
POLITECNICO DI TORINO
Department of Control and Computer Engineering

Master’s degree in Computer Engineering

Master Degree Thesis

Evaluation of Students’ Source
Code Submissions Using Machine

Learning

Supervisors
prof. Silvia Chiusano
prof. Siegfried Nijssen

Candidate
Simone Brigante

October 2020

Summary

In recent years, machine learning is experiencing a new golden age with the imple-
mentation of such methods in a wide variety of fields of study. Among them, the
use of such techniques for source code analysis is gaining ground in tasks such as
code optimization, code suggestion and bug detection.

This project is intended to be an introductory study for the application of these
techniques in academic and didactic fields. In the course of this research we tried to
analyze the source code developed by the students of the computer science course at
the Ecole Polytechnique de Louvain. In particular, we tried to predict the outcome
of the final exam taken by a student starting from the source code of the exercises
carried out during the semester. In addition, a further analysis was conducted to
understand whether the source code alone is sufficient to estimate the quality of an
exercise. Finally, a study was made on the interpretability of the results obtained
using the binary classifiers created.

The analyses undertaken did not always lead to the desired results, but can be
seen as a first step in a field of study that deserves more attention.

2

Contents

List of Tables 6

List of Figures 8

1 Introduction 9
1.1 Content Overview . 10

2 State of the Art 12
2.1 Evaluation of Students . 12
2.2 Machine Learning on Source Code 14

2.2.1 Code2Vec . 15

3 Context of Analysis 17
3.1 LINFO1101 . 17
3.2 INGInious . 18
3.3 Database . 19

3.3.1 Submission Collection . 19

4 Analysis on Exercise Quality 21
4.1 Datasets . 21

4.1.1 Exercises Extraction . 22
4.1.2 Exams Extraction . 23
4.1.3 Exercises and Exams Discrepancy 24
4.1.4 Datasets Description . 24

4.2 Model Description . 25
4.2.1 Gradient Boosting Classifier from Scikit-Learn 26

4.3 Analysis of Results . 27
4.3.1 Attempted . 27
4.3.2 Grades . 29
4.3.3 Grades + Attempts . 30
4.3.4 All Features . 32

4.4 Final Considerations . 33

3

Contents

5 Preparation for Source Code Analysis 35
5.1 Exercise Selection . 35
5.2 External Resources . 36

5.2.1 Astminer . 36
5.2.2 Code2Vec . 40

5.3 Dataset Description . 44
5.3.1 Data Extraction . 44
5.3.2 Data Preprocessing . 45
5.3.3 Data Split . 46

5.4 Code2Vec Execution . 47
5.5 Data Postprocessing . 47

6 Analysis on Exercise Source Code 50
6.1 Type of Models . 50

6.1.1 Model on Code Vector . 51
6.1.2 Model on Paths Vector . 51

6.2 Exercises on Exams Outcomes . 52
6.2.1 Dataset . 52
6.2.2 Analysis on Code Vector . 53
6.2.3 Analysis on Path Vector . 54

6.3 Exercises on Exam Questions Outcomes 55
6.3.1 Dataset . 55
6.3.2 Analysis on Code Vector . 56
6.3.3 Analysis on Path Vector . 59

6.4 Exam Questions Outcome . 61
6.4.1 Dataset . 61
6.4.2 Analysis on Code Vector . 62
6.4.3 Analysis on Path Vector . 65

6.5 Final Considerations . 68

7 Interpretability of Code2Vec Results 70
7.1 Procedure Description . 70

7.1.1 Attention Vector . 71
7.1.2 Paths Extraction . 71

7.2 Example . 73
7.3 Considerations . 75

8 Conclusion 76
8.1 Limits of the Analysis and Possible Improvements 77

8.1.1 Students Evaluation . 77
8.1.2 Interpretability of source code 77

8.2 Application to Teaching . 78

4

Contents

Bibliography 79

5

List of Tables

4.1 Averages of the summary variables 23
4.2 Exam sessions information . 24
4.3 Datasets Discrepancy . 24
4.4 Number of features in each dataset 25
4.5 Training and Test sets labels distribution for Exercise Quality Analysis 25
4.6 Attempted classification report . 28
4.7 Attempted Features Importance sum after 1000 iterations 29
4.8 Grades classification report . 30
4.9 Grades Features Importance sum after 1000 iterations 30
4.10 Grades + Attempts classification report 31
4.11 Grades + Attempts Features Importance sum after 1000 iterations . 32
4.12 All Features classification report . 33
4.13 All Features Features Importance sum after 1000 iterations 33
5.1 Sample of entries in tokens.csv . 38
5.2 Sample of entries in node_types.csv 39
5.3 Sample of entries in paths.csv + paths as string 39
5.4 Content of path_contexts.csv . 40
5.5 Dimensions of datasets for source code analysis 45
6.1 Exercises on exam outcome dataset information 52
6.2 Exercises on exam outcome data split 53
6.3 Classification Report for Exercises on Exam outcome using model

on code vectors . 54
6.4 Classification Report for Exercises on Exam outcome using model

on path vectors . 55
6.5 Exercises on exam questions outcome datasets information 56
6.6 Classification Report for Exercises on Exam Question q1 outcome

using model on code vectors . 57
6.7 Classification Report for Exercises on Exam Question q2 outcome

using model on code vectors . 58
6.8 Classification Report for Exercises on Exam Question q3 outcome

using model on code vectors . 58

6

List of Tables

6.9 Classification Report for Exercises on Exam Question q6 outcome
using model on code vectors . 58

6.10 Classification Report for Exercises on Exam Question q1 outcome
using model on path vectors . 60

6.11 Classification Report for Exercises on Exam Question q2 outcome
using model on path vectors . 60

6.12 Classification Report for Exercises on Exam Question q3 outcome
using model on path vectors . 61

6.13 Classification Report for Exercises on Exam Question q6 outcome
using model on path vectors . 61

6.14 Exam Questions outcome datasets information 62
6.15 Classification Report for Question q1 outcome using model on code

vectors . 64
6.16 Classification Report for Question q2 outcome using model on code

vectors . 64
6.17 Classification Report for Question q3 outcome using model on code

vectors . 64
6.18 Classification Report for Question q6 outcome using model on code

vectors . 64
6.19 Classification Report for Question q1 outcome using model on path

vectors . 66
6.20 Classification Report for Question q2 outcome using model on path

vectors . 67
6.21 Classification Report for Question q3 outcome using model on path

vectors . 67
6.22 Classification Report for Question q6 outcome using model on path

vectors . 68
7.1 Most frequent paths for question 0119_q1 with number of appear-

ances in each class prediction . 72
7.2 Paths with higher attention from student submission 74

7

List of Figures

3.1 Example of an INGInious Exercise 18
4.1 Attempted Confusion Matrix . 28
4.2 Grades Confusion Matrix . 29
4.3 Grades + Attempts Confusion Matrix 31
4.4 All Features Confusion Matrix . 32
5.1 findMax AST generated by astminer 37
5.2 findMax AST with labels . 38
5.3 Code2vec model architecture . 43
5.4 Dataset split . 46
5.5 Steps of source code conversion . 47
5.6 Pipeline steps . 49
6.1 Confusion Matrix for Exercises on exam outcome using model on

code vectors . 53
6.2 Confusion Matrix for Exercises on exam outcome using model on

path vectors . 54
6.3 Confusion Matrices for Exercises on Exam Questions outcome using

model on code vectors . 57
6.4 Confusion Matrices for Exercises on Exam Questions outcome using

model on path vectors . 59
6.5 Confusion Matrices for Questions on Questions outcome using model

on code vectors . 63
6.6 Confusion Matrices for Questions on Questions outcome using model

on path vectors . 66
7.1 AST generated from the student’s source code 74
7.2 Detail from the AST generated from the student’s source code . . . 75

8

Chapter 1

Introduction

Research on the subject of machine learning has been growing more and more in
recent years, especially due to the constant growth of computing power and the
collection of massive amounts of data.

One of the areas in which machine learning techniques are being increasingly
applied is source code analysis. Writing code is a job that requires great attention
to detail and excellent problem solving skills. The application of machine learning
in this field has many possible uses: from automatic code completion to code clones
detection, but also techniques for code summarization or the ability to find small
bugs.

The goal of this work is to see if it is possible to apply machine learning tech-
niques to analyze source code files written by students of the computer science
course at Ecole polytechnique de Louvain during the academic year 2018-2019. The
aim is to see if it is possible to get predictions about their performance at the exam.
Subsequently, the answers to the exam questions were analyzed to get information
about their quality.

Making these assessments could improve the quality of the teaching by high-
lighting any recurrent errors made by the students during the course.

The main problem of applying machine learning algorithms for this kind of task
is the fact that these algorithms need numerical representations as input, while the
source code can be seen as a text file.

In order to solve the "conversion" problem we used code2vec a model designed
by Alon et al. [2] capable of representing a snippet of code as a single vector of
fixed length that can be used to predict the semantic characteristics of the code
itself. It is able to do this starting from the representation of the code in the form
of an abstract syntax tree (AST), to obtain which we used the program astminer.

To carry out our research, a pipeline has been developed that:

• extract the data necessary for our analysis

• manipulate them to make them fit our purposes

9

Introduction

• run code2vec for source code conversion

• postprocess the data generated by the model

In the first phase of our analysis we tried to predict whether or not a student
will pass the exam based on qualitative information about the exercises carried out
during the year (such as the grade taken or the number of attempts made).

In the second part we focused on the study of the source code and in particular
we tried to:

• predict the result of a student’s examination by looking at the source code of
the exercises uploaded during the course

• predict the outcome of a specific question of the exam starting from the exer-
cises developed throughout the semester

• evaluate whether or not the raw source code is enough to estimate the quality
of an exam question

All the analyses described have been carried out by means of the creation of
two binary classifiers, using the Gradient Boosting model, one trained on the code
vectors generated by code2vec and the other trained on more interpretable paths
vectors.

The results obtained, although in some cases they did not meet expectations,
are a good first step in the right direction.

One of the main limitations of this analysis was the relatively small size of the
exercise datasets. In fact code2vec, but in general all machine learning algorithms,
get better results with large amounts of data.

Among the possible future developments of the project, it would be extremely
useful to aggregate the vectors of different exercises performed by the same student
in order to have a much better overview of him. Moreover, in order to predict the
outcome of an examination question starting from the exercises carried out during
the year, it would be useful to select only a subset of them possibly related to the
same subject of the question.

1.1 Content Overview
Chapter 2 contains a description of some articles about the two main themes of the
project: the students’ evaluation and the application of machine learning to the
source code.

Chapter 3 gives a brief description of: the course of study analysed, the INGIn-
ious platform and the structure of the database.

Chapter 4 presents a first analysis in which, starting from the submissions saved
in the INGInious database for each exercise, we try to predict whether or not a

10

Introduction

student will pass the end-of-course exam. The features related to each exercise are:
the best grade obtained, the number of attempts, after how much time since the
beginning of the semester the student has done the exercise and the time elapsed
between the first and the best attempt.

Chapter 5 describes in detail all the steps necessary for the source code analysis:
the selection of the exercises, the data pre-processing phase, the execution of the
model code2vec and the post-processing of the data generated by it. In addition,
the functioning of the external tools used in our project astminer and code2vec is
described in detail.

Chapter 6 presents the two types of models created for our analysis, one using
code vectors and one using path vectors. Both are binary classifiers based on the
GradientBoostingClassifier from scikit-learn. It also reports the results obtained
for each of the three analyses, namely the prediction of the result of the exam (and
of each single question) from the source code of the exercises carried out during the
semester and the prediction of the result of an exam question from the source code
developed for it by the student.

Chapter 7 proposes an example of study for the interpretability of the results
obtained in the last of the analyses. In particular, it shows how certain paths can
positively or negatively affect the evaluation of the code.

Chapter 8 presents the conclusions drawn from our study, describing the lim-
itations and problems faced during its development and introducing some of the
possible improvements for each analysis.

11

Chapter 2

State of the Art

The main focus of this project is to be able to predict the performance of a student
based on the exercises submitted during the year by paying particular attention on
the actual source code submitted.

