10,3	8,1	12,4	9,4	4,7	-6,0	-3,8		
CEAI	55%	914076	C + S	BETA SPA	-21,8	-9,0	6,0	3,0	6,8	-3,8	-1,7		
CEAI	55%	904557	C + S	BETA SPA	-21,8	-9,0	6,0	3,0	6,8	-3,8	-1,7		

CIDH	46%	912466	C + S	KAPPA SRL	1,7	6,0	9,8	9,4	5,6	-3,4	-1,7
СЮП	4078	918560	C + S	KAPPA SRL	1,7	6,0	9,8	9,4	5,6	-3,4	-1,7
MNFC	33%	902970	C + S	KAPPA SRL	-1,7	0,9	3,8	6,0	3,4	-3,0	-1,7
WINFC	55%	902971	C + S	KAPPA SRL	-1,7	0,9	3,8	6,0	3,4	-3,0	-1,7
		890807	С	EPSILON SRL	1,3	-0,4	4,3	9,0	5,1	4,7	7,3
CERB	55%	73730844	S	BETA SPA (tier 2)	-1,7	0,4	2,1	4,3	10,3	0,4	-0,4
		958397	S	BETA SPA	-1,7	0,4	2,1	4,3	10,3	0,4	-0,4
		958423	S	BETA SPA	-1,7	0,4	2,1	4,3	10,3	0,4	-0,4
LEDS	90%	73520444	C + S	ALPHA SPA	2,6	-1,3	10,7	7,7	8,5	-0,4	3,0
BONF	15%	855145	С	TETA SPA	-1,3	-1,7	-0,4	0,9	0,0	-0,4	0,4
		813260	С	TETA SPA	-2,6	-3,8	-0,9	2,1	-0,4	-0,9	0,9
CEL2	33%	880045	С	TETA SPA	-2,6	-3,8	-0,9	2,1	-0,4	-0,9	0,9
	33%	911776	С	TETA SPA	-2,6	-3,8	-0,9	2,1	-0,4	-0,9	0,9
		782017	С	TETA SPA	-2,6	-3,8	-0,9	2,1	-0,4	-0,9	0,9

Table 21: items with critical Delta values.

					jun-20	jul-20	aug-20	sep-20	oct-20	nov-20	dec-20			
	rate				Avg dai	ly prod. r	ate per n	nonth F8	Tributo +	F8 Tribut	o Spider			
	absorption		der		70,5	74,8	66,7	72,2	80,8	100,0	96,2			
Option	sorp	ltem code	Spic	Cumplian	Avg daily production rate per month F8 Tribut						0			
Opt	da b	item code	Coupé/ Spider	Supplier	59 <i>,</i> 8	63,2	54,7	45,7	52,6	53,8	49,1			
	caste		Col		Avg	daily pro	duction r	ate per n	nonth F8	Tributo Sp	oider			
	Forecasted				10,7	11,5	12,0	26,9	28,2	46,2	47,0			
	ш				Delta [(Supplier max cap./day) - (Prod. need/day)]									
				DELT	AS CLOSE	то о								
CEXG	55%	890505	C + S	GAMMA SPA (tier 2)	15,8	13,7	17,9	15,0	10,3	-0,4	1,7			
CENG	55%	890502	C + S	GAMMA SPA (tier 2)	15,8	13,7	17,9	15,0	10,3	-0,4	1,7			
		881765	C + S	ΤΕΤΑ SPA	9,4	7,7	10,7	8,5	6,0	-0,4	0,9			
CIZB	33%	881763	C + S	ΤΕΤΑ SPA	9,4	7,7	10,7	8,5	6,0	-0,4	0,9			
		881769	C + S	ΤΕΤΑ SPA	9,4	7,7	10,7	8,5	6,0	-0,4	0,9			
FCWS	55%	890546	C + S	GAMMA SPA (tier 2)	15,8	13,7	17,9	15,0	10,3	-0,4	1,7			

Table 22: items with Delta values close to 0.

In Table 21 are listed all those options that show a critical difference between supplier maximum capacity per day and production need per day, in particular if Delta values lower than -0,5 are observed.

What does "-0,5" mean exactly? In an extreme situation, in which stock for a particular component is equal to 0 and the Forecasted Absorption Rate for the relative option corresponds to the one

observed, then in one car every two days it will not be possible to assemble that particular component.

This value has been chosen as threshold to determine critical situations and non-critical situations that need to be monitored.

Indeed, in Table 22, the general situation is under control, not only because the Delta is close to 0, but also because it is observed only in November, when production peak is reached, and because all the previous months are characterized by positive values, sensitively higher than 0. The best solution for such situation is to increase orders to suppliers in September and October, demanding more parts than what is actually needed by production, in order to increase stock with sufficient advance, according to supplier capacity, and to be prepared in November, when supplier may not satisfy all the Ferrari orders.

On the opposite, in Table 21, the situation is less homogeneous and non-negligible criticalities are spotted.

5.2.3.1 Critical option and periods

In Graph 5, the delta values listed in Table 21 are depicted month by month and grouped by option. CEXD, in particular regarding items produced by KAPPA SRL, is the most critical option, as it shows negative Delta values in all periods and with absolute values significantly high.

Similarly, also items produced by EPSILON SRL associated to option CEXD has negative values for the period from June to August, but then, differently from KAPPA SRL, they begin to show positive values.

The reason behind such difference in the trend of Delta regarding the two suppliers resides in the speed and adequacy of tooling and equipment.

KAPPA SRL has implemented a tooling and equipment plan that is too slow and inappropriate if compared to Ferrari production needs, while EPSILON SRL, even if at the beginning shows insufficient capacity, boosts its equipment in order to meet as soon as possible the F8 Tributo and F8 Spider production ramp-ups.

Graph 5: critical Delta values month by month grouped by option.

The following options present positive Delta values (or very close to 0) for the first months and then negative values approaching the end of 2020: CEXF, CEXS, CIDH, MNFC. In those cases, there is enough time for preventive actions (increase stock in advance) or corrective ones (improve supplier equipment).

Among other options, CEAI requires special attention: in June and July, the Delta values are worryingly low, meaning that supplier has not already equipped its production line to satisfy Ferrari production needs according to the Forecasted Absorption Rate.

Fortunately, in this case the Real Absorption Rate comes to help because the time horizon in object is very close.

As can be seen in Table 4, the option CEAI is associated to a Real Absorption Rate of 13%, hence in the near future this OPT should not be critical.

It is important to remember that the Real Absorption Rates have been determined by observing the orders collected in the system that includes the different options of interest. Usually the time horizon covered by these orders that can be read in the ERP system is about one month or one month and a half.

Graph 6: critical Delta values grouped by month.

In Graph 6, the various Delta values are grouped by month in order to spot the most critical periods. Leaving aside CEXD (KAPPA SRL), which was mentioned previously and which will be discussed more deeply in the next paragraph, the following breakdown can be done:

- June and July: the overall situation is not very good, mainly because suppliers' equipment and tooling phase is still in an intermediate phase;
- August, September, October: optimal situation in which most of the options shows positive Delta values, due to suppliers' advanced equipment phase which leads to a production capacity that overcomes Ferrari demand;
- November and December: although the equipment phase for most of the suppliers has reached a good level, in these two months the daily production rate of F8 Tributo and F8 Spider increases substantially, hence some of the Delta values approach slightly negative values.

