
1 | P a g e

POLITECNICO DI TORINO

College of Engineering

Department of Electronics and Telecommunications

M.Sc. Thesis

Design & optimization method of custom HW accelerators

Presented By:

Ahmed Bakry Hussein

Supervised By:

Prof. Andrea Calimera

O c t o b e r – 2 0 2 0

http://www.det.polito.it/

2 | P a g e

DECLARATION

I hereby certify that this report, which I now submit for assessment on the program of study leading

to the award of Master of Science in Electronic and Telecommunication Engineering, is all my

own work and contains no Plagiarism. By submitting this report, I agree to the following terms:

Any text, diagrams or other material copied from other sources (including, but not limited

to, books, journals, and the internet) have been clearly acknowledged and cited followed by

the reference number used; either in the text or in a footnote/endnote. The details of the used

references that are listed at the end of the report are confirming to the referencing style

dictated by the thesis defense template and up to my knowledge, accurate and complete.

I have read the sections on referencing and plagiarism in the thesis template. I understand that

plagiarism can lead to a reduced or fail grade, in serious cases, for the Thesis defense.

Student Name: Ahmed Bakry Hussein

Student Number: S250789

Signed: ________________________

Date: – 10 – 2020

3 | P a g e

ACKNOWLEDGMENT

This accomplishment could have not been achievable without the endured support of the following

people that I am so grateful for their efforts and I am so glad to present them my appreciation:

• My Family: for their continuous financial and moral support, which effected positively on

the progress of this work.

• My fiancée: your continuous support and pushes during hard times were so heroic, I do

really appreciate your stands with me.

• Professor Andrea Calimera: who gave me the keys of most problems and obstacles I faced

in my way towards the completion the work. I want to appreciate him for his patience,

effort and time elapsed in advising and guiding me.

• Antonio Cipolletta: I cannot thank him enough for the knowledge he gave me, time he

spent on me, patience he had with him was extraordinary, and above all of that, his belief

in me. I do really appreciate all your professional advices which effectively managed to

end this work successfully.

4 | P a g e

ABSTRACT

The world is in hunger for computational abilities, day by day, the need for computing complex

algorithms and using complex applications is increasing extensively, with such need, Electronics

world is been brutally pushed against its limits, especially with the rise of using Artificial

intelligence and its applications. However, these abilities not just require inventing new

technology, but, also, require finding another and better way of processing heavy data using new

dataflow, unlike the traditional one. Nevertheless, these new processing strategies must be able

to process the data just like the normal way but might be with different dataflow. Since most of

the complex applications nowadays require machine learning implemented on some neural

networks, it is important to give an intense focus for neural network processing unit.

In the upcoming years, artificial intelligence will conquer our world with its tremendous

applications which will be either be implemented on servers, micro-computers, supercomputers,

etc. depending on the application. However, this opens a contradiction, how will it be possible to

process these quite complex data on an embedded system? For instance, nowadays, most of

machine learnings processing are being processed on graphical processor units, which requires

relatively big area and energy hunger. So, the idea was to implement a different kind of

processing unit, that requires less area, and much energy saver, with the same performance and

in some scenarios, with better performance too. Also, instead of using some GPU that sometimes

it is overqualified for some applications due to the huge parallelization processing capabilities, it

is possible to dedicate a parametric capability, in which it could be just suitable for the required

application. Not to mention that, the focus here for this kind of processing unit is to mainly solve

the problem embedded systems world is facing with artificial intelligence. In other words, this

kind of processing unit, must not always be the best processing unit for all neural networks,

which means, it is possible to use a mixture of both the high parallelization technique used in

GPUs with this kind of processing, but as this is not always feasible for all applications due to

area and power constraints, this processing unit could be the best option for processing neural

networks so far.

As said before, the difference of processing data and its flow makes it suitable for machine

learning applications, but for other applications in signal processing like videos processing and

gaming applications, GPUs will give better results since both of these applications hold big set of

frames that needs to be processed all at once using for instance the huge number of ALUs inside

the GPU chip.

5 | P a g e

TABLE OF CONTENTS

List of figures .. 8

list of tables.. 11

List of Equations ... 12

1 Introduction .. 13

1.1 The aim of this work .. 17

2 Related works ... 18

2.1 Neural networks ... 18

2.1.1 Neural network history .. 18

2.1.2 Neural network background ... 20

2.2 Neural network accelerators .. 26

2.2.1 Hardware architectures .. 26

2.2.1.1 Temporal architecture .. 26

2.2.1.2 Spatial architecture .. 27

2.2.1.2.1 Systolic Array .. 28

2.2.1.2.1.1 Input stationary .. 28

2.2.1.2.1.2 Weight stationary ... 30

2.2.1.2.1.3 Output stationary ... 31

2.2.1.3 Real life AI accelerator examples .. 31

2.2.1.3.1 TPU .. 31

2.2.1.3.2 Eyeriss ... 33

6 | P a g e

2.2.1.3.3 nvidia ga100... 34

2.2.1.3.4 intel stratix 10 fpga .. 36

3 Neural network accelerator design.. 38

3.1 Chisel ... 38

3.1.1 Scala build tool .. 39

3.1.2 Flexible Internal Representation (FIR) for (RTL) ... 40

3.2 Verilator toolchain ... 40

3.3 Design Anatomy .. 41

3.4 convolution layer anatomy ... 41

3.4.1 Processing unit design ... 45

3.4.1.1 Processing array ... 50

3.4.1.1.1 Processing element .. 51

3.4.1.1.2 Internal registers .. 55

3.4.2 Partial products accumulation .. 56

3.5 System design .. 60

3.5.1 Scala code .. 60

3.6 Work contribution .. 72

4 Experiments and results... 73

4.1 Synthesis and optimization .. 73

4.1.1 Design synthesis .. 73

4.1.1.1 Design compiler ... 74

4.1.1.1.1 Design-ware ... 74

7 | P a g e

4.1.1.2 Prime time shell ... 74

4.1.2 Area analysis .. 75

4.1.3 Power analysis ... 77

4.2 Latency analysis ... 77

4.3 Memory accesses analysis ... 80

4.4 Data analysis .. 82

5 Conclusion .. 83

5.1 Future Work ... 84

References ... 85

8 | P a g e

LIST OF FIGURES

Figure 1-1 Supervised ML, [4] ... 14

Figure 1-2 Unsupervised ML, [4] ... 14

Figure 1-3 Reinforcement ML, [6] ... 15

Figure 2-1 Artificial intelligence subfields, [12] ... 18

Figure 2-2 History of Neural networks, [15] .. 19

Figure 2-3 Structure difference between the biological and the artificial neuron, [18]..................................... 21

Figure 2-4 Synapse detailing [20] ... 21

Figure 2-5 Types of activation functions .. 22

Figure 2-6 Simple neural network example, [21] ... 22

Figure 2-7 Neural network architecture zoo, [22] .. 23

Figure 2-8 Recurrent Neural Network, [23] ... 24

Figure 2-9 Convolution layer calculation ... 25

Figure 2-10 Temporal Architecture (SIMD/SIMT), [24] ... 27

Figure 2-11 Data fetching energy cost, [25].. 27

Figure 2-12 Data stationarity bandwidth comparison, [26] ... 28

Figure 2-13 Matrix Multiplication using input stationary dataflow .. 29

Figure 2-14 Matrix Multiplication using Weight stationary dataflow .. 30

Figure 2-15 Matrix Multiplication using Output stationary dataflow .. 32

Figure 2-16 TPU Architecture.. 33

Figure 2-17 Eyeriss dataflow used, [24] ... 34

Figure 2-18 Eyeriss Architecture, [29] ... 34

Figure 2-19 Nvidia GA100 Top-level Architecture, [30] .. 35

Figure 2-20 Nvidia GA100 Tensor core, [31] ... 35

Figure 2-21 Nvidia GA100 Matrix Sparsity, [30] ... 36

Figure 2-22 Intel Stratix 10 AI Tensor blocks, [32] ... 36

9 | P a g e

Figure 2-23 Neural network pipelining, [33] .. 37

Figure 3-1 Convolution layer parameters visualization, [34] .. 43

Figure 3-2 GeMM im2col strategy, [35] .. 44

Figure 3-3 Top view of the Processing Unit .. 45

Figure 3-4 Organization cycle sample .. 47

Figure 3-5 Input shifting cycle sample ... 48

Figure 3-6 Processing Unit synchronization waveform ... 49

Figure 3-7 Processing Array top view .. 50

Figure 3-8 Matrix multiplication sample ... 51

Figure 3-9 Processing Element Top view ... 52

Figure 3-10 Processing Element top view of the first row of the Processing Array .. 52

Figure 3-11 Sample of processing a Weight (4x4) with Input tensor (4x2) in Processing Array with hardware

components ... 54

Figure 3-12 Sample of accumulating Weight (8x8) with Input tensor (8x8).. 57

Figure 3-13 Completion of processing and accumulation a Weight (4x4) with Input tensor (4x4) in Processing

Array with hardware components .. 59

Figure 3-14 Neural network parameters definitions flowchart ... 60

Figure 3-15 Kernel distribution flowchart ... 61

Figure 3-16 Input tensor distribution tensor flowchart ... 62

Figure 3-17 Processing aspects declaration flowchart ... 63

Figure 3-18 General cycle flowchart .. 65

Figure 3-19 Data placement stage flowchart .. 66

Figure 3-20 Data placement stage by row flowchart ... 67

Figure 3-21 Data placement stage by column flowchart .. 68

Figure 3-22 Data processing stage flowchart ... 69

Figure 3-23 Data processing stage of the upper part ... 70

Figure 3-24 Data processing stage of the lower part .. 71

file:///C:/Users/Bakry/Desktop/THESIS/Thesis.docx%23_Toc52812663
file:///C:/Users/Bakry/Desktop/THESIS/Thesis.docx%23_Toc52812663

10 | P a g e

Figure 4-1 Sequential vs Combinational cells area analysis in all configuration .. 76

Figure 4-2 Normalized latency with respect to 8x8 configuration on the proposed benchmarks 79

Figure 4-3 Latencies in benchmarks having 115.6 * 106 memory accesses .. 81

Figure 4-4 Latencies in benchmarks having 57.8 * 106 memory accesses ... 82

11 | P a g e

LIST OF TABLES

Table 2-1 comparison between Biological neural system and Modern computers, [17] 20

Table 4-1 Area analysis of multiple configurations of Processing Array .. 75

Table 4-2 Power analysis of the Processing Array in multiple configuration ... 77

Table 4-3 10 different benchmarks tested on the proposed configuration .. 78

Table 4-4 Benchmarks having 115.6 * 106 memory accesses comparison ... 81

Table 4-5 benchmarks having 57.8 * 106 memory accesses ... 81

Table 4-6 Area, Power, and Maximum, Average, and minimum latencies comparison in different benchmarks

 ... 82

12 | P a g e

LIST OF EQUATIONS

Equation 2-1 Rosenblatt perception mathematical approach ... 22

Equation 2-2 2x2 Difference between TA and SA memory accesses ... 29

Equation 3-1 Number of iterations calculation in the general cycle .. 46

Equation 3-2 Number of iterations calculation in the organization cycle ... 47

Equation 3-3 Number of iterations calculation in input shifting cycle .. 48

Equation 3-4 Starting condition of Partial products shifting cycle ... 48

Equation 3-5 Number of iterations calculation in Partial products shifting cycle .. 49

Equation 3-6 Total number of iterations calculation ... 49

Equation 3-7 Number of Input buffer calculation ... 55

Equation 3-8 Number of Processing element buffer .. 55

Equation 3-9 Number of Input shifters buffer ... 55

Equation 3-10 Number of Weight shifters buffer .. 56

Equation 3-11 Number of Output shifters buffer .. 56

Equation 4-1 Number of sequential cells estimation .. 76

Equation 4-2 Number of combinational cells estimation ... 76

Equation 4-3 Latency calculation in milliseconds .. 79

Equation 4-4 Memory accesses calculation .. 82

13 | P a g e

Chapter 1

1 INTRODUCTION

Since the rise of the industrial revolution, the need for controlling machines and digital world is

intensively increasing, with this revolution a rise in computer science has gained a great fame to

serve lots of aspects when it comes to control and automation.