This chapter will describe some of the studies done on the two core aspects of
this project:

• Evaluation of Students - some of the approaches adopted in order to assess the
performance of students during the year

• Machine Learning on Source Code - the possible applications of applying ma-
chine learning algorithms to the source code

Many research have been done about both of the topic using different meth-
ods, here we will try to summarise some of the interesting one read during the
development of this project.

2.1 Evaluation of Students
Being able to predict the performance of the students has become object of study
for many research in the academic field. Indeed, it is an important parameter to
evaluate the quality of didactics of a whole university, but also of a specific course.
In this way, professors can have a direct feedback to understand if their teaching
method is effective or if some specific arguments need to be revised.

The growth of e-learning platforms has permitted to gain large amount of educa-
tional data which has allowed to start applying machine learning and data mining
algorithms in order to extract useful information.

Shahirei et al. [19], in their paper, collect different methodologies on how to
predict the progress of students using data mining techniques in order to improve
teaching in schools.

12

State of the Art

In their research they take into account the two main factors that condition the
various studies: the attributes chosen to measure performance and the prediction
method to use with them.

In the various studies on this topic, many different types of attributes are taken
into consideration, some apparently very distant from each other, but all of them
allow to perform different analyses and to discover even unexpected correlations.
The main ones identified in their study are:

• CGPA (Cumulative Grade Point Average) - is one of the most widely used at-
tributes as a study parameter because it has the greatest impact on a student’s
academic and working future.

• Internal Assessment - i.e. the results obtained in the various projects, quizzes
and labs carried out during the academic year, as well as attendance at lectures
and workshops

• Demographic - such as gender, age, family background, etc.

• External Assessment - for instance extra-curricular activities and social inter-
actions with fellow students.

• Psychometric Factors - such as the interest in learning new concepts, the
method of study and the time spent on it, but also the support from the
family. Although this kind of data is particularly difficult to obtain precisely.

Finally they quote a series of papers reporting the sets of attributes used, the
data mining methods chosen and the results obtained in each search. Obviously
among the most used methods appear: Decision Trees, Neural Networks, Naive
Bayes, Support Vector Machine, etc.

In another research, Ashenafi et al.[3] study if it is possible to predict the exam
scores of some computer science students from the history of their course activity.
In their university students of the computer science faculty use a semi-automated
peer-assessment system. This platform allows each student to submit a question
on a particular topic of the course, the questions will be selected by the professors
and than randomly distributed between the students. So everyone will answer the
question assigned and, moreover, rate its interestingness, relevance and difficulty.
Finally, each answer is also evaluated by the student who submitted it, but also
from other ones who, of course, have not given an answer to the specific question.
All these metrics are then preprocessed in order to train multiple linear regression
models.

During the creation of the dataset, however, they realized that: all the students
whose data was used to create the models had passed the exam. This shows that
the students who participated in the teaching activities, even minimally, were able

13

State of the Art

to pass the exam. Therefore, the models that they created only manage to predict
the grade of past exams (i.e. with a score between 18 and 30 out of 30).

They have developed two types of linear regression models: one in which they
try to derive exactly the grade obtained by the student and the other in which they
divide the grades into 5 buckets. To evaluate the performance of the models, they
used the Root Mean Squared Error (RMSE) value and compared it with the results
obtained by various random grading methods, showing that their models perform
better than random guessing.

2.2 Machine Learning on Source Code
In recent years machine learning is living a new golden age thanks to the constant
growth of the computational power of computers and the great interest in this topic
by technology companies, but also in apparently very distant sectors.

In the research on this subject, the attempt to apply machine learning algorithms
to the source code is becoming more and more popular. In the last few years,
hundreds of papers have been published on this topic [5], conferences and even
competitions have been organised [7].

As has been said, source code analysis using machine learning algorithms would
have several applications, here are some of them:

• Source Code Analysis and Language Modeling

• Embeddings in Software Engineering

• Program Translation

• Code Suggestion and Completion

• Program Repair and Bug Detection

• APIs and Code Mining

• Code Optimization

• Code Summarization

• Clone Detection

For the purposes of this project the most interesting theme seemed to be the
one about "Source Code Analysis and Language Modeling".

In their research, Zhang et al. [24] seek a new approach to analyse source code
using machine learning algorithms.

A focal point of their research is how to represent code in a way that preserves
its syntactic and semantic information. In fact very often the source code is treated

14

State of the Art

as if it were a natural language text, representing a program as a token sequences
or a bags of tokens. However, unlike natural language, the code is characterised by
a greater amount of information contained in each word and a much more complex
syntax.

A better way to represent the source code is by means of abstract syntax tree
(AST). They allow to better represent the syntax structure of the code. Each node
in the tree corresponds to a construct or a symbol of the source code. In this way,
details such as punctuation and delimiters are not taken into account, but empha-
sis is placed on lexical information and syntax structures. Other studies have also
shown that syntax knowledge gives better results than tokenisation techniques. By
combining AST with machine learning algorithms, e.g. Recursive Neural Network
[23], Tree-based CNN [15] and Tree-LSTM [21], both lexical and syntactical infor-
mation can be tracked. All these approaches, however, are subject to the gradient
vanishing problem for very large and deep trees.

Zhang et al. [24] introduce "AST-based Neural Network" (ASTNN) a way to
represent code fragments that divide large ASTs into sets of smaller trees capable
of creating statement vectors that encompass lexical and syntactical knowledge.
Their approach is generic enough to be used in several areas that require code
understanding, such as source code classification and code clone detection, with
very promising results in both areas.

2.2.1 Code2Vec
Finally, the research on which much of this project is based is that of Alon et al.
[2] and their model code2vec.

Just as the distributed word representation used by word2vec [14] has had impor-
tant repercussions in harnessing the power of neural networks for natual language
processing (NLP) problems, in the same way code2vec wants to be a first step in
the same direction in the study of source code.

The one presented by Alon et al. is a model capable of representing a snippet
of code as a single vector of fixed length that can be used to predict the semantic
characteristics of the code.

These methods of representing an object by means of low-dimensional vectors
are known as embeddings. These vectors are able to distribute the meaning of a
code element among several of their components, so that similar objects are mapped
into similar vectors.

In their model this is done by decomposing the code into a set of paths extracted
from the abstract syntax tree, learning a way to represent them atomically and, at
the same time, learning how to aggregate them together.

Thanks to these code embeddings it is therefore possible to apply a wide range
of machine learning algorithms to address several of the above problems related
to the study of the source code. In their case they decided to focus on semantic

15

State of the Art

labeling of code snippets. That is, giving a descriptive name to source code, which
implies finding a match between the entire content of a method and a label.

Their model receives the code snippet and a corresponding label as input, which
expresses the semantic property that we want the model to learn. During the
learning phase, vectors representing the individual labels are also generated. In the
method name prediction task, these vectors have amazing properties, similar to the
famous word2vec example: vec(king) - vec(man) + vec(woman) = vec(queen). For
example, if we sum the vector of the label equals and the one for toLowerCase we
get one very close to the vector of equalsIgnoreCase, and it is also able to catch
analogies like "receive is to send as download is to: upload".

Since machine learning algorithms almost always require numerical vectors as
input, the code vectors produced by this model unlock the application of these algo-
rithms for many tasks such as code retrival, captioning, classification and tagging,
but also a metric for measuring similarity for code clone detection.

The results obtained from this research are very promising and that’s why it
was decided to use this framework as the basis for our study of the source code
produced by the students.

A more detailed explanation of how code2vec works will be provided in the
section 5.2.2, where we will comment on the main features of this model and how
it was used for this project.

16

Chapter 3

Context of Analysis

3.1 LINFO1101
The analysis made during this project has been done on the data collected from
the course LINFO1101 - Introduction à la programmation of the academic year
2018-2019 [13] at EPL in Louvain-la-Neuve.

The aim of the course is to introduce students to programming with the Python
language. They are taught how to analyse a problem in order to implement a
solution and the main concepts of object-oriented programming and simple data
structures.

During the year each student has access to an online syllabus [20] which contains:
the theoretical notions taught during the course and many exercises to test their
ability and their knowledge on each topic.

The theory part is divided in three main topics:

1. Introduction - which gives the basic concepts of programming like: what is
a program, the description of variables, expressions and statements, how to
manage conditional execution and iteration and how to import and use mod-
ules.

2. Data Structures - which describes how to handle data in: strings, lists, tuples,
dictionaries, etc. In addition there is an introduction to files, search algorithms,
testing and exception.

3. Objects - where are explained the basic and advanced concepts of class and
object such as polymorphism and inheritance.

The exercise part is divided, instead, in 12 missions each one about a specific
notion faced in the theoretical lectures. There are different kind of exercises: mul-
tiple choice questions, completion of code snippets or uploading a whole Python
script.

17

Context of Analysis

The exercises done by the students are the main object of analysis of this project
and the process of selecting and evaluating them will be described further in detail
later in the chapter 5.1.

3.2 INGInious
The exercises from the syllabus cited earlier are tested on INGInious [22], a platform
developed by the INGI department at UCLouvain, used to automatically grade the
programming exercises uploaded by the students.

The tool is written entirely in Python, it relies on Docker in order to provide
a secure execution environment in which to run the programs. INGInious uses
MongoDB as a database to keep track of submissions and store them together with
other information such as the student identifier, the time of the submission and the
python file itself.

Moreover, INGInious is completely language-agnostic and is able to run any-
thing, even though it is currently limited to Linux programs given that only Linux
containers are provided and supported.

Figure 3.1: Example of an INGInious Exercise

Once a student submit a programming exercise, INGInious automatically exe-
cute it on a container and runs some tests, specifically made for the task, in order
to graduate the work of the student. The tests usually cover different inputs and
corner cases so that the exercise can be better evaluated in a scale between 0 and
100% according to the weight of each test, in this way we have a larger range of
grades to rate the performance of a student.

18

Context of Analysis

INGInious is used also for the final evaluation of the students. Indeed, all the
students perform their exam on the platform, where each question is presented as
a task with a detailed description, an area in which to write their solution (which
usually consist in the implementation of a method) and a "testing" area where the
student can run some custom test on his solution.

Finally, INGInious offers to course administrators and tutors some tools in or-
der to have a better understanding of the students’ performances. They can see
statistics like: the number of submissions during a certain period of time for each
task, the progress of each student during the semester and so on. They can even
generate a report with some graphs showing the performances of the class on each
task of the exam.

3.3 Database
All the exercises submitted by the students are stored in a MongoDB database.
Here are stored all the collections need to run the application. The most important
one for our analysis is the submissions collection which, as the name suggests,
contains all the submissions from all the students of all the courses.

3.3.1 Submission Collection
Even though MondoDB is a relational database, so each document in a collection
might have different fields, all the submissions present the same structure. Here
there are the main fields of a submissions document used to perform our analysis:

• _id - unique identifier of the submission

• courseid - course identifier

• taskid - task identifier

• username - list of usernames of the students who have submitted the exercise
(in order to handle group projects)

• submitted_on - date of the submission

• input - id of the actual file submitted retrievable by means of GridFS [11]

• grade - the evaluation of the exercise in a percentage format

The data is queried from the database by means of the libraries:

• pymongo - a Python distribution containing the tools for working with Mon-
goDB[16]

19

Context of Analysis

• gridfs - a specification to store and retrieve files that exceed the BSON-
document size limit. GridFS splits the file into smaller chunks and stores
each of them as a separate document [11]

20

Chapter 4

Analysis on Exercise Quality

This chapter will describe the first analysis carried out on qualitative data extracted
from the submissions collection. It will be divided into the following sections:

• Datasets - where will be described the process of extracting the exercises from
the database and the creation of the features used.

• Model Description - in which we will explain how Gradient Boosting, the model
chosen for our analysis, works.

• Analysis of Results - where the experimental results obtained will be shown.

• Final Considerations - in which the conclusions of our findings will be drawn.

The results obtained in this phase will be taken as a starting point for this
project. The aim of this analysis is to find out if it is possible to predict whether
or not the student will pass the exam using different sets of features.

4.1 Datasets
The generation of the dataset has been divided into two phases:

• the extraction of the results of the exercises carried out by the students in
order to generate the features

• the extraction of final exam results in all three examination sessions in 2019

Once the necessary features were extracted, four datasets with an increasing
number of features were created in order to evaluate the contribution they make to
the accuracy of the models.