5.2.3.2 Suggested preventive and corrective actions

Regarding option listed in Table 21, where a more complex situation is shown, a different approach needs to be implemented and option specific actions may be undertaken.

Option	Spotted criticalities	Suggested actions
CEXD (KAPPA	Delta values are negative during	The real absorption rate is 21% (Table 4),
SRL)	the whole observation period,	sensitively lower than the forecasted 55%.
	hence, in 2020, production	However, it is expected that the former will
	capacity is constantly	increase in order to meet forecasted values
	insufficient.	in the long term, hence, it is advisable to
		improve supplier equipment in order to
		raise production capacity.
CEXD (EPSILON	In June and July, a non-negligible	Although negative values characterize the
SRL)	insufficiency in production	period from June to August, the real
	capacity is observed, while, in	absorption rate of 21% reduces the urgency
	August, the criticality starts to	for a corrective action in immediate future.
	flatten. From September	After that period, when the Real Absorption
	onwards, only positive values	Rate may increase, the production capacity
	are shown.	of EPSILON SRL will increase accordingly,
		hence no actions need to be taken, just
		place orders according to the maximum
		current production capacity.
CEXF	Delta values for these three	In this situation, it is not necessary to invest
CEXS	options behave similarly	more money to improve suppliers'
CIDH	overtime. From June to October	equipment. Because of the long period of
	only positive values are	positive Delta values, the best strategy to
	recorded. In November and	implement in order to avoid the possibility
	December, they become	of missing items in the production line is to
	negative, because of the	increase stock for the relative components
	increase in car production rate.	in order to be "covered" during the months
		in which suppliers' production capacity may
		be insufficient.

CEAI	In June the production capacity	The Real Absorption Rate is 13%, meaning
	is strongly insufficient (-21,8),	that in the month of June and July big
	then the criticality is reduced in	problems should not emerge. Then, in
	July (-9) and finally from August	August, September and October, it is
	to October Delta values become	advisable to increase stock for all the
	positive. However, in November	involved items in order to be prepared to
	and December negative values	the possibility of insufficient production
	are again observed.	capacity in November and December, as it
		was already explained for option CEXF,
		CEXS and CIDH.
MNFC	In June, the supplier's	This option is not particularly critical. The
	production capacity is slightly	current Real Absorption Rate is about 3%,
	insufficient. Then, from July to	hence no problems will arise in the
	October, positive Delta values	immediate future. In order to face the
	are recorder. Instead, in	possibility of supplier's insufficient
	November and December	production capacity, stock can be increase
	negative Delta values are again	during the months before November.
	observed.	
CERB (EPSILON	Only positive Delta values	No particular actions need to be
SRL)	characterize components	undertaken in this case.
	produced by EPSILON SRL	
	associated to the option CERB,	
	except for July, when a slightly	
	negative value is shown (-0,4).	
CERB (BETA SPA)	In June (-1,7) and in December (-	In June, problems should not arise because
	0,4) there are the only negative	the Real Absorption Rate is 30%, against the
	Delta values that characterize	forecasted 55%. In the following months,
	the items produced by BETA SPA	stock can be increased in order to be
	for the option CERB.	prepared to a possible insufficiency in
		capacity in the end of 2020.

LEDS	In July (-1,3) and November (-	The Real Absorption Rate is 95% against the				
		forecasted 90%. This means that the				
	0,4) slightly negative Delta					
	values are spotted.	insufficient production capacity in July may				
		represent an issue. The possible action to				
		undertake is to communicate to the				
		supplier to produce at full capacity in June				
		and July, in order to increase stock in June,				
		if possible, and to reduce the probability of				
		missing items in the production line in July.				
BONF	The only positive Delta values	It is not a critical option because it was				
	are observed in September and	closed until now, i.e. it was not available for				
	December. In the remaining	customers, due to technical and quality				
	months, slightly negative or zero	issues. Indeed, the Real Absorption Rate is				
	values are recorded.	not provided, because no order can include				
		BONF as option.				
CEL2	Several negative Delta values	Even if the current Real Absorption Rate is				
	are reported. Only in September	15% against the forecasted 33%, most of				
	and December, positive values	the considered periods show the possibility				
	are observed.	of insufficient production capacity. In order				
		to be more far-sighted, an improvement in				
		supplier's equipment could be the best				
		choice.				

Table 23: suggested actions for each option that shows critical Delta values.

At this point, all the criticalities have been spotted and the relative considerations have been made. Then, as it is shown in Table 23, the optimal actions to correct or prevent a criticality have been explained.

It is fundamental to remember that the whole work is an analysis of the critical supply of carbon fiber components, then, because of its analytical nature, it is in parallel with the other company and functional area processes.

Figure 18: role and positioning of the analysis with respect to the other activities of the Product Definition area.

Therefore, once the results of the analysis have been achieved, the interested material planners and logistics managers have been informed of the criticalities in order to discuss together whether to intervene or not and what actions to undertake.

5.3 Cross-check with other car models

Up to now, the analysis had its focus on suppliers' production capacity of carbon fiber components limited on F8 Tributo and F8 Spider models.

However, even if most of the components object of the analysis are specific for these models, there are some of them that are in common with others car models currently in production.

This introduces new issues: the production capacity declared by suppliers of components in common with other car models may refer only to the F8 Tributo and F8 Spider or may be intended as the total production capacity of their production line that needs to be split into the different Ferrari car models.

In the case the provided production capacity refers only to the F8 Tributo and F8 Spider, additional issues should not arise, because the supplier, basing on the production plan provided previously by Ferrari, has already split its overall production into the different car models involved.

If the supplier did not do this job autonomously, the data provided refer to the overall quantity of material that it is capable to deliver in a period. Starting from this point, it is necessary to sum the Ferrari production needs of the different car models currently in production and verify if the supplier's production capacity is sufficient.

5.3.1 F8 Tributo and 488 Pista

In the following paragraph it is going to be analysed the cross-model demand and supplier's production capacity regarding codes 786905 and 786906, with description "Portella laterale sx" and "Portella laterale dx", respectively. They are associated to the option CEXD, "Estrattore posteriore in fibra di carbonio", the rear diffuser in carbon fiber.

Figure 19: rear diffuser in carbon fiber of the Ferrari F8 Tributo.

The two above mentioned items are in common with the following models:

- F8 Tributo
- F8 Spider
- 488 Pista
- 488 Pista Spider

It is necessary to verify that the overall production need associated to those models with the relative absorption rates is satisfied by the supplier's production capacity over time.

It is not immediate nor trivial, because the two aggregated models (i.e. F8 Tributo + F8 Spider and 488 Pista + 488 Pista Spider) have different production ramp-up overtime, Forecasted Absorption Rates and Real Absorption Rate.

The variables to take into considerations, which may change month by month, are several, therefore a best case and worst case scenario analysis seems to be the best approach.