No wonder why machine learning is taking a huge part of our daily life, it has been effectively

upgrading the life form of humanity. Moreover, it is possible to predict events, it would not have

been possible without it, throughout the algorithms and mathematical approaches it is using. One

example to explain how powerful machine learning is, in a study made by Joseph Risi and other

scientists, [1], they studied around two million declassified electronic cables used for

communication between the United States of America and its embassies between 1973 and 1979.

However, these cables were not classified according to their importance, like for instance the social

events and the events that require much more attention. Nevertheless, when comparing the

important cables with some other important ones using machine learning model, around less than

1% were already recognized by historians. Furthermore, this concludes that, even though it is very

hard for historians to analyze the huge amount of historic data accordingly to their importance,

yet, using machine learning it has become more feasible.

It is certain that, it is shaping out the future, and day by day, its applications are effectively

increasing, [2]. Nowadays, it has been widely used in applications like: Image processing,

Language processing and translation, Route detection, Speech recognition and Forecasting.

Machine learning is a technique used for data analyzing, that basically from having lots of data, it

explains to digital computers how to react, more likely as naturally happens to humans and

animals. Moreover, the type of algorithms that are used in ML are computational methods, which

learns data on its own. However, there are three types of training in machine learning, [3]:

1. Supervised learning

2. Unsupervised learning

14 | P a g e

3. Reinforcement learning

Depending on the data it is harvesting, the type of machine learning is used. In general, the

difference between the first two types, Supervised and Unsupervised learning is that in the

Supervised learning the algorithms used will train on labeled data, which means, the data that will

be used, are classified into labels, taking Figure 1-1 as example, given four types of cats, that were

trained out by an AI model, and these cats were labeled as “Cats”, after that, when using this model

to predict out cats among other animals, which in this case, 2 dogs and 2 cats, the prediction came

out as expected, it recognized cats among the animals with its label “Cats”, while the unknown

animals, which haven’t been trained out before, were all recognized together as “Not cats”, which

refers to unclassified animal.

Figure 1-1 Supervised ML, [4]

Unlike the supervised ML, the algorithms it is using are training on unlabeled data, taking Figure

1-2 as example:

Figure 1-2 Unsupervised ML, [4]

15 | P a g e

The training dataset used in the Supervised version is relatively smaller than the one in the

Unsupervised one, since the Unsupervised has the capability to work on its own, and find

difference on itself, which means it doesn’t require humans, so large set of training data is required

to identify the difference. There is also, a Semi-Supervised type, whereas set of data have labels

to help out training to predict the unlabeled one. In other words, it is a mixture of both, labeled and

unlabeled data, [5].

The last type is the Reinforcement learning, which basically learns out from outputs, so it is

basically a trial-and-error technique. Take the example in Figure 1-3 to understand Reinforcement

learning.

Figure 1-3 Reinforcement ML, [6]

Neural network ideology was based on the way humans’ brains can solve problems, just like

humans’ biological neurons that transmits data allover, creating information learned or even

interrupting for an event, etc. Humans brains are composed of a very complex structure with a

very complex network connecting those biological neurons together, [7].

To sum up, neural network is a technique a computer can use to learn out from data, these data is

affected by a collection of neurons to give out an output eventually, [8].

As discussed previously, as this network can learn out from data and process it, it has the ability

to solve out these complex problems and keep training unstoppable. By time, the relying on it is

16 | P a g e

heavenly increasing, since it learns from the faults and the more it faces problems, the more it

learns and adapt, [9].

Now, after understanding the capability of processing such complex data using neural networks,

it will open up a portal to a serious problem, Electronics world is facing nowadays, which is, how

may we build an accelerator capable to accelerate this kind of network, especially on a low-scale

architecture, which has the power withstand its complexity with relatively smaller amount of cells.

No wonder that, some neural network applications require high degree of complexity, which

require lots of Arithmetic logic units to execute them, but, in the same time, these applications

require low-scale architecture as well, making it quite hard to implement these applications, [10],

or be forced to use other solutions that may cost a lot. Neither the memory required will

accommodate its complexity.

In this work, the focus is on accelerating the neural network from hardware perspective much more

than optimizing its data. However, as the conventional way nowadays using large-scale

architecture capable to withstand the complexity of neural networks, the solution was either to find

a way to optimize this large-scale by finding defects and optimize the critical paths or change

entirely the way of accelerating neural networks. In addition to that, FPGA is showing a very

promising performance, due to its low power consumption, reconfigurability, and real-time

processing capability, [11]. Another way is finding a solution to minimize the number of memory

accesses from and to the main memory, besides, the possibility of flowing data all along between

ALUs, something that can be close to the way neurons in the neural network connected together.

The solution presented in this work, is creating a framework having a new highly optimized High-

level HDL called Chisel, that is designed to use a strategy of flowing data non-stoppable along

relatively smaller amounts of ALUs. This strategy is depending on an architecture called spatial

architecture, which gives the possibility to transfer data from and to ALUs, without the need to

rely on the main memory in each clock cycle, like in temporal architecture. Moreover, the kind of

flow along the processing elements used here is called Systolic Array, which gives the possibility

to maximally save the usage of certain data, by keep reusing them internally, without the need to

17 | P a g e

return back to the main memory. However, this flow has three types, the one that is used here is

called Weight stationary.

The difference in this solution that the processing element here is composed of a register-file and

an ALU, not just an ALU used in CPUs and GPUs, for instance. It is possible to use the power of

parallelization technique, just like GPUs, but with a limited number of memory accesses, and

certainly with better energy efficiency, which makes this solution in general speaking, better than

GPUs, except in some cases. Above that, in this work, the design is parametric, in other words, it

is possible to just configure the number of the processing elements. Furthermore, increasing the

number of the processing elements here, does not always increase the performance, in fact, overly

increasing the processing elements, will lead to worsen the performance and increase energy

consumption, so a tuning is required.

In addition to the HDL, a programming language called Scala was used to verify the HDL, convert

the neural network into matrix multiplication and simulate the HDL.

1.1 THE AIM OF THIS WORK

This work aimed to assess the performances of different configurations of Systolic array using

Weight stationary strategy on common neural networks workloads. Nevertheless, to also

demonstrate the importance of having flexibility in the early phase of the hardware design process.

In order to guide this book, chapters were organized to the following:

• Chapter 2: Describing the explaining the terms and all the related works that has a

connection with the work done here, in addition to giving the up-to-date examples of

implemented works done by others.

• Chapter 3: Deeply explaining the work done here and showing how beneficial this work

presenting.

• Chapter 4: Showing the results after testing out this accelerator using some benchmarks

and analyzing all the resulted values.

18 | P a g e

Chapter two

2 RELATED WORKS

2.1 NEURAL NETWORKS

Neural networks has been given a huge focus in computer science, due to its abilities to compute

complex algorithms. However, it is a subset from Artificial intelligence field as shown in Figure

2-1.

Figure 2-1 Artificial intelligence subfields, [12]

Neural network can be described as a huge network, that contain a set of algorithms that manipulate

relations between inputs and outputs, [13], these algorithms used for the learning process.

2.1.1 NEURAL NETWORK HISTORY

The work of neural networks launched back in the 1940’s, where scientist tried to build up models

of the brain; it has been one of the newest and oldest scientific research interests. However, it all

started back in the 1950’s, when scientists implemented perceptron, and this will be explained in

the upcoming sub-chapter, [Neural network background], it is basically a simple precursor of linear

models. Initially, it solved quite simple problems, that was thoughtful to bring up the hope to solver

more complex ones. However, when scientists tried out, it showed very flawed work, due to the

limitations of the perceptron back then; it was not even possible to solver an XOR problem, so

19 | P a g e

there was no big benefit from that, until Marvin Minsky and Seymour Papert claimed in their book

that, perceptron is very limited, [14].

In the 1980’s, the work in neural networks has resurrected; scientists found a way to connect

multiple perceptrons, this gave a huge boost for the computational ability, and possibility to solve

more complex problems, back then in the 1950’s was not possible to solve. In addition to that,

during the same period, scientists were able to put up weights, where it gives the possibility of

learning out and training from data, using the newly developed at that period, which is back

propagation. Moreover, back then, it was still not so popular and data it had to train on were very

limited, besides, number of people who were able to implement these kinds of networks were so

limited. Not to mention the poor computational hardware capabilities that did not widely support

the requirements that neural networks back then required. Furthermore, when hardware

capabilities have increased and gave a chance for neural networks to be computed on, the

motivation for it has increased, and programmers started to figure out how to train these networks

in a large scale, allowing it to be used progressively in many fields.

In Figure 2-2, shows a brief history about neural network starting from year 1943 to 2019.

Figure 2-2 History of Neural networks, [15]

20 | P a g e

2.1.2 NEURAL NETWORK BACKGROUND

As introduced in the beginning, the neural network is considered to be a huge interconnected

network of neurons that contains set of connections that effect on the set of inputs, to produce an

output. However, these connections contain configurable parameters that are affected by the

process of back propagation, throughout learning processes. This ideology is brought back to the

way, how humans think, this is why, sometimes, when referring to neural network neurons, it is

called artificial neurons, to differentiate between it and the biological neurons. Moreover, neural

network has the power to process and compute environments relatively efficient comparing to

humans or animals, [16]. With such powers, it has the possibility to recognize foreign languages,

differentiate between humans sounds, fault detections in some computer systems, etc. By

comparing biological neural system and modern computers, it is possible to find out from Table

2-1 that:

Biological neural system Modern computers

Large amount of slow processing elements

Small amount of fast processing elements

Having internal integrated memories within the

processing elements

Having an external segregated fast

memory

Processing is done throughout self-learning Processing is done throughout

programmed environments

It is very powerful and can fix issues by itself It can have errors and faults

The operations are not classified and has no

boundaries

The operations are classified but has

boundaries

Table 2-1 comparison between Biological neural system and Modern computers, [17]

As the biological neuron is a huge topic to discuss and it is not the aim of this work, it will be

summarized in few lines to recognize the structure difference, between it and the artificial one,

how was the artificial neural structure idea came from.

Biological neural is composed of three main parts:

21 | P a g e

• Dendrite: It is basically a wire-like, that is connected to the surrounding neurons to receive

signals from them as an input to the Soma

• Soma: It contains the first anatomy part of the neuron, which has the nucleus where data is

processed inside. In other words, it can be described as the core of the neuron.

• Axon: It is like a branch, where it receives the signal from the Soma, and transfer it to the

Axon terminal, where it is connected to other neurons throughout Synapses. However,

Synapse is the neural signal, where it is usually either a chemical diffusion or electrical

impulse.

Figure 2-3 Structure difference between the biological and the artificial neuron, [18]

Depending on the signal [synapse] received from the dendrite, the neuron is either activated or

deactivated, after neural summation process is done. In Figure 2-3, the difference between both of

the neurons is showed. However, the structure of the artificial neuron is quite similar, the

perceptron showed in this figure is called Rosenblatt perceptron, [19], for further understanding of

the Synapse, refer to Figure 2-4.

Figure 2-4 Synapse detailing [20]

22 | P a g e

Rosenblatt perceptron is a modulization for an artificial single neuron, that sums up a collection

of weighted inputs, gained during training process. However, if the summation is greater than a

specific value (Threshold), that is specified in the activation function part, the neurons produces,

either 1 or 0, this can be understood from Equation 2-1.