21

Analysis on Exercise Quality

4.1.1 Exercises Extraction
Within the syllabus of the LINFO-1101 course of the academic year 2018/19 there
are 113 different exercises, some are simple multiple choice quizzes, others require
you to run complex scripts in Python. For this analysis it was decided to use all
the available exercises because the output of the evaluation is in the same format
for all of them.

In order to build the features dataset we have extracted, from the submissions
collection, for each exercise:

• the username of the student who did the exercise

• the grade automatically assigned by INGInious

• the date on which the student did the exercise

Then, for each exercise done by each student, the following parameters were
extracted:

• best_grade - as the name suggests, it is the best grade obtained by the student
for a given exercise.

• attempts - the number of times a student has done and uploaded the exercise.

• time_to_best_grade - the time, in hours, between the first and the best at-
tempt for a given exercise.

• days_since_beginning - the time, in days, between the beginning of the semester
and the time of the first submission.

The first two features are quite obvious, the other two are designed to try to
understand if time variables can offer interesting hints to judge a student’s school
performance.

Time_to_best_grade has been introduced to assess whether the time spent by
a student on a given exercise can be correlated with a better exam result. For
example, a good student could do an exercise perfectly on the first attempt or, in
any case, in a short time compared to a less attentive student.

Instead, days_since_beginning has been considered because all the exercises are
available throughout the year, so it may be interesting to see if the period in which
an exercise is done affects the student’s performance. For example, you might be
able to tell from the results if doing the exercises one at a time is more or less
effective than doing them all close to the exam date.

Finally, since each student is represented by a vector containing all the features
for each exercise, summary features have been added to provide a general overview
for each student:

22

Analysis on Exercise Quality

• avg_best_grade_tried - the average best grade computed only over the exer-
cises attempted

• avg_best_grade_total - the average best grade computed over all 113 exercises

• tot_100 - the number of exercises in which the student got a full score

• tot_attempted - the number of exercises attempted

• avg_attempts - the average number of attempts on all the exercises attempted

• avg_time_to_best_grade - the average time_to_best_grade over the exercise
attempted

• avg_days_since_beginning - the average days_since_begin over the exercise
attempted

A total of 741 students did at least one of the exercises proposed during the
semester and the table 4.1 shows the averages of the summary variables:

Summary Feature Average

avg_best_grade_tried 86.70
avg_best_grade_total 49.45
tot_100 55.29
tot_attempted 62.16
avg_attempts 5.93
avg_time_to_best_grade 119.37
avg_days_since_beginning 87.78

Table 4.1: Averages of the summary variables

4.1.2 Exams Extraction
A similar approach to that described above has been followed for the extraction of
the exams data.

In INGInious each exam session is saved as a separate course (LINFO-1101-0119,
LINFO-1101-0619, LINFO-1101-0819) so that it is easier to manage enrolments
and obtain student performance reports. An exam consists of 6 questions each with
its own weight, the maximum score for an exam is 20 and an exam is considered
passed if the student reaches a score of 10 out of 20.

As in the case of the exercises, the best submission was taken for each question
of the exam and the total score obtained was calculated for each student.

23

Analysis on Exercise Quality

It was decided to consider all three exam sessions held during the school year to
take as many students as possible.

In case a student participated in more than one examination session, for example
if they failed to pass the exam on the first attempt, the most recent attempt was
taken into account. In the table 4.2 we find a summary of the enrolments and the
number of students who have passed the different exam sessions.

Session Students Enrolled First Attempt Passed Passed (%)

Jan 19 615 615 253 41.14
Jun 19 152 60 107 70.39
Aug 19 172 37 100 58.14
Total / 712 460 64.61

Table 4.2: Exam sessions information

4.1.3 Exercises and Exams Discrepancy
Unfortunately, the number of students who have done the exercises during the
semester does not match perfectly with those who have subsequently taken the
exam.

In fact, there are 741 students who have done the exercises and 712 who have
taken part in the exams, but only 466 students belong to both groups. This may be
due to the fact that some students may have taken the course without attempting
the exam or, on the contrary, taken the exam without having done any exercises,
perhaps because they took the course the previous year.

Set #

Students from Exercises 741
Students from Exam 712
Intersection 466

Table 4.3: Datasets Discrepancy

4.1.4 Datasets Description
In conclusion, the complete dataset used contains 466 items each represented by
459 features (= 113 exercises * 4 features per exercise + 7 summary features).

In order to evaluate the performance of the various features, four different anal-
yses have been made with sub-sets gradually richer in features:

24

Analysis on Exercise Quality

1. Attempted - the dataset is a binary matrix that only considers whether an
exercise has been tried by the student at least once or not, regardless of the
outcome

2. Grades - only the grades obtained by the student in each exercise are taken
into account

3. Grades + Attempts - the number of times a student has attempted an exercise
is also taken into account.

4. All Features - is the complete dataset described above

Each of these datasets has been used for the training of the model described
in the following paragraph 4.2. The number of features present in the different
datasets is reported in the table 4.4.

Dataset Features

Attempted 114
Grades 115
Grades + Attempts 229
All Features 459

Table 4.4: Number of features in each dataset

Finally, all datasets were divided into training and test sets using the train_test_split
function of sklearn using the same random_state so that the division is identical for
each one. The table 4.5 shows the size of the training and test sets and information
on the distribution of labels, i.e. what percentage of the students actually passed
the exam.

Dataset Samples Passed Passed (%)

Total 466 357 77%
Training Set 372 290 78%
Test Set 94 67 71%

Table 4.5: Training and Test sets labels distribution for Exercise Quality Analysis

4.2 Model Description
Throughout the project it was decided to use only one classification algorithm in
order to compare the performance of the various feature sets.

The choice fell on Gradient Boosting and below there are two of its definitions:

25

Analysis on Exercise Quality

"Gradient boosting is a machine learning technique for regression and
classification problems, which produces a prediction model in the form of
an ensemble of weak prediction models, typically decision trees. It builds
the model in a stage-wise fashion like other boosting methods do, and it
generalizes them by allowing optimization of an arbitrary differentiable
loss function." (Wikipedia) [9]

"Gradient Boosted Decision Trees (GBDT) is an accurate and effective off-
the-shelf procedure that can be used for both regression and classification
problems in a variety of areas" (Scikit-learn) [10].

Gradient boosting [1] is based on three elements:

• a loss function that needs to be optimized

• a weak learner that makes predictions

• an additive model that adds weak learners so as to minimize loss function

The loss function must be differentiable and may depend on the type of problem
you want to solve. For example, you can use the logarithmic loss function for a
classification problem and the squared error for regression.

The weak learners used in gradient boosting are the decision trees. They are
built in a greedy way by choosing the best split using a purity score (e.g. Gini
index) or minimizing the loss function. Usually thresholds are imposed on weak
learners, for instance the maximum number of layers, splits or leaf nodes, to make
sure that the learners remain weak and easily buildable.

Finally, the additive model adds the calculated trees to the model one at a
time in order to minimize the loss function with each addition. The training stops
when a predefined number of trees have been added or when there are no further
improvements in the loss function.

4.2.1 Gradient Boosting Classifier from Scikit-Learn
For this project it was decided to use the GradientBoostingClassifier from scikit-
learn, particularly because of its excellent performance in accuracy and training
speed and its overfitting robustness.

Scikit-learn is an open source machine learning library that supports supervised
and unsupervised learning. It also provides various tools for model fitting, data
preprocessing, model selection and evaluation, and many other utilities [18].

GradientBoostingClassifier is a classification model already developed in the
skelearn.ensemble library. It has several parameters in order to be able to customize
the structure and operation of the model as much as possible, for example:

26

Analysis on Exercise Quality

• loss - the loss function that must be optimised.

• learning_rate - shrinks the contribution of each tree by its value. There is a
trade-off between it and n_estimators.

• n_estimators - the number of weak estimators generated.

• max_depth - maximal depth of each weak estimator.

• max_leaf_nodes - grow trees of max_leaf_nodes using a best-first approach.

Finally, another reason why this model was chosen is because of the ability to ex-
tract the importance of features in model construction using the feature_importances_
method and thus get a relative idea of which features are more important. The im-
portance of a feature is computed as the normalized total reduction of the criterion
brought by that feature.

4.3 Analysis of Results
In this section we will analyze the results obtained for each of the four datasets.
To evaluate the outcome of our analysis we decided to use the classification_report
function in sklearn.metrics. It shows, in addition to the accuracy measured on the
test set, also the values of Precision, Recall and F1-Score, for each class. Moreover,
the confusion matrix of each model has also been reported in order to display how
it tends to classify the different entries.

Finally, we have reported, for all datasets, a table showing the 10 most important
features. In order to obtain these values we trained each model 1000 times; for each
iteration we extracted the vector containing the relevance of each feature thanks to
the feature_importances_ method and added the values obtained for each feature.
In this way we can get an idea of which features have a greater weight in model
construction.

4.3.1 Attempted
In this first study we were interested in finding out whether a good classifier could
be obtained simply by knowing whether or not a student had attempted an exercise.

The model built on the Attempted dataset has obtained, as shown in the table
4.6, an accuracy of 0.73. Moreover both the precision and, especially, the recall
values, are very low for the Not Passed class. In fact, as we can see also from the
confusion matrix in figure 4.1 there is a high number of false positives, that is,
students who did not pass the exam assigned to the Passed class.

27

Analysis on Exercise Quality

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

61 6

19 8

10

20

30

40

50

60

Figure 4.1: Attempted Confusion Matrix

Precision Recall F1-Score Support

Passed 0.76 0.91 0.83 67
Not Passed 0.57 0.30 0.39 27
Accuracy 0.73 94

Table 4.6: Attempted classification report

Among the most important features (table 4.7) we can see that tot_attempted,
i.e. the summary feature that indicates how many exercises have been attempted
by a single student, is the one that had by far the most weight. This was predictable
as it is the only non-binary feature and therefore contains more information. Fur-
thermore, there may be a positive correlation between the number of attempted
exercises and the probability that a student will pass the exam at the end of the
semester.

28

Analysis on Exercise Quality

Attempted
Feature Score

tot_attempted 255.62
StudentInit_attempted 68.16
MergeList_attempted 60.34
Bath_attempted 26.01
DebtReminder_attempted 25.82
TextToDic_attempted 25.60
SimpleMath_attempted 22.89
REAL05_attempted 20.79
Prime_attempted 20.21
LinkedListEndRemove_attempted 19.58
SUM 545.00

Table 4.7: Attempted Features Importance sum after 1000 iterations

4.3.2 Grades
In this second analysis we used the students’ grades for each exercise instead. Surely
they will provide more information than just counting the attempted exercises.

The model built on the Grades dataset has obtained, as shown in the table 4.8,
an accuracy of 0.74, just a bit better than the previous one. As in the first analysis,
both the precision and the recall values, are very low for the Not Passed class. In
fact, the confusion matrix in figure 4.2 there is still a high number of false positives.

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

63 4

20 7

10

20

30

40

50

60

Figure 4.2: Grades Confusion Matrix

29

Analysis on Exercise Quality

Precision Recall F1-Score Support

Passed 0.76 0.94 0.84 67
Not Passed 0.64 0.26 0.37 27
Accuracy 0.74 94

Table 4.8: Grades classification report

As we can see in the table 4.9 again, the summary features avg_best_grade_total
and avg_best_grade_tried are the ones that received the most attention. In fact,
as in the previous case, it can be deduced that the students with the highest grade
average have the best chance of passing the exam. Finally, as we can see from
the SUM field, the first 10 features continue to represent over 50% of the total
importance.

Grades
Feature Score

avg_best_grade_total 148.22
avg_best_grade_tried 71.73
Session6_QCM_best_grade 49.61
REAL05_best_grade 41.24
StudentConstructor_best_grade 39.38
DebtReminder_best_grade 36.93
Session1_QCM_best_grade 35.49
StudentInit_best_grade 33.39
SimpleMax_best_grade 25.40
Count_best_grade 25.15
SUM 506.57

Table 4.9: Grades Features Importance sum after 1000 iterations

4.3.3 Grades + Attempts
In the third study we added features on the number of attempts made for each
exercise, assuming that a student who makes fewer attempts is better at solving an
exercise.