CAR MODEL	JUL	AUG	SEP	ОСТ	NOV	DEC
F8 TRIBUTO + F8 SPIDER	74,8	66,7	72,2	80,8	100,0	96,2
488 PISTA + 488 PISTA SPIDER	31,2	35,0	34,6	32,1	17,1	0,0

Table 24: production ramp-up of the F8 Tributo + F8 Spider and 488 Pista + 488 Pista Spider expressed in average number of cars per day produced.

Basing on the production rump up of the two (aggregated) models, a deeper study of the production needs in best and worst scenarios can be performed.

In both of them, the daily production need is computed considering for the 488 Pista and 488 Pista Spider the 99% of absorption rate, as this option is selected for almost all the orders, while for the F8 Tributo and F8 Spider two different values are used for the evaluation:

- 21% in the best case scenario, as it is the Real Absorption Rate and it's lower than the Forecasted Absorption Rate, meaning a reduced production need in comparison to the forecasting;
- 55% in the worst case, which coincides with the Forecasted Absorption Rate; in July and August it seems to be far from such value, but it's necessary to take it into consideration, as the Real Absorption Rate may suddenly get close to the theoretical one.

Car model	Absorption rate		JUL	AUG	SEP	ост	NOV	DEC	
BEST CASE									
F8 TRIBUTO + F8 SPIDER	21%	Daily production pood	15,7	14,0	15,2	17,0	21,0	20,2	
488 PISTA + 488 PISTA SPIDER	99%	Daily production need	30,8	34,6	34,2	31,6	17,1	0,0	
Total daily	46,6	48,7	49,6	48,7	38,0	20,1			
Production capacity supplier (B)				76,9	76,9	76,9	76,9	76,9	
Delta (B-A)				28,2	27,4	28,2	38,9	56,8	
WORST CASE									
F8 TRIBUTO + F8 SPIDER	55%	Daily production pood	41,0	36,8	39,7	44,4	55,1	53,0	
488 PISTA + 488 PISTA SPIDER	99%	Daily production need	30,8	34,6	34,2	31,6	17,1	0,0	
Total daily production need (A)				71,4	73,9	76,1	71,8	53,0	
Production capacity supplier (B)				76,9	76,9	76,9	76,9	76,9	
Delta (B-A)			4,7	5,6	3,0	0,9	5,1	23,9	

Table 25: best and worst case scenario analysis of the supply of part numbers 786905 and 786906 for both the F8 and 488 versions.

Then, the total daily production need (A) is computed by simply summing the daily production need of F8 Tributo, F8 Spider, 488 Pista and 488 Pista Spider and compared to the total production capacity declared by the supplier relative to the item codes 786905 and 786906.

Finally, the Delta (B-A) is computed in order to verify if the supplier's production capacity is sufficient in order to satisfy all the Ferrari orders for the different car models.

From the results of this short analysis, no particular issue should arise, as no negative Delta values are shown.

However, in September and October the Real Absorption Rate of the option CEXD should be monitored, because if for the F8 Tributo and F8 Spider the orders including CEXD raise substantially, exceeding the forecasted 55%, an insufficient production capacity may emerge.

Graph 7: representation of all the possible Delta values that may occur according to the best and worst case scenario analysis for the supply of part numbers 786905 and 786906 for the F8 Tributo, F8 Spider, 488 Pista and 488 Pista Spider.

In Graph 7, the different possible scenarios are depicted: the upper bound of the blue area is best case scenario through months, while the lower bound corresponds to the worst case scenario. Obviously, they are just the limit cases considered in the analysis, therefore all the intermediate situations are the possible scenarios that may occur.

From the results of this cross-analysis between F8 Tributo versions and 488 Pista versions, it is clear that no critical issues emerge.

The interval of possible Delta values is always positive. The most critical situation is observed in October 2020, when the worst case scenario approaches the 0 value. However, it is an extreme situation, hence no particular actions need to be taken.

5.4 Alignment between planned orders and production capacity

Communication and information flows between Ferrari and its suppliers are cyclical and constant, starting from the early development of a car model to the final weeks of production.

Generally, there is a high level of transparency in the information shared in order to ensure good coordination, efficiency and respect of the deliveries over time.

Although Ferrari provides crucial guidelines about forecasted production needs and necessary tools and equipment with several months in advance to the suppliers, it is fundamental to monitor and manage the behaviour of suppliers.

With this aim, another useful application of the analysis of the critical supply presented in this work can be performed: to verify if the planned orders by Ferrari towards suppliers are sustainable if compared with the maximum production capacity declared by them.

As this kind of analysis is based on the planned orders that are reported in the system, the time horizon cannot be too long.

ΟΡΤ	ITEM CODE	ITEM DESCRIPTION						
CEL2	911776	PARATIA EST.DX CARB.MOT.STABIL						
Week	Day	Ordered quantity	Average daily ordered quantity	Supplier's production capacity				
29	15/07/2020	8,5	12.0	17 1				
29	17/07/2020	55,6	12,8	17,1				
30	22/07/2020	21,4	13,7	17,1				
30	24/07/2020	47,0	15,7	1/,1				
31	29/07/2020	34,2	11,1	17 1				
31	31/07/2020	21,4	11,1	17,1				
35	26/08/2020	21,4	10,3	17,1				
35	28/08/2020	29,9	10,5	17,1				
36	02/09/2020	38,5	12,8	17,1				
36	04/09/2020	25,6	12,0	1/,1				
37	07/09/2020	4,3						
37	09/09/2020	21,4	10,3	17,1				
37	11/09/2020	25,6						
38	16/09/2020	34,2	6,8	17,1				

Table 26: comparison between planned orders and supplier's production capacity for the item 911776

In Table 26 an analysis of the alignment of the planned orders with the supplier's production capacity of the item 911776 associated to the option CEL2 (specific for F8 Tributo) is performed. Firstly, the planned orders inserted in the ERP system have been extracted. Many times, the reported day for the order may receive some variations, hence, the ordered quantity is considered as a daily average for the relative week.

For example, in week 29, there are two days in which orders will be sent. As we are not interested in the exact quantity delivered in a specific day, the total ordered quantity in week 29 is summed and divided by 5 working days, in order to compute a daily average.

In the case of the item 911776, no issues arise from the analysis, as the average daily ordered quantity relative to each week is always lower than the maximum production capacity, for the time horizon considered.

OPT	ITEM CODE	ITEM DESCRIPTION			ОРТ	ITEM CODE	ITEM DESCRIPTION		
CERB	958397	GRIGL.USC.ARIA COF.MOT.DX CPL			CERB	958423	GRIGL.USC.ARIA COF.MOT.SX CPL		
Week	Day	Ordered quantity	Average daily ordered quantity	Supplier's production capacity	Week	Day	Ordered Average quantity ordered quantity		Supplier's production capacity
29	17/07/2020	47,0	9,4	6,8	29	17/07/2020	47,0	9,4	6,8
30	24/07/2020	42,7	8,5	6,8	30	24/07/2020	42,7	8,5	6,8
31	31/07/2020	42,7	8,5	6,8	31	31/07/2020	42,7	8,5	6,8
35	28/08/2020	38,5	7,7	8,5	35	28/08/2020	38,5	7,7	8,5
36	04/09/2020	34,2	6,8	19,2	36	04/09/2020	34,2	6,8	19,2
37	11/09/2020	38,5	7,7	19,2	37	11/09/2020	38,5	7,7	19,2
38	18/09/2020	17,1	3,4	19,2	38	18/09/2020	17,1	3,4	19,2
39	25/09/2020	21,4	4,3	19,2	39	25/09/2020	21,4	4,3	19,2

Table 27: comparison between planned orders and supplier's production capacity for items 958397 and 958423

In Table 27, a different situation is shown. The two considered items have codes 958397 and 958423 and they are both associated to the option CERB (specific for F8 Spider).