𝑜𝑢𝑡𝑝𝑢𝑡 = {

1 ∑ 𝑊𝑛 ∗ 𝑋𝑛
∞
𝑛=1 ≥ 𝜃

 𝑖𝑓

0 ∑ 𝑊𝑛 ∗ 𝑋𝑛
∞
𝑛=1 < 𝜃

 Where 𝜃 is the threshold

Equation 2-1 Rosenblatt perception mathematical approach

Usually, a generalization of the Rosenblatt perceptron is based on substituting to the step function,

while there are other activation functions, such as Step, Linear, Sigmoid, Tanh and Relu. In Figure

2-5 the graphs for these functions is showed.

Figure 2-5 Types of activation functions

After explaining what the single neuron is, what does it compose of, it is possible now to discuss,

what if this neuron implemented multiple times, making a network. Firstly, in general, a simple

neural network is composed of three layers which are Input layer, Hidden layer, and Output layer.

However, a simple network is shown in Figure 2-6 and how they are interconnected.

Figure 2-6 Simple neural network example, [21]

23 | P a g e

Figure 2-7 Neural network architecture zoo, [22]

The input layer is holding the set of data that is injected either by the user, or sometimes, a feedback

from the output layer. However, this input layer passes by single or multiple hidden layers, which

are affected by weights that effectively change out the input data. Moreover, complexity increases

by increasing those hidden layers. Nevertheless, depending on the connections between these

layers an architecture of neural network is formed; in Figure 2-7 a representation for almost all

architectures of neural networks is shown.

The most commonly used architectures are:

• Feed Forward Network (FFN): This is the most popular one, its idea is straightforward,

each neuron in each layer is connected to the other neuron in the layer after it. Each layer

Advantages:

1. It can be used for

almost anything and

easily to be used.

2. Solving problems is

guaranteed.

Disadvantages:

1. Finding the best answer is not always capable,

since it guarantees finding the local minimum

not the global one.

2. The network parameters must be specified in the

very beginning.

3. Complexity increases by increasing the input

data.

24 | P a g e

learns relatively simple information and passes it to the layer after it, so it guarantees giving

a correct answer but not always the best one, when given enough resources.

• Convolution Neural Network (CNN): This architecture is most popularly used for

analyzing images, since it has the ability to detect patterns. For instance, patterns detection

in images is very essential, since it can detect curves, edges, color similarities, shapes, etc.

in a single image through-out filters, and this what makes it very useful when using any

kind of image processing. Basically, it is used because it can share weights among neurons.

Moreover, its process is divided into feature extraction and then like in FFN, it is data

training.

• Recurrent Neural Network (RNN): This architecture is used when interpreting sequential

information, like autocorrection. RNNs use other data points in a sequence to make better

predictions. As the previous types, it has inputs and output, but what is different is, it is

reusing data activation from previous nodes to affect the output as shown in Figure 2-8.

Figure 2-8 Recurrent Neural Network, [23]

Advantages:

1. Features extraction will increase

by increasing layers. Hence,

better data analyzing.

2. Relatively fewer resources when

comparing to FNN

Disadvantages:

1. Data hunger.

2. Filters dimension needs to be as

minimum as possible, so it does

not overlap or skip an image

parameter.

3. The network parameters must be

specified in the very beginning,

yet, not as much as FNN.

25 | P a g e

These NNs cannot be understood out by any HW, because as it appears, it is multi-dimensional,

and the input data will be affected out by weights and activation function to produce an output.

Yet, the way the input data are affected is not very understandable by HWs too, taking for example

the convolution layer architecture, which has the most focus in this work, the input will be

multiplied with many weights, for many times, as shown in Figure 2-9, and this exploits the key

for data reusing possibility, which will deeply be explained in the next chapters.

Figure 2-9 Convolution layer calculation

Advantages:

1. Very effective with sequential

data.

2. Function learning is very

effective and keep back

propagating it.

Disadvantages:

1. Because of reusing data, old data

are easily lost.

2. Very sensitive to the data

initiated with

Cycle 1 Cycle 4

Cycle 5 Cycle 8

26 | P a g e

2.2 NEURAL NETWORK ACCELERATORS

After understanding the complexity of computing a neural network and how important did the

development of computer architectures developed and improved the usage of using neural network

upon history.

In this chapter, some architectures that is used in this work will be deeply explained, in addition to

explaining some other similar architectures that could be used in future work, besides, giving some

up-to-date accelerators that are developed by others.

2.2.1 HARDWARE ARCHITECTURES

Nowadays, most neural network accelerators use parallel computation paradigm for achieving an

adequate performance, in contrast, this effects out lots of aspects in return. In brief, processors

architectures are divided into two architectures, which are temporal architecture and spatial

architecture that is used in this work. Generally speaking, most CPUs (Central Processing Units)

and GPUs (Graphical Processing Units) use temporal architecture, where it has highly number of

ALUs (Arithmetic Logic Units), which in this case the mostly used component is MAC (Multiply

and Accumulator) that are all connected to a fast memory, but they cannot communicate directly

with each other’s. On the other hand, the spatial architecture is used in ASICs (Application Specific

Integrated Circuits) and FPGAs (Field-Programmable Gate Arrays), where it can have limited

number of ALUs from the perspective that overly increasing the ALUs can significantly severe

the performance, power and area, but they can directly communicate with each other’s. In the

following chapters, the explanation of both architectures will be discussed.

2.2.1.1 TEMPORAL ARCHITECTURE

In multiprocessors architectures, each processor always has its own cache memory, where it has

its own data path along all the components it has. However, when mapping a neural network on

this architecture, a problem is faced, even though the performance could be quite high, it is not

very energy efficient, in a sense that, ALUs only fetches out data from memory and cannot reuse

data, so there are a lot of memory accesses, basically, they all share the same memory and control

unit. Another thing, to improve the parallelism, there are techniques that can be used, like SIMD

27 | P a g e

(Single Instruction, Multiple Data) or SIMT (Single Instruction, Multiple Threads). In Figure 2-10

a generic visualization is shown.

Figure 2-10 Temporal Architecture (SIMD/SIMT), [24]

2.2.1.2 SPATIAL ARCHITECTURE

The spatial architecture severely reduces the memory accesses from and to the DRAM (Dynamic

Random-Access Memory). In the normal scenario, when using the ALU, at least three memory

accesses has to be established, since three parameters are required, kernel weight, input tensor and

partial sum which comes from previous ALUs. However, the idea here is to extend the usage of

any of these parameters, by fixing them inside a RF (Register File) that is integrated inside the

ALU, usually this unit is called PE (Processing Engine). By doing so, and also bypassing them

towards the neighboring PE, data reusing can be accomplished, so, memory accesses will be

reduced, in a sense that, there is no need to read one of the parameters each time, hence, better

energy efficiency. Usually fetching out data from DRAM is more energy costly 200 times than

from RF.

Figure 2-11 Data fetching energy cost, [25]

28 | P a g e

There are a lot of companies that gave an intense focus on implementing this idea, most famous

one is Google TPU that is based on an architecture called systolic array.

2.2.1.2.1 SYSTOLIC ARRAY

Now after the possibility of connecting out all the PE, one possible implementation of a spatial

architecture is the systolic array. Systolic name came out Systole, which is the idea of pumping

out blood from the heart in a medical terminology. However, the idea is very similar, while saving

out data, which are stationary, it is possible after using the non-stationed data, to pass them along

the PEs next to them in the same row and use them with the other stationed data.

The data that can be stationed here can be one of the three parameters that are required. Depending

on the shape of the neural network, the most energy efficient dataflow type can be used. In Figure

2-12, the difference in terms of bandwidth and PE implementation for different stationary

dataflow.

Figure 2-12 Data stationarity bandwidth comparison, [26]

2.2.1.2.1.1 INPUT STATIONARY

In this type, the input tensor data will be saved inside the register file of the PE. Usually both data,

input tensor and Kernel weights are received from 2 separate buffers, and these buffers provide

the PE. In order to understand the dataflow of this type, a visualization is shown in Figure 2-13.

29 | P a g e

Figure 2-13 Matrix Multiplication using input stationary dataflow

Taken the example above, the number of DRAM memory accesses required here were 8 times,

which basically, one access per each data. In the conventional temporal architecture, the number

of DRAM memory accesses that will be required are 24, which basically each time an operation

occurred including the accumulation of partial products. This gives superior saving in terms of

energy consumption, by referring to Figure 2-11, it is possible to say that TA (Temporal

architecture) will cost more by:

200 ∗ (𝑇𝐴 𝐷𝑅𝐴𝑀 𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 − 𝑆𝐴 𝐷𝑅𝐴𝑀 𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠) − 6 ∗ 𝑆𝐴 𝐵𝑢𝑓𝑓𝑒𝑟 𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 − 𝑅𝐹 𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 =

200 ∗ (24 − 8) − 6 ∗ 8 − 8 = 3144

Equation 2-2 2x2 Difference between TA and SA memory accesses

Even though that are different memory accesses occurs in SA, yet the most effective one is the

DRAM one, hence, it generated this difference between both architectures, the SA is less around

34.5%. Certainly, this is not always the case, in fact, this is a very special one, yet, from a general

Cycle 4

0 0 0 0 I00 I10 W01

0 0 0 0 I01 W11 I11 W10

I10xW00 I00xW01

I00xW01 I10xW00
+

I01xW11
+

I11xW10

I11xW10

Cycle 1

W00 W01 0 0 I00 I10

0 W10 W11 0 I01

I11

Cycle 2

W01 0 0 0 I00 W00 I10

W10 W11 0 0 I01 I11

Cycle 3

0 0 0 0 I00 W01 I10 W00

W11 0 0 0 I01 W10 I11

I00xW00

I00xW00

 +
I01xW10

The Resulted Matrix

{
𝐼00𝑥𝑊00 + 𝐼01𝑥𝑊10

𝐼10𝑥𝑊00 + 𝐼11𝑥𝑊10

𝐼00𝑥𝑊01 + 𝐼01𝑥𝑊11

𝐼10𝑥𝑊01 + 𝐼11𝑥𝑊11

}

Cycle 5

0 0 0 0 I00 I10

0 0 0 0 I01 I11 W11

I10xW10

I10xW01
+

I11xW11

30 | P a g e

perspective, TA will always use much more DRAM accesses, hence, SA will always be more

energy efficient.

2.2.1.2.1.2 WEIGHT STATIONARY

This type is very similar to the input stationary one, instead of stationing inputs inside the PE,

weights will be saved. However, a similar visualization is shown in Figure 2-14 to understand its

dataflow.

As shown, it is quite similar to input stationary, the key behind using this type is always the shape

of the neural network. As explained before, what is a neural network constructed from and in

convolution layer anatomy sub-chapter, the explanation of the parameters of a convolution

network, and how it is converted into a matrix multiplication, however, depending on these

parameters the type of systolic movement is chosen.

Figure 2-14 Matrix Multiplication using Weight stationary dataflow

Cycle 4

0 0 0 0 W00 W01 I10

0 0 0 0 W10 I11 W11 I01

I10xW00 I10xW00

I10xW00 I00xW01
+

I11xW10
+

I01xW11

I11xW10

Cycle 1

I00 I10 0 0 W00 W01

0 I01 I11 0 W10 W11

Cycle 2

I10 0 0 0 W00

W10

I01 I11 0 0

I00

W11

W01

Cycle 3

0 0 0 0 W00 I10 W01 I00

I11 0 0 0 W10 I01 W11

I00xW00

I00xW00

 +
I01xW10

The Resulted Matrix is

 {
𝐼00𝑥𝑊00 + 𝐼01𝑥𝑊10

𝐼10𝑥𝑊00 + 𝐼11𝑥𝑊10

𝐼00𝑥𝑊01 + 𝐼01𝑥𝑊11

𝐼10𝑥𝑊01 + 𝐼11𝑥𝑊11

}

Cycle 5

0 0 0 0 W00 W01

0 0 0 0 W10 W11 I11

I10xW01

I10xW01
+

I11xW11

31 | P a g e

2.2.1.2.1.3 OUTPUT STATIONARY

The last type is stationing the partial products in order to reuse them when accumulating. As usual

the flow is quite similar to the ones explained above, which is shown in

 Figure 2-15. It is observed that, the number of ALUs elements in this type is less than the other,

which may not always be the case, the example given here is dedicated to this 2x2 Matrix

Multiplication.