The model built on the Grades + Attempts dataset has obtained another slight
increase in accuracy, reaching 0.76 (see table 4.10), but as in the previous cases
we still have a high number of false positive entries as we can see also from the

30

Analysis on Exercise Quality

confusion matrix in figure 4.3.

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

64 3

20 7

10

20

30

40

50

60

Figure 4.3: Grades + Attempts Confusion Matrix

Precision Recall F1-Score Support

Passed 0.76 0.96 0.85 67
Not Passed 0.70 0.26 0.38 27
Accuracy 0.76 94

Table 4.10: Grades + Attempts classification report

In this case we can see that avg_best_grade_total is still a feature with some
importance, but not the same as the summary features in the previous examples. In
general, however, features that indicate the number of attempts on specific exercises
seem to be more important than features that indicate the grade obtained.

31

Analysis on Exercise Quality

Grades + Attempts
Feature Score

Session4_QCM_attempts 64.17
AmazonConstructor_attempts 54.00
avg_best_grade_total 50.17
DiffCount_attempts 38.94
Coordinates_attempts 38.63
GCD_attempts 29.60
Session6_QCM_best_grade 27.85
SimpleMax_best_grade 27.71
MergeList_attempts 26.88
StudentInit_attempts 26.77
SUM 384.76

Table 4.11: Grades + Attempts Features Importance sum after 1000 iterations

4.3.4 All Features
Finally, the model built on the All Features dataset is the one that has obtained, as
shown in the table 4.12, the best accuracy score of 0.78. As all the previous models,
both precision and recall scores, are quite low for the Not Passed class. In fact, as
we can see also from the confusion matrix in figure 4.4 there is still a consistent
number of false positives.

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

65 2

19 8

10

20

30

40

50

60

Figure 4.4: All Features Confusion Matrix

32

Analysis on Exercise Quality

Precision Recall F1-Score Support

Passed 0.77 0.97 0.86 67
Not Passed 0.80 0.30 0.43 27
Accuracy 0.78 94

Table 4.12: All Features classification report

In this case the only summary feature that is in the top 10 is avg_days_since_beginning
and in general the time passed since the beginning of the semester seems to be a
type of feature that provides enough information about the final result of the exam.
We can also notice a big decrease in the sum of the importance values of the first
10 features, but we must also take into account that the number of features is much
higher than the other three datasets.

All Features
Feature Score

AmazonConstructor_attempts 56,50582
FirstSum_time_to_best_grade 41,84725
avg_days_since_beginning 40,74566
Session1_QCM_days_since_beginning 38,1318
Prime_days_since_beginning 32,16751
Coordinates_attempts 26,93347
MergeList_days_since_beginning 23,26265
Prime_time_to_best_grade 19,94707
Session4_QCM_attempts 19,62833
StudentInit_days_since_beginning 18,29672
SUM 317,46628

Table 4.13: All Features Features Importance sum after 1000 iterations

4.4 Final Considerations
In general, all four models performed similarly, although as the number of features
increased, the results were progressively better. Unfortunately, the classifiers seem
to be quite inclined to include students in the class Passed. This may be due to the
fact that over 75% of the students considered have passed the exam and therefore
the dataset is unbalanced. Also keep in mind that the sample size is quite limited,

33

Analysis on Exercise Quality

only 466 students, which even leads, in the case of All Features, to have almost as
many features as entries.

In conclusion, it would be interesting to repeat this analysis on a larger sample
and maybe selecting sub-sets of exercises considered more important by the teach-
ers. This analysis was not deepened because it was only meant to be taken as a
starting point for the real core topic of the project that will be described in the
next chapters.

34

Chapter 5

Preparation for Source Code
Analysis

In this chapter we will describe all the steps that were necessary to generate the
data for each of the source code analysis described in the next chapter.

It will be divided into the following sections:

• Exercise Selection - in which we will briefly describe the process of selecting
exercises for source code analysis.

• External Resources - where will be described the two tools used for this study:
astminer and code2vec, with particular attention to the latter which is a cor-
nerstone of all this research.

• Data Description - where we’ll talk about the extraction of the data from
the database, the preprocessing steps that were necessary to make the entire
pipeline work and the choices on how to split the datasets.

• Code2Vec Execution - in which we will describe the way we run code2vec.

• Data Postprocessing - where we talk about the final steps to obtain the files
needed for our studies.

5.1 Exercise Selection
For this analysis it was decided not to use all the 113 exercises proposed in the
Syllabus described in chapter 3.1, as many of them were not considered interesting
or suitable for this research.

First of all, all multiple-choice exercises have been excluded, as they do not
involve the writing of source code by the student. In addition, several exercises,
especially those concerning the first topics, which are very simple and require only

35

Preparation for Source Code Analysis

a few lines of code to be written, have been discarded too since they are not pre-
sented as a method. Indeed, as we will see in the chapter 5.2.2, code2vec works on
individual methods, so exercises with few lines of code and without a real context
have been discarded.

Finally, for the same reason mentioned above, exercises that are too long and
complex have also been excluded, for example, those in which you have to declare
various classes and methods, which would then be unpacked into several entries for
code2vec and lose their overall meaning.

At the end of this selection process there were only 40 exercises left that were
considered suitable for this task. Probably with a more detailed analysis a larger
number could have been selected, but in order to avoid case-by-case evaluations it
was decided to exclude the exercises for which a stricter control would have been
necessary.

5.2 External Resources

5.2.1 Astminer
Astminer [12] is a library used for the mining of path-based representations of
code and more. It is supported by the "Machine Learning Methods for Software
Engineering" group at JetBrains Research [4].

In our project, it has been used, together with other preprocessing steps that
will be described in the chapter 5.3.2, to convert the source code extracted from the
database into a format compliant with the one required by code2vec. It was also
used to save the ASTs in DOT format so that the structure of the trees generated
by the code snippets can be displayed.

We used the CLI version of the tool, integrating it into a script that performs
the various stages of preprocessing. Below is reported the pseudo command to run
the tool.

java -jar cli.jar code2vec --lang py,java,c,cpp
--project path/to/project --output path/to/results

As we see, it receives four parameters:

• code2vec - specifies that we are interested in the output format compatible
with the model code2vec.

• –lang - must be followed by one of the four supported programming languages
(Python, Java, C and C++) to indicate the type of files that will be passed
as input.

• –project - is followed by the path to the input folder, all files in the specified
folder and its subfolders will be processed.

36

Preparation for Source Code Analysis

• –output - is followed by the path where we want the files generated by astminer
to be saved.

We show an example of the use of astminer passing as input a project containing
only one findMax method. We report the code below.

def findMax(vet):
maximum = vet[0]

for num in vet:
if num > maximum:

maximum = num

return maximum

As we said astminer can also generate the Abstract Syntax Tree of a method
in DOT format. Below we show two AST for the findMax method: the raw one
generated by astminer (Figure 5.1) and the a more interpretable one made by us
with a specific conversion script (Figure 5.2)

Figure 5.1: findMax AST generated by astminer

37

Preparation for Source Code Analysis

Figure 5.2: findMax AST with labels

Astminer processes all files within the project passed as input and returns four
csv files as output:

• tokens.csv - indexes the tokens, i.e. all the leaf nodes of the AST (See table
5.1).

id token

1 (
2 vet
3)
4 [
5 0
6]
7 maximum
8 =
9 _
10 num

Table 5.1: Sample of entries in tokens.csv

The tokens can be considered as labels for the leaf nodes of the AST. They can
be symbols (such as parentheses or mathematical signs), but also the names
assigned to variables (e.g. vet or maximum) and the values assigned to them
(e.g. 0).

38

Preparation for Source Code Analysis

• node_types.csv. - indexes all the different node types present in the AST
extracted from the input files (See table 5.2).

id node_type

1 OPEN_PAREN UP
2 parameters UP
3 parameters DOWN
4 typedargslist|tfpdef|NAME DOWN
5 CLOSE_PAREN DOWN
6 typedargslist|tfpdef|NAME UP
7 OPEN_BRACK UP
8 trailer UP
9 trailer DOWN

Table 5.2: Sample of entries in node_types.csv

The node_types are instead, as the name says, the type of node in the tree.
Astminer tends to generate very long nodes separated by the "|" symbol, so
in graphical representations we decided to take only the last part of a node
(example from "typedargslist|tfpdef|NAME UP" we take only "NAME UP").
In addition each node ends with "UP" or "DOWN" which indicates whether
we are moving up or down within the AST.

• paths.csv. - indexes all the paths extracted from the ASTs. A path is a
sequence of nodes connected to each other (See table 5.3).

id path path (corresponding node_types)

1 1 2 3 4 (OPEN_PAREN)^(parameters)^(parameters)_(NAME)_
2 1 2 3 5 (OPEN_PAREN)^(parameters)^(parameters)_(CLOSE_PAREN)_
3 6 2 3 5 (NAME)^(parameters)^(parameters)_(CLOSE_PAREN)_
4 7 8 9 10 (OPEN_BRACK)^(trailer)^(trailer)_(NUMBER)_
5 7 8 9 11 (OPEN_BRACK)^(trailer)^(trailer)_(CLOSE_BRACK)_

Table 5.3: Sample of entries in paths.csv + paths as string

A path is the sequence of nodes connecting two leaf nodes. Astminer to save
memory stores the nodes with their indexes, but in the table we also showed
a more interpretable version where we reported the node_types and replaced
"UP" and "DOWN" with the symbols "^" and "_" respectively.

• path_contexts.csv. - contains as many lines as the methods extracted from
the input files. Each line contains the method name and then a sequence of

39

Preparation for Source Code Analysis

path_contexts extracted from that method (See table 5.4)

Method Name Path Contexts

find|Max 1,1,2 1,2,3 2,3,3 4,4,5 4,5,6 ...

Table 5.4: Content of path_contexts.csv

Each path_contexts consists of three elements: the starting token within the
AST, the ending token and the path that connects them. They are represented
as a triplet in this order: start_token, path, end_token. For example the
path_contexts 4,4,5 has the following components:

– start_token : [
– path : (OPEN_BRACK)^(trailer)^(trailer)_(NUMBER)_
– end_token : 0

It is precisely the data contained in the file path_contexts that code2vec takes as
input in order to generate a predictive model and extract the vector representations
of the code.

5.2.2 Code2Vec
In this section we will try to go into more detail, compared to what was said in
chapter 2.2.1, on how code2vec was implemented.

Background

To better understand how this algorithm works, we need to define three recurring
elements:

• Abstract Syntax Tree (AST) - as described several times is a way of represent-
ing code as a tree composed of intermediate nodes (representing abstractions
such as the definition of a function, constructs if, for or while, but also the
declaration and assignment of values to a variable) and leaf nodes that instead
associate with abstractions what is actually written in the source code.

• AST Path - is a sequence of nodes that join two leaf nodes, which also indicates
the direction (up or down) to go from one node to the other.

• Path Context - is a triplet < xs, p, xt >, where p is the AST Path while xs and
xt are the values associated with the start and end nodes respectively.

40

Preparation for Source Code Analysis

Model

The principle behind code2vec is the idea that a source code snippet can be seen
as a bag of path_contexts. Each of these path_contexts is represented by a vector
that must capture its semantic meaning, but also the amount of attention to be
given to itself. In fact, there may be path_contexts common to all methods (e.g.
the definition of the method itself) that therefore do not give relevant information
about the code and consequently do not need to receive much attention.

The main problem is to aggregate the path_contexts of a code snippet into a
single vector. A trivial approach could be to take the most important path_context
or average all of them, but, as we have already said, a single path_context cannot
contain all the properties of a method and, at the same time, not all path_contexts
have the same importance. The goal is therefore to use them all, but the model
must also be able to understand how much attention to give to each of them.
All this is done by making the dot product of the path_contexts vectors with an
attention vector. All these vectors are learned simultaneously using the classic
backpropagation method.

Code2Vec uses the following components:

• path_vocab - the matrix containing the embeddings for all paths, each line
represents a AST Path.

path_vocab ∈ R|P |×d

where P is the set of AST Paths and d the is the embedding size. d is deter-
mined empirically limited by the training time, the model complexity and the
GPU memory, usually it is between 100 and 500.