The steps performed are the same as for the item 911776: after having extracted the planned orders from the ERP system, the average daily ordered quantity is computed and compared to the supplier's production capacity.

In weeks 29, 30 and 31 a critical issue emerges: the quantity ordered to the supplier exceeds its maximum production capacity. What does it mean exactly? The excessive ordered quantity may cause delay in the deliveries or lower delivered quantity that, in case of low in-stock quantities, could lead to issues on the production line.

On the other side, it could be possible that the supplier has previously cumulated materials in the warehouse and starts reducing the in-stock quantity by delivering some of the stocked items together with the just produced components.

In any case, a criticality is spotted, hence some verifications need to be done, both internally (with material planners) and externally (directly with suppliers).

6. Suppliers management during Covid-19 emergency

The outbreak of the Corona Virus (Covid-19) pandemic has caused strong and devastating consequences on the economy at a global level. Almost all the economic fields and businesses stalled for several weeks worldwide, in different moments and with various durations, depending on the countries and the measures adopted by governments.

In Italy and part of Europe, the lockdown started in the middle of March 2020 ending approximately after 2 months.

In those weeks everything stopped.

Incredible effort was required in order to reduce the possible economic losses and to ensure an efficient and smooth recovery.

From a Supply Chain Management perspective, the recovery phase is particularly critical because Ferrari is strictly dependent on its suppliers and sub-suppliers. In case the suppliers' re-opening and

recovery phase is not aligned with the Ferrari one, several issues may arise.

For this reason, knowing exactly the conditions and the plans of suppliers becomes fundamental, in order to have a clear big picture and to make semi qualitative evaluations of suppliers, spot critical issues and take the necessary measures.

The car model object of such analysis is the SF90

Figure 20: the Ferrari SF90 Stradale.

Stradale which was still partially under the Product Definition area during and after the lockdown period, therefore it was in a delicate phase and it required more attention.

6.1 The questionnaire

The first step consists in the distribution of a questionnaire to the suppliers, in this case not just suppliers of carbon fiber components, but also supplier of parts and sub-assemblies of other nature. More in general, companies that supply components that are not Carry Over, hence, those parts

that may represent a higher threat to the regular conduct of the development and production of the SF90 Stradale.

The questions touch various aspects about the suppliers' situation, from alignment with Ferrari production needs to the status of development of components and quality issues.

Below some examples of the asked questions:

- Did you define your production ramp-up curve based on Ferrari forecast?
- Are you in an Off Tool Off Process phase?
- Which is your current production capacity?
- Which is the current scrap rate on your products?
- Do you have any critical issues with your sub-suppliers that need to be mentioned?

After some weeks, the greatest part of the answers has been collected, hence the next step of interpretation and evaluation is performed.

6.2 Suppliers' readiness evaluation

Because most of the answers were semi-qualitative, discursive and with different formats, precleaning and rearrangement of answers was a necessary step.

After the "cleaning phase" a first categorization of the respondents can be done, based on the answers to the questionnaire:

- twenty-five suppliers are considered non-critical;
- thirty-four suppliers show some critical issues.

Among the critical suppliers, a further classification needs to be made. With this aim, a list of different types of critical issues is prepared, with the associated weights according to their severity and the identification type number.
Critical issues weights (1-3)	Types of critical issues	Type number
1	Scrap rate not given or non-available	Type 1
2	Lead time tier 2 / Sub-supplier issues	Type 2
1	OT-OP phase characteristics not clear	Type 3
3	No OT-OP phase	Type 4
1	It asks for SF90 Stradale ramp-up	Type 5
3	Quality issues	Type 6
1	It uses the online portal for orders	Type 7
1	Production capacity not clear	Type 8
2	Production not based on Ferrari forecast	Type 9
2	Tools under installation/modification	Type 10
3	Insufficient production capacity	Type 11
3	No necessary tools	Type 12
2	No skilled manpower	Type 13
3	Necessary checks after lockdown	Type 14
3	Partial answers	Type 15

Table 28: types of critical issues with the associated weights and identification type number.

After the selection of the different types of criticalities, it is possible to quickly determine how many and which of them are characterizing the various critical suppliers.

The matrix shown in Table 29 put together the thirty-four critical suppliers, named with pseudonyms, with the types of critical issues listed in Table 28.

If a supplier, through its answers, expressed the presence of one of the criticalities, a "1" is shown in the corresponding box.

Once the associations suppliers-criticalities are completed, two KPIs are computed:

- KPI 1 is the supplier's overall criticality with unit weights regarding the critical issues; in other words, for each supplier it is counted how many critical issues are associated, ignoring the corresponding weights;
- KPI 2 is the supplier's overall criticality with weighted critical issues, hence, for each supplier it is the weighted sum of all the criticalities associated to it.

						Туре	es of o	ritica	l issue	es wit	h wei	ghts						
		1	2	1	3	1	3	1	1	2	2	3	3	2	3	3		
		Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	KPI 1	KPI Z
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
	AG	1															1	1
	AA	1															1	1
	AH	1															1	1
	AAG	1	1					1									3	4
	AB	1					1										2	4
	AE		1														1	2
	AN		1														1	2
	AF		1														1	2
	AAE		1														1	2
	AI			1													1	1
	AS			1													1	1
	AZ					1											1	1
	AAC	1				1	1										3	5
	AAF	1				1			1								3	3
rs	AL				1												1	3
olie	AR				1	1											2	4
ldn	AK	1			1												2	4
al s	AU	1			1					1							3	6
Critical suppliers	AAA				1						1				1		3	8
S	AD				1		1										2	6
	AY		1		1												2	5
	AJ	1			1		1										3	7
	AT		1		1	1											3	6
	AAD							1				1	1				3	7
	AX	1					1					1	1				4	10
	AM	1	1		1		1	1				1					6	13
	AC		1									1					2	5
	Z							1									1	1
	AP														1		1	3
	AV														1		1	3
	AAB	1									1				1		3	6
	AO															1	1	3
	AQ															1	1	3
	AW															1	1	3

Table 29: matrix of critical suppliers associated to the different types of critical issues.

The KPIs values are useful to subdivide the critical suppliers in three categories, basing on the seriousness of the associated critical issues.

Critical issues seriousness of suppliers										
Seriousness Seriousness description N. of suppliers										
Low	Weighted overall criticality between 1 and 2	11								
Medium	Weighted overall criticality between 3 and 6	18								
High	Weighted overall criticality > 6	5								

Table 30: grouping of critical suppliers basing on their KPI 2 values.