2.2.1.3 REAL LIFE AI ACCELERATOR EXAMPLES

In this sub-chapter, some accelerators implemented by companies will be briefly showed, in order

to magnify intensively the power needed to process a neural network. However, not all of them

using the same dataflow, or even strategy, each of them having the pros and cons, but what is

common in all of them, they were all built on the premises to be able to process neural networks.

2.2.1.3.1 TPU

TPU(Tensor Processing Unit) is designed by Google, it is an ASIC NNP (Neural Network

Processor), as many ASIC designs, they have less control units, which means in this case, it is only

accelerating the matrix multiplication, while instructions fetching and scheduling will be left for

the CPU for instance. It was firstly introduced in 2016 as TPUv1, but it has not gain as much

popularity as versions v2 and v3. The most important part of the TPU is the matrix multiply unit,

it is based on the weight stationary which was previously explained. In Figure 2-16-a), the block

diagram of the TPU is shown, to show how components are interconnected.

32 | P a g e

 Figure 2-15 Matrix Multiplication using Output stationary dataflow

The Resulted Matrix is

{
𝐼00𝑥𝑊00 + 𝐼01𝑥𝑊10

𝐼10𝑥𝑊00 + 𝐼11𝑥𝑊10

𝐼00𝑥𝑊01 + 𝐼01𝑥𝑊11

𝐼10𝑥𝑊01 + 𝐼11𝑥𝑊11

}

I01 0 0 0

I11 0 0 0

0

I00*W01

Cycle 4

0

I10*W01

W11

0

0

0

0
+
0

0
+
0

0

0

Cycle 1

0

0

0

0
+

0

0
+

I00 I01 I00 I01

I10 I11 I10 I11

W10

W01

W11

W00

I01 I00 I01 0

I11 I10 I11 0

0

I00*W00

Cycle 2

0

I10*W00

W10

W01

W11

0

I10*W00
+
0

I00*W00
+
0

I00 0 0 I01

I10 0 0 I11

W11
0

0

W01

I00*W00

I01*W10

Cycle 3

I10*W00

I11*W10

I00*W00

I01*W10

+

I10*W00

I11*W10

+

0 0 0 0

0 0 0 0

0
0

0

0

I00*W01

I01*W11

Cycle 5

I10*W01

I11*W11

I00*W01

I01*W11

+

I10*W01

I11*W11

+

33 | P a g e

Figure 2-16 TPU Architecture

2.2.1.3.2 EYERISS

Eyeriss is designed by MIT researchers and published in 2016. It is implemented based on TSMC

65nm LP technology. Like the TPU, it is using the strategy of reusing data. But unlike the TPU, it

has control signals to choose which PE will be involved and has a very limited global buffer, in

addition to it is not only using Weight stationary like TPU, it also has a taxonomy of collecting

back the partial product sum and reuse it, this is called Row stationary, in Figure 2-17, the dataflow

of Row Stationary is shown. However, the architecture of the Eyeriss is shown in Figure 2-18.

a) TPU block diagram, [27]

b) TPU versions cores differences, [28]

34 | P a g e

Figure 2-17 Eyeriss dataflow used, [24]

Figure 2-18 Eyeriss Architecture, [29]

2.2.1.3.3 NVIDIA GA100

Nvidia GA100 is designed by Nvidia and released in May 2020. It is implemented based on TSMC

7 nm. It is totally different architecture compared to the two showed above, in fact it is a very

powerful GPU. But in addition to its different architecture, a Tensor core is embedded inside it,

making it compatible to process very complex information, from video processing to low data

processing. GA100 has 8 GPC (Graphic Processing Clusters) and in each one 16 SMs (Streaming

Multiprocessors) inside it. In addition to that, it has 6 HBM2 (High Bandwidth Memory second

generation) and for each one, there are two memory controllers, in Figure 2-19 this hierarchy is

shown.

35 | P a g e

Figure 2-19 Nvidia GA100 Top-level Architecture, [30]

Each SM has: 4 processing blocks and 1 warp scheduler per processing block, 32 FP64 (64bits

Floating points) CUDA (Compute Unified Device Architecture) Cores, 64 FP32 (32bits Floating

points) CUDA Cores, 64 INT32 (32bits Integer) CUDA Cores, 192 KB of combined shared

memory and L1 data cache and 4 tensor cores. The tensor core is not very different than the one

implemented in Eyeriss which is shown in Figure 2-20. Another feature presented here is a new

Sparse tensor core instruction that basically skips the weights with zero values, then it will be

multiplied with the activation, as shown in Figure 2-21.

Figure 2-20 Nvidia GA100 Tensor core, [31]

36 | P a g e

Figure 2-21 Nvidia GA100 Matrix Sparsity, [30]

2.2.1.3.4 INTEL STRATIX 10 FPGA

Intel Stratix 10 FPGA is designed by Intel in 2020, it is implemented based on intel 14nm tri-gate

(FinFET) technology. As many companies face problems due to inflexibility of most of the

processing units, they may tend to go with solutions like FPGA based designs, for the high

configurability, even though, it is not very desirable for software Engineers. For instance,

Microsoft Project Brainwave, [31], uses this FPGA to accelerate their DNN (Deep Neural

Network). As one of the main drawbacks of FPGA the high-power consumption, which there is

inadequate control over it, a specialized computational units called AI Tensor blocks are embedded

inside, which is shown in Figure 2-22.

Figure 2-22 Intel Stratix 10 AI Tensor blocks, [32]

37 | P a g e

Since FPGA is programmed using HDL which are then compiled into bitstreams, these bitstreams

not very compatible with the usage of DNNs. Therefore, in these bitstreams, DNNs are mapped

into a pipeline in order to be supported to be processed. In order to understand this mapping, see

Figure 2-23.

Figure 2-23 Neural network pipelining, [33]

38 | P a g e

Chapter three

3 NEURAL NETWORK ACCELERATOR DESIGN

Nowadays, the need of using machine learning is hugely increasing. Since technology is getting

more complex day by day, it is necessary to adapt the neural networks used by machine learning

algorithms nowadays. In order to implement those, especially in low scale applications, it is

necessary to find another solution rather than GPUs (Graphical Processing Unit) which consumes

much more energy and relatively consumes bigger area, than the design that is proposed in this

work. Therefore, this work focuses on using weight stationary on a parametric and generic design

of an accelerator using a new high-level HDL, with the ability of simulating, both the hardware

designed when implementing a CNN on it, and verifying all the results after converting the CNN

into a matrix multiplication.

As the most important issue in implementing neural networks on GPUs which is used by many

scientists nowadays is its dataflow. The way GPUs process this network is not the best, in a sense

that, most of them have a single very fast memory, which is in many cases built based on DDR5

(Double Data Rate fifth generation) DRAM (Dynamic Random-Access Memory) technology. This

memory is the only thing that the Execution unit, which is the ALU (Arithmetic Logic Unit) in this

case can communicate with. In other means, when fetching out data, it has to come only from the

DRAM, and if there are multiple data that need to be fetched, which is always the case, these data

cannot bypass to the other ALU. This has a severe impact when it comes to the possibility of

continuing using these data, instead of fetching them out each time from the DRAM it is possible

to bypass them from the ALUs around it, but in this case, it is not only an ALU, it is a unit called

Processing Element, that has an ALU integrated with a register file.

3.1 CHISEL

In this sub-chapter, the tools that were used to create this framework will be explained.

Since, the objective of this work, to design a parametric neural network accelerator. It was

necessary to choose a hardware description language, that is capable to stand the complexity of

this design. Also, easier to be used. High-level Hardware description language (HDL) allows the

39 | P a g e

usage of components like registers and logic shifters and many more, by just calling them, as a

function, without the need of designing such these components. In fact, it is so close to C language.

Allowing designers to write an abstract about the design in an algorithmic behavior, having the

same characteristics of the classic hardware description language (HDL), then translates it to

hardware digital design.

Generally speaking, high-level HDL is easier to use than classic HDLs. In a sense that, classic

HDLs require designing all components that is needed for the top-level design. This could waste a

lot of time when designing complex designs, such as this one. Besides, the poor capability of

describing almost each single bit in the design. Classic HDLs can be better when designing

architectures with very low scale, which has very small number of unknown components to Chisel

library. In addition to the possibility to optimize the architecture to the maximum possible

optimization, with very high controllability comparing to high-level HDL which usually call out

components from the declared libraries it has.

Chisel is an example of high-level HDL, that was developed by University of Berkeley. The version

used in this work is Chisel3. It is built over Scala language, that adds hardware capabilities. It is

also giving the possibility of verifying the HDL by simulating it on the Scala code, by poking

certain values into the hardware design, and check if the result is correct as expected or not. This

gives the power for hardware designers to code, simulate and verify in a single environment.

3.1.1 SCALA BUILD TOOL

Scala build tool (SBT) is an open source tool, that is generally made for compiling JAVA and Scala

programming language. Since Chisel is embedded in Scala, it used in this work to simulate the

accelerator by creating a test file, that is written just as a programming language, that does not

require any knowledge of hardware designing. This test file is used to create a virtual memory

holding Pseudo random numbers with the neural network convolution layer parameters. In other

words, it is just like simulating a real 2-dimensional convolution layer and test it on the Chisel

code version with creating a virtual clock as well, and poking the input ports with the convolution

layer data, and test the data coming out from the output ports and compare them to the code test

40 | P a g e

version. Above that, after verifying the results, it can create a Value change dump (VCD) that will

be used in order to test the switching activating over the gates after synthesizing the design.

3.1.2 FLEXIBLE INTERNAL REPRESENTATION (FIR) FOR (RTL)

During compilation, the design passes by another compiler framework called Flexible Internal

Representation, that optimizes this design to the same form of using classic HDLs. In this case,

Chisel language, gives all the advantages that any hardware designer seeks, with the help of FIR

too, it exports powerful performance with easy coding.

This was the reason behind, the selection of Chisel and all its platforms and tools, above all the

other languages. When designing complex designs, generally designers care about:

1. Simplicity when writing code, to not waste time, about little small details, that is

considered to be waste of time when designing complex designs.

2. Achieving very high performance, when transforming the behavioral level to circuit-

level.

3. Ability of easily verify the hardware design, in an integrated form.

Clearly, all these requirements are fulfilled when using Chisel and all its supported tools

3.2 VERILATOR TOOLCHAIN

Finally, after verification and optimizing the design, it is time to synthesize it, in order to transform

it into circuit-level. At this time, Chisel is not supported by industrial EDA tools. Fortunately,

Verilator tool is supported by Chisel, which has the power to convert the design after being

optimized into a netlist written in Verilog language, which is supported by almost all hardware

design compilers.

41 | P a g e

3.3 DESIGN ANATOMY

After understanding all aspects of the convolution layer and the process taken for designing the

accelerator as a functional level, until transforming it to circuit-level. It is possible now to create

an architecture suitable for all aspects explained previously.

In this work, a spatial architecture based on the weight-stationary systolic paradigm has been

implemented. The reason behind using this kind of dataflow is, the ability of saving power, by

keeping Weights data static and reuse them, up to the maximum possible number of uses. Also,

the ability of shifting inputs all along the array, without the need to access the memory each time

an input data is needed

The following sections will explain the design from top down analogy.

3.4 CONVOLUTION LAYER ANATOMY

Designing an accelerator for neural networks requires special dataflow, since neural networks have

quite big set of data frames, that must be computed in a synchronized form. However, the focus

here is on convolutional layers because they represent the most computationally intensive part of

the model execution. Moreover, Convolutions layers in a neural network, for instance, do not

always have same set of hyperparameters. Therefore, designing an accelerator, should be able to

sustain different dimensions. Nevertheless, the layer is considered with certain parameters, which

are:

1. Input shape (Cin, Hin, Win): Input shape represents the image that need to be processed.

Usually, this image is represented by number of rows, number of columns, which are the

matrix of an image, which represents number of pixels of an image, and set of colors for

this image, like RGB, which are number of channels. Each channel will be filtered by n

number of filters, with a specific dimension. This was a dedicated example when

processing an image as the input shape. However, each case has its own criteria, but in

general it is composed of rows, columns, and channels.