• value_vocab - the matrix representing embeddings for tokens, each line repre-
sents a token.

value_vocab ∈ R|X|×d

where X is the set of AST terminal nodes observed during training.

• W - the matrix of weights for the fully connected layer

W ∈ Rd×3d

• a - the attention vector

a ∈ Rd

41

Preparation for Source Code Analysis

• tags_vocab - the matrix containing the embedding for the labels

tags_vocab ∈ R|Y |×d

where Y is the set of labels found in the training corpus.

The values of all components are randomly initialized and learned during train-
ing.

As we said, code2vec receives a series of path_contexts related to a method, they
are triplets < xs, pj, xt > where {xs, xt} ∈ X and pj ∈ P . The three embeddings
are concatenated forming a single context vector : ci ∈ R3d

ci = embedding(< xs, pj, xt >) = [value_vocabs; path_vocabj; value_vocabt] ∈ R3d

Then, a fully connected layer learns to combine its components. This process is
done separately for each context vector and this allows the model to give different
attention to different combinations of paths and tokens. In fact the same path can
receive different attention values depending on the tokens it connects, receiving
more importance in one case and less in another.

The combined context vector c̃i ∈ Rd is obtained through the fully connected
layer represented by the W matrix in the following way:

c̃i = tanh(W · ci)

where tanh is the hyperbolic tangent function, commonly used as a nonlinear
monotonic activation function that returns values between (−1, 1), which improves
the expressiveness of the model. The fully connected layer allow to compress a
vector of size 3d into one of size d.

The attention mechanism is used to calculate the weighted average of the various
combined context vectors by calculating the scalar weight of each of them.

The attention weight αi of each c̃i is computed as the normalized inner product
between the combined context vector c̃i and the global attention vector a:

attention weight αi = exp(c̃i
T · a)qn

j=1 exp(c̃i
T · a)

The aggregated code vector v ∈ Rd, which represents the whole code snippet, is
a linear combination of the combined context vectors {c̃1, ..., c̃n} factored by the
attention weights:

code vector v =
nØ

i=1
αi · c̃i

42

Preparation for Source Code Analysis

the attention weights are non-negative and their sum is 1, so attention can be
seen as a weighted average, where weights are learned and calculated compared to
all path_contexts.

Finally, the prediction of the tag is performed using the code vector. Tags_vocab
contains all the labels seen during the training phase. The predicted distribution
of the model q(y) is computed as the softmax-normalized dot product between the
code vector v and each of the tag embeddings:

for yi in Y : q(yi) = exp(vT · tags_vocabj)q
yj∈Y exp(vT · tags_vocabj)

The probability that a specific tag yi should be assigned to the the given code
snippet C is the normalized dot product between the vector of yi and the code
vector v.

For training the network they use the cross-entropy loss [17] between the pre-
dicted distribution q and the "true" distribution p, where p is a distribution that
assign the value 1 to the actual tag in the training sample and 0 otherwise.

Once the model is trained it can be used in two ways:

• use the code vector v for another task down the line.

• use the learned template to predict labels for unseen code.

As we will see in chapter 6, for our datasets we have used the code vectors to
train a gradient boosting classifier in order to execute our analysis.

Figure 5.3: Code2vec model architecture

43

Preparation for Source Code Analysis

Changes for our purpose

In their implementation of the code [8] Alon et al. provide all the tools to pre-
process a java project dataset and run the model training, then it is possible to
evaluate its performance on a test set or run the model interactively on a single
java file to examine its prediction and attention scores.

In addition, it is possible to extract vectors representing tokens and target labels
and export the code vectors.

For our purposes we were interested in extracting both vector representations
and attention scores from an entire set of methods passed to the model, so that we
could use those data in our Gradient Boostring model.

To do this, we implemented a custom command called my_predict. It is able
to generate, given a set of methods, a JSON file that contains all the data we are
interested in for each of the methods passed as input.

5.3 Dataset Description
In this project we used five datasets: one containing all the exercises done during
the year by all the students, while the other four contain each the code written by
the students for questions 1, 2, 3 and 6 of the January 2019 exam. Questions 4 and
5 were discarded because:

• question 4 required the development of two methods and, as we have seen,
code2vec separates different methods into two separate entries, so it would
have been complex to re-associate both methods to the same exercise.

• question 5 instead involved the writing of several classes and code2vec is not
yet able to handle this kind of structure.

5.3.1 Data Extraction
For the selection of the files we followed an approach similar to the one discussed
in chapter 4.1.1. In this case, we took for each student the source code of each
exercise he did by selecting the most recent and highest grade submission. In fact,
a student may upload a solution that gets a 100% grade several times, because he
decides to make some minor tweaks to optimise or clean up the code.

Each file is saved in the database in the bucket fs within a BSON type file [6]
(i.e. a binary JSON). The BSON file is converted into a dictionary within which
there are some parameters (such as the student name) and a string containing the
source code.

It is then generated for each exercise and each student a file .py containing the
source code whose name has the following format: <task_name>__<student_name>.py.

44

Preparation for Source Code Analysis

So that you can later keep track of the association between the source code and the
student who wrote it.

In the table 5.5 we show the size of each dataset.

Dataset Name Dimension

exercises 16447
0119_q1 606
0119_q2 568
0119_q3 562
0119_q6 470

Table 5.5: Dimensions of datasets for source code analysis

During the extraction of student files, other files are also generated:

• the final result of the exam (Passed or NotPassed), where the exam is consid-
ered passed if the student has obtained a score greater than or equal to 10 out
of 20.

• the outcome of individual examination questions (Passed or NotPassed), where
the question is considered sufficient if it obtains a grade greater than 50%.

These will be used as the labels to be predicted in the analysis that we will
describe in the next chapter.

5.3.2 Data Preprocessing
To go from extracting files from the database to running astminer and finally using
code2vec, a few data preprocessing steps are required.

These steps are the same for each dataset used and each analysis performed.
As we have seen in the chapter 5.2.1, astminer generates, in addition to the

files containing: tokens, node_types and paths, the files path_contexts in which is
reported, in each line, the name of every method contained in the input folder and
a series of path_contexts extracted from the method itself.

In this way, however, we lose any reference to the student and the exercise
to which the source code corresponds. This reference can be very useful later to
interpret the results obtained.

Moreover, unlike what is described in chapter 2.2.1, we are not interested in
training the model to predict the name of the method as done by Alon et al. [2],
but rather to see if, given the source code of an exercise, we are able to understand
whether or not the student will pass the exam. In fact we use code2vec as a binary
classifier.

45

Preparation for Source Code Analysis

For this reason, our first preprocessing step is to replace the method name within
each file with a unique string (key_string) and keep track of the information about
it in another file, such as the student name, the task name and the Passed or
NotPassed label that will be assigned to it later.

Once this is done we can run astminer. In order to parallelize the process, it will
generate several path_contexts files which will contain one line for each recognized
method. It may happen that a student defines several methods inside each other,
in these cases they will be considered as separate methods, but with the same
key_string. This may generate duplicates, as the "father" method will also contain
the path_contexts of the inner methods. To avoid this, only the first instance (that
of the "father" method) is taken for each key_string, while the others are discarded.
This selection process is done when we merge the various path_contexts files into
a single one.

5.3.3 Data Split

Finally, two sets of files are generated to create the two models (code2vec and
GradientBoosting) used in this analysis:

• For code2vec three sets are created: training, validation and test; containing
70%, 10% and 20% of the samples respectively.

• For GradientBoosting the same test set of code2vec is used, while for training
the union of training and validation sets described before.

Figure 5.4: Dataset split

The first files are used to generate the model code2vec using Passed and Not-
Passed as the label. Once this model is built, the my_predict function described in
chapter 5.2.2 is used to get the code vectors and attention values of the second set
of files, where the labels are the key_strings. In this way we are able to associate
the code vector and the source file from which it was generated.

46

Preparation for Source Code Analysis

5.4 Code2Vec Execution
Once all the steps described so far have been done, we can use the scripts provided
in the code2vec project. In fact before executing the training of the model it is
necessary to execute a last step of preprocessing that, starting from the files that
we have generated as described in the previous section, creates the files that will
actually be taken as input by the model.

For our research we had to slightly modify this preprocessing script to adapt it
to our purposes. Both sets described in chapter 5.3.3 are converted.

Afterwards, the model training is done. We decided to leave all the default
parameters apart from the number of training periods (NUM_TRAIN_EPOCHS).
Since our datasets are much narrower than the one used by Alon et al. [2] we can
afford and do the training for a larger number of epochs, although the algorithm is
set to stop earlier if the results do not improve.

The model at each epoch uses: the training set to learn all the embeddings and
the weight matrix described in chapter 5.2.2 and then the validation set to evaluate
the improvements by calculating the F1-Score.

Once the training is finished the model is tested on the test set to get an addi-
tional performance indicator.

Figure 5.5: Steps of source code conversion

5.5 Data Postprocessing
Finally, it’s called the my_predict method. It receives as input the training and test
files generated for the GradientBoosting model and for each of them it generates
a JSON file containing a dictionary with key_string as its primary key and the
following fields:

• the prediction of the model, i.e. what percentage of the method belongs to the
passed and notpassed classes.

47

Preparation for Source Code Analysis

• the code_vector, a vector of 384 values representing the method itself.

• the dictionary of attentions that lists the 10 path_contexts that received the
most attention for the prediction.

This file is later integrated in the post processing phase by adding also:

• the name of the student

• the name of the exercise you have carried out

• the original name of the method

• the actual label assigned to it

Below is the structure of one of these final JSON files. They will be used for all
the analyses described in the next chapters.

{
"bcaaa": {

"predictions": [
[

0.6132161617279053,
"passed"

],
[

0.38403835892677307,
"notpassed"

]
],
"attentions": [

{
"score": 0.047637175768613815,
"path":

"(NEWLINE)^(simple_stmt)^(suite)^(suite)_(DEDENT)_",
"token1": "_",
"token2": "_"

},
...

],
"code_vector": [

-0.11657661944627762,
-0.12590880692005157,
-0.17035745084285736,
0.19726648926734924,
...

],

48

Preparation for Source Code Analysis

"student": "gallezt",
"task_name": "0119_q1",
"method_name": "faulhaber_max",
"exam_outcome": "passed"

},
...

In the figure 5.6 we can see a scheme that summarize all the steps that we carry
out for our analysis.

Figure 5.6: Pipeline steps

49

Chapter 6

Analysis on Exercise Source
Code

In the course of our research we have carried out various types of experiments to
determine whether, through the analysis of the source code, interesting and useful
results can be obtained for the evaluation of the exercises done by the students.

In this chapter we will describe the results obtained from the various analyses
executed on the source code. It will be divided into the following sections:

• Type of Models - in which we will briefly describe the two models we trained
for each dataset.

• Exercises on Exams Outcomes - where we will try to predict the result of a
student’s examination by locking at the source code of the exercises uploaded
during the course.

• Exercises on Questions Outcomes - where we will report the results of trying
the predict the outcome of a specific question of the exam starting from the
exercises developed throughout the semester.

• Exam Questions Outcome - in which we will report whether or not the eval-
uation of the raw source code is enough to estimate the quality of an exam
question.

• Final Considerations - where we will comment the results obtained and discuss
the limits and possible improvements.

6.1 Type of Models
For each analysis we have built two different models from the data extracted at the
end of the whole pipeline described in chapter 5.

50

Analysis on Exercise Source Code

Both models are based on theGradientBoostingClassifier described in the section
4.2, the difference is in the way we decided to represent each method that is given
as input to the model.

6.1.1 Model on Code Vector
The first model is trained by inputting the vector representations generated by
code2vec, where each method is represented by an array of 384 values.

This number is the d value described in chapter 5.2.2, which is the size of all the
embeddings generated by code2vec. The value can be chosen arbitrarily, although
it has been decided to keep the default one used by the code authors.

As in all embedding methods, the larger the size of the object’s representative
vector, the more information it contains, and the goal is to find the right compromise
between these two factors, since a vector with many features takes longer to be
evaluated.

These vectors, although they often manage to capture even very subtle differ-
ences and similarities among the methods, are often difficult to interpret.