The grouping performed in Table 30 depends only on KPI 2, in which critical issues weights are considered.

Therefore, why KPI 1 is computed?

In Graph 8, both KPI 1 and KPI 2 values are depicted for each supplier.

The two values (or bars, from a graphical point of view) put together give more information than just one of them without the other one.

The blue bar tells how many critical issues have been reported for a supplier, while the orange bar tells how much those critical issues are severe.

For instance, for suppliers AV and AP only one criticality has been found, but it is very serious.

It means that high priority is characterizing them, because if insufficient production capacity or important quality issues define their criticalities, actions need to be undertaken very soon.

On the contrary, supplier AAF counts three critical issues, but the severity of all of them is the minimum. It means that such criticalities may refer to some marginal pieces of information that needs to be cleared.

In other cases, such as suppliers AZ, AS, AI, only one critical issue is observed, with the lowest severity, hence the priority in solving this criticality is very low.

The approach and methodology explained so far shows the advantages of converting qualitative and semi-qualitative information into data, even more

Graph 8: comparison between KPI 1 and KPI 2 for each supplier.

when the information at disposition is a lot and, by leaving it as qualitative, the risk of bad evaluation and lacking big picture view is very high. Now it is possible to prioritize the different situations characterizing critical suppliers, in order to take measures to ensure a more efficient recovery after the lockdown caused by the Covid-19 pandemic in spring.

7. Conclusions

The system that has been designed for studying the critical supply of carbon fiber components for the F8 Tributo and F8 Spider can be applied for any car model. Indeed, as it was explained at the beginning of this work, during the internship the study was expanded to other car models, that are the Ferrari SF90 Stradale, the Ferrari SF90 Stradale Spider and the Ferrari Roma.

The importance of a dedicated approach for such critical parts, as the carbon fiber components, can be summarized in four aspects:

- forecast of criticalities;
- optimization of material flows towards production lines of different car models;
- evaluation of suppliers;
- production constraints.

The methodology exposed in the previous chapters allows forecasting with several months in advance the emergence of a criticality. It is crucial to spot problems with great advance because, in case it is necessary to improve supplier's equipment, the lead time until the new lamination tool is ready for production may be more than 12 weeks, considering the time required to:

- issue an order for the additional lamination tools,
- make the order internally approved by the different interested managers,
- let the supplier duplicate the lamination tools,
- get the lamination tools ready for production,
- let the supplier schedule new workforce and additional incoming raw materials.

The big picture view that such study provides, gives the opportunity to optimize the material flows that involve different car models. As it was explained in paragraph 5.3, suppliers may produce some items in order to be assembled in multiple Ferrari car models that are simultaneously produced in series. In case of lack of coordination between the multiple involved teams, the production need of one of the car models may cannibalize the other ones.

With the results of this short analysis, it is possible to reschedule the production of some units in order to keep the overall production need sustainable for suppliers, reducing the risk of insufficient production capacity or missing items in the production line.

An additional outcome of the analysis of the critical supply of carbon fiber components is an evaluation scheme for suppliers. In Table 19, all the involved suppliers have been evaluated basing on their ability to satisfy the Ferrari production needs through their production capacity overtime. By implementing the methodology to all car models, it is possible to assess if a given supplier results critical for many projects.

This information may be a great support for the top management in order to evaluate if switching from one supplier to another because of its malpractice.

The last contribution of the analysis regards production constraints.

Communication flow and coordination with the Production Planning area is bidirectional:

- in one direction, the Production Planning provides data about the production ramp-up of the car models and the daily production rate;
- in the opposite direction, the Supply Chain and Management dept. provides production constraints in terms of maximum number of cars in a period that can be assembled with certain components, depending on the limits of the suppliers' production capacity.

Thanks to production constraints associated to car options, the Production Planning area will schedule the cars entering the production line ensuring a harmonious distribution overtime, avoiding a huge concentration of orders with same attached options that would cause congestion to the material flow in inbound.

		F8 Tribu	Daily production	70,5	74,8	66,7	72,2	80,8	100	96,2					
al group	ion		Item		Décrivato	FAR	Cumulian	absorption ate	jun- 20	jul- 20	aug- 20	sep- 20	oct- 20	nov- 20	dec- 20
Functional group	Option	Option Description	code	Item description	Markets	FΑ	Supplier	Specific al ra		Da	ily pro	duction	capaci	ty	
							Abs./day (ALL MKT)	90%	63,7	67,5	59,8	65,0	72,6	90,2	86,8
INTERNAL	LEDS	VOLANTE IN CARBONIO CON LEDS	73520444	VOLANTE CPL F142MFL CARB+LED	ALL	90%	ALPHA SPA		66,2	66,2	70,5	72,6	81,2	89,7	89,7
							Abs./day (ALL MKT)	55%	38,9	41,0	36,8	39,7	44,4	55,1	53,0
EXTERNAL	CEAI	S-DUCT SU COFANO IN CARBONIO	914076	COPER.EST.CENT.PROLUNGA CARB.C	ALL	55%	BETA SPA		17,1	32,1	42,7	42,7	51,3	51,3	51,3
	CLAI		904557	IMBOCCO S-DUCT CARB. COFANO AN	ALL	55%	BETA SPA		17,1	32,1	42,7	42,7	51,3	51,3	51,3
EXTERNAL	CEXG	BAFFI SU PARAURTI ANTERIORE IN CARBONIO	890505	FLICK AERO INF. LAT. SX CARBON	ALL	55%	GAMMA SPA (tier 2)		54,7	54,7	54,7	54,7	54,7	54,7	54,7
	CEAG		890502	FLICK AERO INF. LAT. DX CARBON	ALL	55%	GAMMA SPA (tier 2)		54,7	54,7	54,7	54,7	54,7	54,7	54,7
EXTERNAL	FCWS	SPLITTER SU PARAURTI ANTERIORE IN CARBONIO	890546	MOSTRINA CENTR.CARBONIO	ALL	55%	GAMMA SPA (tier 2)		54,7	54,7	54,7	54,7	54,7	54,7	54,7
EXTERNAL	CEXF	MOSTRINA PROIETTORE IN FIBRA DI CARBONIO	881792	PRESA ARIA FRENI DX CPL CARB.	ALL	55%	KAPPA SRL		42,7	47,0	47,0	47,0	47,0	47,0	47,0
	C2/11		881787	PRESA ARIA FRENI SX CPL CARB.	ALL	55%	KAPPA SRL		42,7	47,0	47,0	47,0	47,0	47,0	47,0
EXTERNAL	CEIS	MOSTRINA PRESE ARIA LATERALI IN FIBRA DI	891184	ALA LATERALE CARBONIO DX CPL	ALL	55%	EPSILON SRL		42,7	45,9	51,3	76,9	76,9	76,9	76,9
		CARBONIO	891163	ALA LATERALE CARBONIO SX CPL	ALL	55%	EPSILON SRL		42,7	48,5	51,3	76,9	76,9	76,9	76,9
EXTERNAL	CEXS	COPRIBRANCARDO EXTERNAL IN FIBRA DI	73527944	RIVESTIM. SOTTOPORTA DX CPL CA	ALL	55%	KAPPA SRL		49,1	49,1	49,1	49,1	49,1	49,1	49,1
		CARBONIO	73528044	RIVESTIM. SOTTOPORTA SX CPL CA	ALL	55%	KAPPA SRL		49,1	49,1	49,1	49,1	49,1	49,1	49,1
			906929	SCIVOLO ESTRATTORE CPL BASE CA	ALL	55%	KAPPA SRL		21,4	25,6	25,6	34,2	38,5	42,7	49,1
EXTERNAL	CEXD	ESTRATTORE POSTERIORE IN FIBRA DI CARBONIO	899283	PORTELLA CENTRALE IN CARBONIO	ALL	55%	KAPPA SRL		21,4	25,6	25,6	34,2	38,5	42,7	49,1
			786906	PORTELLA LATERALE DX CARBONIO	ALL	55%	EPSILON SRL		34,2	34,2	34,2	64,1	64,1	64,1	64,1
			786905	PORTELLA LATERALE SX CARBONIO	ALL	55%	EPSILON SRL		34,2	34,2	34,2	64,1	64,1	64,1	64,1