42 | P a g e

2. Output shape (Cout, Hout, Wout): Output shape represents, product of image channels after

being filtered. It is possible that, in some convolution layers, the number of output pixels

and input pixels, do not match and This is because of the stride.

3. Padding: This is mainly used, to maintain the input dimensions, in output dimensions, by

adding m rows to the input, one placed in the first row and one in the last row, also, adding

column in the beginning and in the last, and place certain value in them.

4. Strides: This is used to shift the window of the kernel number of times, usually, 1 or 2

times, along the input shape.

5. Dilations: It is used to skip a pixel in the input, while filtering it, using the kernel

6. Kernel shape (Cout, Cin, Kx, Ky):

The below figures can help in understanding these parameters much more.

43 | P a g e

Figure 3-1 Convolution layer parameters visualization, [34]

Since the proposed architecture, performs a matrix multiplication operation, it is essential to

rewrite any convolution layer as a matrix multiplication. In order to do so, the image is converted

to column using one possible way which is im2col strategy. Figure 3-2 is explaining this strategy.

a) Valid stride, no padding b) No stride, no padding

c) No stride, Valid padding d) Valid dilation, Valid stride, no padding

44 | P a g e

Figure 3-2 GeMM im2col strategy, [35]

Filters is representing the kernel shape, while, input tensor, represents the input shape, that was

previously explained. Clearly, the values of padding, stride and dilation faded out with this

strategy.

Last step is transposing these matrices. Since the strategy used is Weight stationary, it is important

to have Matrix B is the weight and Matrix A is the input, exactly the inverse of Figure 3-2. Hence,

Matrix A which refers to the extension of the Input tensor, will have a dimension of (input

height*input width, Kernel height * Kernel width*Input channels) and Matrix B which refers to

the filters that are applied on the input tensor, which is called Weights after being transformed,

will have a dimension of (Kernel height * Kernel width*Input channels, Output channels). This

shall result an output of dimension of (input height*input width, Output channels), but since there

might be a stride, the output row can change.

45 | P a g e

3.4.1 PROCESSING UNIT DESIGN

Inside the Processing Unit, there are couple of components, that are all connected to an external

memory. these components are:

1. Processing Array (PA): it is a term called, which defines a group of blocks called

Processing Element (PE). In this work, these blocks will process the Weights and Inputs

of the convolution layer. In most cases, this PA has a dimension which is way smaller than

the convolution layer dimension. Here comes the ability of processing of huge dimensional

data, with few resources.

2. Buffers: There are two group of buffers inside this PU, one group is for inputs data, and

the other for partial products.

Figure 3-3 shows the top view of what does this PU looks like.

Figure 3-3 Top view of the Processing Unit

It is important to mention that, the main memory in Figure 3-3, is not inside the PU, but since it

stores the data of the convolution layer, it was essential to show it up.

46 | P a g e

The design has 3 input ports and one output port, each port is made of n number of bits. One input

port for Weights, which has a number of access ports equals to the number of columns of the PA,

since Weights will shift right into the PA in all columns at the same cycle for number of cycles

equal to the number of rows. This means that the last row will be filled at the end of data

organizing. Unlike all the other input ports, Weights does not require to be stored outside the PA,

since they will be used only once, and there is no need for shifting them after the organization

cycle .The second input port is for data inputs, which will be stored inside the shift registers until

the organization cycle ends. The last input port is made for partial products, which has the same

behavior of the data input port.

All inputs and outputs ports are connected directly to the main memory. Which has the weights

and inputs data of the convolution network.

The design acceleration can be classified into different types of cycles:

1. General cycle: This cycle will contain all the cycles mentioned below. The number of

iterations in this cycle is equal to:

𝐶𝑒𝑖𝑙 (
𝑀𝑎𝑡𝑟𝑖𝑥𝐵𝑅𝑜𝑤

𝑃𝐴𝑅𝑜𝑤

) ∗ 𝐶𝑒𝑖𝑙 (
𝑀𝑎𝑡𝑟𝑖𝑥𝐵𝐶𝑜𝑙𝑢𝑚𝑛

 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛

)

Equation 3-1 Number of iterations calculation in the general cycle

In each cycle of that, a window of Weights will be taken. The dimension of the window is

always equal to the PA dimension.

a. Organization cycle: It is the first cycle which deals with taking a window of the

weights, and place them inside the PA. Usually, a single window is taken after

passing by all the cycles in the general cycle. The window starts from the top left

of the Weights 2D array going to the last row, then shift right by the number of

columns and start again from the first row. At the same time, the inputs shift inside

the input buffers, for number of cycles equal to the PA number of columns. This

means that the column of the input buffer in the very right, which is considered to

47 | P a g e

be the first column, will be filled then it will stop receiving input data from the

memory during this cycle.

The number of iterations for this cycle can be calculated by using this equation:

𝑀𝑎𝑥(𝑃𝐴𝑅𝑜𝑤, 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛)

Equation 3-2 Number of iterations calculation in the organization cycle

Consider having a PA of dimension 3x2, weight of 3x2 dimension and input of

2x3, in order to understand this cycle.

Figure 3-4 Organization cycle sample

During this cycle, no inputs will enter the PA, and here, this cycle ends with

iteration equal to 3, which is equal to the number of columns.

b. Data processing cycle: inside this cycle, Weights will not change, but inputs data

inside the will keep shifting inside the PA. In addition to that, there will be two

inner cycles inside, which will be processed at the same cycle:

i. Input shifting cycle: In order to use the Weights, the maximum number of

usages, the buffer will receive all the inputs inside number of columns,

which will be equal to the columns of the PA. Continue the example of

Figure 3-4, but focusing only on the Input buffer part.

I11

I12
W32 W31

Cycle 1

I11

I12

I21

I22

W32 W31

W22 W21

Cycle 2

I11

I12

I21

I22

I31

I32

W32 W31

W22 W21

W12 W11

Cycle 3

48 | P a g e

Figure 3-5 Input shifting cycle sample

After cycle 5, the PA will have all the inputs and weights to be processed.

Right after cycle 5, the number of iterations left to finish data processing

cycle is equal to:

(𝑃𝐴𝑅𝑜𝑤 − 1) + (𝑃𝐴𝑐𝑜𝑙𝑢𝑚𝑛)

Equation 3-3 Number of iterations calculation in input shifting cycle

ii. Partial products shifting cycle: The purpose of this cycle, is accumulating

the results of the previous general cycle with the current general cycle,

since, as mentioned before, this accelerator is mainly used with convolution

layers with big dimensions. This cycle process will be explained in further

details in the Partial products accumulation section. However, this cycle

does not really start in the beginning of the data processing cycle. In fact,

it starts after the processing cycle equals to:

𝑃𝐴𝑅𝑜𝑤 − 1

Equation 3-4 Starting condition of Partial products shifting cycle

Nevertheless, this cycle is executed in parallel with the input shifting cycle.

I32

I41 I31 I21

I22 I42

Cycle 1

I42

I41 I31

I32 I52

I51

Cycle 2

I52

I51 I41

I42 I62

I61

Cycle 3

I62

 I61 I51

I52

Cycle 4

 I61

I62

Cycle 5

49 | P a g e

The number of iterations for the data processing cycle can be calculated using this

equation:

(𝑃𝐴𝑅𝑜𝑤 + 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛) + 𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑅𝑜𝑤
− 1

Equation 3-5 Number of iterations calculation in Partial products shifting cycle

Now, after splitting down all the cycles, it is possible to calculate the total number of iterations by:

𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑐𝑦𝑐𝑙𝑒 ∗ (Organization cycle + 𝐷𝑎𝑡𝑎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒)

Equation 3-6 Total number of iterations calculation

After each general cycle, all the buffers and register files receive reset signal, so they no longer

hold any data inside.

For better understanding, the waveform in Figure 3-5 can show how data is synchronized, knowing

that, the example used in this figure, is the same one proposed in Figure 3-4.

Figure 3-6 Processing Unit synchronization waveform

50 | P a g e

The reason why the input data in each row, are not showing up in the same cycle, is that there are

internal registers inside the Processing unit (PU) that keep the data in the right synchronization.

Further details about this part will be explained in Internal registers section.

3.4.1.1 PROCESSING ARRAY

This is the most important component in the PU, since all the computations occur in it. This block

is made up of several essential blocks, called Processing engine and some registers. The

importance of these registers is to delay some input and output data from another, so they shall be

synchronized. Another importance is, to shift data inside the register files of the PE all along the

other register files.

The processing array is divided into two groups:

1. Systolic array group: it deals the processing inputs and weights of the convolution layer, in

a systolic movement. This group is connected to the input buffers and the main memory,

for shifting the Weights inside the PEs.

2. Accumulator group: it accumulates all the partial products all together to give the correct

output product, in the very end. This group is connected with the output of the first group,

which is the systolic array group and the partial products buffer.

A general view for this division is in Figure 3-7.

Figure 3-7 Processing Array top view

51 | P a g e

Consider a simple matrix multiplication of A (4, 4) and B (4, 4), and model it on the proposed PA

design, with dimension (2, 2).

Figure 3-8 Matrix multiplication sample

The cycle in Figure 3-8 is referred to the general cycle, which is explained in Processing unit

design. However, as shown in the figure above, Matrix B was windowed 4 times, upon those

windows, the values were used once. Unlike Matrix A, which the values of it, were used more than

once, like in cycles 1 and 3. However, the above figure is representing the dataflow strategy inside

the PA. In this particular example, Matrix A is representing Input data and Matrix B is representing

the Weights. Also, the accumulation strategy was represented in cycles 2 and 4, in which the values

of cycle 1 was added to the values that were calculated in cycle 2. And the same implies between

cycle 3 and 4.

This is exactly the kind of behavior aimed to be implemented in this PA.

3.4.1.1.1 PROCESSING ELEMENT

PE is generally made of Register file, that is divided into two parts and Multiply and Accumulator

(MAC). The first part of the Register file is assigned for the Input data, and the second part for the

Weights. Usually the number of PEs inside the PA is equal to the assigned values of Rows and

Columns of the PA. Since this is a matrix multiplication at the moment, the only needed operands

are ‘+’ and ‘*’. In Figure 3-9, the block of PE is shown.

1 2 3 4 17 18 19 20 1 2 3 4 17 18 19 20 1 2 3 4 17 18 19 20 1 2 3 4 17 18 19 20

5 6 7 8 21 22 23 24 5 6 7 8 21 22 23 24 5 6 7 8 21 22 23 24 5 6 7 8 21 22 23 24

9 10 11 12 25 26 27 28 9 10 11 12 25 26 27 28 9 10 11 12 25 26 27 28 9 10 11 12 25 26 27 28

13 14 15 16 29 30 31 32 13 14 15 16 29 30 31 32 13 14 15 16 29 30 31 32 13 14 15 16 29 30 31 32

59 62 * * 250 260 * * 250 260 65 68 250 260 270 280

211 222 * * 618 644 * * 618 644 233 244 618 644 670 696

363 382 * * 986 1028 * * 986 1028 401 420 986 1028 1070 1112

515 542 * * 1354 1412 * * 1354 1412 569 596 1354 1412 1470 1528

OUTPUT MATRIX

CYCLE

4

*

MATRIX B

OUTPUT

MATRIX

CYCLE

1

OUTPUT MATRIX

CYCLE

2

OUTPUT MATRIX

CYCLE

3

*

MATRIX B MATRIX A

*

MATRIX B MATRIX AMATRIX A MATRIX B

*

MATRIX A

52 | P a g e

Figure 3-9 Processing Element Top view

Usually, only the first row of the PEs looks like Figure 3-10. It does not have adders, since the

first row will have any values to accumulate.