In the case of code2vec all the elements used by it (paths, tokens, path_contexts,
labels) are represented in vector form starting from randomly initialized values and
gradually learned through error back propagation techniques. In addition, a fully
connected layer is used to aggregate all the path_contexts of a method. All this
makes it impossible to interpret these vectors and to extract information from them
afterwards. For this reason we have chosen to try a second representation.

6.1.2 Model on Paths Vector
In the second model we decided to represent each method as a binary vector of
paths. Each value of the vector represents a path and is assigned the value 1 if that
path is present among those contained in the path_contexts extracted by astminer
and 0 otherwise.

To determine which path to take into account we decided to use the output
obtained from our pipeline as a reference. In fact, as described in the last chapter
code2vec is able to extract for each method the ten path_context considered most
relevant for the classification.

On this basis we extracted, for each of the top 10 path_context of each method,
the paths and counted the recurrences of each of them. Finally we sorted them in
order of recurrence. In this way we use code2vec as a kind of filter that extracts
the most important paths among all the methods.

From this ordered list we extract the identifiers of the first 100 paths and build
for each method a binary vector as described above.

We tested different lengths for this vector, between 50 and 500, without any
particular difference in performance and decided to use the smallest value that

51

Analysis on Exercise Source Code

gave the best accuracy.
We also tested a non-binary vector that would also track the number of times a

given path appeared in the code, but even this did not lead to substantial improve-
ments in the results.

This model, unlike the previous one, is more easily interpreted retrospectively
and can provide interesting information on which path have the most influence on
the result.

6.2 Exercises on Exams Outcomes
In our first analysis we wanted to get familiar with code2vec and test how it works.

The idea is to assess whether, given an exercise carried out by a student, it is
possible to understand whether or not the student will pass the final exam.

6.2.1 Dataset
The dataset used is exercises containing all the best submissions of each student for
each of the 40 exercises selected according to the criteria described in the section
5.1.

Each exercise has been assigned a label depending on whether the student passed
(Passed) or failed (NotPassed) the exam in one of three sessions in 2019. Below
there is a table (6.1) with general information about the dataset.

Dataset Samples Passed Passed (%) Tokens Paths

Exercises 16447 9810 59,6 2856 22738

Table 6.1: Exercises on exam outcome dataset information

It was then divided, as described in the section 5.3.3, into three sets (table 6.2):

• training and validation - used to train the model code2vec and then combined
to train the two gradient boosting models described in the section 6.1.

• test - used to evaluate the performance of each of both models.

52

Analysis on Exercise Source Code

Dataset Samples Passed Passed (%)

Training 11512 6845 59,5
Validation 1645 983 59,8
Test 3290 1982 60,2
Total 16447 9810 59,6

Table 6.2: Exercises on exam outcome data split

6.2.2 Analysis on Code Vector
As we can see from the confusion matrix in the figure 6.1 and the results report in
the table 6.3. This model fails to classify with great precision if from the code of a
single exercise it is possible to predict the result of the examination.

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

1385 597

836 472

600

800

1000

1200

Figure 6.1: Confusion Matrix for Exercises on exam outcome using model on code
vectors

We can notice that all four classes of the confusion matrix have a relatively
homogeneous distribution, but in particular we notice the presence of many False
Positive elements.

This may be due to the fact that a student could have done some exercises
correctly, maybe the easier ones, over the course of the year, but may have failed
the exam in the end.

53

Analysis on Exercise Source Code

Precision Recall F1-Score Support

Passed 0,63 0,68 0,65 1982
Not Passed 0,45 0,4 0,42 1308
Accuracy 0,57 3290

Table 6.3: Classification Report for Exercises on Exam outcome using model on
code vectors

The model has an accuracy of only 0.57, slightly better than random guessing,
but still not enough to say it is effective.

Actually the task required to the model is very complex and generic as it should
predict the final result of a student’s exam simply starting from a single exercise
regardless of the difficulty of it and how many of them the students have done
altogether.

6.2.3 Analysis on Path Vector
Although based on accuracy alone, it may seem that the path vectors model per-
forms better than the previous one, by looking at the confusing matrix in the figure
6.2 it is clear that the model is unable to classify the source code and consequently
it labels everything with the most common label (Passed).

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

1950 32

1277 31

250

500

750

1000

1250

1500

1750

Figure 6.2: Confusion Matrix for Exercises on exam outcome using model on path
vectors

What we said above can be easily seen even when looking at the classification
report in the table 6.4, where although the precision values may seem good, the
recall makes us notice the same problem.

54

Analysis on Exercise Source Code

Precision Recall F1-Score Support

Passed 0,6 0,98 0,75 1982
Not Passed 0,48 0,02 0,05 1308
Accuracy 0,6 3290

Table 6.4: Classification Report for Exercises on Exam outcome using model on
path vectors

Since the exercises dataset, as we have shown in the table 6.1, contains many
paths, we thought that 100 might not be enough to differentiate the exercises and
we ran tests using path vectors containing up to 5000 of most frequent paths, but
without being able to improve the quality of the results.

Finally, analyzing confidence (i.e. how likely an entry is assigned to each of the
two labels) we noticed that the average of this value is 0.59. This indicates that the
model is very undecided about which class to assign a code snippet to, and in the
rare cases where one of them is assigned to the negative class, it is for confidence
values extremely close to 0.5.

6.3 Exercises on Exam Questions Outcomes
Given the results of the first analysis we wanted to test our models on a task that
was considered easier.

Instead of finding out whether or not the student who has done an exercise will
pass the entire exam, we tried to narrow the field by checking whether or not, given
an exercise, it is possible to understand if the student will pass a certain exam
question.

6.3.1 Dataset
We did this analysis for each of the four questions selected from the January 2019
exam (0119_q1, 0119_q2, 0119_q3, 0119_q6).

For the construction of the models we have still used the dataset exercises, but
each time we assigned the label corresponding to whether or not each of the four
questions was passed by the student who has done the exercise. In the table 6.5 we
see the information related to the four datasets generated.

55

Analysis on Exercise Source Code

Dataset Samples Passed Passed (%) Tokens Paths

Exercises_q1

16447

6081 37,0

2856 22738Exercises_q2 5706 34,7
Exercises_q3 2739 16,7
Exercises_q6 2118 12,9

Table 6.5: Exercises on exam questions outcome datasets information

Obviously the only values that change are those related to the number of label
Passed and we see that this percentage tends to decrease question after question,
in fact it is obvious that the questions become increasingly complex and therefore
there are fewer students able to answer correctly.

6.3.2 Analysis on Code Vector
Looking at the confusion matrices in the figure 6.3, it seems that the model based on
the code vectors can pick up some similarities and differences in order to determine
whether or not a certain exercise could result in a successful exam question.

56

Analysis on Exercise Source Code

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

346 881

488 1575

400

600

800

1000

1200

1400

(a) Exercises on question q1 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

301 835

464 1690

400

600

800

1000

1200

1400

1600

(b) Exercises on question q2 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

67 491

190 2542
500

1000

1500

2000

2500

(c) Exercises on question q3 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l
44 395

170 2681

500

1000

1500

2000

2500

(d) Exercises on question q6 outcome

Figure 6.3: Confusion Matrices for Exercises on Exam Questions outcome using
model on code vectors

Unlike the previous case, this time we see a large number of elements in the class
of False Positives. This may be due to the fact that especially in questions 0119_q3
and 0119_q6 the labels are strongly unbalanced towards the class NotPassed.

Precision Recall F1-Score Support

Passed 0,41 0,28 0,34 1227
Not Passed 0,64 0,76 0,7 2063
Accuracy 0,58 3290

Table 6.6: Classification Report for Exercises on Exam Question q1 outcome using
model on code vectors

57

Analysis on Exercise Source Code

Precision Recall F1-Score Support

Passed 0,39 0,27 0,32 1136
Not Passed 0,67 0,78 0,72 2154
Accuracy 0,61 3290

Table 6.7: Classification Report for Exercises on Exam Question q2 outcome using
model on code vectors

Precision Recall F1-Score Support

Passed 0,26 0,12 0,16 558
Not Passed 0,84 0,93 0,88 2732
Accuracy 0,79 3290

Table 6.8: Classification Report for Exercises on Exam Question q3 outcome using
model on code vectors

Precision Recall F1-Score Support

Passed 0,21 0,1 0,13 439
Not Passed 0,87 0,94 0,9 2851
Accuracy 0,83 3290

Table 6.9: Classification Report for Exercises on Exam Question q6 outcome using
model on code vectors

58

Analysis on Exercise Source Code

These models tend to have better accuracy percentages (see tables 6.6, 6.7,
6.8, 6.9) than the one shown in the first analysis, but these percentages are also
"dangerously" close to the percentage of labels belonging to the negative class.

6.3.3 Analysis on Path Vector
Again, models built on path vectors were unable to distinguish examples belonging
to the class Passed and assigned almost all the code snippets to the predominant
class, NotPassed.

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

13 1214

20 2043

250

500

750

1000

1250

1500

1750

2000

(a) Exercises on question q1 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

6 1130

11 2143

250

500

750

1000

1250

1500

1750

2000

(b) Exercises on question q2 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

0 558

2 2730

0

500

1000

1500

2000

2500

(c) Exercises on question q3 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

1 438

1 2850
500

1000

1500

2000

2500

(d) Exercises on question q6 outcome

Figure 6.4: Confusion Matrices for Exercises on Exam Questions outcome using
model on path vectors

As the confusion matrices in figure 6.2 show, apart from very rare exceptions
for questions 0119_q1 and 0119_q2, that all the exercises were placed in the class
NotPassed.

The same result can also be seen from the reports in the tables below (6.10,

59

Analysis on Exercise Source Code

6.11, 6.12, 6.13) where the values of recall for the Passed label are between 0 and
0.01, confirming the poor performance of the models.

Precision Recall F1-Score Support

Passed 0,41 0,01 0,02 1227
Not Passed 0,63 0,99 0,77 2063
Accuracy 0,63 3290

Table 6.10: Classification Report for Exercises on Exam Question q1 outcome using
model on path vectors

Precision Recall F1-Score Support

Passed 0,35 0,01 0,01 1136
Not Passed 0,65 0,99 0,79 2154
Accuracy 0,65 3290

Table 6.11: Classification Report for Exercises on Exam Question q2 outcome using
model on path vectors

60

Analysis on Exercise Source Code

Precision Recall F1-Score Support

Passed 0 0 0 558
Not Passed 0,83 1 0,91 2732
Accuracy 0,83 3290

Table 6.12: Classification Report for Exercises on Exam Question q3 outcome using
model on path vectors

Precision Recall F1-Score Support

Passed 0,5 0 0 439
Not Passed 0,87 1 0,93 2851
Accuracy 0,87 3290

Table 6.13: Classification Report for Exercises on Exam Question q6 outcome using
model on path vectors

6.4 Exam Questions Outcome
Given the not so encouraging results obtained with the first two analyses, we have
tried to change the focus of our research.

We wanted to evaluate how much code2vec is able to extrapolate information
from the source code. So we decided to see if it is possible to evaluate an exercise
simply by analyzing the source code written by the student, without running and
testing it.

6.4.1 Dataset
For this analysis we took into consideration the datasets for each of the four exam-
ination questions (0119_q1, 0119_q2, 0119_q3, 0119_q6), the ones discussed in
chapter 5.3.1.

In each of the four datasets, to every code snippet was given the label Passed
if that exercise actually scored more than 50% during evaluation performed auto-
matically by INGInious and NotPassed otherwise.

In the table 6.14 we show the size of the datasets, the distribution of the labels
and the number of paths and tokens. Again as in the preceding analysis, the per-
centage of Passed labels decreases with increasing difficulty of the exam questions,
especially for datasets 0119_q3 and 0119_q6.

61

Analysis on Exercise Source Code

Dataset Samples Passed Passed (%) Tokens Paths

0119_q1 606 365 60,2 351 3509
0119_q2 568 339 59,7 419 4110
0119_q3 562 176 31,3 661 5196
0119_q6 470 124 26,4 286 4998

Table 6.14: Exam Questions outcome datasets information

6.4.2 Analysis on Code Vector
The results on code vectors seem particularly promising, especially for the first two
examination questions.

From the confusion matrices in the figure 6.5 we can see how the models tend to
classify quite correctly the outcome of the examination based on the pure evaluation
of the vectors extracted by code2vec.