							Abs./day (CIDL)	31%	21,8	23,1	20,5	22,2	24,8	30,8	29,5
			863731	NQS ECE OPT NERO CARB	NO USA	55%	ZETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
		ALLESTIMENTO ZONA GUIDA IN FIBRA DI	863752	NQS USA OPT NERO CARB	SOLO USA	22%	ZETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
INTERNAL	CIDL	CARBONIO + VOLANTE CON LEDS	327251	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%	ALPHA SPA (tier 2)		170.0	170,9	170.0	170.0	170.0	170.0	170.0
			892382	GRUPPO COMANDI F1 KEYLESS CA	ALL	55%	ALPHA SPA (tier 2)		170,9	170,9	170,9	170,9	170,9	170,9	170,9
							Abs./day (ALL MKT)	46%	32,5	34,6	30,8	33,3	37,2	46,2	44,4
							Abs./day (NO USA,USL, CAN)	28%	19,7	20,5	18,4	20,1	22,2	27,8	26,5
							Abs./day (USA,USL,CAN)	18%	12,8	13,7	12,4	13,2	15,0	18,4	17,5
INTERNAL	CILR	BRIDGE TUNNEL IN FIBRA DI CARBONIO	881252	BRIDGE COMANDI F1 CARBONIO CPL	NO USA, USL, CAN	28%	TETA SPA		61,5	61,5	61,5	61,5	61,5	61,5	61,5
	CILIT		896471	BRIDGE COMANDI F1 CARB LUCI US	USA, USL, CAN	18%	TETA SPA		61,5	61,5	61,5	61,5	61,5	61,5	61,5
INTERNAL	CIDH	MANIGLIE PORTA IN FIBRA DI CARBONIO	912466	MANIG TIRAPO CARBON LUCIDO SX	ALL	46%	KAPPA SRL		34,2	40,6	40,6	42,7	42,7	42,7	42,7
INTERNAL	СІЛН	MANIGLIE PORTA IN FIBRA DI CARBONIO	918560	MANIG TIRAP CARBON LUCIDO DX C	ALL	46%	KAPPA SRL		34,2	40,6	40,6	42,7	42,7	42,7	42,7
							Abs./day (CFPA)	24%	17,1	17,9	16,2	17,5	19,7	24,4	23,1
							Abs./day (ALL MKT)	44%	31,2	32,9	29,5	31,6	35,5	44,0	42,3
							Abs./day (GDX MKT)	11%	7,7	8,1	7,3	8,1	9,0	11,1	10,7
							Abs./day (NO AUS, UK)	33%	23,1	24,8	21,8	23,9	26,5	32,9	31,6
INTERNAL	CEDA		881217	GRUPPO COM.CAMBIO F1 RACING KE	ALL	44%	ALPHA SPA (tier 2)		170.0	170.0	170,9	170,9	170.0	170.0	170.0
INTERNAL	CFPA	PALETTE IN CARBONIO RACING	890896	GRUPPO COM.CAMBIO F1 RACING CA	ALL	44%	ALPHA SPA (tier 2)		170,9	170,9	170,9	170,9	170,9	170,9	170,9
			922005	SATELLITE DX PASS. CARB. CPL	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
INTERNAL	DATR	INSERTI PLANCIA IN FIBRA DI CARBONIO	891898	SATELLITE SX GUIDATORE CARB CP	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
			892196	SATELLITE DX GUID CARB CPL	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
	DATR GDX	INSERTI PLANCIA IN FIBRA DI CARBONIO	899428	SATELLITE SX PASSEG CAR LUC GD	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
			892176	VELA SUP SX CARB OP CPL	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
			892178	FUSIONE SUP SX GUID CARB OP CP	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
			892181	SATELLITE SX GUIDATORE CARB OP	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
INTERNAL	CIIP	VELE COPRISTRUMENTO IN CARBONIO	892599	VELA SUP DX CARB OP CPL	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
			892596	FUSIONE SUP DX GUID CARB OP CP	NO AUS, UK	33%	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5
			892598	SATELLITE DX GUID CARB OP CPL	ALL	44%	TETA SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
			892618	FUSIONE SUP DX GUID CARB OP RU	EU (RUS)	/	TETA SPA		38,5	38,5	38,5	38,5	38,5	38,5	38,5