Figure 3-10 Processing Element top view of the first row of the Processing Array

Let us consider cycle 1 in Figure 3-8, with using the proposed hardware components of 16 bits.

In Figure 3-11, cycles 1 and 2, are considered to be Organization cycle, while the rest, are

considered to be Data processing cycle. Cycles 3 to 6 are Inputs shifting cycles are activated, and

after that it is disactivated.

The accumulation effect did not appear in this example, since only the first cycle of the general

cycle was implemented, and there were no partial products.

53 | P a g e

54 | P a g e

Figure 3-11 Sample of processing a Weight (4x4) with Input tensor (4x2) in Processing Array with hardware

components

55 | P a g e

3.4.1.1.2 INTERNAL REGISTERS

From Figure 3-11, it is clearer now, the importance of the internal registers. But let us divide those

registers into five categories, according to their functions, referring the colors of the registers to

Figure 3-11.

1. Orange registers: Delay the inputs from entering the PE register-file to be correctly

accumulated with the values of their previous rows. In order to correctly synchronize the

accumulation, the number of registers will increase by 1 register in each row, starting with

no registers in the first row. The below equation can be used in order to calculate the total

number of this register.

(𝑃𝐴𝑅𝑜𝑤 − 1) ∗ 𝑃𝐴𝑅𝑜𝑤

2

Equation 3-7 Number of Input buffer calculation

2. Green registers: It is used to shift the values coming out of the MAC/ALU to the upcoming

PE MAC/ALU. The below equation can be used in order to calculate the total number of

this register.

(𝑃𝐴𝑅𝑜𝑤 − 1) ∗ 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛

Equation 3-8 Number of Processing element buffer

3. Yellow registers: It is used to shift the input data inside the register-file to the register-file

of the PE next to it. The below equation can be used in order to calculate the total number

of this register.

(𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛 − 1) ∗ 𝑃𝐴𝑅𝑜𝑤

Equation 3-9 Number of Input shifters buffer

56 | P a g e

4. Violet registers: It is used to shift the Weight data inside the register-file to the register-file

of the PE next to it. The below equation can be used in order to calculate the total number

of this register.

(𝑃𝐴𝑅𝑜𝑤 − 1) ∗ 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛

Equation 3-10 Number of Weight shifters buffer

5. Grey registers: Delay the outputs from entering the Accumulator part to be correctly

accumulated with the values of the partial products. In order to correctly synchronize the

accumulation, the number of registers will increase by 1 register in each column, starting

with no registers from the last column. The below equation can be used in order to calculate

the total number of this register.

(𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛 − 1) ∗ 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛

2

Equation 3-11 Number of Output shifters buffer

3.4.2 PARTIAL PRODUCTS ACCUMULATION

In each general cycle, there are partial products with dimension of (𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑅𝑜𝑤
, 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛). These

products must be accumulated with other partial products, until the PA window reaches the last

row of Matrix B Row. While the actual dimensions of the partial products buffers will always be

the inverse of the upper part of the processing array.

By looking at Figure 3-12, the blue blocks in Matrix A will be multiplied by the blue blocks of

Matrix B, in each particular cycle. Thereby, the cycles in each group will be accumulated all

together to give the final correct result. Since in this particular example, the window of the PA has

a dimension of (2, 2), and number of groups are 4, so, the final output will give a dimension of (4,

2, 2). By extending this three-dimensional matrix, the result will be (8, 8), which is the correct

dimension of the output.

57 | P a g e

Figure 3-12 Sample of accumulating Weight (8x8) with Input tensor (8x8)

Let’s complete the example of Figure 3-11, in Figure 3-13 using hardware components, by

stepping to the general cycle after it, which is general cycle 2.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Cycle 2

Cycle 14

Cycle 10

Cycle 6

MATRIX A MATRIX B

Cycle 13 Cycle 15 Cycle 16

Cycle 7 Cycle 8

Cycle 9 Cycle 11 Cycle 12

Group 1

Group 2

Group 3

Group 4

Cycle 1 Cycle 3

*

Cycle 4

Cycle 5

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Cycle 12

Cycle 13

Cycle 14

Cycle 15

Cycle 16

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

58 | P a g e

59 | P a g e

Figure 3-13 Completion of processing and accumulation a Weight (4x4) with Input tensor (4x4) in Processing

Array with hardware components

60 | P a g e

To have the full output, these iterations will be repeated for four cycles, which are referred to the

general cycles.

3.5 SYSTEM DESIGN

After understanding the design anatomy, and how to implement it, it is possible to start writing the

code, both, the Hardware description language that is written in Chisel in this work, and its

simulator, which is written in Scala in this work.

3.5.1 SCALA CODE

In order to have an organized environment and to make sure that the hardware accelerator will

perfectly work and give correct result, a simulator was established first, with exactly the same

analogy of the design anatomy.

Firstly, the neural network environment is defined, then, two virtual memories bank were created

that holds both input tensors and kernels data as shown in the below flowchart.

Figure 3-14 Neural network parameters definitions flowchart

61 | P a g e

These data are then distributed among the virtual memories, the kernels are inside the virtual

weight memory, while the input tensor data are inside the virtual input memory. As illustrated in

Design Anatomy chapter after being organized as General matrix to multiplication as im2col

strategy was explained.

The distribution of the kernels is shown in the below flowchart.

Figure 3-15 Kernel distribution flowchart

Now, the last memory distribution left is the input tensor, which is shown in the below flowchart.

62 | P a g e

After having all data and memory correctly established, it is possible to establish the dataflow of

the processing array.

Figure 3-16 Input tensor distribution tensor flowchart

63 | P a g e

First thing done, was calculating the aspects of the processing, which are the number of cycles

required and number of iterations, as explained in Processing unit design sub-chapter. Right after,

the internal parameters of the processing array are declared, which are the internal register and the

multiply and accumulator elements. These declares are shown in the below flowchart.

Figure 3-17 Processing aspects declaration flowchart

After having all physical components declared and data are organized in the virtual memories, it

is possible to process them now.

For simplicity, the code will break down into:

1. General cycle

64 | P a g e

a. Data placement

i. By row

ii. By Column

b. Data processing

i. Processing elements data shifting

ii. The upper processing array part

iii. The accumulator part

c. Data Resetting

In the general cycle stage, as explained before, it is the cycle which will have the weights inside

the Processing array stationary and not changeable, in order to maximize its usage. Inside this

cycle, there are smaller cycles. The below flowchart represents this stage.

65 | P a g e

Figure 3-18 General cycle flowchart

Data placement stage will deal with taking data input from the virtual input data, and place some

and maybe all of them inside the input buffer, it depends on the size of the processing array.

Another thing occurs inside the data placement stage is, placing some of the weights and maybe

all of them inside the processing elements weight register. This stage is divided into two stages,

since this design is generic and parametric, it is possible that the number of columns of the

processing array are bigger than the rows, so, in order to make sure that data are organized and

filled correctly, it is checked by number of rows firstly, and then iterated to the number of

columns, in case the columns are bigger than rows, otherwise, the columns stage is unnecessary.

The below flowchart represents the Data placement stage.

66 | P a g e

Figure 3-19 Data placement stage flowchart

The below flowchart represents Data placement stage by row.

67 | P a g e

Figure 3-20 Data placement stage by row flowchart

68 | P a g e

The below flowchart represents Data placement stage by column.

Figure 3-21 Data placement stage by column flowchart

Data processing stage will deal with the weights inside the Processing array after being

organized in the previous stage. In addition to, shifting all input data allocated inside the input

buffer, and continuously receiving only input data from the main memory as in Data placement

stage. This stage contains two smaller stages, first stage deals with the upper part of the

69 | P a g e

Processing Array by receiving input data inside the processing element input registers and

shifting them all along the Processing array with multiplying and adding the data inside the

Processing array elements. The last stage deals with the lower part of the Processing Array by

receiving the accumulated data from the last row of the upper part of the processing array to the

accumulation part, and adding them with the data from the previous general cycle if they were

from the same input column, as explained in the previous sub-chapter and then, send them back

to the main memory.

The below flowchart represents the Data processing stage.

Figure 3-22 Data processing stage flowchart

The below flowchart represents the Data processing stage of the upper part.

70 | P a g e

Figure 3-23 Data processing stage of the upper part

71 | P a g e

The below flowchart represents the Data processing stage of the lower part.

Figure 3-24 Data processing stage of the lower part

Finally, resetting all the processing array registers, which means, in our case, placing zero’s

inside Processing Array registers.

72 | P a g e

3.6 WORK CONTRIBUTION

As explained before how data flow through this design, and how can they be processed. It is

possible now to discuss, why can this work give better results from energy, area, and latency points

of view. Since the amount of accesses required by this design from and to the processing array and

main memory is very limited, this means, that the power that is required is very low comparing to

the design of GPUs that usually consumes tens if not hundreds of watts per cycle. While from area

point of view, most GPUs are power hunger and contains millions of ALUs, while this design it is

parametric that means, the number of elements can be tuned, to satisfy the desired neural network,

and in most cases, hundreds or barely thousands of ALUs are pretty sufficient to run most of

nowadays neural networks. Lastly, from latency point of view, since those ALUs are connected to

each other’s, bypassing of data is much faster in low-scale design of this work. It is important to

hint out, that in some cases, if the design is very large scale, the latency will increase, and GPUs

may give better results in such scenario.

In the upcoming chapter, experiments will be held out and show results of how it was used and the

quality of the design, with their results.

73 | P a g e

Chapter four

4 EXPERIMENTS AND RESULTS

In this chapter, the reports of the design and the experiments made on it, will be shown, and

analyzed.

The aim of this chapter is to test several real benchmarks on the proposed accelerator and show

how can the dimensions of a convolution layer, can differ from another one, if applied on this

proposed accelerator. Also, analyze the effectiveness of the accelerator on these convolution layers

if it gets bigger.

The accelerator dimension can certainly differ with a positive or negative effect, based on the

convolution it is tested on. That is why, three different dimensions will be proposed in this

experiment.

4.1 SYNTHESIS AND OPTIMIZATION

It is possible to start synthesizing these three accelerators now, which will be referred to it later on

by configuration, as the accelerator design is the same, while the dimensions of the systolic array

will just differ. However, the three dimensions of the accelerator proposed are:

[1] 8 x 8 [2] 16 x 16 [3] 32 x 32

These three configurations will have different characteristics, since their hardware resources are

not the same anymore. In order to know these aspects, we can use Synopsys tools.

4.1.1 DESIGN SYNTHESIS

Since the exported Verilog netlist only represents a functional architecture, it is time to transform

this functional architecture into physical architecture.

74 | P a g e

4.1.1.1 DESIGN COMPILER

It is one the products offered by Synopsys, that is used in this work in order to synthesize a

functional netlist using a technology library to have a physical architecture, with the characteristics

of the selected technological library, then the ability analyze and elaborate this design with many

aspects that are required in order to physically implement this design. Also, it is also possible to

create virtual clocks assigned to the clocks of the design, in order to check for suitable frequency

adopted to the design.

4.1.1.1.1 DESIGN-WARE

In addition to the features offered by the design compiler. Another feature it has, which is, a library

where it has a collection of Arithmetic components and much more. This helps the design compiler

to choose from this library the best combination of components that can produce the best trade-off

between area and frequency.

The selection of the combinations occurs during the compilation process, and after it ends, the

design characteristics can be known, such as, its area, and if the virtual clocks assigned were

violated or not. Also, power analysis has been performed using Prime time,

4.1.1.2 PRIME TIME SHELL

This is one of the most critical steps in the design flow, since it verifies whether, this design would

not violate any of the timing constraints performing static timing analysis. In addition to that, it

performs an estimation of the power consumption.

After synthesizing the Verilog netlist, and having a post-synthesis netlist, made up of gates, and

having Standard delay format (SDF) which has all the timing data of the design, it is possible to

check the total dynamic power of the cells, by collecting the signal probabilities through a gate-

level simulation. During the gate-level simulation random values has been used for the weights

and the input activations.