In particular, the question 0119_q2 seems to be easily classifiable reaching an
accuracy level higher than 80% (Table 6.16).

62

Analysis on Exercise Source Code

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

66 10

20 26

10

20

30

40

50

60

(a) Question q1 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

50 8

11 45

10

15

20

25

30

35

40

45

50

(b) Question q2 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

13 30

7 63

10

20

30

40

50

60

(c) Question q3 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l
7 17

10 60

10

20

30

40

50

60

(d) Question q6 outcome

Figure 6.5: Confusion Matrices for Questions on Questions outcome using model
on code vectors

The models built on 0119_q1 and 0119_q3 also show good performance al-
though they tend to be unbalanced towards the classes of False Positives and False
Negatives respectively.

Finally, 0119_q6 tends to classify most entries with the label NotPassed, but
probably because more than 70% of the students failed to pass this question.

63

Analysis on Exercise Source Code

Precision Recall F1-Score Support

Passed 0,78 0,88 0,83 76
Not Passed 0,75 0,59 0,66 46
Accuracy 0,77 122

Table 6.15: Classification Report for Question q1 outcome using model on code
vectors

Precision Recall F1-Score Support

Passed 0,82 0,86 0,84 58
Not Passed 0,85 0,8 0,83 56
Accuracy 0,83 114

Table 6.16: Classification Report for Question q2 outcome using model on code
vectors

Precision Recall F1-Score Support

Passed 0,65 0,3 0,41 43
Not Passed 0,68 0,9 0,77 70
Accuracy 0,67 113

Table 6.17: Classification Report for Question q3 outcome using model on code
vectors

Precision Recall F1-Score Support

Passed 0,38 0,25 0,3 24
Not Passed 0,77 0,86 0,81 70
Accuracy 0,7 94

Table 6.18: Classification Report for Question q6 outcome using model on code
vectors

64

Analysis on Exercise Source Code

As we see from the tables (6.15, 6.16, 6.17, 6.18), the first two models are the
best performing with good precision and recall values in both classes. The other
two tend to have worse values, especially of recall, for the Passed class, but this
can be due both to the greater unbalance of the datasets, in fact less than a third
of the students managed to pass these questions, and to the fact that the questions
are more complex than those proposed in the first exercises. Therefore it should
not be easy to find errors specific to the exercise.

6.4.3 Analysis on Path Vector
For this analysis the path vectors finally seem to get good performances, even better
than those obtained by the code vectors just considered.

The confusion matrices in figure 6.6 show very promising results especially for
the first two datasets. In fact, it seems that just the presence or absence of certain
paths can be a strong indicator to differentiate the exercises performed correctly
from the wrong ones.

65

Analysis on Exercise Source Code

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

69 7

21 25

10

20

30

40

50

60

(a) Question q1 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

51 7

10 46

10

15

20

25

30

35

40

45

50

(b) Question q2 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l

17 26

9 61

10

20

30

40

50

60

(c) Question q3 outcome

passed notpassed
Predicted label

passed

notpassed

Tr
ue

 la
be

l
13 11

9 61

10

20

30

40

50

60

(d) Question q6 outcome

Figure 6.6: Confusion Matrices for Questions on Questions outcome using model
on path vectors

As we can see from the classification reports (table 6.19, 6.20, 6.21, 6.22) all
models achieve accuracy rates above 75% except the one for the question 0119_q3,
which doesn’t show a big increase in performance and always tends to have several
elements among the False Negatives.

Precision Recall F1-Score Support

Passed 0,77 0,91 0,83 76
Not Passed 0,78 0,54 0,64 46
Accuracy 0,77 122

Table 6.19: Classification Report for Question q1 outcome using model on path
vectors

66

Analysis on Exercise Source Code

Precision Recall F1-Score Support

Passed 0,82 0,88 0,85 58
Not Passed 0,87 0,8 0,83 56
Accuracy 0,84 114

Table 6.20: Classification Report for Question q2 outcome using model on path
vectors

Precision Recall F1-Score Support

Passed 0,68 0,35 0,46 43
Not Passed 0,69 0,9 0,78 70
Accuracy 0,69 113

Table 6.21: Classification Report for Question q3 outcome using model on path
vectors

67

Analysis on Exercise Source Code

Precision Recall F1-Score Support

Passed 0,62 0,54 0,58 24
Not Passed 0,85 0,89 0,87 70
Accuracy 0,8 94

Table 6.22: Classification Report for Question q6 outcome using model on path
vectors

As we said at the beginning the path vectors are much more interpretable than
the code vectors and given the good results obtained in this task we decided to
study more in depth the interpretability of these results. This will be discussed in
more detail in chapter 7.

6.5 Final Considerations
Our first two analyses were a good first attempt to approach the student assessment
task, but they had a big underlying problem: they were not able to assess the
student as a whole, but only the single exercise. In this way you cannot keep track
of whether a student may have done all the exercises assigned to them during the
year or only just a few of them.

In fact, in both analyses each exercise is treated as an independent entity, re-
gardless of which exercise you are evaluating in particular or the student who wrote
it. This is a big limitation because it does not allow us to evaluate the student as
a whole, as we were able to do in the analysis in chapter 4.

As we will describe in the chapter 8.1 we had some ideas about how this project
could be improved and developed further.

The last analysis, the one in which only from the representation of the code
we try to understand if it is of sufficient quality to pass this test, has brought
encouraging results and in fact it will be further deepened in the next chapter.

Given the results obtained for the examination questions we have tried to apply
the same approach to the exercises carried out during the course of the year in
order to see if it was possible to find the same kind of information obtained with
the examination questions.

However, for the exercises assigned during the year, students have "unlimited"
time to do them and consequently tend to try them until they reach the maximum
grade. As a result the datasets generated by taking the best submissions of an
exercise for each student were extremely unbalanced towards the class Passed (over
90% of the submissions taken into consideration belonged to that class) resulting
in models that classified each exercise as Passed.

A possible solution could be to evaluate all of a student’s submissions, in this

68

Analysis on Exercise Source Code

way you could evaluate which path_contexts, or simply which paths led to an im-
provement in the solution.

69

Chapter 7

Interpretability of Code2Vec
Results

Starting from the encouraging results obtained for the source code analysis of the
examination questions discussed in chapter 6.4, we decided to go further into the
study of the interpretability of the results to see if certain key paths can determine
the success or failure of an examination question.

The chapter is divided into the following sections:

• Procedure Description - in which we will discuss the idea and method adopted
to carry out this study, describing the use of attention vector and the procedure
for extracting paths.

• Example - where we will report an actual example of how this study can be
applied to specific exercises, in this case extracted from the question dataset
0119_q1.

• Considerations - where we will briefly describe the results obtained and pos-
sible suggestions for improvement.

7.1 Procedure Description
In this section, we will describe the idea and procedure used to evaluate the paths
that are important for the evaluation of source code.

As we know, the principle behind the code2vec model is that not all paths_contexts
have the same importance to distinguish different methods. Likewise, the assump-
tion behind our idea is that some paths may be more important than others in
determining whether the code of a specific exercise is written correctly or not.

70

Interpretability of Code2Vec Results

7.1.1 Attention Vector
As we said in the chapter 5.5, at the end of the whole pipeline consisting of: file
extraction, data preprocessing, training of the code2vec model and data postpro-
cessing; we get a JSON file that contains the information for each snippet of code
and, among them, there is a vector that contains the 10 context_paths that received
the most attention.

Below is an example of the structure of this vector.

"attentions": [
{

"score": 0.2427450567483902,
"path": " (LT_EQ)^(comparison)^(comparison)_(NAME)_",
"token1": "<=",
"token2": "x"

},
{

"score": 0.1321692168712616,
"path": "

(LT_EQ)^(comparison)^(while_stmt)^(while_stmt)_(suite)_(NEWLINE)_",
"token1": "<=",
"token2": "_"

},
{

"score": 0.0983961671590805,
"path": " (NAME)^(comparison)^(comparison)_(LT_EQ)_",
"token1": "sum",
"token2": "<="

},
...

],

These attention vectors are what we used as starting point for our analysis.

7.1.2 Paths Extraction
First of all, we only extracted the paths from every path_context. We focused only
on the paths because, in these cases, the model evaluates all the submissions for the
same exercise. So we thought that the information on the path was sufficient, while
by considering the paths_contexts we would have kept also the information on the
tokens which, since they often contain names arbitrarily assigned by the students,
could differentiate some of the paths of the ASTs that express very similar concepts.

Then we created a dictionary where the key is the string representing the path
and the values are calculated by counting how many times that path appears in
the attention vector of a method that will be then assigned to the Passed class and

71

Interpretability of Code2Vec Results

doing the same thing for the NotPassed class.
From this data structure we created a table and looked for which paths had a

big discrepancy between the two values, in particular we were interested in finding
paths that would lead to a negative code classification. In the table 7.1 we can see
some of the most frequent paths extracted from the dataset of the exercise 0119_q1
along with the number of times they appear in each class.

Id Path Passed
Prediction

Not Passed
Prediction Diff

1
(NEWLINE)^(simple_stmt)^
(suite)^(suite)_(simple_stmt)_
(expr_stmt)_(NAME)_

441 161 280

2
(NAME)^(power)^(expr_stmt)^
(simple_stmt)^(simple_stmt)_
(NEWLINE)_

205 64 141

3 (NEWLINE)^(suite)^(suite)_
(simple_stmt)_(expr_stmt)_(NAME)_ 78 2 76

4
(DEDENT)^(suite)^(while_stmt)^
(suite)^(suite)_(simple_stmt)_
(return_stmt)_(arith_expr)_(NAME)_

73 0 73

5
(NUMBER)^(expr_stmt)^(simple_stmt)^
(suite)^(suite)_(simple_stmt)_
(expr_stmt)_(NAME)_

84 14 70

6 (GREATER_THAN)^(comparison)^
(comparison)_(NAME)_ 7 62 55

7 (ADD)^(arith_expr)^(arith_expr)_
(NUMBER)_ 67 13 54

8 (NAME)^(comparison)^
(comparison)_(GREATER_THAN)_ 14 67 53

9
(NAME)^(power)^(expr_stmt)^
(simple_stmt)^(suite)^(suite)_
(simple_stmt)_(expr_stmt)_(NAME)_

61 9 52

10 (WHILE)^(while_stmt)^(while_stmt)_
(comparison)_(LT_EQ)_ 0 41 41

Table 7.1: Most frequent paths for question 0119_q1 with number of appearances
in each class prediction

72

Interpretability of Code2Vec Results

Once we selected some interesting paths, which are those with a strong difference
between the two values or possibly present in one of the two classes, we went to
look through the individual submissions of the students to evaluate the code and
represent on an AST the paths that received the most attention.

7.2 Example
We decided to analyze the first of the exercises of the January 2019 exam because
the required code is short to write and easy to understand. Below is a trace of it
translated in english.

In mathematics, Faulhaber’s formula, named after the German mathe-
matician Johann Faulhaber, expresses the sum of:

nØ
k=1

kp = 1p + 2p + 3p + ...+ np

where parameters n and p are positive integers and n is strictly positive.
For example, for n = 6 and p = 2 we obtain the sum

12 + 22 + 32 + 42 + 52 + 62 = 91

You are asked to write the body of a function faulhaber_max(x,p) which
returns, for an integer x > 0 and a given value of p ≥ 0, the largest integer
n > 0 for which the result of Faulhaber’s formula is strictly smaller than
x (< x). For example, print(faulhaber_max(120,2)) prints the value 6
because

12 + 22 + 32 + 42 + 52 + 62 = 91 < 120

but

12 + 22 + 32 + 42 + 52 + 62 + 72 = 140 ≥ 120

The exercise is very simple and requires few lines of code to be completed.
As we have seen in the table above, some paths tend to appear more often in

some classes than others. In our case we are interested in selecting those that often
appear in solutions classified as Not Passed. In particular from the table 7.1 we can
see how the tenth path seems to be discriminating to negatively classify an exercise.

Looking through the submissions that had such a path we found that of a student
who got only 50% as a final grade (score judged insufficient for how we set up the
analysis). Below is the source code uploaded by the student.