Appendix

			899359	VELA SUPER SX CARB OPACO GDX C	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
	CIIP GDX	VELE COPRISTRUMENTO IN CARBONIO	899305	VELA SUPERIORE DX CARB OPACO G	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
		VELE COPRISTROMENTO IN CARBONIO	936682	FUSIONE SUP DX GUID CARB GDX	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
			899358	FUSIONE FINIZ SUP SX CARB OPA	UK, AUS	11%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
INTERNAL	CITZ	PARTE SUPERIORE TUNNEL IN FIBRA DI CARBONIO	891932	CORNICE MOBILE CARBONIO LUCIDO	ALL	44%	TETA SPA		50,0	50,0	50,0	50,0	50,0	50,0	50,0
	CIPZ	PANNELLI PORTA IN FIBRA DI CARBONIO	908592	COMP PAN+TASC PORTA SX CAR LUC	NO AUS, UK	33%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
INTERNAL	CIFZ	PANNELLI PONTA IN HORA DI CANDONIO	908597	COMP PAN+TASC PORTA DX CAR LUC	NO AUS, UK	33%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
INTERNAL	CIPZ GDX	PANNELLI PORTA IN FIBRA DI CARBONIO	909716	COMP PAN+TASCA PORTA CARB LUC	UK, AUS	11%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
		PAINIELLI PONTA IN LIDITA DI CANDONIO	909714	COMP PAN+TAS PORT CARB LUC DX	UK, AUS	11%	KAPPA SRL		25,6	25,6	29,9	34,2	38,5	38,5	38,5
			86538300	BATTICALCAGNO EST.DX CARBONIO	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
INTERNAL	CISK	BATTITACCO EXTERNAL IN FIBRA DI CARBONIO	86538200	BATTICALCAGNO EST.SX CARBONIO	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
INTERNAL	CISK	BATTITACCO EXTERINAL IN FIBRA DI CARBONIO	915177	BATTICALCAGNO EST.DX CARBONIO	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
			915176	BATTICALCAGNO EST.SX CARBONIO	ALL	44%	TETA SPA		76,9	76,9	76,9	76,9	76,9	76,9	76,9
							Abs./day (ALL MKT)	33%	23,1	24,8	21,8	23,9	26,5	32,9	31,6
							Abs./day (GDX MKT)	8%	6,0	6,0	5,6	6,0	6,8	8,1	8,1
							Abs./day (NO AUS, UK)	25%	17,5	18,4	16,7	17,9	20,1	24,8	23,9
EXTERNAL	MNFC	ENGINE COVERS IN FIBRA DI CARBONIO	902970	Polmone aspirazione DX CPL	ALL	33%	KAPPA SRL		21,4	25,6	25,6	29,9	29,9	29,9	29,9
	WINFC		902971	Polmone aspirazione SX CPL	ALL	33%	KAPPA SRL		21,4	25,6	25,6	29,9	29,9	29,9	29,9
EXTERNAL	CEL2	PARATIE VANO MOTORE IN FIBRA DI CARBONIO	86935100	PARATIA EST.CENT.VANO MOT.CPL	ALL	33%	TETA SPA		65,4	65,4	65,4	65,4	65,4	65,4	65,4
			881765	COPERTURA ESTETICA DX CPL CARB	ALL	33%	TETA SPA		32,5	32,5	32,5	32,5	32,5	32,5	32,5
			881763	COPERTURA ESTETICA SX CPL CARB	ALL	33%	TETA SPA		32,5	32,5	32,5	32,5	32,5	32,5	32,5
	CIZB	ZONA BAULE IN CARBONIO	881773	MOSTRINA SOTTOPARABREZZA DX CP	NO AUS, UK	25%	TETA SPA		26,9	26,9	26,9	26,9	26,9	26,9	26,9
INTERNAL			881771	MOSTRINA SOTTOPARABREZZA SX CP	NO AUS, UK	25%	TETA SPA		26,9	26,9	26,9	26,9	26,9	26,9	26,9
			881769	COPERTURA ESTETICA CENTRALE CP	ALL	33%	TETA SPA		32,5	32,5	32,5	32,5	32,5	32,5	32,5
			895812	MOSTRINA SOTTOP DX CPL GDX CAR	UK, AUS	8%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4
	CIZB GDX	ZONA BAULE IN CARBONIO	895839	MOSTRINA SOTTOP. SX CPL GDX CA	UK, AUS	8%	TETA SPA		15,4	15,4	15,4	15,4	15,4	15,4	15,4

Table 31: extended matrix of the comparison between suppliers' daily production capacity and F8 Tributo + F8 Spider production need.

Appendix

														~	ppendix
	F8 Tributo								59,8	63,2	54,7	45,7	52,6	53,8	49,1
al group	ОРТ	OPT Description	Item	Item description	Markets	FAR	Supplier	Specific absorption rate	jun- 20	jul- 20	aug- 20	sep- 20	oct- 20	nov- 20	dec- 20
Functional	0	of i bescription	Ľ	Supplier	Specific a ra	Daily production capacity									
							Abs./day (ALL MKT)	55%	32,9	34,6	29,9	25,2	29,1	29,5	26,9
EXTERNAL	CERB	TERMINALE COFANO POST IN CARBONIO	890807	PARETE INF.COND.SPOILER POST.C	ALL	55%	EPSILON SRL		34,2	34,2	34,2	34,2	34,2	34,2	34,2
							Abs./day (ALL MKT)	33%	19,7	20,9	17,9	15,0	17,5	17,9	16,2
			826052	PARATIA EST.SOTTOL.VANO MOT.CA	ALL	33%	ΤΕΤΑ SPA		46,2	46,2	46,2	46,2	46,2	46,2	46,2
			813260	PAR EST SX CPL VA MOT CAR ASTA	ALL	33%	ΤΕΤΑ SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1
EXTERNAL	CEL2	PARATIE VANO MOTORE IN FIBRA DI CARBONIO	911776	PARATIA EST.DX CARB.MOT.STABIL	ALL	33%	ΤΕΤΑ SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1
			880045	PARATIA EST.DX MOTORE CARB.AST	ALL	33%	ΤΕΤΑ SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1
			782017	PARATIA ESTET.SX VANO MOTORE C	ALL	33%	TETA SPA		17,1	17,1	17,1	17,1	17,1	17,1	17,1
							Abs./day (ALL MKT)	15%	9,0	9,4	8,1	6,8	7,7	8,1	7,3
EXTERNAL	BONF	TELAIETTO COFANO MOTORE IN CARBONIO	855145	COFANO POSTERIORE IN CARBONIO	ALL	15%	ΤΕΤΑ SPA		7,7	7,7	7,7	7,7	7,7	7,7	7,7

Table 32: extended matrix of the comparison between suppliers' daily production capacity and F8 Tributo production need.

Appendix

		F8 \$	Daily production	10,7	11,5	12,0	26,9	28,2	46,2	47,0						
al group	ОРТ	OPT Description	Item	Item description	Markets	FAR	Supplier	absorption ate	jun- 20	jul- 20	aug- 20	sep- 20	oct- 20	nov- 20	dec- 20	
Functional	0	of i bescription	code			2	Supplier	Specific a ra	Daily production capacity							
							Abs./day (ALL MKT)	55%	6,0	6,4	6,4	15,0	15,4	25,2	26,1	
			73730844	CONDOTTO SPOILER POST.CPL CARB	ALL	55%	BETA SPA (tier 2)		4,3	6,8	8,5	19,2	25,6	25,6	25,6	
EXTERNAL	CERB	TERMINALE COFANO POST IN CARB E GRIGLIA MOTORE	958397	GRIGL.USC.ARIA COF.MOT.DX CPL	ALL	55%	BETA SPA		4,3	6,8	8,5	19,2	25,6	25,6	25,6	
			958423	GRIGL.USC.ARIA COF.MOT.SX CPL	ALL	55%	BETA SPA		4,3	6,8	8,5	19,2	25,6	25,6	25,6	
							Abs./day (ALL MKT)	33%	3,4	3,8	3,8	9,0	9,4	15,4	15,4	
EXTERNAL	CEL 2		938571	PARATIA EST.DX CPL VANO MOT.CA	ALL	33%	ΤΕΤΑ SPA		21,4	21,4	21,4	21,4	21,4	21,4	21,4	
EATERINAL	CEL2	PARATIE VANO MOTORE IN FIBRA DI CARBONIO	938572	PARATIA EST.SX CPL VANO MOT.CA	ALL	33%	ΤΕΤΑ SPA		21,4	21,4	21,4	21,4	21,4	21,4	21,4	

Table 33: extended matrix of the comparison between suppliers' daily production capacity and F8 Spider production need.

Appendix

Sources and websites

Lectures

Domenico Augusto Francesco Maisano. Teaching material, slides and notes taken during Quality Engineering classes held in 2019 in the MSc in Engineering and Management.