75 | P a g e

This data collection is saved inside the VCD file. By reading the VCD file, post-synthesis netlist

and the SDF file, a detailed estimation of the dynamic power consumption of the design can be

generated.

4.1.2 AREA ANALYSIS

As explained in the previous chapter, the importance of Design compiler tool. Firstly, there was a

script prepared in order to synthesize these three configurations in a quick way, since the

constraints applied on all of them were exactly the same. The script was made up of some

commands, to be run on the Design compiler, and it is written in Tool command language (TCL).

Design the area and maximum frequency reports of each configuration, were extracted. However,

it was obvious, that the area of the biggest processing engine array configuration, will result the

biggest area.

 8 x 8 16 x 16 32 x 32

Area [um2] 1350.795 5415.895 21916.134

Table 4-1 Area analysis of multiple configurations of Processing Array

It is found that, by doubling the processing engine array, the area increases quadratically, and this

is conceptually true. In a sense that, by doubling the array, means, both array row and array column

are doubled, so, it is more like, cloning the resources double of times, in two side, which is

quadratically related. This was the first verification, in order to check, that the high-level HDL

conversion to Verilog is correct.

As this design take into consideration, that data flow should be correctly ordered, so that the data

do not lose its sequence, lots of registers were internally placed in the processing engine as

explained in the previous chapter. Yet, the combination cells found in the design, were much more

than sequential cells. This is why, the arithmetic logic unit, placed in each processing element,

contains an adder of 64 bits and also a multiplier, which generally, in low level design, they

76 | P a g e

breakdown into multiple cells, unlike, the registers, which are considered as a single cell for each

bit.

Figure 4-1 Sequential vs Combinational cells area analysis in all configuration

Clearly, the reports state that, most of the area is occupied by combinational cells. The below

equation can be used, in order to estimate the conceptual number of sequential cells, in this design.

((𝑃𝐴𝑅𝑜𝑤 ∗ 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛 ∗ 6) + 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛
2 − 2) ∗ 𝑛𝑏𝑖𝑡𝑠

Equation 4-1 Number of sequential cells estimation

Since the design compiler, optimizes the internal registers of the processing array, the above

equation, is considered to find, the maximum number of combinational cells. The total area found

in Table 4-1, was calculated in design compiler by using technological libraries provided by

STMicroelectronics of technology with unit area of 65 nm, called STcmos65.

The below equation can be used, in order to estimate the conceptual number of combinational

cells, in this design.

𝑃𝐴𝑅𝑜𝑤 ∗ 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛 ∗ 𝑛𝑏𝑖𝑡𝑠 ∗ 50

Equation 4-2 Number of combinational cells estimation

Certainly, as the above equation is considered to find, number of combinational cells, it is not very

accurate. In a sense that, in low level design, the design compiler chooses from the design ware,

11%

89%

cells in all configurations

Sequential cells Combinational cells

77 | P a g e

the best combination of cells of different architecture of adders and multipliers. Since the clock

was fixed to 7.4 ns, the design compiler will rely more on area, and choose parallel architectures,

allowing the clock to be the same, and increase the combinational cells. However, Equation 4-2,

was concluded from compiling multiple configurations and resulting an average coefficient which

is 50.

4.1.3 POWER ANALYSIS

As explained in the previous chapter, prime-time tool was used to estimate the power, by importing

the VCD, SDC, and netlist files. The below table shows power estimated of all the test

configurations.

 8 x 8 16 x 16 32 x 32

Power [mW] 0.0264 0.0929 0.3552

Table 4-2 Power analysis of the Processing Array in multiple configuration

Right like area analysis, power is increasing, approximately quadratically since area is increasing

with almost the same relation. The reason behind why power is not increasing quadratically as

much as area is that the technology library used, provides multiple levels of threshold voltages.

Allowing the cells that are critical, to use low level threshold, so it does not violate latency, but

leads to have more leakage power. This is why the ratio of the 32x32 configuration to 16x16 is

higher than 16x16 to 8x8, since more cells in the 32x32 configuration will be placed in the critical

paths, so these gates, will use low level threshold voltage.

4.2 LATENCY ANALYSIS

As explained in the previous chapter, how was the maximum frequency of the smallest

configuration obtained, then it was used among all the other configurations, so same clock

frequency will be the same for all the other configurations. However, as the purpose of this work,

78 | P a g e

to test this accelerator using different configuration on multiple actual benchmarks, to simulate the

real latency. So, 10 different benchmarks, from different neural networks, and specific layers,

Table 4-3 10 different benchmarks tested on the proposed configuration

where taken to test on. The selection of these benchmarks was based on, different characterization

of these benchmarks, as shown in the table below. From Table 4-3, the selected benchworks,

results in different matrices (A, B), which were created using GeMM (General Matrix to Matrix

Multiplication), by using im2col. Furthermore, these differences lead to quiet different latencies,

eventually. However, in order to show the gain increased by increasing the processing array,

latency of configuration 8x8 which is always having the biggest latency was normalized to 1, and

that normalized the rest of the configurations, as show in the Figure 4-2.

 Cnn6FER MobileNetV1 MobileNetV2 ResNet9 ResNet34

 conv2d

L5

conv2d

L19

conv2d

L1

conv2d

L56

conv2d

L15

conv2d

L99

conv2d

L1

conv2d

L10

conv2d

L6

conv2d

L84

Input

shape

32,48,48 128,12,12 3,224,224 1024,1,1,1 114,56,56 1280,1,1 3,24,24 128,112,112 64,56,56 512,7,7

Output

shape

32,48,48 128,12,12 32,112,112 1001,1,1,1 24,56,56 1001,1,1 32,112,112 256,112,112 64,56,56 512,7,7

Kernel

shape

32,32,3,3 128,128,3,3 32,3,3,3 1001,1024,1,1 24,114,1,1 1001,1280,1,1 32,3,3,3 256,128,3,3 64,64,3,3 512,512,7,7

Matrix A

(x, y)

2304, 288 144, 1152 12544, 27 1, 1024 3136, 114 1, 1280 50176, 27 12544, 1152 3136, 576 49, 4608

Matrix B

(x, y)

288, 32 1152, 128 27, 32 1024, 1001 114, 24 1280,1001 27, 64 1152,256 576, 64 4608, 512

Memory

accesses

[*106]

21.233664

21.233664

10.838016

1.025024

8.580096

1.28128

86.704128

3699.376128

115.605504

115.605504

Latency

[ms] with

conf. 8x8

2.4796512 2.8472832 1.4879328 2.8643328 1.051947 3.580416 11.8871232 428.5246464 13.464921 19.6411392

Latency

[ms] with

conf.

16x16

0.6263064 0.8141184 0.3726936 1.4321664 0.3768672 1.790208 2.9732016 107.3357568 3.3918048 6.5470464

Latency

[ms] with

conf.

32x32

0.1597734 0.2546784 0.0935286 0.7274496 0.0956376 0.909312 0.7440108 26.9362368 0.8607384 2.4551424

79 | P a g e

Figure 4-2 Normalized latency with respect to 8x8 configuration on the proposed benchmarks

It is clear from Table 4-1 that, the bigger the matrices are, the bigger the latency. Taking into

example, ResNet9 neural network, and its convolution layer, number 10, the latency of the

configuration of processing array [8x8] was found approximately 428.5246464 ms, this is due to

the big size of matrices A and B. By using the below equation, it is possible to calculate the latency

in milliseconds, by knowing the parameters of matrices A and B and the frequency of the design.

𝐶𝑒𝑖𝑙 (
𝑀𝑎𝑡𝑟𝑖𝑥𝐵𝑅𝑜𝑤

𝑃𝐴𝑅𝑜𝑤
) ∗ 𝐶𝑒𝑖𝑙 (

𝑀𝑎𝑡𝑟𝑖𝑥𝐵𝐶𝑜𝑙𝑢𝑚𝑛

 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛
) ∗ ((𝑃𝐴𝑅𝑜𝑤 + 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛) + 𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑅𝑜𝑤

+ 𝑀𝑎𝑥(𝑃𝐴𝑅𝑜𝑤 , 𝑃𝐴𝐶𝑜𝑙𝑢𝑚𝑛) − 1) ∗ (
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘𝐻𝑧
)

Equation 4-3 Latency calculation in milliseconds

It is certain now, that, the bigger the dimensions of the matrices, the more gain achieved. Taking

the previous benchmark as an example, which has the biggest latency among all the selected

benchmarks, yet, in Figure 4-2, it is having the least values. Also, in some benchmarks, it seems

that by doubling the configuration, the latency decreases quadratically, while others not. Taking

Cnn6FER neural network, layer number 19 and MobileNetV1 neural network, layer number 56 as

example, have 2.8472832 and 2.8643328 milliseconds, respectively, in configuration 8x8, while

in configuration 16x16, changed to 0.8141184 and 1.4321664 milliseconds, respectively. Noticing,

how close the latencies were in configuration 8x8, and diverged away in bigger configurations.

This is due to the layer shape, which was in this case L19 input matrix is consisted of 144x1152

dimension, while the weight matrix here is 1152x128, which defines it has a compatible weight

shape with the highest configuration, this means that all the 32x32 PEs will be filled out with

80 | P a g e

weights and not resource will be wasted out. While layer 56 has input matrix of 1x1024 and weight

matrix of 1024x1001, this means that the IPs that will be processed is very low considering that

there will be no streaming of IPs will be required in addition to that, the weights columns is not

compatible, that means lots of resources will be wasted out.

4.3 MEMORY ACCESSES ANALYSIS

In this architecture, there are 3 access ports, that are connected to the main memory, as explained

in the previous chapter. In this sub-chapter, Table 4-3 data is used. There are some benchmarks

that have the same number of memory accesses, but, yet, different latencies, this means that this

benchmark is more optimized than the other one. For instance, Cnn6FER neural network,

convolution layers number 5 and 19, both having 21.233664 * 106 accesses, while 2.4796512 and

2.8472832 milliseconds, respectively, as latency. On the other side, by comparing Cnn6FER neural

network, layer number 19 and MobileNetV1 neural network, layer number 56, both benchmarks,

have almost same latency in the 8x8 configuration, while number of memory accesses in both are

21.233664 and 1.025024 * 106 accesses. The reason behind this phenomena is mainly behind the

reusing of the input matrix, for instance, the best scenario would be low number of columns for

the input matrix, since no matter the number of rows of the input matrix, they will all be streamed

in a single general cycle, yet, when having huge weight matrix, especially large number of

columns, it will be streamed every general cycle, even though this is extensive, yet, this is the most

reusing of inputs can be used. Certainly, this explains out all the scenarios behind why the

convolution shape can differ in the latencies and memory accesses. However, more examples are

shown below.

 ResNet34

 conv2d L37 conv2d L68 conv2d L74

Input shape: 128 28 28 256 14 14 512 7 7

Output shape: 128 28 28 256 14 14 512 7 7

Kernel shape: 128 128 3 3 256 256 3 3 512 512 3 3

Matrix A Row: 784 196 49

Matrix A Column: 1152 2304 4608

Matrix B Row: 1152 2304 4608

Matrix B Column: 128 256 512

Memory accesses x 106 115.605504 115.605504 115.605504

81 | P a g e

Latency_with_configuration_8x8 13.759027 ms 14.93545 ms 19.641139 ms

Latency_with_configuration_16x16 3.5420544 ms 4.1430528 ms 6.5470464 ms

Latency_with_configuration_32x32 0.9366624 ms 1.2403584 ms 2.4551424 ms

Table 4-4 Benchmarks having 115.6 * 106 memory accesses comparison

Figure 4-3 Latencies in benchmarks having 115.6 * 106 memory accesses

 ResNet34

 conv2d L41 conv2d L72

Input shape: 128 28 28 256 14 14

Output shape: 256 14 14 512 7 7

Kernel shape: 256 128 3 3 512 256 3 3

Matrix A Row: 196 49

Matrix A Column: 1152 2304

Matrix B Row: 1152 2304

Matrix B Column: 256 512

Memory accesses x 106 57.802752 57.802752

Latency_with_configuration_8x8 7.4677248 ms 9.8205696 ms

Latency_with_configuration_16x16 2.0715264 ms 3.2735232 ms

Latency_with_configuration_32x32 0.6201792 ms 1.2275712 ms

Table 4-5 benchmarks having 57.8 * 106 memory accesses

13.759027
14.93545

19.641139

3.5420544 4.1430528

6.5470464

0.9366624 1.2403584
2.4551424

0

5

10

15

20

25

conv2d L37 conv2d L68 conv2d L74

La
te

n
cy

 [
m

s]

ResNet34

Latencies in benchmark having 115.605504*106
memory accesses

8x8 16x16 32x32

82 | P a g e

Figure 4-4 Latencies in benchmarks having 57.8 * 106 memory accesses

The below equation can be used in order to calculate the memory accesses.

𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑅𝑜𝑤
∗ 𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝐶𝑜𝑙𝑢𝑚𝑛

∗ 𝑀𝑎𝑡𝑟𝑖𝑥𝐵𝐶𝑜𝑙𝑢𝑚𝑛

Equation 4-4 Memory accesses calculation

4.4 DATA ANALYSIS

Using data in Table 4-1, Table 4-2, and Table 4-3, the table below is shown which refers to the 10

benchmarks selected is created.

 Maximum Latency Average Latency Minimum Latency Power Area

8x8 428.5246464 48.78293934 1.051947 26.4 1350795.155

16x16 107.3357568 12.56601696 0.3726936 92.9 5415895.657

32x32 26.9362368 3.3236508 0.0935286 355.2 21916134.13

Table 4-6 Area, Power, and Maximum, Average, and minimum latencies comparison in different benchmarks

7.4677248

9.8205696

2.0715264

3.2735232

0.6201792
1.2275712

0

2

4

6

8

10

12

conv2d L41 conv2d L72

La
te

n
cy

 [
m

s]

ResNet34

Latencies in benchmark having 57.802752*106 memory
accesses

8x8 16x16 32x32

83 | P a g e

5 CONCLUSION

The aim in this project was to create an integrated framework in Chisel for designing, verifying,

and assessing the performance of Neural Network Accelerators based on Systolic array for

processing unit for neural networks to be able to process it with relatively better performance. The

approach used in this work was based on spatial architecture, which gives the ability for data to be

more dynamic across the ALUs, unlike temporal architecture, which pushes data back and forth

ALUs and main memory. The way data was flowing was based on systolic array strategy, which

gives the Processing unit to have one of the three strategies:

• Input Stationary

• Weight Stationary

• Output Stationary

The strategy that was successfully used here was Weight Stationary, that allowed to place set of

Weights inside the Processing Array and use the maximum possible number of inputs with their

relevant Weight. Since neural networks does not come in shapes of inputs and weights, but input

tensor and kernels, which comes in different kind dimension, it was required to use a strategy to

convert the neural network parameters into a matrix multiplication in which it can be processed in

this processing unit, this strategy is called im2col. However, this processing unit was designed by

using a new high-level of HDL called Chisel that gave this work the power of designing this

complex design in a superb optimized version and using powerful function that facilitated the

description of this design. Not to mention, the possibility of testing and verifying that this design

will give correct results by using a SCALA script that pokes and expects data to and from the HDL

code, which resulted in a very clean environment having the possibility to trace and simulate

everything happening inside the HDL code. Furthermore to that, the possibility of exporting an

optimized Verilog code version, which has been used for synthesizing. Moreover, this design is

parametric, which means, it is possible to control the set of the Processing Engines inside the

Processing Array, in addition to, it is generic for all neural networks, which can only by simulated

by placing it parameters inside the SCALA script and it will be converted to matrix multiplication

84 | P a g e

and calculate the number of cycles required for this neural network to be processed on the proposed

design configuration.

5.1 FUTURE WORK

It is possible to improve this work by designing the remaining types of the systolic array, which

are input and output stationaries, and simply create a script to check out which of those types will

best fit the neural network that will be accelerated.

From the previous chapters, it is certain that the parameters of the neural network will

manipulate the latency. For instance, possible future works can exploit the current framework to

perform a design-space exploration where the dataflow adopted depends on the specific

characteristics of each layer, for example, after converting the neural network parameters into

matrix multiplication, if the input matrix is enormous, in such case, it will be much better to use

the input stationary strategy than using weight stationary one.

Last thing can be done, is finding a tuning algorithm, that can find the best configuration.

85 | P a g e

REFERENCES

[1] Joseph Risi, Amit Sharma, Rohan Shah, Matthew Connelly and Duncan J. Watts, “Predicting

history”, in Nature Human Behaviour, 906-912, 2019.

[2] Codeburst, “What is the future of machine learning?”, [Online]. Available:

codeburst.io/what-is-the-future-of-machine-learning-f93749833645

[3] Potentia Analytics, “What is machine learning: definition, types, applications and examples”,

[Online]. Available: potentiaco.com/what-is-machine-learning-definition-types-applications-and-

examples/

[4] Abeyon, “How do machines learn?”, [Online]. Available: abeyon.com/how-do-machines-

learn/

[5] IBM Cloud, “Machine Learning”, [Online]. Available: ibm.com/cloud/learn/machine-

learning

[6] Towards data science, “An introduction to reinforcement learning”, [Online]. Available:

towardsdatascience.com/an-introduction-to-reinforcement-learning-1e7825c60bbe

[7] SAS, “Neural Networks. What they are and why they matter”, [Online]. Available:

sas.com/en_us/insights/analytics/neural-networks.html

[8] TensorFlow playground, “What is a Neural Network?”, [Online]. Available:

playground.tensorflow.org/

[9] Marktechpost, “Neural Networks: Advantages and applications”, [Online]. Available:

marktechpost.com/2019/04/18/introduction-to-neural-networks-advantages-and-applications/

[10] Nature, “Does AI have a hardware problem?”, [Online]. Available:

nature.com/articles/s41928-018-0068-2

[11] Ruizhe Zhao, Wayne Luk, Xinyu Niu, Huifeng Shi and Haitao Wang, “Hardware

Acceleration for Machine Learning”, in Computer Society Annual Symposium on VLSI, IEEE,

2017

[12] Dynamic optimization, “Deep learning”, [Online]. Available:

apmonitor.com/do/index.php/Main/DeepLearning

[13] Investopedia, “What is a neural network?”, [Online]. Available:

www.investopedia.com/terms/n/neuralnetwork.asp

[14] Marvin Minsky and Seymour Papert, “Perceptrons. An Introduction to Computational

Geometry”, in M.I.T. Press, Cambridge, 1969.

[15] Medium, “Brief history of Neural network”, [Online]. Available: medium.com/analytics-

vidhya/brief-history-of-neural-networks-44c2bf72eec

https://codeburst.io/what-is-the-future-of-machine-learning-f93749833645
https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/
https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/
https://abeyon.com/how-do-machines-learn/
https://abeyon.com/how-do-machines-learn/
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://towardsdatascience.com/an-introduction-to-reinforcement-learning-1e7825c60bbe
https://www.sas.com/en_us/insights/analytics/neural-networks.html
https://playground.tensorflow.org/
https://www.marktechpost.com/2019/04/18/introduction-to-neural-networks-advantages-and-applications/
https://www.nature.com/articles/s41928-018-0068-2
https://apmonitor.com/do/index.php/Main/DeepLearning
https://www.investopedia.com/terms/n/neuralnetwork.asp
https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec
https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec

86 | P a g e

[16] R.E. Uhrig, “Introduction to artificial neural networks”, in Proceedings of IECON '95 - 21st

Annual Conference on IEEE Industrial Electronics, IEEE, 1995

[17] Manish Mishra and Monika Srivastava, “A View of Artificial Neural Network”, Advances in

Engineering & Technology Research (ICAETR - 2014), IEEE, 2014

[18] Sophos news, “Man vs machine: comparing artificial and biological neural networks”,

[Online]. Available: news.sophos.com/en-us/2017/09/21/man-vs-machine-comparing-artificial-

and-biological-neural-networks/

[19] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.”, Psychological Review, 65(6), 386–408.

[20] Neuroelectrics, “Artificial Neural Networks – The Rosenblatt Perceptron”, [Online].

Available: neuroelectrics.com/blog/2016/08/02/artificial-neural-networks-the-rosenblatt-

perceptron/

[21] K. Jahr, R. Schlich, K. Dragos and K. Smarsly, “Decentralized autonomous fault detection

in wireless structural health monitoring systems using structural response data”, in proceedings

of the International Conference on the Applications of Computer Science and Mathematics in

Architecture and Civil Engineering. Weimar, Germany, 2015.

[22] The Asimov Institute, “The Neural Network Zoo”, [Online]. Available:

asimovinstitute.org/neural-network-zoo/

[23] Colah, “Understanding LSTM Networks”, [Online]. Available: colah.github.io/posts/2015-

08-Understanding-LSTMs/

[24] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang and Joel S. Emer, “Efficient Processing of Deep

Neural Networks: A Tutorial and Survey”, in proceedings of the IEEE, Volume 105, Issue 12,

2017

[25] Y. Chen, J. Emer and V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow

for Convolutional Neural Networks," 2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA), Seoul, 2016

[26] Moons B., Bankman D. and Verhelst M., “Hardware-Algorithm Co-optimizations”, in

Embedded Deep Learning, Springer, Cham, 2019.

[27] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N.

Boden, A. Borchers, et al., “In-Datacenter Performance Analysis of a Tensor Processing UnitTM”,

in Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium on,

IEEE, 2017, pp. 1–12.

[28] Google cloud, “TPU”, [Online]. Available: cloud.google.com/tpu

[29] Y.-H. Chen, T. Krishna, J. S. Emer and V. Sze, “Eyeriss: An energy-efficient reconfigurable

https://news.sophos.com/en-us/2017/09/21/man-vs-machine-comparing-artificial-and-biological-neural-networks/
https://news.sophos.com/en-us/2017/09/21/man-vs-machine-comparing-artificial-and-biological-neural-networks/
https://www.neuroelectrics.com/blog/2016/08/02/artificial-neural-networks-the-rosenblatt-perceptron/
https://www.neuroelectrics.com/blog/2016/08/02/artificial-neural-networks-the-rosenblatt-perceptron/
https://www.asimovinstitute.org/neural-network-zoo/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://cloud.google.com/tpu

87 | P a g e

accelerator for deep convolutional neural networks”, IEEE Journal of Solid-State Circuits, vol.

52, no. 1, pp. 127–138, 2017.

[30] Nvidia, “NVIDIA A100 Tensor Core GPU Architecture: UNPRECEDENTED

ACCELERATION AT EVERY SCALE”, [Online]. Available: nvidia.com/content/dam/en-

zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

[31] Microsoft, “Project Brainwave”, [Online]. Available: microsoft.com/en-

us/research/project/project-brainwave/

[32] Intel, “Intel® Stratix® 10 NX FPGA Technology Brief”, [Online]. Available:

intel.com/content/www/us/en/products/programmable/stratix-10-nx-technology-brief.html

[33] Greg Nash and Jim Moawad, “FPGAs For Deep Learning”, in Argonne Training Program

on Extreme Scale Computing, 2019

[34] Theano, “Convolution Arithmetic tutorial”, [Online]. Available:

deeplearning.net/software/theano/tutorial/conv_arithmetic.html

[35] Manas Sahni, “Anatomy of a High-Speed Convolution”, [Online]. Available:

sahnimanas.github.io/post/anatomy-of-a-high-performance-convolution/

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.intel.com/content/www/us/en/products/programmable/stratix-10-nx-technology-brief.html
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
https://sahnimanas.github.io/post/anatomy-of-a-high-performance-convolution/