73

Interpretability of Code2Vec Results

def faulhaber_max(x,p):
n=0
n_p=0
while n_p<=x:

n+=1
n_p+=n**p

return n-1

The exercise done by this student was classified with 99% confidence within the
class Not Passed by the model code2vec.

So we extracted the five paths with the highest attention values (see table 7.2)
and generated the abstract syntax tree (figure 7.1).

Id Path Attention

1 (LT_EQ)^(comparison)^(comparison)_(NAME)_ 0,275

2 (NEWLINE)^(simple_stmt)^(suite)^
(suite)_(while_stmt)_(comparison)_(LT_EQ)_ 0,152

3 (LT_EQ)^(comparison)^(while_stmt)^
(while_stmt)_(suite)_(NEWLINE)_ 0,150

4 (NAME)^(comparison)^(comparison)_(LT_EQ)_ 0,070

5 (WHILE)^(while_stmt)^(while_stmt)_
(comparison)_(LT_EQ)_ 0,041

Table 7.2: Paths with higher attention from student submission

Figure 7.1: AST generated from the student’s source code

74

Interpretability of Code2Vec Results

In the figure 7.2 we see that all the paths that received the most attention connect
to the node containing ’<=’. In the exercise text it is explicitly specified that the
generated number must be strictly lower than the one in imposed as a limit (p). In
fact, going to check on INGInious, it is possible to notice that the program does
not pass some tests on corner cases, that are precisely the cases where the sum of
the numbers is equal to the number passed as p parameter.

Figure 7.2: Detail from the AST generated from the student’s source code

7.3 Considerations
As we have seen in this small study, it is possible to isolate specific paths that are
able to classify an entire code snippet. Unfortunately with other exercises we were
not able to get such clear results.

In general, having richer datasets could have helped to better identify the most
recurrent paths and thus distinguish the most frequent ones in the different classes.

In addition, more difficult exercises could depend on a larger number of paths.
In fact, the more complex the code to write is, the greater the number of variables
to take into account and so the number of possible errors that can be made. It
would be very interesting to further explore this topic with larger datasets and by
applying other study techniques, for example by searching sets of paths through
pattern mining techniques.

75

Chapter 8

Conclusion

This project represents an exploratory analysis on how to apply the study of the
source code in order to draw useful information and make predictions about stu-
dents’ performance.

The first analysis, in which we used qualitative features for the exercises, was
used as a starting point to see if it is actually possible to evaluate students based on
the work done during the course. The results confirmed expectations with accuracy
scores of above 70%.

As far as the source code analysis is concerned, we did not always get the ex-
pected results, but there were some interesting insights.

In the first two studies we wanted to test whether the exercises carried out during
the year could give useful information to predict the student’s exam results.

The models generated, however, did not achieve good performance results and
the main reason is the lack of an overview of the student. In fact, the single exercises
are not able to give a global idea of how a student develops his own code. Moreover,
different exercises have different topics and difficulties and for this reason it would
be interesting to divide them into categories.

In the third research we have tried to understand if from the study of the source
code only, that is without the need to run it and evaluate its output, it would be
possible to judge the good development of it in answering the examination ques-
tions. In spite of the small and, in some cases, unbalanced datasets the performance
were better than expected and it was decided to go deeper into the subject.

Finally, in our study of the interpretability of the results obtained by code2vec,
the aim was to understand whether specific paths could be indicators of the success
of an exercise and possibly of the quality of code writing. The model seems to be
able to extract such information and for simple exercises it is easy to interpret these
results.

76

Conclusion

8.1 Limits of the Analysis and Possible Improve-
ments

Among the limits of the analysis we can certainly consider the relatively small
number of students and consequently of exercises in our datasets. In fact, as we
know, machine learning algorithms obtain better results with greater amounts of
data. This has not prevented us from carrying out research, but it could have
guaranteed better results in some analyses. It would be interesting to repeat some
of the research on larger datasets containing the exercises of the following years in
order to be able to evaluate even more students.

8.1.1 Students Evaluation
One problem found in the first two source code studies was certainly the lack of
an overall view of all the exercises carried out by the same student. Unfortunately,
each student performs a different number of exercises and there is no obvious way
to aggregate the source code vectors among them.

One idea might be to implement an extra neural network that tries to summa-
rize the various code vectors into one or use an attention mechanism, similar to
what code2vec does to aggregate several path_contexts to represent a single code
snippet. This would lead to loss of useful information about the representations of
the individual exercises and further diminish the ability to interpret the results.

Another approach could be to create models for each of the exercises assigned
during the year and then aggregate the predictions made by each of them to evaluate
the student. It remains to be seen what would be a good way to combine these
results and how to manage students who do only some of the exercises.

Finally, a hybrid approach could be considered between analysing the quality
of the exercises carried out during the year and studying the source code of the
exam questions to predict whether a student will pass the final test. For example,
creating a vector in which to enter for each question the probability that it will
be sufficient to pass the exam and also add features on the student’s performance
during the year.

8.1.2 Interpretability of source code
As far as the study of the interpretability of the source code is concerned, we have
seen how useful information can be obtained by means of individual path. It would
be interesting to go further into this kind of analysis to see if, in more complex
exercises, certain sets of paths can provide information about the quality of the
code. One idea would be to use supervised pattern mining techniques to extract
groups of paths recurring in certain categories of exercises and see if they lead to a
positive or negative classification of them.

77

Conclusion

8.2 Application to Teaching
The deepening of this kind of analysis could be useful to identify, through the study
of the source code developed by the students, gaps on specific topics covered during
the course, allowing teachers to intervene on the organization of the teaching.

Those proposed in this chapter are just some of the possible future developments
for this type of research.

78

Bibliography

[1] A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learn-
ing. https://machinelearningmastery.com/gentle-introduction-gradient-
boosting-algorithm-machine-learning/. [Online].

[2] Uri Alon et al. «Code2Vec: Learning Distributed Representations of Code».
In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019), 40:1–40:29. issn: 2475-
1421. doi: 10.1145/3290353. url: http://doi.acm.org/10.1145/3290353.

[3] M. M. Ashenafi, G. Riccardi, and M. Ronchetti. «Predicting students’ final
exam scores from their course activities». In: 2015 IEEE Frontiers in Educa-
tion Conference (FIE). 2015, pp. 1–9.

[4] Astminer. https://github.com/JetBrains-Research/astminer. [Online].
[5] Awesome Machine Learning On Source Code. https://github.com/src-

d/awesome-machine-learning-on-source-code. [Online].
[6] BSON Wikipedia. https://en.wikipedia.org/wiki/BSON. [Online].
[7] Zimin Chen and Martin Monperrus. The CodRep Machine Learning on Source

Code Competition. Tech. rep. 1807.03200. arXiv, 2018. url: http://arxiv.
org/pdf/1807.03200.

[8] Code2vec. https://github.com/tech-srl/code2vec. [Online].
[9] Gradient Boosting Wikipedia. https://en.wikipedia.org/wiki/Gradient_

boosting. [Online].
[10] Gradient Tree Boosting. https://scikit- learn.org/stable/modules/

ensemble.html#gradient-tree-boosting. [Online].
[11] GridFS. https://docs.mongodb.com/manual/core/gridfs/. [Online].
[12] Vladimir Kovalenko et al. «PathMiner: a library for mining of path-based

representations of code». In: Proceedings of the 16th International Conference
on Mining Software Repositories. IEEE Press. 2019, pp. 13–17.

[13] LINFO1101 - Introduction à la programmation. https://uclouvain.be/en-
cours-2019-linfo1101. [Online].

79

https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://doi.org/10.1145/3290353
http://doi.acm.org/10.1145/3290353
https://github.com/JetBrains-Research/astminer
https://github.com/src-d/awesome-machine-learning-on-source-code
https://github.com/src-d/awesome-machine-learning-on-source-code
https://en.wikipedia.org/wiki/BSON
http://arxiv.org/pdf/1807.03200
http://arxiv.org/pdf/1807.03200
https://github.com/tech-srl/code2vec
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
https://docs.mongodb.com/manual/core/gridfs/
https://uclouvain.be/en-cours-2019-linfo1101
https://uclouvain.be/en-cours-2019-linfo1101

BIBLIOGRAPHY

[14] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. «Exploiting Similarities
among Languages for Machine Translation». In: CoRR abs/1309.4168 (2013).
arXiv: 1309.4168. url: http://arxiv.org/abs/1309.4168.

[15] Lili Mou et al. «Convolutional Neural Networks over Tree Structures for Pro-
gramming Language Processing». In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press,
2016, 1287–1293.

[16] Pymongo. https://pymongo.readthedocs.io/en/stable/. [Online].
[17] Reuven Rubinstein and William Davidson. The Cross-Entropy Method for

Combinatorial and Continuous Optimization. 1999.
[18] Scikit-Learn. https://scikit-learn.org/stable/getting_started.html.

[Online].
[19] Amirah Mohamed Shahiri, Wahidah Husain, and Nur’aini Abdul Rashid.

«A Review on Predicting Student’s Performance Using Data Mining Tech-
niques». In: Procedia Computer Science 72 (2015). The Third Information
Systems International Conference 2015, pp. 414 –422. issn: 1877-0509. doi:
https://doi.org/10.1016/j.procs.2015.12.157. url: http://www.
sciencedirect.com/science/article/pii/S1877050915036182.

[20] Syllabus interactif. https : / / syllabus - interactif . info . ucl . ac . be /
index/info1-theory. [Online].

[21] Huihui Wei and Ming Li. «Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code». In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17. 2017, pp. 3034–3040. doi: 10.24963/
ijcai.2017/423. url: https://doi.org/10.24963/ijcai.2017/423.

[22] What is INGInious? https : / / inginious . readthedocs . io / en / v0 . 6 /
teacher _ doc / what _ is _ inginious . html # how - does - inginious - work.
[Online].

[23] M. White et al. «Deep learning code fragments for code clone detection».
In: 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2016, pp. 87–98.

[24] J. Zhang et al. «A Novel Neural Source Code Representation Based on Ab-
stract Syntax Tree». In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). 2019, pp. 783–794.

80

https://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
https://pymongo.readthedocs.io/en/stable/
https://scikit-learn.org/stable/getting_started.html
https://doi.org/https://doi.org/10.1016/j.procs.2015.12.157
http://www.sciencedirect.com/science/article/pii/S1877050915036182
http://www.sciencedirect.com/science/article/pii/S1877050915036182
https://syllabus-interactif.info.ucl.ac.be/index/info1-theory
https://syllabus-interactif.info.ucl.ac.be/index/info1-theory
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://inginious.readthedocs.io/en/v0.6/teacher_doc/what_is_inginious.html#how-does-inginious-work
https://inginious.readthedocs.io/en/v0.6/teacher_doc/what_is_inginious.html#how-does-inginious-work

	List of Tables
	List of Figures
	Introduction
	Content Overview

	State of the Art
	Evaluation of Students
	Machine Learning on Source Code
	Code2Vec

	Context of Analysis
	LINFO1101
	INGInious
	Database
	Submission Collection

	Analysis on Exercise Quality
	Datasets
	Exercises Extraction
	Exams Extraction
	Exercises and Exams Discrepancy
	Datasets Description

	Model Description
	Gradient Boosting Classifier from Scikit-Learn

	Analysis of Results
	Attempted
	Grades
	Grades + Attempts
	All Features

	Final Considerations

	Preparation for Source Code Analysis
	Exercise Selection
	External Resources
	Astminer
	Code2Vec

	Dataset Description
	Data Extraction
	Data Preprocessing
	Data Split

	Code2Vec Execution
	Data Postprocessing

	Analysis on Exercise Source Code
	Type of Models
	Model on Code Vector
	Model on Paths Vector

	Exercises on Exams Outcomes
	Dataset
	Analysis on Code Vector
	Analysis on Path Vector

	Exercises on Exam Questions Outcomes
	Dataset
	Analysis on Code Vector
	Analysis on Path Vector

	Exam Questions Outcome
	Dataset
	Analysis on Code Vector
	Analysis on Path Vector

	Final Considerations

	Interpretability of Code2Vec Results
	Procedure Description
	Attention Vector
	Paths Extraction

	Example
	Considerations

	Conclusion
	Limits of the Analysis and Possible Improvements
	Students Evaluation
	Interpretability of source code

	Application to Teaching

	Bibliography