Public documents and textbooks

[1] Ferrari Annual Report 2019

[2] Krajewski, Ritzman, Malhotra. "Supply chain management. Strategie, processi, performance", 2015.

[3] Bowersox, Closs, Cooper, Airaghi. "Manuale di logistica e gestione della supply chain", 2011.

[4] Jacobs, Berry, Whybark. "Manufacturing planning and control for supply chain management", 2018.

[5] Henderson. "Carbon fibers and their composite materials", 2019.

Websites

[1] "Brand Finance Global 500 names Ferrari as the world's strongest brand for second consecutive year". Publication date: 22/01/2020.

URL: <u>https://corporate.ferrari.com/en/brand-finance-global-500-names-ferrari-worlds-strongest-</u> brand-second-consecutive-year

[2] "Supply chain management". Retrieved in June 2020.

URL: https://en.wikipedia.org/wiki/Supply chain management

[3] "Muletti e prototipi: lo sviluppo delle Ferrari". Publication date: 14/12/2018.

URL:<u>https://magazine.ferrari.com/it/auto/2018/06/26/news/mules to prototypes how ferrari s</u> dreams become real-46246/

[4] "What is a composite material? (A definitive guide)". Retrieved in July 2020.

URL: https://www.twi-global.com/technical-knowledge/faqs/what-is-a-composite-material

[5] "Carbon fibers". Retrieved in July 2020.

URL: https://en.wikipedia.org/wiki/Carbon fibers

[6] "Global demand for carbon fiber from 2010 to 2022". Publication date: November 2018.

URL: <u>https://www.statista.com/statistics/380538/projection-demand-for-carbon-fiber-globally/</u>

[7] "Carbon composites are becoming competitive and cost effective". Publication date: 2018.

URL: <u>https://www.infosys.com/engineering-services/white-papers/documents/carbon-</u>

composites-cost-effective.pdf

[8] "The Significance of Tier 2 and Tier 3 Suppliers for Original Equipment Manufacturers (OEMs)". Retrieved in August 2020.

URL: <u>https://www.universaldevlieg.com/blog/item/18-the-significance-of-tier-2-and-tier-3-</u> <u>suppliers-for-original-equipment-manufacturers-</u>

oems#:~:text=The%20role%20of%20tier%201%2C%20tier%202%20and%20tier%203%20suppliers

&text=Tier%202%20refers%20to%20companies,to%20the%20speed%20of%20production.

[9] "What is a tier supplier?". Retrieved in August 2020.

URL: https://ecosio.com/en/blog/what-is-a-tier-supplier/

Ringraziamenti

Con questa tesi si conclude il mio percorso universitario al Politecnico di Torino, dopo due anni incredibilmente intensi di eventi e cambiamenti.

Mi rendo conto di essere cresciuto molto sia personalmente che professionalmente, grazie a un ambiente particolarmente stimolante come il Politecnico.

Per questo ringrazio il professore Domenico Augusto Francesco Maisano, a cui chiesi di farmi da relatore a seguito della bellissima impressione che mi fece durante il corso di Quality Engineering, confermata dall'ammirevole disponibilità, serietà e professionalità dimostrate durante la preparazione e stesura di questa tesi.

I miei ringraziamenti si rivolgono anche a Luigi Benfratello, certamente per le sue brillanti lezioni ma anche per la gentilezza, apertura e disponibilità mostrata non solo per questioni accademiche ma anche per preziosi consigli di vita, da vero mentore.

In questi momenti di cambiamenti importanti mi soffermo a pensare a come è iniziato tutto: appena due anni fa, a fine settembre 2018, a 21 anni appena compiuti, si chiudeva definitivamente il primo capitolo della mia vita con il trasferimento a Torino. Come molti miei coetanei e concittadini, mi sono ritrovato con qualche bagaglio in mano e tutto il mio mondo alle spalle, lasciato lì, nella mia Palermo.

Tra gioia e dolore sono partito, ma chi ne ha sofferto di più è sicuramente la mia famiglia. È per questo che intendo ringraziarli profondamente: i miei genitori, Paolo e Daniela, e mia sorella Roberta, che hanno sempre creduto ciecamente in me nella maniera più sincera e genuina possibile, non tanto *spingendomi* ma *accompagnandomi* lungo il mio intero percorso.

In queste fasi della vita, potere contare su un supporto sempre più intenso della propria famiglia ti forma in maniera indelebile. So di poterne contare per sempre.

Quindi davvero, grazie. Non avrei potuto chiedere di meglio, vi voglio bene.

Grazie a Claudia che in cuor suo ha sempre messo in secondo piano il suo dispiacere per la mia partenza e la lontananza, per non rappresentare mai un ostacolo bensì, anche in questo caso, un supporto continuo a qualsiasi mia scelta accademica o professionale. Grazie anche per avere sempre creduto in me dalle piccole cose alle grandi sfide affrontate anche se, a volte, con poche parole, spesso non necessarie sentendoti in ogni caso al mio fianco. Finora ho parlato tanto di distaccamento e lontananza. Ma, ad essere sincero, una piccola fetta della mia vita me la sono ritrovata in casa. Fefo, Franco e Francescone: che convivenza stupenda abbiamo passato insieme. Varcare quella porta di casa significava entrare in un'area felice, serena e spensierata. Fra ricette culinarie all'avanguardia, spadellamenti circensi, partite guardate insieme, Playstation, arredamenti avveniristici con i vari Lack, Billy, Kista, la mitica Poang, le innumerevoli Moka di Francescone ecc. Grazie, vivrei altri 10 anni della mia vita con voi.

Lorenzo, coinquilino "di adozione", potrà benissimo comprendere le ultime righe. Grazie anche a te e alla fortissima e sincera stima reciproca che sussiste fra di noi.

Poi ovviamente ci sono loro, elementi imprescindibili della mia vita torinese e della mia vita d'ora in avanti: Edo e David. In soli due anni ne abbiamo passate davvero tante, fra stress e gioie, scoraggiamenti e soddisfazioni, alla fine c'eravamo sempre tutti e tre, con la nostra perfetta sinergia. Difficile trovare questo affiatamento e questo equilibrio. Mi sento davvero fortunato, senza di voi questa laurea avrebbe un significato completamente diverso.

Grazie a Vicio con cui finora ho condiviso un tetto in una situazione a dir poco fuori dal comune e con cui spero di condividerlo ancora a lungo.

Grazie ad Adri, Igni, Andri, Fede, amici storici con cui continuo a condividere tanto della mia vita nonostante le lunghe distanze.

Come potere tralasciare Gio, amico di una vita, amico per sempre. Nonostante lunghissimi periodi senza vederci so che fra 30 anni la nostra amicizia sarà la stessa di adesso.

Grazie a tutto il resto della mia "famiglia allargata" a cui voglio un bene dell'anima: Mario, Patricia, Mariella, Ben, Marina, Anna, Chris.

Naturalmente grazie anche alla Ferrari e ad Alberto Leone, il quale mi ha introdotto sin dal primo giorno di tirocinio in una realtà che molti sognano fin da bambini e che mi sta dando tutt'ora una preziosissima opportunità per imparare e crescere.

87